WO2008103267A1 - Process for preparing alkoxylation catalyst and alkoxylation process - Google Patents

Process for preparing alkoxylation catalyst and alkoxylation process Download PDF

Info

Publication number
WO2008103267A1
WO2008103267A1 PCT/US2008/001955 US2008001955W WO2008103267A1 WO 2008103267 A1 WO2008103267 A1 WO 2008103267A1 US 2008001955 W US2008001955 W US 2008001955W WO 2008103267 A1 WO2008103267 A1 WO 2008103267A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
compound
alkaline earth
alkoxylation
compounds
Prior art date
Application number
PCT/US2008/001955
Other languages
French (fr)
Inventor
Kenneth Lee Matheson
Masikana Millan Mdleleni
Tad Curtis Hebdon
Herbert Olin Perkins
Melanie A. Sharp
Original Assignee
Sasol North America Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasol North America Inc. filed Critical Sasol North America Inc.
Priority to JP2009550889A priority Critical patent/JP2010519032A/en
Priority to KR1020097019711A priority patent/KR101527819B1/en
Priority to CN2008800057854A priority patent/CN101675019B/en
Priority to CA002678734A priority patent/CA2678734A1/en
Priority to EP08725569.1A priority patent/EP2125681A4/en
Priority to MX2009008836A priority patent/MX336889B/en
Publication of WO2008103267A1 publication Critical patent/WO2008103267A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/02Preparation of ethers from oxiranes
    • C07C41/03Preparation of ethers from oxiranes by reaction of oxirane rings with hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0211Oxygen-containing compounds with a metal-oxygen link
    • B01J31/0212Alkoxylates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/068Polyalkylene glycols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/13Saturated ethers containing hydroxy or O-metal groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/44Allylic alkylation, amination, alkoxylation or analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/31Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/46Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0204Ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24

Definitions

  • the present invention relates to the preparation of an alkoxylation catalyst and to a process of alkoxylation using the thus prepared catalyst.
  • Alkoxylated esters and compounds containing active hydrogen atoms such as alcohols find utility in a wide variety of products, e.g., surfactants.
  • an alkoxylation reaction involving a compound having an active hydrogen is conducted by the condensation of an alkylene oxide using a suitable catalyst. Because of the nature of the reaction, a mixture of product species is obtained having a rather wide range of molecular weights.
  • an alkoxylation catalyst of improved activity is produced. Additionally, catalysts prepared according to a preferred embodiment of the present invention exhibit greater stability vis-a-vis settling of slurried catalyst particles. Further, alkoxylation catalysts according to preferred embodiments of the present invention, block unwanted growth of ethyoxlated alcohols in the catalyst which results in reduced formation of high molecular weight ethylene oxide adducts in the resulting products produced using the catalysts, and thereby reduces visual haze.
  • an alkoxylation catalyst is prepared by reacting a catalyst precursor comprising an ethoxylated alcohol and a dispersed alkaline earth metal compound, with an alkylene oxide having from 2 to 4 carbon atoms under conditions to alkoxylate at least a portion of the ethoxylated alcohol and from a block alkoxylated alcohol.
  • the catalysts of the present invention are based on the unexpected finding that by subjecting certain prior art alkoxylation catalysts to further alkoxylation with alkylene oxides containing from 2 to 4 carbon atoms, surprising results with respect to catalyst activity and stability as well as an improvement in the appearance of products produced using the catalysts, are achieved.
  • the prior art catalysts which are treated according to the process of the present invention to produce the alkoxylation catalysts of the present invention are referred to herein as "catalyst precursors.”
  • Catalyst A One of the catalyst precursors, referred to herein as Catalyst A, is disclosed in U.S. Patents 4,775,653 ('653 Patent) and 5,220,077 ('077 Patent).
  • Catalyst A is prepared by admixing and reacting an ethoxylated alcohol mixture containing an ethoxylated alcohol having the general formula:
  • R 1 -O-(C 2 H 4 O) P H I wherein Ri is an organic radical containing from about 1 to about 30 carbon atoms and p is an integer of from 1-30, an alkaline earth metal-containing compound which is at least partially dispersible in the ethoxylated alcohol mixture, an inorganic acid, and a metal alkoxide selected from compounds having the formulas
  • R 2 , R 3 , R 4 , and R 5 are each a hydrocarbon radical containing from about 1 to about 30, preferably from about 8 to about 14, carbon atoms.
  • the ethoxylated alcohols used can be prepared by methods well known in the art for preparing ethylene oxide adducts of alcohols.
  • the ethoxylated alcohol mixture used in preparing Catalyst A typically contains free alcohol, the amount and type of which will vary depending upon the source of the ethoxylated alcohol. Generally speaking, the ethoxylated alcohol mixture will contain from about 1% to about 60% by weight free alcohol.
  • the alkaline earth metal compound used is one which is at least partially dispersible in the ethoxylated alcohol.
  • the term "dispersible” refers to a compound which solublizes or otherwise interacts with the ethoxylated alcohol in such a manner that it becomes a new species of alkaline earth metal compound. It is to be understood, however, that inasmuch as the mechanism is not completely understood, the term “dispersible” or “soluble” is not intended to be limited to the formation of a truly dissolved alkaline earth metal species as would be commonly understood in the case of ordinary solublization. While compounds such as calcium and strontium hydride, calcium and strontium acetate, calcium and strontium oxalate, etc. may be used, it is preferred that the alkaline earth metal compound be calcium or strontium oxide, calcium or strontium hydroxide, calcium or strontium hydride or a mixture thereof.
  • the inorganic acids useful include the acids themselves as well as “acid salts".
  • inorganic acids include sulphuric acid, hydrochloric 'acid, hydrofluoric acid, phosphoric acid, pyrophosphoric acid, ammonium biflouride, ammonium sulfate, etc.
  • oxy acids such as sulphuric acid.
  • the mol ratio of the alkaline earth metal compound to the metal alkoxide can vary from about 1 :1 to about 10:1 , based on alkaline earth metal compound and metal of the alkoxide, respectively.
  • the mol ratio of the inorganic acid to the metal alkoxide can vary from about 0.25:1 to about 4:1 , based on the ratio of the acid equivalent e.g. acid hydrogens, in the inorganic acid to the metal of the alkoxide, respectively.
  • the combined concentration of the alkaline earth metal compound, the inorganic acid and the metal alkoxide be present in an amount of from about 1 to about 10% by weight, the ethoxylated alcohol and diluents such as free alcohol being present in an amount of from about 90-99% by weight.
  • free alcohol content can range from about 1 % by weight to about 60% by weight.
  • Catalyst A can contain, with advantage, organic acids. Suitable organic acids are those carboxylic acids which have greater miscibility in hydrocarbon solvents than in water.
  • Such carboxylic acids which may generally be considered fatty acids, have a carbon chain length versus acid functionality which provides their greater miscibility or solubility in hydrocarbons.
  • fatty acids include those natural or synthetic mono-functional carboxylic acids wherein the carbon chain length is greater than about 5 carbon atoms, generally from about 5 to about 15 carbon atoms.
  • suitable acids include hexanoic, octanoic, nonanoic, 2-ethyl hexanoic, neodecanoic, isooctanoic, stearic, napthanoic, and mixtures or isomers of such acids.
  • the acids if used, be saturated, they may optionally contain other functional groups such as hydroxyl groups, amine groups, etc. which do not interfere with the process. It has been found that the use of the fatty acids leads to a better dispersion of the alkaline earth metal compound and that the active catalyst suspension is more stable in terms of the solids remaining dispersed.
  • a typical ethoxylated alcohol is admixed with a suitable alkaline earth metal containing compound such as calcium oxide and the mixture stirred for a suitable period of time until at least some of the calcium compound disperses or solublizes in the ethoxylated alcohol.
  • a suitable alkaline earth metal containing compound such as calcium oxide
  • this is accomplished by stirring, or other means of agitation to achieve intimate and thorough contact, at a temperature of generally from about 25 0 C to about 150 0 C (usually below the boiling point of the ethoxylated alcohol) for a sufficient period of time.
  • the dispersion time can vary from about 0.5 hours to about 20 hours. Longer times can be used if desired.
  • the inorganic acid is then slowly or incrementally added.
  • the metal e.g., aluminum alkoxide is then added and stirring of the mixture continued and the mixture heated to a temperature and for a sufficient period of time to effect at least a partial exchange reaction between the alkoxide groups of the metal alkoxide and the hydroxyl group of the ethoxylated alcohol.
  • Catalyst A The precise temperature to which Catalyst A is heated will, of course, depend upon the nature of the components employed. However, as noted above, the heating is usually carried out at a temperature and for a period of time sufficient to effect at least a partial exchange reaction between the alkoxide groups of the metal alkoxide and the hydroxyl group of the ethoxylated alcohol. This point can generally be determined by the evolution of alcohol which distills out of the mixture. It is preferred that the heating be carried on until the mixture has reached a substantially constant boiling point.
  • the desired activation temperature should, for a given pressure, approximate the boiling point of a substantial fraction of the free alcohols derived from the R 2 , R 3 and R 4 group of the metal alkoxide.
  • the metal alkoxide utilized is one where R 2 , R 3 , R4 and R 5 are long chain, e.g. 10 to 14 carbon atoms and longer, the alcohols produced in the exchange reaction are high boiling. Accordingly, very little if any distillation of alcohol occurs without the application of extremely high temperatures which can cause unwanted side reactions. In such cases, the heating can be carried out to a temperature of about 190°-300°C and more preferably from about 230°-260°C Lower temperatures may be employed when the process is conducted under reduced pressure, e.g.
  • temperature in the range of about 160 0 C to about 210 0 C are suitable.
  • the desired temperature range can be determined by sampling the dispersion as it is being heated at various times during the heating cycle and subjecting the samples to an ethoxylation reaction. When the desired degree of activity is achieved in the ethoxylation reaction, heating can be discontinued. Generally, however, the time of heating can vary from about 0.1 hour to about 5 hours, generally in the range of from about 0.2 hour to about 1 hour.
  • Catalyst B is formed by reacting an ethoxylated alcohol mixture, a alkaline earth metal compound that is at least partially dispersible in the ethoxylated alcohol mixture and a carboxylic acid.
  • the ethoxylated alcohols useful in forming Catalyst B are the same as those defined by Formula 1.
  • the ethoxylated alcohol mixture used can be prepared by methods well known in the art for preparing alkylene oxide adducts of alcohols. Alternately, the alkylene oxide adducts can be prepared according to the process of the present invention.
  • the ethoxylated alcohol mixture used in preparing Catalyst B typically contains free alcohol, the amount and type of which will vary depending upon the source of the ethoxylated alcohol. Generally speaking, the ethoxylated alcohol mixture will contain from about 1% to about 60% by weight free alcohol.
  • the alkaline earth metal compounds used in preparing Catalyst B are as described above with respect to Catalyst A.
  • the carboxylic acids used in preparing Catalyst B are as described above with respect to Catalyst A.
  • the inorganic acids that are useful in preparing Catalyst B are those as described above with respect to Catalyst A.
  • the relative amounts of the various components can vary widely, and in general, are defined above with respect to Catalyst A.
  • Catalyst B the ethoxylated alcohol mixture, the alkaline earth metal compound, the carboxylic acid, and the neutralizing acid are reacted or combined under conditions that prevent any significant loss of water that is either initially present or formed during the reaction.
  • Preventing loss of water is typically accomplished by conducting the reaction at a low enough temperature, e.g., room temperature, to prevent loss of water.
  • a low enough temperature e.g., room temperature
  • super-atmospheric pressure can be used to prevent loss of water.
  • the reaction is conducted at elevated temperatures under reflux to prevent loss of water.
  • Catalyst B the alkaline earth metal compound, e.g., calcium hydroxide, and the ethoxylated alcohol mixture are charged into a suitable stirred vessel equipped with a reflux condenser, following which the carboxylic acid is added. Generally, the three components are mixed at room temperature, although higher temperatures can be used. This reaction mixture is then heated generally to a temperature of from about 30° to 45°C for a period of time sufficient to solubilize the calcium-containing compound. Generally speaking, the reaction mixture is reacted for a period of from about 0.5 to about 2 hours.
  • the alkaline earth metal compound e.g., calcium hydroxide
  • the ethoxylated alcohol mixture are charged into a suitable stirred vessel equipped with a reflux condenser, following which the carboxylic acid is added. Generally, the three components are mixed at room temperature, although higher temperatures can be used. This reaction mixture is then heated generally to a temperature of from about 30° to 45°C for a period of time sufficient to solub
  • a mineral acid e.g., sulfuric acid
  • the reaction mixture can optionally be sparged with an inert gas such as nitrogen.
  • a suitable catalyst precursor e.g., Catalyst A or Catalyst B, described above, is reacted with an alkylene oxide having from 2 to 4 carbon atoms under alkoxylation conditions to effect further alkoxylates of at least a portion of the ethoxylated alcohols present in the catalyst precursor.
  • the formula of ethoxylated alcohols present in either of the catalyst precursors is given by Formula I above.
  • a block alkoxylated alcohol having the formula: wherein x is an integer and is O 1 3 or 4, a is an integer and is 2, 3 or 4, provided that when x is 0, a is 3 or 4, p is from 1 to 10, t is from 0.1 to 5, and y is from 0 to 5.
  • the catalysts of the present invention are prepared by reacting one of the catalyst precursors with the desired amount of alkylene oxide in a standard alkoxylation reactor.
  • the alkoxylation reaction is conducted at a temperature from 95 to 200 0 C and from 15 to 75 psig alkylene oxide pressure.
  • catalyst precursors e.g., Catalyst A or Catalyst B were separately subjected to PPO addition in a standard alkoxylation reactor at a temperature of 120 to 150 0 C and a pressure of 40 to 50 psig PPO (PPO) so as to result in the addition of 1.0 to 1.5 mols of PPO.
  • PPO psig PPO
  • the thus prepared catalysts were compared with Catalyst A and Catalyst B, i.e., the catalyst precursors, to determine activity.
  • the catalyst samples were tested for activity on the basis of time to effect addition of a given amount of ethylene oxide (EO) to an ALFOL® 12 alcohol, a alcohol marketed by Sasol North America, Inc. In all cases, the amount of catalyst employed was 0.1 wt. %.
  • EO ethylene oxide
  • Table 1 shows the results using the various catalysts in preparing an ethoxylated Ci 2 alcohol containing 7 mols of EO.
  • the catalysts according to the present invention contained 1 mol of PO as indicated by Catalyst A + 1 PPO, Catalyst B + 1 PPO, etc.
  • Table 2 shows results for the addition of 1.5 mols of PPO to the Ci 2 alcohol.
  • Example 2 This Example demonstrates the effect of adding different levels of PPO to the catalyst precursors in terms of catalyst stability, i.e., the ability of the catalyst to remain as a generally homogeneous dispersion over a period of time.
  • the procedure of Example 1 was followed with respect to the propoxylation of Catalyst B.
  • all of the propoxylated samples exhibited greater stability, i.e., remained better dispersed than the non-propoxylated Catalyst B. This dispersion improvement was not noticed with respect to similarly propoxylated samples of Catalyst A.
  • Example 1 The procedure of Example 1 was followed with respect to determining the effect of propoxylation of the catalyst precursors vis-a-vis ethoxylation activity with the exception that the alcohol employed was SafolTM 23, an essentially linear C12-13 binary alcohol marketed by Sasol North America, Inc. In all cases, 7 mols of EO were added to the alcohol.
  • Table 3 The results comparing Catalyst B and a catalyst according to the present invention are shown in Table 3 below.
  • Catalyst B (Table 3) at low levels of propoxylation (0.5 mols) the activity of the catalyst was enhanced. However, as the amount of PPO addition increased, catalyst activity decreases as compared to the unmodified (unpropoxylated) catalyst precursor. With respect to Table 4, it can be seen that increasing amounts of propoxylation increase the activity of the propoxylated modified Catalyst A 1 amounts of PPO addition of greater than about 1 mol rendering the resulting catalyst more active.
  • Example 1 The procedure of Example 1 was followed in terms of preparing 7 mol ethoxylates of the SafolTM 23 alcohol. Both in the case of propoxylated Catalyst A and B, it was found that from 1.0 to 1.5 mols of PPO added resulted in less residual catalyst haze. It was also noted with respect to Catalyst A propoxylated at the 0.5 mol level that there appeared to be an increase in haze of the ethoxylated product.
  • Example 5 A catalyst was prepared according to the general procedure of Example 1 as follows. 125 grams of precursor Catalyst B which had been propoxylated to produce a block alkoxylated catalyst of a Ci 0 -Ci 2 alcohol containing 3.7 mols of EO and 2 mols of PPO (Catalyst C) was reacted with 25 grams of EO at a temperature of 150 to 157°C. The reaction pressure started out at 10 psi of nitrogen (gauge pressure) and went up to 40 psi as the EO was added. It was calculated that the weight ratio of the added EO was about 2 mol equivalent to the Catalyst C. There was produced a block alkoxylated catalyst containing a block alkoxylated alcohol of the following general formula. C, 0 _, 2 - €O 37 -PPO 2 -EO 2 (Catalyst D)
  • Catalyst D was used to prepare 3, 300 gram batch samples of an ethoxylated C 8- io alcohol containing 2 mols of EO.
  • the catalyst was used at a
  • the reaction temperature was maintained at 150 to 154°C at a total pressure of 50 lbs (initial nitrogen pressure of 10 psi).
  • the EO addition times for the three samples are shown in Table 5 below.
  • Catalyst D resulted in ethoxylation of the C ⁇ -io alcohol, for at least one run, at an EO addition time at least as fast as the Catalyst C produced according to Example 1. Furthermore, this occurred even though the overall calcium concentration of Catalyst D was 17% less than Catalyst A + 1 PPO per Example 1.
  • Catalyst E had the following formula:
  • Catalyst E was then tested to make a 300 gm batch sample of ethoxylated C ⁇ -io alcohol containing 2 mols of EO.
  • the reaction temperature was 150 0 C and the total pressure was 40 to 50 psi.
  • the EO addition time was about 49 minutes.
  • the process of the present invention provides alkoxylation catalysts that, as compared to prior art alkoxylation catalysts, exhibit greater activity, are more stable, and produce a product with less haze.
  • the amount of PPO added to the catalyst precursor is tailored depending upon the catalyst precursor and the desired results, e.g., catalyst activity versus haze in the end product.
  • the catalyst of the present invention can be used to alkoxylate a wide variety of compound such as compounds having active hydrogen atoms, e.g., alcohols and carboxylated compounds, e.g., esters.
  • compounds having active hydrogen atoms e.g., alcohols and carboxylated compounds
  • esters include monoesters, ethylene glycol diesters and triesters.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A process for preparing an alkoxylation catalyst wherein a catalyst precursor which is formed from an alkoxylated alcohol and an alkaline earth metal compound to form a dispersion of an alkaline earth metal species is reacted with at least one alkylene oxide to alkoxylate at least a portion of the alkoxylated alcohol and forms a block alkoxylated alcohol.

Description

PROCESS FOR PREPARING ALKOXYLATION CATALYST AND ALKOXYLATION PROCESS
CROSS REFERENCE TO RELATED APPLICATION This application is a continuation-in-part of U.S. Application Serial No.
11/217,779 filed on September 1 , 2005, the disclosure of which is incorporated herein by reference for all purposes.
BACKGROUND OF THE INVENTION FIELD OF THE INVENTION
The present invention relates to the preparation of an alkoxylation catalyst and to a process of alkoxylation using the thus prepared catalyst.
DESCRIPTION OF PRIOR ART Alkoxylated esters and compounds containing active hydrogen atoms such as alcohols, find utility in a wide variety of products, e.g., surfactants. Generally, an alkoxylation reaction involving a compound having an active hydrogen is conducted by the condensation of an alkylene oxide using a suitable catalyst. Because of the nature of the reaction, a mixture of product species is obtained having a rather wide range of molecular weights.
U.S. Patent Nos. 4,775,653; 4,835,321 ; 4,754,075; 4,820,673; 5,220,046; 5,220,077; 5,386,045; and 5,627,121 , all of which are incorporated herein by reference for all purposes, disclose the use of a calcium-based catalyst in the alkoxylation of various compounds such as alcohols and carboxylated
compounds, e.g., esters.
SUMMARY OF THE INVENTION
According to a preferred aspect of the present invention, an alkoxylation catalyst of improved activity is produced. Additionally, catalysts prepared according to a preferred embodiment of the present invention exhibit greater stability vis-a-vis settling of slurried catalyst particles. Further, alkoxylation catalysts according to preferred embodiments of the present invention, block unwanted growth of ethyoxlated alcohols in the catalyst which results in reduced formation of high molecular weight ethylene oxide adducts in the resulting products produced using the catalysts, and thereby reduces visual haze. In accordance with a particularly preferred embodiment of the present invention, an alkoxylation catalyst is prepared by reacting a catalyst precursor comprising an ethoxylated alcohol and a dispersed alkaline earth metal compound, with an alkylene oxide having from 2 to 4 carbon atoms under conditions to alkoxylate at least a portion of the ethoxylated alcohol and from a block alkoxylated alcohol.
In another preferred aspect of the present invention there is provided a process for alkoxylating compounds having active hydrogen atoms, e.g., alcohols and carboxylated compounds, e.g., esters, using a catalyst prepared in accordance with a preferred embodiment of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The catalysts of the present invention are based on the unexpected finding that by subjecting certain prior art alkoxylation catalysts to further alkoxylation with alkylene oxides containing from 2 to 4 carbon atoms, surprising results with respect to catalyst activity and stability as well as an improvement in the appearance of products produced using the catalysts, are achieved. The prior art catalysts which are treated according to the process of the present invention to produce the alkoxylation catalysts of the present invention are referred to herein as "catalyst precursors."
Preparation of Catalyst A
One of the catalyst precursors, referred to herein as Catalyst A, is disclosed in U.S. Patents 4,775,653 ('653 Patent) and 5,220,077 ('077 Patent).
As disclosed in the '653 and '077 Patents, Catalyst A is prepared by admixing and reacting an ethoxylated alcohol mixture containing an ethoxylated alcohol having the general formula:
R1-O-(C2H4O)PH I wherein Ri is an organic radical containing from about 1 to about 30 carbon atoms and p is an integer of from 1-30, an alkaline earth metal-containing compound which is at least partially dispersible in the ethoxylated alcohol mixture, an inorganic acid, and a metal alkoxide selected from compounds having the formulas
OR2
I I I
Al-OR3 11
OR4 and
OR2
OR5-Ti-OR3 OR4
wherein R2, R3, R4, and R5 are each a hydrocarbon radical containing from about 1 to about 30, preferably from about 8 to about 14, carbon atoms. In the process of preparing Catalyst A, the alkaline earth metal compound and the ethoxylated alcohol mixture are mixed prior to addition of the metal alkoxide, the mixture being heated to a temperature and for a time sufficient to effect at least a partial exchange reaction between the alkoxide groups of the metal alkoxide and the hydroxyl groups of the ethoxylated alcohol.
The ethoxylated alcohols used can be prepared by methods well known in the art for preparing ethylene oxide adducts of alcohols. The ethoxylated alcohol mixture used in preparing Catalyst A typically contains free alcohol, the amount and type of which will vary depending upon the source of the ethoxylated alcohol. Generally speaking, the ethoxylated alcohol mixture will contain from about 1% to about 60% by weight free alcohol.
The alkaline earth metal compound used is one which is at least partially dispersible in the ethoxylated alcohol. As used herein, the term "dispersible" refers to a compound which solublizes or otherwise interacts with the ethoxylated alcohol in such a manner that it becomes a new species of alkaline earth metal compound. It is to be understood, however, that inasmuch as the mechanism is not completely understood, the term "dispersible" or "soluble" is not intended to be limited to the formation of a truly dissolved alkaline earth metal species as would be commonly understood in the case of ordinary solublization. While compounds such as calcium and strontium hydride, calcium and strontium acetate, calcium and strontium oxalate, etc. may be used, it is preferred that the alkaline earth metal compound be calcium or strontium oxide, calcium or strontium hydroxide, calcium or strontium hydride or a mixture thereof.
The inorganic acids useful include the acids themselves as well as "acid salts". Thus, non-limiting examples of inorganic acids include sulphuric acid, hydrochloric 'acid, hydrofluoric acid, phosphoric acid, pyrophosphoric acid, ammonium biflouride, ammonium sulfate, etc. Particularly preferred are the oxy acids, such as sulphuric acid.
In preparing Catalyst A relative amounts of the various components can vary widely. For example, the mol ratio of the alkaline earth metal compound to the metal alkoxide can vary from about 1 :1 to about 10:1 , based on alkaline earth metal compound and metal of the alkoxide, respectively. The mol ratio of the inorganic acid to the metal alkoxide can vary from about 0.25:1 to about 4:1 , based on the ratio of the acid equivalent e.g. acid hydrogens, in the inorganic acid to the metal of the alkoxide, respectively. It is generally preferred that the combined concentration of the alkaline earth metal compound, the inorganic acid and the metal alkoxide be present in an amount of from about 1 to about 10% by weight, the ethoxylated alcohol and diluents such as free alcohol being present in an amount of from about 90-99% by weight. As noted, depending on the source and type of the ethoxylated alcohol, free alcohol content can range from about 1 % by weight to about 60% by weight.
Generally speaking, the order of addition of the various components of Catalyst A is immaterial with the exception that the alkaline earth metal compound must be added prior to addition of the metal alkoxide. Thus, although it is common practice to admix the ethoxylated alcohol, the alkaline earth metal compound and the inorganic acid, followed by the addition of the metal alkoxide, the process can also be carried out by reversing the order of addition of the metal alkoxide and the inorganic acid. In addition to the above components Catalyst A can contain, with advantage, organic acids. Suitable organic acids are those carboxylic acids which have greater miscibility in hydrocarbon solvents than in water. Such carboxylic acids, which may generally be considered fatty acids, have a carbon chain length versus acid functionality which provides their greater miscibility or solubility in hydrocarbons. Non-limiting examples of fatty acids include those natural or synthetic mono-functional carboxylic acids wherein the carbon chain length is greater than about 5 carbon atoms, generally from about 5 to about 15 carbon atoms. Specific examples of such suitable acids include hexanoic, octanoic, nonanoic, 2-ethyl hexanoic, neodecanoic, isooctanoic, stearic, napthanoic, and mixtures or isomers of such acids. While it is preferred that the acids, if used, be saturated, they may optionally contain other functional groups such as hydroxyl groups, amine groups, etc. which do not interfere with the process. It has been found that the use of the fatty acids leads to a better dispersion of the alkaline earth metal compound and that the active catalyst suspension is more stable in terms of the solids remaining dispersed.
In preparing Catalyst A, a typical ethoxylated alcohol is admixed with a suitable alkaline earth metal containing compound such as calcium oxide and the mixture stirred for a suitable period of time until at least some of the calcium compound disperses or solublizes in the ethoxylated alcohol. Generally, this is accomplished by stirring, or other means of agitation to achieve intimate and thorough contact, at a temperature of generally from about 250C to about 1500C (usually below the boiling point of the ethoxylated alcohol) for a sufficient period of time. The dispersion time can vary from about 0.5 hours to about 20 hours. Longer times can be used if desired. Once the dispersion has been formed, as evidenced, e.g., by the presence of titratible alkalinity, the inorganic acid is then slowly or incrementally added. The metal, e.g., aluminum alkoxide is then added and stirring of the mixture continued and the mixture heated to a temperature and for a sufficient period of time to effect at least a partial exchange reaction between the alkoxide groups of the metal alkoxide and the hydroxyl group of the ethoxylated alcohol.
The precise temperature to which Catalyst A is heated will, of course, depend upon the nature of the components employed. However, as noted above, the heating is usually carried out at a temperature and for a period of time sufficient to effect at least a partial exchange reaction between the alkoxide groups of the metal alkoxide and the hydroxyl group of the ethoxylated alcohol. This point can generally be determined by the evolution of alcohol which distills out of the mixture. It is preferred that the heating be carried on until the mixture has reached a substantially constant boiling point. The desired activation temperature should, for a given pressure, approximate the boiling point of a substantial fraction of the free alcohols derived from the R2, R3 and R4 group of the metal alkoxide. At this point, maximum exchange has likely occurred between the alkoxide groups of the metal alkoxide and the hydroxyl group of the ethoxylated alcohol. It will be recognized that when the metal alkoxide utilized is one where R2, R3, R4 and R5 are long chain, e.g. 10 to 14 carbon atoms and longer, the alcohols produced in the exchange reaction are high boiling. Accordingly, very little if any distillation of alcohol occurs without the application of extremely high temperatures which can cause unwanted side reactions. In such cases, the heating can be carried out to a temperature of about 190°-300°C and more preferably from about 230°-260°C Lower temperatures may be employed when the process is conducted under reduced pressure, e.g. at a pressure of about 150-300 Torr, temperature in the range of about 1600C to about 2100C are suitable. The desired temperature range can be determined by sampling the dispersion as it is being heated at various times during the heating cycle and subjecting the samples to an ethoxylation reaction. When the desired degree of activity is achieved in the ethoxylation reaction, heating can be discontinued. Generally, however, the time of heating can vary from about 0.1 hour to about 5 hours, generally in the range of from about 0.2 hour to about 1 hour. Preparation of Catalyst B
As detailed in U.S. Patent 5,627,121 , another catalyst precursor referred to herein as Catalyst B is formed by reacting an ethoxylated alcohol mixture, a alkaline earth metal compound that is at least partially dispersible in the ethoxylated alcohol mixture and a carboxylic acid. The ethoxylated alcohols useful in forming Catalyst B are the same as those defined by Formula 1.
The ethoxylated alcohol mixture used can be prepared by methods well known in the art for preparing alkylene oxide adducts of alcohols. Alternately, the alkylene oxide adducts can be prepared according to the process of the present invention. The ethoxylated alcohol mixture used in preparing Catalyst B typically contains free alcohol, the amount and type of which will vary depending upon the source of the ethoxylated alcohol. Generally speaking, the ethoxylated alcohol mixture will contain from about 1% to about 60% by weight free alcohol.
The alkaline earth metal compounds used in preparing Catalyst B are as described above with respect to Catalyst A.
The carboxylic acids used in preparing Catalyst B are as described above with respect to Catalyst A.
The inorganic acids that are useful in preparing Catalyst B are those as described above with respect to Catalyst A. The relative amounts of the various components can vary widely, and in general, are defined above with respect to Catalyst A.
In forming Catalyst B, the ethoxylated alcohol mixture, the alkaline earth metal compound, the carboxylic acid, and the neutralizing acid are reacted or combined under conditions that prevent any significant loss of water that is either initially present or formed during the reaction. Preventing loss of water is typically accomplished by conducting the reaction at a low enough temperature, e.g., room temperature, to prevent loss of water. Alternately, if the reaction is conducted at elevated temperatures, super-atmospheric pressure can be used to prevent loss of water. Preferably, the reaction is conducted at elevated temperatures under reflux to prevent loss of water.
In a preferred method of forming Catalyst B, the alkaline earth metal compound, e.g., calcium hydroxide, and the ethoxylated alcohol mixture are charged into a suitable stirred vessel equipped with a reflux condenser, following which the carboxylic acid is added. Generally, the three components are mixed at room temperature, although higher temperatures can be used. This reaction mixture is then heated generally to a temperature of from about 30° to 45°C for a period of time sufficient to solubilize the calcium-containing compound. Generally speaking, the reaction mixture is reacted for a period of from about 0.5 to about 2 hours. Following solubilization of the calcium compound, a mineral acid, e.g., sulfuric acid, is introduced into the reaction mixture in an amount sufficient to neutralize at least 25% of the titratable alkalinity present in the reaction mixture. The reaction mixture can optionally be sparged with an inert gas such as nitrogen.
As noted above, to prepare the catalysts of the present invention, a suitable catalyst precursor, e.g., Catalyst A or Catalyst B, described above, is reacted with an alkylene oxide having from 2 to 4 carbon atoms under alkoxylation conditions to effect further alkoxylates of at least a portion of the ethoxylated alcohols present in the catalyst precursor. The formula of ethoxylated alcohols present in either of the catalyst precursors is given by Formula I above. Following alkoxylation according to the process of the present invention, there is produced a block alkoxylated alcohol having the formula:
Figure imgf000013_0001
wherein x is an integer and is O1 3 or 4, a is an integer and is 2, 3 or 4, provided that when x is 0, a is 3 or 4, p is from 1 to 10, t is from 0.1 to 5, and y is from 0 to 5. Preferred are alkoxylated block species coming within Formula IV wherein Ri contains from 8 to 14 carbon atoms, p is from 2 to 6 and t is from 1 to 3, most preferably from 1 to 2.0, when x is 3 and a is 0.
It will be understood that, as in the case of all alkoxylated species of alcohols, there is a distribution of the various alkoxy groups, the numbers above referring to the average number of ethoxy/alkoxy groups present in the block alkoxylated species.
In general the catalysts of the present invention are prepared by reacting one of the catalyst precursors with the desired amount of alkylene oxide in a standard alkoxylation reactor. Generally the alkoxylation reaction is conducted at a temperature from 95 to 200 0C and from 15 to 75 psig alkylene oxide pressure. To more illustrate the present invention, the following non-limiting examples are presented. Example 1
85 gram portions of catalyst precursors, e.g., Catalyst A or Catalyst B were separately subjected to PPO addition in a standard alkoxylation reactor at a temperature of 120 to 150 0C and a pressure of 40 to 50 psig PPO (PPO) so as to result in the addition of 1.0 to 1.5 mols of PPO. The thus prepared catalysts were compared with Catalyst A and Catalyst B, i.e., the catalyst precursors, to determine activity. The catalyst samples were tested for activity on the basis of time to effect addition of a given amount of ethylene oxide (EO) to an ALFOL® 12 alcohol, a alcohol marketed by Sasol North America, Inc. In all cases, the amount of catalyst employed was 0.1 wt. %.
Table 1 below shows the results using the various catalysts in preparing an ethoxylated Ci2 alcohol containing 7 mols of EO. In Table 1 , in all cases, the catalysts according to the present invention contained 1 mol of PO as indicated by Catalyst A + 1 PPO, Catalyst B + 1 PPO, etc.
Table 1
Figure imgf000014_0001
Table 2 below shows results for the addition of 1.5 mols of PPO to the Ci2 alcohol.
Table 2
Figure imgf000015_0001
As can be seen from the data in Table 1 and Table 2, the addition of PPO to either Catalyst A or Catalyst B results in improved activity of the respective catalyst.
Example 2 This Example demonstrates the effect of adding different levels of PPO to the catalyst precursors in terms of catalyst stability, i.e., the ability of the catalyst to remain as a generally homogeneous dispersion over a period of time. The procedure of Example 1 was followed with respect to the propoxylation of Catalyst B. Samples of propoxylated Catalyst B containing 0.5, 1.0 and 1.5 mols of PPO, respectively, were prepared and compared with unpropoxylated Catalyst B. In general, after periods of 1 week, 2 weeks, and 3.5 weeks, all of the propoxylated samples exhibited greater stability, i.e., remained better dispersed than the non-propoxylated Catalyst B. This dispersion improvement was not noticed with respect to similarly propoxylated samples of Catalyst A.
1 Average number of mols. Example 3
The procedure of Example 1 was followed with respect to determining the effect of propoxylation of the catalyst precursors vis-a-vis ethoxylation activity with the exception that the alcohol employed was Safol™ 23, an essentially linear C12-13 binary alcohol marketed by Sasol North America, Inc. In all cases, 7 mols of EO were added to the alcohol. The results comparing Catalyst B and a catalyst according to the present invention are shown in Table 3 below.
Table 3
Figure imgf000016_0001
Table 4 below shows results using propoxylated Catalyst A:
Table 4
Figure imgf000016_0002
As can be seen from Tables 3 and 4 in the case of the propoxylated
Catalyst B (Table 3) at low levels of propoxylation (0.5 mols) the activity of the catalyst was enhanced. However, as the amount of PPO addition increased, catalyst activity decreases as compared to the unmodified (unpropoxylated) catalyst precursor. With respect to Table 4, it can be seen that increasing amounts of propoxylation increase the activity of the propoxylated modified Catalyst A1 amounts of PPO addition of greater than about 1 mol rendering the resulting catalyst more active.
Example 4
The procedure of Example 1 was followed in terms of preparing 7 mol ethoxylates of the Safol™ 23 alcohol. Both in the case of propoxylated Catalyst A and B, it was found that from 1.0 to 1.5 mols of PPO added resulted in less residual catalyst haze. It was also noted with respect to Catalyst A propoxylated at the 0.5 mol level that there appeared to be an increase in haze of the ethoxylated product.
Example 5 A catalyst was prepared according to the general procedure of Example 1 as follows. 125 grams of precursor Catalyst B which had been propoxylated to produce a block alkoxylated catalyst of a Ci0-Ci2 alcohol containing 3.7 mols of EO and 2 mols of PPO (Catalyst C) was reacted with 25 grams of EO at a temperature of 150 to 157°C. The reaction pressure started out at 10 psi of nitrogen (gauge pressure) and went up to 40 psi as the EO was added. It was calculated that the weight ratio of the added EO was about 2 mol equivalent to the Catalyst C. There was produced a block alkoxylated catalyst containing a block alkoxylated alcohol of the following general formula. C,0_,2-€O37-PPO2-EO2 (Catalyst D)
It was noted that the EO reacted with the previously prepared Catalyst C in about three minutes.
Catalyst D was used to prepare 3, 300 gram batch samples of an ethoxylated C8-io alcohol containing 2 mols of EO. The catalyst was used at a
0.1 wt.% level. The reaction temperature was maintained at 150 to 154°C at a total pressure of 50 lbs (initial nitrogen pressure of 10 psi). The EO addition times for the three samples are shown in Table 5 below.
Table 5
Figure imgf000018_0001
Although some difficulty was experienced in delivering the Catalyst D dosage in a reproducible manner, nonetheless it was found that Catalyst D resulted in ethoxylation of the Cβ-io alcohol, for at least one run, at an EO addition time at least as fast as the Catalyst C produced according to Example 1. Furthermore, this occurred even though the overall calcium concentration of Catalyst D was 17% less than Catalyst A + 1 PPO per Example 1.
Example 6
45 gm of butylene oxide (BO) was added to 105 gm of a Catalyst B precursor (C10-12— 3.7 EO). The BO was added at a temperature of 1500C and at a total pressure of 40 psi. The BO addition time was about 4 minutes. The resulting catalyst (Catalyst E) had the following formula:
C,0_,2-EO37-BOy5
Catalyst E was then tested to make a 300 gm batch sample of ethoxylated Cβ-io alcohol containing 2 mols of EO. The reaction temperature was 1500C and the total pressure was 40 to 50 psi. The EO addition time was about 49 minutes.
Thus the partial butoxylation of the Catalyst B precursor (Ci0-i2— 3.7 EO) yielded an active ethoxylation catalyst.
As can be seen from the above results, the process of the present invention provides alkoxylation catalysts that, as compared to prior art alkoxylation catalysts, exhibit greater activity, are more stable, and produce a product with less haze. As the data above demonstrates, depending upon the catalyst precursor and the desired results, e.g., catalyst activity versus haze in the end product, the amount of PPO added to the catalyst precursor is tailored.
As noted above, the catalyst of the present invention can be used to alkoxylate a wide variety of compound such as compounds having active hydrogen atoms, e.g., alcohols and carboxylated compounds, e.g., esters. Non- limiting examples of such esters include monoesters, ethylene glycol diesters and triesters.
Modifications of the compositions, procedures and conditions disclosed herein that will still embody the concept of the improvements described should readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the invention presently disclosed herein as well as the scope of the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A process for preparing an alkoxylation catalyst comprising: reacting (I) a catalyst precursor selected from the group consisting of:
(1) Catalyst A formed by reacting a reaction medium comprising an ethoxylated alcohol mixture comprising compounds having the general formula:
R1-O-(C2H4O)PH I wherein Ri is an organic radical containing from 1 to 30 carbon atoms, and p is an integer of from 1 to 30, an alkaline earth metal compound selected from the group consisting of calcium-containing compounds, strontium-containing compounds and mixtures thereof which is at least partially dispersible in said ethoxylated alcohol mixture, an inorganic acid, and a metal alkoxide of a Lewis acidic metal, said reaction medium being optionally heated to a temperature and for a time sufficient to effect at least a partial exchange reaction between the alkoxide groups of said metal alkoxide, and the hydroxyl groups of said ethoxylated alcohol; and
(2) Catalyst B formed by reacting an ethoxylated alcohol mixture comprising compounds having the Formula I, an alkaline earth metal compound selected from the group consisting of calcium-containing compounds, strontium-containing compounds and mixtures thereof which is at least partially dispersible in said ethoxylated alcohol mixture, and a carboxylic acid having from 4 to 15 carbon atoms, the mol ratio of alkaline earth metal compound to said carboxylic acid being from about 15:1 to 1 :1 , to produce an alkaline earth metal containing composition having titratable alkalinity, said alkaline earth metal containing composition being obtained under conditions to prevent loss of water, and adding an amount of an inorganic acid to neutralize at least 25% of said titratable alkalinity under conditions to prevent loss of water to produce a partially neutralized compound; with (II) an alkylene oxide under conditions to alkoxylate at least a portion of said ethoxylated alcohol to form a block alkoxylated alcohol having the formula: Ri_0-fC2H40^(CxH2x0^r(CaH2aO^ IV wherein x is an integer and is 0, 3 or 4, a is an integer and is 2, 3 or 4, provided that when x is 0, a is 3 or 4, p is from 1 to 10, t is from 0.1 to 5, and y is from 0 to 5.
2. The process of Claim 1 , wherein Ri is from 8 to 14 and p is from 2 to 6.
3. The process of Claim 1 , wherein said calcium-containing compound is selected from the group consisting of calcium oxide, calcium hydroxide, calcium hydride and mixtures thereof.
4. The process of Claim 1 , wherein said strontium-containing compound is selected from the group consisting of strontium oxide, strontium hydroxide, strontium hydride and mixtures thereof.
5. The process of Claim 1 , wherein said metal alkoxide is selected from compounds having the formulas:
Figure imgf000023_0001
and
Figure imgf000023_0002
and mixtures thereof wherein R2 R3 R4 and R5 is each a hydrocarbon radical containing from about 1 to about 30 carbon atoms.
6. The process of Claim 6, wherein R2 R3 R4 and R5 contains from about 8 to about 14 carbon atoms.
7. The process of Claim 1 , wherein said reaction between said catalyst precursor and said alkylene oxide is conducted at a temperature of from 95 to 200 0C.
8. The process of Claim 1 , wherein said inorganic acid is sulphuric acid.
9. The process of Claim 1 , wherein the mol ratio of said alkaline earth metal compound to said metal alkoxide is from about 0.25:1 to about 4:1 , calculated as acidic hydrogen and aluminum, respectively.
10. The process of Claim 1 , including adding to said reaction medium a carboxylic acid having from 4 to 15 carbon atoms.
11. The process of Claim 1 , including removing water from said reaction medium prior to addition of said metal alkoxide.
12. The process of Claim 1 , including heating the partially neutralized composition at a temperature of from about 90° to about 1300C under reflux conditions.
13. The process of Claim 13, wherein said heating is conducted for a period of 1 to 5 hours.
14. The process of Claim 1 , wherein said inorganic acid is selected from the group consisting of sulphuric acid, phosphoric acid, hydrochloric acid and mixtures thereof.
15. An alkoxylation process comprising reacting, in the presence of an alkoxylation catalyst prepared according to the process of Claim 1 , a reactant selected from the group consisting of compounds having active hydrogen atoms, carboxylated compounds and mixtures thereof, and an alkylene oxide addition agent under alkoxylation conditions to produce an alkoxylated derivative of said reactant.
16. The process of Claim 16, wherein said reactant is a compound having an active hydrogen atom.
17. The process of Claim 17, wherein said compound having an active hydrogen atom is an alcohol.
18. The process of Claim 16, wherein said carboxylated compound is an ester.
19. The process of Claim 16, wherein said alkylene oxide addition agent is EO.
PCT/US2008/001955 2007-02-21 2008-02-14 Process for preparing alkoxylation catalyst and alkoxylation process WO2008103267A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009550889A JP2010519032A (en) 2007-02-21 2008-02-14 Preparation of alkoxylation catalyst and alkoxylation method
KR1020097019711A KR101527819B1 (en) 2007-02-21 2008-02-14 Process for preparing alkoxylation catalyst and alkoxylation process
CN2008800057854A CN101675019B (en) 2007-02-21 2008-02-14 Process for preparing alkoxylation catalyst and alkoxylation process
CA002678734A CA2678734A1 (en) 2007-02-21 2008-02-14 Process for preparing alkoxylation catalyst and alkoxylation process
EP08725569.1A EP2125681A4 (en) 2007-02-21 2008-02-14 Process for preparing alkoxylation catalyst and alkoxylation process
MX2009008836A MX336889B (en) 2007-02-21 2008-02-14 Process for preparing alkoxylation catalyst and alkoxylation process.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/708,893 US20070213554A1 (en) 2005-09-01 2007-02-21 Process for preparing alkoxylation catalyst and alkoxylation process
US11/708,893 2007-02-21

Publications (1)

Publication Number Publication Date
WO2008103267A1 true WO2008103267A1 (en) 2008-08-28

Family

ID=39710900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/001955 WO2008103267A1 (en) 2007-02-21 2008-02-14 Process for preparing alkoxylation catalyst and alkoxylation process

Country Status (8)

Country Link
US (1) US20070213554A1 (en)
EP (1) EP2125681A4 (en)
JP (1) JP2010519032A (en)
KR (1) KR101527819B1 (en)
CN (1) CN101675019B (en)
CA (1) CA2678734A1 (en)
MX (1) MX336889B (en)
WO (1) WO2008103267A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008028555A1 (en) * 2008-06-16 2009-12-17 Bayer Materialscience Ag Process for the preparation of polyols
CN102585197A (en) * 2011-01-05 2012-07-18 辽宁科隆精细化工股份有限公司 Method for addition of epoxide, and use of alkali metal and salts thereof for method
SG11201406438WA (en) * 2012-04-13 2014-12-30 Lion Corp Alkoxylation catalyst, method for producing catalyst, and method for producing fatty acid alkyl ester alkoxylate using catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220077A (en) * 1992-08-19 1993-06-15 Vista Chemical Company Alkoxylation process
WO1997000133A1 (en) * 1995-06-15 1997-01-03 Condea Vista Company Process for preparing alkoxylation catalysts and alkoxylation process
US5840995A (en) * 1995-12-15 1998-11-24 Hoechst Aktiengesellschaft Precursor for alkoxylation catalysts

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985000365A1 (en) * 1983-07-05 1985-01-31 Union Carbide Corporation Alkoxylation using calcium catalysts and products therefrom
US4775653A (en) * 1987-04-28 1988-10-04 Vista Chemical Company Alkoxylation process using calcium based catalysts
US4835321A (en) * 1987-04-28 1989-05-30 Vista Chemical Company Alkoxylaton process using calcium based catalysts
JP2890322B2 (en) * 1990-02-01 1999-05-10 ユニオン、カーバイド、ケミカルズ、アンド、プラスチックス、カンパニー、インコーポレイテッド Alkoxylation method using modified III-B metal-containing bimetal or polymetal catalyst
JPH03229641A (en) * 1990-02-01 1991-10-11 Union Carbide Chem & Plast Co Inc Alkoxylation using modified calcium- containing bimetal or polymetal catalyst
US5386045A (en) * 1991-08-22 1995-01-31 Vista Chemical Company Process for alkoxylation of esters and products produced therefrom
US5220046A (en) * 1991-08-22 1993-06-15 Vista Chemical Company Process for alkoxylation of esters and products produced therefrom
US20070060770A1 (en) * 2005-09-01 2007-03-15 Matheson Kenneth L Process for preparing alkoxylation catalyst and alkoxylation process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220077A (en) * 1992-08-19 1993-06-15 Vista Chemical Company Alkoxylation process
WO1997000133A1 (en) * 1995-06-15 1997-01-03 Condea Vista Company Process for preparing alkoxylation catalysts and alkoxylation process
US5840995A (en) * 1995-12-15 1998-11-24 Hoechst Aktiengesellschaft Precursor for alkoxylation catalysts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2125681A4 *

Also Published As

Publication number Publication date
US20070213554A1 (en) 2007-09-13
EP2125681A1 (en) 2009-12-02
EP2125681A4 (en) 2013-09-04
KR101527819B1 (en) 2015-06-10
MX336889B (en) 2016-02-04
CA2678734A1 (en) 2008-08-28
JP2010519032A (en) 2010-06-03
KR20090115761A (en) 2009-11-05
CN101675019B (en) 2013-03-27
CN101675019A (en) 2010-03-17
MX2009008836A (en) 2009-10-07

Similar Documents

Publication Publication Date Title
US8329609B2 (en) Process for preparing alkoxylation catalyst and alkoxylation process
US4775653A (en) Alkoxylation process using calcium based catalysts
EP0026546B1 (en) Process for reaction of epoxides with organic compounds having an active hydrogen
EP0026547A1 (en) Process for the preparation of basic salts of alkaline earth metals
US4835321A (en) Alkoxylaton process using calcium based catalysts
EP0026544A1 (en) Process for preparing basic salts of barium
WO1993004030A1 (en) Process for alkoxylation of esters and products produced therefrom
US7323605B2 (en) Double metal cyanide-catalyzed, low unsaturation polyethers from boron-containing starters
EP0777527B1 (en) Process for preparing alkoxylation catalysts and alkoxylation process
EP2125681A1 (en) Process for preparing alkoxylation catalyst and alkoxylation process
US5220077A (en) Alkoxylation process
EP1351910B1 (en) Process for alkoxylation in the presence of rare earth triflimides
WO1998050449A1 (en) Oxyalkylene-modified polyoxybutylene alcohols
MXPA06012857A (en) Double metal cyanide-catalyzed, low unsaturation polyethers from boron-containing starters

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880005785.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08725569

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2678734

Country of ref document: CA

Ref document number: MX/A/2009/008836

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2009550889

Country of ref document: JP

Ref document number: 2971/KOLNP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008725569

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097019711

Country of ref document: KR