WO2008099285A2 - Control of transport properties to and from nanoparticle surfaces - Google Patents
Control of transport properties to and from nanoparticle surfaces Download PDFInfo
- Publication number
- WO2008099285A2 WO2008099285A2 PCT/IB2008/000817 IB2008000817W WO2008099285A2 WO 2008099285 A2 WO2008099285 A2 WO 2008099285A2 IB 2008000817 W IB2008000817 W IB 2008000817W WO 2008099285 A2 WO2008099285 A2 WO 2008099285A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nanoparticle
- composite
- stabilizing moiety
- modifying step
- polymer
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2/00—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
- B01J2/006—Coating of the granules without description of the process or the device by which the granules are obtained
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/102—Metallic powder coated with organic material
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/0805—Chalcogenides
- C09K11/0811—Chalcogenides with zinc or cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/56—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
- C09K11/562—Chalcogenides
- C09K11/565—Chalcogenides with zinc cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
- C09K11/881—Chalcogenides
- C09K11/883—Chalcogenides with zinc or cadmium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/773—Nanoparticle, i.e. structure having three dimensions of 100 nm or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
- Y10T428/2998—Coated including synthetic resin or polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
Definitions
- Nanoparticles are nanometer-sized materials e.g., metals, semiconductors, polymers, and the like, that can often posses unique characteristics because of their small size. Nanoparticles are of particular interest because of their potential for use as catalysts, photocatalysts, adsorbents, sensors, and ferrofluids, as well as for their material properties in for application to optical, electronic, and magnetic devices, and formulation of plastics and other materials.
- the present inventions provide nanoparticle compositions comprising a stabilizer and methods to tailor the permeability of a stabilizer that, e.g., impart a nanoparticle composite with certain solubility and non-aggregative characteristics.
- a stabilizer can be modified to tune its permeability to materials moving from the nanoparticle surface to the surrounding environment and/or vice versa.
- the present invention provides methods to produce nanoparticles that are stabilized, where the stabilizer provides solubility and/or prevents aggregation, and with a selected permeability to selected small chemical entities.
- the present inventions provide methods for producing a stabilized composite nanoparticle comprising the steps of: a) providing a solution comprising at least one nanoparticle and at least one stabilizing moiety dispersed therein; and, b) modifying at least one stabilizer moiety in the solution to change its permeability to SCEs.
- the present inventions provide nanoparticle compositions that are stabilized, where the stabilizer is chosen to allow for one or more of: (a) improved permeability to certain SCEs; (b) decreased permeability to certain SCEs; and (C) improved permeability to a first group of SCEs and decreased permeability to a second group of SCEs.
- the stabilizing moiety comprises one or more polymeric stabilizers.
- suitable means to modify the polymeric stabilizer to change the nanoparticle transport properties include, but are not limited to, (a) radiation or chemical-induced internal and/or external crosslinking of stabilizer moieties, where the degree of crosslinking controls the permeability of the layer; (b) change of solution conditions and/or use of heating and/or cooling to induce expansion or contraction of the polymeric stabilizer layer; (c) adsorption or desorption of additional moieties (adsorbates) to the polymer network, which can be assisted by chemical bond formation or cleavage; and (d) one or more combinations thereof.
- suitable polymeric materials for use as stabilizer moieties are discussed herein, and but can be synthetic or naturally occurring and can be linear, branched, hyperbranched, and/or dendrimeric.
- stabilizing moiety or “stabilizer” are used interchangeably and refer to a material that interacts with the nanoparticle (e.g., through covalent, non- covalent, ionic, van der Waals, etc. bonds) and which imparts desirable solubility characteristics and/or prevents aggregation of the nanoparticles.
- adsorbate and “adsorbate moiety” are used interchangeably and refer to an entity that preferentially associates with a polymer-stabilized nanoparticle. This association can be physisorption, chemisorption, through covalent bonds, through electrostatic interactions, or through van der Waals forces and the like.
- small chemical entities refers to cations, anions, or neutral species of various types that are between about 0.1 nanometers (nm) to about 5 nra in size and are soluble in the solvent in which the nanoparticles are dispersed.
- SCEs refer to cations, anions, or neutral species of various types that are between 0.1 nm to about 5 nm in size and in the gaseous state.
- nanoparticle composition when referring to a nanoparticle composition comprising one or more stabilizer moieties and “stabilized nanoparticle” are used interchangeably.
- solid support and “support” are used interchangeably and refer to any solid phase material.
- solid supports include, but are not limited to, resins, membranes, gels, and micron-sized or larger particulates.
- a solid support can be composed of one or more organic polymers such as, e.g., polystyrene, polyethylene, polypropylene, polyfluoroethylene, polyethyleneoxy, and polyacrylamide.
- a solid support can be composed of one or more inorganic materials, such as, e.g., glass, silica, controlled- pore-glass, or reverse-phase silica.
- the solid support can be porous or non-porous, and can have swelling or non-swelling characteristics.
- Suitable stabilizing moieties for the present invention include stabilizing moieties that can be internally or externally chemically modified to introduce new intramolecular and/or intermolecular chemical bonds between one or more stabilizing moieties, e.g., to crosslink one or more stabilizing moieties.
- Suitable stabilizing moieties also include stabilizing moieties taken alone or in combination, which have a three-dimensional structure that can be expanded or contracted using a chemical or physical change.
- Suitable stabilizing moieties also include stabilizing moieties taken alone or in combination that are modified to increase or decrease the thickness or density of the layer about a nanoparticle containing the stabilizing moieties.
- suitable stabilizing moieties include, but are not limited to, polymers, ligands, coordinating ions, coordinating complexes, or combinations thereof.
- the present inventions provide a stabilized nanoparticle incorporated onto or into a solid support using standard techniques such as spin coating, extrusion, codeposition, layer-by-layer assembly, or the like.
- Figure 1 schematically depicts a nanoparticle composition ( 102) comprising a nanoparticle (NP) and a stabilizer moiety layer ( 104); illustrating that increased cross-linking ( 106) of the stabilizing moieties (situation A) reducing permeability to a SCE ( 108) compared to a composition with a lesser degrees of cross-linking (situation B).
- Figure 2 schematically depicts a nanoparticle composition (202) comprising a nanoparticle (NP) and a stabilizer moiety layer (204); illustrating that less favorable interaction of the stabilizing moieties with the solvent (situation A) resulting in contraction of the stabilizer moiety layer (206) and reducing permeability to a SCE (208) compared to a composition with a more favorable interaction of the stabilizing moieties with the solvent (situation B ) resulting in expansion of the stabilizer moiety layer (210) and increased permeability to a SCE.
- Figure 3 schematically depicts the modification of a nanoparticle composition (302) comprising a nanoparticle (NP) and a stabilizer moiety layer (304) by addition of an adsorbate moiety (306); illustrating modification of the stabilizing moieties with an adsorbate (situation A) reducing permeability to a SCE (308) compared to a composition without an adsorbate (situation B ).
- Figure 4 schematically depicts layer-by-layer assembly of a nanoparticle composition according to various embodiments of the present inventions.
- Figure 5 depicts photoluminescence spectra of CdTe-S quantum dots of Example 2 treated with polyelectrolyte stabilizers.
- the dotted line is for the sample exposed to high intensity UV radiation (254 nra) while the solid line is for the sample not exposed to the UV radiation.
- Figure 6 depicts photoluminescence spectra of CdTe-S quantum dots of Example 2 not treated with stabilizers.
- the dotted line is for the sample exposed to high intensity UV radiation (254 nra) while the solid line is for the sample not exposed to UV radiation.
- Figure 7 depicts UV visible and emission spectra for CdS/PAA of Example 3 formed using Cd "+ /PAA that was crosslinked at different times.
- Figure 8 depicts a graph of absorbance versus time.
- Figure 9 depicts measured Cd concentration in solutions prepared according to
- the conformation of a polymer in solution is dictated by various conditions of the solution, including, for example, its interaction with the solvent, its concentration, and the concentration of other species that may be present.
- a polymer can undergo conformational changes, e.g., depending on the pH, ionic strength, cross-linking agents, temperature and concentration.
- For polyelectrolytes at high charge density, e.g., when "monomer" units of the polymer are fully charged, an extended conformation is adopted due to electrostatic repulsion between similarly charged monomer units.
- Decreasing the charge density of the polymer e.g., through addition of salts or a change of pH, can result in a transition of the extended polymer chains to a more tightly packed globular, i.e., collapsed conformation.
- a collapse transition is driven by attractive interactions between the polymer segments that overcome the electrostatic repulsion forces.
- Changing the solvent environment of a polymer can induce a similar transition.
- This collapsed polymer can be of nanoscale dimensions and a nanoparticle.
- This collapsed conformation can be rendered irreversible by the formation of intramolecular chemical bonds between segments of the collapsed polymer, e.g., by cross-linking.
- the term "collapsed polymer” refers to an approximately globular form, generally as a spheroid, but also as an elongate and/or multi-lobed conformation collapsed polymer having nanometer dimensions.
- the present inventions provide nanoparticle compositions comprising a nanoparticle having a layer of one or more stabilizer moieties.
- the stabilizer moieties can be chosen, e.g., for permeability to various SCEs and thus the ease or difficulty with which an SCE can reach or leave the nanoparticle can be selected.
- the degree to which materials are allowed to move to or from the nanoparticle surface, through the stabilizer layer, out of or into the nanoparticle environment is referred to as "permeability.”
- Highly permeable stabilizer layers to a SCE e.g., allow for facile movement of the SCE between the nanoparticle surface and environment, while impermeable stabilizers limit this movement. It is to be understood that permeability varies depending on the size and chemical character of the species ( SCE ) attempting to pass through the stabilizer layer.
- a nanoparticle composition of the present inventions and/or formed by a method of the present inventions has a mean diameter in the range between about 1 nanometer (nm) to about 100 nm.
- the composite nanoparticle has a mean diameter in one or more of the ranges between: (a) about lnm to about IOnm; (b) about IOnm to about 30nm; (c) about 15 nm to about 50 nm; and (d) about 50nm to about lOOnm).
- mean diameter is not meant to imply any sort of specific symmetry (e.g., spherical, ellipsoidal, etc. ) of a composite nanoparticle. Rather, the composite nanoparticle could be highly irregular and asymmetric.
- nanoparticle compositions are provided having a stabilizer that provides solubility and/or prevents aggregation, but allows transport of materials from the nanoparticle environment to the nanoparticle surface and vice versa.
- such embodiments can have practical application in the areas, e.g., of slow- release pharmaceuticals, agrochemicals, corrosion inhibitors, and the like, where the nanoparticle comprises an active agent that is to be released.
- Modifications to the stabilizer layer can be used to provide nanoparticle compositions with tailored release profiles (such as, e.g., controlled release, sustained release, delayed release, etc); transport rates to the nanoparticle and/or away from the nanoparticle.
- the nanoparticle compositions comprising a stabilizer layer that allows certain SCE transport to and from the nanoparticle can be use in catalysis applications, where, e.g., the transport of chemical reagents to the nanoparticle surface is necessary for the catalytic activity of the nanoparticles.
- the stabilizer layer can be chosen to have different transport properties of a SCE to the surface of a nanoparticle than the transport properties of the reaction product of the SCE, activated SCE (e.g., by catalytic activation) away from the SCE.
- Such differences in transport properties can be used, e.g., to control reaction rates (e.g., by transport to the catalytic surface), provide sufficient time for catalytic activation (e.g., by adjusting transport away from nanoparticle surface), etc.
- the control of transport to and from the nanoparticle surface of various SCE by selection and/or modification of the stabilizer can be used to adjust or control other factors of chemical processing such as the rate of gas evolution, heat build up, etc. that can be problematic in large scale chemical processing.
- the stabilizer layer can have a dynamic aspect, e.g., the stabilizer undergoing a change or series of changes during the catalytic reaction to facilitate further downstream reactions.
- the dynamic change can be cyclic (e.g., periodic) facilitating providing a first stabilizer layer for a first reaction, a second stabilizer layer for a second reaction (the second stabilizer formed by a modification of the first layer), followed by reversion to the first stabilizer layer for a new first reaction.
- cyclic e.g., periodic
- the changes to the stabilizer layer can be initiated by compounds produced in situ and/or addition of compounds and/or external stimuli (e.g., radiation, heat, etc. ).
- the stabilized nanoparticle, nanoparticle compositions, of the present inventions facilitate providing and/or provide improved optical properties, such as narrower emission spectra, improved fluorescence efficiency, modified fluorescence lifetimes, and the like compared to substantially similar nanoparticles without a stabilizer layer.
- the nanoparticle comprises an elemental metal, alloy comprising a metal, or a metal species-containing compound, the metal is preferably Cd, Zn, Cu, Pb, Ag, Mn, Ni, Au, Mg, Fe, Hg, Pt or a combination or alloy of one or more thereof.
- metal species-containing compound is meant a compound containing a metal or metalloid in any valence state.
- the nanoparticle comprises semiconductor crystals, including, but not limited, to CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, PbS, PbSe, PbTe, CuI, HgS, HgSe, and HgTe.
- semiconductors can be ternary or quaternary semiconductors, including, but not limited to, CdTe/S, CdSe/S, CdTe/Se, Cd/ZnTe, Cd/ZnSe/Te, and the like.
- the nanoparticle comprises oxides, such as ZnO, SnO 2 , CoO, NiO, CdO, InO 2 , and the like.
- the nanoparticle comprises more complex systems, including alloys such as Ag/Au, Ag/Cu, Au/Cu, phosphates such as LiFePO_(, chromates such as PbCrO- t , and the like.
- the nanoparticle compositions of the present inventions comprise a nanoparticle preferably surrounded by at least one stabilizer moiety.
- a stabilizer moiety for use in the present inventions can be any molecule capable of collapse that contains units of monomers, that can be synthetic or naturally occurring and can be linear, branched, hyperbranched, and/or dendrimeric.
- One function can be to modify and/or control the interactions of the nanoparticles with each other and/or with a solvent, e.g., to provide certain solubility characteristics or to prevent aggregation.
- a second function can be to prevent transport of other materials dissolved in the nanoparticle environment (e.g., tissue, solvent, air, etc. ) to the nanoparticle surface, which, e.g., can often cause deactivation of nanoparticle properties, such as, e.g., fluorescence.
- a third function can be to prevent release of the material comprising the nanoparticle into the nanoparticle environment (e.g., tissue, solvent, air, etc.
- the second and third functions can apply to nanoparticles in gaseous systems as wells as those in a liquid environment.
- the stabilizing moiety comprises one or more polymers with ionizable or ionized groups.
- An ionizable moiety or group is any chemical functional group that can be rendered charged by adjusting solution conditions, while ionized moieties refers to chemical functional groups that are charged regardless of solution conditions.
- An ionizable moiety also includes any chemical functional group that can be rendered charged by the use of radiation or by the use of a static electromagnetic field.
- the ionized or ionizable moiety or group can be either cationic or anionic, and can be continuous along an entire chain as in the case of regular polymers, or can be interrupted by blocks containing different functional groups, as in the case of block polymers.
- polymer stabilizers suitable in various embodiments include, but are not limited to, polyelectrolytes such as, e.g., poly( acrylic acid), poly (styrene sulfonate), polyUliallyldimethylammonium chloride), poly(allylamine hydrochloride) (PAH), or others.
- polyelectrolytes such as, e.g., poly( acrylic acid), poly (styrene sulfonate), polyUliallyldimethylammonium chloride), poly(allylamine hydrochloride) (PAH), or others.
- Suitable examples of adsorbates include similar polyelectrolytes.
- the polymer stabilizer is of a larger molecular weight than the adsorbate moieties.
- a preferred cationic group is the amino group and preferred anionic groups are carboxylic acid, sulfonic acid, phosphates, and the like.
- preferred anionic groups are carboxylic acid, sulfonic acid, phosphates, and the like.
- cationic polymers examples include, but are not limited to, poly(allylamine), poly(ethyleneimine), polyUliallyldimethylammonium chloride), poly(arginine), chitosan, cationic collapsible proteins, polydnethacrylamido propyl trimethyl ammonium chloride) and poly( lysine).
- anionic polymers examples include, but are not limited to, poly( acrylic acid), poly( styrene sulfonic acid), poly( glutamic acid), polydnethacrylic acid), poly(aspartic acid), nucleic acids, anionic collapsible proteins, poly (anetholesulfonic acid), cellulose, poly(maleic acid) poly( vinyl phosphoric acid), etc.
- Block polymers are made up of blocks of polymers having different functional groups.
- the block polymers can be made up of blocks of any of the mentioned anionic and cationic polymers and another polymer that imparts a specific desirable property to the block polymer.
- a polymer-stabilized nanoparticle composition of the present inventions is produced in a suitable solvent by collapse of a stabilizer moiety about a nanoparticle or nanoparticle precursor moiety.
- a suitable solvent can be used to form a solution of use in the present inventions.
- the solution is preferably an aqueous solution.
- a chosen stabilizer moiety is dissolved in a suitable solvent to form a solution of the stabilizer.
- the solvent can be water, an organic solvent or a mixture of two or more such solvents.
- the addition to the solution of the collapsing agent induces a collapse of the stabilizer about the nanoparticle or nanoparticle precursor.
- the collapsing agent can itself be the nanoparticle or nanoparticle precursor.
- the nanoparticle or nanoparticle precursor can be an inorganic salt that is water soluble where the water soluble inorganic salt is of the form M N A ⁇ where M is a metal cation belonging to Groups I to IV of the Periodic Table possessing a charge +y and A is the counter ion to M with a charge -x or a combination thereof.
- Various preferred embodiments of the present inventions involve the formation of composite nanoparticles by the addition of ions that induce precipitate formation of the nanoparticle or nanoparticle precursor within the collapsed stabilizer, wherein the stabilizer is intra-molecularly and/or inter-molecularly cross-linked.
- "precipitation" of a nanoparticle or nanoparticle precursor having a stabilizer layer refers to modification of the ion to a compound that is substantially insoluble in the solvent of the solution.
- Collapsing agents are usually water-soluble inorganic salts, most preferably, those that contain metal cations and their corresponding anions.
- collapsing agents include, but are not limited to, Cd(NO 3 ) 2 , Zn(NO 3 ) 2 , Cu(SO 4 ), Pb(NO 3 ) 2 , Pb(CH 3 COO) 2 , Ag(NO 3 ), Mn( SO 4 ), Ni(NO 3 ) 2 .
- a variety of techniques can be used to collapse the stabilizer around a nanoparticle or nanoparticle precursor.
- a collapsing agent such as a different solvent, an ionic species (e.g., a salt ); or combinations thereof can be used.
- the nanoparticle or nanoparticle precursor itself serve as a collapsing agent. Multiple collapsing agents can be used.
- cross-linking of the collapsed stabilizer is achieved by exposing the polymer to ⁇ -radiation or UV radiation.
- the UV radiation is UV laser radiation or UV arc lamp radiation.
- intra-molecular cross-links are chemically produced, for example, with carbodiimide chemistry with a homobifunctional cross-linker.
- the polymer stabilizer moiety or moieties are at least partially crosslinked so that the favorable solubility and non-aggregative properties of the nanoparticle composition are maintained.
- the stabilizer layer is stabilized by inter-molecular crosslinks to form a gel.
- the polymer stabilizer is preferably chosen to be susceptible to chemical or physical crosslinking.
- control of the permeability of the stabilizer to SCEs e.g., modification of the stabilizer layer, is achieved through control of the degree of crosslinking of the stabilizing polymer. For example, by increasing the degree of chemical crosslinking, the permeability of the stabilizer to SCEs can be decreased.
- a wide variety of means can be used to cross-link the stabilizer layer, for example: chemical means through radical reactions of pendant groups containing unsaturated bonds; through the use of molecules having multifunctional groups than can react with the functional groups of the stabilizer moeity; though high-energy radiation, such as, e.g., gamma radiation.
- Crosslinking can be achieved through chemical means through introduction of multidentate molecules as crosslinkers. These molecules contain multiple functional groups that can form covalent bonds with the functional groups on the stabilizer moieties. These molecules can be linear, branched, or dendrimeric. For example, a molecule containing multiple amine groups, such as 2,2'-ethylenedioxydiethylamine can effect the intramolecular crosslinking of poly( acrylic acid).
- the cross-linking reaction in this case can be promoted by the addition of an activating agent, typically used for amide bond formation, such as a carbodiimide.
- Chemical treatment can also be carried out to derivatize the stabilizer layer, such that a fraction of the ionizable groups are converted to groups that can be cross-linked through free-radical reactions.
- An example is to convert some of the carboxylic acid groups of poly( acrylic acid) to allyl esters. The allyl groups can then be reacted to form intramolecular bonds through radical chemistry.
- Crosslinking by irradiation can be effected by exposing a solution of the collapsed stabilizer to an electromagnetic radiation source.
- the radiation source can be, for example, an excimer laser, a mercury arc lamp, a light emitting diode, a UV germicidal lamp or gamma rays.
- crosslinking through means such as irradiation shall be referred to as "physical crosslinking.”
- the degree of chemical cross-linking can be controlled by controlling the relative concentration of multidentate molecules, activating agents, or other reactive groups.
- the degree of physical cross-linking can be controlled by controlling the dose, wavelength, or type of radiation to which the polymer-stabilized nanoparticles are exposed.
- the present inventions also provide methods to modify the properties of the stabilizer so that, in various embodiments, nanoparticles compositions having stabilizers with specific desired transport properties of material to and/or from the nanoparticle environment to and/or from the nanoparticle surface, and vice versa, can be produced.
- the step modifying a stabilizer layers occurs after collapse of the stabilizer moieties about a nanoparticle or nanoparticle precursor but prior to cross-linking of the stabilizer layer; substantially during or concurrent with cross-linking of the stabilizer layer; after cross-linking of the stabilizer layer; or a combination of one or more of prior to, during, concurrently and after cross-linking of the stabilizer layer.
- FIG. 1 schematically depicts a nanoparticle composition ( 102 ) comprising a nanoparticle (NP ), or nanoparticle precursor, and a stabilizer moiety layer ( 104).
- Figure 1 illustrates that increasing the degree of intramolecular cross-linking ( 106) of the stabilizing moieties (situation A) decreases the permeability of the stabilizer layer to a SCE ( 108), whereas decreasing the degree of intramolecular cross-linking (situation B) increase the permeability of the layer.
- a polymer-stabilized nanoparticle is provided in a suitable solvent.
- the polymer stabilizer moieties are chosen to have a three- dimensional structure that is sensitive to solution conditions such as pH, temperature, solvent, ionic strength, etc.
- Non-limiting examples of such polymers are polymers with ionizable groups, where interactions between these ionizable groups can control the three-dimensional structure of the polymer.
- control of the permeability of the stabilizer to SCEs can be achieved, through control of the three- dimensional structure using changes in solution conditions.
- the polymer stabilizer moiety or moieties are at least partially crosslinked so that the favorable solubility and non-aggregative properties of the nanoparticle composition are maintained.
- Changes in the three-dimensional structure of ionized or ionizable polymers can be effected, e.g., using changes in pH, temperature, solvent, ionic strength, etc.
- Decreasing the charge density of the polymer which can be effected through addition of salts or a change of pH, can result in the transition of extended polymer chains to a collapsed conformation.
- the polymer is in a non-extended conformation, changes in charge density on the polymer can result in swelling or contraction of the polymer.
- the non- extended conformation can occur even at high charge density if, for example, the polymer has formed a collapsed conformation and was then internally crosslinked chemically or physically. For example, even if the initial cause of collapse is removed the polymer may retain its basic collapsed shape, though it may swell or contract depending on conditions. This can also occur if the polymer is externally crosslinked with other polymers ( inter- molecular crosslinking), e.g., forming a gel.
- Cross-linking the stabilizer layer can provide to a polymer system with a substantially inflexible shape.
- increases in charge density can lead to repulsion between the monomers of the stabilizer polymers. Since the polymers are not able to adopt an extended conformation, they will instead swell, substantially maintaining the shape of the layer but increasing in porosity. Similarly, decreases in charge density can lead to a reduction in repulsive interactions of the monomers of the polymers, leading to contraction of the stabilizer layer.
- Contraction or swelling of the polymer stabilizer layer can be similarly effected by changing solvent conditions. For example, replacement of a first solvent with a second solvent with which the polymer has decreased favorable interactions with will encourage contraction of the polymer stabilizer. Similarly, replacement of a first solvent with a second solvent with which the polymer has increased favorable interactions will encourage swelling of the polymer stabilizer.
- suitable stabilizers include polymers stabilizers that have ionizable groups and dissimilar interactions with different solvents.
- the polymer stabilizer is soluble in both the first and second solvents in order to maintain favorable solubility and non- aggregative properties of the stabilized nanoparticle.
- Suitable solvent systems include, but are not limited to, water-soluble polymers where the first solvent is aqueous and the second solvent is a combination of water and ethanol; alcohol-soluble polymers where the first solvent is a small-chain alcohol and the second solvent is a longer-chain alcohol and the like.
- Modification of the three-dimensional structure of the polymer stabilizer e.g., by swelling or contraction of the polymer can be used to change the permeability of the polymer stabilizer to SCEs.
- Figure 2 schematically depicts a nanoparticle composition (202) comprising a nanoparticle (NP) or nanoparticle precursor, and a stabilizer moiety layer (204).
- Figure 2 illustrates that that less favorable interaction of the stabilizing moieties of the layer (204) with the solvent (situation A) can result in contraction of the stabilizer moiety layer (206) and reduce permeability to a SCE (208).
- Suitable means to modify the stabilizer to change its permeability to SCEs also include methods to modify stabilizing moieties to increase or decrease the size of the stabilizing moieties.
- the means can include, e.g., physical or chemical absorption or desorption of additional chemical entities (e.g., adsorbates), which can be polymers, ligands, coordinating complexes, or combinations thereof.
- the means can further comprise a chemical reaction to assist in the adsorption or desorption process.
- the stabilizing moiety is further functionalized to improve compatibility with the further adsorbed species. In various embodiments, this adsorption or desorption process occurs subsequent to the production of a stabilized nanoparticle, during the production of a stabilized nanoparticle, or both.
- an adsorbate moiety is added to a polymer- stabilized nanoparticle while the polymer-stabilized nanoparticle is being synthesized.
- the polymer stabilizer is a polymer with ionizable groups, e.g., a polyelectrolyte, and the nanoparticle is formed using a collapse transition of the polyelectrolyte.
- the adsorbate moiety is added to the solution prior to the collapse transition, subsequent to the collapse transition, or both, and interacts with the collapsed polyelectrolyte.
- the adsorbate is a lower molecular-weight polyelectrolyte than the polymer stabilizer.
- low molecular weight PAA or PAH can be added to a polymer solution of large molecular weight PAA prior to collapse and formation of a nanoparticle having a stabilizer layer.
- the low molecular weight polyelectrolyte can interact with the polymer stabilizer to decrease the permeability of the stabilizer layer to SCEs.
- a polymer-stabilized nanoparticle is provided in a suitable solvent.
- Subsequent treatment of the polymer-stabilized nanoparticle with an adsorbate moiety results in a thicker or denser polymer-adsorbate composite stabilizer layer.
- This adsorbate can be chemically and/or physically adsorbed to the polymer stabilizer, e.g., the adsorbate can be covalently bound to the polymer stabilizer, physisorbed, etc..
- the polymer-adsorbate composite stabilizer can decrease the permeability of the stabilizer layer to SCEs.
- a stabilizer layer of a polymer-stabilized nanoparticle comprises a component that can be desorbed or cleaved from the polymer stabilizer, resulting in a sterically less thick or dense polymer stabilizer layer with increased permeability to SCEs.
- Figure 3 schematically depicts the modification of a nanoparticle composition (302 ) comprising a nanoparticle (NP) or nanoparticle precursor, and a stabilizer moiety layer (304).
- Addition of an adsorbate moiety (306) e.g., by functionalization, adsorption, absorption, cleavage, etc., can be used to modify the stabilizer layer (situation A) and reduce permeability to a SCE (308) as compared to a substantially similar stabilizer layer without an adsorbate (situation B).
- the adsorbate moiety has one or more functional groups that can be used for conjugating the stabilized nanoparticles to other molecules containing complementary functional groups.
- functional groups include, but are not limited to, protein, ligand, oligonucleotide, aptamer, carbohydrate, lipid, other nanoparticles, any member of affinity-binding pairs (such as, e.g., antigen-antibody, DNA-protein, DNA-DNA, DNA-RNA, biotin-avidin, hapten-antihapten, protein-protein, enzyme-substrate), and combinations thereof .
- the functional groups of the adsorbate moiety can be modified to convert them to other functional groups that can be used, e.g., for conjugation.
- a hetero bi-functional molecule containing an amine group and a latent thiol group can be reacted with poly (acrylic acid)-adsorbed nanoparticles through amide bond formation thereby converting the carboxylic acid to a thiol group.
- the thiol group can be used, e.g., for conjugation to other molecules containing thiol-reactive groups.
- the adsorbate in addition to modifying the thickness or density of the polymer-adsorbate stabilizer layer the adsorbate can modify the chemical properties of the polymer-adsorbate stabilizer. In various embodiments, this can be used to enhance or retard changes to the permeability of the stabilizer layer to SCEs caused by the changes in the thickness or density of the polymer-adsorbate stabilizer. For example, a polymer-adsorbate stabilizer having a different net charge than the polymer stabilizer alone, would modify the net charge and thereby can be used to modify the permeability of the stabilizer layer to charged SCEs.
- the stabilizer layer is composed of one or more bilayers.
- a polymer-stabilized nanoparticle is provided in a suitable solvent.
- the polymer stabilizer is one or more polymer moieties with ionizable groups where at least some of the ionizable groups are partially or completely ionized. The presence of the ionized groups gives the polymer stabilizer a net charge, e.g., positive or negative. Addition of a polymer or other adsorbate with opposite charge can result in adsorption of the adsorbate to the initial polymer stabilizer layer, resulting in a polymer-adsorbate stabilizer.
- This process can be continued in a so-called "layer-by-layer” fashion, where layers of adsorbates of opposite charge are added alternately.
- a pair of moieties e.g., adsorbates, stabilizers, etc.
- a bilayer A pair of moieties (e.g., adsorbates, stabilizers, etc. ) that are subsequently added of opposite charge is referred to herein as a bilayer.
- individual layers of stabilizer moiety and adsorbed polymer stabilizing layer can be crosslinked together using radiation, chemically, or by heating.
- High energy radiation in the form of UV lamps, gamma irradiation, particulate radiation, and the like can be used to generate free radicals to participate in a cross-linking process.
- bifunctional ligands such as EDC can be used to covalently bond carboxylate groups from adjacent layers together.
- heating can be used to generate crosslinks between two layers of stabilizing polymers. An example of this process would be where the first layer contains carboxylate groups and the second layer contains amine groups, where heating promotes the formation of an amide covalent bond between the two layers.
- Figure 4 illustrates various embodiments of a "layer-by-layer" assembly.
- a nanoparticle composition (402 ) comprising a nanoparticle (NP) or nanoparticle precursor, and a stabilizer moiety layer (404) having a net charge, is contacted with another stabilizer moiety or adsorbate (406), with an opposite net charge, (step 1 ) to form a new nanoparticle composition (408).
- the steps can be repeated, a stabilizer moiety or adsorbate moiety being added (410) of net charge opposite to the proceeding moiety (406) to assemble additional layers (e.g., full or partial bilayers of polyelectrolytes ) on the stabilized nanoparticle (402 ).
- additional layers e.g., full or partial bilayers of polyelectrolytes
- the permeability of a stabilizer layer can be ascertained by a number of methods.
- a stabilized nanoparticle can be added to an etchant (e.g., HCl for CdS) and the rate of dissolution measured, the rate of dissolution being be proportional to the rate of H+ in and Cd out, which can be monitored, e.g., by watching the intensity and position of a fluorescence peak of CdS.
- Another method involves measuring the rate of dissolution/leaching of a metal nanoparticle from the stabilized nanoparticle into solution as a cationic metal (and thus outside the stabilizer layer), e.g., as in bioavailability studies.
- Another approach is to monitor a property of the nanoparticle or nanoparticle precursor during collapse and/or modification of the stabilizer moiety in the presence of a compound that deactivates a property nanoparticle or nanoparticle precursor, e.g., example, monitoring CdS fluorescence in the presence of EDTA, a deactivator of CdS fluorescence.
- the present inventions provide stabilized nanoparticles supported by a substrate.
- supported, stabilized nanoparticles can be used, e.g., in heterogeneous processes where supported nanoparticles interact with gas- and/or liquid- borne SCEs, such as, for example, in heterogenous catalysis.
- stabilized nanoparticles are supported on the substrate (e.g., activated carbon), on the surfaces of the pores of a mesoporous material, or a combination thereof, for catalysis of gas and/or liquid-borne SCEs .
- mesoporous materials include, but are not limited to, zeolitic materials, aluminosilicates, clays, and other porous silicates.
- substrates can be used as supports, and include any solid phase material upon which a stabilized nanoparticle can be immobilized.
- substrate materials include, but are not limited to, activated carbon, mesoporous materials, zeolites, organic polymers, inorganic surfaces, such as, e.g., glass, controlled pore glass, silica, metals, alloys, etc., and combinations thereof.
- the support can have a variety of forms and form factors, including, but not limited to, beads, spheres, particles, granules, gels, membranes, surfaces. Surfaces can be a variety of shapes, including, but not limited to, planar, substantially planar, or non-planar.
- Supports can be porous, non-porous or a combination of both, and can have swelling and/or non-swelling characteristics.
- a iayer-by-layer' assembly process as described herein, such as, for example, in section F, can be used to fashion supported, stabilized nanoparticles.
- a polymer-stabilized nanoparticle is provided in a suitable solvent.
- the polymer stabilizer comprising one or more polymer moieties with ionizable groups where at least some of the ionizable groups are partially or completely ionized. The presence of the ionized groups can give the polymer stabilizer a net charge, e.g., positive or negative.
- a substrate with a net surface charge of opposite character can be exposed to a solution of these nanoparticles which can result in absorption of nanoparticles to the surface.
- Addition of a polymer, stabilized nanoparticle, bare nanoparticle, or other adsorbate with opposite charge can result in adsorption of the adsorbate to the initial stabilized nanoparticle layer.
- the process can be continued in a so- called "layer-by-layer” fashion, where layers of adsorbates of opposite charge can be added alternately.
- a pair of moieties e.g., adsorbates, stabilizers, etc.
- one member of the pair has a net positive charge and the other a net negative charge, can together be referred to herein as a bilayer.
- each bilayer can comprise stabilized nanoparticles of the appropriate charge in one and/or both of the layers, which, for example, can be used to modify the loading of stabilized nanoparticle in the layered substrate.
- one or more of the bilayers does not comprise and/or is substantially free of nanoparticles, for example, to decrease the loading of nanoparticles in the layered substrate.
- the porosity of the layered substrate can be modified, for example, by changing solution conditions during deposition such as pH, ionic strength, solvent, concentrations, etc. Increased porosity facilitates improving the diffusion of materials through the layered substrate, while decreased porosity can, e.g., increase the strength of coordination and barrier effects.
- the layered substrate is loaded with stabilized nanoparticles with specific catalytic activity such as metals, metal alloys, oxides, and the like.
- the stabilizers have increased or decreased porosity to SCEs.
- a layered substrate comprising nanoparticles is sintered in a furnace in order to enhance interconnectivity of the nanoparticles and/or burn off stabilizer and/or other adsorbate moieties. This can result, e.g., in a porous substrate comprising at least one type of nanoparticle. In various embodiments, this porous substrate is used as a catalyst. In various embodiments the porous substrate comprises an oxide. In various embodiments the porous substrate comprises, a porous oxide that can, e.g., act as a Lewis base in a catalytic reaction.
- Example 1 Preparation of CdTe-CdS nanoparticles encapsulated in PAA
- a 10 niM sodium tellurite (Na 2 TeO? ) solution was prepared by weighing out the appropriate amount of sodium tellurite and dissolving it in deionized water (ddH 2 O). A heating mantle was heated to > 100 °C. 50 mL of Cd-PAA solution ( 1.67 mM Cd, irradiated for Ih with 254 nra light) was put into a one-necked round bottom flask (rbf). Trisodium citrate ( 50 mg) and sodium borohydride (NaBH 4 , 25 mg) was added in one portion to the stirred Cd-PAA solution. 1.25 mL Na 2 TeO? solution, prepared above, was added to the Cd-PAA solution.
- a condenser was put on rbf and the reaction mixture was heated to reflux in the heating mantle and lef to reflux for 4h. Meanwhile, another heating mantle was preheated to 50 °C. After 4 h of reflux, the reaction flask was taken out of the heating mantle and let cool to room temperature. Meanwhile, a 100 mM solution of thioacetamide was prepared by weighing out the appropriate amount of thioacetamide and dissolving it in deionized water (ddH 2 O). For quantum dots that emit in the green, 33 ⁇ L of thioacetamide solution was added to the reaction mixture. For yellow quantum dots, 150 ⁇ L of thioacetamide was used.
- Example 2 Preparation of CdTe-CdS nanonarticles encapsulated in PAA/PSS A 10 niM sodium tellurite (NaiTeCh ) solution was prepared by weighing out the appropriate amount of sodium tellurite and dissolving it in deionized water (dclHiO). A heating mantle was heated to > 100 °C. 50 mL of Cd-PAA/PSS (PSS is 5°o or 25° o of PAA by weight) solution ( 1.67 niM Cd, irradiated for Ih with 254 nra light) was put into a one-necked round bottom flask (rbf).
- rbf one-necked round bottom flask
- Trisodium citrate 50 mg
- sodium borohydride NaBH 4 , 25 mg
- a 100 niM solution of thioacetamide was prepared by weighing out the appropriate amount of thioacetamide and dissolving it in deionized water UkIH 2 O ). ).
- 33 ⁇ L of thioacetamide solution was added to the reaction mixture.
- 150 ⁇ L of thioacetamide was used.
- 675 uL of thioacetamide solution was used.
- the flask was put into the heating mantle pre-heated to 50 °C. The reaction was left at 50 °C for 16h, then let cool to room temperature.
- the fluorescence of the yellow and orange quantum dots with 5° ⁇ and 25° o PSS are shown in Figures 10 and 1 1 respectively.
- Samples of quantum dots coated with 1, 2, or 3 bilayers of PAA and PAH were prepared.
- CdTe-CdS nanoparticles with one bilayer i.e. after one alternate addition of PAH and PAA-Na
- the solution was removed from the shaker and 90 ⁇ L of deionized, distilled water was added.
- the solution was removed from the shaker and 45 ⁇ L of ddH2O was added.
- the solution was removed from the shaker and used.
- Quantum dots One set of quantum dots was exposed to high intensity UV radiation (254 nm) for 30 minutes while another set was kept covered with aluminum foil tape.
- the photoluminescence spectra are shown in Figure 5.
- As control two sets of solutions of quantum dots without bilayers of PAH and PAA-Na were prepared and diluted 10 times; one set was exposed to high intensity UV radiation (254 nm) for 30 minutes while another set was kept covered with aluminum foil tape.
- the photoluminescence spectra are shown in Figure 6.
- Cd ⁇ 2 " + //TP- AA was prepared by mixing equal volumes of aqueous 2 mg/mL Polyacry lie acid ( 1.2 million MW, Sigma) with 3.3 niM Cd(NOj ) 2 . Briefly, 10.0 mL of the polyacrylic acid solution was placed in a plastic beaker with 10 mL of water and stirred vigorously with a magnetic stir bar. To this solution, 90 mL of polyacrylic acid solution along with 90 ml of Cd(NOj) 2 were added dropwise at a rate of 5 ml/minute under vigorous stirring. To the resulting solution, 10 more ml of Cd(NOj) 2 was added dropwise at a rate of 2-3 ml/min with vigorous stirring. The resulting solution was a clear liquid.
- the Cd 2+ /PAA was crosslinked under a UV Germicidal lamp and aliquots at different crosslinking times were taken (0 mins, 30 mins, 1 hr, 1.5 hrs, and 2 hrs).
- CdS/PAA was made using Cd 2+ /PAA (crosslinked at different times) - I SO ⁇ L of 2.S niM Na 2 S solution was added to 500 ⁇ L of Cd " /PAA solution.
- the resulting UV visible and emission spectra is shown in Figure 7 for CdS/PAA formed using Cd " /PAA that was crosslinked at different times (0 hours, 30 mins., 1 hour, and 2 hours ).
- Example 6 Photocatalytic activity of ZnO nanoparticles.
- lOOiiL of methylene blue solution (0.1 niM) was added to two separate solutions containing lOOuL of ZnO nanoparticles with a PAA stabilizer (0.5 mg/mL based on PAA concentration).
- the ZnO nanoparticles were prepared as described in Goh et al., PCT application CD 2006/001686.
- Two control solutions were also made with 100 ⁇ L of dclH20 and 100 ⁇ L of methylene blue solution. The solutions were kept in the dark.
- Example 7 Measurement of cadmium content in unbound form for stabilized CdTe-CdS nanoparticles.
- Green CdTe-CdS nanoparticles with 1, 2, and 3 bilayers of PAH and PAA were prepared as described in Example 1.
- a control solution of CdTe-CdS nanoparticles with 0 bilayers was also prepared by adding 135 ⁇ L to 100 ⁇ L of the diluted CdTe-CdS solution.
- a control solution of polyelectrolytes was also prepared by alternately adding 3 times 40 ⁇ L of PAH and 40 ⁇ L of PAA-Na to 100 ⁇ L of ddH2O with 5 minutes shaking on an orbital shaker between addition.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Medicinal Preparation (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0807541-7A2A BRPI0807541A2 (en) | 2007-02-13 | 2008-02-15 | CONTROL OF TRANSPORT PROPERTIES TO AND FROM NANOPARTY SURFACES |
CN200880004864.3A CN101641367B (en) | 2007-02-13 | 2008-02-15 | Control of transport properties to and from nanoparticle surfaces |
AU2008215840A AU2008215840B2 (en) | 2007-02-13 | 2008-02-15 | Control of transport properties to and from nanoparticle surfaces |
CA2677894A CA2677894C (en) | 2007-02-13 | 2008-02-15 | Control of transport properties to and from nanoparticle surfaces |
EP08737384.1A EP2229398A4 (en) | 2007-02-13 | 2008-02-15 | Control of transport properties to and from nanoparticle surfaces |
JP2009548768A JP5636191B2 (en) | 2007-03-05 | 2008-02-15 | Control of transport properties to and from nanoparticle surfaces |
KR1020097016950A KR101434325B1 (en) | 2007-03-05 | 2008-02-15 | Control of transport properties to and from nanoparticle surfaces |
MX2009008614A MX2009008614A (en) | 2007-02-13 | 2008-02-15 | Control of transport properties to and from nanoparticle surfaces. |
US12/116,873 US7501180B2 (en) | 2007-02-13 | 2008-05-07 | Nanoparticles confined in polyelectrolytes |
IL200254A IL200254A0 (en) | 2007-02-13 | 2009-08-05 | Control of transport properties to and from nanoparticle surfaces |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US88960907P | 2007-02-13 | 2007-02-13 | |
US60/889,609 | 2007-02-13 | ||
US89292707P | 2007-03-05 | 2007-03-05 | |
US60/892,927 | 2007-03-05 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/030,359 Continuation US20080193766A1 (en) | 2007-02-13 | 2008-02-13 | Control of Transport to and from Nanoparticle Surfaces |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/116,873 Continuation US7501180B2 (en) | 2007-02-13 | 2008-05-07 | Nanoparticles confined in polyelectrolytes |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2008099285A2 true WO2008099285A2 (en) | 2008-08-21 |
WO2008099285A3 WO2008099285A3 (en) | 2009-02-26 |
Family
ID=39686084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2008/000817 WO2008099285A2 (en) | 2007-02-13 | 2008-02-15 | Control of transport properties to and from nanoparticle surfaces |
Country Status (9)
Country | Link |
---|---|
US (2) | US20080193766A1 (en) |
EP (1) | EP2229398A4 (en) |
AU (1) | AU2008215840B2 (en) |
BR (1) | BRPI0807541A2 (en) |
CA (1) | CA2677894C (en) |
IL (1) | IL200254A0 (en) |
MX (1) | MX2009008614A (en) |
RU (1) | RU2009130580A (en) |
WO (1) | WO2008099285A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010035118A1 (en) | 2008-09-25 | 2010-04-01 | Vive Nano, Inc. | Methods to produce polymer nanoparticles and formulations of active ingredients |
US10455830B2 (en) | 2011-08-23 | 2019-10-29 | Vive Crop Protection Inc. | Pyrethroid formulations |
US11344028B2 (en) | 2011-12-22 | 2022-05-31 | Vive Crop Protection Inc. | Strobilurin formulations |
US11517013B2 (en) | 2017-08-25 | 2022-12-06 | Vive Crop Protection Inc. | Multi-component, soil-applied, pesticidal compositions |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007023362A1 (en) * | 2005-08-23 | 2007-03-01 | University Of Cape Town | Doping of particulate semiconductor materials |
ES2391729T3 (en) * | 2005-10-14 | 2012-11-29 | Vive Crop Protection Inc. | Composite nanoparticles, nanoparticles and methods for their production |
US20080193766A1 (en) * | 2007-02-13 | 2008-08-14 | Northern Nanotechnologies | Control of Transport to and from Nanoparticle Surfaces |
US20120128740A1 (en) * | 2009-06-19 | 2012-05-24 | Filipcsei Genoveva | Nanostructured sildenafil base, its pharmaceutically acceptable salts and co-crystals, compositions of them, process for the preparation thereof and pharmaceutical compositions containing them |
US20110124492A1 (en) * | 2009-09-17 | 2011-05-26 | Nikolai Loukine | Multifunctional Nanocomposites |
CN106519588B (en) | 2009-11-09 | 2019-08-20 | 华盛顿大学商业化中心 | It is functionalized chromophoric polymers point and its bioconjugate body |
CN103261087B (en) | 2010-10-18 | 2018-08-10 | 华盛顿大学商业化中心 | Chromophoric polymers point |
US9797840B2 (en) | 2011-11-28 | 2017-10-24 | University Of Washington Through Its Center For Commercialization | Highly fluorescent polymer nanoparticle |
CN109913203A (en) | 2011-12-30 | 2019-06-21 | 华盛顿大学商业中心 | Chromophoric polymers point with narrow emission |
US10067139B2 (en) | 2012-02-03 | 2018-09-04 | University Of Washington Through Its Center For Commercialization | Polyelectrolyte-coated polymer dots and related methods |
US10514381B2 (en) | 2013-03-14 | 2019-12-24 | University Of Washington Through Its Center For Commercialization | Polymer dot compositions and related methods |
CN106000401B (en) * | 2016-05-17 | 2018-06-15 | 长沙学院 | A kind of Pt/Ag/NaInO2Photochemical catalyst and preparation method and application |
US10259999B2 (en) * | 2016-08-18 | 2019-04-16 | AhuraTech LLC | Method for storing and releasing nanoparticles |
US10035193B2 (en) | 2016-08-18 | 2018-07-31 | AhuraTech LLC | Method for synthesizing particles in the presence of a solid phase |
US12042519B2 (en) | 2017-07-14 | 2024-07-23 | The University Of Chicago | Freeze-dried formulations including nanoparticles and methods of freeze-drying |
WO2020060937A1 (en) * | 2018-09-18 | 2020-03-26 | University Of Washington | Narrow absorption polymer nanoparticles and related methods |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5433797A (en) * | 1992-11-30 | 1995-07-18 | Queen's University | Nanocrystalline metals |
US5700559A (en) * | 1994-12-16 | 1997-12-23 | Advanced Surface Technology | Durable hydrophilic surface coatings |
US6143211A (en) * | 1995-07-21 | 2000-11-07 | Brown University Foundation | Process for preparing microparticles through phase inversion phenomena |
PT888288E (en) * | 1996-03-22 | 2001-11-30 | Basf Ag | CARBOXYLIC ACID AMIDES WITH FUNGICIDAL ACTION |
US6721083B2 (en) * | 1996-07-19 | 2004-04-13 | E Ink Corporation | Electrophoretic displays using nanoparticles |
SE9802864D0 (en) * | 1998-08-27 | 1998-08-27 | Pharmacia & Upjohn Ab | Transdermally administered tolterodine as an antimuscarinic agent for the treatment of overactive bladder |
US6680013B1 (en) * | 1999-04-15 | 2004-01-20 | Regents Of The University Of Minnesota | Synthesis of macroporous structures |
EP1190123B1 (en) * | 1999-06-10 | 2002-10-16 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Encapsulation of crystals via multilayer coatings |
CA2400172C (en) * | 2000-02-28 | 2010-04-20 | Genesegues, Inc. | Nanocapsule encapsulation system and method |
CA2309575A1 (en) * | 2000-05-26 | 2001-11-26 | James E. Guillet | Internally cross-linked macromolecules |
US6689338B2 (en) * | 2000-06-01 | 2004-02-10 | The Board Of Regents For Oklahoma State University | Bioconjugates of nanoparticles as radiopharmaceuticals |
US6649138B2 (en) * | 2000-10-13 | 2003-11-18 | Quantum Dot Corporation | Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
US6720074B2 (en) * | 2000-10-26 | 2004-04-13 | Inframat Corporation | Insulator coated magnetic nanoparticulate composites with reduced core loss and method of manufacture thereof |
FR2824563B1 (en) * | 2001-05-10 | 2004-12-03 | Bio Merieux | COMPOSITE PARTICLES, DERIVATIVES, PREPARATION METHOD AND APPLICATIONS |
WO2003062372A2 (en) * | 2001-10-02 | 2003-07-31 | The Regents Of The University Of California | Nanoparticle assembled hollow spheres |
US6562403B2 (en) * | 2001-10-15 | 2003-05-13 | Kansas State University Research Foundation | Synthesis of substantially monodispersed colloids |
US6846345B1 (en) * | 2001-12-10 | 2005-01-25 | The United States Of America As Represented By The Secretary Of The Navy | Synthesis of metal nanoparticle compositions from metallic and ethynyl compounds |
EP1469989B1 (en) * | 2002-01-02 | 2011-12-14 | Visen Medical, Inc. | Amine functionalized superparamagnetic nanoparticles for the synthesis of bioconjugates |
JP2003257719A (en) * | 2002-02-27 | 2003-09-12 | Fuji Photo Film Co Ltd | Method of manufacturing hard magnetic regular alloy phase nano-particle |
JP2004067703A (en) * | 2002-04-24 | 2004-03-04 | Japan Science & Technology Corp | Cross-linked polymer, fine particle and method for production |
KR100453131B1 (en) * | 2002-08-10 | 2004-10-15 | 율촌화학 주식회사 | Nano-sized Metals or Metal Salts Stabilized by Using Chain-end Functionalized Polymers and Their Synthetic Methods |
US20070026069A1 (en) * | 2003-03-28 | 2007-02-01 | Shastri Venkatram P | Biommetic hierarchies using functionalized nanoparticles as building blocks |
JP4378513B2 (en) * | 2003-05-29 | 2009-12-09 | 独立行政法人理化学研究所 | Metal nanoparticles with support, metal nanoparticle continuum and methods for producing them |
US7605194B2 (en) * | 2003-06-24 | 2009-10-20 | Ppg Industries Ohio, Inc. | Aqueous dispersions of polymer-enclosed particles, related coating compositions and coated substrates |
US7348399B2 (en) * | 2003-08-29 | 2008-03-25 | Louisiana Tech University Foundation, Inc. | Nanofabricated polypeptide multilayer films, coatings, and microcapsules |
US7550557B2 (en) * | 2003-08-29 | 2009-06-23 | Louisiana Tech University Foundation, Inc. | Multilayer films, coatings, and microcapsules comprising polypeptides |
US9040090B2 (en) * | 2003-12-19 | 2015-05-26 | The University Of North Carolina At Chapel Hill | Isolated and fixed micro and nano structures and methods thereof |
US7722752B2 (en) * | 2004-03-02 | 2010-05-25 | Florida State University Research Foundation | Variable charge films for controlling microfluidic flow |
DE102004013637A1 (en) * | 2004-03-19 | 2005-10-13 | Capsulution Nanoscience Ag | Process for the preparation of CS particles and microcapsules using porous templates as well as CS particles and microcapsules |
US7303819B2 (en) * | 2004-04-06 | 2007-12-04 | Nanophase Technologies Corporation | Surface treatment of nanoparticles to control interfacial properties and method of manufacture |
US7431862B2 (en) * | 2004-04-30 | 2008-10-07 | Coldwatt, Inc. | Synthesis of magnetic, dielectric or phosphorescent NANO composites |
TWI406890B (en) * | 2004-06-08 | 2013-09-01 | Sandisk Corp | Post-deposition encapsulation of nanostructures : compositions, devices and systems incorporating same |
US20060148104A1 (en) * | 2004-10-29 | 2006-07-06 | Massachusetts Institute Of Technology | Detection of ion channel or receptor activity |
US20060153929A1 (en) * | 2005-01-11 | 2006-07-13 | Industrial Technology Research Institute | Use of solid phase synthesis to modify and to assemble nanoparticles |
US20060293396A1 (en) | 2005-01-14 | 2006-12-28 | Eastman Kodak Company | Amine polymer-modified nanoparticulate carriers |
US20070054119A1 (en) * | 2005-03-04 | 2007-03-08 | Piotr Garstecki | Systems and methods of forming particles |
ES2391729T3 (en) * | 2005-10-14 | 2012-11-29 | Vive Crop Protection Inc. | Composite nanoparticles, nanoparticles and methods for their production |
AU2006346493B2 (en) * | 2005-11-14 | 2012-02-02 | Louisiana Tech University Research Foundation | Polypeptide films and methods |
WO2007106771A2 (en) | 2006-03-10 | 2007-09-20 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Multifunctional polymer coated magnetic nanocomposite materials |
US20080193766A1 (en) * | 2007-02-13 | 2008-08-14 | Northern Nanotechnologies | Control of Transport to and from Nanoparticle Surfaces |
-
2008
- 2008-02-13 US US12/030,359 patent/US20080193766A1/en not_active Abandoned
- 2008-02-15 MX MX2009008614A patent/MX2009008614A/en not_active Application Discontinuation
- 2008-02-15 CA CA2677894A patent/CA2677894C/en active Active
- 2008-02-15 RU RU2009130580/04A patent/RU2009130580A/en not_active Application Discontinuation
- 2008-02-15 WO PCT/IB2008/000817 patent/WO2008099285A2/en active Application Filing
- 2008-02-15 BR BRPI0807541-7A2A patent/BRPI0807541A2/en not_active Application Discontinuation
- 2008-02-15 AU AU2008215840A patent/AU2008215840B2/en active Active
- 2008-02-15 EP EP08737384.1A patent/EP2229398A4/en not_active Withdrawn
- 2008-05-07 US US12/116,873 patent/US7501180B2/en active Active
-
2009
- 2009-08-05 IL IL200254A patent/IL200254A0/en unknown
Non-Patent Citations (1)
Title |
---|
See references of EP2229398A4 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018009039A (en) * | 2008-09-25 | 2018-01-18 | バイブ クロップ プロテクション, インコーポレイテッド | Method for manufacturing polymer nanoparticle and formulation of active component |
JP2012503642A (en) * | 2008-09-25 | 2012-02-09 | バイブ ナノ, インコーポレイテッド | Method for producing polymer nanoparticles and formulation of active ingredients |
EP2348834A4 (en) * | 2008-09-25 | 2015-03-18 | Vive Crop Prot Inc | Methods to produce polymer nanoparticles and formulations of active ingredients |
US9363994B2 (en) | 2008-09-25 | 2016-06-14 | Vive Crop Protection Inc. | Nanoparticle formulations of active ingredients |
JP2016210790A (en) * | 2008-09-25 | 2016-12-15 | バイブ クロップ プロテクション, インコーポレイテッド | Method for manufacturing polymer nanoparticle and formulation of active component |
US9648871B2 (en) | 2008-09-25 | 2017-05-16 | Vive Crop Protection Inc. | Methods to produce polymer nanoparticles and formulations of active ingredients |
WO2010035118A1 (en) | 2008-09-25 | 2010-04-01 | Vive Nano, Inc. | Methods to produce polymer nanoparticles and formulations of active ingredients |
US10070650B2 (en) | 2008-09-25 | 2018-09-11 | Vive Crop Protection Inc. | Methods to produce polymer nanoparticles and formulations of active ingredients |
US10455830B2 (en) | 2011-08-23 | 2019-10-29 | Vive Crop Protection Inc. | Pyrethroid formulations |
US10966422B2 (en) | 2011-08-23 | 2021-04-06 | Vive Crop Protection Inc. | Pyrethroid formulations |
US11503825B2 (en) | 2011-08-23 | 2022-11-22 | Vive Crop Protection Inc. | Pyrethroid formulations |
US11344028B2 (en) | 2011-12-22 | 2022-05-31 | Vive Crop Protection Inc. | Strobilurin formulations |
US11517013B2 (en) | 2017-08-25 | 2022-12-06 | Vive Crop Protection Inc. | Multi-component, soil-applied, pesticidal compositions |
Also Published As
Publication number | Publication date |
---|---|
BRPI0807541A2 (en) | 2014-06-10 |
EP2229398A4 (en) | 2017-04-19 |
RU2009130580A (en) | 2011-03-20 |
CA2677894A1 (en) | 2008-08-21 |
US7501180B2 (en) | 2009-03-10 |
EP2229398A2 (en) | 2010-09-22 |
WO2008099285A3 (en) | 2009-02-26 |
IL200254A0 (en) | 2010-04-29 |
MX2009008614A (en) | 2012-10-05 |
AU2008215840A1 (en) | 2008-08-21 |
CA2677894C (en) | 2015-12-01 |
AU2008215840B2 (en) | 2013-06-27 |
US20080193766A1 (en) | 2008-08-14 |
US20080199700A1 (en) | 2008-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7501180B2 (en) | Nanoparticles confined in polyelectrolytes | |
Xu et al. | Stimuli-responsive molecularly imprinted polymers: versatile functional materials | |
Carne et al. | Nanoscale metal–organic materials | |
Huang et al. | Flower-like molybdenum disulfide for polarity-triggered accumulation/release of small molecules | |
Gao et al. | Research progress of poly (methyl methacrylate) microspheres: preparation, functionalization and application | |
Crespo-Biel et al. | Noncovalent nanoarchitectures on surfaces: from 2D to 3D nanostructures | |
Gao et al. | Smart surface imprinting polymer nanospheres for selective recognition and separation of glycoprotein | |
US7967890B2 (en) | Producing nanoparticles using nanoscale polymer templates | |
Foroughirad et al. | Synthesis of magnetic nanoparticles-decorated halloysite nanotubes/poly ([2-(acryloyloxy) ethyl] trimethylammonium chloride) hybrid nanoparticles for removal of Sunset Yellow from water | |
Hou et al. | Self-assembled hydrogels constructed via host-guest polymers with highly efficient dye removal capability for wastewater treatment | |
Purkait et al. | Photoresponsive membranes | |
Mitra et al. | Light-emitting multifunctional maleic acid-co-2-(N-(hydroxymethyl) acrylamido) succinic acid-co-N-(hydroxymethyl) acrylamide for Fe (III) sensing, removal, and cell imaging | |
Bao et al. | Stimuli‐triggered phase transfer of polymer‐inorganic hybrid hairy particles between two immiscible liquid phases | |
Wang et al. | A molecularly imprinted fluorescence sensor based on the ZnO quantum dot core–shell structure for high selectivity and photolysis function of methylene blue | |
Kazemifard et al. | A review of the incorporation of QDs and imprinting technology in optical sensors–imprinting methods and sensing responses | |
CN101641367B (en) | Control of transport properties to and from nanoparticle surfaces | |
Mallakpour et al. | Adsorption of Methyl Orange from Aqueous Solution Using PVOH Composite Films Cross-Linked by Glutaraldehyde and Reinforced with Modified α-MnO2 | |
JP5636191B2 (en) | Control of transport properties to and from nanoparticle surfaces | |
López-Saucedo et al. | Stimuli-responsive nanomaterials for drug delivery | |
Wang et al. | Boosting the quantum yield of oxygen-doped g-C3N4 via a metal–azolate framework-enhanced electron-donating strategy for highly sensitive sulfadimethoxine tracing | |
Gawlitza et al. | Fluorescent molecularly imprinted polymers | |
Cheng et al. | Simultaneous detection and removal of mercury (II) using multifunctional fluorescent materials | |
Martinez-Espinoza et al. | Self-assembly and photopolymerization of a novel quaternary-ammonium functionalized diacetylene on noble metal nanoparticles: A comparative study | |
Bakhshpour et al. | Molecular Imprinted Nanocomposites for Green Chemistry | |
Shafiei et al. | Preparation, characterisation, drug loading and release properties of a novel KIT‐6/poly (AA‐EGDMA) nanocomposite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880004864.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2779/KOLNP/2009 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008215840 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200254 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2677894 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2009548768 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2009/008614 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020097016950 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2008215840 Country of ref document: AU Date of ref document: 20080215 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008737384 Country of ref document: EP Ref document number: 2009130580 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: PI0807541 Country of ref document: BR Kind code of ref document: A2 Effective date: 20090813 |