WO2008099192A1 - Thrust vectoring in aerial vehicles - Google Patents

Thrust vectoring in aerial vehicles Download PDF

Info

Publication number
WO2008099192A1
WO2008099192A1 PCT/GB2008/000534 GB2008000534W WO2008099192A1 WO 2008099192 A1 WO2008099192 A1 WO 2008099192A1 GB 2008000534 W GB2008000534 W GB 2008000534W WO 2008099192 A1 WO2008099192 A1 WO 2008099192A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
aerial vehicle
thrust
direction
arranged
Prior art date
Application number
PCT/GB2008/000534
Other languages
French (fr)
Inventor
Chen-Ming Kuo
Christian Boller
Original Assignee
The University Of Sheffield
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to GB0703078A priority Critical patent/GB2446589A/en
Priority to GB0703078.6 priority
Application filed by The University Of Sheffield filed Critical The University Of Sheffield
Publication of WO2008099192A1 publication Critical patent/WO2008099192A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C15/00Attitude, flight direction, or altitude control by jet reaction
    • B64C15/02Attitude, flight direction, or altitude control by jet reaction the jets being propulsion jets
    • B64C15/12Attitude, flight direction, or altitude control by jet reaction the jets being propulsion jets the power plant being tiltable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/028Micro-sized aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2201/00Unmanned aerial vehicles; Equipment therefor
    • B64C2201/02Unmanned aerial vehicles; Equipment therefor characterized by type of aircraft
    • B64C2201/028Unmanned aerial vehicles; Equipment therefor characterized by type of aircraft of all-wing types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2201/00Unmanned aerial vehicles; Equipment therefor
    • B64C2201/16Unmanned aerial vehicles; Equipment therefor characterised by type of propulsion unit
    • B64C2201/165Unmanned aerial vehicles; Equipment therefor characterised by type of propulsion unit using unducted propellers

Abstract

An aerial vehicle comprising an aerofoil (2), a generally forward facing propeller (10), a drive motor (6) arranged to drive the propeller about a drive axis to generate thrust, and mounting means (32) on which the propeller is pivotably mounted so that the drive axis can be moved relative to the aerofoil thereby to vary the direction of the thrust, the vehicle further comprising thrust control means (14, 18) arranged to control pivoting of the propeller so as to control the direction of the thrust, thereby to control the direction of travel of the vehicle.

Description

THRUST VECTORING IN AERIAL VEHICLES

The present invention relates to the use of thrust vectoring in aerial vehicles, and in particular to the use of thrust vectoring in micro aerial vehicles .

Micro aerial vehicles are used in a number of applications such as defence observations and environmental inspections. It is generally known to control the pitch and stability of an aircraft using control surfaces on an aerofoil. In particular, in micro aerial vehicles, it is common for the trailing edge of an aerofoil to include a reflex to improve the longitudinal stability. However, this reflex decreases the overall lift of the aerofoil. A further problem encountered with such vehicles is a reduction in efficiency resulting from the use of a rudder to control direction of flight and lateral stability. In particular, at high angles of attack, a large amount of flow is separated at the wing region in micro aerial vehicles during flight. Since the rudder is generally located directly above the wing, this separation of flow has a direct effect on the efficiency of the rudder in controlling the direction of flight and maintaining lateral stability. Micro aerial vehicles, and in particular those with fixed wings, can travel at relatively high speeds and it is therefore a problem to maintain directional control and stability whilst also increasing the overall aerodynamic efficiency. Furthermore, aerodynamic efficiency is important in micro aerial vehicles because it can significantly affect their range. Since the use of moving control surfaces tends to reduce the aerodynamic efficiency, it is desirable to reduce their use.

Accordingly, the present invention provides an aerial vehicle comprising an aerofoil or wing, a propeller, which may be generally forward facing, a drive motor arranged to drive the propeller about a drive axis to generate thrust, and mounting means on which the propeller is mounted so that the drive axis can be moved, or have its orientation varied, relative to the aerofoil thereby to vary the direction of the thrust, the vehicle further comprising thrust control means arranged to control pivoting or movement of the propeller so as to control the direction of the thrust, thereby to control the direction of travel of the vehicle.

The thrust control means may be arranged to move the propeller to change the direction of the thrust at least partially in a lateral direction thereby to control yaw of the vehicle. The thrust control means may be arranged to vary a lateral component of the thrust thereby to control yaw of the vehicle.

The propeller may be arranged to pivot about a substantially vertical pivoting axis to control the yaw of the vehicle.

The thrust control means may be arranged to move the propeller to change the direction of thrust at least partially in a vertical direction thereby to control pitch of the vehicle. The thrust control means may be arranged to vary a vertical component of the thrust thereby to control pitch of the vehicle. The propeller may be arranged to pivot about a horizontal pivoting axis to control the pitch of the vehicle.

The motor may be arranged to pivot with the propeller. The propeller and motor may together form a pivoting assembly which has a centre of gravity, and the mounting means may be arranged such that the centre of gravity moves at least partially in a lateral direction as the drive axis moves. The centre of gravity may be arranged to move partially in the same lateral direction as the direction in which the propeller is turned.

The propeller may be centrally mounted on the vehicle, in particular it may be mounted centrally in the lateral direction of the vehicle. The aerial vehicle may further comprise a receiver arranged to receive a signal from a transmitter to control the thrust control means.

The aerial vehicle may further comprise biasing means arranged to bias the propeller towards a reference position in which the aerial vehicle is stable. Preferably, the biasing means biases the propeller towards a position in which the vehicle is in straight-ahead flight.

The aerial vehicle may further comprise control means arranged to vary the speed of rotation of the drive motor. In addition to controlling the forward thrust, variations in the speed of rotation of the drive motor may be arranged to control the pitch of the aerial vehicle.

Preferred embodiments of the invention will now be described with reference to the accompanying drawings in which:

Figure 1 is a schematic representation of a micro aerial vehicle according to an embodiment of the present invention;

Figure 2 is a schematic plan view of the vector control means and propeller of the micro aerial vehicle of Figure 1 ;

Figure 3 illustrates the side thrust generated by deflection of the propeller of Figures 1 and 2;

Figure 4 is a schematic representation of the pitch control of a micro aerial vehicle according to a second embodiment of the invention; and

Figure 5 is a further schematic representation of the micro aerial vehicle of Figure 4. Referring to Figure 1, a micro aerial vehicle 1 according to one embodiment of the invention comprises a fixed wing 2 mounted on a body 3, and a propeller 4 powered by a drive motor 6. The motor 6 is mounted on the front end of the body 3 on a pivoting mounting so that it can rotate about a vertical axis, thereby varying the direction of thrust provided by the propeller 4 as will be described in more detail below. A thrust vector control system 8 is arranged to control the thrust vectoring, i.e. the direction of thrust, of the propeller. The propeller 4 is located at the front end of the body 3 and faces in a forward direction with respect to the intended direction of flight of the vehicle. The propeller is positioned centrally in the transverse direction of the wing 2 and body 3 for stability and balance. The fixed wing comprises an aerofoil 2 with a large surface area and no moving control surfaces to maximise the lift of the aerofoil and the aerodynamic efficiency of the micro aerial vehicle 1.

The propeller 4 comprises two propeller blades 10 extending from a spindle 12. It will be appreciated that any suitable number of blades may be used. The spindle 12 is rotated about its drive axis and powered by the drive motor 6 to rotate the propeller 4 and provide thrust in a forward direction. In addition to the thrust generated by the propeller 4, the speed of rotation of the propeller also controls the pitch of the micro aerial vehicle 1. Indeed, the pitching moment and thrust generated by the propeller 4 are directly proportional to the speed of rotation of the propeller 4. Control of the forward thrust and pitching moment provided by the forward facing propeller 4 provides both good longitudinal stability and good longitudinal manoeuvrability of the vehicle.

The thrust vector control system 8 controls the yaw of the micro aerial vehicle 1. Referring to Figure 2, the vector control system 8 comprises two spaced apart actuation rods 14, 16 each driven from a rear end by an electric actuator 18, 20 respectively. The electric actuators are mounted on either side of the body 3 underneath the fixed wing 2, but may be in any other suitable location. The actuation rods 14, 16 are connected at their front ends to respective points 22, 24 on a cross beam 25 on the propeller drive motor 6. The propeller 4 is supported on the drive motor 6 and the drive motor is mounted on a pivoting mounting 5 such that the drive motor 6 and propeller 4 are arranged to pivot about a vertical pivot axis 32 which is perpendicular to, and intersects, the axis of rotation 30 of the propeller. Points 22 and 24 are located offset to the left and right respectively of the vertical pivoting axis 32 of the motor 6 and propeller 4. Actuation of rod 14 in a forward direction therefore pushes on the cross beam 25 at point 22, to the left of the pivot axis 32, causing the drive motor 6 to pivot and turn the propeller 4 to point to the right. Similarly, actuation of rod 16 in a forward direction pushes on the cross beam 25 at point 24, to the right of the pivot axis 32, and causes the propeller 4 to pivot and turn the propeller 4 to point to the left.

Referring to Figure 3 , it can be seen that rotation of the drive motor 6 and propeller 4 through an angle, for example of 5°, about the vertical axis 32 from its reference 'straight ahead' direction in line with the longitudinal axis of the vehicle, causes the propeller 4 to produce both forward thrust shown by thrust vector component 26 and a side thrust shown by thrust vector component 28, giving a resultant thrust vector in the direction in which the propeller is pointing. The distance of extension or retraction of rods 14 and 16 controls the angle of rotation of the drive motor 6 and, combined with the rotational speed provided by the drive motor 6, controls the lateral component of the thrust from the propeller. Specifically the magnitude and direction (left or right) of the lateral component of thrust is varied and controlled, and the proportion of the total thrust of the propeller which is in the lateral direction is controlled. In this way, the thrust vectoring provided by control of the direction in which the propeller is facing, and hence the direction of the thrust which it produces relative to the body and wing of the vehicle, controls the yaw of the micro aerial vehicle 1.

Referring to Figure 2, the centre of gravity 34 of the pivoting assembly which comprises the motor 6 and propeller 4, is forward of the vertical axis 32. Therefore rotation of the pivoting assembly including the drive motor 6 about the pivot axis 32 moves the position of the centre of gravity 34 of the assembly laterally with respect to the main body 3 of the aerial vehicle 1. The redistribution of weight causes the aerial vehicle 1 to roll, which adds to the effect of the side thrust to control the direction of flight. For example, forward actuation of rod 16 will cause the drive motor to pivot to the left about pivot axis 32 on the pivoting mounting 5, moving the position of the centre of gravity 34 of the pivoting assembly to the left of its central starting reference point on the central plane of the vehicle. This movement tends to cause the aerial vehicle 1 to roll to the left, adding to the direction change caused by the side thrust generated by the propeller 4.

The micro aerial vehicle 1 is controlled remotely and the vehicle therefore includes a receiver (not shown) , such as a radio frequency receiver, in communication with a remote transmitter. The speed of rotation of the drive motor 6, and hence the propeller 4, and the direction of the propeller are therefore controlled remotely by an operator using the transmitter to control the forward thrust and pitch of the vehicle 1 , as well as yaw. For example, the remote transmitter may be part of a control unit comprising a joystick control, and the electric actuators 18, 20 may control lateral deflection of the motor and propeller in response to movement of the joystick.

The actuators 18, 20 are arranged to allow free movement of the rods 14, 16 when they are not applying force to them, and the propeller 4 is biased to return to a central reference position for example using a spring mechanism. This means that, when no steering input is being applied, the vehicle will stabilize in straight-ahead flight.

In an alternative embodiment, the vectoring control system only comprises one bi-directional electric actuator 18 and one actuation rod 14 connected to the drive motor 6 at a position offset to one side of the pivot axis 32. Forward movement of the actuation rod from its starting position will cause the drive motor 6 to pivot about the pivot axis 32 in one direction, and rearward motion of the actuation rod 14 from its starting position will cause the drive motor 6 to rotate in an opposite direction about the vertical axis 32. In another alternative embodiment, the vectoring control system comprises two actuation rods 14, 16 connected to the drive motor at positions offset to either side of the pivot axis and controlled by a single electric actuator 18

The thrust vectoring described above can greatly improve the efficiency of the micro aerial vehicle over the traditional rudder controlled systems. For example, in known systems, if the forward thrust and pitching is controlled by the speed of the drive motor 6 and yaw is controlled by a rudder then this rudder is the only control surface and lateral stability and manoeuvrability is poor. If the vehicle starts to roll it can only be stabilised through large deflection of the rudder, resulting in high energy consumption by the rudder power source. Thrust vectoring in accordance with embodiments of the invention as described above eliminates or reduces the need for the rudder control surface so that all movement of the vehicle can be controlled by thrust vectoring. Tests and computer simulations have shown that the side force created by the thrust is much greater than side force created by a control surface such as a rudder and a vehicle controlled by the thrust vectoring system is therefore more manoeuvrable and laterally stable. Similarly, for the same degree of manoeuvrability the thrust vectoring system is much more efficient than the rudder controlled system.

In a further embodiment of the invention, as shown in Figure 4, the drive motor 6 is mounted beneath a support 46 and the drive motor 6 and propeller 4 are arranged to pivot about a horizontal lateral pivot axis 38 through the support 46. This allows control of the pitch of the aerial vehicle. Rotating the drive motor 6 and propeller 4 to point upwards generates both forward thrust and upward thrust, causing the vehicle to rise. Rotation of the drive motor 6 and propeller 4 to point downwards generates forward thrust and downward thrust causing the vehicle to descend. Movement of the drive motor 6 and propeller about the pivot axis 38 is controlled by an actuation rod 40, which driven by an electric motor 44. The actuation rod is connected to the drive motor at a position above the support 46 such that forward motion or extension of the actuation rod 40 causes the drive motor 6 and propeller to pivot about pivot axis 38 and point downwards, generating downward thrust. Similarly, referring to Figure 5, backward movement or retraction of the actuation rod 40 causes the drive motor 6 and propeller 4 to rotate about the horizontal axis and point upwards, generating upward thrust. In this way the direction (up or down) and magnitude of the vertical component of the thrust from the propeller can be controlled, which in turn enables the proportion of the propeller thrust that is in the vertical direction to be controlled.

This rotation of the motor and propeller can be used in addition to controlling the pitch by the speed of rotation of the motor to further improve the control, manoeuvrability and stability of the vehicle in the longitudinal direction, i.e. in pitch. Rotation of the drive motor 6 and propeller 4 to control pitch may also be used in combination with the yaw control described above to provide full directional control of the aerial vehicle using thrust vectoring.

It will be appreciated that there are many variations of the embodiment described above. For example, a micro aerial vehicle as described above may typically have a wingspan of less than 50cm. However, the vehicle may be a larger aerial vehicle arranged to be controlled by an on-board pilot or alternatively may be a smaller aerial vehicle or 'fly' . The larger aerial vehicles may be mounted on wheels to enable them to take off and land on a surface. The smaller micro aerial vehicles may be manufactured without wheels to reduce the weight of the vehicle and drag. These may be launched by hand.

The aerial vehicle may comprise more than one forward facing propeller in an arrangement to best suit the size and design of the vehicle. For example, a propeller could be mounted on the leading edge of each of two wings. One or both of the propellers may be controlled by a thrust vectoring system as described above to provide maximum directional control and lateral stability.

Claims

1. An aerial vehicle comprising an aerofoil, a generally forward facing propeller, a drive motor arranged to drive the propeller about a drive axis to generate thrust, and mounting means on which the propeller is pivotably mounted so that the drive axis can be moved relative to the aerofoil thereby to vary the direction of the thrust, the vehicle further comprising thrust control means arranged to control pivoting of the propeller so as to control the direction of the thrust, thereby to control the direction of travel of the vehicle.
2. An aerial vehicle according to claim 1 wherein the thrust control means is arranged to move the propeller to change the direction of the thrust at least partially in a lateral direction thereby to control yaw of the vehicle.
3. An aerial vehicle according to claim 2, wherein the propeller is arranged to pivot about a substantially vertical pivoting axis to control the yaw of the vehicle.
4. An aerial vehicle according to any foregoing claim wherein the thrust control means is arranged to move the propeller to change the direction of thrust at least partially in a vertical direction thereby to control pitch of the vehicle.
5. An aerial vehicle according to claim 4, wherein the propeller is arranged to pivot about a horizontal pivoting axis to control the pitch of the vehicle.
6. An aerial vehicle according to any foregoing claim wherein the motor is arranged to pivot with the propeller.
7. An aerial vehicle according to claim 6 wherein the propeller and motor together form a pivoting assembly which has a centre of gravity, and the mounting means is arranged such that the centre of gravity moves at least partially in a lateral direction as the drive axis moves.
8. An aerial vehicle according to claim 7 wherein the centre of gravity is arranged to move partially in the same lateral direction as the direction in which the propeller is turned.
9. An aerial vehicle according to any foregoing claim wherein the propeller is centrally mounted on the vehicle.
10. An aerial vehicle according to any foregoing claim, wherein the thrust control means is arranged to apply a force to a position on the drive motor offset from an axis of rotation of the drive motor thereby rotating the drive motor.
11. An aerial vehicle according to claim 10, wherein the thrust control means comprises actuation means controlling an actuation rod such that movement of the actuation rod applies the force to the drive motor.
12. An aerial vehicle according to claim 11, wherein movement of the actuation rod in a forward direction causes rotation of the drive motor in a first direction and movement of the actuation rod in a backward direction causes rotation of the drive motor in a second, opposite direction.
13. An aerial vehicle according to claim 11, comprising two actuation rods such that movement of a first rod causes rotation of the drive motor in one direction and movement of a second rod causes rotation of the drive motor in an opposite direction.
14. An aerial vehicle according to any one of claims 11 to 13, wherein the drive motor includes a cross bar and wherein the actuation rod is connected at a front end to the cross bar.
15. An aerial vehicle according to any foregoing claim, further comprising a receiver arranged to receive a signal from a transmitter to control the thrust control means.
16. An aerial vehicle according to any foregoing claim, further comprising biasing means arranged to bias the propeller towards a reference position in which the vehicle is stable.
17. An aerial vehicle according to any foregoing claim, further comprising control means arranged to vary the speed of rotation of the drive motor thereby controlling the pitch of the vehicle.
18. An aerial vehicle substantially as hereinbefore described with reference to any one or more of the accompanying drawings.
PCT/GB2008/000534 2007-02-17 2008-02-15 Thrust vectoring in aerial vehicles WO2008099192A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB0703078A GB2446589A (en) 2007-02-17 2007-02-17 Thrust vectoring in aerial vehicles
GB0703078.6 2007-02-17

Publications (1)

Publication Number Publication Date
WO2008099192A1 true WO2008099192A1 (en) 2008-08-21

Family

ID=37908793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2008/000534 WO2008099192A1 (en) 2007-02-17 2008-02-15 Thrust vectoring in aerial vehicles

Country Status (2)

Country Link
GB (1) GB2446589A (en)
WO (1) WO2008099192A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8721383B2 (en) 2009-09-09 2014-05-13 Aurora Flight Sciences Corporation Modular miniature unmanned aircraft with vectored thrust control
US8500067B2 (en) 2009-09-09 2013-08-06 Aurora Flight Sciences Corporation Modular miniature unmanned aircraft with vectored-thrust control
WO2014025617A1 (en) * 2012-08-04 2014-02-13 Aurora Flight Sciences Corporation Modular miniature unmanned aircraft with vectored-thrust control
JP2018526270A (en) * 2015-08-31 2018-09-13 ユニバーシティー オブ メリーランド,カレッジ パーク General purpose vehicle with improved stability for safe operation in air, water and terrain environments
CN105775113B (en) * 2016-05-17 2018-01-16 中国民航大学 It is a kind of can vector controlled gyroplane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1812143A (en) * 1930-03-22 1931-06-30 Robert B Davis Airplane
DE723035C (en) * 1938-04-05 1942-07-27 Otto Diederichs Zugschraubenantrieb
US5769359A (en) * 1993-01-22 1998-06-23 Freewing Aerial Robotics Corporation Active feedback loop to control body pitch in STOL/VTOL free wing aircraft
DE10322412A1 (en) * 2003-05-16 2004-12-02 Paul Schreiber Tailless aircraft, has no elevator or rudder and thrust path is adjustable relative to fuselage

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US155397A (en) * 1874-09-29 Improvement in windmills
US1670923A (en) * 1927-03-23 1928-05-22 Arnold Felix Steering propeller for aeroplanes, dirigibles, submarines, and the like
GB526899A (en) * 1938-04-08 1940-09-27 Rene Tampier Improvements in aircraft
US2954943A (en) * 1956-11-09 1960-10-04 Aviation Louis Breguet Sa Aircraft with slipstream deflecting wing flaps
US6179248B1 (en) * 1999-11-04 2001-01-30 Aereon Corporation Aircraft
AU6659901A (en) * 2000-05-24 2001-12-03 Liotta Alfonso L Lightweight remotely controlled aircraft
DE102004061977B4 (en) * 2004-12-23 2008-04-10 Lfk-Lenkflugkörpersysteme Gmbh Small Missile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1812143A (en) * 1930-03-22 1931-06-30 Robert B Davis Airplane
DE723035C (en) * 1938-04-05 1942-07-27 Otto Diederichs Zugschraubenantrieb
US5769359A (en) * 1993-01-22 1998-06-23 Freewing Aerial Robotics Corporation Active feedback loop to control body pitch in STOL/VTOL free wing aircraft
DE10322412A1 (en) * 2003-05-16 2004-12-02 Paul Schreiber Tailless aircraft, has no elevator or rudder and thrust path is adjustable relative to fuselage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
GB2446589A (en) 2008-08-20
GB0703078D0 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
US10131426B2 (en) Aircraft capable of vertical take-off
EP2991897B1 (en) Vertical takeoff and landing (vtol) air vehicle
US8967527B2 (en) Modular miniature unmanned aircraft with vectored-thrust control
DE102012104783B4 (en) Aircraft, preferably UAV, drone and / or UAS
US9682774B2 (en) System, apparatus and method for long endurance vertical takeoff and landing vehicle
US9120560B1 (en) Vertical take-off and landing aircraft
US20190291860A1 (en) Vertical take-off and landing aircraft and control method
ES2703353T3 (en) Airplane with wing flight mode and stationary flight mode
US9630711B2 (en) Bridles for stability of a powered kite and a system and method for use of same
US9561851B2 (en) Vertical short takeoff and landing apparatus
US20150314865A1 (en) Convertible aircraft provided with two ducted rotors at the wing tips and with a horizontal fan in the fuselage
RU2627261C2 (en) Vertical takeoff aircraft
US9242738B2 (en) Personal aircraft
KR101125870B1 (en) The tiltrotor aircraft
US9096314B2 (en) Electric VTOL aircraft
US20160031554A1 (en) Control system for an aircraft
EP2691299B1 (en) Remotely piloted micro/nano aicraft provided with a system for gound taxiing and vertical take off and landing
US20180065737A1 (en) Personal aircraft
US20170057630A1 (en) Aircraft
CN105966616B (en) Air vehicle flight mechanism and control method
DE69726046T2 (en) Aircraft taking off and landing vertically
CN102530249B (en) Aircraft provided with a tilting rear rotor and associated method
US4072283A (en) Aerial refueling boom articulation
US10370100B2 (en) Aerodynamically actuated thrust vectoring devices
ES2345839T3 (en) Vehicle system with rotating wing.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08709424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct app. not ent. europ. phase

Ref document number: 08709424

Country of ref document: EP

Kind code of ref document: A1