WO2008094757A1 - Heat exchanger fouling detection - Google Patents

Heat exchanger fouling detection Download PDF

Info

Publication number
WO2008094757A1
WO2008094757A1 PCT/US2008/051107 US2008051107W WO2008094757A1 WO 2008094757 A1 WO2008094757 A1 WO 2008094757A1 US 2008051107 W US2008051107 W US 2008051107W WO 2008094757 A1 WO2008094757 A1 WO 2008094757A1
Authority
WO
WIPO (PCT)
Prior art keywords
process parameter
heat exchanger
statistical
fluid
data
Prior art date
Application number
PCT/US2008/051107
Other languages
French (fr)
Inventor
John Philip Miller
Original Assignee
Fisher-Rosemount Systems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fisher-Rosemount Systems, Inc. filed Critical Fisher-Rosemount Systems, Inc.
Priority to EP08727702.6A priority Critical patent/EP2115608B1/en
Priority to CN2008800038124A priority patent/CN101601023B/en
Publication of WO2008094757A1 publication Critical patent/WO2008094757A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks

Definitions

  • J(H)01 j I his patent relates generally to performing diagnostic's and maintenance in a process plant and, more particularly, to providing diagnostic capabilities w ithin a process plant in a manner that can ev compacte and predict the health and performance of a heat exchanger.
  • Process control sy stems like those used in chemical, petroleum or other processes.
  • typicalh include one or more centralized or decentralized process controllers communicative! v coupled to at least one host or operator workstation and to one or more process control and instrumentation devices such as. for example, field devices, v ia analog, digital or combined analog/digital buses.
  • Field dev ices which may be. for example, v alves, valve positioners, switches, transmitters, and sensors (e.g.. temperature, pressure, and flow rate sensors), are located within the process plant environment, and perform functions within the process such as opening or closing valves, measuring process parameters, increasing or decreasing fluid flow. etc.
  • Smart field devices such as field devices conforming to the well- known FOUND ⁇ HUNTM Fieldbus (hereinafter "Fieldbus") protocol or the HAR fH » protocol mav also perform control calculations, alarming functions, and other control functions commonly implemented within the process controller.
  • the process controllers which are typically located within the process plant env ironment, receive signals indicative of process measurements or process variables made by or associated w ith the field devices and/or other information pertaining to the field devices, and execute controller applications.
  • the controller applications implement, for example, different control modules that make process control decisions, generate control signals based on the received information, and coordinate with the control modules or blocks being performed in the field devices such as HART and Fieldbus field devices.
  • the control modules in the process controllers send the control signals over the communication lines or signal paths to the field devices, to thereby control the operation of the process.
  • Information from the field devices and the process controllers is typically made available to one or more other hardware devices such as, for example, operator workstations, maintenance workstations, personal computers, handheld dev ices, data historians, report generators, centralized databases, etc. to enable an operator or a maintenance person to perform desired (mictions w ith respect to the process such as. tor example, changing settings of the process control routine.
  • operator workstations which are typically connected to the process controllers through communication connections such as a direct or a wireless bus. an Ethernet, a modem, a phone line, and the like, have processors and memories that are adapted to run software or firmware, such as the DeltaV I M and Ovation control svstems, sold bv Hmerson Process Management, wherein the software includes numerous control module and control loop diagnostic tools.
  • maintenance workstations which ma ⁇ be connected to the process control dev ices. such as field devices.
  • tv picallv include one or more applications designed to view maintenance alarms and alerts generated bv Held de ⁇ ices w ithin the process plant, to test devices within the process plant and to perform maintenance activ ilies on the field dev ices and other dev ices within the process plant. Similar diagnostic applications have been developed to diagnose problems within the supporting equipment within the process plant.
  • the AMS Suite: Intelligent Device Manager application (at least partially disclosed in U.S. Patent Number 5,960.214 entitled "integrated Communication Network for use in a Field Dev ice Management Sv stem " ) sold by Emerson Process Management, enables communication with and stores data pertaining to field devices to ascertain and track the operating state of the field devices.
  • the AMS application may be used to communicate with a field device to change parameters within the field device, to cause the field device to run applications on itself such as. for example, self- calibration routines or self-diagnostic routines, to obtain information about the status or health of the field dev ice, etc. This information may include, for example, status information (e.g...
  • device configuration information e.g.. the manner in which the field device is currently or may be configured and the type of measuring units used by the field device
  • device parameters e.g. the field device range values and other parameters
  • this information may be used by a maintenance person to monitor, maintain, and/or diagnose problems with field devices.
  • process plants include equipment monitoring and diagnostic applications such as. for example. Machinery Health 1 M applications provided by CSI. or any other known applications used to monitor, diagnose, and optimize the operating state of various rotating equipment. Maintenance personnel usually use these applications to maintain and oversee the performance of rotating equipment in the plant, to determine problems with the rotating equipment, and to determine when and if the rotating equipment must be repaired or replaced.
  • process plants include power control and diagnostic applications such as those provided by. for example, the Liebert and ASCO companies, to control and maintain the power generation and distribution equipment. It is also known to run control optimization applications such as, for example, real-time optimizers ( R I O *- ). w ithin a process plant to optimi/e the control acti ⁇ Hies of the process plant.
  • optimization applications ty picalh use complex algorithms and/or models of the process plant to predict how inputs be changed to optimize operation of the process plant with respect to sonic desired optimization v ariable such as. for example, profit.
  • Ty pical displays include alarming displays that receiv e alarms generated by the process controllers or other devices within the process plant, control displays indicating the operating state of the process controllers and other de ⁇ ices within the process plant, maintenance displays indicating the operating state of the devices within the process plant, etc.
  • these and other diagnostic applications may enable an operator or a maintenance person to retime a control loop or to reset other control parameters, to run a test on one or more field devices to determine the current status of those field devices, to calibrate field devices or other equipment, or to perform other problem detection and correction activities on dev ices and equipment within the process plant.
  • the maintenance personnel may or may not detect an actual problem and may need further prompting before actually running tests or other diagnostic applications, or performing other activities needed to identify the actual problem. Once the problem is identified, the maintenance personnel may need to order parts and schedule a maintenance procedure, all of which may result in a significant period of time between the occurrence of a problem and the correction of that problem, during which time the process plant runs in an abnormal situation general!) associated w ith the sub-optimal operation of the plant.
  • mam process plants can experience an abnormal situation which results in significant costs or damage w ithin the plant in a relath eh short amount of time. 1 or example, some abnormal situations can cause significant damage to equipment, the loss of raw materials, or significant unexpected downtime w ithin the process plant if these abnormal situations exist for even a short amount of time. I hus. merely detecting a problem within the plant alter the problem has occurred, no matter how quickh the problem is corrected, maj still result in significant loss or damage w ithin the process plant. As a result, it is desirable to try to prevent abnormal situations from arising in the first place, instead of simph try ing to react to and correct problems within the process plant after an abnormal situation arises.
  • this technique places statistical data collection and processing blocks or statistical processing monitoring (SPM) blocks, in each of a number of devices. such as field devices, within a process plant.
  • the statistical data collection and processing blocks collect, for example, process variable data and determine certain statistical measures associated with the collected data, such as a mean, a median, a standard deviation, etc. These statistical measures may then be sent to a user interface or other processing device and analyzed to recognize patterns suggesting the actual or future occurrence of a known abnormal situation. Once a particular suspected abnormal situation is detected, steps may be taken to correct the underlying problem, thereby avoiding the abnormal situation in the first place or correcting the abnormal situation quickly.
  • SPM statistical processing monitoring
  • v arious statistical measures such as a mean, median, standard dev iation, etc. of process parameters or v ariable measurements determined bv statistical process monitoring ( SPM) blocks within a plant.
  • SPM statistical process monitoring
  • mav be used to provide better or more accurate statistical measures of the process variable or process parameter, may be used to trim the data to remove outliers from this data, mav be used to fit this data to non-linear functions, or mav be use to quickly detect the occurrence of various abnormal situations within specific plant equipment, such as distillation columns and refinery catalytic crackers. While the statistical data collection and processing and abnormal situation detection may be performed within a user interface device or other maintenance device within a process plant, these methods may also and advantageous!) be used in the devices, such as field devices like valves, transmitters, etc.
  • f ig. 1 is an exemplar ⁇ block diagram of a process plant hav ing a distributed control and maintenance network including one or more operator and maintenance workstations, controllers, field dev ices and supporting equipment;
  • f ig. 2 is an exemplar ⁇ block diagram of a portion of the process plant of Fig. 1. illustrating communication interconnections between various components of an abnormal situation prevention sy stem located within different elements of the process plant, including the use of statistical process monitoring (SPM) blocks:
  • SPM statistical process monitoring
  • FIG. 3 is a block diagram of an example SPM block
  • FIG. 4 is a schematic diagram of a typical heat exchanger that may be used in a process plant
  • FIG. 5 graph illustrating overall heat exchanger thermal resistance with time in the presence of fouling
  • FIG. 6 is a table indicating root cause diagnostic parameters that may be selected to determine heat exchanger fouling.
  • Fig. 7 is a depiction of an interface device connected a process plant.
  • Fig. 1 illustrates an example process plant 10 that may be configured with an abnormal situation prev ention system.
  • the abnormal situation prevention system may be configured to recognize heat exchanger fouling as distinguished from other possible process conditions including process fluid drift.
  • the process plant may include a number of control and maintenance systems interconnected together with supporting equipment v ia one or more communication networks.
  • the process plant 10 illustrated by Fig. 1 includes one or more process control systems 12 and 14.
  • the process control sv stem 12 may be a traditional process control system such as a PROVOX or RS3 svstem or an ⁇ other control system which includes an operator interface 12 ⁇ coupled to a controller 12B and to input output (I O) cards 12C which, in turn, arc coupled to ⁇ arious field de ⁇ ices such as analog and Highway Addressable Remote Transmitter ( 11 ⁇ R D field dev ices
  • 1 he process control sy stem 14 may be a distributed process control system and include one or more operator interfaces 14 ⁇ coupled to one or more distributed controllers 14B v ia a bus. such as an Fthernet bus.
  • 1 he controllers 14B may be, for example. Delta V controllers sold by Hmers ⁇ n Process Management of Austin. Texas or any other desired ty pe of controllers.
  • the controllers 14B are connected ⁇ ia I/O de ⁇ ices to one or more field dev ices
  • WORFDFIP WORFDFIP
  • Device-Net Device-Net
  • ⁇ S-Interface ⁇ S-Interface and CAN protocols.
  • the field devices 16 may provide analog or digital information to the controllers 14B related to process variables as well as to other device information.
  • 1 he operator interfaces 14 ⁇ may store and execute tools available to the process control operator for controlling the operation of the process including, for example, control optimi/ers. diagnostic experts, neural networks, tuners, etc.
  • maintenance s> stems such as computers executing the AMS application or any other dev ice monitoring and communication applications may be connected to the process control systems 12 and 14 or to the individual devices therein to perform maintenance and monitoring activities.
  • a maintenance computer 18 may be connected to the controller 12B and/or to the devices 15 via any desired communication lines or networks 12C (including wireless or handheld device networks) to communicate with and. in some instances, to reconfigure or to perform other maintenance activities on the devices 15.
  • maintenance applications such as the AMS application may be installed in and executed by one or more of the user interfaces 14A associated with the distributed process control system 14 to perform maintenance and monitoring functions, including data collection related to the operating status of the devices 16.
  • the process plant 10 may also include various rotating equipment 20, such as turbines, motors, etc. which are connected to a maintenance computer 22 via some permanent or temporary communication link (such as a bus. a wireless communication system or hand held de ⁇ ices which are connected to the equipment 20 to take readings and are then removed).
  • the maintenance computer 22 may store and execute known monitoring and diagnostic applications 23 prov ided by . for example, CSI (an Emerson Process Management Company) or other any other known applications used to diagnose, monitor and optimize the operating state of the rotating equipment 20.
  • Maintenance personnel usuallv use the applications 23 to maintain and oversee the performance of rotating equipment 20 in the plant 10. to determine problems with the rotating equipment 20 and to determine w hen and if the rotating equipment 20 must be repaired or replaced.
  • outside consultants or serv ice organizations ma ⁇ temporarily acquire or measure data pertaining to the equipment 20 and use this data to perform analy ses for the equipment 20 to detect problems, poor performance or other issues effecting the equipment 20.
  • the computers running the anah ses may not be connected to the rest of the sy stem 10 ⁇ ia any communication line or may be connected only temporarily.
  • a power generation and distribution s> stem 24 having power generating and distribution equipment 25 associated with the plant 10 is connected ⁇ ia. for example, a bus. to another computer 26 which runs and oversees the operation of the power generating and distribution equipment 25 within the plant 10.
  • I he computer 26 may execute known power control and diagnostics applications 27 such as those prov ided by. for example. Liebert and ASCO or other companies to control and maintain the power generation and distribution equipment 25.
  • outside consultants or service organizations may use service applications that temporarily acquire or measure data pertaining to the equipment 25 and use this data to perform analyses for the equipment 25 to detect problems, poor performance or other issues effecting the equipment 25.
  • the computers (such as the computer 26) running the analyses may not be connected to the rest of the sv stem 10 via any communication line or may be connected only temporarily.
  • a computer system 30 implements at least a portion of an abnormal situation prevention system 35, and in particular, the computer system 30 stores and implements a configuration and data collection application 38.
  • a viewing or interface application 40 which may include statistical collection and processing blocks, and a rules engine development and execution application 42 and. additionally, stores a statistical process monitoring database 43 that stores statistical data generated within certain devices within the process, such as statistical measures of various process parameters.
  • the configuration and data collection application 38 configures and communicates with each of a number of statistical data collection and analysis blocks (not shown in Fig. 1 ) located in the field devices 15. 16. the controllers 12B, 14B.
  • the application 38 may obtain data pertaining to the field devices and equipment w ithin the process plant 10 v ia a LAN or a public connection, such as the Internet, a telephone connection, etc. (illustrated in Fig. 1 as an Internet connection 46) with such data being collected by. for example, a third part) service provider. Further, the application 38 may be communicatively coupled to computers/devices in the plant K) via a variety of techniques and/or protocols including, for example. Ethernet. Modbus. HTML, XML. proprietary techniques/protocols, etc.
  • the application 38 may generally store the collected data in the database 43.
  • the viewing application 40 may be used to process this data and/or to display the collected or processed statistical data (e.g.. as stored in the database 43) in different manners to enable a user, such as a maintenance person, to better be able to determine the existence of or the predicted future existence of an abnormal situation and to take preemptive or actual corrective actions.
  • the rules engine development and execution application 42 may use one or more rules stored therein to analyze the collected data to determine the existence of, or to predict the future existence of an abnormal situation within the process plant 10. Additionally, the rules engine development and execution application 42 may enable an operator or other user to create additional rules to be implemented by a rules engine to detect or predict abnormal situations. It is appreciated that the detection of an abnormal situation as described herein encompasses the prediction of a future occurrence of an abnormal situation.
  • Fig. 2 illustrates a portion 50 of the example process plant 10 of Fig. 1 for the purpose of describing one manner in which statistical data collection and processing and in some cases abnormal situation detection may be performed by components associated with the abnormal situation prevention sv stem i5 including blocks located w ithin field de ⁇ ices. While Fig. 2 illustrates communications between the abnormal situation prev ention system applications 38. 40 and 42 and the database 43 and one or more data collection and processing blocks within H ⁇ R 1 and Fieldbus iield devices, it will be understood that similar communications can occur between the abnormal situation prev ention sv stem applications 38, 40 and 42 and other devices and equipment within the process plant 10. including am of the dev ices and equipment illustrated in Fig. 1.
  • he portion 50 of the process plant K) illustrated in Fig. 2 includes a distributed process control sv stem 54 having one or more process controllers 60 connected to one or more field dev ices 64 and 66 v ia input-Output (1/(3) cards or dev ices 68 and 70. which may be am desired tvpes of I/O dev ices conforming to any desired communication or controller protocol.
  • I he Held devices 64 are illustrated as HART field devices and the field devices 66 are illustrated as Fieldbus field devices, although these field dev ices could use any other desired communication protocols. Additionally, the field de ⁇ ices 64 and 66 may be any tvpes of dev ices such as.
  • sensors for example, sensors, valves, transmitters, positioners, etc.
  • I/O devices 68 and 70 may conform to any desired open, proprietary or other communication or programming protocol, it being understood that the I/O devices 68 and 70 must be compatible with the desired protocol used b ⁇ the field devices 64 and 66.
  • one or more user interfaces or computers 72 and 74 (which may be any tv pes of personal computers, workstations, etc.) accessible by plant personnel such as configuration engineers, process control operators, maintenance personnel, plant managers, superv isors, etc. are coupled to the process controllers 60 via a communication line or bus 76 which may be implemented using any desired hardwired or wireless communication structure, and using any desired or suitable communication protocol such as. for example, an Ethernet protocol.
  • a database 78 may be connected to the communication bus 76 to operate as a data historian that collects and stores configuration information as well as online process variable data, parameter data, status data, and other data associated with the process controllers 60 and field devices 64 and 66 within the process plant 10.
  • the database 78 may operate as a configuration database to store the current configuration, including process configuration modules, as well as control configuration information for the process control system 54 as downloaded to and stored within the process controllers 60 and the field dev ices 64 and 66.
  • the database 78 may store historical abnormal situation prevention data, including statistical data collected and'or generated by the field dev ices 64 and 66 w ithin the process plant 10 or statistical data determined from process variables collected by the field ices 64 and 66.
  • the process controllers 60 store and execute one or more controller applications that implement control strategies using a number of different, independently executed, control modules or blocks.
  • the control modules may each be made up of what are common Iv referred to as function blocks, wherein each function block is a part or a subroutine of an ov erall control routine and operates in conjunction with other function blocks (via communications called links) to implement process control loops within the process plant 10.
  • function blocks which may be objects in an object- oriented programming protocol, typically perform one of an input function, such as that associated with a transmitter, a sensor or other process parameter measurement device, a control function, such as that associated with a control routine that performs PID. fuzzy logic, etc.
  • control or an output function, which controls the operation of some device, such as a valve, to perform some physical function within the process plant 10.
  • some device such as a valve
  • hybrid and other types of complex function blocks exist, such as model predictive controllers (MPCs), optimizers, etc.
  • MPCs model predictive controllers
  • optimizers etc.
  • the control modules may be designed using any desired control programming scheme including, for example, sequential function blocks, ladder logic, etc., and are not limited to being designed using function blocks or any other particular programming technique.
  • the maintenance workstation 74 includes a processor 74 ⁇ . a memory 74B and a display device 74C 1 .
  • the memory 74B stores the abnormal situation prevention applications 38. 40 and 42 discussed with respect to Fig. 1 in a manner that these applications can be implemented on the processor 74A to prov ide information to a user v ia the display 74C (or any other display device, such as a printer).
  • Xdditionalh as shown in 1 ig. 2. some (and potential!) all ) of the Held de ⁇ ices 64 and 66 include data collection and processing blocks 80 and 82. While, the blocks 80 and 82 are described w ith respect to Fig.
  • ⁇ DBs adv anced diagnostics blocks
  • the blocks 80 and 82 could be or could include anv other tv pe of block or module located within a process de ⁇ ice that collects de ⁇ ice data and calculates or determines one or more statistical measures or parameters for that data, whether or not these blocks are located in Fieldbus devices or conform to the Fieldbus protocol. W hile the blocks 80 and 82 of Fig.
  • the blocks 80 and 82 could be in any subset of the dev ices 64 and 66.
  • the blocks 80 and 82 or sub-elements of these blocks collect data, such a process variable data, w ithin the device in which they are located and perform statistical processing or analysis on the data for any number of reasons.
  • the block 80 which is illustrated as being associated with a valve, may analyze the valve process variable data to determine if the operating condition of the valve itself, e.g.. if the valve is in a stuck condition.
  • the block 80 includes a set of four statistical process monitoring (SPM) blocks or units SPM l - SPM4 which ma> collect process variable or other data within the valve, whether related directly to the performance of the valve or to other processes, and perform one or more statistical calculations on the collected data to determine, for example, a mean, a median, a standard deviation, a root-mean-square (RMS). a rate of change, a range, a minimum, a maximum, etc. of the collected data and/or to detect events such as drift, bias, noise, spikes, etc.. in the collected data. Neither the specific statistical data generated, nor the method in which it is generated is critical. Thus, different types of statistical data can be generated in addition to. or instead of.
  • SPM statistical process monitoring
  • SPM statistical process monitoring
  • the term statistical process monitoring (SPM) block is used herein to describe functionalitv that performs statistical process monitoring on at least one process variable or other process parameter, and mav be performed by any desired software, firmware or hardware w ithin the dev ice or e ⁇ en outside of a ice lor which data is collected. It will be understood that, because the SFMs are general! ⁇ located in the dev ices w here the device data is collected, the SI 1 Ms can acquire quantitative! and qualitative! ⁇ more accurate process v ariable data. As a result, the SPM blocks are general! ⁇ capable of determining better statistical calculations with respect to the collected process variable data than a block located outside of the dev ice in which the process v ariable data is collected.
  • the block 82 of Fig. 2. which is illustrated as being associated with a transmitter analv /es the process variable data collected by the transmitter and its operating condition, e.g., determining if a line w ithin the plant is plugged.
  • the block 82 includes a set of four SPM blocks or units SPM l - SPM4 which may collect process v ariable or other data within the transmitter and perform one or more statistical calculations on the collected data to determine, for example, a mean, a median, a standard deviation, etc. of the collected data.
  • the underly ing operation of the blocks 80 and 82 may be performed or implemented as described in U.S. Patent No. 6.017.143 referred to above.
  • the blocks 80 and 82 are illustrated as including four SPM blocks each, the blocks 80 and 82 could have any other number of SPM blocks therein for collecting data and determining statistical measures associated with that data.
  • the blocks 80 and 82 are illustrated as including detection software for detecting particular conditions within the plant 10. they need not have such detection software or could include detection software for detecting other conditions within the plant as described below.
  • the SPM blocks discussed herein are illustrated as being sub-elements of ADBs. they may instead be stand-alone blocks located within a device.
  • SPM statistical process monitoring
  • Fig. 3 illustrates a block diagram of an SPM block 90 (which could be any of the SPM blocks in the blocks 80 and 82 of Fig. 2 or any other device) which accepts raw data on an input 92 and operates Io calculate v arious statistical measures of that data, including a Mean, an RMS v alue, and one or more standard deviations. 1 or a given set of raw input data, the block 1 X) mav also determine a minimum value (Min). a maximum value (Max) and a range. If desired, this block ma ⁇ calculate specific points w ithin the data, such as the Q25. QSO and Q75 points and mav perform outlier remov al based on the distributions. Of course this statistical processing can be performed using any desired or known processing techniques.
  • Figs. 2 While certain statistical monitoring blocks are illustrated in Figs. 2. it will be understood that other parameters could be monitored as well or in addition.
  • the SPM blocks, or the AI)Bs discussed with respect to Fig. 2 mav calculate statistical parameters associated with a process and may trigger certain alerts, based on changes in these values.
  • Fieldbus type SPM blocks may monitor a process and provide a number of different data associated with monitored process variables or configuration parameters. I hese data may include Block fag. Block Type. Mean. Standard Deviation. Mean Change, Standard Deviation Change. Baseline Mean. Baseline Standard Deviation. High Variation Limit. Low Dynamics Limit. Mean Limit, Status. Parameter Index, Time Stamp and User Command.
  • SPM blocks are not limited to the ones discussed herein.
  • the parameters of the SPM blocks (SPMl -SPM4) within the field devices may be made available to an external client such as the workstation 74. or any other external dev ice for example that is adapted to run the application 38, through the bus or communication network 76 and the controller 60. Additionally or in the alternative, the parameters and other information gathered by or generated by the SPM blocks (SPM1-SPM4) within the ADBs 80 and 82 may be made available to the external workstation, such as the workstation 74. through, for example, a suitable server, for example. OPC serv er 89.
  • connection mav be a wireless connection, a hardwired connection, an intermittent connection (such as one that uses one or more handheld devices) or any other desired communication connection using any desired or appropriate communication protocol.
  • any of the communication connections described herein may use an OFC * communication serv er to integrate data receiv ed from different types of devices in a common or consistent format.
  • SPM blocks in host dev ices. ices other than Held dev ices, or other field devices to perform statistical process monitoring outside of the de ⁇ ice that collects or generates the raw data, such as the raw process ⁇ ariable data.
  • the application 38 of Fig. 2 may include one or more SFM blocks which collect raw process v ariable data v ia. for example, the OPC server 89 and which calculate some statistical measure or parameter, such as a mean, a standard deviation, etc. for that process v ariable data.
  • SFM blocks While these SFM blocks are not located in the dev ice which collects the data and, therefore, are generally not able to collect as much process variable data to perform the statistical calculations due to the communication requirements for this data, these blocks are helpful in determining statistical parameters for devices or process variable within devices that do not hav e or support SPM functionality . Additionally, available throughput of networks may increase over time as technology improves, and SPM blocks not located in the device which collects the raw data may be able to collect more process variable data to perform the statistical calculations. Thus, it will be understood in the discussion below, that any statistical measurements or parameters described to be generated by SPM blocks, may be generated by SPM blocks such as the SPM1 -SPM4 blocks in the ADBs 80 and 82.
  • abnormal situation detection and other data processing may be performed using the statistical measures in the field devices or other devices in which the SPM blocks are located, and thus detection based on the statistical measures produced by the SPM blocks is not limited to detection performed in host devices, such as user interfaces.
  • the maximum beneficial use of the data and the calculation of various statistical measures based on this data as described above is dependent in large part on the accuracy of the data in the first place.
  • a number of data processing functions or methods may be applied in the SPM blocks or otherwise to increase the accuracy or usefulness of the data and/or to preprocess the data and develop more accurate or better statistical data.
  • various data processing techniques may be employed such as trimming and filtering. Trimming is useful in detecting and then eliminating spikes, outliers and bad data points so that these data points do not skew statistical parameters. Trimming could be performed based on sorting and removing certain top and bottom percentages of the data, as well as using thresholds based on the standard deviation or some weighted moving av erage.
  • I rimmed points nun be renun ed from the data sequence, or an interpolation ma) be performed to replace outlier data with an estimate of what that data should be based on other data collected prior to and/or alter that data.
  • I- liters may be implemented using an ⁇ known or available digital signal processing techniques and ma ⁇ be specified or defined using am known filter parameters, for example, the desired slope of the filter, the pass and rejection frequencies of the filter, etc.
  • 1 he sample may be determined using pure statistical guidelines to select the number of points.
  • block length calculation techniques may be used. Such techniques may contemplate the frequency components (e.g.. frequency domain ) of the signal based on collected test points and the dominant system time constant as determined from the frequency components to set the block length as some multiple (which ma ⁇ be an integer or a non-integer multiple) of the dominant system time constant.
  • One advantageous manner of using an SPM block and the herein described techniques relates to the monitoring of a heat exchanger and performing diagnostics using statistical process monitoring for the heat exchanger.
  • various diagnostics methodologies based on process fluid inlet and outlet temperatures, control fluid inlet and outlet temperatures and device operating states and/or parameters can be used to determine the health and performance of the heat exchanger and particularly the presence of heat exchanger fouling.
  • the methodologies described here could be implemented either in the field devices within the plant or at a host system as software.
  • the main advantage of these methods is the use of statistical process parameters, which may be evaluated by field instruments, to prov ide high quality measurements and fast estimates.
  • Fig. 4 illustrates a schematic of a typical heat exchanger 100 found in many processing plants.
  • the heat exchanger has an outer shell 102.
  • a first partition 104 and a second partition 106 divide an interior of the shell 102 into an inlet plenum 108.
  • a plurality of tubes 1 14 connect the inlet plenum 108 with the outlet plenum 1 10 and hence an inlet tube 1 16 with an outlet tube 1 18.
  • a shell inlet 120 and a shell outlet 122 couple to the chamber 1 12. the shell inlet 120 being disposed adjacent the partition 106 and the shell outlet 122 being disposed adjacent the partition 104.
  • An optional pluralitx of bai lies 124 define a circuitous path w ith the chamber from the shell inlet 120 to the shell outlet 122.
  • a "process " or "hot “" fluid may enter the heat exchanger 100 ⁇ ia the inlet tube 1 16 and the inlet plenum 108. The hot fluid is transferred ⁇ ia the tubes 1 14 from the inlet plenum 108 to the outlet plenum 1 10. and the hot fluid exits the heat exchanger from the outlet plenum ⁇ ia the outlet tube 1 1 8. 1 his hot fluid flow is depicted b ⁇ the arrows h m and h out .
  • a "control " or "cold *” fluid enters the chamber 1 12 v ia the shell inlet 1 20. is transferred around the tubes 1 14 and along the circuitous path defined b ⁇ the baffles 124 and exits the chamber 1 12 via the shell outlet 122.
  • l he cold fluid flow is depicted b ⁇ the arrows c m and c oyl .
  • process or hot fluid is used to refer to the fluid the temperature of which is being controlled, e.g.. a first fluid, by the flow of a control or cold fluid, e.g.. a second fluid, through the heat exchanger.
  • the hot fluid has a hot fluid inlet temperature T(h,in), a hot fluid outlet temperature T(h,out) and a hot fluid flow rate Flow(h). Similar! ⁇ , the cold fluid has a cold fluid inlet temperature T(c.in). a cold fluid outlet temperature T(c.out) and a cold fluid flow rate Flow(c).
  • the heat exchanger 100 a shell-and-tube heat exchanger with one shell pass and one tube pass and cross-counter flow operation is merely illustrative. It is used to facilitate an understanding of the herein described methodology for the prediction and diagnosis of heat exchanger performance.
  • the particular heat exchanger structure whether single or multiple pass, cross or parallel flow, tube and shell, etc.. is not material to the workings of the herein described methodology, and the methodology may be used to monitor the health and performance of v irtually any heat exchanger structure.
  • Suitable devices such as transmitter dev ices, such as those available from Rosemount. or valves controlling the respective flow rates and in particular the cold fluid flow rate, may be suitably coupled to each inlet and outlet.
  • Alternative dev ices and instrumentation mav be used, and an ⁇ suitable dev ice or dev ices mav be used to obtain the data relating to the hot Iluid at the inlet and the outlet and the cold fluid at the inlet and the outlet.
  • the dev ices and or instrumentation nun prov ide for preliminary data screening (sampling, trimming and filtering) and the data may consist of statistical data. e.g.. mean and standard dev iation.
  • I leal exchanger performance and health mav be determined based upon a determination of an operating characteristic of the heat exchanger, and for example, the thermal resistance of the heat exchanger.
  • the thermal resistance is determinable bv the energy balance equation:
  • ⁇ Ti M m may be defined as:
  • ⁇ ti and ⁇ t ? can be related to the hot and cold fluid inlet and outlet temperatures, under the assumption the hot fluid is being cooled, as follows:
  • ⁇ ti and ⁇ t 2 can be related to the hot and cold fluid inlet and outlet temperatures, under the assumption the hot fluid is being cooled, as follows:
  • the term — is known as the overall thermal resistance.
  • the overall thermal resistance can CA be calculated based upon measurements normally available in a heat exchanger control loop. Specifically, a set of measurements that may be used to calculate overall thermal resistance include the inlet and outlet temperatures of both the hot fluid and the cold fluid and the hot fluid flow rate and the cold fluid How rate. Other measurements that may be correlated to the overall thermal resistance may also or du e! be used.
  • Fhe herein described methodology may be implemented as part of a broader root cause diagnostics (RCl)) rule base.
  • numerous process data and parameters are av ailable for ev aluation, sev eral of which are indicated in the table shown in Fig. 6.
  • fhe table illustrates a number of fault conditions 140 and a number of process parameters 142. Included among the process parameters 142 are the hot fluid inlet temperature f(h.in). the hot fluid outlet temperature T(h. out), the cold fluid inlet temperature T(c, in), the cold fluid outlet temperature I ' (c. out), the hot fluid flow Flow (h).
  • the table illustrates a first set of conditions 144 indicative of hot fluid flow measurement drift and a second set of conditions 146 indicative of heat exchanger fouling.
  • the sets of conditions reflect changes in particular monitored parameters, for example, whether the parameter is "up " or "down " relative to a learned baseline mean ⁇ and/or standard dev iation ⁇ .
  • baseline parameters are established such as but not limited to mean and standard deviation.
  • the monitored parameters may be compared on an up or down basis relative to those baseline parameters or multiples thereof, e.g., the parameter may be considered up or down if the monitored value exceeds 3 standard deviations away from the baseline v alue in either a positive or negative direction.
  • the available process data provides insufficient evidence to determine whether the fault is heat exchanger fouling 146 or hot lluid measurement dri ft 144.
  • Statistical process monitoring can be used to determine a baseline for ov erall thermal resistance indicativ e of heat exchanger fouling using the data available from the plant SPM blocks.
  • ⁇ monitoring phase mav be used in an SPM or other block to detect the increase, the rate of increase and the value of overall heat exchanger thermal resistance in conjunction with other process data, fhese additional process data may include the cold lluid outlet temperature I (c. out), the hot fluid How Flow (h), the control demand of the hot fluid flow controller CD(Ii). the control demand of the cold fluid flow controller Cl)(e).
  • diagnostics using statistical process monitoring may be advantagcouslv performed for the heat exchanger 100.
  • various diagnostic methodologies can be used to determine the health of a heat exchanger.
  • the statistical processing methodologies can be implemented either in field devices, such as in the various Rosemount transmitter devices, or at the host system as software.
  • An advantage of these methods is an ability to use statistical process parameters evaluated by field instruments that provide high quality measurements and fast estimates.
  • these conditions may be detected as part of a transmitter advanced diagnostics block disposed within a valve or a transmitter associated with the heat exchanger 100, a temperature sensor/transmitter, a level sensor/transmitter, a pressure sensor/transmitter, etc.
  • a diagnostic block may be trained to detect or determine a baseline thermal resistance, when the sv stem is healthy, and then may monitor the mean value of the thermal resistance and any other appropriate parameters after establishing the baseline.
  • monitoring and detection could be achieved using an SPM block in a transmitter or other field device with a simple threshold logic. That is. the SPM block could monitor the thermal resistance to determine the mean, the standard deviation, etc.
  • a pre-established threshold which mav be set bv a user or which mav be based on a baseline statistical measure computed from measurements of the appropriate process variables during a training period.
  • host level software run in a user interface de ⁇ ice or other computing dev ice connected to the field dev ices such as an adv anced diagnostic block explorer or expert, may be used to set and monitor normal and abnormal v alues and to perform abnormal situation detection based on the concepts described above.
  • Fig, 7 illustrates a process plant sy stem 200 and an interface dev ice 202 connected between a set of field devices 204 (forming part of a heat exchanger 206) and a process controller sv stem 208 that may implement heat exchanger fouling detection in accordance w ith one or more of the herein described embodiments.
  • the interface device 202 may prov ide data for view ing to a host 210. and may prov ide alerts or alarms to the controller system 208. 1 he controller system 208 may integrate these alerts or alarms with other controller type alerts and alarms for v iewing by . for example, a control operator at an operator workstation 212.
  • the host workstation 212 may include any desired view ing application to view the data collected in and prov ided by the interface dev ice 202 in v irtually any desired manner. Likew ise, this data may be made available for v iewing by other users via a web browser 214.
  • the various applications discussed herein as being associated with the abnormal situation prevention system, the SPM blocks (if used), and other systems may be distributed in different devices. For instance, data (such as SPM data) may be collected in one dev ice, such as a field dev ice 204. and sent to another dev ice, such as in the interface dev ice 202, that implements the heat exchanger fouling detection system.
  • Alerts, alarms, or other indicators may be sent to yet another device, such as the workstation 212. for presentation to a user.
  • configuration information may be input via a user interface device, such as a host, a web browser, a PDA. etc. and sent to a different device, such as the interface device 202.
  • Some or all of the blocks, such as the SPM or ADB blocks illustrated and described herein may be implemented in whole or in part using software, firmware, or hardware.
  • the example methods described herein may be implemented in whole or in part using software, firmware, or hardware.
  • the program may be configured for execution by a processor and may be embodied in software instructions stored on a tangible medium such as CD-ROM, a floppy disk, a hard drive, a digital versatile disk (DVD). or a memory associated with the processor.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

Detection of one or more abnormal situations is performed using various statistical measures, such as a mean, a median, a standard deviation, etc. of one or more process parameters or variable measurements made by statistical process monitoring blocks within a plant. This detection may include determination of the health and performance of one or more heat exchangers in the plant, and in particular, detection of a fouling condition of the one or more heat exchangers. Among the statistical measures, the detection may include calculation of an overall thermal resistance of the heat exchanger, which may be indicative under certain circumstances of heat exchanger performance and in particularly degradation of heat exchanger performance as a result of heat exchanger fouling.

Description

1 I KΛT FXOIΛNC FR FO l 1 UM; I)I i I ( I ION Field . of the ..Disclosure
J(H)01 j I his patent relates generally to performing diagnostic's and maintenance in a process plant and, more particularly, to providing diagnostic capabilities w ithin a process plant in a manner that can ev aluate and predict the health and performance of a heat exchanger.
Background
(00021 Process control sy stems, like those used in chemical, petroleum or other processes. typicalh include one or more centralized or decentralized process controllers communicative! v coupled to at least one host or operator workstation and to one or more process control and instrumentation devices such as. for example, field devices, v ia analog, digital or combined analog/digital buses. Field dev ices, which may be. for example, v alves, valve positioners, switches, transmitters, and sensors (e.g.. temperature, pressure, and flow rate sensors), are located within the process plant environment, and perform functions within the process such as opening or closing valves, measuring process parameters, increasing or decreasing fluid flow. etc. Smart field devices such as field devices conforming to the well- known FOUNDΛ HUN™ Fieldbus (hereinafter "Fieldbus") protocol or the HAR fH» protocol mav also perform control calculations, alarming functions, and other control functions commonly implemented within the process controller.
(0003] The process controllers, which are typically located within the process plant env ironment, receive signals indicative of process measurements or process variables made by or associated w ith the field devices and/or other information pertaining to the field devices, and execute controller applications. The controller applications implement, for example, different control modules that make process control decisions, generate control signals based on the received information, and coordinate with the control modules or blocks being performed in the field devices such as HART and Fieldbus field devices. The control modules in the process controllers send the control signals over the communication lines or signal paths to the field devices, to thereby control the operation of the process.
(0004( Information from the field devices and the process controllers is typically made available to one or more other hardware devices such as, for example, operator workstations, maintenance workstations, personal computers, handheld dev ices, data historians, report generators, centralized databases, etc. to enable an operator or a maintenance person to perform desired (mictions w ith respect to the process such as. tor example, changing settings of the process control routine. modify ing the operation of the control modules within the process controllers or the smart field devices, \ iewing the current state of the process or of particular de\ ices within the process plant, v iewing alarms generated b\ field dev ices and process controllers, simulating the operation of the process for the purpose of training personnel or testing the process control software, diagnosing problems or hardware failures within the process plant, etc.
|0005| While a ty pical process plant has many process control and instrumentation dev ices such as valv es, transmitters, sensors, etc. connected to one or more process controllers, there are many other supporting dev ices that are also necessary for or related to process operation. These additional dev ices include, for example, power supply equipment, power generation and distribution equipment, rotating equipment such as turbines, motors, etc.. which are located at numerous places in a typical plant. While this additional equipment does not necessarily create or use process variables and, in many instances, is not controlled or even coupled Io a process controller for the purpose of affecting the process operation, this equipment is nevertheless important to. and ultimately necessary for proper operation of the process.
(0006] As is known, problems frequently arise within a process plant environment, especially a process plant having a large number of field devices and supporting equipment. These problems may take the form of broken, malfunctioning or underperforming devices, plugged fluid lines or pipes, logic elements, such as software routines, being improperly configured or being in improper modes, process control loops being improperly tuned, one or more failures in communications between devices within the process plant, etc. These and other problems, while numerous in nature, generally result in the process operating in an abnormal state (i.e.. the process plant being in an abnormal situation) which is usually associated with suboptimal performance of the process plant. Many diagnostic tools and applications have been developed to detect and determine the cause of problems within a process plant and to assist an operator or a maintenance person to diagnose and correct the problems, once the problems have occurred and been detected. For example, operator workstations, which are typically connected to the process controllers through communication connections such as a direct or a wireless bus. an Ethernet, a modem, a phone line, and the like, have processors and memories that are adapted to run software or firmware, such as the DeltaV I M and Ovation control svstems, sold bv Hmerson Process Management, wherein the software includes numerous control module and control loop diagnostic tools. Likewise, maintenance workstations, which ma\ be connected to the process control dev ices. such as field devices. \ ia the same communication connections as the controller applications, or v ia different communication connections, such as OPC connections, handheld connections, etc.. tv picallv include one or more applications designed to view maintenance alarms and alerts generated bv Held de\ ices w ithin the process plant, to test devices within the process plant and to perform maintenance activ ilies on the field dev ices and other dev ices within the process plant. Similar diagnostic applications have been developed to diagnose problems within the supporting equipment within the process plant.
[0007] Thus, for example, the AMS Suite: Intelligent Device Manager application (at least partially disclosed in U.S. Patent Number 5,960.214 entitled "integrated Communication Network for use in a Field Dev ice Management Sv stem") sold by Emerson Process Management, enables communication with and stores data pertaining to field devices to ascertain and track the operating state of the field devices. In some instances, the AMS application may be used to communicate with a field device to change parameters within the field device, to cause the field device to run applications on itself such as. for example, self- calibration routines or self-diagnostic routines, to obtain information about the status or health of the field dev ice, etc. This information may include, for example, status information (e.g.. whether an alarm or other similar event has occurred), device configuration information (e.g.. the manner in which the field device is currently or may be configured and the type of measuring units used by the field device), device parameters (e.g.. the field device range values and other parameters), etc. Of course, this information may be used by a maintenance person to monitor, maintain, and/or diagnose problems with field devices.
[0008] Similarly, many process plants include equipment monitoring and diagnostic applications such as. for example. Machinery Health1 M applications provided by CSI. or any other known applications used to monitor, diagnose, and optimize the operating state of various rotating equipment. Maintenance personnel usually use these applications to maintain and oversee the performance of rotating equipment in the plant, to determine problems with the rotating equipment, and to determine when and if the rotating equipment must be repaired or replaced. Similarly, many process plants include power control and diagnostic applications such as those provided by. for example, the Liebert and ASCO companies, to control and maintain the power generation and distribution equipment. It is also known to run control optimization applications such as, for example, real-time optimizers ( R I O *- ). w ithin a process plant to optimi/e the control acti\ Hies of the process plant. Such optimization applications ty picalh use complex algorithms and/or models of the process plant to predict how inputs
Figure imgf000005_0001
be changed to optimize operation of the process plant with respect to sonic desired optimization v ariable such as. for example, profit.
[0009] These and other diagnostic and optimization applications are U piealh implemented on a s\ stem-wide basis in one or more of the operator or maintenance workstations, and ma\ prov ide preconfigured display s to the operator or maintenance personnel regarding the operating state of the process plant, or the dev ices and equipment within the process plant. Ty pical displays include alarming displays that receiv e alarms generated by the process controllers or other devices within the process plant, control displays indicating the operating state of the process controllers and other de\ ices within the process plant, maintenance displays indicating the operating state of the devices within the process plant, etc. Likewise, these and other diagnostic applications may enable an operator or a maintenance person to retime a control loop or to reset other control parameters, to run a test on one or more field devices to determine the current status of those field devices, to calibrate field devices or other equipment, or to perform other problem detection and correction activities on dev ices and equipment within the process plant.
[0010] While these various applications and tools are very helpful in identifying and correcting problems within a process plant, these diagnostic applications are generally configured to be used only after a problem has already occurred within a process plant and. therefore, after an abnormal situation already exists within the plant. Unfortunately, an abnormal situation may exist for some time before it is detected, identified and corrected using these tools, resulting in the suboptirnal performance of the process plant for the period of time before which the problem is detected, identified and corrected. In many cases, a control operator will first detect that some problem exists based on alarms, alerts or poor performance of the process plant. The operator will then notify the maintenance personnel of the potential problem. The maintenance personnel may or may not detect an actual problem and may need further prompting before actually running tests or other diagnostic applications, or performing other activities needed to identify the actual problem. Once the problem is identified, the maintenance personnel may need to order parts and schedule a maintenance procedure, all of which may result in a significant period of time between the occurrence of a problem and the correction of that problem, during which time the process plant runs in an abnormal situation general!) associated w ith the sub-optimal operation of the plant.
1001 1 1 Additional h . mam process plants can experience an abnormal situation which results in significant costs or damage w ithin the plant in a relath eh short amount of time. 1 or example, some abnormal situations can cause significant damage to equipment, the loss of raw materials, or significant unexpected downtime w ithin the process plant if these abnormal situations exist for even a short amount of time. I hus. merely detecting a problem within the plant alter the problem has occurred, no matter how quickh the problem is corrected, maj still result in significant loss or damage w ithin the process plant. As a result, it is desirable to try to prevent abnormal situations from arising in the first place, instead of simph try ing to react to and correct problems within the process plant after an abnormal situation arises.
[0012] One technique collects data that enables a user to predict the occurrence of certain abnormal situations within a process plant before these abnormal situations actually arise or shortly after they arise, with the purpose of taking steps to prevent the predicted abnormal situation or to correct the abnormal situation before any significant loss within the process plant takes place. This procedure is disclosed in U.S. Patent Application Serial No. ()9''972.078. now U.S. patent No. 7.085.610. entitled "Root Cause Diagnostics" (based in part on U.S. Patent Application Serial No. 08/623.569. now U.S. Patent No. 6.017.143). The entire disclosures of both of these applications/patents are hereby incorporated by reference herein. Generally speaking, this technique places statistical data collection and processing blocks or statistical processing monitoring (SPM) blocks, in each of a number of devices. such as field devices, within a process plant. The statistical data collection and processing blocks collect, for example, process variable data and determine certain statistical measures associated with the collected data, such as a mean, a median, a standard deviation, etc. These statistical measures may then be sent to a user interface or other processing device and analyzed to recognize patterns suggesting the actual or future occurrence of a known abnormal situation. Once a particular suspected abnormal situation is detected, steps may be taken to correct the underlying problem, thereby avoiding the abnormal situation in the first place or correcting the abnormal situation quickly. However, the collection and analysis of this data may be time consuming and tedious for a typical maintenance operator, especially in process plants having a large number of field devices collecting this statistical data. Still further, while a maintenance person may be able to collect the statistical data, this person may not know how to best analy /e or v iew the data or to determine what, i f any . future abnormal situation mav be suggested by the data.
(0013) Another technique to detect and predict one or more abnormal situations is performed using v arious statistical measures, such as a mean, median, standard dev iation, etc. of process parameters or v ariable measurements determined bv statistical process monitoring ( SPM) blocks within a plant. This detection is enhanced in v arious cases bv the use of speeiali/ed data filters and data processing techniques, which are designed to be computational])- simple and therefore are able to be applied to data collected at a high sampling rate in a field device hav ing limited processing power. 1 he enhanced data or measurements mav be used to provide better or more accurate statistical measures of the process variable or process parameter, may be used to trim the data to remove outliers from this data, mav be used to fit this data to non-linear functions, or mav be use to quickly detect the occurrence of various abnormal situations within specific plant equipment, such as distillation columns and refinery catalytic crackers. While the statistical data collection and processing and abnormal situation detection may be performed within a user interface device or other maintenance device within a process plant, these methods may also and advantageous!) be used in the devices, such as field devices like valves, transmitters, etc. which collect the data in the first place, thereby remov ing the processing burden from the centralized user interface device as well as the communication overhead associated with sending the statistical data from the field devices to the user interface device. Abnormal situation detection and prediction utilizing the foregoing techniques are disclosed and described in United States Patent Application Serial Nos. 60/668.243 entitled "Process Diagnostics." which was filed on April 4, 2005 and 10/589.728 (Attorney Docket No. 30203/41615) entitled "Statistical Processing Methods Used in Abnormal Situation Detection," which was filed August 17, 2006, the disclosures of which are hereby expressly incorporated by reference in their entirety for all purposes.
(0014] Statistical methods can reveal problems within process plants as the problems arise and before such problems lead to the process operating in an abnormal or suboptimal state for an extended period or before damage is caused to the processing plant. Still, particular problems may prove more difficult to detect through statistical methodologies. For example, where the available measured parameters correlate to one or more problems or faults, it may not be possible to isolate the particular fault. Additional correlations must be sought to distinguish the faults from the available data. Such a situation exists with temperature to flow cascade loops containing a heat exchanger, w hich is a v ery common chemical and petroleum industry application. It is desirable to detect heat exchanger fouling in this loop, which can lead to suboptimal performance. Howev er, the measurement changes indicativ e of heat exchanger fouling may be the same as those for measurement drift in the process fluid flow rate, thus making detection difficult or impractical using statistical methods.
Brief Description of the Draw ings
|0()15] f ig. 1 is an exemplar} block diagram of a process plant hav ing a distributed control and maintenance network including one or more operator and maintenance workstations, controllers, field dev ices and supporting equipment;
[0016] f ig. 2 is an exemplar} block diagram of a portion of the process plant of Fig. 1. illustrating communication interconnections between various components of an abnormal situation prevention sy stem located within different elements of the process plant, including the use of statistical process monitoring (SPM) blocks:
|0017J Fig. 3 is a block diagram of an example SPM block;
[0018] Fig. 4 is a schematic diagram of a typical heat exchanger that may be used in a process plant;
[0019] Fig. 5 graph illustrating overall heat exchanger thermal resistance with time in the presence of fouling;
[0020J Fig. 6 is a table indicating root cause diagnostic parameters that may be selected to determine heat exchanger fouling; and
[0021] Fig. 7 is a depiction of an interface device connected a process plant.
Detailed Description
[0022] Fig. 1 illustrates an example process plant 10 that may be configured with an abnormal situation prev ention system. In one possible configuration the abnormal situation prevention system may be configured to recognize heat exchanger fouling as distinguished from other possible process conditions including process fluid drift. The process plant may include a number of control and maintenance systems interconnected together with supporting equipment v ia one or more communication networks. The process plant 10 illustrated by Fig. 1 includes one or more process control systems 12 and 14. The process control sv stem 12 may be a traditional process control system such as a PROVOX or RS3 svstem or an} other control system which includes an operator interface 12Λ coupled to a controller 12B and to input output (I O) cards 12C which, in turn, arc coupled to \ arious field de\ ices such as analog and Highway Addressable Remote Transmitter ( 11ΛR D field dev ices
15, 1 he process control sy stem 14 may be a distributed process control system and include one or more operator interfaces 14Λ coupled to one or more distributed controllers 14B v ia a bus. such as an Fthernet bus. 1 he controllers 14B may be, for example. Delta V controllers sold by Hmersυn Process Management of Austin. Texas or any other desired ty pe of controllers. The controllers 14B are connected \ ia I/O de\ ices to one or more field dev ices
16. such as for example. 1 IAR 1 or Fieldbus field devices or any other smart or non-smart field dev ices including, for example, those that use any of the PROFIBUS" . WORFDFIP" . Device-Net", ΛS-Interface and CAN protocols. As is known, the field devices 16 may provide analog or digital information to the controllers 14B related to process variables as well as to other device information. 1 he operator interfaces 14Λ may store and execute tools available to the process control operator for controlling the operation of the process including, for example, control optimi/ers. diagnostic experts, neural networks, tuners, etc.
[0023] Still further, maintenance s> stems, such as computers executing the AMS application or any other dev ice monitoring and communication applications may be connected to the process control systems 12 and 14 or to the individual devices therein to perform maintenance and monitoring activities. For example, a maintenance computer 18 mav be connected to the controller 12B and/or to the devices 15 via any desired communication lines or networks 12C (including wireless or handheld device networks) to communicate with and. in some instances, to reconfigure or to perform other maintenance activities on the devices 15. Similarly, maintenance applications such as the AMS application may be installed in and executed by one or more of the user interfaces 14A associated with the distributed process control system 14 to perform maintenance and monitoring functions, including data collection related to the operating status of the devices 16.
[0024] The process plant 10 may also include various rotating equipment 20, such as turbines, motors, etc. which are connected to a maintenance computer 22 via some permanent or temporary communication link (such as a bus. a wireless communication system or hand held de\ ices which are connected to the equipment 20 to take readings and are then removed). The maintenance computer 22 may store and execute known monitoring and diagnostic applications 23 prov ided by . for example, CSI (an Emerson Process Management Company) or other any other known applications used to diagnose, monitor and optimize the operating state of the rotating equipment 20. Maintenance personnel usuallv use the applications 23 to maintain and oversee the performance of rotating equipment 20 in the plant 10. to determine problems with the rotating equipment 20 and to determine w hen and if the rotating equipment 20 must be repaired or replaced. In some cases, outside consultants or serv ice organizations ma\ temporarily acquire or measure data pertaining to the equipment 20 and use this data to perform analy ses for the equipment 20 to detect problems, poor performance or other issues effecting the equipment 20. In these cases, the computers running the anah ses may not be connected to the rest of the sy stem 10 \ ia any communication line or may be connected only temporarily.
[0025] Similarly, a power generation and distribution s> stem 24 having power generating and distribution equipment 25 associated with the plant 10 is connected \ ia. for example, a bus. to another computer 26 which runs and oversees the operation of the power generating and distribution equipment 25 within the plant 10. I he computer 26 may execute known power control and diagnostics applications 27 such as those prov ided by. for example. Liebert and ASCO or other companies to control and maintain the power generation and distribution equipment 25. Again, in many cases, outside consultants or service organizations may use service applications that temporarily acquire or measure data pertaining to the equipment 25 and use this data to perform analyses for the equipment 25 to detect problems, poor performance or other issues effecting the equipment 25. In these cases, the computers (such as the computer 26) running the analyses may not be connected to the rest of the sv stem 10 via any communication line or may be connected only temporarily.
[0026] As illustrated in Fig. 1. a computer system 30 implements at least a portion of an abnormal situation prevention system 35, and in particular, the computer system 30 stores and implements a configuration and data collection application 38. a viewing or interface application 40. which may include statistical collection and processing blocks, and a rules engine development and execution application 42 and. additionally, stores a statistical process monitoring database 43 that stores statistical data generated within certain devices within the process, such as statistical measures of various process parameters. Generally speaking, the configuration and data collection application 38 configures and communicates with each of a number of statistical data collection and analysis blocks (not shown in Fig. 1 ) located in the field devices 15. 16. the controllers 12B, 14B. the rotating equipment 20 or its supporting computer 22, the power generation equipment 25 or its supporting computer 26 and am other desired devices and equipment within the process plant 10. to thereby collect statistical data (or in some cases, actual raw process v ariable data) from each of these blocks w ith w hich to perform abnormal situation detection. 1 he configuration and data collection application 38 may be communicative!) connected \ ia a hardwired bus 45 to each of the computers or dev ices within the plant K) or, alternativ ely, may be connected via any other desired communication connection including, for example, wireless connections, dedicated connections which use OPC. intermittent connections, such as ones which rely on handheld dev ices to collect data. etc.
[0027] Likewise, the application 38 may obtain data pertaining to the field devices and equipment w ithin the process plant 10 v ia a LAN or a public connection, such as the Internet, a telephone connection, etc. (illustrated in Fig. 1 as an Internet connection 46) with such data being collected by. for example, a third part) service provider. Further, the application 38 may be communicatively coupled to computers/devices in the plant K) via a variety of techniques and/or protocols including, for example. Ethernet. Modbus. HTML, XML. proprietary techniques/protocols, etc. Thus, although particular examples using OPC to communicatively couple the application 38 to computers/devices in the plant 10 are described herein, one of ordinary skill in the art will recognize that a variety of other methods of coupling the application 38 to computers/devices in the plant 10 can be used as well. The application 38 may generally store the collected data in the database 43.
(00281 Once the statistical data (or process variable data) is collected, the viewing application 40 may be used to process this data and/or to display the collected or processed statistical data (e.g.. as stored in the database 43) in different manners to enable a user, such as a maintenance person, to better be able to determine the existence of or the predicted future existence of an abnormal situation and to take preemptive or actual corrective actions. The rules engine development and execution application 42 may use one or more rules stored therein to analyze the collected data to determine the existence of, or to predict the future existence of an abnormal situation within the process plant 10. Additionally, the rules engine development and execution application 42 may enable an operator or other user to create additional rules to be implemented by a rules engine to detect or predict abnormal situations. It is appreciated that the detection of an abnormal situation as described herein encompasses the prediction of a future occurrence of an abnormal situation.
[0029] Fig. 2 illustrates a portion 50 of the example process plant 10 of Fig. 1 for the purpose of describing one manner in which statistical data collection and processing and in some cases abnormal situation detection may be performed by components associated with the abnormal situation prevention sv stem i5 including blocks located w ithin field de\ ices. While Fig. 2 illustrates communications between the abnormal situation prev ention system applications 38. 40 and 42 and the database 43 and one or more data collection and processing blocks within HΛR 1 and Fieldbus iield devices, it will be understood that similar communications can occur between the abnormal situation prev ention sv stem applications 38, 40 and 42 and other devices and equipment within the process plant 10. including am of the dev ices and equipment illustrated in Fig. 1.
|0030| 1 he portion 50 of the process plant K) illustrated in Fig. 2 includes a distributed process control sv stem 54 having one or more process controllers 60 connected to one or more field dev ices 64 and 66 v ia input-Output (1/(3) cards or dev ices 68 and 70. which may be am desired tvpes of I/O dev ices conforming to any desired communication or controller protocol. I he Held devices 64 are illustrated as HART field devices and the field devices 66 are illustrated as Fieldbus field devices, although these field dev ices could use any other desired communication protocols. Additionally, the field de\ ices 64 and 66 may be any tvpes of dev ices such as. for example, sensors, valves, transmitters, positioners, etc., and may conform to any desired open, proprietary or other communication or programming protocol, it being understood that the I/O devices 68 and 70 must be compatible with the desired protocol used b\ the field devices 64 and 66.
(00311 In any event, one or more user interfaces or computers 72 and 74 (which may be any tv pes of personal computers, workstations, etc.) accessible by plant personnel such as configuration engineers, process control operators, maintenance personnel, plant managers, superv isors, etc. are coupled to the process controllers 60 via a communication line or bus 76 which may be implemented using any desired hardwired or wireless communication structure, and using any desired or suitable communication protocol such as. for example, an Ethernet protocol. In addition, a database 78 may be connected to the communication bus 76 to operate as a data historian that collects and stores configuration information as well as online process variable data, parameter data, status data, and other data associated with the process controllers 60 and field devices 64 and 66 within the process plant 10. Thus, the database 78 may operate as a configuration database to store the current configuration, including process configuration modules, as well as control configuration information for the process control system 54 as downloaded to and stored within the process controllers 60 and the field dev ices 64 and 66. Likewise, the database 78 may store historical abnormal situation prevention data, including statistical data collected and'or generated by the field dev ices 64 and 66 w ithin the process plant 10 or statistical data determined from process variables collected by the field
Figure imgf000013_0001
ices 64 and 66.
[0032) While the process controllers 60. 1 O de\ ices 68 and 70. and Held dev ices 64 and 66 are ty pically located down w ithin and distributed throughout the sometimes harsh plant env ironment, the workstations 72 and 74, and the database 78 are usually located in control rooms, maintenance rooms or other less harsh env ironments easily accessible by operators, maintenance personnel, etc.
J 0033 J Generally speaking, the process controllers 60 store and execute one or more controller applications that implement control strategies using a number of different, independently executed, control modules or blocks. The control modules may each be made up of what are common Iv referred to as function blocks, wherein each function block is a part or a subroutine of an ov erall control routine and operates in conjunction with other function blocks (via communications called links) to implement process control loops within the process plant 10. Λs is well known, function blocks, which may be objects in an object- oriented programming protocol, typically perform one of an input function, such as that associated with a transmitter, a sensor or other process parameter measurement device, a control function, such as that associated with a control routine that performs PID. fuzzy logic, etc. control, or an output function, which controls the operation of some device, such as a valve, to perform some physical function within the process plant 10. Of course, hybrid and other types of complex function blocks exist, such as model predictive controllers (MPCs), optimizers, etc. It is to be understood that while the Fieldbus protocol and the DeltaV™ system protocol use control modules and function blocks designed and implemented in an object-oriented programming protocol, the control modules may be designed using any desired control programming scheme including, for example, sequential function blocks, ladder logic, etc., and are not limited to being designed using function blocks or any other particular programming technique.
[0034] As illustrated in Fig. 2. the maintenance workstation 74 includes a processor 74Λ. a memory 74B and a display device 74C1. The memory 74B stores the abnormal situation prevention applications 38. 40 and 42 discussed with respect to Fig. 1 in a manner that these applications can be implemented on the processor 74A to prov ide information to a user v ia the display 74C (or any other display device, such as a printer). |()035| Xdditionalh , as shown in 1 ig. 2. some (and potential!) all ) of the Held de\ ices 64 and 66 include data collection and processing blocks 80 and 82. While, the blocks 80 and 82 are described w ith respect to Fig. 2 as being adv anced diagnostics blocks (ΛDBs). which are known RH NO M I(A fϊeldbus function blocks that can be added to Fieldbus de\ iees to collect and process statistical data w ithin Fieldbus de\ ices, for the purpose of this discussion, the blocks 80 and 82 could be or could include anv other tv pe of block or module located within a process de\ ice that collects de\ ice data and calculates or determines one or more statistical measures or parameters for that data, whether or not these blocks are located in Fieldbus devices or conform to the Fieldbus protocol. W hile the blocks 80 and 82 of Fig. 2 are illustrated as being located in one of the de\ ices 64 and in one of the devices 66, these or similar blocks could be located in am number of the field devices 64 and 66, could be located in other devices, such as the controller 60. the I/O devices 68. 70, in an intermediate dev ice that is located within the plant and that communicates with multiple sensors or transmitters and with the controller 60. or any of the dev ices illustrated in Fig. 1. Additionally, the blocks 80 and 82 could be in any subset of the dev ices 64 and 66.
10036] Generally speaking, the blocks 80 and 82 or sub-elements of these blocks, collect data, such a process variable data, w ithin the device in which they are located and perform statistical processing or analysis on the data for any number of reasons. For example, the block 80, which is illustrated as being associated with a valve, may analyze the valve process variable data to determine if the operating condition of the valve itself, e.g.. if the valve is in a stuck condition. In addition, the block 80 includes a set of four statistical process monitoring (SPM) blocks or units SPM l - SPM4 which ma> collect process variable or other data within the valve, whether related directly to the performance of the valve or to other processes, and perform one or more statistical calculations on the collected data to determine, for example, a mean, a median, a standard deviation, a root-mean-square (RMS). a rate of change, a range, a minimum, a maximum, etc. of the collected data and/or to detect events such as drift, bias, noise, spikes, etc.. in the collected data. Neither the specific statistical data generated, nor the method in which it is generated is critical. Thus, different types of statistical data can be generated in addition to. or instead of. the specific types described above and for any purpose. Additionally, a v ariety of techniques, including known techniques, can be used to generate such data. The term statistical process monitoring (SPM) block is used herein to describe functionalitv that performs statistical process monitoring on at least one process variable or other process parameter, and mav be performed by any desired software, firmware or hardware w ithin the dev ice or e\en outside of a ice lor which data is collected. It will be understood that, because the SFMs are general!} located in the dev ices w here the device data is collected, the SI1Ms can acquire quantitative!) and qualitative!} more accurate process v ariable data. As a result, the SPM blocks are general!} capable of determining better statistical calculations with respect to the collected process variable data than a block located outside of the dev ice in which the process v ariable data is collected.
[0037) As another example, the block 82 of Fig. 2. which is illustrated as being associated with a transmitter analv /es the process variable data collected by the transmitter and its operating condition, e.g., determining if a line w ithin the plant is plugged. In addition, the block 82 includes a set of four SPM blocks or units SPM l - SPM4 which may collect process v ariable or other data within the transmitter and perform one or more statistical calculations on the collected data to determine, for example, a mean, a median, a standard deviation, etc. of the collected data. If desired, the underly ing operation of the blocks 80 and 82 may be performed or implemented as described in U.S. Patent No. 6.017.143 referred to above. While the blocks 80 and 82 are illustrated as including four SPM blocks each, the blocks 80 and 82 could have any other number of SPM blocks therein for collecting data and determining statistical measures associated with that data. Likewise, while the blocks 80 and 82 are illustrated as including detection software for detecting particular conditions within the plant 10. they need not have such detection software or could include detection software for detecting other conditions within the plant as described below. Still further, while the SPM blocks discussed herein are illustrated as being sub-elements of ADBs. they may instead be stand-alone blocks located within a device. Also, while the SPM blocks discussed herein may be known FOUNDATION fieldbus SPM blocks, the term statistical process monitoring (SPM) block is used herein to refer to any type of block or element that collects data, such as process variable data, and performs some statistical processing on this data to determine a statistical measure, such as a mean, a standard deviation, etc. As a result, this term is intended to cover software or firmware or other elements that perform this function, whether these elements are in the form of function blocks, or other types of blocks, programs, routines or elements and whether or not these elements conform to the FOUNDA T ION fieldbus protocol, or some other protocol, such as PROFIBUS. WORLDFIP. Dev ice-Net. AS-Interface, HART. CAN. etc.. protocols.
[0038] Fig. 3 illustrates a block diagram of an SPM block 90 (which could be any of the SPM blocks in the blocks 80 and 82 of Fig. 2 or any other device) which accepts raw data on an input 92 and operates Io calculate v arious statistical measures of that data, including a Mean, an RMS v alue, and one or more standard deviations. 1 or a given set of raw input data, the block 1X) mav also determine a minimum value (Min). a maximum value (Max) and a range. If desired, this block ma\ calculate specific points w ithin the data, such as the Q25. QSO and Q75 points and mav perform outlier remov al based on the distributions. Of course this statistical processing can be performed using any desired or known processing techniques.
[00391 While certain statistical monitoring blocks are illustrated in Figs. 2. it will be understood that other parameters could be monitored as well or in addition. For example, the SPM blocks, or the AI)Bs discussed with respect to Fig. 2 mav calculate statistical parameters associated with a process and may trigger certain alerts, based on changes in these values. Bv way of example, Fieldbus type SPM blocks may monitor a process and provide a number of different data associated with monitored process variables or configuration parameters. I hese data may include Block fag. Block Type. Mean. Standard Deviation. Mean Change, Standard Deviation Change. Baseline Mean. Baseline Standard Deviation. High Variation Limit. Low Dynamics Limit. Mean Limit, Status. Parameter Index, Time Stamp and User Command. The two most commonly used parameters are the Mean and Standard Dev iation. However, other SPM parameters that are often useful are Baseline Mean. Baseline Standard Deviation, Mean Change. Standard Deviation Change, and Status. Of course, the SPM blocks could determine any other desired statistical measures or parameters and could provide other parameters associated with a particular block to a user or requesting application. Thus. SPM blocks are not limited to the ones discussed herein.
[0040] As is also understood, the parameters of the SPM blocks (SPMl -SPM4) within the field devices may be made available to an external client such as the workstation 74. or any other external dev ice for example that is adapted to run the application 38, through the bus or communication network 76 and the controller 60. Additionally or in the alternative, the parameters and other information gathered by or generated by the SPM blocks (SPM1-SPM4) within the ADBs 80 and 82 may be made available to the external workstation, such as the workstation 74. through, for example, a suitable server, for example. OPC serv er 89. This connection mav be a wireless connection, a hardwired connection, an intermittent connection (such as one that uses one or more handheld devices) or any other desired communication connection using any desired or appropriate communication protocol. Of course, any of the communication connections described herein may use an OFC* communication serv er to integrate data receiv ed from different types of devices in a common or consistent format.
[00411 Still further, it is possible to place SPM blocks in host dev ices.
Figure imgf000017_0001
ices other than Held dev ices, or other field devices to perform statistical process monitoring outside of the de\ ice that collects or generates the raw data, such as the raw process \ ariable data. I bus. for example, the application 38 of Fig. 2 may include one or more SFM blocks which collect raw process v ariable data v ia. for example, the OPC server 89 and which calculate some statistical measure or parameter, such as a mean, a standard deviation, etc. for that process v ariable data. While these SFM blocks are not located in the dev ice which collects the data and, therefore, are generally not able to collect as much process variable data to perform the statistical calculations due to the communication requirements for this data, these blocks are helpful in determining statistical parameters for devices or process variable within devices that do not hav e or support SPM functionality . Additionally, available throughput of networks may increase over time as technology improves, and SPM blocks not located in the device which collects the raw data may be able to collect more process variable data to perform the statistical calculations. Thus, it will be understood in the discussion below, that any statistical measurements or parameters described to be generated by SPM blocks, may be generated by SPM blocks such as the SPM1 -SPM4 blocks in the ADBs 80 and 82. or in SPM blocks within a host or other devices including other field devices. Moreover, abnormal situation detection and other data processing may be performed using the statistical measures in the field devices or other devices in which the SPM blocks are located, and thus detection based on the statistical measures produced by the SPM blocks is not limited to detection performed in host devices, such as user interfaces.
[0042| Importantly, the maximum beneficial use of the data and the calculation of various statistical measures based on this data as described above is dependent in large part on the accuracy of the data in the first place. A number of data processing functions or methods may be applied in the SPM blocks or otherwise to increase the accuracy or usefulness of the data and/or to preprocess the data and develop more accurate or better statistical data. Thus, various data processing techniques may be employed such as trimming and filtering. Trimming is useful in detecting and then eliminating spikes, outliers and bad data points so that these data points do not skew statistical parameters. Trimming could be performed based on sorting and removing certain top and bottom percentages of the data, as well as using thresholds based on the standard deviation or some weighted moving av erage. I rimmed points nun be renun ed from the data sequence, or an interpolation ma) be performed to replace outlier data with an estimate of what that data should be based on other data collected prior to and/or alter that data. I- liters may be implemented using an\ known or available digital signal processing techniques and ma\ be specified or defined using am known filter parameters, for example, the desired slope of the filter, the pass and rejection frequencies of the filter, etc. Another important aspect of making accurate and useful statistical determinations in SPM blocks (and elsewhere) in\ ol\ es selecting an appropriate data block or time length o\ er w hich to calculate the statistical measures, such as the mean, the standard dev iation, etc. 1 he sample may be determined using pure statistical guidelines to select the number of points. Alternatively, block length calculation techniques may be used. Such techniques may contemplate the frequency components (e.g.. frequency domain ) of the signal based on collected test points and the dominant system time constant as determined from the frequency components to set the block length as some multiple (which ma\ be an integer or a non-integer multiple) of the dominant system time constant.
[0043] One advantageous manner of using an SPM block and the herein described techniques relates to the monitoring of a heat exchanger and performing diagnostics using statistical process monitoring for the heat exchanger. In particular, various diagnostics methodologies based on process fluid inlet and outlet temperatures, control fluid inlet and outlet temperatures and device operating states and/or parameters can be used to determine the health and performance of the heat exchanger and particularly the presence of heat exchanger fouling. As described above, the methodologies described here could be implemented either in the field devices within the plant or at a host system as software. The main advantage of these methods is the use of statistical process parameters, which may be evaluated by field instruments, to prov ide high quality measurements and fast estimates.
[0044] Fig. 4 illustrates a schematic of a typical heat exchanger 100 found in many processing plants. As can be see from Fig. 4. the heat exchanger has an outer shell 102. A first partition 104 and a second partition 106 divide an interior of the shell 102 into an inlet plenum 108. an outlet plenum 1 10 and a shell chamber 1 12. A plurality of tubes 1 14 connect the inlet plenum 108 with the outlet plenum 1 10 and hence an inlet tube 1 16 with an outlet tube 1 18. A shell inlet 120 and a shell outlet 122 couple to the chamber 1 12. the shell inlet 120 being disposed adjacent the partition 106 and the shell outlet 122 being disposed adjacent the partition 104. An optional pluralitx of bai lies 124 define a circuitous path w ith the chamber from the shell inlet 120 to the shell outlet 122. As depicted in Fig. 4. a "process" or "hot"" fluid may enter the heat exchanger 100 \ ia the inlet tube 1 16 and the inlet plenum 108. The hot fluid is transferred \ ia the tubes 1 14 from the inlet plenum 108 to the outlet plenum 1 10. and the hot fluid exits the heat exchanger from the outlet plenum \ ia the outlet tube 1 1 8. 1 his hot fluid flow is depicted b\ the arrows hm and hout. A "control" or "cold*" fluid enters the chamber 1 12 v ia the shell inlet 1 20. is transferred around the tubes 1 14 and along the circuitous path defined b\ the baffles 124 and exits the chamber 1 12 via the shell outlet 122. l"he cold fluid flow is depicted b\ the arrows cm and coyl. As used herein, the terms process or hot fluid is used to refer to the fluid the temperature of which is being controlled, e.g.. a first fluid, by the flow of a control or cold fluid, e.g.. a second fluid, through the heat exchanger. The terms are used generally and interchangeably with the understanding that the temperature of one fluid flow ing through the heat exchanger is being controlled b\ the controlled flow of another fluid through the heat exchanger. It should be further understood that the herein described invention has application to simple heat exchangers where hot fluid and cold fluid terminology is more readily applied or temperature-to-flow cascade loop arrangements w here process fluid and control fluid terminology may be better understood.
[0045] The hot fluid has a hot fluid inlet temperature T(h,in), a hot fluid outlet temperature T(h,out) and a hot fluid flow rate Flow(h). Similar!} , the cold fluid has a cold fluid inlet temperature T(c.in). a cold fluid outlet temperature T(c.out) and a cold fluid flow rate Flow(c).
[0046] The heat exchanger 100, a shell-and-tube heat exchanger with one shell pass and one tube pass and cross-counter flow operation is merely illustrative. It is used to facilitate an understanding of the herein described methodology for the prediction and diagnosis of heat exchanger performance. The particular heat exchanger structure whether single or multiple pass, cross or parallel flow, tube and shell, etc.. is not material to the workings of the herein described methodology, and the methodology may be used to monitor the health and performance of v irtually any heat exchanger structure.
[0047] Not depicted in Fig. 4 are field
Figure imgf000019_0001
ices or other sensors or instrumentation operable to provide data relating to the hot fluid and the cold fluid. Suitable devices, such as transmitter dev ices, such as those available from Rosemount. or valves controlling the respective flow rates and in particular the cold fluid flow rate, may be suitably coupled to each inlet and outlet. Alternative dev ices and instrumentation mav be used, and an\ suitable dev ice or dev ices mav be used to obtain the data relating to the hot Iluid at the inlet and the outlet and the cold fluid at the inlet and the outlet. Furthermore, the dev ices and or instrumentation nun prov ide for preliminary data screening (sampling, trimming and filtering) and the data may consist of statistical data. e.g.. mean and standard dev iation.
|00-48] I leal exchanger performance and health mav be determined based upon a determination of an operating characteristic of the heat exchanger, and for example, the thermal resistance of the heat exchanger. The thermal resistance is determinable bv the energy balance equation:
(J = I 'AAJ) ull ) = Hh1C1 M]1 = w( ( ', AT ( 1 )
Where (J is the heat transfer rate, A is the surface area of heat transfer, I " is the av erage heat transfer coefficient per unit surface area and Δ 1 1 M I D is the logarithmic mean temperature di fference for the heat exchanger. ΔTi M m may be defined as:
At, - At,
A T = ! - (O \
In[Al) i At2 j
For the counter-liovv heat exchanger 100 Δti and Δt? can be related to the hot and cold fluid inlet and outlet temperatures, under the assumption the hot fluid is being cooled, as follows:
Δ', = 'Λ ,H - /t ,,, : Δ/2 = /„ ,„„ - '. „„ (3 )
For a parallel flow heat exchanger Δti and Δt2 can be related to the hot and cold fluid inlet and outlet temperatures, under the assumption the hot fluid is being cooled, as follows:
Δ/, = 'Λ ,n - >t ,,,,, : Δ/2 = /„ „„, - /. „ (4)
A is defined for the heat exchanger; however, U is very difficult to determine analytically. However, the product UA can be calculated based upon other measurements. From equation ( 1 ):
(5)
Figure imgf000020_0001
The term — is known as the overall thermal resistance. The overall thermal resistance can CA be calculated based upon measurements normally available in a heat exchanger control loop. Specifically, a set of measurements that may be used to calculate overall thermal resistance include the inlet and outlet temperatures of both the hot fluid and the cold fluid and the hot fluid flow rate and the cold fluid How rate. Other measurements that may be correlated to the overall thermal resistance may also or alternativ e!) be used.
[0049| Statistics based upon the thermal resistance of the heat exchanger may be v iewed and evaluated to determine heat exchanger health and to predict heat exchanger fouling. Mg. 5 illustrates the percent change in the overall thermal resistance of a heat exchanger in time. The data mav prov ide sev eral indicators. On an absolute level, thermal resistance in excess of a predetermined threshold, e.g.. 25%. mav indicate heat exchanger fouling. The rate of change of thermal resistance, e.g.. the slope of the plot. may predict when a heat exchanger may become fouled to a level adversely impacting plant performance.
[0050] Fhe herein described methodology may be implemented as part of a broader root cause diagnostics ( RCl)) rule base. In such a case, numerous process data and parameters are av ailable for ev aluation, sev eral of which are indicated in the table shown in Fig. 6. fhe table illustrates a number of fault conditions 140 and a number of process parameters 142. Included among the process parameters 142 are the hot fluid inlet temperature f(h.in). the hot fluid outlet temperature T(h. out), the cold fluid inlet temperature T(c, in), the cold fluid outlet temperature I'(c. out), the hot fluid flow Flow (h). the control demand of the hot fluid control v alve CD(h), the control demand of the cold fluid control valve CD(c). the temperature setpoint of the master cascade control loop SP(t). the setpoint for the hot fluid flow rate control SP(h). the differential pressure across the heat exchanger for hot fluid side DP(h), the valve position for hot fluid control valve VP(h), the valve position for cold fluid control valve VP(c) and the setpoint for the cold fluid flow rate SP(c). Additionally, the calculated overall heat exchanger thermal resistance value I /UA is indicated. The table illustrates a first set of conditions 144 indicative of hot fluid flow measurement drift and a second set of conditions 146 indicative of heat exchanger fouling. The sets of conditions reflect changes in particular monitored parameters, for example, whether the parameter is "up" or "down" relative to a learned baseline mean μ and/or standard dev iation σ. I hat is. during an initial learning process, baseline parameters are established such as but not limited to mean and standard deviation. The monitored parameters may be compared on an up or down basis relative to those baseline parameters or multiples thereof, e.g., the parameter may be considered up or down if the monitored value exceeds 3 standard deviations away from the baseline v alue in either a positive or negative direction.
|0051 ] In the illustrated example, all things being the same, the available process data provides insufficient evidence to determine whether the fault is heat exchanger fouling 146 or hot lluid measurement dri ft 144. I er. ha\ ing a\ ailable an additional calculated \ alue. i.e.. the heat exchanger overall thermal resistance 1 <;UΛ, allows identification of heat exchanger fouling 146.
|0052] Statistical process monitoring can be used to determine a baseline for ov erall thermal resistance indicativ e of heat exchanger fouling using the data available from the plant SPM blocks. Λ monitoring phase mav be used in an SPM or other block to detect the increase, the rate of increase and the value of overall heat exchanger thermal resistance in conjunction with other process data, fhese additional process data may include the cold lluid outlet temperature I (c. out), the hot fluid How Flow (h), the control demand of the hot fluid flow controller CD(Ii). the control demand of the cold fluid flow controller Cl)(e). the differential pressure across the heat exchanger for hot fluid side DP(Ii), the valv e position for hot fluid control v alv e VP(Ii), the valve position for cold fluid control valve VP(c) and the setpoint for the cold fluid flow rate SP(c) as indicated in the Fig. 6 table.
[0053J Additionally diagnostics using statistical process monitoring may be advantagcouslv performed for the heat exchanger 100. In particular, various diagnostic methodologies can be used to determine the health of a heat exchanger. The statistical processing methodologies can be implemented either in field devices, such as in the various Rosemount transmitter devices, or at the host system as software. An advantage of these methods is an ability to use statistical process parameters evaluated by field instruments that provide high quality measurements and fast estimates.
[0054] There are a number of possible platforms to implement these statistical methods and detection. In particular, these conditions may be detected as part of a transmitter advanced diagnostics block disposed within a valve or a transmitter associated with the heat exchanger 100, a temperature sensor/transmitter, a level sensor/transmitter, a pressure sensor/transmitter, etc. In particular, a diagnostic block may be trained to detect or determine a baseline thermal resistance, when the sv stem is healthy, and then may monitor the mean value of the thermal resistance and any other appropriate parameters after establishing the baseline. On the other hand, monitoring and detection could be achieved using an SPM block in a transmitter or other field device with a simple threshold logic. That is. the SPM block could monitor the thermal resistance to determine the mean, the standard deviation, etc. for and compare these statistical measures to a pre-established threshold (which mav be set bv a user or which mav be based on a baseline statistical measure computed from measurements of the appropriate process variables during a training period). Also, if desired, host level software run in a user interface de\ ice or other computing dev ice connected to the field dev ices, such as an adv anced diagnostic block explorer or expert, may be used to set and monitor normal and abnormal v alues and to perform abnormal situation detection based on the concepts described above.
100551 Fig, 7 illustrates a process plant sy stem 200 and an interface dev ice 202 connected between a set of field devices 204 (forming part of a heat exchanger 206) and a process controller sv stem 208 that may implement heat exchanger fouling detection in accordance w ith one or more of the herein described embodiments. Here, the interface device 202 may prov ide data for view ing to a host 210. and may prov ide alerts or alarms to the controller system 208. 1 he controller system 208 may integrate these alerts or alarms with other controller type alerts and alarms for v iewing by . for example, a control operator at an operator workstation 212. Of course, if desired, the host workstation 212 may include any desired view ing application to view the data collected in and prov ided by the interface dev ice 202 in v irtually any desired manner. Likew ise, this data may be made available for v iewing by other users via a web browser 214. Thus, as will be understood, the various applications discussed herein as being associated with the abnormal situation prevention system, the SPM blocks (if used), and other systems may be distributed in different devices. For instance, data (such as SPM data) may be collected in one dev ice, such as a field dev ice 204. and sent to another dev ice, such as in the interface dev ice 202, that implements the heat exchanger fouling detection system. Alerts, alarms, or other indicators may be sent to yet another device, such as the workstation 212. for presentation to a user. Likewise, configuration information may be input via a user interface device, such as a host, a web browser, a PDA. etc. and sent to a different device, such as the interface device 202.
[0056) Some or all of the blocks, such as the SPM or ADB blocks illustrated and described herein may be implemented in whole or in part using software, firmware, or hardware. Similarly, the example methods described herein may be implemented in whole or in part using software, firmware, or hardware. If implemented, at least in part, using a software program, the program may be configured for execution by a processor and may be embodied in software instructions stored on a tangible medium such as CD-ROM, a floppy disk, a hard drive, a digital versatile disk (DVD). or a memory associated with the processor. However, persons of ordinary skill in the art will readily appreciate that the entire program or parts thereof could alternatively be executed by a dev ice other than a processor, and/or embodied in firmware and/or dedicated hardware in a well known manner. |(1057) W Ii ϊ Io lhc inv ention is susceptible to v arious modifications and alternativ e constructions, certain illustrative embodiments thereof ha\e been shown in the drawings and are described in detail herein. It should be understood, however, that there is no intention to limit the disclosure to the specific forms disclosed, but on the contrarv . the intention is to cover all modifications, alternative constructions and equiv alents falling within the spirit and scope of the disclosure as defined bv the appended claims.

Claims

( hums
What is Claimed is:
1 . Λ method (if detecting an abnormal situation associated w ith a heat exchanger. comprising: receix ing measured data pertaining to a process parameter sensed b\ at least one sensor de\ ice associated w ith the heat exchanger; determining one or more statistical measures associated with the process parameter using the measured data: and using the one or more statistical measures associated with the process parameter to detect an abnormal situation within the heat exchanger.
2. The method of claim 1. wherein the abnormal situation comprises heat exchanger fouling.
3. The method of claim 1. wherein the process parameter relates to an overall thermal resistance of the heat exchanger.
4. The method of claim 1. wherein the process parameter relates to at least one of a first fluid inlet temperature, a first fluid outlet temperature, a first fluid flow rate, a second fluid inlet temperature, a second fluid outlet temperature or a second fluid flow rate.
5. The method of claim 1. wherein the process parameter is one of a group of process parameters consisting of: a first fluid inlet temperature, a first fluid outlet temperature, a seconci fluid inlet temperature, a second fluid outlet temperature, a first fluid flow, a second fluid flow, a control demand of a first fluid control valve CD(h). a control demand of a second fluid control valve CD(c), a temperature setpoint of a master cascade control loop SP(t). a setpoint for the first fluid flow rate control SP(h). a differential pressure across the heat exchanger for first fluid side DP(h). a valve position for first fluid control valve VP(h). a \ al\ e position for second fluid control \ alve VP(c) and a setpoint for a second fluid flow rate SP(c).
6. 1 he met hod of claim 1. further including the processing the measured data to produce processed data and wherein determining the one or more statistical measures associated with the process parameter includes determining the one or more statistical measures using the processed data.
7. I he method of claim 1 , wherein determining the one or more statistical measures associated w ith the process parameter includes determining a baseline value of a first statistical measure of the process parameter and determining a further statistical measure of the process parameter from the measured data, and wherein using the one or more statistical measures associated w ith the process parameter to detect an abnormal situation within the heat exchanger includes comparing the baseline value of the first statistical measure of the process parameter to the further statistical measure of the process parameter to determine the existence of an abnormal situation.
8. The method of claim 7. wherein determining the baseline value of the first statistical measure of the process parameter includes determining the baseline value as a statistical measure of a first set of the measured data, and wherein determining a further statistical measure of the process parameter from the measured data includes determining the further statistical measure of the process parameter from a second set of the measured data.
9. The method of claim 7. wherein determining the baseline value of the first statistical measure of the process parameter includes using a predetermined value of the process parameter as the baseline value of the first statistical measure of the process parameter.
10. The method of claim 1. wherein using the one or more statistical measures associated with the process parameter to detect an abnormal situation within the heat exchanger comprises detecting a rate of change of the process parameter.
1 1. The method of claim 1. wherein using the one or more statistical measures associated with the process parameter to detect an abnormal situation within the heat exchanger comprises evaluating the process parameter relative to a setpoint \ alue.
12. Hie method of claim 1 , comprising organizing the measured data in accordance w ith a root cause diagnostic fault table and wherein using the one or more statistical measures associated w ith the process parameter to detect an abnormal situation w ithin the heal exchanger comprises ev aluating a relative dev iation of each of the one or more statistical measures from a learned baseline v alue.
13. The method of claim 1 . wherein receiv ing measured data pertaining to a process parameter and determining one or more statistical measures associated with the process parameter using the measured data comprises prov iding a statistical process monitoring (SPM) block associated w ith a process device, the SPM block being configured to obtain the data and to prov ide the statistical measure.
14. Λ method of detecting an abnormal situation in a heat exchanger, comprising: prov iding a plurality of statistical process monitoring (SPM) blocks associated with the heat exchanger, each SPM block receiving measurements of a process parameter associated with the heat exchanger and determining a statistical measure of the process parameter from the process parameter measurements to prov ide a plurality of statistical measures; providing a baseline value for each of the statistical measures: determining a difference between each statistical measure and its associated baseline value: and detecting the existence of an abnormal situation within the heat exchanger based on the comparison of the statistical measure of the process parameter to the baseline value.
15. The method of claim 14. comprising providing a root cause diagnostic (RCD) table and organizing the statistical measures within the RCD table.
16. The method of claim 14. wherein the abnormal situation comprises heat exchanger fouling.
17. The method of claim 14, wherein the process parameter relates to an overall thermal resistance of the heat exchanger. I X. 1 he method of claim 14, wherein the process parameter relates to at least one of a first fluid inlet temperature, a first fluid outlet temperature, a first fluid flow rate, a second fluid inlet temperature, a second fluid outlet temperature or a second fluid How rate.
1 (), Hie method of claim 14. wherein the process parameter is one of a group of process parameters consisting of: a first fluid inlet temperature, a first fluid outlet temperature, a second fluid inlet temperature, a second fluid outlet temperature, a first fluid flow, a second fluid flow, a control demand of a first fluid control \alve CI)(Ii), a control demand of a second fluid control valve CI)(c), a temperature selpoint of a master cascade control loop SP(t), a setpoint for the first fluid flow rate control SP(Ii), a differential pressure across the heat exchanger for first fluid side I)P(h). a v alve position for first fluid control valve VP(h), a valve position for second fluid control v alve VP(c) and a setpoint for a second fluid flow rate SP(c)
20. The method of claims 14. wherein the baseline value comprises at least one of a learned mean value, a learned standard deviation value, a multiple of a learned mean value. a multiple of a learned standard deviation value, or a linear combination of a learned mean value of a learned standard deviation value.
PCT/US2008/051107 2007-01-31 2008-01-15 Heat exchanger fouling detection WO2008094757A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08727702.6A EP2115608B1 (en) 2007-01-31 2008-01-15 Heat exchanger fouling detection
CN2008800038124A CN101601023B (en) 2007-01-31 2008-01-15 Heat exchanger fouling detection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/669,696 US7827006B2 (en) 2007-01-31 2007-01-31 Heat exchanger fouling detection
US11/669,696 2007-01-31

Publications (1)

Publication Number Publication Date
WO2008094757A1 true WO2008094757A1 (en) 2008-08-07

Family

ID=39668936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/051107 WO2008094757A1 (en) 2007-01-31 2008-01-15 Heat exchanger fouling detection

Country Status (4)

Country Link
US (1) US7827006B2 (en)
EP (1) EP2115608B1 (en)
CN (1) CN101601023B (en)
WO (1) WO2008094757A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8576082B2 (en) 2010-07-15 2013-11-05 Jones Group Forensic Engineers Busway joint parameter detection system
WO2014072085A1 (en) 2012-11-12 2014-05-15 Turkiye Petrol Rafinerileri A.S A method for modeling and monitoring fouling
CN117168864A (en) * 2023-11-02 2023-12-05 天津市热电有限公司 Monitoring management method and system for heat exchange station of heat supply network

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2128551A1 (en) * 2008-05-29 2009-12-02 Siemens Aktiengesellschaft Monitoring of heat exchangers in process control systems
AT507019B1 (en) * 2008-07-04 2011-03-15 Siemens Vai Metals Tech Gmbh METHOD FOR MONITORING AN INDUSTRIAL PLANT
DE102010026678B4 (en) * 2010-07-09 2016-05-19 Siemens Aktiengesellschaft Monitoring and diagnostic system for a fluid power machine system as well as fluid power axis system
CN102095447B (en) * 2010-11-29 2013-03-13 北京丰凯换热器有限责任公司 Multi-medium combined heat exchanger test bed
US9689790B2 (en) 2012-07-05 2017-06-27 Honeywell International Inc. Environmental control systems and techniques for monitoring heat exchanger fouling
JP6097517B2 (en) * 2012-10-16 2017-03-15 三菱航空機株式会社 Condition diagnosis method and condition diagnosis apparatus
US10667438B2 (en) * 2012-12-27 2020-05-26 Intel Corporation Maintenance prediction of electronic devices using periodic thermal evaluation
US10502677B2 (en) * 2013-10-14 2019-12-10 Exxonmobil Research And Engineering Company Detection of corrosion rates in processing pipes and vessels
CN104215657A (en) * 2014-08-15 2014-12-17 湖州科诺水处理化工原料有限公司 Circulating water fouling resistance online monitoring system
US20180231968A1 (en) * 2014-10-03 2018-08-16 Mitsubishi Hitachi Power Systems, Ltd. Management target operation support device, management target operation support method, and program therefor
US10288548B2 (en) 2015-04-17 2019-05-14 Hamilton Sundstrand Corporation Wavelet-based analysis for fouling diagnosis of an aircraft heat exchanger
US10895523B2 (en) 2015-04-30 2021-01-19 The University Of Connecticut Method of optimal sensor selection and fusion for heat exchanger fouling diagnosis in aerospace systems
US10495547B2 (en) * 2015-06-08 2019-12-03 Hamilton Sundstrand Corporation Plate-fin heat exchanger fouling identification
JP6523815B2 (en) * 2015-06-22 2019-06-05 株式会社日立製作所 Plant diagnostic device and plant diagnostic method
EP3165867A1 (en) * 2015-11-06 2017-05-10 Honeywell spol s.r.o. Inferential sensor for internal heat exchanger parameters
US11062062B2 (en) 2015-11-19 2021-07-13 Carrier Corporation Diagnostics system for a chiller and method of evaluating performance of a chiller
CN105652770A (en) * 2016-02-29 2016-06-08 重庆重锅能源科技有限公司 remote monitoring intelligent boiler system
US10481018B2 (en) 2016-04-19 2019-11-19 General Electric Company Evaluating performance of a fluid transport system using limited sensor data
US10534359B2 (en) 2017-01-10 2020-01-14 Honeywell International Inc. Aircraft management systems and methods for ECS predictive maintenance
US10242508B2 (en) 2017-01-10 2019-03-26 Honeywell International Inc. Aircraft maintenance systems and methods for ECS fouling predictions
DE102017108496B4 (en) * 2017-04-21 2023-06-29 Windmöller & Hölscher Kg Method and devices as well as system for winding and unwinding a coil
WO2019001683A1 (en) * 2017-06-26 2019-01-03 Siemens Aktiengesellschaft Method and device for monitoring a heat exchanger
DE102017116834A1 (en) * 2017-07-25 2019-01-31 Samson Ag Method for diagnosing a heat exchanger
US11891309B2 (en) * 2017-09-19 2024-02-06 Ecolab Usa Inc. Cooling water monitoring and control system
BR112020005049B1 (en) * 2017-11-10 2023-05-16 Ecolab Usa Inc METHOD
CA3003072C (en) * 2018-04-30 2021-02-09 Suncor Energy Inc. Systems and methods for predicting tube fouling in a fired apparatus, and for utilizing tube fouling predictions
CN110995459B (en) * 2019-10-12 2021-12-14 平安科技(深圳)有限公司 Abnormal object identification method, device, medium and electronic equipment
US11045742B2 (en) * 2019-11-22 2021-06-29 Jaxon Technologies, LLC Temperature controlled purification module and method
DE102020001459A1 (en) 2020-03-06 2021-09-09 Truma Gerätetechnik GmbH & Co. KG Maintenance system for a temperature control device
EP3993345A1 (en) * 2020-10-28 2022-05-04 Furuno Hellas S.A. Apparatus and method for remote monitoring
CN114529106B (en) * 2022-04-21 2022-07-15 深圳市佳运通电子有限公司 Scale prediction algorithm for oil field heating furnace coil pipe
CN116893074B (en) * 2023-08-30 2023-11-24 福建福清核电有限公司 Method and device for evaluating heat exchanger operation parameters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050133211A1 (en) * 2003-12-19 2005-06-23 Osborn Mark D. Heat exchanger performance monitoring and analysis method and system
US20050267710A1 (en) * 2004-05-28 2005-12-01 Fisher-Rosemount Systems, Inc. System and method for detecting an abnormal situation associated with a heater
US20060020423A1 (en) * 2004-06-12 2006-01-26 Fisher-Rosemount Systems, Inc. System and method for detecting an abnormal situation associated with a process gain of a control loop

Family Cites Families (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4607325A (en) 1981-10-21 1986-08-19 Honeywell Inc. Discontinuous optimization procedure modelling the run-idle status of plural process components
US4527271A (en) 1982-08-17 1985-07-02 The Foxboro Company Process control system with improved fault isolation
US4734873A (en) 1984-02-02 1988-03-29 Honeywell Inc. Method of digital process variable transmitter calibration and a process variable transmitter system utilizing the same
US4763243A (en) 1984-06-21 1988-08-09 Honeywell Bull Inc. Resilient bus system
US4657179A (en) 1984-12-26 1987-04-14 Honeywell Inc. Distributed environmental/load control system
US4763274A (en) * 1986-06-24 1988-08-09 Westinghouse Electric Corp. Machine implemented analysis eddy current data
US4908746A (en) 1986-10-15 1990-03-13 United States Data Corporation Industrial control system
US5043863A (en) 1987-03-30 1991-08-27 The Foxboro Company Multivariable adaptive feedforward controller
US5541833A (en) 1987-03-30 1996-07-30 The Foxboro Company Multivariable feedforward adaptive controller
US4885694A (en) 1987-04-29 1989-12-05 Honeywell Inc. Automated building control design system
US4965742A (en) 1987-09-30 1990-10-23 E. I. Du Pont De Nemours And Company Process control system with on-line reconfigurable modules
US4910691A (en) 1987-09-30 1990-03-20 E.I. Du Pont De Nemours & Co. Process control system with multiple module sequence options
US5006992A (en) 1987-09-30 1991-04-09 Du Pont De Nemours And Company Process control system with reconfigurable expert rules and control modules
US4907167A (en) 1987-09-30 1990-03-06 E. I. Du Pont De Nemours And Company Process control system with action logging
US5193143A (en) 1988-01-12 1993-03-09 Honeywell Inc. Problem state monitoring
US5488697A (en) 1988-01-12 1996-01-30 Honeywell Inc. Problem state monitoring system
US4853175A (en) 1988-03-10 1989-08-01 The Babcock & Wilcox Company Power plant interactive display
US5050095A (en) 1988-05-31 1991-09-17 Honeywell Inc. Neural network auto-associative memory with two rules for varying the weights
US4944035A (en) 1988-06-24 1990-07-24 Honeywell Inc. Measurement of thermal conductivity and specific heat
US4956793A (en) 1988-06-24 1990-09-11 Honeywell Inc. Method and apparatus for measuring the density of fluids
US5373452A (en) 1988-09-02 1994-12-13 Honeywell Inc. Intangible sensor and method for making same
US5008810A (en) 1988-09-29 1991-04-16 Process Modeling Investment Corp. System for displaying different subsets of screen views, entering different amount of information, and determining correctness of input dependent upon current user input
US5140530A (en) 1989-03-28 1992-08-18 Honeywell Inc. Genetic algorithm synthesis of neural networks
US5070458A (en) 1989-03-31 1991-12-03 Honeywell Inc. Method of analyzing and predicting both airplane and engine performance characteristics
US5015934A (en) 1989-09-25 1991-05-14 Honeywell Inc. Apparatus and method for minimizing limit cycle using complementary filtering techniques
US5187674A (en) 1989-12-28 1993-02-16 Honeywell Inc. Versatile, overpressure proof, absolute pressure sensor
US5442544A (en) 1990-01-26 1995-08-15 Honeywell Inc. Single input single output rate optimal controller
US5134574A (en) 1990-02-27 1992-07-28 The Foxboro Company Performance control apparatus and method in a processing plant
US5018215A (en) 1990-03-23 1991-05-21 Honeywell Inc. Knowledge and model based adaptive signal processor
DE69122313T2 (en) 1990-06-21 1997-03-20 Honeywell Inc Adaptive control based on a variable horizon with means for minimizing operating costs
US5121467A (en) 1990-08-03 1992-06-09 E.I. Du Pont De Nemours & Co., Inc. Neural network/expert system process control system and method
US5212765A (en) 1990-08-03 1993-05-18 E. I. Du Pont De Nemours & Co., Inc. On-line training neural network system for process control
US5142612A (en) 1990-08-03 1992-08-25 E. I. Du Pont De Nemours & Co. (Inc.) Computer neural network supervisory process control system and method
US5197114A (en) 1990-08-03 1993-03-23 E. I. Du Pont De Nemours & Co., Inc. Computer neural network regulatory process control system and method
US5282261A (en) 1990-08-03 1994-01-25 E. I. Du Pont De Nemours And Co., Inc. Neural network process measurement and control
US5224203A (en) 1990-08-03 1993-06-29 E. I. Du Pont De Nemours & Co., Inc. On-line process control neural network using data pointers
US5167009A (en) 1990-08-03 1992-11-24 E. I. Du Pont De Nemours & Co. (Inc.) On-line process control neural network using data pointers
ES2112853T3 (en) 1990-10-10 1998-04-16 Honeywell Inc IDENTIFICATION OF PROCESS SYSTEMS.
EP0496570B1 (en) 1991-01-22 1998-06-03 Honeywell Inc. Two-level system identifier apparatus with optimization
US5291190A (en) 1991-03-28 1994-03-01 Combustion Engineering, Inc. Operator interface for plant component control system
US5161013A (en) 1991-04-08 1992-11-03 Honeywell Inc. Data projection system with compensation for nonplanar screen
US5189232A (en) 1991-06-27 1993-02-23 University Of Utah Method of making jet fuel compositions via a dehydrocondensation reaction process
US5333298A (en) 1991-08-08 1994-07-26 Honeywell Inc. System for making data available to an outside software package by utilizing a data file which contains source and destination information
EP0612405B1 (en) 1991-10-23 2001-08-01 Honeywell Inc. Apparatus for combustionless measuring fuel gas quality
US5396415A (en) 1992-01-31 1995-03-07 Honeywell Inc. Neruo-pid controller
US5398303A (en) 1992-02-28 1995-03-14 Yamatake-Honeywell Co., Ltd. Fuzzy data processing method and data smoothing filter
US5353207A (en) 1992-06-10 1994-10-04 Pavilion Technologies, Inc. Residual activation neural network
US5369599A (en) 1992-08-04 1994-11-29 Honeywell Inc. Signal metric estimator
US5692158A (en) 1992-08-28 1997-11-25 Abb Power T&D Company Inc. Methods for generating models of non-linear systems and components and for evaluating parameters in relation to such non-linear models
US5384698A (en) 1992-08-31 1995-01-24 Honeywell Inc. Structured multiple-input multiple-output rate-optimal controller
JP2794142B2 (en) 1992-09-14 1998-09-03 株式会社山武 Information processing device
US5477444A (en) 1992-09-14 1995-12-19 Bhat; Naveen V. Control system using an adaptive neural network for target and path optimization for a multivariable, nonlinear process
US5729661A (en) 1992-11-24 1998-03-17 Pavilion Technologies, Inc. Method and apparatus for preprocessing input data to a neural network
ATE240557T1 (en) 1992-11-24 2003-05-15 Pavilion Tech Inc OPERATING A NEURONAL NETWORK WITH MISSING AND/OR INCOMPLETE DATA
JP2952124B2 (en) 1992-11-25 1999-09-20 富士写真フイルム株式会社 Photo processing machine failure diagnosis system
US5311562A (en) 1992-12-01 1994-05-10 Westinghouse Electric Corp. Plant maintenance with predictive diagnostics
DE69321735T2 (en) 1992-12-14 1999-06-10 Chappell, David A., Westchester, Ohio A FLEXIBLE METHOD FOR MAKING A RECIPE IN A PROCESS CONTROL SYSTEM
US5486996A (en) 1993-01-22 1996-01-23 Honeywell Inc. Parameterized neurocontrollers
US5351184A (en) 1993-01-26 1994-09-27 Honeywell Inc. Method of multivariable predictive control utilizing range control
US5648919A (en) 1993-02-15 1997-07-15 Babcock-Hitachi Kabushiki Kaisha Maintenance systems for degradation of plant component parts
CA2157198A1 (en) 1993-03-02 1994-09-15 James David Keeler Method and apparatus for analyzing a neural network within desired operating parameter constraints
US5390326A (en) 1993-04-30 1995-02-14 The Foxboro Company Local area network with fault detection and recovery
FR2705155A1 (en) 1993-05-12 1994-11-18 Philips Laboratoire Electroniq Apparatus and method for generating an approximation function
JP3147586B2 (en) 1993-05-21 2001-03-19 株式会社日立製作所 Plant monitoring and diagnosis method
US5909541A (en) 1993-07-14 1999-06-01 Honeywell Inc. Error detection and correction for data stored across multiple byte-wide memory devices
ZA947893B (en) 1993-09-05 1995-05-24 George Hans Lowe An indicating system
US5552984A (en) 1993-09-16 1996-09-03 Trw Inc. Diagnostic system for complex systems using virtual components
US5486920A (en) 1993-10-01 1996-01-23 Honeywell, Inc. Laser gyro dither strippr gain correction method and apparatus
US5408406A (en) 1993-10-07 1995-04-18 Honeywell Inc. Neural net based disturbance predictor for model predictive control
US5596704A (en) 1993-11-11 1997-01-21 Bechtel Group, Inc. Process flow diagram generator
JP2929259B2 (en) 1993-12-27 1999-08-03 株式会社山武 controller
US5666297A (en) 1994-05-13 1997-09-09 Aspen Technology, Inc. Plant simulation and optimization software apparatus and method using dual execution models
US5817958A (en) 1994-05-20 1998-10-06 Hitachi, Ltd. Plant monitoring and diagnosing method and system, as well as plant equipped with the system
US5461570A (en) 1994-06-10 1995-10-24 Johnson & Johnson Vision Products, Inc. Computer system for quality control correlations
US5533413A (en) 1994-06-30 1996-07-09 Yokogawa Electric Corporation Equipment diagnosis system
US5546301A (en) 1994-07-19 1996-08-13 Honeywell Inc. Advanced equipment control system
KR100220054B1 (en) 1994-07-29 1999-09-01 정몽규 Error detective device and its method
US5687090A (en) 1994-09-01 1997-11-11 Aspen Technology, Inc. Polymer component characterization method and process simulation apparatus
JPH08129415A (en) 1994-10-31 1996-05-21 Hitachi Ltd Support system for analysis of plant failure
US5566065A (en) 1994-11-01 1996-10-15 The Foxboro Company Method and apparatus for controlling multivariable nonlinear processes
US5704011A (en) 1994-11-01 1997-12-30 The Foxboro Company Method and apparatus for providing multivariable nonlinear control
US5570282A (en) 1994-11-01 1996-10-29 The Foxboro Company Multivariable nonlinear process controller
CA2216862A1 (en) 1995-03-31 1996-10-03 Abb Power T & D Company Inc. System for optimizing power network design reliability
US5574638A (en) 1995-04-03 1996-11-12 Lu; Zhuxin J. Method of optimal scaling of variables in a multivariable predictive controller utilizing range control
US5572420A (en) 1995-04-03 1996-11-05 Honeywell Inc. Method of optimal controller design for multivariable predictive control utilizing range control
US5561599A (en) 1995-06-14 1996-10-01 Honeywell Inc. Method of incorporating independent feedforward control in a multivariable predictive controller
US5680409A (en) 1995-08-11 1997-10-21 Fisher-Rosemount Systems, Inc. Method and apparatus for detecting and identifying faulty sensors in a process
US6144952A (en) 1995-09-20 2000-11-07 Keeler; James D. Predictive network with learned preprocessing parameters
US6033257A (en) 1995-11-20 2000-03-07 The Foxboro Company I/O connector module for a field controller in a distributed control system
US6076124A (en) 1995-10-10 2000-06-13 The Foxboro Company Distributed control system including a compact easily-extensible and serviceable field controller
US6008985A (en) 1995-11-20 1999-12-28 The Foxboro Company Industrial field controlling device with controller and expansion modules
US5940290A (en) 1995-12-06 1999-08-17 Honeywell Inc. Method of predictive maintenance of a process control system having fluid movement
US6094600A (en) 1996-02-06 2000-07-25 Fisher-Rosemount Systems, Inc. System and method for managing a transaction database of records of changes to field device configurations
US5764891A (en) 1996-02-15 1998-06-09 Rosemount Inc. Process I/O to fieldbus interface circuit
US5761518A (en) 1996-02-29 1998-06-02 The Foxboro Company System for replacing control processor by operating processor in partially disabled mode for tracking control outputs and in write enabled mode for transferring control loops
US5819050A (en) 1996-02-29 1998-10-06 The Foxboro Company Automatically configurable multi-purpose distributed control processor card for an industrial control system
US5819232A (en) 1996-03-22 1998-10-06 E. I. Du Pont De Nemours And Company Method and apparatus for inventory control of a manufacturing or distribution process
US7085610B2 (en) 1996-03-28 2006-08-01 Fisher-Rosemount Systems, Inc. Root cause diagnostics
US6539267B1 (en) 1996-03-28 2003-03-25 Rosemount Inc. Device in a process system for determining statistical parameter
US6017143A (en) 1996-03-28 2000-01-25 Rosemount Inc. Device in a process system for detecting events
US5768119A (en) 1996-04-12 1998-06-16 Fisher-Rosemount Systems, Inc. Process control system including alarm priority adjustment
US5828851A (en) 1996-04-12 1998-10-27 Fisher-Rosemount Systems, Inc. Process control system using standard protocol control of standard devices and nonstandard devices
US5809490A (en) 1996-05-03 1998-09-15 Aspen Technology Inc. Apparatus and method for selecting a working data set for model development
US5877954A (en) 1996-05-03 1999-03-02 Aspen Technology, Inc. Hybrid linear-neural network process control
US6110214A (en) 1996-05-03 2000-08-29 Aspen Technology, Inc. Analyzer for modeling and optimizing maintenance operations
US6047221A (en) 1997-10-03 2000-04-04 Pavilion Technologies, Inc. Method for steady-state identification based upon identified dynamics
US5742513A (en) 1996-05-15 1998-04-21 Abb Power T&D Company Inc. Methods and systems for automatic testing of a relay
US5805442A (en) 1996-05-30 1998-09-08 Control Technology Corporation Distributed interface architecture for programmable industrial control systems
US5918233A (en) 1996-05-30 1999-06-29 The Foxboro Company Methods and systems for providing electronic documentation to users of industrial process control systems
US5715158A (en) 1996-05-31 1998-02-03 Abb Industrial Systems, Inc. Method and apparatus for controlling an extended process
US5984502A (en) 1996-06-14 1999-11-16 The Foxboro Company Keypad annunciator graphical user interface
US5907701A (en) 1996-06-14 1999-05-25 The Foxboro Company Management of computer processes having differing operational parameters through an ordered multi-phased startup of the computer processes
US5949417A (en) 1997-01-31 1999-09-07 The Foxboro Company Dynamic property sheet system
US6014598A (en) 1996-06-28 2000-01-11 Arcelik A.S. Model-based fault detection system for electric motors
US5847952A (en) 1996-06-28 1998-12-08 Honeywell Inc. Nonlinear-approximator-based automatic tuner
US5892679A (en) 1996-09-13 1999-04-06 Honeywell-Measurex Corporation Method and system for controlling a multiple input/output process with minimum latency using a pseudo inverse constant
US5796609A (en) 1996-09-13 1998-08-18 Honeywell-Measurex Corporation Method and apparatus for internal model control using a state variable feedback signal
US5777872A (en) 1996-09-13 1998-07-07 Honeywell-Measurex Corporation Method and system for controlling a multiple input/output process with minimum latency
US5898869A (en) 1996-09-20 1999-04-27 The Foxboro Company Method and system for PCMCIA card boot from dual-ported memory
US5960441A (en) 1996-09-24 1999-09-28 Honeywell Inc. Systems and methods for providing dynamic data referencing in a generic data exchange environment
US6041263A (en) 1996-10-01 2000-03-21 Aspen Technology, Inc. Method and apparatus for simulating and optimizing a plant model
US5970430A (en) 1996-10-04 1999-10-19 Fisher Controls International, Inc. Local device and process diagnostics in a process control network having distributed control functions
US5892939A (en) 1996-10-07 1999-04-06 Honeywell Inc. Emulator for visual display object files and method of operation thereof
US5859964A (en) 1996-10-25 1999-01-12 Advanced Micro Devices, Inc. System and method for performing real time data acquisition, process modeling and fault detection of wafer fabrication processes
US5909586A (en) 1996-11-06 1999-06-01 The Foxboro Company Methods and systems for interfacing with an interface powered I/O device
US5905989A (en) 1996-11-27 1999-05-18 Bently Nevada Corporation Knowledge manager relying on a hierarchical default expert system: apparatus and method
US5948101A (en) 1996-12-02 1999-09-07 The Foxboro Company Methods and systems for booting a computer in a distributed computing system
WO1998029785A1 (en) 1996-12-31 1998-07-09 Rosemount Inc. Device in a process system for validating a control signal from a field device
US6078843A (en) 1997-01-24 2000-06-20 Honeywell Inc. Neural network including input normalization for use in a closed loop control system
US6067505A (en) 1997-04-10 2000-05-23 The Foxboro Company Method and apparatus for self-calibration of a coordinated control system for an electric power generating station
US6055483A (en) 1997-05-05 2000-04-25 Honeywell, Inc. Systems and methods using bridge models to globally optimize a process facility
US6122555A (en) 1997-05-05 2000-09-19 Honeywell International Inc. System and methods for globally optimizing a process facility
US6106785A (en) 1997-06-30 2000-08-22 Honeywell Inc. Polymerization process controller
DE19732046A1 (en) 1997-07-25 1999-01-28 Abb Patent Gmbh Process diagnostic system and method for diagnosing processes and states of a technical process
US5988847A (en) 1997-08-22 1999-11-23 Honeywell Inc. Systems and methods for implementing a dynamic cache in a supervisory control system
US5901058A (en) 1997-08-22 1999-05-04 Honeywell Inc. System and methods for achieving heterogeneous data flow between algorithm blocks in a distributed control system
US6282454B1 (en) 1997-09-10 2001-08-28 Schneider Automation Inc. Web interface to a programmable controller
US6128279A (en) 1997-10-06 2000-10-03 Web Balance, Inc. System for balancing loads among network servers
US5909370A (en) 1997-12-22 1999-06-01 Honeywell Inc. Method of predicting overshoot in a control system response
US6093211A (en) 1998-04-09 2000-07-25 Aspen Technology, Inc. Polymer property distribution functions methodology and simulators
FI114745B (en) 1998-06-01 2004-12-15 Metso Automation Oy Control systems for field devices
FI108678B (en) 1998-06-17 2002-02-28 Neles Controls Oy Control systems for field devices
US6246950B1 (en) 1998-09-01 2001-06-12 General Electric Company Model based assessment of locomotive engines
US6332110B1 (en) 1998-12-17 2001-12-18 Perlorica, Inc. Method for monitoring advanced separation and/or ion exchange processes
US6975219B2 (en) 2001-03-01 2005-12-13 Fisher-Rosemount Systems, Inc. Enhanced hart device alerts in a process control system
US8044793B2 (en) 2001-03-01 2011-10-25 Fisher-Rosemount Systems, Inc. Integrated device alerts in a process control system
US6298454B1 (en) 1999-02-22 2001-10-02 Fisher-Rosemount Systems, Inc. Diagnostics in a process control system
US6633782B1 (en) 1999-02-22 2003-10-14 Fisher-Rosemount Systems, Inc. Diagnostic expert in a process control system
US7206646B2 (en) 1999-02-22 2007-04-17 Fisher-Rosemount Systems, Inc. Method and apparatus for performing a function in a plant using process performance monitoring with process equipment monitoring and control
US7562135B2 (en) 2000-05-23 2009-07-14 Fisher-Rosemount Systems, Inc. Enhanced fieldbus device alerts in a process control system
US6445963B1 (en) 1999-10-04 2002-09-03 Fisher Rosemount Systems, Inc. Integrated advanced control blocks in process control systems
US6421571B1 (en) 2000-02-29 2002-07-16 Bently Nevada Corporation Industrial plant asset management system: apparatus and method
GB2360357A (en) 2000-03-17 2001-09-19 Alex Davidkhanian Slag detector for molten steel transfer operations
DE10018859A1 (en) 2000-04-14 2001-10-18 Bosch Gmbh Robert System for monitoring a measurement, control and regulating (MCR) device e.g. for combustion engine, includes counter which increases it count-state with the occurrence of a fault function to enable the operating state of the MCR device
US6609036B1 (en) 2000-06-09 2003-08-19 Randall L. Bickford Surveillance system and method having parameter estimation and operating mode partitioning
US6636862B2 (en) 2000-07-05 2003-10-21 Camo, Inc. Method and system for the dynamic analysis of data
US7233886B2 (en) 2001-01-19 2007-06-19 Smartsignal Corporation Adaptive modeling of changed states in predictive condition monitoring
US6795798B2 (en) 2001-03-01 2004-09-21 Fisher-Rosemount Systems, Inc. Remote analysis of process control plant data
EP1366398A2 (en) 2001-03-01 2003-12-03 Fisher-Rosemount Systems, Inc. Automatic work order/parts order generation and tracking
US7539597B2 (en) 2001-04-10 2009-05-26 Smartsignal Corporation Diagnostic systems and methods for predictive condition monitoring
US6594589B1 (en) 2001-05-23 2003-07-15 Advanced Micro Devices, Inc. Method and apparatus for monitoring tool health
US6711523B2 (en) 2001-05-24 2004-03-23 Simmonds Precision Products, Inc. Method and apparatus for determining a condition indicator for use in evaluating the health of a component
US7162534B2 (en) 2001-07-10 2007-01-09 Fisher-Rosemount Systems, Inc. Transactional data communications for process control systems
US6901300B2 (en) 2002-02-07 2005-05-31 Fisher-Rosemount Systems, Inc.. Adaptation of advanced process control blocks in response to variable process delay
US7295954B2 (en) 2002-09-26 2007-11-13 Lam Research Corporation Expert knowledge methods and systems for data analysis
US7451021B2 (en) 2003-05-06 2008-11-11 Edward Wilson Model-based fault detection and isolation for intermittently active faults with application to motion-based thruster fault detection and isolation for spacecraft
US7233834B2 (en) 2003-08-13 2007-06-19 Cargill, Inc. Computer-aided modeling and manufacture of products
US7328126B2 (en) 2003-09-12 2008-02-05 Tokyo Electron Limited Method and system of diagnosing a processing system using adaptive multivariate analysis
US7257515B2 (en) 2004-03-03 2007-08-14 Hewlett-Packard Development Company, L.P. Sliding window for alert generation
US7451003B2 (en) 2004-03-04 2008-11-11 Falconeer Technologies Llc Method and system of monitoring, sensor validation and predictive fault analysis
KR100839071B1 (en) 2004-05-13 2008-06-19 삼성전자주식회사 A system and method for monitoring conditions of a processing tool
AT7710U3 (en) 2004-06-30 2006-07-15 Avl List Gmbh METHOD FOR CREATING A MODEL OF A CONTROL SIZE FOR NONLINEAR, STATIONARY REAL SYSTEMS, FOR EXAMPLE, COMBUSTION ENGINES OR SUBSYSTEMS THEREOF
US7110906B2 (en) 2004-07-22 2006-09-19 Abb Inc. System and method for monitoring the performance of a heat exchanger
US20060074598A1 (en) 2004-09-10 2006-04-06 Emigholz Kenneth F Application of abnormal event detection technology to hydrocracking units
US20060067388A1 (en) 2004-09-30 2006-03-30 Hossein Sedarat Methods and apparatuses for detecting impulse noise in a multi-carrier communication system
US7373552B2 (en) 2004-09-30 2008-05-13 Siemens Aktiengesellschaft Model based diagnosis and repair for event logs
JP4376799B2 (en) 2005-01-19 2009-12-02 株式会社日立製作所 Ignition timing control device for internal combustion engine
CA2603916A1 (en) 2005-04-04 2006-10-12 Fisher-Rosemount Systems, Inc. Statistical processing methods used in abnormal situation detection
US7401263B2 (en) 2005-05-19 2008-07-15 International Business Machines Corporation System and method for early detection of system component failure
US7383790B2 (en) 2005-06-06 2008-06-10 Emerson Process Management Power & Water Solutions, Inc. Method and apparatus for controlling soot blowing using statistical process control
US7702780B2 (en) 2005-06-22 2010-04-20 International Business Machines Corporation Monitoring method, system, and computer program based on severity and persistence of problems
US20070097873A1 (en) 2005-10-31 2007-05-03 Honeywell International Inc. Multiple model estimation in mobile ad-hoc networks
US7966150B2 (en) 2005-11-17 2011-06-21 Florida Power & Light Company Data analysis applications
US7761172B2 (en) 2006-03-21 2010-07-20 Exxonmobil Research And Engineering Company Application of abnormal event detection (AED) technology to polymers
US7912676B2 (en) 2006-07-25 2011-03-22 Fisher-Rosemount Systems, Inc. Method and system for detecting abnormal operation in a process plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050133211A1 (en) * 2003-12-19 2005-06-23 Osborn Mark D. Heat exchanger performance monitoring and analysis method and system
US20050267710A1 (en) * 2004-05-28 2005-12-01 Fisher-Rosemount Systems, Inc. System and method for detecting an abnormal situation associated with a heater
US20060020423A1 (en) * 2004-06-12 2006-01-26 Fisher-Rosemount Systems, Inc. System and method for detecting an abnormal situation associated with a process gain of a control loop

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2115608A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8576082B2 (en) 2010-07-15 2013-11-05 Jones Group Forensic Engineers Busway joint parameter detection system
WO2014072085A1 (en) 2012-11-12 2014-05-15 Turkiye Petrol Rafinerileri A.S A method for modeling and monitoring fouling
CN117168864A (en) * 2023-11-02 2023-12-05 天津市热电有限公司 Monitoring management method and system for heat exchange station of heat supply network
CN117168864B (en) * 2023-11-02 2023-12-26 天津市热电有限公司 Monitoring management method and system for heat exchange station of heat supply network

Also Published As

Publication number Publication date
EP2115608A4 (en) 2010-02-03
US7827006B2 (en) 2010-11-02
EP2115608B1 (en) 2014-12-24
US20080183427A1 (en) 2008-07-31
EP2115608A1 (en) 2009-11-11
CN101601023A (en) 2009-12-09
CN101601023B (en) 2012-07-25

Similar Documents

Publication Publication Date Title
EP2115608B1 (en) Heat exchanger fouling detection
US7966149B2 (en) Multivariate detection of transient regions in a process control system
US7660701B2 (en) System and method for detecting an abnormal situation associated with a process gain of a control loop
US20080188972A1 (en) Method and System for Detecting Faults in a Process Plant
US20080082304A1 (en) Abnormal situation prevention in a heat exchanger
US20090093892A1 (en) Automatic determination of the order of a polynomial regression model applied to abnormal situation prevention in a process plant
WO2008042739A2 (en) On-line monitoring and diagnostics of a process using multivariate statistical analysis
US20090093893A1 (en) System and method for recognizing and compensating for invalid regression model applied to abnormal situation prevention
WO2008042758A2 (en) Multivariate monitoring and diagnostics of process variable data
WO2008042759A2 (en) On-line multivariate analysis in a distributed process control system
WO2008042757A2 (en) Univariate method for monitoring and analysis of multivariate data

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880003812.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08727702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008727702

Country of ref document: EP