WO2008092970A1 - Cuaderna de carga de aeronave en material compuesto - Google Patents

Cuaderna de carga de aeronave en material compuesto Download PDF

Info

Publication number
WO2008092970A1
WO2008092970A1 PCT/ES2007/070020 ES2007070020W WO2008092970A1 WO 2008092970 A1 WO2008092970 A1 WO 2008092970A1 ES 2007070020 W ES2007070020 W ES 2007070020W WO 2008092970 A1 WO2008092970 A1 WO 2008092970A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
composite material
aircraft
material according
base element
Prior art date
Application number
PCT/ES2007/070020
Other languages
English (en)
French (fr)
Inventor
Elena ARÉVALO RODRÍGUEZ
Cesar Bautista De La Llave
Cristina Ortega Juaristi
Original Assignee
Airbus España, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus España, S.L. filed Critical Airbus España, S.L.
Priority to CN200780052327A priority Critical patent/CN101715411A/zh
Priority to PCT/ES2007/070020 priority patent/WO2008092970A1/es
Priority to EP07704780.1A priority patent/EP2128018A4/en
Priority to US11/729,990 priority patent/US8418963B2/en
Publication of WO2008092970A1 publication Critical patent/WO2008092970A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/10Bulkheads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Definitions

  • the present invention relates to an aircraft cargo frame made of composite material.
  • the cargo frames in addition to shaping and stiffening the fuselage of an aircraft, are the structural elements responsible for supporting and transferring loads from other structural elements of the aircraft, such as wings or stabilizers.
  • These loading frames are generally metallic and have different sections, the most common being the sections in C, in I and in J, which through machining processes achieve a network of nerves that stabilize the soul of the frame.
  • the resistance-to-weight ratio is an aspect of utmost importance, which is why we are moving from using metal frames to frames manufactured or optimized with composite materials, mainly carbon fiber.
  • shape but not load frames are known in carbon fiber, since it is very difficult to compete with a mechanized metal frame, because, due to the high demands that the aforementioned frames have to support, they need to have a stiffener framework to nerve mode to stabilize the frame, which greatly complicates the carbon fiber manufacturing process.
  • the subject of the present invention is an aircraft cargo frame made of composite material.
  • the present invention proposes an aircraft cargo frame made of composite material with a tai geometry that provides a load distribution that optimizes by weight the current designs of metal cargo frames.
  • the invention describes an aircraft frame that comprises three elements: two iateral elements that make up the feet, the souls and the internal skirts of the frame, and a base element that joins the two previous lateral elements.
  • Figure 1 shows the cross section! in C with stiffener in L of a metal frame known in the art.
  • Figure 2 shows the cross section in I of a metal frame known in the art.
  • Figure 3 shows the cross section in J of a metal frame known in the art.
  • Figures 4a, 4b, 4c and 4d show in schematic the stages of the manufacturing process of a stiffener frame made of composite material according to the process known in the art.
  • Figures 5a, 5b, 5c and 5d show a composite loading frame and the scheme of the stages of its manufacturing process, according to a first embodiment of the invention.
  • Figures 6a, 6b, 6c and 6d show a composite loading frame and the scheme of the stages of its manufacturing process, according to a second embodiment of the invention.
  • Figure 7 shows a view generated! of a load frame according to the invention.
  • a frame 1 is proposed for an aircraft with a section in ⁇ comprising three elements: two lateral elements 2 and 3, and a base element 7 that joins the inner skirts of the two lateral elements 2, 3 front of the frame 1.
  • each of the lateral elements 2, 3 comprises the following parts: a foot 4 that serves as a connection between the frame 1 and the lining of the fuselage of the aircraft; a soul 5 that is the slender part and that in some cases, depending on the function that the frame is going to fulfill, forms an angle of 90 ° with the foot 4, being able to form any other angle, and an inner fa ⁇ dilla 6 that serves as union between the soul 5 and the base element 7.
  • Both the foot 4, as the inner fa ⁇ düla 6, as the aima 5 of the frame 1 are constituted by layers of composite material arranged at 0 , +/- 45 ° and 90 °.
  • the composite material can be both carbon fiber and glass fiber with thermosetting or thermoplastic resin.
  • Both reinforcements 20, 21 of unidirectional fibers at 0 or , of the same material predominate in both the foot 4 and the inner fa ⁇ dilla. or of a compatible material, extending longitudinally along the entire frame 1 without discontinuity.
  • the material of the reinforcements 20, 21 has a high elastic modulus such that it gives the foot 4 and the inner skirt 6 a high strength and a high stiffening capacity.
  • the soul 5 of the frame 1 can also carry reinforcements 22 of the same material or of a compatible material, in any direction.
  • the reinforcements 22 of the soul 5 of the frame 1 can be continuous throughout the entire frame - A - or Socales, depending on the requests to which it is subjected! To frame 1. This means that the soul 5 is capable of supporting loads much greater than if it were composed exclusively of tissue at +/- 45 °.
  • the base element 7 of the frame 1 is formed by layers of unidirectional tape, stacked with different orientations, with a high percentage of them in the longitudinal direction (0 o ). In this way, the base element 7 has a high modulus of elasticity in the longitudinal direction thanks to the high percentage of fibers in said direction, which extend without discontinuity along the entire frame 1.
  • One of the possible procedures for the Manufacturing of the base element 7 is the automatic taping ATL ⁇ Automatic Tape Layer).
  • This base element 7 can be riveted, glued or sewn to the inner skirts 6 of the frame 1, thus closing the section of said frame 1. Both the thicknesses and the sections of the side elements 2, 3 and the base element 7 are variables
  • the section in r ⁇ of the frame 1 proposed by the invention in addition to providing the advantages of a closed section, thanks to the fact of having the inner skirts out, facilitates the subsequent installation of systems and the fastening of the wiring of the aircraft.
  • the frame 1 of the invention has in many cases local loading entries through fittings 8 that are attached to the souls 5 of the frame 1.
  • the frame 1 together with the lining form a torsion box, so that the assembly has a high torsional stiffness, thus advantageously distributing the shear load transferred by these hardware 8 between two faces, constituted by the souls 5.
  • a 1 'frame is proposed for aircraft with a section in ⁇ whose souls 5 ' form a certain angle with the feet 4 ' depending on the function that the T-frame will fulfill.
  • the direction of bending of the inner skirts 6 ' is changed since, if this is not done, the riveting of the inner skirts 6 ' to the base element 7 ' could not be performed.
  • the souls whether the souls are inclined or not, it is necessary to be able to ensure the inspectability of the hardware. In the case of vertical souls, this accessibility can be achieved by making the rivet of the base element 7 removable.
  • the frame with section in the form of ⁇ described by any of the two embodiments of the invention can be extended throughout the entire frame 1, 1 'or cover only a certain sector thereof.
  • this concept of a frame with a ⁇ -shaped section can be applied to different sections of the fuselage, such as: circular, ellipsoidal, rectangular or others.
  • this concept of frame with ⁇ -shaped section according to the invention is compatible with other sections of frame.
  • sections with a lateral element with a soul and foot forming 90 ° and the other lateral element with a soul and foot can be passed inside the same section frame. greater than 90 °, to the traditional sections in C, J, 1 and even to sections in omega, with a suitable transition and union, as shown in Figure 7.
  • the side elements 2, 3 that make up the frames 1, 1 ' in composite material of the present invention are manufactured separately, preferably by conventional Resin Transfer Molding (RTM).
  • the base piece 7 that closes the section of the frame is preferably manufactured by means of an ATL process.
  • the manufacturing process of the lateral elements 2, 3 that make up the frames 1, 1 'in composite material preferably comprises the following steps: a) cutting of fabrics and manufacturing of the patterns by means of a blade or water jet; b) manufacture of the preforms by means of manual stacking of the patterns, sewing and cold or hot compaction; c) placing the preforms in the mold; d) vacuum application; e) resin injection applying pressure; f) curing of the resin through the application of heat; g) demoulding.
  • the base element 7 is preferably manufactured by ATL, this process consisting of the following steps: a) automatic fabric stacking; b) hot forming; c) placement of vacuum bag; d) autoclave curing.

Abstract

Cuaderna (1) de carga de aeronave en material compuesto caracterizada porque comprende dos elementos laterales (2, 3) y un elemento de base (7), estando los elementos laterales (2, 3) unidos por la parte interior de la cuaderna (1) mediante el elemento de base (7) y comprendiendo cada uno de los elementos laterales (2, 3) un pie (4) que une la cuaderna (1) al revestimiento del fuselaje de la aeronave, un alma (5) y una faldilla interior (6) que une el alma (5) y el elemento de base (7).

Description

CUADERNA DE CARGA DE AERONAVE EN MATERIAL COMPUESTO
CAMPO DE LA INVENCIÓN
La presente invención se refiere a una cuaderna de carga para aeronaves fabricada en material compuesto.
ANTECEDENTES DE LA INVENCIÓN
Las cuadernas de carga, además de dar forma y rigidez al fuselaje de una aeronave, son los elementos estructurales encargados de soportar y transferir las cargas provenientes de otros elementos estructurales de Ia aeronave, tales como ¡as alas o los estabilizadores.
Estas cuadernas de carga son generalmente metálicas y tienen diferentes secciones, siendo las más habituales las secciones en C, en I y en J, que a través de procesos de mecanizado consiguen un entramado de nervios que estabilizan el alma de Ia cuaderna.
En Ia industria aeronáutica actual, la relación resistencia-peso es un aspecto de suma importancia, por Io que se está pasando de utilizar cuadernas metálicas a cuadernas fabricadas u optimizadas con materiales compuestos, principalmente fibra de carbono.
Actualmente, se conocen en fibra de carbono cuadernas de forma pero no de carga, ya que resulta muy difícil competir con una cuaderna metálica mecanizada, pues, debido a las elevadas solicitaciones que han de soportar las citadas cuadernas, necesitan tener un entramado de rigidizadores a modo de nervios para estabilizar Ia cuaderna, que complica mucho el proceso de fabricación en fibra de carbono.
La presente invención tiene por objeto una cuaderna de carga para aeronaves fabricada en material compuesto.
SUMARIO DE LA INVENCIÓN La presente invención propone una cuaderna de carga para aeronave fabricada en material compuesto con una geometría tai que proporciona un reparto de cargas que optimiza en peso los diseños actuales de cuadernas de carga metálicas. Así, Ia invención describe una cuaderna para aeronave que comprende tres elementos: dos elementos iaterales que conforman los pies, las almas y las faldillas internas de Ia cuaderna, y un elemento de base que une los dos elementos laterales anteriores.
En los pies y las faldillas internas de Ia cuaderna, así como en el elemento de base que une ios elementos laterales, predominan refuerzos de fibras unidireccionales, mientras que las almas de Ia cuaderna, para evitar su pandeo y buscando una optimización de las mismas, están formadas por fibras muitidireccionales, predominando las fibras a +/- 45°, considerando 0o Ia dirección circunferencial de Ia cuaderna. Otras características y ventajas de Ia presente invención se desprenderán de Ia descripción detallada que sigue de las realizaciones ilustrativas de su objeto en relación con las figuras que se acompañan.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 muestra Ia sección transversa! en C con rigidizador en L de una cuaderna metálica conocida en Ia técnica.
La Figura 2 muestra Ia sección transversal en I de una cuaderna metálica conocida en Ia técnica. La Figura 3 muestra Ia sección transversal en J de una cuaderna metálica conocida en Ia técnica.
Las Figuras 4a, 4b, 4c y 4d muestran en esquema las etapas del proceso de fabricación de una cuaderna con rigidizador fabricada de material compuesto según el proceso conocido en Ia técnica. Las Figuras 5a, 5b, 5c y 5d muestran una cuaderna de carga de material compuesto y el esquema de las etapas de su proceso de fabricación, según una primera realización de !a invención. Las Figuras 6a, 6b, 6c y 6d muestran una cuaderna de carga de material compuesto y el esquema de las etapas de su proceso de fabricación, según una segunda realización de Ia invención.
La Figura 7 muestra una vista genera! de una cuaderna de carga según Ia invención.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Según una primera realización de Ia invención, se propone una cuaderna 1 para aeronave con sección en π que comprende tres elementos: dos elementos laterales 2 y 3, y un elemento de base 7 que une fas faldillas interiores de los dos elementos laterales 2, 3 anteriores de Ia cuaderna 1. A su vez, cada uno de los elementos laterales 2, 3 comprende las siguientes partes: un pie 4 que sirve de unión entre Ia cuaderna 1 y el revestimiento del fuselaje de Ia aeronave; un alma 5 que es Ia parte esbelta y que en algunos casos, dependiendo de la función que vaya a cumplir la cuaderna, forma un ángulo de 90° con el pie 4, pudiendo formar cualquier otro ángulo, y una faídilla interior 6 que sirve de unión entre el alma 5 y el elemento de base 7.
Tanto el pie 4, como Ia faídüla interior 6, como el aima 5 de Ia cuaderna 1 están constituidos por capas de material compuesto dispuestas a O0,+/- 45° y 90°.
El material compuesto puede ser tanto fibra de carbono como fibra de vidrio con resina termoestable o termoplástica.
Tanto en el pie 4 como en Ia faídilla interior 6 predominan los refuerzos 20, 21 de fibras unidireccionales a 0o, del mismo materia! o de un material compatible, extendiéndose longitudinalmente a Io largo de toda Ia cuaderna 1 sin discontinuidad. El material de los refuerzos 20, 21 tiene un elevado módulo elástico de tal forma que confiere al pie 4 y a Ia faldilla interior 6 una alta resistencia y una elevada capacidad de rigidización. El alma 5 de ía cuaderna 1 puede llevar también refuerzos 22 del mismo material o de un material compatible, en cualquier dirección. Los refuerzos 22 del alma 5 de Ia cuaderna 1 pueden ser continuos a Io largo de toda Ia cuaderna - A - o Socales, en función de las solicitaciones a que esté sometida !a cuaderna 1. Esto supone que el alma 5 es capaz de soportar de esta forma cargas mucho mayores que si estuviera compuesta exclusivamente por tejido a +/- 45°.
El elemento de base 7 de Ia cuaderna 1 está formado por capas de cinta unidireccional, apiladas con diferentes orientaciones, con un alto porcentaje de ellas en sentido longitudinal (0o). De esta forma, el elemento de base 7 posee un alto módulo de elasticidad en sentido longitudinal gracias al elevado porcentaje de fibras en dicha dirección, las cuales se extienden sin discontinuidad a lo largo de toda Ia cuaderna 1. Uno de ios posibles procedimientos para la fabricación del elemento de base 7 es el encintado automático ATL {Automatic Tape Layer). Este elemento de base 7 puede ir remachado, pegado o cosido a las faldillas interiores 6 de Ia cuaderna 1 , cerrando así Ia sección de dicha cuaderna 1. Tanto Los espesores como las secciones de los elementos laterales 2, 3 y del elemento base 7 son variables.
La sección en rϊ de Ia cuaderna 1 propuesta por Ia invención, además de aportar las ventajas de una sección cerrada, gracias al hecho de tener las faldillas interiores hacia fuera, facilita Ia posterior instalación de sistemas y Ia sujeción del cableado de Ia aeronave. La cuaderna 1 de Ia invención tiene en muchos casos entradas locales de carga a través de herrajes 8 que se unen a las almas 5 de Ia cuaderna 1. La cuaderna 1 junto con el revestimiento forman un cajón de torsión, por Io que el conjunto presenta una elevada rigidez a torsión, repartiéndose así de forma ventajosa Ia carga de cortadura que transfieren estos herrajes 8 entre dos caras, constituidas por las almas 5.
Según una segunda realización de Ia invención, se propone una cuaderna 1 ' para aeronave con sección en π cuyas almas 5' forman un ángulo determinado con los pies 4' dependiendo de Ia función que vaya a cumplir Ia cuaderna T. En este caso, tal y como puede verse en las Figuras 6a a 6d, se cambia el sentido de doblado de las faldillas interiores 6' ya que, de no realizarse esto, el remachado de las faldillas interiores 6' al elemento de base 7' no podría realizarse. En ambas realizaciones, tanto si las almas están inclinadas como si no Io están, es necesario poder asegurar Ia inspeccionabilidad de los herrajes. En el caso de almas verticales, esta accesibilidad puede conseguirse haciendo que el remachado del elemento de base 7 sea desmontable. En el caso de almas inclinadas, sería necesario realizar agujeros, Ñamados hand-holes, en e! elemento de base 7, que permitieran inspeccionar los herrajes 8, o habilitar tapas. Por otro lado y gracias a esto, el remachado del elemento de base 7 a Ia faldilía interior 6 podría hacerse sin emplear remaches ciegos.
La cuaderna con sección en forma de π descrita por cualquiera de las dos realizaciones de Ia invención se puede extender a Io largo de toda Ia cuaderna 1 , 1 ' o abarcar solamente un cierto sector de Ia misma. Además este concepto de cuaderna con sección en forma de π puede aplicarse a diferentes secciones del fuselaje como pueden ser: circular, elipsoidal, rectangular u otras.
Además, este concepto de cuaderna con sección en forma de π según !a invención es compatible con otras secciones de cuaderna. Así, por ejemplo, en zonas alejadas de ia introducción de carga se puede pasar dentro de la misma cuaderna de sección en rí a secciones con un elemento lateral con alma y pie formando 90° y el otro elemento lateral con alma y pie formando un ángulo mayor de 90°,a las secciones tradicionales en C, J, 1 e incluso a secciones en omega, con una transición y unión adecuadas, tal y como se muestra en Ia Figura 7.
El proceso de fabricación de los elementos que conforman las cuadernas 1 , 1 ' en materia! compuesto que acabamos de describir se realiza por separado.
Según se observa en las Figuras 4a a 4d, las cuadernas de fibras de carbono tradicionales, tal como por ejemplo una cuaderna 31 en C con un rigidizador 30 en L de material compuesto se fabrican normalmente mediante el proceso de Moldeo por Transferencia de Resina (RTM), utilizándose para ello un molde 32 cerrado y presurizado en el que se colocan unas preformas secas, 30 y 31 , inyectándose posteriormente resina. Este proceso conocido permite realizar piezas complejas.
Los elementos laterales 2, 3 que conforman las cuadernas 1 , 1 ' en material compuesto de la presente invención se fabrican por separado, preferiblemente mediante Moldeo por Transferencia de Resina (RTM) convencional. La pieza base 7 que cierra Ia sección de Ia cuaderna se fabrica preferiblemente mediante un proceso de ATL. Estos elementos se unirán luego para formar Ia cuaderna, obteniendo una sección cerrada que puede incluir cambios de sección y de espesor, a partir de elementos más sencillos. Así, al fabricar estos tres elementos por separado, cada uno con variaciones de espesor y de sección, se optimiza Ia cuaderna de carga que se obtiene al unirlos, consiguiendo de manera sencilla una sección cerrada variable. El proceso de fabricación de los elementos laterales 2, 3 que conforman las cuadernas 1 , 1 ' en material compuesto comprende preferiblemente las etapas siguientes: a) corte de telas y fabricación de los patrones mediante cuchilla o chorro de agua; b) fabricación de las preformas mediante eí apilamiento manual de los patrones, cosido y compactación en frío o en caliente; c) colocación de las preformas en el molde; d) aplicación de vacío; e) inyección de resina aplicando presión; f) curado de Ia resina mediante Ia aplicación de calor; g) desmoldeo.
Ei elemento de base 7 se fabrica preferiblemente mediante ATL, constando este proceso de las siguientes etapas: a) apilado automático de telas; b) conformado en caliente; c) colocación de bolsa de vacío; d) curado en autoclave.
En las realizaciones preferentes que acabamos de describir pueden introducirse aquellas modificaciones comprendidas dentro del alcance definido por las siguientes reivindicaciones.

Claims

REIVINDICACIONES
1. Cuaderna (1) de carga de aeronave en material compuesto caracterizada porque comprende dos elementos laterales (2, 3) y un elemento de base (7), estando los elementos laterales (2, 3) unidos por !a parte interior de Ia cuaderna (1) mediante el elemento de base (7) y comprendiendo cada uno de los elementos laterales (2, 3) un pie (4) que une Ia cuaderna (1) ai revestimiento del fuselaje de Ia aeronave, un alma (5) y una faldüla interior (6) que une ei alma (5) y el elemento de base (7),
2. Cuaderna (1) de carga de aeronave en material compuesto según Ia reivindicación 1 caracterizada porque el alma (5) de los elementos laterales (2, 3) es perpendicular respecto del pie (4) y de Ia faldilla interior (6). 3. Cuaderna (1) de carga de aeronave en material compuesto según
Ia reivindicación 1 caracterizada porque el alma (5) de los elementos laterales (2,
3) forma un ángulo mayor de 90° respecto del pie (4), formando el correspondiente ángulo suplementario respecto de Ia faldilla interior (6).
4. Cuaderna (1) de carga de aeronave en material compuesto según cualquiera de las reivindicaciones anteriores caracterizada porque el pie (4), el alma (5) y Ia faldilla interior (6) están formadas por capas de material compuesto.
5. Cuaderna (1) de carga de aeronave en material compuesto según la reivindicación 4 caracterizada porque las capas de material compuesto están dispuestas a +/- 45°.
6. Cuaderna (1) de carga de aeronave en material compuesto según Ia reivindicación 5 caracterizada porque comprende también capas de material compuesto dispuestas a 0°/90°.
7. Cuaderna (1) de carga de aeronave en material compuesto según cualquiera de las reivindicaciones anteriores caracterizada porque el pie (4) y Ia faldilla interior (6) llevan refuerzos (20, 21) de fibras unidireccionales a 0o que se extienden a Io largo de Ia cuaderna (1) sin discontinuidad.
8. Cuaderna (1) de carga de aeronave en material compuesto según cualquiera de las reivindicaciones anteriores caracterizada porque ei alma (5) íieva refuerzos (22), continuos o locales, en cualquier dirección.
9. Cuaderna (1) de carga de aeronave en materia! compuesto según cualquiera de las reivindicaciones anteriores caracterizada porque el elemento de base (7) está formado por capas de cinta unidireccional, con diferentes orientaciones.
10. Cuaderna (1) de carga de aeronave en material compuesto según cualquiera de las reivindicaciones anteriores caracterizada porque comprende herrajes (8) para entradas locales de carga.
11. Cuaderna (1) de carga de aeronave en material compuesto según cualquiera de las reivindicaciones anteriores caracterizada porque Ia sección de Ia cuaderna (1) y el espesor de Ia sección de dicha cuaderna (1) son variables.
PCT/ES2007/070020 2007-01-29 2007-01-29 Cuaderna de carga de aeronave en material compuesto WO2008092970A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200780052327A CN101715411A (zh) 2007-01-29 2007-01-29 由复合材料制备的飞行器负载框架
PCT/ES2007/070020 WO2008092970A1 (es) 2007-01-29 2007-01-29 Cuaderna de carga de aeronave en material compuesto
EP07704780.1A EP2128018A4 (en) 2007-01-29 2007-01-29 AIRCRAFT LOADING FUSELAGE TORQUE MADE FROM COMPOSITE MATERIAL
US11/729,990 US8418963B2 (en) 2007-01-29 2007-03-29 Aircraft load frame made of a composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2007/070020 WO2008092970A1 (es) 2007-01-29 2007-01-29 Cuaderna de carga de aeronave en material compuesto

Publications (1)

Publication Number Publication Date
WO2008092970A1 true WO2008092970A1 (es) 2008-08-07

Family

ID=39666852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/070020 WO2008092970A1 (es) 2007-01-29 2007-01-29 Cuaderna de carga de aeronave en material compuesto

Country Status (4)

Country Link
US (1) US8418963B2 (es)
EP (1) EP2128018A4 (es)
CN (1) CN101715411A (es)
WO (1) WO2008092970A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070184A1 (es) 2008-12-18 2010-06-24 Airbus Operations, S.L. Estructura de la zona de introducción de cargas en el fuselaje trasero de una aeronave
EP2340991A2 (en) 2009-12-30 2011-07-06 Airbus Operations S.L. Aircraft fuselage frame of composite material with stabilising ribs
EP2343237A2 (en) 2009-12-30 2011-07-13 Airbus Operations S.L. Aircraft fuselage frame in composite material with stabilized web
EP2599711A1 (en) 2011-12-01 2013-06-05 Airbus Operations S.L. Highly loaded frame of an aircraft fuselage with a lattice structured web
RU2694486C1 (ru) * 2018-10-05 2019-07-15 Акционерное общество "Научно-производственное объединение им. С.А. Лавочкина" Шпангоут

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006026169B4 (de) * 2006-06-06 2012-06-21 Airbus Operations Gmbh Flugzeugrumpfstruktur und Verfahren zu deren Herstellung
DE102006026170B4 (de) * 2006-06-06 2012-06-21 Airbus Operations Gmbh Flugzeugrumpfstruktur und Verfahren zu deren Herstellung
DE102006026168A1 (de) 2006-06-06 2008-01-31 Airbus Deutschland Gmbh Flugzeugrumpfstruktur und Verfahren zu deren Herstellung
US8336820B2 (en) * 2008-10-27 2012-12-25 Embraer S.A. Aircraft cabin floor structures, systems and methods
FR2947241B1 (fr) * 2009-06-29 2012-12-07 Airbus France Encadrement d'une ouverture menagee dans un fuselage d'aeronef
ES2401517B1 (es) * 2011-05-31 2014-06-18 Airbus Operations S.L. Cuaderna de aeronave en material compuesto.
US8651419B2 (en) 2011-07-18 2014-02-18 The Boeing Company Flexible truss frame and method of making the same
DE102012016553A1 (de) * 2012-08-22 2014-02-27 Airbus Operations Gmbh Druckrumpf eines Flugzeugs, der ein Druckschott umfasst
US9145197B2 (en) * 2012-11-26 2015-09-29 The Boeing Company Vertically integrated stringers
FR3009273B1 (fr) 2013-07-30 2017-07-28 Eurocopter France Cadre en materiaux composites stratifies pour fuselage d'aeronef, comportant des zones de renfort courbes a rayon de courbure evolutif
US10093406B2 (en) * 2014-12-10 2018-10-09 The Boeing Company Aircraft frame for tailstrike angle enhancement
US20180327071A1 (en) * 2017-05-10 2018-11-15 The Boeing Company Systems and methods for aircraft integrated composite frames

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198018A (en) 1978-03-13 1980-04-15 The Boeing Company Blended wing-fuselage frame made of fiber reinforced resin composites
WO1980002254A1 (en) * 1979-04-16 1980-10-30 H Forsch Stitch bond fastening of composite structures
US4531695A (en) * 1983-01-25 1985-07-30 Westland Plc Composite helicopter fuselage
US4786343A (en) 1985-05-10 1988-11-22 The Boeing Company Method of making delamination resistant composites
ES2039084T3 (es) * 1988-06-08 1993-08-16 Aerospatiale Societe Nationale Industrielle Bastidor hecho de material compuesto, en particular para fuselaje de aeronave, y su procedimiento de fabricacion.
EP1547756A1 (en) * 2003-12-24 2005-06-29 Airbus UK Limited Method of manufacturing aircraft components

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2196922A (en) * 1986-09-26 1988-05-11 Airship Ind Airship gondola construction
US5171510A (en) * 1988-06-08 1992-12-15 Aerospatiale Societe Nationale Industrielle Method of producing a frame made of a composite material, especially for the fuselage of an aircraft
US6217000B1 (en) * 1996-10-25 2001-04-17 The Boeing Company Composite fabrication method and tooling to improve part consolidation
DE19922295C1 (de) * 1999-05-14 2000-07-27 Eurocopter Deutschland Unterbodenstruktur einer Rumpfzelle eines Luftfahrzeuges
US6889937B2 (en) * 1999-11-18 2005-05-10 Rocky Mountain Composites, Inc. Single piece co-cure composite wing
US7871040B2 (en) * 2006-11-10 2011-01-18 The Boeing Company Composite aircraft structures with hat stiffeners
US7721995B2 (en) * 2006-12-13 2010-05-25 The Boeing Company Rib support for wing panels

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198018A (en) 1978-03-13 1980-04-15 The Boeing Company Blended wing-fuselage frame made of fiber reinforced resin composites
WO1980002254A1 (en) * 1979-04-16 1980-10-30 H Forsch Stitch bond fastening of composite structures
US4531695A (en) * 1983-01-25 1985-07-30 Westland Plc Composite helicopter fuselage
US4786343A (en) 1985-05-10 1988-11-22 The Boeing Company Method of making delamination resistant composites
ES2039084T3 (es) * 1988-06-08 1993-08-16 Aerospatiale Societe Nationale Industrielle Bastidor hecho de material compuesto, en particular para fuselaje de aeronave, y su procedimiento de fabricacion.
EP1547756A1 (en) * 2003-12-24 2005-06-29 Airbus UK Limited Method of manufacturing aircraft components

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2128018A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070184A1 (es) 2008-12-18 2010-06-24 Airbus Operations, S.L. Estructura de la zona de introducción de cargas en el fuselaje trasero de una aeronave
US8267352B2 (en) 2008-12-18 2012-09-18 Airbus Operations S.L. Structure of the load introduction zone in the rear end of an aircraft
EP2340991A2 (en) 2009-12-30 2011-07-06 Airbus Operations S.L. Aircraft fuselage frame of composite material with stabilising ribs
EP2343237A2 (en) 2009-12-30 2011-07-13 Airbus Operations S.L. Aircraft fuselage frame in composite material with stabilized web
US8597771B2 (en) 2009-12-30 2013-12-03 Airbus Operations S.L. Aircraft fuselage frame in composite material with stabilized web
EP2599711A1 (en) 2011-12-01 2013-06-05 Airbus Operations S.L. Highly loaded frame of an aircraft fuselage with a lattice structured web
RU2694486C1 (ru) * 2018-10-05 2019-07-15 Акционерное общество "Научно-производственное объединение им. С.А. Лавочкина" Шпангоут

Also Published As

Publication number Publication date
CN101715411A (zh) 2010-05-26
US20080179460A1 (en) 2008-07-31
US8418963B2 (en) 2013-04-16
EP2128018A1 (en) 2009-12-02
EP2128018A4 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
WO2008092970A1 (es) Cuaderna de carga de aeronave en material compuesto
US7635106B2 (en) Composite shear tie
US9771140B2 (en) Aircraft structure with integrated reinforcing elements
ES2674659T3 (es) Método para fabricar una caja de torsión aeronáutica, caja de torsión y herramienta para fabricar una caja de torsión aeronáutica
ES2347122B1 (es) Estructura de ensamblaje del mamparo de presion de una aeronave.
CA2726594C (en) Aircraft fuselage frame in composite material with stabilized web
US20120001023A1 (en) Aircraft fuselage made out with composite material and manufacturing processes
US9114582B2 (en) Method for producing a central wing box
US9211689B2 (en) Composite material structures with integral composite fittings and methods of manufacture
ES2352941A1 (es) Estructura integrada de aeronave en material compuesto.
US9034453B2 (en) Reinforced aircraft fuselage panel and method of manufacture
US11220354B2 (en) Composite fuselage assembly and methods to form the assembly
US9637216B2 (en) Aircraft structure made of composite material
US8899522B2 (en) Aircraft fuselage with high strength frames
US9840041B2 (en) Stiffening element and reinforced structure
EP2651759B1 (en) Skew-angle radius filler to reduce the risk of delamination of a laminated stringer assembly
CN107031818A (zh) 用于抗扭盒的复合式翼肋及其制造方法
US20120009372A1 (en) Structural panel with integrated stiffening
US9677409B2 (en) Monolithic fan cowl of an aircraft engine and a manufacturing method thereof
US20110299993A1 (en) Composite structural member with progressive rigidity
ES2857911T3 (es) Pieza de composite curva y su método de fabricación
ES2384349B1 (es) Cuaderna de fuselaje de aeronave en material compuesto con costillas estabilizadoras.
WO2016066881A1 (es) Disposición de área central para caja de torsión de plano de cola horizontal continuo
RU2448865C2 (ru) Силовой шпангоут летательного аппарата, изготовленный из композитного материала
CA3049973C (en) Thermoplastic multi-grid overmolded/co-consolidated aircraft fuselage structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780052327.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07704780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007704780

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009132506

Country of ref document: RU

Kind code of ref document: A