WO2008091763A1 - Treating hepatitis c virus infection - Google Patents
Treating hepatitis c virus infection Download PDFInfo
- Publication number
- WO2008091763A1 WO2008091763A1 PCT/US2008/051097 US2008051097W WO2008091763A1 WO 2008091763 A1 WO2008091763 A1 WO 2008091763A1 US 2008051097 W US2008051097 W US 2008051097W WO 2008091763 A1 WO2008091763 A1 WO 2008091763A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inhibitor
- bms
- hcv
- mtp
- cell
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/025—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/7056—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing five-membered rings with nitrogen as a ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/21—Interferons [IFN]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/24011—Flaviviridae
- C12N2770/24211—Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
Definitions
- HCV hepatitis C virus
- RNA virus a single stranded positive RNA virus of the Flaviviridae family (Appel et al., 2006), that can be secreted abundantly only by hepatocytes (Chisari, 2005). The factors responsible for this restriction are largely unknown.
- VLDL Very Low Density Lipoproteins
- HCV RNA replication occurs in association with cytoplasmic membranes. In the case of HCV these structures, called 'membranous webs', have been visualized in cultured human hepatoma Huh7 cells that harbor a subgenomic replicon of HCV (Gosert et al., 2003; Moradpour et al., 2004). These replicons are engineered HCV RNA molecules that contain essential elements for RNA replication, including the coding sequence for the nonstructural (NS) proteins NS3, NS4A, NS4B, NS5A and NS5B (Lohmann et al., 1999).
- NS nonstructural
- VLDL assembly is currently believed to occur at two different stages (Shelness and Sellers, 2001). In the first stage, Microsomal triglyceride transfer protein (MTP) transfers lipid to nascent apolipoprotein B, a huge 540 Kda protein that gives structural integrity of VLDL (Olofsson and Boren, 2005).
- MTP Microsomal triglyceride transfer protein
- apoB becomes ubiquitinated and degraded during translation (Avramoglu and Adeli, 2004).
- the apoB- containing lipid particles produced in the first stage of VLDL assembly contain only limited amounts of triglyceride (Gusarova et al, 2003).
- apoB-containing precursor particles are fused with triglyceride droplets in the luminal compartment (Shelness and Sellers, 2001), a step probably facilitated by apolipoprotein E (apoE), another major protein component in VLDL (Mensenkamp et al., 2001).
- apoE apolipoprotein E
- MTP is required to transfer triglyceride from the cytosol to the luminal compartment (Shelness and Sellers, 2001).
- a genetic defect in MTP severely reduces VLDL secretion (Sharp et al., 1993; Raabe et al., 1998).
- the first stage of VLDL assembly is known to occur at the endoplasmic reticulum (ER) (Gusarova et al., 2003), the exact location of the second stage remains controversial (Fisher and Ginsberg, 2002).
- the invention is a method of inhibiting release of HCV from an HCV- infected cell, the method comprising: a) contacting the cell with a VLDL assembly inhibitor; and b) detecting a resultant inhibition of HCV release from the cell.
- the cell is contacted with a submicromolar amount of the inhibitor.
- the inhibitor is an MTP inhibitor or a small interfering RNA or antisense oligonucleotide directed against apolipoprotein B.
- the contacting step further comprises contacting the cell with an antiviral agent selected from interferon and ribavirin.
- the invention is a method of decreasing serum viremia of an HCV- infected person, the method comprising: a) administering to the person a VLDL assembly inhibitor; and b) detecting a resultant decrease in serum viremia in the person.
- the decrease in serum viremia is effected by a submicromolar concentration of the VLDL assembly inhibitor, such as an MTP inhibitor.
- the inhibitor is an MTP inhibitor selected from the group consisting of BMS-200150, BMS- 212122, BMS-201038 (AERG-733), BMS-201030, BMS-197636, JTT-130, mitratapide (R- 103757), implitapide (BAY- 139952), CP-346086, CP-467688, and CP-319340.
- the inhibitor is a small interfering RNA or antisense oligonucleotide, such as ISIS 301012, directed against apolipoprotein B.
- the contacting step further comprises contacting the cell with an antiviral agent selected from interferon and ribavirin.
- kits for decreasing serum viremia of an HCV- infected person comprising: a) a plurality of MTP-inhibitor dosage forms; and a) a plurality of ribavirin dosage forms.
- the MTP-inhibitor is selected from the group consisting of BMS-200150, BMS-212122, BMS-201038 (AERG-733), BMS- 201030, BMS-197636, JTT-130, mitratapide (R-103757), implitapide (BAY-139952), CP- 346086, CP-467688, and CP-319340.
- hepatitis C virus HCV
- the VLDL assembly inhibitor preferably blocks the assembly and secretion of VLDL by inhibiting the activity of MTP or limiting the production of apoB protein.
- the VLDL assembly inhibitor is a small interfering RNA or antisense oligonucleotide directed against apoB.
- ISIS 301012 is an antisense oligonucleotide in clinical development that targets human ApoB- 100 (Burnett, Curr Opin MoI Ther. (2006) 8:461-7).
- the VLDL assembly inhibitor is a molecule that binds to and inhibits MTP activity, and is preferably a synthetic (i.e. non-naturally occurring) molecule that inhibits MTP activity at submicromolar concentrations.
- Synthetic MTP inhibitors are well-known in the art such as BMS-200150 (see e.g. Jamil et al, Proc Natl Acad Sci U S A. (1996) 93: 11991-5), BMS-212122 (see e.g. Robl et al, J Med Chem. (2001) 44:851-6), BMS-201038 (under development as AERG-733; see e.g. Sulsky et al, Bioorg Med Chem Lett.
- the invention encompasses methods useful for screening VLDL assembly inhibitors for their inhibition of HCV release from a cell, which may be in vitro or in situ in chimpanzee, an animal model for HCV infection.
- the contacting step is effected using any method suitable to achieve uptake of the VLDL assembly inhibitor by the cell.
- siRNA can be transfected into the cells in vitro with OligofectAMINETM reagent (Invitrogen).
- Small molecule inhibitors such as the above-mentioned MTP inhibitors, can be simply added to the medium of cells in culture. Additional MTP inhibitors for use in the method can be identified using an MTP inhibition assay (see e.g. Chandler et al, J Lipid Res. (2003) 44: 1887-901), and optionally further validated in chimpanzee.
- the cell is contacted with a submicromolar amount of the VLDL assembly inhibitor.
- the cell may be in a culture medium to which is added an amount of the VLDL assembly inhibitor to achieve a concentration in the medium of less than 1000 nM, and preferably less than 500, 250, 100 or 10 nM.
- a resultant inhibition of HCV release is detected using any suitable method, such as the HCV release assay described in Example 2.
- the method can be used to assess the additive or synergistic effects a VLDL assembly inhibitor has with other antiviral agents such as ribavirin and/or interferon.
- the contacting step of the method may further comprise contacting the cell with an antiviral agent selected from interferon and/or ribavirin.
- the invention encompasses methods to decrease serum viremia in an HCV-infected person, the method comprising: a) administering to the person a VLDL assembly inhibitor; and b) detecting a resultant decrease in serum viremia in the person.
- the patient Prior to the contacting step, the patient is preferably diagnosed as having an HCV infection, which may be by any medically-acceptable method.
- the VLDL assembly inhibitor may be a known drug used in or in development for treatment of hyperlipidemia.
- VLDL assembly inhibitor Applicable protocols for administering a VLDL assembly inhibitor to a person are known in the art and routinely optimized.
- the antisense oligonucleotide ISIS 301012 demonstrates bioavailability by oral and parental routes of administration (Isis Pharmaceuticals 2005 Annual Report).
- Small molecule MTP inhibitors are routinely administered in oral dosage forms.
- Suitable protocols for administration of the VLDL assembly inhibitor to a patient can be readily derived from the extensive clinical trials and pre-clinical pharmacokinetic studies that have been conducted on VLDL assembly inhibitors for the treatment of hyperlipidemia.
- a submicromolar serum concentration of the VLDL assembly inhibitor effects the decrease in serum viremia.
- lmg per kilogram of body weight per day or less of the MTP inhibitor is administered to the person to achieve an active submicromolar concentration of the inhibitor for a duration sufficient to decrease serum viremia in the patient.
- the MTP inhibitor may be formulated in oral dosage forms of 0.03, 0.1, 0.3 and 1.0 mg per kilogram of body weight per day, delivered 1-4 times daily to achieve a submicromolar serum concentration of the MTP inhibitor.
- the duration of treatment is typically in the range of about 4 weeks - 4 months, depending on the tolerance of the drugs by patients.
- the resultant decrease in serum viremia may be detected quantitatively using a suitable method known in the art (see e.g. Lunel et al, Hepatology (1999) 29:528-35).
- a resultant decrease in serum viremia is detected by demonstrating a significant decrease in serum HCV RNA titer (e.g. using NASBA® test, Organon Teknika, Boxtel, The Netherlands) compared to pre-treatment titer.
- the method results in at least a 25%, 50%, 75%, 80%, or greater decrease in serum HCV RNA titer.
- a decrease in serum viremia is detected inferentially, for example by observing a reduction of HCV symptoms in the patient, or indirectly, such as by showing an improvement in some other indicator of HCV infection (e.g. normalization of aminotransferase levels compared to pre-treatment levels).
- the invention provides combination therapies for treating HCV infection in a person comprising administering the patient a VLDL assembly inhibitor in combination with one or more additional antiviral agents that act by a mechanism other than by VLDL assembly inhibition.
- the VLDL assembly inhibitor targets and inhibits activity of MTP or production of ApoB protein
- the additional antiviral agent is interferon and/or ribavirin.
- Kits for decreasing serum viremia of an HC V- infected person can comprise the combined antiviral agents.
- the kit comprises a plurality of VLDL assembly inhibitor dosage forms, preferably orally administered capsules or tablets, and a plurality of ribavirin dosage forms.
- the two or more antiviral agents may be formulated in a single dosage form.
- the kit may comprise the dosage forms packaged in a blister pack to facilitate proper daily dosing.
- the kit comprises a plurality of MTP-inhibitor dosage forms wherein the MTP-inhibitor is selected from the group consisting of BMS-200150, BMS-212122, BMS-201038 (AERG-733), BMS- 197636, JTT-130, mitratapide (R-103757), implitapide (BAY-139952), CP-346086, CP- 467688, and CP-319340.
- the kit further comprises a plurality of orally administrable ribavirin and/or interferon (see e.g. Bernard, Curr Opin Investig Drugs (2002) 3:693-7) dosage forms.
- Example 1 Decreased secretion of infectious HCV particles from cells treated with siRNA targeting apoB
- Huh7-GL cells a line of Huh7 cells that contain a chromosomally integrated genotype 2a HCV cDNA and constitutively produce infectious virus (Cai et al., 2005), with a duplex siRNA targeting apoB or GFP as a control.
- culture medium was harvested and the amount of apoB and HCV in the medium was analyzed.
- Transfection of cells with the apoB siRNA reduced the amount of apoB mRNA by about 80% without affecting intracellular HCV RNA.
- the apoB siRNA markedly decreased the amount of apoB secreted into the medium, but it did not affect secretion of ⁇ l -antitrypsin.
- the HCV copy number and titer increased by more than 10 fold during the period of 4-hr incubation. In cells receiving the apoB siRNA, this increase was reduced by about 50% as assayed by viral copy number, and 70% as assayed by the viral titer.
- Example 2 Decreased secretion of infectious HCV particles from cells treated with the MTP inhibitor BMS-2101038
- Huh7-GL cells were incubated in the absence or presence of the MTP inhibitor BMS- 210138. Following incubation in serum- free medium, culture medium was harvested and the amount of HCV RNA, HCV titer, and apoB in the medium was measured. Incubation of cells with the MTP inhibitor blocked the secretion of apoB but not ⁇ l -antitrypsin. Treatment of the cells with the MTP inhibitor reduced the amount of HCV RNA in the medium and viral titer by about 80%. The decreased amount of HCV in the medium is not due to inhibition of HCV RNA synthesis because intracellular HCV RNA remained the same in the absence or presence of the MTP inhibitor. We did not observe an accumulation of intracellular HCV RNA in cells treated with the MTP inhibitor because even in cells that were not incubated with the inhibitor, the amount of HCV RNA detected in the medium was less than 1% of that found in cells
- Example 3 Various MTP inhibitors decrease cellular release of HCV Huh7-GL cells are cultured as described in Example 2. On day 1, the cells are treated with InM, 1OnM, 100 nM, and 50OnM of the following MTP inhibitors: BMS-201038 (positive control), BMS-200150, BMS-212122, BMS-197636, JTT-130, Implitapide, mitratapide, and CP-346086. 16 hr later on day 2, cells are switched to serum-free medium in the absence or presence of the same amount of the MTP inhibitor. After incubation for 4 hours, decreases in cellular release of virus for each tested inhibitor is demonstrated by reductions in HCV RNA copy numbers and titers in the media as determined above.
- Example 4 MTP inhibitors decrease serum HCV viremia
- Patients are recruited and are eligible for enrollment if they are positive for HCV RNA on serologic testing after at least 3 months of interferon therapy. Patients who can not tolerate interferon because of severe side effects, such as fatigue, neuropsychiatric disturbances, or thrombocytopenia, are also included. Patients are excluded if they are taking lipid-lowering medications, are pregnant, are currently abusing drugs or alcohol, have hepatoma, are seropositive for HIV, have an absolute granulocyte count less than 1000 cells/mm3, or have a coexistent cause of liver disease.
- a complete blood count is done and serum levels of electrolytes, blood urea nitrogen, creatinine, aspartate aminotransferase, alanine aminotransferase, albumin, and total bilirubin are measured.
- Titers of serum HCV RNA are assessed before enrollment, at each evaluation visit, and 6 weeks after the final dose by using a qualitative multicycle reverse transcription polymerase chain reaction method. Titers are calculated up to 5 million copies/mL; if a titer is greater than 5 million copies/mL, it is simply reported as such and the exact value is not given.
- Efficacy of BMS-201038 is demonstrated by a decrease in serum viremia as demonstrated by a significant decrease in viral load and normalization of elevated aminotransferase levels.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Epidemiology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Virology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gastroenterology & Hepatology (AREA)
- Plant Pathology (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Analytical Chemistry (AREA)
- Toxicology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2675764A CA2675764C (en) | 2007-01-24 | 2008-01-15 | Treating hepatitis c virus infection |
AU2008209338A AU2008209338B2 (en) | 2007-01-24 | 2008-01-15 | Treating Hepatitis C virus Infection |
EP08727697A EP2120988A4 (en) | 2007-01-24 | 2008-01-15 | Treating hepatitis c virus infection |
JP2009547354A JP5174039B2 (en) | 2007-01-24 | 2008-01-15 | Treatment of hepatitis C virus infection |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/657,856 US7645732B2 (en) | 2007-01-24 | 2007-01-24 | Treating hepatitis C virus infection |
US11/657,856 | 2007-01-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008091763A1 true WO2008091763A1 (en) | 2008-07-31 |
Family
ID=39641451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/051097 WO2008091763A1 (en) | 2007-01-24 | 2008-01-15 | Treating hepatitis c virus infection |
Country Status (6)
Country | Link |
---|---|
US (3) | US7645732B2 (en) |
EP (1) | EP2120988A4 (en) |
JP (2) | JP5174039B2 (en) |
AU (1) | AU2008209338B2 (en) |
CA (1) | CA2675764C (en) |
WO (1) | WO2008091763A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008124384A2 (en) * | 2007-04-03 | 2008-10-16 | Aegerion Pharmaceuticals, Inc. | Combinations of mtp inhibitors with cholesterol absorption inhibitors or interferon for treating hepatitis c |
US8466159B2 (en) | 2011-10-21 | 2013-06-18 | Abbvie Inc. | Methods for treating HCV |
US8492386B2 (en) | 2011-10-21 | 2013-07-23 | Abbvie Inc. | Methods for treating HCV |
US8809265B2 (en) | 2011-10-21 | 2014-08-19 | Abbvie Inc. | Methods for treating HCV |
US8853176B2 (en) | 2011-10-21 | 2014-10-07 | Abbvie Inc. | Methods for treating HCV |
WO2017189978A1 (en) | 2016-04-28 | 2017-11-02 | Emory University | Alkyne containing nucleotide and nucleoside therapeutic compositions and uses related thereto |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2558766A1 (en) | 2004-03-05 | 2005-09-22 | The Trustees Of The University Of Pennsylvania | The use of mtp inhibitors for treating disorders or diseases associated with hyperlipidemia and hypercholesterolemia while minimizing side effects |
US20080161279A1 (en) * | 2006-12-21 | 2008-07-03 | Wisler Gerald L | Methods of Treating Obesity |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008021353A2 (en) | 2006-08-14 | 2008-02-21 | Guangxiang Luo | Composition and method for controlling hepatitis c virus infection |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2840921B1 (en) * | 2002-06-18 | 2008-07-18 | Bio Merieux | PROCESS FOR IN VITRO CULTURE OF HCV VIRUS |
WO2007143164A1 (en) * | 2006-06-02 | 2007-12-13 | San Diego State University Research Foundation | Compositions and methods for ameliorating hyperlipidemia |
US20090042835A1 (en) * | 2006-06-02 | 2009-02-12 | Davis Roger A | Compositions and methods for ameliorating hyperlipidemia |
-
2007
- 2007-01-24 US US11/657,856 patent/US7645732B2/en not_active Expired - Fee Related
-
2008
- 2008-01-15 EP EP08727697A patent/EP2120988A4/en not_active Withdrawn
- 2008-01-15 AU AU2008209338A patent/AU2008209338B2/en not_active Ceased
- 2008-01-15 WO PCT/US2008/051097 patent/WO2008091763A1/en active Application Filing
- 2008-01-15 JP JP2009547354A patent/JP5174039B2/en not_active Expired - Fee Related
- 2008-01-15 CA CA2675764A patent/CA2675764C/en not_active Expired - Fee Related
-
2009
- 2009-12-07 US US12/631,917 patent/US20100203013A1/en not_active Abandoned
-
2012
- 2012-10-03 JP JP2012220962A patent/JP5745488B2/en not_active Expired - Fee Related
-
2013
- 2013-02-12 US US13/765,506 patent/US8987189B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008021353A2 (en) | 2006-08-14 | 2008-02-21 | Guangxiang Luo | Composition and method for controlling hepatitis c virus infection |
Non-Patent Citations (28)
Title |
---|
APPEL, N. ET AL., J. BIOL. CHEM., vol. 281, 2006, pages 9833 - 9836 |
AVRAMOGLU, R.K.; ADELI, K., REV. ENDOCR. METAB. DISORD., vol. 5, 2004, pages 293 - 301 |
BERNARD, CURR OPIN INVESTIG DRUGS, vol. 3, 2002, pages 693 - 7 |
CAI, Z. ET AL., J. VIROL., vol. 79, 2005, pages 13963 - 13973 |
CHANDLER, C.E. ET AL., J. LIPID RES., vol. 44, 2003, pages 1887 - 1901 |
CHISARI, F.V., NATURE, vol. 436, 2005, pages 930 - 932 |
CUCHEL ET AL., N. ENG. J MED, vol. 356, 2007, pages 148 - 56 |
FISHER, E.A.; GINSBERG, H.N., J. BIOL. CHEM., vol. 277, 2002, pages 17377 - 17380 |
GIBBONS, G.F. ET AL., BIOCHEM. SOC. TRANS., vol. 32, 2004, pages 59 - 64 |
GIBBONS, G.F. ET AL.: "Biochimica et Biophysica Acta (BBA", MOLECULAR AND CELL BIOLOGY OF LIPIDS, vol. 1483, 2000, pages 37 - 57 |
GOSERT, R. ET AL., J. VIROL., vol. 77, 2003, pages 5487 - 5492 |
GUSAROVA, V. ET AL., J. BIOL. CHEM., vol. 278, 2003, pages 48051 - 48058 |
HIGASHI, Y. ET AL., J. BIOL. CHEM., vol. 278, 2003, pages 21450 - 21458 |
HUANG H. ET AL.: "Hepatitis C virus production by human hepatocyte dependent on assembly and secretion of very low-density lipoproteins", PNAS, vol. 104, no. 14, April 2007 (2007-04-01), pages 5848 - 5853, XP002532646 * |
LOHMANN, V. ET AL., SCIENCE, vol. 285, 1999, pages 110 - 113 |
MAILLARD ET AL.: "The interaction of natural hepatitis C virus with human scavenger receptor SR-BI/Cla 1 is mediated by ApoB-containing lipoproteins", THE FASEB JOURNAL, vol. 20, no. 6, 2006, pages 735 - 737, XP008111081 * |
MENSENKAMP, A.R. ET AL., E. JOURNAL OF HEPATOLOGY, vol. 35, 2001, pages 816 - 822 |
MORADPOUR, D. ET AL., J. VIROL., vol. 78, 2004, pages 7400 - 7409 |
NIELSEN S.U. ET AL.: "Association between hepatitis C virus and very low density lipoprotein (VLDL)/LDL analyzed in iodixanol density gradients", JOURNAL OF VIROLOGY, vol. 80, no. 5, 2006, pages 2418 - 2428, XP008111080 * |
NIELSEN, S.U. ET AL., J. VIROL., vol. 80, 2006, pages 2418 - 2428 |
OLOFSSON, S.O.; BOREN, J., J. OF INTERNAL MEDICINE, vol. 258, 2005, pages 395 - 410 |
RAABE, M. ET AL., PROC. NATL. ACAD. SCI., vol. 95, 1998, pages 8686 - 8691 |
RANDHAWA ET AL., MOL. BIOL. CELL, vol. 11, 2000, pages 2403 - 2417 |
RAYMOND ET AL., ANN INTERN MED., vol. 129, no. 10, 15 November 1998 (1998-11-15), pages 797 - 800 |
ROWE, T. ET AL., J. CELL BIOL., vol. 135, 1996, pages 895 - 911 |
See also references of EP2120988A4 |
SHARP, D. ET AL., NATURE, vol. 365, 1993, pages 65 - 69 |
WETTERAUE, J.R., SCIENCE, vol. 282, 1998, pages 751 - 754 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008124384A2 (en) * | 2007-04-03 | 2008-10-16 | Aegerion Pharmaceuticals, Inc. | Combinations of mtp inhibitors with cholesterol absorption inhibitors or interferon for treating hepatitis c |
WO2008124384A3 (en) * | 2007-04-03 | 2008-12-04 | Aegerion Pharmaceuticals Inc | Combinations of mtp inhibitors with cholesterol absorption inhibitors or interferon for treating hepatitis c |
US8466159B2 (en) | 2011-10-21 | 2013-06-18 | Abbvie Inc. | Methods for treating HCV |
US8492386B2 (en) | 2011-10-21 | 2013-07-23 | Abbvie Inc. | Methods for treating HCV |
US8680106B2 (en) | 2011-10-21 | 2014-03-25 | AbbVic Inc. | Methods for treating HCV |
US8685984B2 (en) | 2011-10-21 | 2014-04-01 | Abbvie Inc. | Methods for treating HCV |
US8809265B2 (en) | 2011-10-21 | 2014-08-19 | Abbvie Inc. | Methods for treating HCV |
US8853176B2 (en) | 2011-10-21 | 2014-10-07 | Abbvie Inc. | Methods for treating HCV |
US8969357B2 (en) | 2011-10-21 | 2015-03-03 | Abbvie Inc. | Methods for treating HCV |
US8993578B2 (en) | 2011-10-21 | 2015-03-31 | Abbvie Inc. | Methods for treating HCV |
US9452194B2 (en) | 2011-10-21 | 2016-09-27 | Abbvie Inc. | Methods for treating HCV |
WO2017189978A1 (en) | 2016-04-28 | 2017-11-02 | Emory University | Alkyne containing nucleotide and nucleoside therapeutic compositions and uses related thereto |
US11192914B2 (en) | 2016-04-28 | 2021-12-07 | Emory University | Alkyne containing nucleotide and nucleoside therapeutic compositions and uses related thereto |
Also Published As
Publication number | Publication date |
---|---|
JP5174039B2 (en) | 2013-04-03 |
AU2008209338A1 (en) | 2008-07-31 |
CA2675764C (en) | 2015-06-16 |
EP2120988A1 (en) | 2009-11-25 |
EP2120988A4 (en) | 2011-02-23 |
US20080175864A1 (en) | 2008-07-24 |
US20140056846A1 (en) | 2014-02-27 |
JP5745488B2 (en) | 2015-07-08 |
CA2675764A1 (en) | 2008-07-31 |
US20100203013A1 (en) | 2010-08-12 |
AU2008209338B2 (en) | 2010-05-13 |
JP2010516776A (en) | 2010-05-20 |
US8987189B2 (en) | 2015-03-24 |
US7645732B2 (en) | 2010-01-12 |
JP2013047237A (en) | 2013-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8987189B2 (en) | Treating hepatitis C virus infection | |
Kinney et al. | Inhibition of dengue virus serotypes 1 to 4 in vero cell cultures with morpholino oligomers | |
AU2010306639B2 (en) | HBV antisense inhibitors | |
Wang et al. | Development of small-molecule inhibitors against zika virus infection | |
Guo et al. | A conserved inhibitory mechanism of a lycorine derivative against enterovirus and hepatitis C virus | |
US20230201290A1 (en) | Tgf-beta inhibition, agents and composition therefor | |
Biagioli et al. | Discovery of a AHR pelargonidin agonist that counter-regulates Ace2 expression and attenuates ACE2-SARS-CoV-2 interaction | |
Madsen et al. | Small molecule inhibitors of Ago2 decrease Venezuelan equine encephalitis virus replication | |
JP5409636B2 (en) | Anti-hepatitis C virus composition | |
Sorouri et al. | Mitochondria and viral infection: advances and emerging battlefronts | |
Peinado et al. | Review of-omics studies on mosquito-borne viruses of the Flavivirus genus | |
Xu et al. | Hemin protects against Zika virus infection by disrupting virus-endosome fusion | |
CN106880630B (en) | Retro-2cyclAnd use of related derivatives | |
Suggate et al. | Optimisation of siRNA-mediated RhoA silencing in neuronal cultures | |
Sha et al. | Current state-of-the-art and potential future therapeutic drugs against COVID-19 | |
US20110206638A1 (en) | Compositions and methods for reducing the mutation rate of viruses | |
Moshiri et al. | A targeted computational screen of the SWEETLEAD database reveals FDA-approved compounds with anti-dengue viral activity | |
Taylor et al. | Interferon treatment inhibits the replication of simian immunodeficiency virus at an early stage: evidence for a block between attachment and reverse transcription | |
Gomez et al. | Three properties of the hepatitis C virus RNA genome related to antiviral strategies based on RNA-therapeutics: variability, structural conformation and tRNA mimicry | |
US20090318531A1 (en) | Small Interfering RNA Specific For HCV And Therapeutic Agent For Hepatitis C Comprising The Same | |
Paula et al. | New drug targets for hepatitis C and other Flaviviridae viruses | |
Romero-López et al. | Targets and tools: recent advances in the development of anti-HCV nucleic acids | |
Shier et al. | Effect of RNA interference on the hepatitis C virus core expression in HepG2/C3A cells using genotype 4 isolates from Saudi patients | |
Biagioli et al. | Discovery of a AhR flavonoid agonist that counter-regulates ACE2 expression in rodent models of inflammation and attenuates ACE2-SARS-CoV2 interaction in vitro | |
Mufrrih | The unfolded protein response in Zika virus infection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08727697 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008209338 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008727697 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2675764 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2008209338 Country of ref document: AU Date of ref document: 20080115 Kind code of ref document: A Ref document number: 2009547354 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |