WO2008090490A2 - Robotic cleaning head - Google Patents
Robotic cleaning head Download PDFInfo
- Publication number
- WO2008090490A2 WO2008090490A2 PCT/IB2008/050140 IB2008050140W WO2008090490A2 WO 2008090490 A2 WO2008090490 A2 WO 2008090490A2 IB 2008050140 W IB2008050140 W IB 2008050140W WO 2008090490 A2 WO2008090490 A2 WO 2008090490A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cleaning head
- conduit
- chassis
- cleaning
- hose assembly
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/24—Hoses or pipes; Hose or pipe couplings
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L5/00—Structural features of suction cleaners
- A47L5/12—Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
- A47L5/22—Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
- A47L5/36—Suction cleaners with hose between nozzle and casing; Suction cleaners for fixing on staircases; Suction cleaners for carrying on the back
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L2201/00—Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
Definitions
- the invention relates to a robotic cleaning head for use as part of an autonomous vacuum cleaning system further including a canister unit and a hose assembly connecting the cleaning head to the canister unit.
- Such a robotic cleaning head is disclosed in European patent application 1 360 922.
- the canister unit holds a fan, a motor for driving the fan, dust filters and a dust collection chamber.
- the cleaning head can have relatively small dimensions, which is advantageous for agility and for reaching encumbered areas, for example, under furniture and in corners.
- the hose connects to a conduit of the cleaning head which is pivotable about a pivot axis and that the conduit includes an elbow section downstream of an inlet of the conduit extending coaxially with the pivot axis.
- the hose assembly exerts forces on both the cleaning head and the canister unit due to friction over the floor and reaction forces in response to flexing of the hose.
- the conduit is suspended and shaped such that, in operating condition, a line of action of a tension force exerted by the hose assembly onto the chassis via the conduit to which the hose assembly is connected, extends below a downstream end of the elbow section, the tilting moment resulting from the force exerted upon the cleaning head by the hose and the friction forces between the floor and the cleaning head is relatively small. Accordingly, the tilting moment exerted on the cleaning head at given forces exerted by the hose is substantially reduced. Therefore, there is less reduction of contact pressure between the drive system and the floor on one side of the drive system. Such a reduction of the contact pressure between the drive system and the floor on one side of the drive system allows the drive system to slip more easily over the floor on that side, thereby adversely affecting the steering accuracy.
- the conduit may include a boom section extending from the elbow section radially relative to the pivot axis and an outlet end section downstream of the boom section and at least partially extending horizontally outside of the chassis and the drive system and downwardly from the boom section, such that, when in operating condition, a lowermost portion of the outlet end portion is at a level below an uppermost portion of at least the chassis, the drive system or the nozzle.
- the conduit is preferably a substantially rigid structure, so that so that, in operation, the outlet end is maintained at a relatively constant level closely above the floor independently of the loads to which it is subjected in practice.
- elbow section is suspended swivably relative to the chassis about a swivel axis perpendicular to the pivot axis and extending spaced below the downstream end of the elbow section, as long as the conduit is in the range in which it is freely swivable, apart from a slight moment due to frictional resistance, no moment about the swivel axis can be transferred from the conduit to the cleaning head. Accordingly, the line of action along which a tension force exerted by the hose assembly is transferred onto the cleaning head will intersect the swivel axis spaced below the downstream end of the elbow section.
- the swivel axis may be a virtual swivel axis defined by a linkage linking the elbow section to the chassis, such as a linkage including at least two links of at least one four bar linkage including the elbow section and the chassis. If, moreover, for at least one position of the linkage, the swivel axis extends below the chassis, a particularly effective reduction or even elimination of the tilting moment is achieved, because the line of action of the factional reaction forces between the floor and the cleaning head extends along the floor, i.e. very closely along or even intersecting the swivel axis that determines the line of action along which a tension force exerted by the hose assembly is transferred onto the cleaning head.
- the swivability in operation of the conduit relative to the chassis may be limited. This is advantageous for keeping the conduit from reaching a limit of its range of swivability about the swivel axis, thereby preventing the transfer of any significant moment about the swivel axis from the conduit to the chassis.
- the pivot axis extends closely adjacent to an axis of rotation about which the chassis rotates when changing its direction of displacement over the floor surface, it is achieved that the forces exerted upon the cleaning head by the hose assembly have little or no influence on the driving direction of the cleaning head.
- a particularly important improvement of the steerability may be achieved in a cleaning head in which the drive system includes at least two circulatable members for displacing the cleaning head in a driving direction when driven to circulate in unison, the at least two circulatable members being spaced apart transversally to the driving direction to the right and to the left of a central plane of the chassis oriented in the driving direction, the drive system further being controllable for driving the circulatable members at different selectable velocities of circulation for steering the cleaning head. More in particular it is then counteracted that, the wheels on one side are unloaded and the opposite wheels are loaded and a difference in circumferential velocities between the wheels on opposite lateral sides results in slip of the unloaded wheels and no or only a limited steering effect.
- the pivotable conduit can connect pivotably to the non pivotable air duct communicating with the nozzle at a low level so as to keep moments in a vertical plane transferred through the pivotable connection low.
- the elbow section can be connected swivably to the chassis in a simple manner by means of a linkage positioned between the conduit and the chassis.
- Fig. 1 is a perspective view of an autonomous vacuum cleaning system comprising a cleaning head according to the invention
- Fig. 2 is a top view of the cleaning head of Fig. 1;
- Fig. 3 is a frontal view of the cleaning head of Fig. 1; and
- Fig. 4 is a side view of an alternative embodiment of a cleaning head according to the invention.
- FIG. 1 an autonomous vacuum cleaning system 2 composed of a canister unit 3, a robotic cleaning head 1 and a hose assembly 4 interconnecting the canister unit 3 and the robotic cleaning head 1 is shown.
- the canister unit 3 is self-propelled and self- steering and includes a drive system, a canister, a power supply and an electric fan for generating suction power.
- the drive system of the canister unit 3 has two driven wheels located at the back corners (only one is visible in the figure) and two castors located near the hose connection at the front of the canister unit (only one is visible in the figure).
- the cleaning head 1 (shown in more detail in Figs. 2 and 3) is also self- propelled and self-steering by means of a drive system including a control system 6, a drive assembly 27 and wheels 18.
- the vacuum hose assembly 4 communicates with a cleaning nozzle 8 of the cleaning head 1 so that the vacuum generated by the canister unit is made available at an inlet of the nozzle 8.
- the cleaning head 1 is more agile than the canister unit 3 and capable of passing under most objects, such as furniture or radiators.
- the canister unit 3 is moreover equipped with sensors for providing information about the surroundings and a control unit for using the information provided by the sensors to plan routes for the canister 3 and the cleaning head 1 and to conduct the canister 3 and the cleaning head 1 along these routes.
- the cleaning head 1 is more mobile than the canister unit 3, which is controlled to stay within reach of the cleaning head 1 that moves over the floor in accordance with a vacuum-cleaning pattern.
- the reach is determined by the length and movability of the hose assembly 4. It is also possible to provide that only the cleaning head 1 is equipped with a drive system and tows the canister unit 3 along via the hose assembly 4.
- the power supply of the autonomous vacuum cleaning system may be provided in the form of rechargeable batteries, fuel cells, or other self-contained sources of power, or via a connection to a domestic power network.
- the drive assembly 27 of the cleaning head 1 includes a motor (not shown) coupled to the wheels 18 via a transmission, clutches and brakes for selectively driving and braking the wheels 18 under control of the control system 6.
- the four driven wheels 18 of the drive system of the cleaning head 1 drive displacement of the cleaning head 1 in a driving direction (arrow 29) when driven to circulate in unison.
- the wheels 18 of the drive system are spaced apart transversally to the driving direction to the right and to the left of a central plane 28 of the chassis 5 oriented in the driving direction 29 of the chassis 5.
- the drive assembly 27 is controllable for driving the wheels 18 at different velocities for steering the cleaning head 1. Changing the driving direction 29 can be achieved by rotating the wheels 18 on opposite sides of the central plane 28 of the chassis 5 at different speeds, by temporarily blocking wheels on one side or even by driving the wheels on opposite sides in opposite senses of rotation.
- the drive system may also include other circulatable members, such as caterpillar tracks. Moreover, instead of all circulatable members, only some of the circulatable members may be driven and/or some may be steerable.
- a vacuum-cleaning nozzle 8 is mounted to a front end of the chassis 5 of the cleaning head 1.
- the nozzle 8 bounds an air passage 30 extending therethrough.
- a conduit 9 communicates with the cleaning nozzle 8 via an air duct 31 for conducting air received via the air passage 30 to the hose assembly 4.
- the conduit 9 is suspended pivotably about a generally vertical pivot axis 10 to accommodate for changes in the driving direction 29 of the cleaning head 1 and to changes in the relative position of the cleaning head 1 relative to the canister unit 3 as it drives to and fro while vacuum cleaning a floor surface.
- the slash-dot lines in Fig. 2 illustrate a different orientation of the chassis 5 and the nozzle 8 relative to the hose assembly 4 obtainable by changing the driving direction 29.
- the hose assembly 4 may include wires for providing power to the cleaning head 1 and for communication between the cleaning head and the canister unit 3.
- the conduit 9 has an inlet 11 provided on top of the chassis 5, an elbow section 12 downstream of the inlet 11, a boom section 13 extending radially from the elbow section 12 to an outlet end section 14 downstream of the boom section 13.
- the inlet is coaxial with the pivot axis 10.
- the conduit 9 to which the hose assembly 4 is connected is pivotable about a pivot axis 10, it is avoided that the hose assembly 4 exerts a substantial torque about the pivot axis 10 upon the cleaning head 1 and thereby influences the course of travel. Furthermore, in the present example, the conduit 9 projects horizontally beyond the footprint of the chassis 5 and the drive system 6, 18, and 27 in any of orientation of the conduit 9. This ensures that the conduit 9 and the hose assembly 4 can be pivoted relative to the chassis 5 and the drive system 6, 18, 27 without causing the hose assembly 4 or the conduit 9 to collide with the chassis 5 or the wheels 18 or other parts of the drive system.
- the conduit 9 also projects horizontally beyond the cleaning nozzle 8 when pivoted to an orientation extending over the cleaning nozzle 8, so that the conduit can also pivot to orientations in which it extends forwardly over the cleaning nozzle 8 without causing the hose assembly 4 to hit the cleaning nozzle 8.
- the pivot axis 10 is oriented substantially perpendicularly to the floor surface
- the pivot axis 10 extends closely adjacent to an axis of rotation of the rotational component of movement when the chassis 5 changes its direction of displacement over the floor surface 7 and is located between the axes of rotation of the wheels 18.
- the conduit 9 is suspended and shaped such that, in operating condition, a line of action 15 of a tension force 20 exerted by the hose assembly 4 onto the cleaning head 1 via its conduit 9, extends spaced below a downstream end of the elbow section 12 of the conduit 9.
- the tension force 20 exerted upon the cleaning head 1 causes a reaction force in opposite direction in the form of friction between the cleaning head 1 and the floor.
- the line of action of this friction force is at floor level. Accordingly, the tension force 20 and friction force result in a tilting moment exerted on the cleaning head 1. Because the line of action 15 along which the tension force 20 in the flexible hose assembly 4 is transferred to the cleaning head 1 extends spaced below a downstream end of the elbow section 12 of the conduit 9, this line extends along the positions where the cleaning head 1 contacts the floor 7 at a level lower than the downstream end of the elbow section 12 along which the line of action would extend if the hose assembly would be connected directly to the elbow section 12, as is usual in such pivotable vacuum cleaning hose connections.
- the tilting moment exerted on the cleaning head 1 is especially disadvantageous when the main orientation of the tension force 20 is directed transversely to the driving direction, as is shown in Fig. 3.
- the different amounts of grip on opposite lateral sides of the cleaning head 1 negatively influence the capability of the drive system to conduct the cleaning head 1 along a pre-defined path of travel, especially on soft floor types like high pole carpet. This is of particular importance if, as in the present example, steering to another driving direction is accomplished by selectively causing the wheels 18' on one lateral side of the cleaning head 1 to rotate at a different velocity than the wheels 18" on the other lateral side of the cleaning head 1.
- the conduit 9 includes an outlet end section 14 downstream of the boom section 13 and at least partially extending horizontally outside of the chassis 5 and the drive system 6, 18, 27 and downwardly from the boom section 13.
- a lowermost portion of the outlet end portion 14 is at a level below uppermost portions of the chassis 5, the drive system 6, 18, 27 and the cleaning nozzle
- the conduit 9 is a relatively rigid structure, for instance substantially more rigid than the vacuum cleaning hose 4, so that, in operation, the outlet end 14 is maintained at a relatively constant level closely above the floor 7 independently of the loads to which it is subjected in practice. Because, moreover, the conduit 9 is pivotable about the pivot axis 10 only, a counter moment contrary to the tilting moment, which counter moment is exerted by outlet end section 14 onto the boom section 13 of the conduit 9 when tension force in the hose assembly is transferred via the outlet end section 14, is effectively transferred from the conduit 9 to the chassis 5, thereby causing the lowered effective position of the line of action 15.
- FIG. 4 an alternative example of a cleaning head 101 according to the invention is shown, in which the elbow section 112 is suspended swivably relative to the chassis 105 about swivel axis 116 generally perpendicular to the pivot axis 110 and extending spaced below the downstream end of the elbow section 112 in a direction transverse to the line of action 115.
- a boom section 113 extends radially relative to the pivot axis 110 and transverse to the swivel axis 116 between the elbow section 112 and an outlet end section 114 downstream of the boom section 113.
- the conduit 109 is swivable relative to the chassis about swivel axis 116 that is oriented a generally horizontal and transverse to the line of action 115 of the forces exerted by the hose assembly 104 onto the chassis 105, as long as the conduit 9 is in the range in which it is freely swivable, apart from a slight moment due to factional resistance, no moment about the swivel axis 116 can be transferred from the conduit 109 to the cleaning head 101. Accordingly, the line of action 115 along which a tension force 120 exerted by the hose assembly 104 is transferred onto the cleaning head 101 will intersect the swivel axis 116 spaced below the downstream end of the elbow section 112.
- the suspension of the conduit 109 is connected thereto and coupled to the chassis 105 such that the swivel axis 116 can pivot together with the conduit 109, so that the swivel axis 116 remains substantially perpendicular to the line of action 115 if the conduit 109 is pivoted. Furthermore, due to the swivability of the conduit 109, also the carried weight of the portion of the hose assembly 104 that is free from the floor 107 will not result in a tilting moment exerted onto the chassis 105.
- the swivel axis 116 is a virtual swivel axis defined by the structure 117 linking the elbow section 112 to the chassis 105.
- the virtual swivel axis 116 extends below the chassis 105 and coincides with the floor surface 107, so that the line of action 115 along which tension forces exerted by the hose assembly are transferred onto the cleaning head 101 extends along the floor 107. Since the line of action of the factional reaction forces between the floor 107 and the cleaning head 1 also extend along the floor 107 no significant tilting moment is caused. It is preferred that the swivel axis is closer to the floor than 2 cm and more preferably closer to the floor than 1 cm.
- the structure linking the elbow section 112 to the chassis 105 including two pairs 135, 136 of links of four bar linkage, the other pairs of the bars being formed by the elbow section 112 and the chassis 105.
- other linkages such as a dome shaped sliding or ball bearing mechanism are conceivable.
- a castor wheel 124 for supporting the conduit 109 relative to the floor surface 107 is mounted, minimizing friction between the conduit 109 and the floor surface 107. The support provided by the castor wheel 124 limits the swivability in operation of the conduit 109 relative to the chassis 105 and accordingly the swivel range of the structure 117.
- the support may also be provided in other forms, such as in the form of a slider and the support may also be mounted to the hose assembly, preferably closely adjacent to the conduit.
- the inlet end 111 of the conduit 109 is facing upwardly and the pivotable conduit 109 connects from underneath to an air duct portion 125 communicating with the nozzle 108.
- pivotable conduit 109 to connect pivotably to the non pivotable air duct 125 communicating with the nozzle 108 at a low level so as to keep moments in a vertical plane transferred through the pivotable connection low.
- this feature allows to swivably connect the elbow section 112 to the chassis 105 in a simple manner by means of a linkage 117 positioned between the conduit 109 and the chassis 105.
- a flexible hose 126 interconnects the air duct portion 125 to which the conduit 109 is connected and the nozzle 108 and provides the connection between the swivable air duct portion 125 and the stationary nozzle 108.
- a robotic cleaning head for use as part of an autonomous vacuum cleaning system including a canister unit and a hose assembly connecting the cleaning head to the canister unit.
- the cleaning head has a chassis, a drive system, a vacuum cleaning nozzle and a conduit.
- the conduit communicates with an air passage bound by the cleaning nozzle. It is suspended pivotable about a pivot axis and includes an inlet provided on top of said chassis, and an elbow section downstream of the inlet, and the conduit is suspended and shaped such that a line of action of a tension force exerted by the hose assembly onto the chassis, via the conduit to which the hose assembly is connected, extends spaced below a downstream end of the elbow section.
- a cleaning head according to the invention in combination with a stationary canister.
- a stationary canister may be connected via a network of wall, floor and/or ceiling mounted air ducts with for example wall mounted inlets in rooms within a building.
- the cleaning head can be connected via a relatively long vacuum cleaning hose to once of the wall-mounted inlets.
- the hose is long enough to enable the cleaning head to autonomously clean for example at least a substantial part of a room.
- the conduit may be composed out of several parts, for example, the elbow section, the boom section and the outlet section being separate tubular elements assembled to form the conduit.
- the conduit can for example be formed via bending a single tube element.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electric Suction Cleaners (AREA)
- Nozzles For Electric Vacuum Cleaners (AREA)
- Cleaning In General (AREA)
- Electric Vacuum Cleaner (AREA)
- Manipulator (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009546040A JP4959809B2 (en) | 2007-01-22 | 2008-01-16 | Robot cleaning head |
CN2008800027473A CN101588745B (en) | 2007-01-22 | 2008-01-16 | Robotic cleaning head |
EP08702437A EP2106234A2 (en) | 2007-01-22 | 2008-01-16 | Robotic cleaning head |
US12/523,165 US8136200B2 (en) | 2007-01-22 | 2008-01-16 | Robotic cleaning head |
BRPI0806788-0A BRPI0806788A2 (en) | 2007-01-22 | 2008-01-16 | robotic cleaning head |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07100907.0 | 2007-01-22 | ||
EP07100907 | 2007-01-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2008090490A2 true WO2008090490A2 (en) | 2008-07-31 |
WO2008090490A3 WO2008090490A3 (en) | 2009-02-19 |
Family
ID=39644948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2008/050140 WO2008090490A2 (en) | 2007-01-22 | 2008-01-16 | Robotic cleaning head |
Country Status (7)
Country | Link |
---|---|
US (1) | US8136200B2 (en) |
EP (1) | EP2106234A2 (en) |
JP (1) | JP4959809B2 (en) |
CN (1) | CN101588745B (en) |
BR (1) | BRPI0806788A2 (en) |
RU (1) | RU2443388C2 (en) |
WO (1) | WO2008090490A2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100242217A1 (en) * | 2009-03-31 | 2010-09-30 | Dyson Technology Limited | Cleaning appliance |
US20100242208A1 (en) * | 2009-03-31 | 2010-09-30 | Dyson Technology Limited | Cleaning appliance |
US20120079673A1 (en) * | 2010-09-30 | 2012-04-05 | Dyson Technology Limited | Cleaning appliance |
US8898855B2 (en) | 2010-09-30 | 2014-12-02 | Dyson Technology Limited | Cleaning appliance |
US8991001B2 (en) | 2009-03-31 | 2015-03-31 | Dyson Technology Limited | Canister vacuum cleaner |
US9066645B2 (en) | 2010-09-30 | 2015-06-30 | Dyson Technology Limited | Cleaning appliance |
US9095246B2 (en) | 2009-03-31 | 2015-08-04 | Dyson Technology Limited | Cleaning appliance |
US9414726B2 (en) | 2010-09-30 | 2016-08-16 | Dyson Technology Limited | Cleaning appliance |
WO2019038188A1 (en) * | 2017-08-25 | 2019-02-28 | Kuka Deutschland Gmbh | Omnidirectional mobile driving platform having a working device |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120246866A1 (en) * | 2011-03-28 | 2012-10-04 | Emerson Electric Co. | Support System Adjustable by Like Motion and Method of Use |
PL394570A1 (en) | 2011-04-15 | 2012-10-22 | Robotics Inventions Spólka Z Ograniczona Odpowiedzialnoscia | Robot for raised floors and method for raised floor maintenance |
GB2494446B (en) * | 2011-09-09 | 2013-12-18 | Dyson Technology Ltd | Autonomous cleaning appliance |
GB2494443B (en) * | 2011-09-09 | 2013-08-07 | Dyson Technology Ltd | Autonomous surface treating appliance |
US9939529B2 (en) | 2012-08-27 | 2018-04-10 | Aktiebolaget Electrolux | Robot positioning system |
WO2014169943A1 (en) | 2013-04-15 | 2014-10-23 | Aktiebolaget Electrolux | Robotic vacuum cleaner |
JP6198234B2 (en) | 2013-04-15 | 2017-09-20 | アクティエボラゲット エレクトロラックス | Robot vacuum cleaner with protruding side brush |
GB2505550B (en) * | 2013-06-19 | 2014-07-16 | Meiban Int Pte Ltd | Snake-like segmented robotic vacuum cleaner |
US10617271B2 (en) | 2013-12-19 | 2020-04-14 | Aktiebolaget Electrolux | Robotic cleaning device and method for landmark recognition |
EP3084538B1 (en) | 2013-12-19 | 2017-11-01 | Aktiebolaget Electrolux | Robotic cleaning device with perimeter recording function |
JP6638988B2 (en) | 2013-12-19 | 2020-02-05 | アクチエボラゲット エレクトロルックス | Robot vacuum cleaner with side brush and moving in spiral pattern |
EP3082541B1 (en) | 2013-12-19 | 2018-04-04 | Aktiebolaget Electrolux | Adaptive speed control of rotating side brush |
WO2015090404A1 (en) | 2013-12-19 | 2015-06-25 | Aktiebolaget Electrolux | Prioritizing cleaning areas |
WO2015090405A1 (en) | 2013-12-19 | 2015-06-25 | Aktiebolaget Electrolux | Sensing climb of obstacle of a robotic cleaning device |
KR102130190B1 (en) | 2013-12-19 | 2020-07-03 | 에이비 엘렉트로룩스 | Robotic cleaning device |
WO2015090439A1 (en) | 2013-12-20 | 2015-06-25 | Aktiebolaget Electrolux | Dust container |
CN106415423B (en) | 2014-07-10 | 2021-01-01 | 伊莱克斯公司 | Method for detecting a measurement error of a robotic cleaning device |
JP6459098B2 (en) | 2014-09-08 | 2019-01-30 | アクチエボラゲット エレクトロルックス | Robot vacuum cleaner |
CN106659345B (en) | 2014-09-08 | 2019-09-03 | 伊莱克斯公司 | Robotic vacuum cleaner |
EP3230814B1 (en) | 2014-12-10 | 2021-02-17 | Aktiebolaget Electrolux | Using laser sensor for floor type detection |
WO2016091320A1 (en) | 2014-12-12 | 2016-06-16 | Aktiebolaget Electrolux | Side brush and robotic cleaner |
WO2016095966A1 (en) | 2014-12-16 | 2016-06-23 | Aktiebolaget Electrolux | Cleaning method for a robotic cleaning device |
WO2016095965A2 (en) | 2014-12-16 | 2016-06-23 | Aktiebolaget Electrolux | Experience-based roadmap for a robotic cleaning device |
CN107405034B (en) | 2015-04-17 | 2022-09-13 | 伊莱克斯公司 | Robot cleaning apparatus and method of controlling the same |
KR102445064B1 (en) | 2015-09-03 | 2022-09-19 | 에이비 엘렉트로룩스 | system of robot cleaning device |
US11169533B2 (en) | 2016-03-15 | 2021-11-09 | Aktiebolaget Electrolux | Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection |
CN109068908B (en) | 2016-05-11 | 2021-05-11 | 伊莱克斯公司 | Robot cleaning device |
KR20220025250A (en) | 2017-06-02 | 2022-03-03 | 에이비 엘렉트로룩스 | Method of detecting a difference in level of a surface in front of a robotic cleaning device |
JP6986871B2 (en) * | 2017-06-22 | 2021-12-22 | 東芝ライフスタイル株式会社 | Electric cleaning device |
CN111093447B (en) | 2017-09-26 | 2022-09-02 | 伊莱克斯公司 | Movement control of a robotic cleaning device |
DE102018114476B3 (en) | 2018-06-15 | 2019-08-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Cleaning system, including supply robots and cleaning satellites, and methods of cleaning |
CN110403533A (en) * | 2019-08-07 | 2019-11-05 | 惠来县战臣电器有限公司 | A kind of compound cleaning equipment |
EP3950159A1 (en) | 2020-08-07 | 2022-02-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Cleaning system, computer program and data carrier signal |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999008584A1 (en) * | 1997-08-20 | 1999-02-25 | Koninklijke Philips Electronics N.V. | Vacuum cleaner with obstacle avoidance |
DE10064836A1 (en) * | 2000-12-19 | 2002-06-27 | Iris Gmbh Infrared & Intellige | Vacuum cleaner robot has position of mobile working head relative to stationary central unit determined from configuration of flexible medium line between them |
EP1360922A2 (en) * | 2002-05-07 | 2003-11-12 | Royal Appliance MFG. CO. | Robotic vacuum cleaner with removable portable vacuum head and semi-automated environment mapping |
US20050055792A1 (en) * | 2003-09-15 | 2005-03-17 | David Kisela | Autonomous vacuum cleaner |
WO2007117095A1 (en) * | 2006-04-10 | 2007-10-18 | Ba-Do Lee | Cleaning robot system of satellite type |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3899372A (en) * | 1973-10-31 | 1975-08-12 | Ibm | Process for controlling insulating film thickness across a semiconductor wafer |
DE4323332C2 (en) * | 1993-07-08 | 1996-10-31 | Hartmut Engler | Driving robot for work equipment that can be moved over a surface to be treated |
JPH07319542A (en) * | 1994-05-30 | 1995-12-08 | Minolta Co Ltd | Self-traveling work wagon |
US6925679B2 (en) * | 2001-03-16 | 2005-08-09 | Vision Robotics Corporation | Autonomous vacuum cleaner |
JP4107999B2 (en) * | 2002-05-07 | 2008-06-25 | ロイヤル アプライアンス マニュファクチュアリング カンパニー | Robot vacuum cleaner with removable portable suction machine for semi-automated environment mapping |
DE10241055A1 (en) * | 2002-09-05 | 2004-03-18 | Wessel-Werk Gmbh | Floor nozzle for vacuum cleaners |
CN2579330Y (en) * | 2002-09-30 | 2003-10-15 | 刘福军 | Cleaning device |
JP2004236733A (en) | 2003-02-04 | 2004-08-26 | Sharp Corp | Self-propelled type vacuum cleaner |
KR100548896B1 (en) * | 2003-12-05 | 2006-02-02 | 삼성광주전자 주식회사 | Vacuum cleaner and Suction port assembly thereof |
-
2008
- 2008-01-16 JP JP2009546040A patent/JP4959809B2/en not_active Expired - Fee Related
- 2008-01-16 EP EP08702437A patent/EP2106234A2/en not_active Withdrawn
- 2008-01-16 WO PCT/IB2008/050140 patent/WO2008090490A2/en active Application Filing
- 2008-01-16 CN CN2008800027473A patent/CN101588745B/en not_active Expired - Fee Related
- 2008-01-16 RU RU2009131737/12A patent/RU2443388C2/en not_active IP Right Cessation
- 2008-01-16 US US12/523,165 patent/US8136200B2/en not_active Expired - Fee Related
- 2008-01-16 BR BRPI0806788-0A patent/BRPI0806788A2/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999008584A1 (en) * | 1997-08-20 | 1999-02-25 | Koninklijke Philips Electronics N.V. | Vacuum cleaner with obstacle avoidance |
DE10064836A1 (en) * | 2000-12-19 | 2002-06-27 | Iris Gmbh Infrared & Intellige | Vacuum cleaner robot has position of mobile working head relative to stationary central unit determined from configuration of flexible medium line between them |
EP1360922A2 (en) * | 2002-05-07 | 2003-11-12 | Royal Appliance MFG. CO. | Robotic vacuum cleaner with removable portable vacuum head and semi-automated environment mapping |
US20050055792A1 (en) * | 2003-09-15 | 2005-03-17 | David Kisela | Autonomous vacuum cleaner |
WO2007117095A1 (en) * | 2006-04-10 | 2007-10-18 | Ba-Do Lee | Cleaning robot system of satellite type |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8646148B2 (en) * | 2009-03-31 | 2014-02-11 | Dyson Technology Limited | Cleaning appliance |
US9095246B2 (en) | 2009-03-31 | 2015-08-04 | Dyson Technology Limited | Cleaning appliance |
US20100242217A1 (en) * | 2009-03-31 | 2010-09-30 | Dyson Technology Limited | Cleaning appliance |
US8991001B2 (en) | 2009-03-31 | 2015-03-31 | Dyson Technology Limited | Canister vacuum cleaner |
WO2010112890A1 (en) * | 2009-03-31 | 2010-10-07 | Dyson Technology Limited | Cylinder type vacuum cleaner |
US9282859B2 (en) | 2009-03-31 | 2016-03-15 | Dyson Technology Limited | Canister vacuum cleaner |
CN101849793B (en) * | 2009-03-31 | 2013-01-02 | 戴森技术有限公司 | Cleaning appliance |
GB2469053B (en) * | 2009-03-31 | 2013-02-06 | Dyson Technology Ltd | A cleaning appliance having pivotal movement |
US20100242208A1 (en) * | 2009-03-31 | 2010-09-30 | Dyson Technology Limited | Cleaning appliance |
CN101849793A (en) * | 2009-03-31 | 2010-10-06 | 戴森技术有限公司 | Cleaning appliance |
WO2010112882A1 (en) * | 2009-03-31 | 2010-10-07 | Dyson Technology Limited | Cylinder type vacuum cleaner |
EP2764810A3 (en) * | 2009-03-31 | 2015-05-20 | Dyson Technology Limited | Cylinder type vacuum cleaner |
US9066645B2 (en) | 2010-09-30 | 2015-06-30 | Dyson Technology Limited | Cleaning appliance |
US20120079673A1 (en) * | 2010-09-30 | 2012-04-05 | Dyson Technology Limited | Cleaning appliance |
US9414726B2 (en) | 2010-09-30 | 2016-08-16 | Dyson Technology Limited | Cleaning appliance |
US9974421B2 (en) | 2010-09-30 | 2018-05-22 | Dyson Technology Limited | Cleaning appliance |
US8898855B2 (en) | 2010-09-30 | 2014-12-02 | Dyson Technology Limited | Cleaning appliance |
WO2019038188A1 (en) * | 2017-08-25 | 2019-02-28 | Kuka Deutschland Gmbh | Omnidirectional mobile driving platform having a working device |
Also Published As
Publication number | Publication date |
---|---|
WO2008090490A3 (en) | 2009-02-19 |
RU2009131737A (en) | 2011-02-27 |
JP2010516322A (en) | 2010-05-20 |
US20100050366A1 (en) | 2010-03-04 |
RU2443388C2 (en) | 2012-02-27 |
US8136200B2 (en) | 2012-03-20 |
CN101588745B (en) | 2012-01-04 |
CN101588745A (en) | 2009-11-25 |
JP4959809B2 (en) | 2012-06-27 |
EP2106234A2 (en) | 2009-10-07 |
BRPI0806788A2 (en) | 2011-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8136200B2 (en) | Robotic cleaning head | |
USRE42155E1 (en) | Light-weight self-propelled vacuum cleaner | |
KR101322970B1 (en) | Robotic cleaning device | |
AU754477B2 (en) | Sensors arrangement | |
US20180008111A1 (en) | Debris Evacuation for Cleaning Robots | |
US6601265B1 (en) | Vacuum cleaner | |
EP1987407B1 (en) | Robotic vacuum cleaning | |
US8448295B2 (en) | Vacuum cleaner with rotating handle | |
KR101467425B1 (en) | Vacuum cleaner with swivel castors | |
CN102802483B (en) | With the vacuum cleaner of movable wheel | |
US7419107B1 (en) | Swivel inlet hose-drag linear irrigation machine | |
US20220400915A1 (en) | Cleaner head for a vacuum cleaning appliance | |
US20230346179A1 (en) | Cleaner head for a vacuum cleaning appliance | |
WO2021064353A1 (en) | A cleaner head for a vacuum cleaning appliance | |
US20230346181A1 (en) | Mobile robot cleaning head suspension | |
AU2008202665B2 (en) | Swivel inlet hose-drag linear irrigation machine | |
JP2004160164A (en) | Robotic vacuum cleaner with detachable portable vacuum for performing semi-automated environment mapping |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880002747.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008702437 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2009546040 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12523165 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08702437 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4731/CHENP/2009 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2009131737 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: PI0806788 Country of ref document: BR Kind code of ref document: A2 Effective date: 20090720 |