WO2008088495A1 - Phosphonite-containing catalysts for hydroformylation processes - Google Patents
Phosphonite-containing catalysts for hydroformylation processes Download PDFInfo
- Publication number
- WO2008088495A1 WO2008088495A1 PCT/US2007/024968 US2007024968W WO2008088495A1 WO 2008088495 A1 WO2008088495 A1 WO 2008088495A1 US 2007024968 W US2007024968 W US 2007024968W WO 2008088495 A1 WO2008088495 A1 WO 2008088495A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon atoms
- rhodium
- independently selected
- hydrogen
- phosphonite
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 80
- XRBCRPZXSCBRTK-UHFFFAOYSA-N phosphonous acid Chemical compound OPO XRBCRPZXSCBRTK-UHFFFAOYSA-N 0.000 title claims abstract description 68
- 238000007037 hydroformylation reaction Methods 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 49
- 230000008569 process Effects 0.000 title claims abstract description 35
- 239000003446 ligand Substances 0.000 claims abstract description 101
- 239000010948 rhodium Substances 0.000 claims abstract description 86
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 85
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims abstract description 84
- 239000001257 hydrogen Substances 0.000 claims abstract description 64
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 64
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 45
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 44
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000002904 solvent Substances 0.000 claims abstract description 43
- 150000001336 alkenes Chemical class 0.000 claims abstract description 38
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims abstract description 5
- 125000004432 carbon atom Chemical group C* 0.000 claims description 62
- -1 carboxylate salts Chemical group 0.000 claims description 59
- 125000004429 atom Chemical group 0.000 claims description 44
- 125000003118 aryl group Chemical group 0.000 claims description 35
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 34
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 claims description 27
- 150000001299 aldehydes Chemical class 0.000 claims description 24
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 22
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 22
- 125000000217 alkyl group Chemical group 0.000 claims description 21
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims description 18
- 239000000126 substance Substances 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 12
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 12
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N valeric aldehyde Natural products CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 claims description 12
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 11
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 8
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- 239000011593 sulfur Substances 0.000 claims description 8
- 230000004044 response Effects 0.000 claims description 7
- 150000002148 esters Chemical class 0.000 claims description 6
- 125000004423 acyloxy group Chemical group 0.000 claims description 5
- 125000003545 alkoxy group Chemical group 0.000 claims description 5
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 5
- 125000003435 aroyl group Chemical group 0.000 claims description 5
- 125000001589 carboacyl group Chemical group 0.000 claims description 5
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 5
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 4
- 150000001924 cycloalkanes Chemical class 0.000 claims description 4
- 150000001925 cycloalkenes Chemical class 0.000 claims description 4
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 4
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 claims description 4
- 150000002170 ethers Chemical class 0.000 claims description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
- 150000001241 acetals Chemical class 0.000 claims description 3
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 3
- 125000004104 aryloxy group Chemical group 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 125000000000 cycloalkoxy group Chemical group 0.000 claims description 3
- 150000002576 ketones Chemical class 0.000 claims description 3
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 claims description 3
- 150000008054 sulfonate salts Chemical group 0.000 claims description 3
- BZWKPZBXAMTXNQ-UHFFFAOYSA-N sulfurocyanidic acid Chemical group OS(=O)(=O)C#N BZWKPZBXAMTXNQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 2
- 150000002367 halogens Chemical group 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims 4
- 239000000243 solution Substances 0.000 description 45
- 239000000047 product Substances 0.000 description 25
- 125000001424 substituent group Chemical group 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 20
- 238000005481 NMR spectroscopy Methods 0.000 description 17
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 17
- 239000007789 gas Substances 0.000 description 17
- 239000007788 liquid Substances 0.000 description 13
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 239000000376 reactant Substances 0.000 description 8
- 239000011541 reaction mixture Substances 0.000 description 8
- 238000009835 boiling Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 239000004711 α-olefin Substances 0.000 description 7
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 6
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 125000004430 oxygen atom Chemical group O* 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- DAFHKNAQFPVRKR-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylpropanoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)C DAFHKNAQFPVRKR-UHFFFAOYSA-N 0.000 description 3
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 150000001721 carbon Chemical group 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N phosphine group Chemical group P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 3
- 125000004437 phosphorous atom Chemical group 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- XWJBRBSPAODJER-UHFFFAOYSA-N 1,7-octadiene Chemical compound C=CCCCCC=C XWJBRBSPAODJER-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- MQCPOLNSJCWPGT-UHFFFAOYSA-N 2,2'-Bisphenol F Chemical class OC1=CC=CC=C1CC1=CC=CC=C1O MQCPOLNSJCWPGT-UHFFFAOYSA-N 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- CIUQDSCDWFSTQR-UHFFFAOYSA-N [C]1=CC=CC=C1 Chemical compound [C]1=CC=CC=C1 CIUQDSCDWFSTQR-UHFFFAOYSA-N 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000006315 carbonylation Effects 0.000 description 2
- 238000005810 carbonylation reaction Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 238000006471 dimerization reaction Methods 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 238000006384 oligomerization reaction Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- CGNKSELPNJJTSM-UHFFFAOYSA-N phenylphosphonous acid Chemical compound OP(O)C1=CC=CC=C1 CGNKSELPNJJTSM-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000011112 process operation Methods 0.000 description 2
- 150000003283 rhodium Chemical class 0.000 description 2
- 150000003284 rhodium compounds Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003335 steric effect Effects 0.000 description 2
- YTZKOQUCBOVLHL-UHFFFAOYSA-N tert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 2
- LGXAANYJEHLUEM-UHFFFAOYSA-N 1,2,3-tri(propan-2-yl)benzene Chemical compound CC(C)C1=CC=CC(C(C)C)=C1C(C)C LGXAANYJEHLUEM-UHFFFAOYSA-N 0.000 description 1
- OKIRBHVFJGXOIS-UHFFFAOYSA-N 1,2-di(propan-2-yl)benzene Chemical compound CC(C)C1=CC=CC=C1C(C)C OKIRBHVFJGXOIS-UHFFFAOYSA-N 0.000 description 1
- PRBHEGAFLDMLAL-UHFFFAOYSA-N 1,5-Hexadiene Natural products CC=CCC=C PRBHEGAFLDMLAL-UHFFFAOYSA-N 0.000 description 1
- VYXHVRARDIDEHS-UHFFFAOYSA-N 1,5-cyclooctadiene Chemical compound C1CC=CCCC=C1 VYXHVRARDIDEHS-UHFFFAOYSA-N 0.000 description 1
- 239000004912 1,5-cyclooctadiene Substances 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N 2-Ethylhexanoic acid Chemical compound CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- BMTDZORNBFQUEA-UHFFFAOYSA-K 2-ethylhexanoate;rhodium(3+) Chemical compound [Rh+3].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O BMTDZORNBFQUEA-UHFFFAOYSA-K 0.000 description 1
- UIKQNMXWCYQNCS-UHFFFAOYSA-N 2-hydroxybutanal Chemical compound CCC(O)C=O UIKQNMXWCYQNCS-UHFFFAOYSA-N 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- ILPBINAXDRFYPL-UHFFFAOYSA-N 2-octene Chemical compound CCCCCC=CC ILPBINAXDRFYPL-UHFFFAOYSA-N 0.000 description 1
- 238000004679 31P NMR spectroscopy Methods 0.000 description 1
- BBDKZWKEPDTENS-UHFFFAOYSA-N 4-Vinylcyclohexene Chemical compound C=CC1CCC=CC1 BBDKZWKEPDTENS-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical class O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 238000010499 C–H functionalization reaction Methods 0.000 description 1
- 238000010485 C−C bond formation reaction Methods 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 238000007341 Heck reaction Methods 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- SBVXJFXOEAMCOG-UHFFFAOYSA-J O.O.[Rh+3].[Rh+3].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O Chemical compound O.O.[Rh+3].[Rh+3].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O SBVXJFXOEAMCOG-UHFFFAOYSA-J 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 238000006137 acetoxylation reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000005865 alkene metathesis reaction Methods 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000010936 aqueous wash Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- FFHKTQLMEKHXSF-UHFFFAOYSA-N bis(2,4-dimethylphenoxy)-phenylphosphane Chemical compound CC1=CC(C)=CC=C1OP(C=1C=CC=CC=1)OC1=CC=C(C)C=C1C FFHKTQLMEKHXSF-UHFFFAOYSA-N 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 150000003842 bromide salts Chemical class 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- SHZIWNPUGXLXDT-UHFFFAOYSA-N caproic acid ethyl ester Natural products CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000010960 commercial process Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- DDTBPAQBQHZRDW-UHFFFAOYSA-N cyclododecane Chemical compound C1CCCCCCCCCCC1 DDTBPAQBQHZRDW-UHFFFAOYSA-N 0.000 description 1
- ZOLLIQAKMYWTBR-RYMQXAEESA-N cyclododecatriene Chemical compound C/1C\C=C\CC\C=C/CC\C=C\1 ZOLLIQAKMYWTBR-RYMQXAEESA-N 0.000 description 1
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 1
- 239000004914 cyclooctane Substances 0.000 description 1
- 238000005888 cyclopropanation reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000005906 dihydroxylation reaction Methods 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- QYDYPVFESGNLHU-UHFFFAOYSA-N elaidic acid methyl ester Natural products CCCCCCCCC=CCCCCCCCC(=O)OC QYDYPVFESGNLHU-UHFFFAOYSA-N 0.000 description 1
- 238000006735 epoxidation reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- XZMMPTVWHALBLT-UHFFFAOYSA-N formaldehyde;rhodium;triphenylphosphane Chemical compound [Rh].O=C.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 XZMMPTVWHALBLT-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical compound C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 238000005913 hydroamination reaction Methods 0.000 description 1
- 238000005669 hydrocyanation reaction Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000006459 hydrosilylation reaction Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229940087654 iron carbonyl Drugs 0.000 description 1
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 1
- WCYWZMWISLQXQU-UHFFFAOYSA-N methyl Chemical compound [CH3] WCYWZMWISLQXQU-UHFFFAOYSA-N 0.000 description 1
- QYDYPVFESGNLHU-KHPPLWFESA-N methyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC QYDYPVFESGNLHU-KHPPLWFESA-N 0.000 description 1
- 229940073769 methyl oleate Drugs 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- YHYGSIBXYYKYFB-UHFFFAOYSA-N octa-2,7-dien-1-ol Chemical compound OCC=CCCCC=C YHYGSIBXYYKYFB-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004540 process dynamic Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/18—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
- B01J31/1845—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
- B01J31/1865—Phosphonites (RP(OR)2), their isomeric phosphinates (R2(RO)P=O) and RO-substitution derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/26—Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
- B01J31/28—Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/18—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/49—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/30—Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
- B01J2231/32—Addition reactions to C=C or C-C triple bonds
- B01J2231/321—Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/001—General concepts, e.g. reviews, relating to catalyst systems and methods of making them, the concept being defined by a common material or method/theory
- B01J2531/002—Materials
- B01J2531/004—Ligands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/822—Rhodium
Definitions
- This invention pertains to a novel catalyst solution comprising (1 ) at least one phosphonite ligand having particular steric bulk characteristics; (2) rhodium; and (3) a hydroformylation solvent.
- the present invention also pertains to the use of the novel catalyst solution for the hydroformylation of olefins to produce aldehydes.
- the novel catalyst solution can produce variable normal- to iso-aldehyde ratios by modest changes in process conditions.
- the hydroformylation reaction also known as the oxo reaction, is used extensively in commercial processes for the preparation of aldehydes by the reaction of one mole of an olefin with one mole each of hydrogen and carbon monoxide.
- the most extensive use of the reaction is in the preparation of normal- and iso-butyraldehyde from propylene.
- the ratio of the amounts of the normal- to iso-aldehyde products typically is referred to as the normal- to iso-aldehyde (N:l) ratio or the normal- to branched-aldehyde (N:B) ratio.
- propylene the normal- and iso-butyraldehydes obtained from propylene are in turn converted into many commercially valuable chemical products such as, for example, n-butanol, 2-ethyl-hexanol, n-butyric acid, iso-butanol, neopentyl glycol, 2,2,4-trimethyl-l ,3-pentanediol, the mono-isobutyrate and di-isobutyrate esters of 2,2,4-trimethyl-l ,3-propanediol.
- hydroformylation of higher ⁇ -olefins such as 1 -octene, 1 -hexene, and 1 -decene yield aldehyde products which are useful feedstocks for the preparation of detergent alcohols and plasticizer alcohols.
- the hydroformylation of substituted olefins such as allyl alcohol is useful for the production of other commercially valuable products such as 1 ,4-butanediol.
- one embodiment of the present invention is a catalyst solution comprising: i. one or more phosphonite ligands having the general formula (I):
- Ri , R 2 , and R3 are independently selected from hydrocarbyl radicals with 2 to 20 carbon atoms;
- R 4 and Rs are independently selected from hydrogen and hydrocarbyl radicals;
- R2, R3, R4, and R 5 in total contain 4 to 40 carbon atoms; Ri 1 R 2 , and R3 together have a steric bulk, ATOT, of about 6.2 to about
- Ai , A2, and A3 are the A values for Ri , R2, and R3, respectively; and X is optionally present as a connecting group comprising (a) a chemical bond directly between the ring carbon atoms of each aromatic group, (b) sulfur, oxygen, nitrogen, or silicon, or (c) a group having formula (II):
- Re and R7 are independently selected from hydrogen and alkyl radicals with up to 8 carbon atoms; ii. rhodium; and iii. a hydroformylation solvent.
- This embodiment comprises a solution of the active catalyst in which a carbonylation process such as the hydroformylation of an ethylenically-unsaturated compound may be carried out.
- Another embodiment of the present invention pertains to a hydroformylation process utilizing the above-described catalyst solutions.
- the process of the present invention therefore includes a process for preparing aldehydes comprising contacting an olefin, hydrogen, and carbon monoxide with a catalyst solution comprising: i. one or more phosphonite ligands having the general formula (I):
- X is optionally present as a connecting group comprising (a) a chemical bond directly between the ring carbon atoms of each aromatic group, (b) sulfur, oxygen, nitrogen, or silicon, or (c) a group having formula (II): R 6
- Re and R7 are independently selected from hydrogen and alkyl radicals with up to 8 carbon atoms; ii. rhodium; and iii. a hydroformylation solvent.
- Another embodiment of the present invention pertains to a process for the hydroformylation of propylene wherein the percent normal- butyraldehyde produced varies in response to a change in one or more process parameters selected from temperature, carbon monoxide partial pressure, and ratio of gram moles phosphonite ligand to gram atoms rhodium.
- the present invention provides a catalyst solution and a process for preparing aldehydes where modest changes in process conditions, such as, for example, the ratio of gram moles ligand to gram atoms rhodium, the process temperature, and the partial pressures of carbon monoxide and hydrogen, result in significant changes of normal- to iso-aldehyde ratios.
- One aspect of the present invention is a catalyst solution comprising: i. one or more phosphonite ligands having the general formula (I):
- Ri, R 2 , and R3 are independently selected from hydrocarbyl radicals with 2 to 20 carbon atoms;
- R 4 and Rs are independently selected from hydrogen and hydrocarbyl radicals;
- R2, R3, R4, and R 5 in total contain 4 to 40 carbon atoms; Ri , R2, and R 3 together have a steric bulk, ATOT, of about 6.2 to about
- R ⁇ and R7 are independently selected from hydrogen and alkyl radicals with up to 8 carbon atoms; ii. rhodium; and iii. a hydroformylation solvent.
- solution is understood to mean that the phosphorus compound and rhodium components are substantially (i.e., 95 or greater weight percent of the phosphorus compound and rhodium) dissolved in the hydroformylation solvent.
- phosphonite ligand as used herein, is understood to mean a trivalent phosphorus compound where the phosphorus atom is bonded to two oxygen atoms and one carbon atom and each oxygen atom is also bonded to a separate carbon atom.
- substituted is understood to mean the atom or groups of atoms represented by Ri , R2, R3, R4, Rs, R ⁇ , R7, Re, and Rg and the chemical bond, atom, or groups of atoms represented by X.
- Ri atom or groups of atoms represented by Ri , R2, R3, R4, Rs, R ⁇ , R7, Re, and Rg and the chemical bond, atom, or groups of atoms represented by X.
- each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
- the ranges stated in this disclosure and the claims are intended to include the entire range specifically and not just the endpoint(s).
- a range stated to be 0 to 10 is intended to disclose all whole numbers between 0 and 10 such as, for example 1 , 2, 3, 4, etc., all fractional numbers between 0 and 10, for example 1.5, 2.3, 4.57, 6.1 1 1 3, etc., and the endpoints 0 and 10.
- a range associated with chemical substituent groups such as, for example, "Ci to Cs hydrocarbons", is intended to specifically include and disclose Ci and C 5 hydrocarbons as well as C 2 , C3, and C 4 hydrocarbons.
- the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
- the ligands for the present invention are triorganophosphonite compounds having the formula (I):
- Ri , R 2 , R3, R 4 , and R5 may be the same or different.
- Ri , R 2 , and R 3 may be individually selected from alkyl, aralkyl, cycloalkyl, and aryl groups containing from 2 to 20 carbon atoms, typically from 2 to 1 5 carbon atoms.
- R 4 and R 5 may be individually selected from hydrogen, alkyl, cycloalkyl, and aryl groups.
- the total carbon content of R 2 , R3, R 4 , and R 5 is about 4 to about 40 carbon atoms, typically about 4 to about 20 carbon atoms.
- Examples of the alkyl groups which Ri , R 2 , R 3 , R 4 , and Rs individually may represent include ethyl, butyl, pentyl, hexyl, 2-ethylhexyl, octyl, decyl, dodecyl, octadecyl and various isomers thereof.
- the alkyl groups may be substituted, for example, with up to two substituents such as alkoxy, cycloalkoxy, formyl, alkanoyl, cycloalkyl, aryl, aryloxy, aroyl, carboxyl, carboxylate salts, alkoxycarbonyl, alkanoyloxy, cyano, sulfonic acid, sulfonate salts and the like.
- Cyclopentyl, cyclohexyl and cycloheptyl are examples of the cycloalkyl groups that Ri , R2, R3, R 4 , and Rs may represent.
- cycloalkyl groups may be substituted with alkyl or any of the substituents described with respect to the possible substituted alkyl groups.
- alkyl and cycloalkyl groups which Ri , R 2 , R3, R 4 , and R5 also individually may represent are alkyl radicals of up to 8 carbon atoms, benzyl, cyclopentyl, cyclohexyl or, cycloheptyl.
- ligands which have a steric bulk characterized by an AT O T within the range of about 6.2 to about 1 1 .5 kcal/mol produce a range of normal- to iso-aldehyde ratios in response to modest changes of process variables such as gram mole ligand to gram atom rhodium ratio, temperature, and the partial pressures of carbon monoxide and hydrogen.
- the term "steric bulk,” as used herein, is intended to mean the spatial requirements of substituents.
- the relative "A" values of substituents of a cyclohexyl molecule can be conveniently used to characterize the relative steric bulk of the phosphonite ligands.
- a values represent the free energy required for various substituents attached to a cyclohexylmolecule to go from the equatorial position to the axial position. "A” Values are sometimes referred to as conformational energies. "A” values for various substituents of a cyclohexyl molecule are known. A discussion of the "A” value term can be found in many organic chemistry texts. For example see Michael B. Smith and Jerry March, March's Advance Organic Chemistry 5 th Edition; Wiley Interscience; New York; 2001 ; pp. 1 73-74.
- the cyclohexyl substituent is a somewhat less than an optimal comparison because the ring structure of the cyclohexyl group constrains the carbon atoms in the third and fourth atom positions from the connective point into limit spatial movements.
- Another example which shows the decreasing steric influence as the distance from the connection point increases is found in a listing of "A" values from page 1 57 of the book "The Chemist's Companion” by Arnold Gordon and Richard Ford (Wiley Interscience, 1972).
- the neopentyl substituent (-CH2-C(CH3)3 can be compared to the isopropyl substituent -CH-(CH 3 ) 2 and the ethyl subtituent (-CH 2 -CH 3 ).
- the "A" value for the neopentyl substituent is given as 2.0 which is smaller than the 2.1 5 for isopropyl but only slightly larger that the 1 .75 value given for the ethyl substituent.
- the methyl groups of the neopentyl substituent are at the distance of the third atom away from the connective point and exert only a small steric influence despite the fact that there are three of them present.
- the ethyl substituent has only hydrogen atoms at the distance of the third atom from the connective point and exhibits only a slightly smaller "A" value than the neopentyl substituent.
- A the methyl group and hydrogen are nearly equal in their steric influence.
- an ethyl group will have very nearly the same "A" value as a propyl group or any other linear alkyl group such a butyl, decyl or hexadecyl.
- the tertiary butyl group is listed with an "A" value of 4.9 kcal/mol.
- all tertiary alkyl groups including tertiary pentyl (2-methyl-2- butyl) group would expect all tertiary alkyl groups including tertiary pentyl (2-methyl-2- butyl) group to have similar steric bulk characteristics to the tertiary butyl group.
- Other groups which would be similar in steric size to the tertiary butyl group include the 1 -methyl-l -cyclohexyl, 1 -ethyl-l -cyclopentyl, and the 2-ethyl-3- pentyl groups.
- the "A" value of a tertiary butyl group, 4.9 kcal/mol is a reasonable estimate of an "A" value for all tertiary alkyl groups.
- the phenyl group has an "A" value of 2.7 kcal/mol.
- substituted phenyl groups such as a 2-ethylphenyl, 3- methylphenyl, or 4-butylphenyl would have an "A” value of no less than 2.7 kcal/mol because the alkyl substituent groups are all larger than the hydrogen atoms which they replace.
- One skilled in the art would also expect that the effect of the substituent may be marginalized when the substitutions on the phenyl rings are spatially removed from the center of concern (i.e., the phosphorus atom) by two or more atoms.
- the "A:" values for substituted phenyl groups can be no less than 2.7 kcal/mol.
- fused aromatic rings such as the 1 -naphthyl, 2-naphthyl, 1 -anthracenyl and other fused aromatic groups.
- fused aromatic rings such as the 1 -naphthyl, 2-naphthyl, 1 -anthracenyl and other fused aromatic groups.
- these groups would be expected to have an "A" value of no less than an unsubstituted phenyl group, 2.7 kcal/mol.
- the introduction of the fused aromatic rings obviously increases the size of the substituents because the new rings are larger than hydrogen atoms they replace.
- the steric effects of substituents that are two or more atoms removed from the center of concern i.e., the phosphorus atom
- the steric bulk of the phosphonite ligands can be characterized by the combined "A" values of Ri, R2, and R3. Specifically for the present invention, the steric bulk of the phosphonite ligands is characterized by ATOT, where ATOT is calculated as follows:
- AI , A2, and A3 represent the "A” values for Ri, R 2 , and R3, respectively.
- ligand "C” For example the steric bulk of ligand "C":
- ATOT 8.1 kcal/mol.
- the X group of structure (I) represents an optional bridging group. If the X group is not present, two additional ortho positions relative to the oxygen atoms are available for substituents, one on each of the aromatic rings. In this case, the "A" value of the larger of the two groups in the ortho positions on each of the aromatic rings is used for the determination of AT O T.
- the phosphonite ligands of our catalyst solution typically have an ATOT of about 6.2 to about 1 1 .5 kcal/mol.
- ATOT ranges for the phosphonite ligands of our catalyst solutions are ATOT of the structure (I) between about 6.2 to about 1 1 .0 kcal/mol, about 6.2, to about 10.5 kcal/mol, about 6.2 to about 10.0 kcal/mol, about 6.2 to about 9.5 kcal/mol, about 6.2 to about 9.0 kcal/mol, about 6.2 to about 8.5 kcal/mol, about 6.2 to about 8.1 kcal/mol, about 7.0 to about 1 1 .5 kcal/mol, about 7.0 to about 1 1 .0 kcal/mol, about 7.0 to about 10.5 kcal/mol, about 7.0 to about 10.0 kcal/mol, about 7.0 to about 9.5 kcal/mol, about 7.0 to about 9.0 kcal/mol, about 7.0 to about 8.5 kcal/mol, or about 7.0 to about 8.1 kcal/mol.
- Examples of phosphonite ligands having an A TO ⁇ of about 6.2 to about 1 1.5 kcal/mol include those where Ri is a phenyl group, R2 and R3 each individually is an ethyl, isopropyl, or phenyl group, and X is optionally present as a methylene group. Additional examples are given by formulas (B), (C), (D), and (E):
- X represents an optional bridging group.
- the phosphonite ligands of the present invention can be cyclical compounds with X representing a bond or a bridging group between the aromatic carbon atoms in the ortho position relative to the bond between each oxygen atom and each aromatic ring.
- X may be a chemical bond directly between the ring carbon atoms of each aromatic group.
- X may comprise a single atom between the ring carbon atoms of each aromatic groups, such as, for example sulfur, oxygen, nitrogen, or silicon.
- X may also be a group having formula (II): R 6
- R ⁇ and R7 are independently selected from hydrogen and alkyl radicals with up to 4 carbon atoms or up to 8 carbon atoms. If X is a non-carbon atom such as nitrogen, silicon or sulfur, the bonding sites not connected to the aromatic rings may be substituted with hydrogen, alkyl, aryl, aroyl, or alkanoyl groups where the alkyl, aryl, aroyl, and alkanoyl groups may contain from 1 to 10 carbon atoms.
- the substituents Ri , R2, R3, R4, and R5 also individually may represent aryl groups such as, for example, phenyl, naphthyl, anthracenyl, and substituted derivatives thereof.
- Ri , R2, R3, R 4 , and R5 individually may represent radicals having formulas (III - V).
- Rg and Rg are independently selected from alkyl, alkoxy, halogen, cycloalkoxy, formyl, alkanoyl, cycloalkyl, aryl, aryloxy, aroyl, carboxyl, carboxylate salts, alkoxy-carbonyl, alkanoyloxy, cyano, sulfonic acid, and sulfonate salts in which the alkyl moiety of the alkyl, alkoxy, alkanoyl, alkoxycarbonyl and alkanoyloxy groups contains up to 8 carbon atoms.
- phosphonite ligands of formula (I) can be prepared by published procedures or by techniques analogous thereto. Typical examples can be found in the procedures described by Louis D. Quin, A Guide to Organophosphorus Chemistry, Wiley-lnterscience; 2000; New York; p. 62. In general, phosphonites can be prepared similarly by those methods for preparing phosphites. For example, the synthetic routes reported by P. C. Pringle, et al., Chem. Comm, 2000, 961 -62 are effective.
- Rhodium compounds that may be used as a source of rhodium for the active catalyst include rhodium(ll) or rhodium(lll) salts of carboxylic acids, examples of which include di-rhodium tetraacetate dihydrate, rhodium(ll) acetate, rhodium(ll) isobutyrate, rhodium(ll) 2-ethylhexanoate, rhodium(ll) benzoate and rhodium(ll) octanoate.
- rhodium(ll) or rhodium(lll) salts of carboxylic acids examples of which include di-rhodium tetraacetate dihydrate, rhodium(ll) acetate, rhodium(ll) isobutyrate, rhodium(ll) 2-ethylhexanoate, rhodium(ll) benzoate and rhodium(ll) o
- rhodium carbonyl species such as Rh 4 (CO)i2, Rh ⁇ (CO)i6, and rhodium(l) acetylacetonate dicarbonyl may be suitable rhodium feeds.
- rhodium organophosphine complexes such as tris(triphenylphosphine) rhodium carbonyl hydride may be used when the phosphine moieties of the complex fed are easily displaced by the phosphonite ligands of the present invention.
- Less desirable rhodium sources are rhodium salts of strong mineral acids such as chlorides, bromides, nitrates, sulfates, phosphates, and the like.
- the concentration of the rhodium and ligand in the hydroformylation solvent or reaction mixture is not critical for the successful operation of the present invention.
- the absolute concentration of rhodium in the reaction mixture or solution may vary from 1 mg/liter up to 5000 mg/liter or more. Typically, the concentration of rhodium in the reaction solution may vary from about 20 mg/liter to about 300 mg/liter. Concentrations of rhodium lower than this range generally do not yield acceptable reaction rates with most olefin reactants and/or require reactor operating temperatures that are so high as to be detrimental to catalyst stability. Higher rhodium concentrations can be expensive because of the high cost of rhodium.
- the ratio of gram moles phosphonite ligand to gram atoms rhodium can vary over a wide range, e.g., gram mole phosphonite:gram atom rhodium ratios of about 1 : 1 to about 200:1 .
- Other examples of the range of the gram mole phosphonite:gram atom rhodium ratio are about 1 :1 to about 100:1 , about 1 :1 to about 70:1 , about 1 :1 to about 60:1 , and about 30:1 to about 60:1 .
- the hydroformylation catalyst solution comprises at least one solvent that is liquid at the pressure at which the process is being operated.
- Non- limiting examples of solvents include various alkanes, cycloalkanes, alkenes, cycloalkenes, carbocyclic aromatic compounds, alcohols, esters, ketones, acetals, ethers, and water.
- solvents include alkane and cycloalkanes such as dodecane, decalin, octane, iso-octane mixtures, cyclohexane, cyclooctane, cyclododecane, methylcyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene isomers, tetralin, cumene; alkyl- substituted aromatic compounds, such as the isomers of diisopropylbenzene, triisopropylbenzene and tert-butylbenzene; alkenes and cycloalkenes such as 1 ,7-octadiene, dicyclopentadiene, 1 ,5-cyclooctadiene, octene-1 , octene-2, 4- vinylcyclohexene, cyclohexene, 1 ,5,9-cyclodode
- the aldehyde-containing product of the hydroformylation process also may be used.
- the solvent can comprise the higher boiling by-products that are naturally formed during the process of the hydroformylation reaction and the subsequent steps, e.g., distillations, that are required for aldehyde product isolation. Any solvent can be used that at least partially dissolves the catalyst and olefin substrate.
- Example solvents for the production of volatile aldehydes, e.g., butyraldehydes are those that are sufficiently high boiling to remain, for the most part, in a gas sparged reactor.
- Example solvents and solvent combinations that also may be used in the production of less volatile and non-volatile aldehyde products include l -methyl-2-pyrrolidinone, dimethylformamide, perfluorinated solvents such as perfluorokerosene, sulfolane, water, and high boiling hydrocarbon liquids as well as combinations of these solvents.
- non-hydroxylic compounds, in general, and hydrocarbons, in particular, may be used as the hydroformylation solvent and that their use can reduce decomposition of the phosphonite ligands.
- Ri , R2, and R3 are independently selected from alkyl radicals with 2 to 8 carbon atoms, benzyl, and aryl groups having formula (III): wherein
- R 8 is independently selected from alkyl radicals with up to 4 carbon atoms; and m is 0, 1 , or 2;
- R 4 and R 5 are independently selected from hydrogen, alkyl radicals with up to 8 carbon atoms, benzyl, and aryl groups having formula
- X is optionally present as a connecting group having formula (II): R 6
- Re and R7 are independently selected from hydrogen and alkyl radicals with up to 4 carbon atoms; ii. rhodium; and iii. a hydroformylation solvent.
- Ri is a phenyl group
- R 2 and R 3 are independently selected from ethyl, isopropyl, and phenyl groups
- R 4 and R 5 are independently selected from hydrogen and methyl group
- X is optionally present as a methylene group.
- substituents "A" values, rhodium, ratio of gram moles phosphonite ligand to gram atoms rhodium, and hydroformylation solvents, as well as methods for making the phosphonite ligands and catalyst solutions, disclosed above in any combination.
- Another aspect of the invention is a catalyst solution consisting essentially of i. one or more phosphonite ligands selected from formulas (B), (C), (D), and (E):
- the phrase "consisting essentially of, as used herein, is intended to encompass catalyst solutions having at least one phosphonite ligand of structure (B), (C), (D), or (E), rhodium, and a hydroformylation solvent.
- the catalyst solution is understood to exclude any elements that would substantially alter the essential properties of the catalyst solution to which the phrase refers.
- the catalyst solutions may include other components that do not alter the catalytic properties of the solution. For example, chemicals dissolved into the liquid such as hydrogen and carbon monoxide would not substantially alter the essential properties of the catalyst solution.
- the catalyst solution may be a multiphase liquid. For example, the addition of palladium, which may alter the catalytic properties of the solution, would be excluded from this embodiment.
- Another aspect of the invention is a process for preparing aldehydes comprising contacting an olefin, hydrogen, and carbon monoxide with a catalyst solution comprising: i. one or more phosphonite ligands having the general formula (I):
- Ri , R2, and R 3 are independently selected from hydrocarbyl radicals with 2 to 20 carbon atoms;
- R 4 and Rs are independently selected from hydrogen and hydrocarbyl radicals;
- R2, R3, R4, and R5 in total contain 4 to 40 carbon atoms; Ri , R2, and R3 together have a steric bulk, ATOT, of about 6.2 to about
- ATOT AI + A2 + A3 wherein Ai , A2, and A3 are the A values for Ri , R 2 , and R3, respectively; and
- X is optionally present as a connecting group comprising (a) a chemical bond directly between the ring carbon atoms of each aromatic group, (b) sulfur, oxygen, nitrogen, or silicon, or (c) a group having formula (II): R 6 I (M)
- R 6 and R 7 are independently selected from hydrogen and alkyl radicals with up to 8 carbon atoms; ii. rhodium; and iii. a hydroformylation solvent.
- this embodiment includes the various aspects of substituents, "A" values, rhodium, ratio of gram moles phosphonite ligand to gram atoms rhodium, and hydroformylation solvents, as well as methods for making the phosphonite ligands and catalyst solutions, disclosed above in any combination.
- the olefin feed can be ethylene, but typically comprises olefins capable of forming both linear and branched isomer products.
- olefins include, but are not limited to, propylene, butene, pentene, hexene, octene, styrene, non-conjugated dienes such as 1 ,5-hexadiene,,and blends of these olefins.
- the olefin may be substituted with functional groups if these groups do not interfere with the hydroformylation reaction.
- substituted olefins include unsaturated carboxylic acid esters such as methyl acrylate or methyl oleate, alcohols such as allyl alcohol and 1 - hydroxy-2,7-octadiene, ethers such as ethyl vinyl ether, and nitriles such as acrylonitrile.
- Mixtures of olefins also can be used in the practice of the present invention.
- the mixture may be of the same carbon number such as mixtures of n-octenes or it may contain olefins over a range of several carbon numbers.
- the olefin reactants comprise mono- ⁇ -olefins containing 3 to 10 carbon atoms.
- mono- ⁇ -olefin as used herein, is understood to mean a linear alkene with a chemical formula Cxl-hx distinguished by having one double bond located at the primary, or alpha, position.
- Mono- ⁇ - olefins may also be referred to as linear alpha olefins (LAO) or normal alpha olefins (NAO).
- LAO linear alpha olefins
- NAO normal alpha olefins
- Non-limiting examples of mono- ⁇ -olefins are propylene, butylene, hexene, and the like.
- the amount of olefin present in the reaction mixture also is not critical.
- relatively high-boiling olefins such as 1 -octene can function both as the olefin reactant and the process solvent.
- the partial pressures of the olefin in the vapor space of the reactor typically are in the range of about 0.07 to 35 bars absolute.
- the rate of reaction is favored by high concentrations of olefin in the reactor.
- the partial pressure of propylene may be greater than 1 .4 bars, e.g., from about 1 .4 to 10 bars absolute.
- the process may be carried out at reaction temperatures in the range of about 20 "C to about 200 °C, about 50 °C to about
- the total reaction pressure may range from about 0.3 bars absolute up to about 70 bars absolute (about 4 to about 1000 psia), from about 4 bars absolute to about 36 bars absolute (about 58 to about 522 psia), or from about 1 3.8 bars absolute to about 27.5 bars absolute (about 200 to about 400 psia).
- the hydrogen:carbon monoxide molar ratio in the reactor likewise may vary considerably ranging from 10:1 to 1 :10 and the sum of the absolute partial pressures of hydrogen and carbon monoxide may range from 0.3 to 36 bars absolute.
- the partial pressures of the hydrogen and carbon monoxide in the feed is selected according to the linearbranched isomer ratio desired.
- the partial pressure of hydrogen in the reactor can be maintained within the range of about 1.4 to aboutl 3.8 bars absolute (about 20 to about 200 psia).
- the partial pressure of carbon monoxide in the reactor can be maintained within the range of about 1.4 to about 1 3.8 bars absolute (about 20 to about 200 psia) or from about 4 to about 9 bars absolute and may be varied independently of the hydrogen partial pressure.
- the molar ratio of hydrogen to carbon monoxide can be varied widely within these partial pressure ranges for the hydrogen and carbon monoxide.
- the ratios of the hydrogen to carbon monoxide and the partial pressure of each in the feed gas stream (often referred to as synthesis gas or syn gas) can be readily changed by the addition of either hydrogen or carbon monoxide to the synthesis gas stream.
- synthesis gas or syn gas the feed gas stream
- the ratio of linear to branched products can be varied widely by changing the partial pressures of the hydrogen and carbon monoxide in the reactor.
- Ri , R 2 , and R3 are independently selected from alkyl radicals with 2 to 8 carbon atoms, benzyl, and aryl groups having formula (III):
- Rs is independently selected from alkyl radicals with up to 4 carbon atoms; and m is 0, 1 , or 2;
- R 4 and Rs are independently selected from hydrogen, alkyl radicals with up to 8 carbon atoms, benzyl, and aryl groups having formula (III);
- Ri , R 2 , and R3 together have a steric bulk, A TO ⁇ , of about 6.2 to about 1 1 .5 kcal/mol as calculated by the following formula:
- a T o ⁇ Ai + A2 + A3 wherein Ai, A2, and A3 are the A values for Ri, R2, and R3, respectively;
- X is optionally present as a connecting group having formula (II):
- Re and R7 are individually hydrogen or alkyl radicals with up to 4 carbon atoms; ii. rhodium; and iii. a hydroformylation solvent.
- this embodiment includes the various aspects of substituents, "A" values, rhodium, ratio of gram moles phosphonite ligand to gram atoms rhodium, hydroformylation solvents, methods for making the phosphonite ligands and catalyst solutions, olefins, temperature, pressure, hydrogen, and carbon monoxide, disclosed above in any combination.
- the present invention also encompasses the above process where the product comprises normal- and iso-butyraldehyde from a propylene feed and wherein the percent normal-butyraldehyde produced varies in response to a change in one or more process parameters selected from temperature, carbon monoxide partial pressure, and ratio of gram moles phosphonite ligand to gram atoms rhodium.
- the percent normal-butyraldehyde may vary from about 1 to about 20 percent absolute in response to change in one or more process paramaters selected from: temperature that varies within the range of about 80 °C to 1 20 °C; carbon monoxide partial pressure that varies within the range of about 4 bars absolute to about 9 bars absolute; and ratio of gram moles phosphonite ligand to gram atoms rhodium that varies within the range of about 30:1 to about 60:1 .
- process paramaters selected from: temperature that varies within the range of about 80 °C to 1 20 °C
- carbon monoxide partial pressure that varies within the range of about 4 bars absolute to about 9 bars absolute
- ratio of gram moles phosphonite ligand to gram atoms rhodium that varies within the range of about 30:1 to about 60:1 .
- the percent normal-butyraldehyde may vary in response to a change in the temperature from 90 0 C to 102 °C.
- What is meant by the variation of the absolute percent normal- butyraldehyde is as follows.
- the percent normal-butyraldehyde is Ni
- the percent normal-butyraldehyde is N 2
- the variation of the absolute percent normal-butyraldehyde is the absolute value of Ni - N 2 .
- this embodiment includes the various aspects of substituents, "A" values, rhodium, ratio of gram moles phosphonite ligand to gram atoms rhodium, hydroformylation solvents, methods for making the phosphonite ligands and catalyst solutions, olefins, temperature, pressure, hydrogen, and carbon monoxide, disclosed above in any combination.
- Another aspect of the present invention is a process for preparing butyraldehyde comprising: contacting propylene, hydrogen, and carbon monoxide with a catalyst solution comprising: one or more phosphonite ligands selected from formulas (B), (C), (D), and (E):
- rhodium ii. rhodium; and iii. a hydroformylation solvent
- concentration of rhodium in the solution is about 20 mg/ liter to about 300 mg/ liter; total pressure is about 4 bars absolute to about 36 bars absolute; and wherein the percent normal-butyraldehyde varies from about 1 to about 20 percent absolute in response to a change in one or more process paramaters selected from: temperature that varies within the range of about 80 °C to 120 °C; carbon monoxide partial pressure that varies within the range of 4 bars absolute to about 9 bars absolute; and ratio of gram moles phosphonite ligand to gram atoms rhodium that varies within the range of about 30: 1 to about 60:1 .
- this embodiment includes the various aspects of rhodium, ratio of gram moles phosphonite ligand to gram atoms rhodium, hydroformylation solvents, methods making the phosphonite ligands and catalyst solutions, olefins, temperature, pressure, hydrogen, and carbon monoxide, disclosed above in any combination.
- any of the known hydroformylation reactor designs or configurations may be used in carrying out the process provided by the present invention.
- a gas-sparged, vapor take-off reactor design as disclosed in the examples set forth herein may be used.
- the catalyst which is dissolved in a high boiling organic solvent under pressure does not leave the reaction zone with the aldehyde product taken overhead by the unreacted gases.
- the overhead gases then are chilled in a vapor/liquid separator to liquefy the aldehyde product and the gases can be recycled to the reactor.
- the liquid product is let down to atmospheric pressure for separation and purification by conventional techniques.
- the process also may be practiced in a batchwise manner by contacting the olefin, hydrogen, and carbon monoxide with the present catalyst in an autoclave.
- a reactor design where catalyst and feedstock are pumped into a reactor and allowed to overflow with product aldehyde i.e. liquid overflow reactor design
- product aldehyde i.e. liquid overflow reactor design
- high boiling aldehyde products such as nonyl aldehydes may be prepared in a continuous manner with the aldehyde product being removed from the reactor zone as a liquid in combination with the catalyst.
- the aldehyde product may be separated from the catalyst by conventional means such as by distillation or extraction and the catalyst then recycled back to the reactor.
- Water soluble aldehyde products, such as hydroxy butyraldehyde products obtained by the hydroformylation of allyl alcohol can be separated from the catalyst by extraction techniques.
- a trickle- bed reactor design also is suitable for this process.
- the phosphonite ligands of the present invention can be substituted for, or used in combination with, known phosphite and phosphine ligands in a wide range of catalyst solutions using rhodium as the primary catalyst component.
- novel catalyst solutions may be used in a wide variety of transition metal-catalyzed processes such as, for example, hydroformylation, hydrogenation, isomerization, hydrocyanation, hydrosilation, carbonylations, oxidations, acetoxylations, epoxidations, hydroamination, dihydroxylation, cyclopropanation, telomerizatons, carbon hydrogen bond activation, olefin metathesis, olefin dimerizations, oligomerizations, olefin polymerizations, olefin-carbon monoxide copolymerizations, butadiene dimerization and oligomerization, butadiene polymerization, and other carbon-carbon bond forming reactions such as the Heck reaction and arene coupling reactions.
- transition metal-catalyzed processes such as, for example, hydroformylation, hydrogenation, isomerization, hydrocyanation, hydrosilation, carbonylations, oxidations, acetoxylations, ep
- the catalyst solutions provided by the present invention are especially useful for the hydroformylation of olefins to produce aldehydes.
- a series of phosphonites were synthesized by reaction of phenyldicholorophosphine or alkyldicholorophosphine with corresponding substituted methylene bisphenols or other ortho-substituted phenols in the presence of triethylamine. All of the syntheses were carried out under nitrogen. [0060] A typical procedure follows: a methylene bisphenol (20 mmol) was mixed with triethylamine (44 mmol) in a mixed solvent (toluene:cyclohexane 2:1 ) and stirred. An ice-bath was applied to maintain the reaction temperature below 5 °C.
- the hydroformylation of propylene to produce butyraldehydes was carried out in a vapor take-off reactor consisting of a vertically arranged stainless steel pipe having a 2.5 cm inside diameter and a length of 1.2 meters.
- the reactor was encased in an external jacket that was connected to a hot oil machine.
- the reactor had a filter element welded into the side down near the bottom of the reactor for the inlet of gaseous reactants.
- the reactor contained a thermowell arranged axially with the reactor in its center for accurate measurement of the temperature of the hydroformylation reaction mixture.
- the bottom of the reactor had a high pressure tubing connection that was connected to a cross.
- One of the connections to the cross permitted the addition of nongaseous reactants such as octene-1 or make-up solvent, another led to the high-pressure connection of a differential pressure (D/P) cell that was used to measure catalyst level in the reactor and the bottom connection was used for draining the catalyst solution at the end of the run.
- D/P differential pressure
- the hydroformylation reaction mixture or solution containing the catalyst was sparged under pressure with the incoming reactants of propylene, hydrogen, and carbon monoxide as well as any inert feed such as nitrogen.
- any inert feed such as nitrogen.
- butyraldehyde was formed in the catalyst solution, it and unreacted reactant gases were removed as a vapor from the top of the reactor by a side-port.
- the vapor removed was chilled in a high-pressure separator where the butyraldehyde product was condensed along with some of the unreacted propylene.
- the uncondensed gases were let down to atmospheric pressure via the pressure control valve.
- the gaseous feeds to the reactor were fed to the reactor via twin cylinder manifolds and high-pressure regulators.
- the hydrogen passed through a mass flow controller and then through a commercially available DEOXO ® (available from Engelhard Inc.) catalyst bed to remove any oxygen contamination.
- the carbon monoxide passed through an iron carbonyl removal bed (as disclosed in U.S. Patent 4,608,239), a similar DEOXO ® bed heated to 1 25 0 C, and then a mass flow controller. Nitrogen could be added to the feed mixture as an inert gas. Nitrogen, when added, was metered in and then mixed with the hydrogen feed prior to the hydrogen DEOXO ® bed.
- Propylene was fed to the reactor from feed tanks that were pressurized with hydrogen and was controlled using a liquid mass flow meter. All gases and propylene were passed through a preheater to insure complete vaporization of the liquid propylene prior to entering the reactor.
- COMPARATIVE EXAMPLE 1 This example illustrates a typical hydroformylation run and the use of Ligand "F" for hydroformylation of propylene.
- a catalyst solution was prepared under nitrogen using a charge of 7.5 mg of rhodium (0.075 mmol, as rhodium 2-ethylhexanoate); ligand "F" (methylene bis(4-methyl-6-tert-butylphenyl) cyclohexylphosphonite), 1 .02g, (2.25 mmol); 20 ml of normal butyraldehyde and 190 ml of dioctylphthalate. The mixture was stirred under nitrogen until a homogeneous solution was obtained (heated if necessary).
- the mixture was charged to the reactor in a manner described previously and the reactor sealed.
- the reactor pressure control was set at 1 7.9 bars gauge (260 psig) and the external oil jacket on the reactor was heated to 1 1 5 °C.
- Hydrogen, carbon monoxide, nitrogen, and propylene vapors were fed through the frit at the base of the reactor and the reactor was allowed to build pressure.
- the hydrogen and carbon monoxide (H2/CO ratio was set to be 1 :1 ) were fed to the reactor at a rate of 6.8 liters/min and the nitrogen feed was set at 1.0 liter/min.
- the propylene was metered as a liquid, vaporized, and fed at a vapor rate of 1 .89 liters/min (212 grams/hour).
- the temperature of the external oil was modified to maintain an internal reactor temperature of 1 1 5 °C.
- the unit was operated for 5 hours and hourly samples taken.
- the hourly samples were analyzed as described above using a standard GC method.
- the last three samples were used to determine the N/l ratio and catalyst activity.
- the butyraldehyde production rate for the last three hours averaged 45.5g/hour for a catalyst activity of 6.06 kilograms butyraldehyde/gram of rhodium-hour.
- the product N/l ratio was 1 .56, or 60.9% n-butyraldehyde. Process conditions, N/l ratio of aldehyde product, and catalyst activity are shown in Table 1 .
- Comparative Examples used 7.5 mg rhodium except Comparative Example 7 which used 3.75 mg rhodium. All the reactions where carried out using dioctylphthalate as the hydroformylation solvent except Comparative Example 9 which used TEXANOL ® ester alcohol (available from Eastman Chemical Company), 2,2,4-Trimethyl-l ,3-pentanediol monoisobutyrate. Activity is determined as kilograms of butyraldehydes produced per gram of rhodium per hour.
- Table 2 represent the present invention and show that the normal- to iso-butyraldehyde ratio (N/l) varied from 1 .62 to 4.7 with a corresponding variation in weight percent normal- butyraldehyde of 61 .8% to 82.5% which corresponds to an overall change in the weight percent normal-butyraldehyde of 20.7%.
- the variation was achieved by changing the structure of the ligand, the ratio of gram moles ligand to gram atoms rhodium, temperature, and the hydrogen and carbon monoxide partial pressures in the synthesis gas.
- Table 3 presents the changes in weight percent normal-butyraldehyde for various ligands where one experiment was conducted at a gram mole ligand to gram atom rhodium ratio of 30, a temperature of 1 1 5 °C, and a carbon monoxide partial pressure of 4.2 bars gauge and the other experiment was conducted at a gram mole ligand to gram atom rhodium ratio of 60, a temperature of 105 °C, and a carbon monoxide partial pressure of 6.3 bars gauge.
- Example 23 was conducted at a gram mole ligand to gram atom rhodium ratio of 60, a temperature of 95 °C, and a carbon monoxide partial pressure of 4.2 bars gauge.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07862566.2A EP2114568B1 (en) | 2006-12-21 | 2007-12-06 | Phosphonite-containing catalysts for hydroformylation processes |
ES07862566T ES2407825T3 (en) | 2006-12-21 | 2007-12-06 | Catalysts containing phosphonite for hydroformylation processes |
CN200780051503XA CN101610843B (en) | 2006-12-21 | 2007-12-06 | Phosphonite-containing catalysts for hydroformylation processes |
JP2009542791A JP5175298B2 (en) | 2006-12-21 | 2007-12-06 | Phosphonite-containing catalysts for hydroformylation processes. |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US87115806P | 2006-12-21 | 2006-12-21 | |
US60/871,158 | 2006-12-21 | ||
US67062807A | 2007-02-02 | 2007-02-02 | |
US11/670,628 | 2007-02-02 | ||
US11/941,217 | 2007-11-16 | ||
US11/941,217 US7586010B2 (en) | 2006-12-21 | 2007-11-16 | Phosphonite-containing catalysts for hydroformylation processes |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008088495A1 true WO2008088495A1 (en) | 2008-07-24 |
Family
ID=39276758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/024968 WO2008088495A1 (en) | 2006-12-21 | 2007-12-06 | Phosphonite-containing catalysts for hydroformylation processes |
Country Status (8)
Country | Link |
---|---|
US (1) | US7586010B2 (en) |
EP (1) | EP2114568B1 (en) |
JP (1) | JP5175298B2 (en) |
KR (1) | KR20090092281A (en) |
CN (1) | CN101610843B (en) |
ES (1) | ES2407825T3 (en) |
TW (1) | TWI365767B (en) |
WO (1) | WO2008088495A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009085161A1 (en) * | 2007-12-26 | 2009-07-09 | Eastman Chemical Company | Phosphonite containing catalysts for hydroformylation processes |
US7872156B2 (en) | 2007-12-26 | 2011-01-18 | Eastman Chemical Company | Fluorophosphite containing catalysts for hydroformylation processes |
US7928267B1 (en) | 2009-06-22 | 2011-04-19 | Eastman Chemical Company | Phosphite containing catalysts for hydroformylation processes |
WO2011087696A1 (en) * | 2009-12-22 | 2011-07-21 | Dow Technology Investments Llc | Controlling the normal:iso aldehyde ratio in a mixed ligand hydroformylation process by controlling the olefin partial pressure |
JP2013515061A (en) * | 2009-12-22 | 2013-05-02 | ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー | Control of normal: isoaldehyde ratio in mixed ligand hydroformylation process |
US8598389B2 (en) | 2009-12-22 | 2013-12-03 | Dow Technology Investments | Controlling the normal:iso aldehyde ratio in a mixed ligand hydroformylation process by controlling the syngas partial pressure |
EP3438112A1 (en) * | 2017-07-31 | 2019-02-06 | Evonik Degussa GmbH | Ligand having an o p o bridge between two anthracentriol building blocks |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7674937B2 (en) * | 2008-05-28 | 2010-03-09 | Eastman Chemical Company | Hydroformylation catalysts |
JP5511853B2 (en) | 2009-03-04 | 2014-06-04 | シェブロン フィリップス ケミカル カンパニー エルピー | Selective hydrogenation catalyst and method for producing and using the same |
US8884072B2 (en) | 2010-11-12 | 2014-11-11 | Dow Technology Investments Llc | Mitigation of fouling in hydroformylation processes by water addition |
US8513468B2 (en) | 2010-12-30 | 2013-08-20 | Eastman Chemical Company | Process for removing degradation acids from hydroformylation reactions |
SA112330271B1 (en) | 2011-04-18 | 2015-02-09 | داو تكنولوجى انفستمنتس ال ال سى | Mitigation Of Fouling In Hydroformylation Processes By Water Addition |
CN102826976B (en) * | 2011-06-17 | 2015-04-15 | 中国石油化工股份有限公司 | Method for adjusting ratio of butyraldehyde to isobutyraldehyde in propylene catalytic preparation |
KR101411040B1 (en) * | 2012-05-24 | 2014-06-27 | 주식회사 엘지화학 | Catalyst compositions for hydroformylation reaction and hydroformylation process using the same |
US8710276B2 (en) | 2012-05-24 | 2014-04-29 | Lg Chem, Ltd. | Catalyst compositions for hydroformylation reaction and hydroformylation process using the same |
US8921608B2 (en) * | 2012-05-31 | 2014-12-30 | Eastman Chemical Company | Catalyst and method having selectivity to isobutyraldehyde via catalyst induction |
US8710275B2 (en) * | 2012-05-31 | 2014-04-29 | Eastman Chemical Company | Catalysts and process for producing aldehydes |
US9174907B2 (en) | 2012-06-04 | 2015-11-03 | Dow Technology Investments Llc | Hydroformylation process |
MY176756A (en) | 2012-09-25 | 2020-08-21 | Dow Technology Investments Llc | Process for stabilizing a phosphite ligand against degradation |
KR102098429B1 (en) | 2012-12-06 | 2020-04-07 | 다우 테크놀로지 인베스트먼츠 엘엘씨. | Hydroformylation process |
WO2015094781A1 (en) | 2013-12-19 | 2015-06-25 | Dow Technology Investments Llc | Hydroformylation process |
CN104725170B (en) | 2013-12-19 | 2019-08-23 | 陶氏技术投资有限责任公司 | Hydroformylation process |
JP6560248B2 (en) | 2014-03-31 | 2019-08-14 | ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー | Hydroformylation process |
US9550179B1 (en) * | 2015-09-09 | 2017-01-24 | Eastman Chemical Company | Hydroformylation catalyst |
KR102000754B1 (en) * | 2017-11-03 | 2019-07-17 | 한국과학기술원 | Bicyclic Bridgehead Phosphoramidite Derivatives, Preparation Method and Uses Thereof |
CN109776294B (en) * | 2017-11-14 | 2022-01-04 | 中国石油化工股份有限公司 | Olefin hydroformylation reaction method |
US10183961B1 (en) * | 2017-11-28 | 2019-01-22 | Eastman Chemical Company | Highly isoselective catalyst for alkene hydroformylation |
US20220143590A1 (en) | 2019-06-27 | 2022-05-12 | Dow Technology Investments Llc | Process to prepare solution from hydroformylation process for precious metal recovery |
KR102686720B1 (en) * | 2019-07-04 | 2024-07-18 | 주식회사 엘지화학 | Catalyst composition for hydroformylation and method for ptrparing aldehyde |
US11976017B2 (en) | 2019-12-19 | 2024-05-07 | Dow Technology Investments Llc | Processes for preparing isoprene and mono-olefins comprising at least six carbon atoms |
JP2022547456A (en) * | 2020-07-30 | 2022-11-14 | エルジー・ケム・リミテッド | Hydroformylation method |
CN114426469B (en) * | 2020-09-28 | 2024-07-09 | 中国石油化工股份有限公司 | Method for preparing alcohol and aldehyde by hydroformylation of olefin |
CN113996347A (en) * | 2021-12-06 | 2022-02-01 | 万华化学集团股份有限公司 | Hydroformylation catalyst composition and method for preparing hydroxy butyraldehyde by allyl alcohol hydroformylation reaction |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4873213A (en) * | 1988-08-12 | 1989-10-10 | Puckette Thomas A | Low pressure rhodium catalyzed hydroformylation of olefins |
US5840647A (en) * | 1997-09-15 | 1998-11-24 | Eastman Chemical Company | Hydroformylation process using novel phosphite-metal catalyst system |
US6265620B1 (en) * | 1997-03-27 | 2001-07-24 | Mitsubishi Chemical Corporation | Process for producing aldehydes |
US20030144559A1 (en) * | 1999-11-12 | 2003-07-31 | Degussa Ag | Process for the preparation of aldehydes from olefins by hydroformylation |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4599206A (en) * | 1984-02-17 | 1986-07-08 | Union Carbide Corporation | Transition metal complex catalyzed reactions |
US4668651A (en) * | 1985-09-05 | 1987-05-26 | Union Carbide Corporation | Transition metal complex catalyzed processes |
US4608239A (en) * | 1985-12-06 | 1986-08-26 | Eastman Kodak Company | Removal of iron pentacarbonyl from gaseous streams containing carbon monoxide |
US4912155A (en) * | 1987-02-27 | 1990-03-27 | Ethyl Corporation | Antioxidant aromatic fluorophosphites |
US4867907A (en) | 1987-07-27 | 1989-09-19 | Ethyl Corporation | Aqueous aryl fluorophosphite suspension |
DE3923492A1 (en) | 1989-05-20 | 1991-02-07 | Hoechst Ag | New phosphonous acid aryl ester(s) |
EP0416321B1 (en) | 1989-08-28 | 1994-11-09 | Chisso Corporation | Crystalline polyolefin composition |
US5276166A (en) * | 1991-12-30 | 1994-01-04 | Ppg Industries, Inc. | Polyazetidinol containing materials |
US5721403A (en) * | 1996-03-29 | 1998-02-24 | Otis Elevator Company | Selective circuit bypass for elevator system |
JPH09268152A (en) * | 1996-04-03 | 1997-10-14 | Mitsubishi Chem Corp | Production of aldehydes |
DE19810794A1 (en) * | 1998-03-12 | 1999-09-16 | Basf Ag | Catalyst useful for hydroformylation of ethylenically unsaturated compounds to produce aldehydes |
US6130358A (en) * | 1998-10-16 | 2000-10-10 | Eastman Chemical Company | Hydroformylation process using novel phosphite-metal catalyst system |
US6307107B1 (en) * | 1999-09-20 | 2001-10-23 | E.I. Du Pont De Nemours And Company | Hydroformylation of acyclic monoethylenically unsaturated compounds to corresponding terminal aldehydes |
US6362354B1 (en) * | 2000-11-17 | 2002-03-26 | E. I. Du Pont De Nemours And Company | Phosphonite ligands, catalyst compositions and hydroformylation process utilizing same |
US6437192B1 (en) * | 2000-11-17 | 2002-08-20 | E. I. Du Pont De Nmeours And Company | Hydroformylation of conjugated dienes to alkenals using phosphonite ligands |
US6693219B2 (en) * | 2001-06-02 | 2004-02-17 | Eastman Chemical Company | Epoxide stabilization of fluorophosphite-metal catalyst system in a hydroformylation process |
GB0414998D0 (en) | 2004-07-05 | 2004-08-04 | Rhodia Cons Spec Ltd | Monodonor ligands |
-
2007
- 2007-11-16 US US11/941,217 patent/US7586010B2/en not_active Expired - Fee Related
- 2007-12-06 CN CN200780051503XA patent/CN101610843B/en not_active Expired - Fee Related
- 2007-12-06 EP EP07862566.2A patent/EP2114568B1/en not_active Not-in-force
- 2007-12-06 KR KR1020097012482A patent/KR20090092281A/en not_active Application Discontinuation
- 2007-12-06 WO PCT/US2007/024968 patent/WO2008088495A1/en active Application Filing
- 2007-12-06 ES ES07862566T patent/ES2407825T3/en active Active
- 2007-12-06 JP JP2009542791A patent/JP5175298B2/en not_active Expired - Fee Related
-
2008
- 2008-03-13 TW TW097108925A patent/TWI365767B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4873213A (en) * | 1988-08-12 | 1989-10-10 | Puckette Thomas A | Low pressure rhodium catalyzed hydroformylation of olefins |
US6265620B1 (en) * | 1997-03-27 | 2001-07-24 | Mitsubishi Chemical Corporation | Process for producing aldehydes |
US5840647A (en) * | 1997-09-15 | 1998-11-24 | Eastman Chemical Company | Hydroformylation process using novel phosphite-metal catalyst system |
US20030144559A1 (en) * | 1999-11-12 | 2003-07-31 | Degussa Ag | Process for the preparation of aldehydes from olefins by hydroformylation |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009085161A1 (en) * | 2007-12-26 | 2009-07-09 | Eastman Chemical Company | Phosphonite containing catalysts for hydroformylation processes |
US7872157B2 (en) | 2007-12-26 | 2011-01-18 | Eastman Chemical Company | Phosphonite containing catalysts for hydroformylation processes |
US7872156B2 (en) | 2007-12-26 | 2011-01-18 | Eastman Chemical Company | Fluorophosphite containing catalysts for hydroformylation processes |
JP2011507955A (en) * | 2007-12-26 | 2011-03-10 | イーストマン ケミカル カンパニー | Phosphonite-containing catalysts for hydroformylation processes |
US7928267B1 (en) | 2009-06-22 | 2011-04-19 | Eastman Chemical Company | Phosphite containing catalysts for hydroformylation processes |
JP2013515061A (en) * | 2009-12-22 | 2013-05-02 | ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー | Control of normal: isoaldehyde ratio in mixed ligand hydroformylation process |
CN102741209A (en) * | 2009-12-22 | 2012-10-17 | 陶氏技术投资有限责任公司 | Controlling the normal:iso aldehyde ratio in a mixed ligand hydroformylation process by controlling the olefin partial pressure |
EP2581362A1 (en) * | 2009-12-22 | 2013-04-17 | Dow Technology Investments LLC | Controlling the normal:iso aldehyde ratio in a mixed ligand hydroformylation process |
WO2011087696A1 (en) * | 2009-12-22 | 2011-07-21 | Dow Technology Investments Llc | Controlling the normal:iso aldehyde ratio in a mixed ligand hydroformylation process by controlling the olefin partial pressure |
US8598389B2 (en) | 2009-12-22 | 2013-12-03 | Dow Technology Investments | Controlling the normal:iso aldehyde ratio in a mixed ligand hydroformylation process by controlling the syngas partial pressure |
US8598390B2 (en) | 2009-12-22 | 2013-12-03 | Dow Technology Investments Llc | Controlling the normal:ISO aldehyde ratio in a mixed ligand hydroformylation process |
US8664451B2 (en) | 2009-12-22 | 2014-03-04 | Dow Technology Investments Llc | Controlling the normal:ISO aldehyde ratio in a mixed ligand hydroformylation process by controlling the olefin partial pressure |
CN103951550A (en) * | 2009-12-22 | 2014-07-30 | 陶氏技术投资有限责任公司 | Controlling the normal:iso aldehyde ratio in a mixed ligand hydroformylation process by controlling the olefin partial pressure |
EP2516373B1 (en) | 2009-12-22 | 2016-09-21 | Dow Technology Investments LLC | Controlling the normal : iso aldehyde ratio in a mixed ligand hydroformylation process |
EP2516373B2 (en) † | 2009-12-22 | 2020-08-12 | Dow Technology Investments LLC | Controlling the normal : iso aldehyde ratio in a mixed ligand hydroformylation process |
EP3438112A1 (en) * | 2017-07-31 | 2019-02-06 | Evonik Degussa GmbH | Ligand having an o p o bridge between two anthracentriol building blocks |
Also Published As
Publication number | Publication date |
---|---|
EP2114568B1 (en) | 2013-05-08 |
CN101610843B (en) | 2013-05-22 |
JP2010513017A (en) | 2010-04-30 |
KR20090092281A (en) | 2009-08-31 |
TWI365767B (en) | 2012-06-11 |
CN101610843A (en) | 2009-12-23 |
US20080154067A1 (en) | 2008-06-26 |
TW200922690A (en) | 2009-06-01 |
JP5175298B2 (en) | 2013-04-03 |
US7586010B2 (en) | 2009-09-08 |
ES2407825T3 (en) | 2013-06-14 |
EP2114568A1 (en) | 2009-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7586010B2 (en) | Phosphonite-containing catalysts for hydroformylation processes | |
EP2240275B1 (en) | Fluorophosphite containing catalysts for hydroformylation processes | |
US5840647A (en) | Hydroformylation process using novel phosphite-metal catalyst system | |
EP2445920B1 (en) | Phosphite containing catalysts for hydroformylation processes | |
US6831035B2 (en) | Stabilization of fluorophosphite-containing catalysts | |
US6130358A (en) | Hydroformylation process using novel phosphite-metal catalyst system | |
WO2010030339A1 (en) | Acetylene tolerant hydroformylation catalysts | |
US7872157B2 (en) | Phosphonite containing catalysts for hydroformylation processes | |
WO2022072185A1 (en) | Propylene hydroformylation processes using bisphosphine ligands as catalysts | |
WO2013025363A1 (en) | Amido-fluorophosphite compounds and catalysts | |
MXPA01003134A (en) | Hydroformylation process using chlorophosphite-metal catalyst system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780051503.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07862566 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3818/DELNP/2009 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020097012482 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2009542791 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007862566 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: PI0721110 Country of ref document: BR Free format text: APRESENTE OS DOCUMENTOS DE CESSAO DO DIREITO DE PRIORIDADE REFERENTE AS PRIORIDADES "US 11/670,628" DE 02/02/2007 E "US 11/941,217" DE 16/11/2007, REIVINDICADAS NA PUBLICACAO INTERNACIONAL WO 2008/088495 DE 24/07/2008, SENDO QUE FOI APRESENTADO NA PETICAO NO. 020090060663 DE 19/06/2009 APENAS O DOCUMENTO DE CESSAO DO DIREITO DE PRIORIDADE REFERENTE A PRIORIDADE "US 60/871,158" DE 21/12/2006. |
|
ENPW | Started to enter national phase and was withdrawn or failed for other reasons |
Ref document number: PI0721110 Country of ref document: BR Free format text: PEDIDO RETIRADO EM RELACAO AO BRASIL POR NAO ATENDER AS DETERMINACOES REFERENTES A ENTRADA DO PEDIDO NA FASE NACIONAL E POR NAO CUMPRIMENTO DA EXIGENCIA FORMULADA NA RPI NO 2252 DE 05/03/2014. |