WO2008085659A1 - Methods for oligomerizing olefins with chromium pyridine ether catalysts - Google Patents
Methods for oligomerizing olefins with chromium pyridine ether catalysts Download PDFInfo
- Publication number
- WO2008085659A1 WO2008085659A1 PCT/US2007/087456 US2007087456W WO2008085659A1 WO 2008085659 A1 WO2008085659 A1 WO 2008085659A1 US 2007087456 W US2007087456 W US 2007087456W WO 2008085659 A1 WO2008085659 A1 WO 2008085659A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- thf
- optionally substituted
- borate
- aryl
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 84
- 239000003054 catalyst Substances 0.000 title claims abstract description 67
- 150000001336 alkenes Chemical class 0.000 title claims abstract description 44
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 title claims description 27
- 230000003606 oligomerizing effect Effects 0.000 title description 4
- INGGGNUCWJHFKD-UHFFFAOYSA-N chromium;pyridine Chemical compound [Cr].C1=CC=NC=C1 INGGGNUCWJHFKD-UHFFFAOYSA-N 0.000 title description 2
- -1 pyridyl ether compound Chemical class 0.000 claims abstract description 160
- 239000000203 mixture Substances 0.000 claims abstract description 64
- 150000001875 compounds Chemical class 0.000 claims abstract description 56
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 claims abstract description 34
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000005977 Ethylene Substances 0.000 claims abstract description 32
- 238000006384 oligomerization reaction Methods 0.000 claims abstract description 27
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 claims abstract description 25
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000003446 ligand Substances 0.000 claims description 100
- 239000012190 activator Substances 0.000 claims description 81
- 229910052751 metal Inorganic materials 0.000 claims description 54
- 239000002184 metal Substances 0.000 claims description 51
- 125000003118 aryl group Chemical group 0.000 claims description 47
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 43
- 239000002243 precursor Substances 0.000 claims description 43
- 239000003153 chemical reaction reagent Substances 0.000 claims description 29
- 125000005842 heteroatom Chemical group 0.000 claims description 29
- 239000001257 hydrogen Substances 0.000 claims description 28
- 229910052739 hydrogen Inorganic materials 0.000 claims description 28
- 125000000217 alkyl group Chemical group 0.000 claims description 27
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 26
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 25
- 238000006243 chemical reaction Methods 0.000 claims description 24
- 125000001072 heteroaryl group Chemical group 0.000 claims description 23
- 230000008569 process Effects 0.000 claims description 21
- 125000004122 cyclic group Chemical group 0.000 claims description 19
- 150000002431 hydrogen Chemical class 0.000 claims description 16
- 125000003545 alkoxy group Chemical group 0.000 claims description 15
- 229910052736 halogen Inorganic materials 0.000 claims description 14
- 150000002367 halogens Chemical class 0.000 claims description 14
- 230000007935 neutral effect Effects 0.000 claims description 14
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 12
- 125000004104 aryloxy group Chemical group 0.000 claims description 11
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 11
- 125000000707 boryl group Chemical group B* 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 10
- 150000003568 thioethers Chemical class 0.000 claims description 10
- 229910052783 alkali metal Inorganic materials 0.000 claims description 9
- 150000001340 alkali metals Chemical class 0.000 claims description 9
- 125000004414 alkyl thio group Chemical group 0.000 claims description 9
- 150000004820 halides Chemical class 0.000 claims description 9
- 125000004404 heteroalkyl group Chemical group 0.000 claims description 9
- 125000003107 substituted aryl group Chemical group 0.000 claims description 9
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 125000005110 aryl thio group Chemical group 0.000 claims description 7
- 239000004305 biphenyl Substances 0.000 claims description 7
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 claims description 7
- 150000002170 ethers Chemical class 0.000 claims description 6
- 229930195733 hydrocarbon Natural products 0.000 claims description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 6
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 claims description 6
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 5
- 150000002430 hydrocarbons Chemical class 0.000 claims description 5
- CPOFMOWDMVWCLF-UHFFFAOYSA-N methyl(oxo)alumane Chemical group C[Al]=O CPOFMOWDMVWCLF-UHFFFAOYSA-N 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 claims description 4
- 150000007942 carboxylates Chemical class 0.000 claims description 4
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 4
- 150000001993 dienes Chemical class 0.000 claims description 4
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 4
- 239000013638 trimer Substances 0.000 claims description 4
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 claims description 3
- OBETXYAYXDNJHR-UHFFFAOYSA-N 2-Ethylhexanoic acid Chemical compound CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 claims description 3
- UQRONKZLYKUEMO-UHFFFAOYSA-N 4-methyl-1-(2,4,6-trimethylphenyl)pent-4-en-2-one Chemical group CC(=C)CC(=O)Cc1c(C)cc(C)cc1C UQRONKZLYKUEMO-UHFFFAOYSA-N 0.000 claims description 3
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 3
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 claims description 3
- 125000005595 acetylacetonate group Chemical group 0.000 claims description 3
- SHZIWNPUGXLXDT-UHFFFAOYSA-N caproic acid ethyl ester Natural products CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 claims description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 3
- MJSNUBOCVAKFIJ-LNTINUHCSA-N chromium;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Cr].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O MJSNUBOCVAKFIJ-LNTINUHCSA-N 0.000 claims description 3
- PBGGNZZGJIKBMJ-UHFFFAOYSA-N di(propan-2-yl)azanide Chemical compound CC(C)[N-]C(C)C PBGGNZZGJIKBMJ-UHFFFAOYSA-N 0.000 claims description 3
- VURFVHCLMJOLKN-UHFFFAOYSA-N diphosphane Chemical compound PP VURFVHCLMJOLKN-UHFFFAOYSA-N 0.000 claims description 3
- 125000000592 heterocycloalkyl group Chemical group 0.000 claims description 3
- 125000001145 hydrido group Chemical group *[H] 0.000 claims description 3
- 150000002823 nitrates Chemical class 0.000 claims description 3
- 150000003891 oxalate salts Chemical class 0.000 claims description 3
- SIOXPEMLGUPBBT-UHFFFAOYSA-M picolinate Chemical compound [O-]C(=O)C1=CC=CC=N1 SIOXPEMLGUPBBT-UHFFFAOYSA-M 0.000 claims description 3
- 125000005346 substituted cycloalkyl group Chemical group 0.000 claims description 3
- 125000000446 sulfanediyl group Chemical group *S* 0.000 claims description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims description 3
- 150000001845 chromium compounds Chemical class 0.000 abstract description 6
- 239000011651 chromium Substances 0.000 description 98
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 86
- 229910052804 chromium Inorganic materials 0.000 description 30
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 28
- 150000001450 anions Chemical class 0.000 description 22
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 21
- 229910052782 aluminium Inorganic materials 0.000 description 21
- 125000004429 atom Chemical group 0.000 description 19
- 125000004432 carbon atom Chemical group C* 0.000 description 18
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- AQZWEFBJYQSQEH-UHFFFAOYSA-N 2-methyloxaluminane Chemical compound C[Al]1CCCCO1 AQZWEFBJYQSQEH-UHFFFAOYSA-N 0.000 description 16
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 16
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 125000003342 alkenyl group Chemical group 0.000 description 15
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 14
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 150000001768 cations Chemical class 0.000 description 12
- 125000000304 alkynyl group Chemical group 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 239000000178 monomer Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 125000000623 heterocyclic group Chemical group 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 8
- 238000005829 trimerization reaction Methods 0.000 description 8
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 7
- 239000002879 Lewis base Substances 0.000 description 7
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 7
- 230000004913 activation Effects 0.000 description 7
- 229910052796 boron Inorganic materials 0.000 description 7
- 150000007527 lewis bases Chemical class 0.000 description 7
- 239000002841 Lewis acid Substances 0.000 description 6
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 230000003213 activating effect Effects 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 239000012954 diazonium Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-O diazynium Chemical compound [NH+]#N IJGRMHOSHXDMSA-UHFFFAOYSA-O 0.000 description 6
- 235000019439 ethyl acetate Nutrition 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Chemical group C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 150000007517 lewis acids Chemical class 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 239000003039 volatile agent Substances 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 5
- 150000004703 alkoxides Chemical class 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 239000007800 oxidant agent Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 150000003254 radicals Chemical group 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical group C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 4
- 230000002152 alkylating effect Effects 0.000 description 4
- 239000012018 catalyst precursor Substances 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 150000004678 hydrides Chemical group 0.000 description 4
- 239000000543 intermediate Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- ZCSHNCUQKCANBX-UHFFFAOYSA-N lithium diisopropylamide Chemical compound [Li+].CC(C)[N-]C(C)C ZCSHNCUQKCANBX-UHFFFAOYSA-N 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 125000001624 naphthyl group Chemical group 0.000 description 4
- 239000000376 reactant Substances 0.000 description 4
- 229910000104 sodium hydride Inorganic materials 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 239000004711 α-olefin Substances 0.000 description 4
- KAESVJOAVNADME-UHFFFAOYSA-N 1H-pyrrole Natural products C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 3
- JMTMWFZXOIWTLX-UHFFFAOYSA-N 2-pyridin-2-yloxypyridine Chemical compound C=1C=CC=NC=1OC1=CC=CC=N1 JMTMWFZXOIWTLX-UHFFFAOYSA-N 0.000 description 3
- PVZMGWZOXQPFLS-UHFFFAOYSA-N 6-phenylpyridine-2-carbaldehyde Chemical compound O=CC1=CC=CC(C=2C=CC=CC=2)=N1 PVZMGWZOXQPFLS-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical group C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 125000002015 acyclic group Chemical group 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical class B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 150000001844 chromium Chemical class 0.000 description 3
- BOXSCYUXSBYGRD-UHFFFAOYSA-N cyclopenta-1,3-diene;iron(3+) Chemical compound [Fe+3].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 BOXSCYUXSBYGRD-UHFFFAOYSA-N 0.000 description 3
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012968 metallocene catalyst Substances 0.000 description 3
- 229910052752 metalloid Inorganic materials 0.000 description 3
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 3
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 125000000168 pyrrolyl group Chemical group 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000012279 sodium borohydride Substances 0.000 description 3
- 229910000033 sodium borohydride Inorganic materials 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- ICSNLGPSRYBMBD-UHFFFAOYSA-N 2-aminopyridine Chemical compound NC1=CC=CC=N1 ICSNLGPSRYBMBD-UHFFFAOYSA-N 0.000 description 2
- CSDSSGBPEUDDEE-UHFFFAOYSA-N 2-formylpyridine Chemical compound O=CC1=CC=CC=N1 CSDSSGBPEUDDEE-UHFFFAOYSA-N 0.000 description 2
- QUEZEEGOEIPCFS-UHFFFAOYSA-N 2-methyl-6-phenylpyridin-3-ol Chemical compound C1=C(O)C(C)=NC(C=2C=CC=CC=2)=C1 QUEZEEGOEIPCFS-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- CXVSULTXGLIXRN-UHFFFAOYSA-N 7-oxa-5-azabicyclo[4.1.0]hepta-1(6),2,4-triene Chemical compound C1=CN=C2OC2=C1 CXVSULTXGLIXRN-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- AFBPFSWMIHJQDM-UHFFFAOYSA-N N-methylaniline Chemical compound CNC1=CC=CC=C1 AFBPFSWMIHJQDM-UHFFFAOYSA-N 0.000 description 2
- 239000007832 Na2SO4 Substances 0.000 description 2
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical group C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical group C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical group C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical group 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- SIPUZPBQZHNSDW-UHFFFAOYSA-N bis(2-methylpropyl)aluminum Chemical compound CC(C)C[Al]CC(C)C SIPUZPBQZHNSDW-UHFFFAOYSA-N 0.000 description 2
- 229910000085 borane Inorganic materials 0.000 description 2
- 150000001639 boron compounds Chemical class 0.000 description 2
- UJYLYGDHTIVYRI-UHFFFAOYSA-N cadmium(2+);ethane Chemical compound [Cd+2].[CH2-]C.[CH2-]C UJYLYGDHTIVYRI-UHFFFAOYSA-N 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- DMEGYFMYUHOHGS-UHFFFAOYSA-N cycloheptane Chemical compound C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 2
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- MGDOJPNDRJNJBK-UHFFFAOYSA-N ethylaluminum Chemical compound [Al].C[CH2] MGDOJPNDRJNJBK-UHFFFAOYSA-N 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 229910052738 indium Chemical class 0.000 description 2
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Chemical group CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 2
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Chemical group C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 2
- 150000008040 ionic compounds Chemical class 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 150000002738 metalloids Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 125000001792 phenanthrenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C=CC12)* 0.000 description 2
- FVZVCSNXTFCBQU-UHFFFAOYSA-N phosphanyl Chemical group [PH2] FVZVCSNXTFCBQU-UHFFFAOYSA-N 0.000 description 2
- 125000005496 phosphonium group Chemical group 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000010898 silica gel chromatography Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000012312 sodium hydride Substances 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 125000005017 substituted alkenyl group Chemical group 0.000 description 2
- 125000004426 substituted alkynyl group Chemical group 0.000 description 2
- 229930192474 thiophene Chemical group 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- OBAJXDYVZBHCGT-UHFFFAOYSA-N tris(pentafluorophenyl)borane Chemical group FC1=C(F)C(F)=C(F)C(F)=C1B(C=1C(=C(F)C(F)=C(F)C=1F)F)C1=C(F)C(F)=C(F)C(F)=C1F OBAJXDYVZBHCGT-UHFFFAOYSA-N 0.000 description 2
- OLFPYUPGPBITMH-UHFFFAOYSA-N tritylium Chemical compound C1=CC=CC=C1[C+](C=1C=CC=CC=1)C1=CC=CC=C1 OLFPYUPGPBITMH-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- SLMWLQGSBKRPKP-UHFFFAOYSA-N 117584-29-9 Chemical compound NPOPN SLMWLQGSBKRPKP-UHFFFAOYSA-N 0.000 description 1
- NMXLXQGHBSPIDR-UHFFFAOYSA-N 2-(2-methylpropyl)oxaluminane Chemical compound CC(C)C[Al]1CCCCO1 NMXLXQGHBSPIDR-UHFFFAOYSA-N 0.000 description 1
- YVSMQHYREUQGRX-UHFFFAOYSA-N 2-ethyloxaluminane Chemical compound CC[Al]1CCCCO1 YVSMQHYREUQGRX-UHFFFAOYSA-N 0.000 description 1
- FIGYDZCRJFNSDZ-UHFFFAOYSA-N 2-methylpropylboron Chemical compound [B]CC(C)C FIGYDZCRJFNSDZ-UHFFFAOYSA-N 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- RSEBUVRVKCANEP-UHFFFAOYSA-N 2-pyrroline Chemical group C1CC=CN1 RSEBUVRVKCANEP-UHFFFAOYSA-N 0.000 description 1
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 1
- 229910000897 Babbitt (metal) Inorganic materials 0.000 description 1
- BKBFSTAARDXBIR-UHFFFAOYSA-N CCCBCCC Chemical compound CCCBCCC BKBFSTAARDXBIR-UHFFFAOYSA-N 0.000 description 1
- UWKKBEQZACDEBT-UHFFFAOYSA-N CCCC[Mg] Chemical compound CCCC[Mg] UWKKBEQZACDEBT-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000819038 Chichester Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229910019590 Cr-N Inorganic materials 0.000 description 1
- 229910019588 Cr—N Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 238000010499 C–H functionalization reaction Methods 0.000 description 1
- BRDWIEOJOWJCLU-LTGWCKQJSA-N GS-441524 Chemical compound C=1C=C2C(N)=NC=NN2C=1[C@]1(C#N)O[C@H](CO)[C@@H](O)[C@H]1O BRDWIEOJOWJCLU-LTGWCKQJSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical class [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- IZRZBIMBCUEUNV-UHFFFAOYSA-N OCc1cccc(-c2ccccc2)n1 Chemical compound OCc1cccc(-c2ccccc2)n1 IZRZBIMBCUEUNV-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Chemical group C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical group C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- OKJPEAGHQZHRQV-UHFFFAOYSA-N Triiodomethane Natural products IC(I)I OKJPEAGHQZHRQV-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- HXEMAHFTVFVYMX-UHFFFAOYSA-M [Br-].CC[Ca+] Chemical compound [Br-].CC[Ca+] HXEMAHFTVFVYMX-UHFFFAOYSA-M 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 239000012445 acidic reagent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229910052787 antimony Chemical group 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical group [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical group [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 150000001502 aryl halides Chemical class 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- DLGYNVMUCSTYDQ-UHFFFAOYSA-N azane;pyridine Chemical group N.C1=CC=NC=C1 DLGYNVMUCSTYDQ-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical compound CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 1
- KLTWGRFNJPLFDA-UHFFFAOYSA-N benzimidazolide Chemical compound C1=CC=C2[N-]C=NC2=C1 KLTWGRFNJPLFDA-UHFFFAOYSA-N 0.000 description 1
- 229910001627 beryllium chloride Inorganic materials 0.000 description 1
- LWBPNIJBHRISSS-UHFFFAOYSA-L beryllium chloride Substances Cl[Be]Cl LWBPNIJBHRISSS-UHFFFAOYSA-L 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- JKFJJYOIWGFQGI-UHFFFAOYSA-M bromo-bis(2-methylpropyl)alumane Chemical compound [Br-].CC(C)C[Al+]CC(C)C JKFJJYOIWGFQGI-UHFFFAOYSA-M 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 125000005517 carbenium group Chemical group 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000005626 carbonium group Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- OJOSABWCUVCSTQ-UHFFFAOYSA-N cyclohepta-2,4,6-trienylium Chemical compound C1=CC=C[CH+]=C[CH]1 OJOSABWCUVCSTQ-UHFFFAOYSA-N 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000522 cyclooctenyl group Chemical group C1(=CCCCCCC1)* 0.000 description 1
- NLUNLVTVUDIHFE-UHFFFAOYSA-N cyclooctylcyclooctane Chemical group C1CCCCCCC1C1CCCCCCC1 NLUNLVTVUDIHFE-UHFFFAOYSA-N 0.000 description 1
- 125000003493 decenyl group Chemical group [H]C([*])=C([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005070 decynyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C#C* 0.000 description 1
- 238000010537 deprotonation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 125000005131 dialkylammonium group Chemical group 0.000 description 1
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical class B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 1
- WWPSJFCVFWMRBH-UHFFFAOYSA-L dibromoalumane Chemical compound Br[AlH]Br WWPSJFCVFWMRBH-UHFFFAOYSA-L 0.000 description 1
- VWWMOACCGFHMEV-UHFFFAOYSA-N dicarbide(2-) Chemical compound [C-]#[C-] VWWMOACCGFHMEV-UHFFFAOYSA-N 0.000 description 1
- LHCGBIFHSCCRRG-UHFFFAOYSA-N dichloroborane Chemical compound ClBCl LHCGBIFHSCCRRG-UHFFFAOYSA-N 0.000 description 1
- LJSQFQKUNVCTIA-UHFFFAOYSA-N diethyl sulfide Chemical class CCSCC LJSQFQKUNVCTIA-UHFFFAOYSA-N 0.000 description 1
- GGSUCNLOZRCGPQ-UHFFFAOYSA-O diethyl(phenyl)azanium Chemical compound CC[NH+](CC)C1=CC=CC=C1 GGSUCNLOZRCGPQ-UHFFFAOYSA-O 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- FAFYLCKQPJOORN-UHFFFAOYSA-N diethylborane Chemical compound CCBCC FAFYLCKQPJOORN-UHFFFAOYSA-N 0.000 description 1
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 description 1
- GXCQMKSGALTBLC-UHFFFAOYSA-N dihexylmercury Chemical compound CCCCCC[Hg]CCCCCC GXCQMKSGALTBLC-UHFFFAOYSA-N 0.000 description 1
- JLTDJTHDQAWBAV-UHFFFAOYSA-O dimethyl(phenyl)azanium Chemical compound C[NH+](C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-O 0.000 description 1
- GPAYUJZHTULNBE-UHFFFAOYSA-N diphenylphosphine Chemical compound C=1C=CC=CC=1PC1=CC=CC=C1 GPAYUJZHTULNBE-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- GCPCLEKQVMKXJM-UHFFFAOYSA-N ethoxy(diethyl)alumane Chemical compound CCO[Al](CC)CC GCPCLEKQVMKXJM-UHFFFAOYSA-N 0.000 description 1
- OYCNHLAKDKIJIT-UHFFFAOYSA-N ethyl-bis(2-methylpropyl)borane Chemical compound CC(C)CB(CC)CC(C)C OYCNHLAKDKIJIT-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 238000000769 gas chromatography-flame ionisation detection Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical class [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 125000001905 inorganic group Chemical group 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- ICIWUVCWSCSTAQ-UHFFFAOYSA-N iodic acid Chemical class OI(=O)=O ICIWUVCWSCSTAQ-UHFFFAOYSA-N 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical group C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical group C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 239000003041 laboratory chemical Substances 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- CCERQOYLJJULMD-UHFFFAOYSA-M magnesium;carbanide;chloride Chemical compound [CH3-].[Mg+2].[Cl-] CCERQOYLJJULMD-UHFFFAOYSA-M 0.000 description 1
- SCEZYJKGDJPHQO-UHFFFAOYSA-M magnesium;methanidylbenzene;chloride Chemical compound [Mg+2].[Cl-].[CH2-]C1=CC=CC=C1 SCEZYJKGDJPHQO-UHFFFAOYSA-M 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000006263 metalation reaction Methods 0.000 description 1
- BLTAPEIEHGWKKN-UHFFFAOYSA-N methanesulfonate;pyridin-1-ium Chemical compound CS(O)(=O)=O.C1=CC=NC=C1 BLTAPEIEHGWKKN-UHFFFAOYSA-N 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- DVSDBMFJEQPWNO-UHFFFAOYSA-N methyllithium Chemical compound C[Li] DVSDBMFJEQPWNO-UHFFFAOYSA-N 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- JZBZLRKFJWQZHU-UHFFFAOYSA-N n,n,2,4,6-pentamethylaniline Chemical compound CN(C)C1=C(C)C=C(C)C=C1C JZBZLRKFJWQZHU-UHFFFAOYSA-N 0.000 description 1
- QJAIOCKFIORVFU-UHFFFAOYSA-N n,n-dimethyl-4-nitroaniline Chemical compound CN(C)C1=CC=C([N+]([O-])=O)C=C1 QJAIOCKFIORVFU-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000004370 n-butenyl group Chemical group [H]\C([H])=C(/[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- DYFFAVRFJWYYQO-UHFFFAOYSA-N n-methyl-n-phenylaniline Chemical compound C=1C=CC=CC=1N(C)C1=CC=CC=C1 DYFFAVRFJWYYQO-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- 125000005069 octynyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C#C* 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical group C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 125000005968 oxazolinyl group Chemical group 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical class OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-M phenolate Chemical compound [O-]C1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-M 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- NHKJPPKXDNZFBJ-UHFFFAOYSA-N phenyllithium Chemical compound [Li]C1=CC=CC=C1 NHKJPPKXDNZFBJ-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- KBGJIKKXNIQHQH-UHFFFAOYSA-N potassium;methanidylbenzene Chemical compound [K+].[CH2-]C1=CC=CC=C1 KBGJIKKXNIQHQH-UHFFFAOYSA-N 0.000 description 1
- 125000000075 primary alcohol group Chemical group 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- ZVJHJDDKYZXRJI-UHFFFAOYSA-N pyrroline Chemical group C1CC=NC1 ZVJHJDDKYZXRJI-UHFFFAOYSA-N 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- SCABQASLNUQUKD-UHFFFAOYSA-N silylium Chemical class [SiH3+] SCABQASLNUQUKD-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- OUULRIDHGPHMNQ-UHFFFAOYSA-N stibane Chemical compound [SbH3] OUULRIDHGPHMNQ-UHFFFAOYSA-N 0.000 description 1
- 229910000067 stibane Inorganic materials 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical compound [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium group Chemical group [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical class [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 150000003852 triazoles Chemical group 0.000 description 1
- SQBBHCOIQXKPHL-UHFFFAOYSA-N tributylalumane Chemical compound CCCC[Al](CCCC)CCCC SQBBHCOIQXKPHL-UHFFFAOYSA-N 0.000 description 1
- CXKQHHJKHZXXPZ-UHFFFAOYSA-N triethylsilanylium Chemical compound CC[Si+](CC)CC CXKQHHJKHZXXPZ-UHFFFAOYSA-N 0.000 description 1
- LFXVBWRMVZPLFK-UHFFFAOYSA-N trioctylalumane Chemical compound CCCCCCCC[Al](CCCCCCCC)CCCCCCCC LFXVBWRMVZPLFK-UHFFFAOYSA-N 0.000 description 1
- RIOQSEWOXXDEQQ-UHFFFAOYSA-O triphenylphosphanium Chemical compound C1=CC=CC=C1[PH+](C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-O 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- SRSUADNYIFOSLP-UHFFFAOYSA-N tris(2,3,4,5,6,7,8-heptafluoronaphthalen-1-yl)borane Chemical compound FC1=C(F)C(F)=C2C(B(C=3C4=C(F)C(F)=C(F)C(F)=C4C(F)=C(F)C=3F)C=3C4=C(F)C(F)=C(C(=C4C(F)=C(F)C=3F)F)F)=C(F)C(F)=C(F)C2=C1F SRSUADNYIFOSLP-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- HEPBQSXQJMTVFI-UHFFFAOYSA-N zinc;butane Chemical compound [Zn+2].CCC[CH2-].CCC[CH2-] HEPBQSXQJMTVFI-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F11/00—Compounds containing elements of Groups 6 or 16 of the Periodic Table
- C07F11/005—Compounds containing elements of Groups 6 or 16 of the Periodic Table compounds without a metal-carbon linkage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/12—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
- B01J31/14—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
- B01J31/143—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/12—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
- B01J31/14—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
- B01J31/146—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of boron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2204—Organic complexes the ligands containing oxygen or sulfur as complexing atoms
- B01J31/2208—Oxygen, e.g. acetylacetonates
- B01J31/2217—At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/02—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
- C07C2/04—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
- C07C2/06—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
- C07C2/08—Catalytic processes
- C07C2/26—Catalytic processes with hydrides or organic compounds
- C07C2/32—Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/20—Olefin oligomerisation or telomerisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/60—Complexes comprising metals of Group VI (VIA or VIB) as the central metal
- B01J2531/62—Chromium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2531/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- C07C2531/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- C07C2531/12—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
- C07C2531/14—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2531/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- C07C2531/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- C07C2531/22—Organic complexes
Definitions
- This invention relates to the selective oligomehzation (specifically trimerization and/or tetramerization) of olefins (specifically ethylene) using chromium based catalysts.
- the oligomerization of ethylene typically returns a broad distribution of 1 -olefins having an even number of carbon atoms (C 4 , C 6 , C 8 , Cio, etc.). These products range in commercial value, of which 1 -hexene may be the most useful, as it is a comonomer commonly used in the production of commercial ethylene based copolymers.
- 5,137,994 discloses a chromium catalyst formed by the reaction products of bis-triarylsilyl chromates and thhydrocarbylaluminum compounds.
- U.S. Pat. No. 5,198,563 and related patents, issued to Phillips Petroleum Company disclose chromium-containing catalysts containing monodentate amine/amide ligands.
- a chromium catalyst complex formed by contacting an aluminum alkyl or a halogenated aluminum alkyl and a pyrrole- containing compound prior to contacting with a chromium containing compound is disclosed in U.S. Pat. Nos. 5,382,738, 5,438,027, 5,523,507, 5,543,375, and 5,856,257.
- Similar catalyst complexes are also disclosed in EP0416304B1 , EP0608447B1 , EP0780353B1 , and CA2087578.
- EP0537609 discloses a chromium complex containing a coordinating polydentate ligand and an alumoxane.
- CA2115639 discloses a polydentate ligand.
- EP0614865B1 issued to Sumitomo Chemical Co., Ltd., discloses a catalyst prepared by dissolving a chromium compound, a heterocyclic compound having a pyrrole ring or an imidazole ring, and an aluminum compound.
- EP0699648B1 discloses a catalyst obtained by contacting chromium containing compound with a di- or tri-alkyl aluminum hydride, a pyrrole compound or a derivative thereof, and a group 13 (III B) halogen compound.
- WO02/083306A2 discloses a catalyst formed from a chromium source, a substituted phenol, and an organoaluminum compound.
- WO03/004158A2 discloses a catalyst system which includes a chromium source and a ligand comprising a substituted five membered carbocyclic ring or similar derivatives.
- U.S. Pat. No. 5,968,866 discloses a catalyst comprising a chromium complex which contains a coordinating asymmetric tridentate phosphine, arsine, or stibane ligand (hydrocarbyl groups) and an alumoxane.
- Carter et al., Chem. Commun., 2002, pp. 858-859 disclosed an ethylene trimehzation catalyst obtained by contacting a chromium source, ligands bearing ortho- methoxy-substituted aryl groups, and an alkyl alumoxane activator.
- WO02/04119A1 discloses a catalyst comprising a source of chromium, molybdenum, or tungsten, and a ligand containing at least one phosphorus, arsenic, or antimony atom bound to at least one (hetero)hydrocarbyl group.
- Japanese patent application JP 2001187345A2 discloses ethylene trimerization catalysts comprising chromium complexes having ths(pyrazol-1 -yl)methane ligands.
- Additional catalysts useful for oligomehzing olefins include those disclosed in USSN 11/371 ,614; filed March 9, 2006; USSN 11/371 ,983, filed March 9, 2006; and USSN 60/841 ,226, filed August 30, 2006.
- each of the above described catalysts is useful for the trimerization of ethylene, there remains a desire to improve the performance of olefin oligomerization catalysts from the standpoint of productivity and selectivity for oligomers such as 1 -hexene or 1 -octene.
- the present invention provides methods and compositions to produce oligomers of olefins, comprising reacting olefins with a catalyst system under oligomerization conditions.
- the oligomerization reaction can have a selectivity of at least 70 mole percent for the desired oligomer.
- the catalyst system is formed from the combination of:
- R 1 is selected from the group consisting of optionally substituted hydrocarbyl and heteroatom containing hydrocarbyl;
- T is a bridging group of the general formula -(T 1 R 2 R 3 )-, where T is carbon or silicon, R 2 and R 3 are independently selected from the group consisting of hydrogen, halogen, and optionally substituted hydrocarbyl, heteroatom containing hydrocarbyl, silyl, boryl, and combinations thereof, provided that R 2 and R 3 groups may be joined together to form one or more optionally substituted ring systems having from 3-50 non-hydrogen atoms
- R 4 , R 5 , R 6 and R 7 are independently selected from the group consisting of hydrogen, halogen, nitro, and optionally substituted hydrocarbyl and heteroatom containing hydrocarbyl, alkoxy, aryloxy, silyl, boryl, phosphino, amino, alkylthio, arylthio, and combinations thereof, and optionally two or more R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 groups may be joined to form one or more optionally substituted ring systems;
- each L is independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, ether, thioether, carboxylates, thio, 1 ,3- dionates, oxalates, carbonates, nitrates, sulfates, ethers, thioethers and combinations thereof, wherein two or more L groups may be combined in a ring structure having from 3 to 50 non-hydrogen atoms; n
- the activator used in the method of the present invention can be selected from the group consisting of modified methylalumoxane (MMAO), methylalumoxane (MAO), trimethylaluminum (TMA), triisobutyl aluminum (TIBA), polymethylalumoxane-IP (PMAO-IP), N,N-di(n-decyl)-4-n-butyl- anilinium tetrakis(perfluorophenyl)borate, and mixtures thereof.
- MMAO modified methylalumoxane
- MAO methylalumoxane
- TMA trimethylaluminum
- TIBA triisobutyl aluminum
- PMAO-IP polymethylalumoxane-IP
- N,N-di(n-decyl)-4-n-butyl- anilinium tetrakis(perfluorophenyl)borate and mixtures thereof.
- the metal precursor used in the method of the present invention can be selected from the group consisting of (THF) 3 CrMeCI 2 , (THF) 3 CrCI 3 , (MeS) 3 Cr(THF), [ ⁇ TFA ⁇ 2 Cr(OEt 2 )] 2 , (THF) 3 CrPh 3 , (THF) 3 Cr( ⁇ 2 -2,2'-Biphenyl)Br and mixtures thereof.
- the method of the present invention can oligomerize, e.g. trimerize or tetramerize, C 2 to Ci 2 olefins.
- the olefin can be ethylene.
- the oligomerization or ethylene can produce 1 - hexene, 1 -octene, or mixtures thereof.
- the reaction in the method of the present invention can occur in a hydrocarbon solvent.
- Figure 1 illustrates pyhdyl-ether ligands according to embodiments of the invention.
- the inventions disclosed herein include chromium metal complexes and compositions, which are useful as catalysts for the selective oligomerization of olefins, specifically C2 to C12 olefins and especially C2 to C8 olefins, including the thmehzation and/or tetramerization of ethylene.
- an oligomeric material such as a dimer, trimer, or tetramer
- the olefin present in the material is the reacted form of the olefin.
- the active species in a catalytic cycle may comprise the neutral or ionic forms of the catalyst.
- a reactor is any container(s) in which a chemical reaction occurs.
- the new numbering scheme for the Periodic Table Groups is used as set out in CHEMICAL AND ENGINEERING NEWS, 63(5), 27 (1985).
- the phrase "characterized by the formula” is not intended to be limiting and is used in the same way that "comprising” is commonly used.
- the term "independently selected” is used herein to indicate that the groups in question -- e.g., Ri, R2, R3, R 4 , and R 5 -- can be identical or different (e.g., Ri, R2, R3, R 4 , and R 5 may all be substituted alkyls, or Ri and R2 may be a substituted alkyl and R3 may be an aryl, etc.).
- R group will generally have the structure that is recognized in the art as corresponding to R groups having that name.
- compound and complex are generally used interchangeably in this specification, but those of skill in the art may recognize certain compounds as complexes and vice versa.
- catalyst will be understood by those of skill in the art to include either activated or unactivated forms of the molecules the comprise the catalyst, for example, a procatalyst and including complexes and activators or compositions of ligands, metal precursors and activators and optionally including scavengers and the like.
- a catalyst system is defined to be the combination of an activator and a metal ligand complex or the combination of an activator, a ligand and a metal precursor.
- a metal ligand complex is defined to be the product of the combination of a metal precursor and a ligand.
- substituted as in “substituted hydrocarbyl,” “substituted aryl,” “substituted alkyl,” and the like, means that in the group in question (i.e., the hydrocarbyl, alkyl, aryl or other moiety that follows the term), at least one hydrogen atom bound to a carbon atom is replaced with one or more substituent groups such as hydroxy, alkoxy, alkylthio, phosphino, amino, halo, silyl, and the like.
- substituent groups such as hydroxy, alkoxy, alkylthio, phosphino, amino, halo, silyl, and the like.
- substituted alkyl, alkenyl and alkynyl is to be interpreted as “substituted alkyl, substituted alkenyl and substituted alkynyl.”
- optionally substituted alkyl, alkenyl and alkynyl is to be interpreted as “optionally substituted alkyl, optionally substituted alkenyl and optionally substituted alkynyl.”
- saturated refers to the lack of double and triple bonds between atoms of a radical group such as ethyl, cyclohexyl, pyrrolidinyl, and the like.
- unsaturated refers to the presence of one or more double and triple bonds between atoms of a radical group such as vinyl, allyl, acetylide, oxazolinyl, cyclohexenyl, acetyl and the like, and specifically includes alkenyl and alkynyl groups, as well as groups in which double bonds are delocalized, as in aryl and heteroaryl groups as defined below.
- cyclo and cyclic are used herein to refer to saturated or unsaturated radicals containing a single ring or multiple condensed rings.
- Suitable cyclic moieties include, for example, cyclopentyl, cyclohexyl, cyclooctenyl, bicyclooctyl, phenyl, naphthyl, pyrrolyl, furyl, thiophenyl, imidazolyl, and the like.
- cyclic moieties include between 3 and 200 atoms other than hydrogen, between 3 and 50 atoms other than hydrogen or between 3 and 20 atoms other than hydrogen.
- hydrocarbyl refers to hydrocarbyl radicals containing 1 to about 50 carbon atoms, specifically 1 to about 24 carbon atoms, most specifically 1 to about 16 carbon atoms, including branched or unbranched, cyclic or acyclic, saturated or unsaturated species, such as alkyl groups, alkenyl groups, aryl groups, and the like.
- alkyl refers to a branched or unbranched saturated hydrocarbon group typically although not necessarily containing 1 to about 50 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, f-butyl, octyl, decyl, and the like, as well as cycloalkyl groups such as cyclopentyl, cyclohexyl and the like. Generally, although again not necessarily, alkyl groups herein may contain 1 to about 20 carbon atoms.
- alkenyl refers to a branched or unbranched, cyclic or acyclic hydrocarbon group typically, although not necessarily, containing 2 to about 50 carbon atoms and at least one double bond, such as ethenyl, n-propenyl, isopropenyl, n-butenyl, isobutenyl, octenyl, decenyl, and the like. Generally, although again not necessarily, alkenyl groups herein contain 2 to about 20 carbon atoms.
- alkynyl refers to a branched or unbranched, cyclic or acyclic hydrocarbon group typically although not necessarily containing 2 to about 50 carbon atoms and at least one triple bond, such as ethynyl, n-propynyl, isopropynyl, n-butynyl, isobutynyl, octynyl, decynyl, and the like. Generally, although again not necessarily, alkynyl groups herein may have 2 to about 20 carbon atoms.
- aromatic is used in its usual sense, including unsaturation that is essentially delocalized across several bonds around a ring.
- aryl refers to a group containing an aromatic ring.
- Aryl groups herein include groups containing a single aromatic ring or multiple aromatic rings that are fused together, linked covalently, or linked to a common group such as a methylene or ethylene moiety. More specific aryl groups contain one aromatic ring or two or three fused or linked aromatic rings, e.g., phenyl, naphthyl, biphenyl, anthracenyl, or phenanthrenyl.
- aryl substituents include 1 to about 200 atoms other than hydrogen, typically 1 to about 50 atoms other than hydrogen, and specifically 1 to about 20 atoms other than hydrogen.
- multi-ring moieties are substituents and in such embodiments the multi-ring moiety can be attached at an appropriate atom.
- naphthyl can be 1 -naphthyl or 2-naphthyl;
- anthracenyl can be 1- anthracenyl, 2-anthracenyl or 9-anthracenyl;
- phenanthrenyl can be 1 - phenanthrenyl, 2-phenanthrenyl, 3-phenanthrenyl, 4-phenanthrenyl, or 9- phenanthrenyl.
- alkoxy intends an alkyl group bound through a single, terminal ether linkage; that is, an "alkoxy" group may be represented as -O-alkyl where alkyl is as defined above.
- aryloxy is used in a similar fashion, and may be represented as -O-aryl, with aryl as defined below.
- hydroxy refers to -OH.
- alkylthio intends an alkyl group bound through a single, terminal thioether linkage; that is, an "alkylthio" group may be represented as -S-alkyl where alkyl is as defined above.
- arylthio is used similarly, and may be represented as -S-aryl, with aryl as defined below.
- mercapto refers to -SH.
- halo and halogen are used in the conventional sense to refer to a chloro, bromo, fluoro or iodo radical.
- heterocycle and “heterocyclic” refer to a cyclic radical, including ring-fused systems, including heteroaryl groups as defined below, in which one or more carbon atoms in a ring is replaced with a heteroatom - that is, an atom other than carbon, such as nitrogen, oxygen, sulfur, phosphorus, boron or silicon.
- heterocycles and heterocyclic groups include saturated and unsaturated moieties, including heteroaryl groups as defined below.
- heterocycles include pyridine, pyrrolidine, pyrroline, furan, tetrahydrofuran, thiophene, imidazole, oxazole, thiazole, indole, and the like, including any isomers of these. Additional heterocycles are described, for example, in Alan R. Katritzky, Handbook of Heterocyclic Chemistry, Pergammon Press, 1985, and in Comprehensive Heterocyclic Chemistry, A.R. Katritzky et al., eds., Elsevier, 2d. ed., 1996.
- the term "metallocycle” refers to a heterocycle in which one or more of the heteroatoms in the ring or rings is a metal.
- heteroaryl refers to an aryl radical that includes one or more heteroatoms in the aromatic ring.
- Specific heteroaryl groups include groups containing heteroaromatic rings such as thiophene, pyridine, pyrazine, isoxazole, pyrazole, pyrrole, furan, thiazole, oxazole, imidazole, isothiazole, oxadiazole, triazole, and benzo-fused analogues of these rings, such as indole, carbazole, benzofuran, benzothiophene and the like.
- heteroalkyl refers to an alkyl substituent that is heteroatom-containing.
- heteroatom-containing introduces a list of possible heteroatom-containing groups, it is intended that the term apply to every member of that group. That is, the phrase “heteroatom-containing alkyl, alkenyl and alkynyl” is to be interpreted as “heteroatom-containing alkyl, heteroatom-containing alkenyl and heteroatom-containing alkynyl.”
- divalent as in “divalent hydrocarbyl”, “divalent alkyl”, “divalent aryl” and the like, is meant that the hydrocarbyl, alkyl, aryl or other moiety is bonded at two points to atoms, molecules or moieties with the two bonding points being covalent bonds.
- silyl refers to the -SiZ 1 Z 2 Z 3 radical, where each of Z 1 , Z 2 , and Z 3 is independently selected from the group consisting of hydrogen and optionally substituted alkyl, alkenyl, alkynyl, heteroatom- containing alkyl, heteroatom-containing alkenyl, heteroatom-containing alkynyl, aryl, heteroaryl, alkoxy, aryloxy, amino, silyl and combinations thereof.
- boryl refers to the -BZ 1 Z 2 group, where each of Z 1 and Z 2 is as defined above.
- phosphino refers to the group -PZ 1 Z 2 , where each of Z 1 and Z 2 is as defined above.
- phosphine refers to the group PZ 1 Z 2 Z 3 , where each of Z 1 , Z 3 and Z 2 is as defined above.
- amino is used herein to refer to the group -NZ 1 Z 2 , where each of Z 1 and Z 2 is as defined above.
- amine is used herein to refer to the group :NZ 1 Z 2 Z 3 , where each of Z 1 , Z 2 and Z 3 is as defined above.
- This invention relates to methods for selectively oligomerizing (e.g., trimerizing and/or tetramerizing) C2 to C12 olefins, specifically ethylene, comprising reacting a catalytic composition or compound(s), optionally with one or more activators, with the olefin.
- selective oligomerization refers to producing the desired oligomer with a selectivity of the reaction being at least 70 mol%, more specifically at least 80 mol% of oligomer, with the possibility that an acceptable amount of polymer is present, but with the preference that no polymer is present in the product.
- less than 20 weight % of polymer is present, specifically less than 5 weight %, more specifically less than 2 weight %, based upon the total weight of monomer converted to oligomers and polymers, where a polymer is defined to mean a molecule comprising more than 100 mers.
- selective oligomerization refers to producing two desired oligomers, with the selectivity of the two desired oligomers summing to at least 80% by sum of the mole % of the desired oligomers.
- this invention relates to a method to trimerize or tetramehze a C 2 to Ci 2 olefin wherein the method produces at least 70 % selectivity for the desired oligomer(s) (specifically at least 80%, specifically at least 85%, specifically at least 90 %, specifically at least 95 %, specifically at least 98%, specifically at least 99%, specifically 100%), calculated based upon the amount (mol %) of the desired oligomer produced relative to the total yield of product(s); and at least 70% of the olefin monomer reacts to form product (specifically at least 80%, specifically at least 85%, specifically at least 90 %, specifically at least 95 %, specifically at least 98%, specifically at least 99%, specifically 100%).
- This invention also relates to novel metal ligand complexes and or novel combinations of specific ligands disclosed herein and metal precursors.
- the methods of this invention specifically refer to contacting the desired monomers with a metal ligand complex or a combination of a ligand and a metal precursor (and optional activators) to form the desired oligomer.
- Preferred ligands useful in the present invention may be characterized by the general formula:
- R 1 is selected from the group consisting of optionally substituted hydrocarbyl and heteroatom containing hydrocarbyl;
- the presence of one solid line and one dashed line between any pair of atoms is intended to indicate that the bond in question may be a single bond or a double bond, or a bond with bond order intermediate between single and double, such as the delocalized bonding in an aromatic ring.
- the pyridyl-ether ligands in this embodiment can be prepared according to the procedures known to those of ordinary skill in the art, for example, as illustrated by the reaction scheme given in Scheme 1 where R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 , are as defined above .
- reaction to produce a pyridine ether ligand where R 2 and R 3 is hydrogen, while R 1 is an optionally substituted alkyl, aryl, or heteroaryl group can be performed in three general reaction steps.
- a pyridine aldehyde can be reacted with sodium borohydride (NaBH 4 ) and methanol in a reduction reaction, replacing the aldehyde group with a primary alcohol group.
- the pyridine alcohol can then be reacted with methansulfonyl chloride (MsCI) and diispropylethylamine (DIEA) in methylene chloride to produce the mesylated pyridine derivative.
- MsCI methansulfonyl chloride
- DIEA diispropylethylamine
- the third reaction step installs the R 1 group through a displacement/condensation reaction.
- an R 1 - containing alcohol is de-protonated with sodium hydride (NaH) in DMF.
- NaH sodium hydride
- the mesylated pyridine is then added and the mesyl-group is displaced by the R 1 - containing alkoxide.
- pyridine ether ligands may be synthesized through a condensation of the pyridine aldehyde with R 3 M.
- R 3 M is a nucleophile such as an alkylating, arylating or hydrogenating reagent and M is a metal such as a main group metal, or a metalloid such as boron.
- the alkylating, arylating or hydrogenating reagent may be a Grignard, alkyl- or aryl-lithium or borohydride reagent.
- step 2 Further modification with another alkylating/arylating reagent as in step 2 provides pyridine ethers where R 2 is hydrogen while R 1 and R 3 are alkyl, aryl, or heteroaryl groups.
- R 2 is hydrogen while R 1 and R 3 are alkyl, aryl, or heteroaryl groups.
- R 1 and R 3 are alkyl, aryl, or heteroaryl groups.
- An example of each type of pyridyl ether ligand synthesis is given in Examples 1 , 2 and 3, respectively, below.
- the ligand used in various embodiments of the present invention can be selected from the group consisting of the pyridyl-ether ligands shown below.
- the desired ligand can be combined with a Cr atom, ion, compound or other Cr precursor compound, and in some embodiments the present invention encompasses compositions that include any of the above-mentioned ligands in combination with an appropriate Cr precursor and an optional activator.
- the Cr precursor can be an activated Cr precursor, which refers to a Cr precursor (described below) that has been combined or reacted with an activator (described below) prior to combination or reaction with the ancillary ligand.
- the invention provides compositions that include such combinations of ligand and Cr atom, ion, compound or precursor.
- the ligands are combined with a Cr compound or precursor and the product of such combination is not determined, if a product forms.
- the ligand may be added to a reaction vessel at the same time as the Cr precursor compound along with the reactants, activators, scavengers, etc.
- the ligand can be modified prior to addition to or after the addition of the Cr precursor, e.g., through a deprotonation reaction or some other modification.
- the Cr metal precursor compounds may be characterized by the general formula Cr(L) n where L is an organic group, an inorganic group, or an anionic atom; and n is an integer of 1 to 6, and when n is not less than 2, L may be the same or different from each other.
- Each L is a ligand independently selected from the group consisting of hydrogen, halogen, optionally substituted alkyl, heteroalkyl, allyl, diene, alkenyl, heteroalkenyl, alkynyl, heteroalkynyl, aryl, heteroaryl, alkoxy, aryloxy, boryl, silyl, amino, phosphino, ether, thioether, phosphine, amine, carboxylate, alkylthio, arylthio,
- L groups are joined into a ring structure.
- One or more of the ligands L may be ionically bonded to Cr and, for example, L may be a non-coordinated or loosely coordinated or weakly coordinated anion (e.g., L may be selected from the group consisting of those anions described below in the conjunction with the activators). See Marks et al., Chem. Rev. 100, pp 1391 -1434 (2000) for a detailed discussion of these weak interactions.
- the chromium precursors may be monomeric, dimeric or higher orders thereof.
- the ligand may be mixed with a suitable metal precursor compound prior to or simultaneously with allowing the mixture to be contacted with the reactants (e.g., monomers).
- the ligand to metal precursor compound ratio can be in the range of about 0.1 :1 to about 10:1 , more specifically in the range of about 0.5:1 to about 2:1 , and even more specifically about 1 :1.
- the ligand (or optionally a modified ligand as discussed above) is mixed with a suitable Cr precursor (and optionally other components, such an activator, or a reagent to exchange L groups on the chromium after contact between the chromium precursor and the ligand; e.g., Li(acac)) prior to or simultaneously with allowing the mixture to be contacted with the reactants (e.g., monomers).
- a Cr-ligand complex may be formed, which may itself be an active catalyst or may be transformed into a catalyst upon activation.
- the Cr precursor is contacted with other ligands, then activators, then monomers.
- the ligand will be mixed with a suitable metal precursor prior to or simultaneous with allowing the mixture to be contacted to the reactants.
- a metal- ligand complex may be formed.
- the metal-ligand complex may take the form of monomeric complexes, dimers, trimers or higher orders thereof or there may be two or more metal atoms that are bridged by one or more ligands.
- two or more ligands may coordinate to a single metal atom.
- the exact nature of the metal-ligand complex(es) formed depends on the chemistry of the ligand and the method of combining the metal precursor and ligand, such that a distribution of metal-ligand complexes may form with the number of ligands bound to the metal being greater than, equal to or less than the number of equivalents of ligands added relative to an equivalent of metal precursor.
- the ligand may, in some embodiments, be modified on binding to the metal, for example through a C-H activation reaction leading to a Cr-carbon bond, such as, for example, ortho-metallation of an arene moiety.
- a molecule of ethylene or another olefin for example, 1 -hexene may insert into the aforementioned ortho-metallated arene.
- Cr-ligand complexes can take a number of different coordination modes.
- General examples of possible coordination modes include those characterized by the following general formulas:
- J represents the pyridine ring.
- J' represents the pyridine ring where the pyridine nitrogen is bonded to Cr through a dative bond, and another atom is bonded to the Cr through a covalent bond (e.g., orthometallation of the R 7 substituent).
- the ligands may bind to two chromium metal centers in a bridging fashion (see for example Cotton and Walton, Multiple Bonds Between Metal Atoms 1993, Oxford University Press).
- catalyst systems of this invention may be combined with other catalysts in a single reactor and/or employed in a series of reactors (parallel or serial).
- ligands-metal-precursors combinations and the metal ligand complexes are optionally activated in various ways to yield compositions active for selective ethylene oligomehzation.
- cocatalyst and “activator” are used herein interchangeably and are defined to be any compound which can activate any one of the ligand-metal-precursor- combinations or the metal ligand complexes, described above by converting the combination, complex, or composition into a catalytically active species.
- Non-limiting activators include alumoxanes, aluminum alkyls, other metal or main group alkyl or aryl compounds, ionizing activators, which may be neutral or ionic, Lewis acids, reducing agents, oxidizing agents, and combinations thereof.
- alumoxane activators are utilized as an activator in the compositions useful in the invention.
- Alumoxanes are generally oligomehc compounds containing -AI(R * )-O- sub-units, where R * is an alkyl group.
- Examples of alumoxanes include methylalumoxane (MAO), ethylalumoxane, isobutylalumoxane, and modified methylalumoxanes
- MMAO which include alkyl groups other than methyl such as ethyl, isobutyl, and n-octyl, such as MMAO-3A, PMAO-IP (the latter referring to polymethylalumoxane-IP, manufactured by Akzo-Nobel and meaning an MAO prepared from a non-hydrolytic process).
- Alkylalumoxanes and modified alkylalumoxanes are suitable as catalyst activators, particularly when the abstractable ligand of the catalyst is a halide, alkoxide or amide. Mixtures of different alumoxanes and modified alumoxanes may also be used.
- the activator compounds comprising Lewis-acid activators and in particular alumoxanes are specifically characterized by the following general formulae:
- R a -AI-O R b (R c -AI-O)p-AIR e 2
- R a , R b , R c and R e are, independently a C1-C30 alkyl radical, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and "p" is an integer from 1 to about 50.
- R a , R b , R c and R d are each methyl and "p" is a least 4.
- one or more R a , R b , R c or R e are groups may be halide or alkoxide.
- alumoxane is not a discrete material.
- An alumoxane is generally a mixture of both the linear and cyclic compounds.
- a typical alumoxane will contain free trisubstituted or thalkyl aluminum, bound trisubstituted or trialkyl aluminum, and alumoxane molecules of varying degree of oligomehzation.
- it is preferred that methylalumoxanes contain lower levels of thmethylaluminum. Lower levels of thmethylaluminum can be achieved by reaction of the thmethylaluminum with a Lewis base or by vacuum distillation of the thmethylaluminum or by any other means known in the art.
- the activator is an alumoxane (modified or unmodified)
- some embodiments select the maximum amount of activator at a 5000-fold molar excess Al/Cr over the catalyst precursor.
- the minimum preferred activator-to-catalyst-precursor is a 1 :1 molar ratio. More specifically, the Al/Cr ratio is from 1000:1 to 100:1.
- Alumoxanes may be produced by the hydrolysis of the respective thalkylaluminum compound.
- MMAO may be produced by the hydrolysis of trimethylaluminum and a higher trialkylaluminum such as triisobutylaluminunn.
- MMAO's are generally more soluble in aliphatic solvents and more stable during storage.
- a visually clear methylalumoxane it may be preferable to use a visually clear methylalumoxane.
- a cloudy or gelled alumoxane can be filtered to produce a clear solution or clear alumoxane can be decanted from the cloudy solution.
- Another alumoxane is a modified methyl alumoxane (MMAO) cocatalyst type 3A (commercially available from Akzo Chemicals, Inc. under the trade name Modified Methylalumoxane type 3A, covered under patent number U.S. Pat. No. 5,041 ,584).
- MMAO modified methyl alumoxane
- Aluminum alkyl or organoaluminum compounds which may be utilized as activators (or scavengers) include trimethylaluminum, thethylaluminum, thisobutylaluminum, th-n-hexylaluminum, tri-n- octylaluminum, diisobutylaluminum hydride, ethylaluminum dichlohde, diethylaluminum chloride, diethylaluminum ethoxide and the like.
- the activator includes compounds that may abstract a ligand making the metal complex cationic and providing a charge- balancing non-coordinating or weakly coordinating anion.
- non- coordinating anion means an anion which either does not coordinate to said cation or which is only weakly coordinated to said cation thereby remaining sufficiently labile to be displaced by a Lewis base (for example, a neutral Lewis base).
- an ionizing or stoichiometric activator such as th(n-butyl)ammonium tetrakis(pentafluorophenyl)boron, a tris(pentafluorophenyl)boron metalloid precursor or a tris(heptafluoronaphthyl)boron metalloid precursor, polyhalogenated heteroborane anions (WO98/43983), boric acid (U.S. Pat. No. 5,942,459) or combination thereof. It is also within the scope of this invention to use neutral or ionic activators alone or in combination with alumoxane or modified alumoxane activators.
- Examples of neutral stoichiometric activators include th-substituted boron, tellurium, aluminum, gallium and indium or mixtures thereof.
- the three substituent groups are each independently selected from alkyls, alkenyls, halogen, substituted alkyls, aryls, arylhalides, alkoxy and halides.
- the three groups are independently selected from halogen, mono or multicyclic (including halosubstituted) aryls, alkyls, and alkenyl compounds and mixtures thereof, preferred are alkenyl groups having 1 to 20 carbon atoms, alkyl groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms and aryl groups having 3 to 20 carbon atoms (including substituted aryls).
- the three groups are alkyls having 1 to 4 carbon groups, phenyl, naphthyl or mixtures thereof.
- the three groups are halogenated, specifically fluohnated, aryl groups.
- the neutral stoichiometric activator is tris(perfluorophenyl) boron or tris(perfluoronaphthyl) boron.
- Ionic stoichiometric activator compounds may contain an active proton, or some other cation associated with, but not coordinated to, or only loosely coordinated to, the remaining ion of the ionizing compound.
- Such compounds and the like are described in European publications EP0570982A1 , EP0520732A1 , EP0495375A1 , EP0500944B1 , EP0277003A1 and EP0277004A1 , and U.S. Pat. Nos. 5,153,157, 5,198,401 , 5,066,741 , 5,206,197, 5,241 ,025, 5,384,299 and 5,502,124 and U.S. Pat. App. No. 08/285,380, filed August 3, 1994, all of which are herein fully incorporated by reference.
- Ionic catalysts can be prepared by reacting a Cr compound with some neutral Lewis acids, such as B(C 6 F 6 ) 3 , which upon reaction with the abstractable ligand (X) of the Cr compound forms an anion, such as ([B(C 6 F 5 )S(X)] " ), which stabilizes the cationic Cr species generated by the reaction.
- the catalysts can be prepared with activator components, which are ionic compounds or compositions.
- compounds useful as an activator component in the preparation of the ionic catalyst systems used in the process of this invention comprise a cation, which is optionally a Br ⁇ nsted acid capable of donating a proton, and a compatible non-coordinating anion which is capable of stabilizing the active catalyst species which is formed when the two compounds are combined and said anion will be sufficiently labile to be displaced by olefinic substrates or other neutral Lewis bases such as ethers, nithles and the like.
- anionic coordination complexes comprising a plurality of lipophilic radicals covalently coordinated to and shielding a central charge-bearing metal or metalloid core; and, anions comprising a plurality of boron atoms such as carboranes, metallacarboranes and boranes.
- the stoichiometric activators include a cation and an anion component, and may be represented by the following formula: ) where L is a neutral Lewis base; H is hydrogen; (L-H) + is a Br ⁇ nsted acid; A d ⁇ is a non-coordinating anion having the charge d-; and d is an integer from 1 to 3.
- the cation component, (L-H) d + may include Br ⁇ nsted acids such as protons or protonated Lewis bases or reducible Lewis acids capable of protonating or abstracting a moiety, such as an alkyl or aryl, from the bulky ligand chromium catalyst precursor, resulting in a cationic transition metal species.
- the activating cation (L-H) d + may be a Br ⁇ nsted acid, capable of donating a proton to the transition metal catalytic precursor resulting in a transition metal cation, including ammoniums, oxoniums, phosphoniums, silyliums, and mixtures thereof, specifically ammoniums of methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, trimethylamine, triethylamine, N,N-dimethylaniline, methyldiphenylamine, pyridine, p-bromo-N,N-dinnethylaniline, p-nitro-N,N-dimethylaniline, phosphoniums from thethylphosphine, thphenylphosphine, and diphenylphosphine, oxoniums from ethers such as dimethyl ether diethyl ether, tetrahydrofuran and di
- the activating cation (L-H) d + may also be a moiety such as silver, tropylium, carbeniums, ferroceniums and mixtures, specifically carboniums and ferroceniums.
- (L-H) d + can be triphenyl carbonium.
- each Q is a fluohnated hydrocarbyl group having 1 to 20 carbon atoms, more specifically each Q is a fluorinated aryl group, and most specifically each Q is a pentafluoryl aryl group.
- suitable A d ⁇ also include diboron compounds as disclosed in U.S. Pat. No. 5,447,895, which is fully incorporated herein by reference.
- the ionic stoichiometric activator (L-H) d + (A d ⁇ ) is N,N-dimethylanilinium tetra(perfluorophenyl)borate, N,N-dimethylanilinium tetrakis(perfluoronaphthyl)borate, N,N-dimethylanilinium tetrakis(perfluorobiphenyl)borate, N,N-dimethylanilinium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, triphenylcarbenium tetrakis(perfluoronaphthyl)borate, triphenylcarbenium tetrakis(perfluorobiphenyl)borate, triphenylcarbenium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, or triphenylcarbenium tetra(perfluorophenyl
- L * — H) + cations are N,N-dialkylanilinium cations, such as HNMe2Ph + , substituted N,N-dialkylanilinium cations, such as (4-n-Bu- C6H 4 )NH(n-C 6 H 13 )2 + and (4-n-Bu-C 6 H 4 )NH(n-CioH 2 i)2 + and HNMe(Ci 8 H 3 Z) 2 + .
- Specific examples of anions are tetrakis(3,5-bis(trifluoromethyl)phenyl)borate and tetrakis(pentafluorophenyl)borate.
- activation methods using ionizing ionic compounds not containing an active proton but capable of producing an active oligomerization catalyst are also contemplated. Such methods are described in relation to metallocene catalyst compounds in EP0426637A1 , EP0573403A1 and U.S. Patent No. 5,387,568, which are all herein incorporated by reference.
- the process can also employ cocatalyst compounds or activator compounds that are initially neutral Lewis acids but form a cationic metal complex and a noncoordinating anion, or a zwitterionic complex upon reaction with the compounds of this invention.
- tris(pentafluorophenyl) boron or aluminum may act to abstract a hydrocarbyl or hydride ligand to yield a cationic metal complex and stabilizing noncoordinating anion.
- ionizing activators may be employed as described in K ⁇ hn et al. ⁇ J. Organomet. Chem., 683, pp 200-208, (2003)) to, for example, improve solubility.
- the aforementioned cocatalyst compounds can also react with the compounds to produce a neutral, uncharged catalyst capable of selective ethylene oligomerization.
- Lewis acidic reagents such as, for example, alkyl or aryl aluminum or boron compounds, can abstract a Lewis basic ligand such as, for example, THF or Et 2 O, from a compound yielding a coord inatively unsaturated catalyst capable of selective ethylene oligomerization.
- the activator-to-catalyst-precursor molar ratio may be any ratio, however, useful ratios can be from 1000:1 to 1 :1.
- Combinations of two or more activators may also be used in the practice of this invention.
- Another suitable ion forming, activating cocatalyst comprises a salt of a cationic oxidizing agent and a noncoordinating, compatible anion characterized by the general formula:
- OX e+ is a cationic oxidizing agent having a charge of e+; e is an integer from 1 to 3; d is an integer from 1 to 3, and Ad " is as previously defined.
- cationic oxidizing agents include: ferrocenium, hydrocarbyl-substituted ferrocenium, Ag + , or Pb +2 .
- Preferred embodiments of A d ⁇ are those anions previously defined with respect to the Br ⁇ nsted acid containing activators, especially tetrakis(pentafluorophenyl)borate.
- activators or compounds useful in an oligomerization reaction may be used. These compounds may be activators in some contexts, but may also serve other functions in the reaction system, such as alkylating a metal center or scavenging impurities. These compounds are within the general definition of "activator,” but are not considered herein to be ion-forming activators.
- G 13 is selected from the group consisting of B, Al, Ga, In, and combinations thereof, p is 0, 1 or 2
- each R 50 is independently selected from the group consisting of hydrogen, halogen, and optionally substituted alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, aryl, heteroaryl, and combinations thereof
- each D is independently selected from the group consisting of halogen, hydrogen, alkoxy, aryloxy, amino, mercapto, alkylthio, arylthio, phosphino and combinations thereof.
- the group 13 activator is an oligomehc or polymeric alumoxane compound, such as methylalumoxane and the known modifications thereof. See, for example, Barron, "Alkylalumoxanes, Synthesis, Structure and Reactivity", pp. 33-67 in Metallocene-Based Polyolefins: Preparation, Properties and Technology, J. Schiers and W. Kaminsky (eds.), Wiley Series in Polymer Science, John Wiley & Sons Ltd., Chichester, England, 2000, and references cited therein.
- a divalent metal reagent may be used that is characterized by the general formula M 1 R 5 Vp Dp' and p' is 0 or 1 in this embodiment and R 50 and D are as defined above.
- M' is the metal and is selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Cd, Cu and combinations thereof.
- an alkali metal reagent may be used that is defined by the general formula M' V R 50 and in this embodiment R 50 is as defined above, and M' v is the alkali metal and is selected from the group consisting of Li, Na, K, Rb, Cs and combinations thereof.
- hydrogen and/or silanes may be used in the catalytic composition or added to the polymerization system. Silanes may be characterized by the formula SiR 5 VqDq where R 50 is defined as above, q is 1 , 2, 3 or 4 and D is as defined above, with the proviso that at least one D is hydrogen.
- Non-limiting examples of Group 13 reagents, divalent metal reagents, and alkali metal reagents useful as activators for the catalyst compounds described above include methyl lithium, butyl lithium, phenyl lithium, dihexylmercury, butylmagnesium, diethylcadmium, benzylpotassium, diethyl zinc, tri-n-butyl aluminum, diisobutyl ethylboron, diethylcadmium, di-n- butyl zinc and tri-n-amyl boron, and, in particular, the aluminum alkyls, such as thhexyl-aluminum, thethylaluminum, thmethylaluminum, and thisobutyl aluminum, diisobutyl aluminum bromide, diethylaluminum chloride, ethylaluminum dichlohde, isobutyl boron dichlohde, methyl magnesium chloride, e
- activators include those described in PCT publication WO98/07515 such as ths(2,2',2"-nonafluorobiphenyl) fluoroaluminate, which publication is fully incorporated herein by reference.
- Combinations of activators are also contemplated by the invention, for example, alumoxanes and ionizing activators in combinations, see for example, EP0573120B1 , PCT publications WO94/07928 and WO95/14044 and U.S. Pat. Nos. 5,153,157 and 5,453,410, all of which are herein fully incorporated by reference.
- WO98/09996, incorporated herein by reference describes activating bulky ligand metallocene catalyst compounds with perchlorates, periodates and iodates including their hydrates.
- WO98/30602 and WO98/30603 describe the use of lithium (2,2'-bisphenyl-ditrimethylsilicate)*4THF as an activator for a bulky ligand metallocene catalyst compound.
- WO99/18135, incorporated herein by reference describes the use of organo- boron-aluminum activators.
- EP0781299B1 describes using a silylium salt in combination with a non-coordinating compatible anion.
- activation such as using radiation (see EP0615981 B1 herein incorporated by reference), electro-chemical oxidation, and the like are also contemplated as activating methods for the purposes of rendering the chromium complexes or compositions active for the selective oligomehzation of olefins.
- Other activators or methods are described in for example, U.S. Pat. Nos. 5,849,852, 5,859,653 and 5,869,723 and WO98/32775, WO99/42467 (dioctadecylmethylammonium-bis(ths(pentafluorophenyl)borane) benzimidazolide), which are herein incorporated by reference.
- Additional optional activators include metal salts of noncoordinating or weakly coordinating anions, for example where the metal is selected from Li, Na, K, Ag, Ti, Zn, Mg, Cs, and Ba.
- metal-ligand complexes and or ligand-metal-precursor-combinations can be combined with one or more activators or activation methods described above.
- a combination of activators has been described in U.S. Pat. Nos. 5,153,157 and 5,453,410, EP0573120B1 , and PCT publications WO94/07928 and WO95/14044. These documents all discuss the use of an alumoxane in combination with an ionizing activator.
- the molar ratio of metal (from the metal-ligand- complex or the ligand-metal-precursor-combination) to activator can range from 1 :1 to 1 :5000. In another embodiment, the molar ratio of metal to activator employed can range from 1 : 1 to 1 :500. In another embodiment, the molar ratio of metal to activator employed can range from 1 :1 to 1 :50. In another embodiment, the molar ratio of chromium to activator employed can range from 1 :1 to 1 :500. In another embodiment, the molar ratio of chromium to activator employed can range from 1 :1 to 1 :50.
- the order in which the activators are combined with the metal-ligand-complex or the ligand-metal-precursor-combination may be varied.
- the process of the invention relates to the oligomerization, and more specifically the trimehzation and/or tetramerization of ethylene.
- the ligand-metal-precursor-combinations, metal-ligand- complexes, and/or catalyst systems of this invention are particularly effective at oligomerizing and specifically trimerizing and/or tetramerizing ethylene to form 1 -hexene and/or 1 -octene.
- this invention relates to the oligomerization of ⁇ -olefins or co-oligomerization of ethylene with ⁇ -olefins.
- trimerization of ⁇ -olefins is described in K ⁇ hn et al., Angew. Chem. Int. Ed., 39 (23), pp 4337-4339 (2000).
- oligomerization can be carried out in the Ziegler- Natta or Kaminsky-Sinn methodology, including temperatures from -100°C to 300 0 C and pressures from atmospheric to 3000 atmospheres (303,900 kPa).
- Suspension, solution, slurry, gas phase, or high-pressure oligomerization processes may be employed with the catalysts and compounds of this invention. Such processes can be run in a batch, semi-batch, or continuous mode. Examples of such processes are well known in the art.
- Suitable solvents for oligomerization are non-coordinating, inert liquids.
- Examples include straight and branched-chain hydrocarbons such as isobutane, butane, pentane, isopentane, hexane, isohexane, heptane, octane, dodecane, and mixtures thereof; cyclic and alicyclic hydrocarbons such as cyclohexane, cycloheptane, methylcyclohexane, methylcycloheptane, and mixtures thereof; perhalogenated hydrocarbons such as perfluorinated C 4- io alkanes, chlorobenzene, and aromatic and alkylsubstituted aromatic compounds such as benzene, toluene, mesitylene, and xylene.
- Suitable solvents also include liquid olefins, which may act as monomers or comonomers including ethylene, propylene, 1-butene,
- Additional suitable solvents include ionic liquids and supercritical fluids. Mixtures of the foregoing are also suitable.
- additives that are useful in an oligomerization reaction may be employed, such as scavengers, promoters, modifiers, reducing agents, oxidizing agents, dihydrogen, aluminum alkyls, or silanes.
- scavengers such as scavengers, promoters, modifiers, reducing agents, oxidizing agents, dihydrogen, aluminum alkyls, or silanes.
- the activator (such as methylalumoxane or modified methylalumoxane-3A) is combined with the metal-ligand-complex or the ligand-metal-precursor-combination immediately prior to introduction into the reactor.
- Such mixing may be achieved by mixing in a separate tank then swift injection into the reactor, mixing in-line just prior to injection into the reactor, or the like. It has been observed that in some instances, a short activation time is very useful.
- in-situ activation where the catalyst system components are injected separately into the reactor, with or without monomer, and allowed to combine within the reactor directly is also useful in the practice of this invention.
- the catalyst system components are allowed to contact each other for 30 minutes or less, prior to contact with monomer, alternately for 5 minutes or less, alternately for 3 minutes or less, alternately for 1 minute or less.
- the present invention relates to methods of producing oligomers of olefins, catalysts, ligands used to prepare the catalyst and catalyst compositions as described in the following paragraphs.
- the present invention pertains to a composition
- a composition comprising:
- R 1 is selected from the group consisting of optionally substituted hydrocarbyl and heteroatom containing hydrocarbyl;
- T is a bridging group of the general formula -(T 1 R 2 R 3 )-, where T is selected from the group consisting of carbon and silicon, R 2 and R 3 are independently selected from the group consisting of hydrogen, halogen, and optionally substituted hydrocarbyl, heteroatom containing hydrocarbyl, silyl, boryl, and combinations thereof, provided that R 2 and R 3 groups may be joined together to form one or more optionally substituted ring systems having from 3-50 non-hydrogen atoms;
- R 4 , R 5 , R 6 and R 7 are independently selected from the group consisting of hydrogen, halogen, nitro, and optionally substituted hydrocarbyl and heteroatom containing hydrocarbyl, alkoxy, aryloxy, silyl, boryl, phosphino, amino, alkylthio, arylthio, and combinations thereof, and optionally two or more R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 groups may be joined to form one or more optionally substituted ring systems;
- each L is independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, ether, thioether, carboxylates, thio, 1 ,3- dionates, oxalates, carbonates, nitrates, sulfates, ethers, thioethers and combinations thereof, wherein two or more L groups may be combined in a ring structure having from 3 to 50 non-hydrogen atoms; n
- R 1 through R 7 are selected from the group consisting of hydrogen, optionally substituted alkyl, heteroalkyl, aryl, heteroaryl, and combinations thereof, provided that R 2 and R 3 groups may be joined together to form one or more optionally substituted ring systems having from 3-50 non-hydrogen atoms and optionally two or more R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 groups may be joined to form one or more optionally substituted ring systems.
- composition of paragraph 1 wherein R 1 is selected from the group consisting of optionally substituted alkyl and aryl. 4. The composition of paragraph 1 , wherein R 7 is selected from the group consisting of optionally substituted aryl and heteroaryl. 5. The composition of paragraph 1 , wherein R 7 is optionally substituted phenyl.
- composition of paragraph 1 wherein R 3 is selected from the group consisting of optionally substituted alkyl, aryl and hydrogen.
- R 1 is selected from the group consisting of optionally substituted alkyl, and aryl
- R 7 is selected from the group consisting of optionally substituted aryl and heteroaryl
- R 3 is selected from the group consisting of optionally substituted alkyl, aryl and hydrogen.
- the ligand is selected from the group consisting of ligand A1 to A10.
- a method of producing oligomers of olefins comprising reacting an olefin with a catalyst under oligomehzation conditions, wherein said oligomerization reaction has a selectivity of at least 70 mole percent for oligomer, and wherein said catalyst is said composition of any of claims 1 through 9.
- the activator is an alumoxane, which may optionally be used in any combination with group 13 reagents, divalent metal reagents, or alkali metal reagents.
- the activator is a neutral or ionic stoichiometric activator, which may optionally be used in any combination with group 13 reagents, divalent metal reagents, or alkali metal reagents.
- the activator is selected from the group consisting of modified methylaluminoxane (MMAO), methylaluminoxane (MAO), trimethylaluminum (TMA), triisobutyl aluminum (TIBA), diisobutylaluminumhydhde (DIBAL), polymethylaluminoxane-IP (PMAO-IP), triphenylcarbonium tetrakis(perfluorophenyl)borate, N,N-dimethyl-anilinium tetrakis(perfluorophenyl)borate, N,N-di(n-decyl)-4-n-butyl-anilinium tetrakis(perfluorophenyl)borate, and mixtures thereof.
- MMAO modified methylaluminoxane
- MAO methylaluminoxane
- TMA trimethylaluminum
- TIBA triisobutyl aluminum
- DIBAL diisobutylalum
- the metal precursor is selected from the group consisting of (THF) 3 CrMeCI 2 , (THF) 3 CrCI 3 , (MeS) 3 Cr(THF), [ ⁇ TFA ⁇ 2 Cr(OEt 2 )] 2 , (THF) 3 CrPh 3 , (THF) 3 Cr( ⁇ 2 -2,2'-Biphenyl)Br and mixtures thereof.
- Method 1 Toluene 75 °C Temperature Complexation, Heptane Screening.
- the ligand array (0.3 ⁇ mol of each ligand) was contacted with a toluene solution of the chromium complex (60 ⁇ l_ of a 5.0 mM solution, 0.3 ⁇ mol per well) and was stirred at 75°C for a period of 1 hour (in the absence of ethylene).
- the array was then cooled to RT and the THF was removed by directing a stream of nitrogen or argon over each well in the array.
- Each well of the array was subsequently treated with 60 ⁇ l_ of n-Heptane and was stirred under 100-150 psi (0.69-1.03 MPa) of ethylene for 15 minutes.
- the array was then treated with a stock solution of the appropriate activator (200 ⁇ l_ per well, contact time of ⁇ 5 minutes), and placed into the parallel batch reactor and stirred at 50 0 C under 150 psi (1.03 MPa) of ethylene for 1 hour.
- the parallel batch reactor was depressuhzed and the array was removed.
- the array of vials was then transferred to a room temperature aluminum block, and to each vial was added ca. 200 ⁇ l_ of toluene followed by 30-50 ⁇ l_ of water.
- the vials were stirred and then topped off with toluene to bring the total volume to ca. 800 ⁇ l_.
- a Teflon sheet and rubber gasket were placed over the top of the array and an aluminum cover was screwed on the top to seal the array.
- the array was then mechanically agitated and centhfuged at 1500 rpm for 10 minutes before analyzing the composition of each well using Gas Chromatography with a Flame Ionization Detector (e.g.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
The present invention provides a method of producing oligomers of olefins, comprising reacting olefins with a catalyst under oligomerization conditions. The catalyst can be the product of the combination of a chromium compound and a pyridyl ether compound. In particular embodiments, the catalyst compound can be used to trimerize or tetramerize ethylene to 1 - hexene, 1 -octene, or mixtures of 1 -hexene and 1 -octene.
Description
Title: METHODS FOR OLIGOMERIZING OLEFINS WITH CHROMIUM PYRIDINE ETHER CATALYSTS
Priority Claim
[0001] This application claims priority to and the benefit of USN 60/879,131 , filed January 8, 2007.
Statement of Related Cases [0002] This application is related to concurrently filed patent applications USSN 60/879,128, filed January 8, 2007, USSN 60/879,127, filed January 8, 2007, USSN 60/879,129, filed January 8, 2007,and USSN 60/879,130, filed January 8, 2007.
FIELD OF THE INVENTION [0003] This invention relates to the selective oligomehzation (specifically trimerization and/or tetramerization) of olefins (specifically ethylene) using chromium based catalysts.
BACKGROUND OF THE INVENTION
[0004] The oligomerization of ethylene typically returns a broad distribution of 1 -olefins having an even number of carbon atoms (C4, C6, C8, Cio, etc.). These products range in commercial value, of which 1 -hexene may be the most useful, as it is a comonomer commonly used in the production of commercial ethylene based copolymers.
[0005] Several catalysts useful for the oligomerization of olefin monomers have also been developed, including the trimerization of ethylene. Several of these catalysts use chromium as a metal center. For example, U.S. Pat. No. 4,668,838, assigned to Union Carbide Chemicals and Plastics Technology Corporation, discloses a chromium catalyst complex formed by contacting a
chromium compound with hydrolyzed hydrocarbyl aluminum and a donor ligand such as hydrocarbyl isonitriles, amines, and ethers. U.S. Pat. No. 5,137,994 discloses a chromium catalyst formed by the reaction products of bis-triarylsilyl chromates and thhydrocarbylaluminum compounds. [0006] U.S. Pat. No. 5,198,563 and related patents, issued to Phillips Petroleum Company, disclose chromium-containing catalysts containing monodentate amine/amide ligands. A chromium catalyst complex formed by contacting an aluminum alkyl or a halogenated aluminum alkyl and a pyrrole- containing compound prior to contacting with a chromium containing compound is disclosed in U.S. Pat. Nos. 5,382,738, 5,438,027, 5,523,507, 5,543,375, and 5,856,257. Similar catalyst complexes are also disclosed in EP0416304B1 , EP0608447B1 , EP0780353B1 , and CA2087578.
[0007] Several patents assigned to Mitsubishi Chemicals also disclose chromium catalyst complexes formed from a chromium compound, a pyrrole ring-containing compound, an aluminum alkyl, and a halide containing compound, including U.S. Pat. Nos. 5,491 ,272, 5,750,817, and 6,133,495. Other catalyst complexes are formed by contacting a chromium compound with a nitrogen containing compound such as a primary or secondary amine, amide, or imide, and an aluminum alkyl, as disclosed in U.S. Pat. Nos. 5,750,816, 5,856,612, and 5,910,619.
[0008] EP0537609 discloses a chromium complex containing a coordinating polydentate ligand and an alumoxane. Similarly, CA2115639 discloses a polydentate ligand.
[0009] EP0614865B1 , issued to Sumitomo Chemical Co., Ltd., discloses a catalyst prepared by dissolving a chromium compound, a heterocyclic compound having a pyrrole ring or an imidazole ring, and an aluminum compound. EP0699648B1 discloses a catalyst obtained by contacting chromium containing compound with a di- or tri-alkyl aluminum hydride, a pyrrole compound or a derivative thereof, and a group 13 (III B) halogen compound.
[0010] WO03/053890, and McGuinness et al., J. Am. Chem. Soc. 125, 5272-5273, (2003), disclose a chromium complex of tridentate ligands and
methylalumoxane (MAO) cocatalyst. However, due to serious drawbacks in the preparation of the -containing system, the use of a thioether donor group to replace the phosphorus donor in the ligands was also investigated.
[0011] WO02/083306A2 discloses a catalyst formed from a chromium source, a substituted phenol, and an organoaluminum compound. WO03/004158A2 discloses a catalyst system which includes a chromium source and a ligand comprising a substituted five membered carbocyclic ring or similar derivatives.
[0012] U.S. Pat. No. 5,968,866 discloses a catalyst comprising a chromium complex which contains a coordinating asymmetric tridentate phosphine, arsine, or stibane ligand (hydrocarbyl groups) and an alumoxane. Carter et al., Chem. Commun., 2002, pp. 858-859 disclosed an ethylene trimehzation catalyst obtained by contacting a chromium source, ligands bearing ortho- methoxy-substituted aryl groups, and an alkyl alumoxane activator. Similarly, WO02/04119A1 discloses a catalyst comprising a source of chromium, molybdenum, or tungsten, and a ligand containing at least one phosphorus, arsenic, or antimony atom bound to at least one (hetero)hydrocarbyl group.
[0013] Japanese patent application JP 2001187345A2 (Tosoh Corp., Japan) discloses ethylene trimerization catalysts comprising chromium complexes having ths(pyrazol-1 -yl)methane ligands.
[0014] US 2005/0113622 (equivalent to WO 2005/039758) discloses Cr based trimerization catalysts.
[0015] Additional catalysts useful for oligomehzing olefins include those disclosed in USSN 11/371 ,614; filed March 9, 2006; USSN 11/371 ,983, filed March 9, 2006; and USSN 60/841 ,226, filed August 30, 2006.
[0016] Other pertinent references include J. Am. Chem. Soc. 123, 7423- 7424 (2001 ), WO01/68572A1 , WO02/066404A1 , WO04/056477, WO04/056478, WO04/056479, WO04/056480, EP1110930A1 , U.S. Pat. Nos. 3,333,016, 5,439,862, 5,744,677, and 6,344,594 and U.S. Pat. App. Pub. No. 2002/0035029A1.
[0017] Although each of the above described catalysts is useful for the trimerization of ethylene, there remains a desire to improve the performance
of olefin oligomerization catalysts from the standpoint of productivity and selectivity for oligomers such as 1 -hexene or 1 -octene.
[0018] Several pyridyl amine catalyst complexes have been disclosed for the polymerization or copolymerization of ethylene, propylene, isobutylene, octene, and styrene by Symyx Technologies, Inc. in U.S. Pat. Nos. 6,713,577, 6,750,345, 6,706,829, 6,727,361 , and 6,828,397. Pyridyl amines were also disclosed in U.S. Pat. Nos. 6,103,657 and 6,320,005, assigned to Union Carbide Chemical and Plasties Technology Corporation, in which zirconium was used as the metal center, and the catalyst complex was used to polymerize alpha-olefins, and in U.S. Pat. No. 5,637,660, assigned to Lyondell Petrochemical Company, which also describes Group 4 complexes of pyridyl amine ligands. Robertson et al., Inorg. Chem. 42, pp 6875-6885 (2003), discloses chromium complexes of ths(2-pyhdylmethyl)amine for ethylene polymerization. [0019] This invention also relates to US Patent Application Serial Nos. 60/611 ,943, 11/232,982 and 11/233,227 and WO2006096881 A1.
[0020] What is needed is a catalyst system that can be readily prepared and that selectively oligomerizes ethylene or other olefins with both high activity and high selectivity. SUMMARY OF THE INVENTION
[0021] The present invention provides methods and compositions to produce oligomers of olefins, comprising reacting olefins with a catalyst system under oligomerization conditions. The oligomerization reaction can have a selectivity of at least 70 mole percent for the desired oligomer. Typically the catalyst system is formed from the combination of:
(1 ) a ligand characterized by the following general formula:
wherein R1 is selected from the group consisting of optionally substituted hydrocarbyl and heteroatom containing hydrocarbyl;
T is a bridging group of the general formula -(T1R2R3)-, where T is carbon or silicon, R2 and R3 are independently selected from the group consisting of hydrogen, halogen, and optionally substituted hydrocarbyl, heteroatom containing hydrocarbyl, silyl, boryl, and combinations thereof, provided that R2 and R3 groups may be joined together to form one or more optionally substituted ring systems having from 3-50 non-hydrogen atoms
(e.g., cyclopropyl, where T=C, and R2 and R3 together form -CH2-CH2-; or cyclohexyl, where T=C and R2 and R3 groups together form
-CH2-CH2-CH2-CH2-);
R4, R5, R6 and R7 are independently selected from the group consisting of hydrogen, halogen, nitro, and optionally substituted hydrocarbyl and heteroatom containing hydrocarbyl, alkoxy, aryloxy, silyl, boryl, phosphino, amino, alkylthio, arylthio, and combinations thereof, and optionally two or more R1, R2, R3, R4, R5, R6 and R7 groups may be joined to form one or more optionally substituted ring systems;
(2) a metal precursor compound characterized by the general formula Cr(L)n where each L is independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, ether, thioether, carboxylates, thio, 1 ,3- dionates, oxalates, carbonates, nitrates, sulfates, ethers, thioethers and combinations thereof, wherein two or more L groups may be combined in a ring structure having from 3 to 50 non-hydrogen atoms; n is 1 , 2, 3, 4, 5, or 6; and
(3) optionally, one or more activators. [0022] The activator used in the method of the present invention can be selected from the group consisting of modified methylalumoxane (MMAO), methylalumoxane (MAO), trimethylaluminum (TMA), triisobutyl aluminum
(TIBA), polymethylalumoxane-IP (PMAO-IP), N,N-di(n-decyl)-4-n-butyl- anilinium tetrakis(perfluorophenyl)borate, and mixtures thereof.
[0023] The metal precursor used in the method of the present invention can be selected from the group consisting of (THF)3CrMeCI2, (THF)3CrCI3, (MeS)3Cr(THF), [{TFA}2Cr(OEt2)]2, (THF)3CrPh3, (THF)3Cr(η2-2,2'-Biphenyl)Br and mixtures thereof.
[0024] The method of the present invention can oligomerize, e.g. trimerize or tetramerize, C2 to Ci2 olefins. In one embodiment of the present invention, the olefin can be ethylene. The oligomerization or ethylene can produce 1 - hexene, 1 -octene, or mixtures thereof. The reaction in the method of the present invention can occur in a hydrocarbon solvent.
[0025] Further aspects of this invention will be evident to those of skill in the art upon review of this specification.
BRIEF DESCRIPTION OF THE DRAWINGS [0026] Figure 1 illustrates pyhdyl-ether ligands according to embodiments of the invention.
DETAILED DESCRIPTION
[0027] The inventions disclosed herein include chromium metal complexes and compositions, which are useful as catalysts for the selective oligomerization of olefins, specifically C2 to C12 olefins and especially C2 to C8 olefins, including the thmehzation and/or tetramerization of ethylene.
[0028] For the purposes of this invention and the claims thereto when an oligomeric material (such as a dimer, trimer, or tetramer) is referred to as comprising an olefin, the olefin present in the material is the reacted form of the olefin. Likewise, the active species in a catalytic cycle may comprise the neutral or ionic forms of the catalyst. In addition, a reactor is any container(s) in which a chemical reaction occurs.
[0029] As used herein, the new numbering scheme for the Periodic Table Groups is used as set out in CHEMICAL AND ENGINEERING NEWS, 63(5), 27 (1985).
[0030] As used herein, the phrase "characterized by the formula" is not intended to be limiting and is used in the same way that "comprising" is commonly used. The term "independently selected" is used herein to indicate that the groups in question -- e.g., Ri, R2, R3, R4, and R5 -- can be identical or different (e.g., Ri, R2, R3, R4, and R5 may all be substituted alkyls, or Ri and R2 may be a substituted alkyl and R3 may be an aryl, etc.). Use of the singular includes use of the plural and vice versa (e.g., a hexane solvent, includes hexanes). A named R group will generally have the structure that is recognized in the art as corresponding to R groups having that name. The terms "compound" and "complex" are generally used interchangeably in this specification, but those of skill in the art may recognize certain compounds as complexes and vice versa. In addition, the term "catalyst" will be understood by those of skill in the art to include either activated or unactivated forms of the molecules the comprise the catalyst, for example, a procatalyst and including complexes and activators or compositions of ligands, metal precursors and activators and optionally including scavengers and the like. For purposes of this invention, a catalyst system is defined to be the combination of an activator and a metal ligand complex or the combination of an activator, a ligand and a metal precursor. A metal ligand complex is defined to be the product of the combination of a metal precursor and a ligand. For the purposes of illustration, representative certain groups are defined herein. These definitions are intended to supplement and illustrate, not preclude, the definitions known to those of skill in the art.
[0031] "Optional" or "optionally" means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event or circumstance occurs and instances where it does not. For example, the phrase "optionally substituted hydrocarbyl" means that a hydrocarbyl moiety may or may not be substituted and that the description includes both unsubstituted hydrocarbyl and hydrocarbyl where there is substitution.
[0032] The term "substituted" as in "substituted hydrocarbyl," "substituted aryl," "substituted alkyl," and the like, means that in the group in question (i.e., the hydrocarbyl, alkyl, aryl or other moiety that follows the term), at least one
hydrogen atom bound to a carbon atom is replaced with one or more substituent groups such as hydroxy, alkoxy, alkylthio, phosphino, amino, halo, silyl, and the like. When the term "substituted" introduces a list of possible substituted groups, it is intended that the term apply to every member of that group. That is, the phrase "substituted alkyl, alkenyl and alkynyl" is to be interpreted as "substituted alkyl, substituted alkenyl and substituted alkynyl." Similarly, "optionally substituted alkyl, alkenyl and alkynyl" is to be interpreted as "optionally substituted alkyl, optionally substituted alkenyl and optionally substituted alkynyl." [0033] The term "saturated" refers to the lack of double and triple bonds between atoms of a radical group such as ethyl, cyclohexyl, pyrrolidinyl, and the like. The term "unsaturated" refers to the presence of one or more double and triple bonds between atoms of a radical group such as vinyl, allyl, acetylide, oxazolinyl, cyclohexenyl, acetyl and the like, and specifically includes alkenyl and alkynyl groups, as well as groups in which double bonds are delocalized, as in aryl and heteroaryl groups as defined below.
[0034] The terms "cyclo" and "cyclic" are used herein to refer to saturated or unsaturated radicals containing a single ring or multiple condensed rings. Suitable cyclic moieties include, for example, cyclopentyl, cyclohexyl, cyclooctenyl, bicyclooctyl, phenyl, naphthyl, pyrrolyl, furyl, thiophenyl, imidazolyl, and the like. In particular embodiments, cyclic moieties include between 3 and 200 atoms other than hydrogen, between 3 and 50 atoms other than hydrogen or between 3 and 20 atoms other than hydrogen.
[0035] The term "hydrocarbyl" as used herein refers to hydrocarbyl radicals containing 1 to about 50 carbon atoms, specifically 1 to about 24 carbon atoms, most specifically 1 to about 16 carbon atoms, including branched or unbranched, cyclic or acyclic, saturated or unsaturated species, such as alkyl groups, alkenyl groups, aryl groups, and the like.
[0036] The term "alkyl" as used herein refers to a branched or unbranched saturated hydrocarbon group typically although not necessarily containing 1 to about 50 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, f-butyl, octyl, decyl, and the like, as well as cycloalkyl
groups such as cyclopentyl, cyclohexyl and the like. Generally, although again not necessarily, alkyl groups herein may contain 1 to about 20 carbon atoms.
[0037] The term "alkenyl" as used herein refers to a branched or unbranched, cyclic or acyclic hydrocarbon group typically, although not necessarily, containing 2 to about 50 carbon atoms and at least one double bond, such as ethenyl, n-propenyl, isopropenyl, n-butenyl, isobutenyl, octenyl, decenyl, and the like. Generally, although again not necessarily, alkenyl groups herein contain 2 to about 20 carbon atoms. [0038] The term "alkynyl" as used herein refers to a branched or unbranched, cyclic or acyclic hydrocarbon group typically although not necessarily containing 2 to about 50 carbon atoms and at least one triple bond, such as ethynyl, n-propynyl, isopropynyl, n-butynyl, isobutynyl, octynyl, decynyl, and the like. Generally, although again not necessarily, alkynyl groups herein may have 2 to about 20 carbon atoms.
[0039] The term "aromatic" is used in its usual sense, including unsaturation that is essentially delocalized across several bonds around a ring. The term "aryl" as used herein refers to a group containing an aromatic ring. Aryl groups herein include groups containing a single aromatic ring or multiple aromatic rings that are fused together, linked covalently, or linked to a common group such as a methylene or ethylene moiety. More specific aryl groups contain one aromatic ring or two or three fused or linked aromatic rings, e.g., phenyl, naphthyl, biphenyl, anthracenyl, or phenanthrenyl. In particular embodiments, aryl substituents include 1 to about 200 atoms other than hydrogen, typically 1 to about 50 atoms other than hydrogen, and specifically 1 to about 20 atoms other than hydrogen. In some embodiments herein, multi-ring moieties are substituents and in such embodiments the multi-ring moiety can be attached at an appropriate atom. For example, "naphthyl" can be 1 -naphthyl or 2-naphthyl; "anthracenyl" can be 1- anthracenyl, 2-anthracenyl or 9-anthracenyl; and "phenanthrenyl" can be 1 - phenanthrenyl, 2-phenanthrenyl, 3-phenanthrenyl, 4-phenanthrenyl, or 9- phenanthrenyl.
[0040] The term "alkoxy" as used herein intends an alkyl group bound through a single, terminal ether linkage; that is, an "alkoxy" group may be represented as -O-alkyl where alkyl is as defined above. The term "aryloxy" is used in a similar fashion, and may be represented as -O-aryl, with aryl as defined below. The term "hydroxy" refers to -OH.
[0041] Similarly, the term "alkylthio" as used herein intends an alkyl group bound through a single, terminal thioether linkage; that is, an "alkylthio" group may be represented as -S-alkyl where alkyl is as defined above. The term "arylthio" is used similarly, and may be represented as -S-aryl, with aryl as defined below. The term "mercapto" refers to -SH.
[0042] The terms "halo" and "halogen" are used in the conventional sense to refer to a chloro, bromo, fluoro or iodo radical.
[0043] The terms "heterocycle" and "heterocyclic" refer to a cyclic radical, including ring-fused systems, including heteroaryl groups as defined below, in which one or more carbon atoms in a ring is replaced with a heteroatom - that is, an atom other than carbon, such as nitrogen, oxygen, sulfur, phosphorus, boron or silicon. Heterocycles and heterocyclic groups include saturated and unsaturated moieties, including heteroaryl groups as defined below. Specific examples of heterocycles include pyridine, pyrrolidine, pyrroline, furan, tetrahydrofuran, thiophene, imidazole, oxazole, thiazole, indole, and the like, including any isomers of these. Additional heterocycles are described, for example, in Alan R. Katritzky, Handbook of Heterocyclic Chemistry, Pergammon Press, 1985, and in Comprehensive Heterocyclic Chemistry, A.R. Katritzky et al., eds., Elsevier, 2d. ed., 1996. The term "metallocycle" refers to a heterocycle in which one or more of the heteroatoms in the ring or rings is a metal.
[0044] The term "heteroaryl" refers to an aryl radical that includes one or more heteroatoms in the aromatic ring. Specific heteroaryl groups include groups containing heteroaromatic rings such as thiophene, pyridine, pyrazine, isoxazole, pyrazole, pyrrole, furan, thiazole, oxazole, imidazole, isothiazole, oxadiazole, triazole, and benzo-fused analogues of these rings, such as indole, carbazole, benzofuran, benzothiophene and the like.
[0045] More generally, the modifiers "hetero" and "heteroatom-containing", as in "heteroalkyl" or "heteroatom-containing hydrocarbyl group" refer to a molecule or molecular fragment in which one or more carbon atoms is replaced with a heteroatom. Thus, for example, the term "heteroalkyl" refers to an alkyl substituent that is heteroatom-containing. When the term "heteroatom-containing" introduces a list of possible heteroatom-containing groups, it is intended that the term apply to every member of that group. That is, the phrase "heteroatom-containing alkyl, alkenyl and alkynyl" is to be interpreted as "heteroatom-containing alkyl, heteroatom-containing alkenyl and heteroatom-containing alkynyl."
[0046] By "divalent" as in "divalent hydrocarbyl", "divalent alkyl", "divalent aryl" and the like, is meant that the hydrocarbyl, alkyl, aryl or other moiety is bonded at two points to atoms, molecules or moieties with the two bonding points being covalent bonds. [0047] As used herein the term "silyl" refers to the -SiZ1Z2Z3 radical, where each of Z1, Z2, and Z3 is independently selected from the group consisting of hydrogen and optionally substituted alkyl, alkenyl, alkynyl, heteroatom- containing alkyl, heteroatom-containing alkenyl, heteroatom-containing alkynyl, aryl, heteroaryl, alkoxy, aryloxy, amino, silyl and combinations thereof.
[0048] As used herein the term "boryl" refers to the -BZ1Z2 group, where each of Z1 and Z2 is as defined above. As used herein, the term "phosphino" refers to the group -PZ1Z2, where each of Z1 and Z2 is as defined above. As used herein, the term "phosphine" refers to the group PZ1Z2Z3, where each of Z1, Z3and Z2 is as defined above. The term "amino" is used herein to refer to the group -NZ1Z2, where each of Z1 and Z2 is as defined above. The term "amine" is used herein to refer to the group :NZ1Z2Z3, where each of Z1, Z2 and Z3 is as defined above.
[0049] Throughout the text, several abbreviations may be used to refer to specific compounds or elements. Abbreviations for atoms are as given in the periodic table (Li = lithium, for example). Other abbreviations that may be used are as follows: "/-Pr" to refer to isopropyl; "f-Bu" to refer to tertiary-butyl,
"/-Bu" to refer to isobutyl; "Me" to refer to methyl; "Et" to refer to ethyl; "Ph" to refer to phenyl; "Mes" to refer to mesityl (2,4,6-trimethyl phenyl); "TFA" to refer to trifluoroacetate; "THF" to refer to tetrahydrofuran; "TsOH" to refer to para-toluenesulfonic acid; "cat." to refer to catalytic amount of; "LDA" to refer to lithium diisopropylamide; "DMF" to refer to dimethylformamide; "eq." to refer to molar equivalents; "TMA" to refer to AIMe3; "TIBA" to refer to AI(Z-Bu)3. SJ2BF20 refers to [(n-C10H2i)2(4-n-C4H9-C6H4)NH][B(C6F5)4].
[0050] This invention relates to methods for selectively oligomerizing (e.g., trimerizing and/or tetramerizing) C2 to C12 olefins, specifically ethylene, comprising reacting a catalytic composition or compound(s), optionally with one or more activators, with the olefin. As referred to herein, selective oligomerization refers to producing the desired oligomer with a selectivity of the reaction being at least 70 mol%, more specifically at least 80 mol% of oligomer, with the possibility that an acceptable amount of polymer is present, but with the preference that no polymer is present in the product. In other embodiments, less than 20 weight % of polymer is present, specifically less than 5 weight %, more specifically less than 2 weight %, based upon the total weight of monomer converted to oligomers and polymers, where a polymer is defined to mean a molecule comprising more than 100 mers. In other embodiments, selective oligomerization refers to producing two desired oligomers, with the selectivity of the two desired oligomers summing to at least 80% by sum of the mole % of the desired oligomers.
[0051] In another embodiment, this invention relates to a method to trimerize or tetramehze a C2 to Ci2 olefin wherein the method produces at least 70 % selectivity for the desired oligomer(s) (specifically at least 80%, specifically at least 85%, specifically at least 90 %, specifically at least 95 %, specifically at least 98%, specifically at least 99%, specifically 100%), calculated based upon the amount (mol %) of the desired oligomer produced relative to the total yield of product(s); and at least 70% of the olefin monomer reacts to form product (specifically at least 80%, specifically at least 85%, specifically at least 90 %, specifically at least 95 %, specifically at least 98%, specifically at least 99%, specifically 100%).
[0052] This invention also relates to novel metal ligand complexes and or novel combinations of specific ligands disclosed herein and metal precursors.
[0053] The methods of this invention specifically refer to contacting the desired monomers with a metal ligand complex or a combination of a ligand and a metal precursor (and optional activators) to form the desired oligomer. Preferred ligands useful in the present invention may be characterized by the general formula:
wherein R1 is selected from the group consisting of optionally substituted hydrocarbyl and heteroatom containing hydrocarbyl;
T is a bridging group of the general formula -(T1R2R3)-, where T is selected from the group consisting of carbon and silicon, R2 and R3 are independently selected from the group consisting of hydrogen, halogen, and optionally substituted hydrocarbyl, heteroatom containing hydrocarbyl, silyl, boryl, and combinations thereof, provided that R2 and R3 groups may be joined together to form one or more optionally substituted ring systems having from 3-50 non-hydrogen atoms .(e.g., cyclopropyl, where T=C and R2 and R3 together form -CH2-CH2-; or cyclohexyl, where T=C and R2 and R3 groups together form -CH2-CH2-CH2-CH2-CH2-); R4, R5, R6 and R7 are independently selected from the group consisting of hydrogen, halogen, nitro, and optionally substituted hydrocarbyl and heteroatom containing hydrocarbyl, alkoxy, aryloxy, silyl, boryl, phosphino, amino, alkylthio, arylthio, and combinations thereof, and optionally two or more R1, R2, R3, R4, R5, R6 and R7 groups may be joined to form one or more optionally substituted ring systems.
[0054] Throughout this specification, the presence of one solid line and one dashed line between any pair of atoms is intended to indicate that the bond in question may be a single bond or a double bond, or a bond with bond
order intermediate between single and double, such as the delocalized bonding in an aromatic ring.
[0055] The detailed synthesis of certain types of heterocycle-ether ligands are specifically discussed below, including pyhdyl-ether ligands. Those of ordinary skill in the art will be able to synthesize other embodiments.
[0056] The pyridyl-ether ligands in this embodiment can be prepared according to the procedures known to those of ordinary skill in the art, for example, as illustrated by the reaction scheme given in Scheme 1 where R1, R2, R3, R4, R5, R6 and R7, are as defined above .
Scheme 1.
[0057] The reaction to produce a pyridine ether ligand where R2 and R3 is hydrogen, while R1 is an optionally substituted alkyl, aryl, or heteroaryl group can be performed in three general reaction steps. In step 1 , a pyridine aldehyde can be reacted with sodium borohydride (NaBH4) and methanol in a reduction reaction, replacing the aldehyde group with a primary alcohol group. In step 2, the pyridine alcohol can then be reacted with methansulfonyl chloride (MsCI) and diispropylethylamine (DIEA) in methylene chloride to produce the mesylated pyridine derivative. The third reaction step installs the R1 group through a displacement/condensation reaction. First, an R1- containing alcohol is de-protonated with sodium hydride (NaH) in DMF. The
mesylated pyridine is then added and the mesyl-group is displaced by the R1- containing alkoxide.
[0058] Alternative strategies to the reaction scheme illustrated in Scheme 1 can also be employed. For example, in Scheme 2, pyridine ether ligands may be synthesized through a condensation of the pyridine aldehyde with R3M. Generally, R3M is a nucleophile such as an alkylating, arylating or hydrogenating reagent and M is a metal such as a main group metal, or a metalloid such as boron. The alkylating, arylating or hydrogenating reagent may be a Grignard, alkyl- or aryl-lithium or borohydride reagent. Further modification with another alkylating/arylating reagent as in step 2 provides pyridine ethers where R2 is hydrogen while R1 and R3 are alkyl, aryl, or heteroaryl groups. An example of each type of pyridyl ether ligand synthesis is given in Examples 1 , 2 and 3, respectively, below.
Scheme 2.
[0059] In a preferred embodiment, the ligand used in various embodiments of the present invention can be selected from the group consisting of the pyridyl-ether ligands shown below.
-16-
[0060] Once the desired ligand is formed, it can be combined with a Cr atom, ion, compound or other Cr precursor compound, and in some embodiments the present invention encompasses compositions that include any of the above-mentioned ligands in combination with an appropriate Cr precursor and an optional activator. For example, in some embodiments, the Cr precursor can be an activated Cr precursor, which refers to a Cr precursor (described below) that has been combined or reacted with an activator (described below) prior to combination or reaction with the ancillary ligand. As noted above, in one aspect the invention provides compositions that include such combinations of ligand and Cr atom, ion, compound or precursor. In some applications, the ligands are combined with a Cr compound or precursor and the product of such combination is not determined, if a product forms. For example, the ligand may be added to a reaction vessel at the same time as the Cr precursor compound along with the reactants, activators, scavengers, etc. Additionally, the ligand can be modified prior to addition to or after the addition of the Cr precursor, e.g., through a deprotonation reaction or some other modification.
[0061] The Cr metal precursor compounds may be characterized by the general formula Cr(L)n where L is an organic group, an inorganic group, or an anionic atom; and n is an integer of 1 to 6, and when n is not less than 2, L may be the same or different from each other. Each L is a ligand independently selected from the group consisting of hydrogen, halogen, optionally substituted alkyl, heteroalkyl, allyl, diene, alkenyl, heteroalkenyl, alkynyl, heteroalkynyl, aryl, heteroaryl, alkoxy, aryloxy, boryl, silyl, amino, phosphino, ether, thioether, phosphine, amine, carboxylate, alkylthio, arylthio,
1 ,3-dionate, oxalate, carbonate, nitrate, sulfate, and combinations thereof.
Optionally, two or more L groups are joined into a ring structure. One or more of the ligands L may be ionically bonded to Cr and, for example, L may be a non-coordinated or loosely coordinated or weakly coordinated anion (e.g., L may be selected from the group consisting of those anions described below in the conjunction with the activators). See Marks et al., Chem. Rev. 100, pp
1391 -1434 (2000) for a detailed discussion of these weak interactions. The chromium precursors may be monomeric, dimeric or higher orders thereof.
[0062] Specific examples of suitable chromium precursors include, but are not limited to (THF)3CrMeCI2, (MeS)3Cr(THF) (Mes = mesityl = 2,4,6- trimethylphenyl), [{TFA}2Cr(OEt2)]2 (TFA = thfluoroacetate), (THF)3CrPh3, CrCI3(THF)3, CrCI4(NHs)2, Cr(NMe3)2CI3, CrCI3, Cr(acac)3 (acac = acetylacetonato), Cr(2-ethylhexanoate)3, Cr(neopentyl)4, Cr(CH2-C6H4-O- NMe2)3, Cr(TFA)3, Cr(CH(SiMe3)2)s, Cr(MeS)2(THF)3, Cr(MeS)2(THF), Cr(MeS)CI(THF)2, Cr(MeS)CI(THF)0 5, Cr(p-tolyl)CI2(THF)3, Cr(diisopropylamide)3, Cr(picolinate)3, [Cr2Me8] [Li(TH F)]4, CrCI2(THF), Cr(NO3)3, [CrMe6][Li(Et2O)]3, [CrPh6][Li(THF)]3, [CrPh6][Li(n-Bu2O)]3, [Cr(C4H8)s][Li(THF)]3, CrCI2, Cr(hexafluoroacetylacetonato)3,
(THF)3Cr(η2-2,2'-Biphenyl)Br and mixtures thereof, and other well known chromium compounds commonly used as precursors in the formation of Cr complexes and catalysts.
[0063] The ligand may be mixed with a suitable metal precursor compound prior to or simultaneously with allowing the mixture to be contacted with the reactants (e.g., monomers). In this context, the ligand to metal precursor compound ratio can be in the range of about 0.1 :1 to about 10:1 , more specifically in the range of about 0.5:1 to about 2:1 , and even more specifically about 1 :1.
[0064] Generally, the ligand (or optionally a modified ligand as discussed above) is mixed with a suitable Cr precursor (and optionally other components, such an activator, or a reagent to exchange L groups on the chromium after contact between the chromium precursor and the ligand; e.g., Li(acac)) prior to or simultaneously with allowing the mixture to be contacted with the reactants (e.g., monomers). When the ligand is mixed with the Cr precursor compound, a Cr-ligand complex may be formed, which may itself be an active catalyst or may be transformed into a catalyst upon activation. In some embodiments the Cr precursor is contacted with other ligands, then activators, then monomers.
[0065] In some embodiments, the ligand will be mixed with a suitable metal precursor prior to or simultaneous with allowing the mixture to be contacted to the reactants. When the ligand is mixed with the metal precursor, a metal- ligand complex may be formed. In connection with the metal-ligand complex and depending on the ligand or ligands chosen, the metal-ligand complex may take the form of monomeric complexes, dimers, trimers or higher orders thereof or there may be two or more metal atoms that are bridged by one or more ligands. Furthermore, two or more ligands may coordinate to a single metal atom. The exact nature of the metal-ligand complex(es) formed depends on the chemistry of the ligand and the method of combining the metal precursor and ligand, such that a distribution of metal-ligand complexes may form with the number of ligands bound to the metal being greater than, equal to or less than the number of equivalents of ligands added relative to an equivalent of metal precursor. The ligand may, in some embodiments, be modified on binding to the metal, for example through a C-H activation reaction leading to a Cr-carbon bond, such as, for example, ortho-metallation of an arene moiety. Also, in some embodiments the ligand may be modified upon activation of the complex, for example through alkylation of a carbon of a C=N double bond & formation of a Cr-N covalent bond or reaction on the pyridine ring (for example, at positions R4, R5 or R6). In further embodiments, a molecule of ethylene or another olefin (for example, 1 -hexene) may insert into the aforementioned ortho-metallated arene.
[0066] Cr-ligand complexes can take a number of different coordination modes. General examples of possible coordination modes include those characterized by the following general formulas:
VI (C) VI (d)
VI (e)
wherein R1, L, and T are described above; x is 1 or 2; m' is 1 , 2, 3, 4, or 5; and J represents the pyridine ring. J' represents the pyridine ring where the pyridine nitrogen is bonded to Cr through a dative bond, and another atom is bonded to the Cr through a covalent bond (e.g., orthometallation of the R7 substituent). Numerous other coordination modes are possible, for example the ligands may bind to two chromium metal centers in a bridging fashion (see for example Cotton and Walton, Multiple Bonds Between Metal Atoms 1993, Oxford University Press). Some studies (for example, Rensburg et al., Organometallics 23, pp1207-1222 (2004)) suggest that the ligand
environment around Cr may be different at different points in the catalytic cycle. Hemilabile ligands, which can change their binding mode to the metal, may be useful in this regard.
[0067] In addition, the catalyst systems of this invention may be combined with other catalysts in a single reactor and/or employed in a series of reactors (parallel or serial).
[0068] The ligands-metal-precursors combinations and the metal ligand complexes, described above, are optionally activated in various ways to yield compositions active for selective ethylene oligomehzation. For the purposes of this patent specification and appended claims, the terms "cocatalyst" and "activator" are used herein interchangeably and are defined to be any compound which can activate any one of the ligand-metal-precursor- combinations or the metal ligand complexes, described above by converting the combination, complex, or composition into a catalytically active species. Non-limiting activators, for example, include alumoxanes, aluminum alkyls, other metal or main group alkyl or aryl compounds, ionizing activators, which may be neutral or ionic, Lewis acids, reducing agents, oxidizing agents, and combinations thereof.
[0069] In one embodiment, alumoxane activators are utilized as an activator in the compositions useful in the invention. Alumoxanes are generally oligomehc compounds containing -AI(R*)-O- sub-units, where R* is an alkyl group. Examples of alumoxanes include methylalumoxane (MAO), ethylalumoxane, isobutylalumoxane, and modified methylalumoxanes
(MMAO), which include alkyl groups other than methyl such as ethyl, isobutyl, and n-octyl, such as MMAO-3A, PMAO-IP (the latter referring to polymethylalumoxane-IP, manufactured by Akzo-Nobel and meaning an MAO prepared from a non-hydrolytic process). Alkylalumoxanes and modified alkylalumoxanes are suitable as catalyst activators, particularly when the abstractable ligand of the catalyst is a halide, alkoxide or amide. Mixtures of different alumoxanes and modified alumoxanes may also be used.
[0070] The activator compounds comprising Lewis-acid activators and in particular alumoxanes are specifically characterized by the following general formulae:
(Ra-AI-O)p Rb(Rc-AI-O)p-AIRe 2 where Ra, Rb, Rc and Re are, independently a C1-C30 alkyl radical, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and "p" is an integer from 1 to about 50. Most specifically, Ra, Rb, Rc and Rd are each methyl and "p" is a least 4. When an alkyl aluminum halide or alkoxide is employed in the preparation of the alumoxane, one or more Ra, Rb, Rc or Re are groups may be halide or alkoxide.
[0071] It is recognized that alumoxane is not a discrete material. An alumoxane is generally a mixture of both the linear and cyclic compounds. A typical alumoxane will contain free trisubstituted or thalkyl aluminum, bound trisubstituted or trialkyl aluminum, and alumoxane molecules of varying degree of oligomehzation. For some embodiments, it is preferred that methylalumoxanes contain lower levels of thmethylaluminum. Lower levels of thmethylaluminum can be achieved by reaction of the thmethylaluminum with a Lewis base or by vacuum distillation of the thmethylaluminum or by any other means known in the art.
[0072] For further descriptions, see U.S. Pat. Nos. 4,665,208, 4,952,540, 5,041 ,584, 5,091 ,352, 5,206,199, 5,204,419, 4,874,734, 4,924,018, 4,908,463, 4,968,827, 5,329,032, 5,248,801 , 5,235,081 , 5,157,137, 5,103,031 and EP0561476A1 , EP0279586B1 , EP0516476A1 , EP0594218A1 and WO94/10180.
[0073] When the activator is an alumoxane (modified or unmodified), some embodiments select the maximum amount of activator at a 5000-fold molar excess Al/Cr over the catalyst precursor. The minimum preferred activator-to-catalyst-precursor is a 1 :1 molar ratio. More specifically, the Al/Cr ratio is from 1000:1 to 100:1.
[0074] Alumoxanes may be produced by the hydrolysis of the respective thalkylaluminum compound. MMAO may be produced by the hydrolysis of
trimethylaluminum and a higher trialkylaluminum such as triisobutylaluminunn. MMAO's are generally more soluble in aliphatic solvents and more stable during storage. There are a variety of methods for preparing alumoxane and modified alumoxanes, non-limiting examples of which are described in U.S. Pat. Nos. 4,665,208, 4,952,540, 5,091 ,352, 5,206,199, 5,204,419, 4,874,734, 4,924,018, 4,908,463, 4,968,827, 5,308,815, 5,329,032, 5,248,801 , 5,235,081 , 5,157,137, 5,103,031 , 5,391 ,793, 5,391 ,529, 5,693,838, 5,731 ,253, 5,731 ,451 , 5,744,656, 5,847,177, 5,854,166, 5,856,256 and 5,939,346 and European publications EP0561476A1 , EP0279586B1 , EP0594218A1 and EP0586665B1 , and PCT publications WO94/10180 and WO99/15534, all of which are herein fully incorporated by reference. It may be preferable to use a visually clear methylalumoxane. A cloudy or gelled alumoxane can be filtered to produce a clear solution or clear alumoxane can be decanted from the cloudy solution. Another alumoxane is a modified methyl alumoxane (MMAO) cocatalyst type 3A (commercially available from Akzo Chemicals, Inc. under the trade name Modified Methylalumoxane type 3A, covered under patent number U.S. Pat. No. 5,041 ,584).
[0075] Aluminum alkyl or organoaluminum compounds which may be utilized as activators (or scavengers) include trimethylaluminum, thethylaluminum, thisobutylaluminum, th-n-hexylaluminum, tri-n- octylaluminum, diisobutylaluminum hydride, ethylaluminum dichlohde, diethylaluminum chloride, diethylaluminum ethoxide and the like.
Ionizing Activators
[0076] In some embodiments, the activator includes compounds that may abstract a ligand making the metal complex cationic and providing a charge- balancing non-coordinating or weakly coordinating anion. The term "non- coordinating anion" (NCA) means an anion which either does not coordinate to said cation or which is only weakly coordinated to said cation thereby remaining sufficiently labile to be displaced by a Lewis base (for example, a neutral Lewis base).
[0077] It is within the scope of this invention to use an ionizing or stoichiometric activator, neutral or ionic, such as th(n-butyl)ammonium
tetrakis(pentafluorophenyl)boron, a tris(pentafluorophenyl)boron metalloid precursor or a tris(heptafluoronaphthyl)boron metalloid precursor, polyhalogenated heteroborane anions (WO98/43983), boric acid (U.S. Pat. No. 5,942,459) or combination thereof. It is also within the scope of this invention to use neutral or ionic activators alone or in combination with alumoxane or modified alumoxane activators.
[0078] Examples of neutral stoichiometric activators include th-substituted boron, tellurium, aluminum, gallium and indium or mixtures thereof. The three substituent groups are each independently selected from alkyls, alkenyls, halogen, substituted alkyls, aryls, arylhalides, alkoxy and halides. In some embodiments, the three groups are independently selected from halogen, mono or multicyclic (including halosubstituted) aryls, alkyls, and alkenyl compounds and mixtures thereof, preferred are alkenyl groups having 1 to 20 carbon atoms, alkyl groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms and aryl groups having 3 to 20 carbon atoms (including substituted aryls). In other embodiments, the three groups are alkyls having 1 to 4 carbon groups, phenyl, naphthyl or mixtures thereof. In further embodiments, the three groups are halogenated, specifically fluohnated, aryl groups. In even further embodiments, the neutral stoichiometric activator is tris(perfluorophenyl) boron or tris(perfluoronaphthyl) boron.
[0079] Ionic stoichiometric activator compounds may contain an active proton, or some other cation associated with, but not coordinated to, or only loosely coordinated to, the remaining ion of the ionizing compound. Such compounds and the like are described in European publications EP0570982A1 , EP0520732A1 , EP0495375A1 , EP0500944B1 , EP0277003A1 and EP0277004A1 , and U.S. Pat. Nos. 5,153,157, 5,198,401 , 5,066,741 , 5,206,197, 5,241 ,025, 5,384,299 and 5,502,124 and U.S. Pat. App. No. 08/285,380, filed August 3, 1994, all of which are herein fully incorporated by reference.
[0080] Ionic catalysts can be prepared by reacting a Cr compound with some neutral Lewis acids, such as B(C6F6)3, which upon reaction with the abstractable ligand (X) of the Cr compound forms an anion, such as
([B(C6F5)S(X)]"), which stabilizes the cationic Cr species generated by the reaction. The catalysts can be prepared with activator components, which are ionic compounds or compositions.
[0081] In some embodiments, compounds useful as an activator component in the preparation of the ionic catalyst systems used in the process of this invention comprise a cation, which is optionally a Brόnsted acid capable of donating a proton, and a compatible non-coordinating anion which is capable of stabilizing the active catalyst species which is formed when the two compounds are combined and said anion will be sufficiently labile to be displaced by olefinic substrates or other neutral Lewis bases such as ethers, nithles and the like. Two classes of compatible non-coordinating anions useful herein have been disclosed in EP0277003A1 and EP0277004A1 published 1988: anionic coordination complexes comprising a plurality of lipophilic radicals covalently coordinated to and shielding a central charge-bearing metal or metalloid core; and, anions comprising a plurality of boron atoms such as carboranes, metallacarboranes and boranes.
[0082] In one preferred embodiment, the stoichiometric activators include a cation and an anion component, and may be represented by the following formula:
) where L is a neutral Lewis base; H is hydrogen; (L-H)+ is a Brόnsted acid; Ad~ is a non-coordinating anion having the charge d-; and d is an integer from 1 to 3.
[0083] The cation component, (L-H)d + may include Brόnsted acids such as protons or protonated Lewis bases or reducible Lewis acids capable of protonating or abstracting a moiety, such as an alkyl or aryl, from the bulky ligand chromium catalyst precursor, resulting in a cationic transition metal species.
[0084] The activating cation (L-H)d + may be a Brόnsted acid, capable of donating a proton to the transition metal catalytic precursor resulting in a transition metal cation, including ammoniums, oxoniums, phosphoniums, silyliums, and mixtures thereof, specifically ammoniums of methylamine,
aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, trimethylamine, triethylamine, N,N-dimethylaniline, methyldiphenylamine, pyridine, p-bromo-N,N-dinnethylaniline, p-nitro-N,N-dimethylaniline, phosphoniums from thethylphosphine, thphenylphosphine, and diphenylphosphine, oxoniums from ethers such as dimethyl ether diethyl ether, tetrahydrofuran and dioxane, sulfoniums from thioethers, such as diethyl thioethers and tetrahydrothiophene, and mixtures thereof. The activating cation (L-H)d + may also be a moiety such as silver, tropylium, carbeniums, ferroceniums and mixtures, specifically carboniums and ferroceniums. In one embodiment (L-H)d + can be triphenyl carbonium.
[0085] The anion component Ad~ includes those having the formula [Mk+Qn]d~ wherein k is an integer from 1 to 3; n is an integer from 2-6; n - k = d; M is an element selected from Group 13 of the Periodic Table of the Elements, specifically boron or aluminum, and Q is independently a hydride, bridged or unbridged dialkylamido, halide, alkoxide, aryloxide, hydrocarbyl, substituted hydrocarbyl, halocarbyl, substituted halocarbyl, and halosubstituted-hydrocarbyl radicals, said Q having up to 20 carbon atoms with the proviso that in not more than 1 occurrence is Q a halide. Specifically, each Q is a fluohnated hydrocarbyl group having 1 to 20 carbon atoms, more specifically each Q is a fluorinated aryl group, and most specifically each Q is a pentafluoryl aryl group. Examples of suitable Ad~ also include diboron compounds as disclosed in U.S. Pat. No. 5,447,895, which is fully incorporated herein by reference.
[0086] Illustrative, but not limiting examples of boron compounds which may be used as an activating cocatalyst in the preparation of the improved catalysts of this invention are tri-substituted ammonium salts such as: trimethylammonium tetraphenyl borate, triethylammonium tetraphenylborate, thpropylammonium tetraphenylborate, tri(n- butyl)ammonium tetraphenylborate, th(t-butyl)arnmonium tetraphenylborate, N,N-dimethylanilinium tetraphenylborate, N,N-diethylanilinium tetraphenylborate, N,N-dimethyl-(2,4,6-trimethylanilinium) tetraphenylborate, tropillium tetraphenylborate, triphenylcarbenium tetraphenylborate, triphenylphosphonium tetraphenylborate, triethylsilylium tetraphenylborate,
benzene(diazonium)tetraphenylborate, trimethylammoniunn tetrakis(pentafluorophenyl)borate, triethylammoniunn tetrakis(pentafluorophenyl)borate, tripropylammonium tetrakis(pentafluorophenyl)borate, tri(n-butyl)amnnoniunn tetrakis(pentafluorophenyl)borate, tri(sec-butyl)annnnoniunn tetrakis(pentafluorophenyl)borate, N,N-dimethylaniliniunn tetrakis(pentafluorophenyl)borate, N,N-diethylanilinium tetrakis(pentafluorophenyl)borate, N,N-dimethyl-(2,4,6-trimethylanilinium) tetrakis(pentafluorophenyl)borate, tropillium tetrakis(pentafluorophenyl)borate, triphenylcarbenium tetrakis(pentafluorophenyl)borate, triphenylphosphonium tetrakis(pentafluorophenyl)borate, triethylsilylium tetrakis(pentafluorophenyl)borate, benzene(diazonium) tetrakis(pentafluorophenyl)borate, trimethylammoniunn tetrakis-(2, 3,4,6- tetrafluorophenyl) borate, triethylammonium tetrakis-(2, 3,4,6- tetrafluorophenyl)borate, tripropylammonium tetrakis-(2, 3,4,6- tetrafluorophenyl)borate, tri(n-butyl)ammonium tetrakis-(2,3,4,6-tetrafluoro- phenyl)borate, dimethyl(t-butyl)ammonium tetrakis-(2, 3,4,6- tetrafluorophenyl)borate, N,N-dimethylanilinium tetrakis-(2, 3,4,6- tetrafluorophenyl)borate, N,N-diethylanilinium tetrakis-(2, 3,4,6- tetrafluorophenyl)borate, N,N-dimethyl-(2,4,6-trimethylanilinium) tetrakis- (2,3,4,6-tetrafluorophenyl)borate, tropillium tetrakis-(2, 3,4,6- tetrafluorophenyl)borate, triphenylcarbenium tetrakis-(2, 3,4,6- tetrafluorophenyl)borate, triphenylphosphonium tetrakis-(2, 3,4,6- tetrafluorophenyl)borate, triethylsilylium tetrakis-(2, 3,4,6- tetrafluorophenyl)borate, benzene(diazonium) tetrakis-(2, 3,4,6- tetrafluorophenyl)borate, trimethylammonium tetrakis(perfluoronaphthyl)borate, triethylammonium tetrakis(perfluoronaphthyl)borate, tripropylammonium tetrakis(perfluoronaphthyl)borate, tri(n-butyl)ammonium tetrakis(perfluoronaphthyl)borate, tri(t-butyl)ammonium tetrakis(perfluoronaphthyl)borate, N,N-dimethylanilinium tetrakis(perfluoronaphthyl)borate, N,N-diethylanilinium tetrakis(perfluoronaphthyl)borate, N,N-dimethyl-(2,4,6-trimethylanilinium) tetrakis(perfluoronaphthyl)borate, tropillium tetrakis(perfluoronaphthyl)borate,
triphenylcarbenium tetrakis(perfluoronaphthyl)borate, triphenylphosphonium tetrakis(perfluoronaphthyl)borate, triethylsilylium tetrakis(perfluoronaphthyl)borate, benzene(diazonium) tetrakis(perfluoronaphthyl)borate, trimethylammoniunn tetrakis(perfluorobiphenyl)borate, triethylammoniunn tetrakis(perfluorobiphenyl)borate, tripropylammonium tetrakis(perfluorobiphenyl)borate, tri(n-butyl)annnnoniunn tetrakis(perfluorobiphenyl)borate, tri(t-butyl)amnnoniunn tetrakis(perfluorobiphenyl)borate, N,N-dimethylaniliniunn tetrakis(perfluorobiphenyl)borate, N,N-diethylanilinium tetrakis(perfluorobiphenyl)borate, N,N-dimethyl-(2,4,6-trimethylanilinium) tetrakis(perfluorobiphenyl)borate, tropillium tetrakis(perfluorobiphenyl)borate, triphenylcarbenium tetrakis(perfluorobiphenyl)borate, triphenylphosphonium tetrakis(perfluorobiphenyl)borate, triethylsilylium tetrakis(perfluorobiphenyl)borate, benzene(diazonium) tetrakis(perfluorobiphenyl)borate, trimethylammonium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, triethylammonium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, tripropylammonium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, tri(n-butyl)ammonium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, tri(t-butyl)ammonium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, N,N-dimethylanilinium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, N,N-diethylanilinium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, N,N-dimethyl-(2,4,6-trimethylanilinium) tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, tropillium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, triphenylcarbenium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, triphenylphosphonium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, triethylsilylium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, benzene(diazonium) tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, and dialkyl ammonium salts such as: di-(i- propyl)ammonium tetrakis(pentafluorophenyl)borate, and dicyclohexylammonium tetrakis(pentafluorophenyl)borate; and additional tri- substituted phosphonium salts such as th(o-tolyl)phosphonium tetrakis(pentafluorophenyl)borate, and tri(2,6-dimethylphenyl)phosphonium tetrakis(pentafluorophenyl)borate.
[0087] Most specifically, the ionic stoichiometric activator (L-H)d + (Ad~) is N,N-dimethylanilinium tetra(perfluorophenyl)borate, N,N-dimethylanilinium tetrakis(perfluoronaphthyl)borate, N,N-dimethylanilinium tetrakis(perfluorobiphenyl)borate, N,N-dimethylanilinium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, triphenylcarbenium tetrakis(perfluoronaphthyl)borate, triphenylcarbenium tetrakis(perfluorobiphenyl)borate, triphenylcarbenium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, or triphenylcarbenium tetra(perfluorophenyl)borate. [0088] Other examples of preferred ionizing activators include, HNMe(C18H37)2+B(C6F5)4-; HNPh(C18H37)2+B(C6F5)4- and ((4-n-Bu- C6H4)NH(n-hexyl)2)+B(C6F5)4 ~ and ((4-n-Bu-C6H4)NH(n-decyl)2)+B(C6F5)4 ~. Specific preferred (L* — H)+ cations are N,N-dialkylanilinium cations, such as HNMe2Ph+, substituted N,N-dialkylanilinium cations, such as (4-n-Bu- C6H4)NH(n-C6H13)2+ and (4-n-Bu-C6H4)NH(n-CioH2i)2+ and HNMe(Ci8H3Z)2 +. Specific examples of anions are tetrakis(3,5-bis(trifluoromethyl)phenyl)borate and tetrakis(pentafluorophenyl)borate.
[0089] In one embodiment, activation methods using ionizing ionic compounds not containing an active proton but capable of producing an active oligomerization catalyst are also contemplated. Such methods are described in relation to metallocene catalyst compounds in EP0426637A1 , EP0573403A1 and U.S. Patent No. 5,387,568, which are all herein incorporated by reference.
[0090] The process can also employ cocatalyst compounds or activator compounds that are initially neutral Lewis acids but form a cationic metal complex and a noncoordinating anion, or a zwitterionic complex upon reaction with the compounds of this invention. For example, tris(pentafluorophenyl) boron or aluminum may act to abstract a hydrocarbyl or hydride ligand to yield a cationic metal complex and stabilizing noncoordinating anion. [0091] In some embodiments, ionizing activators may be employed as described in Kόhn et al. {J. Organomet. Chem., 683, pp 200-208, (2003)) to, for example, improve solubility.
[0092] In another embodiment, the aforementioned cocatalyst compounds can also react with the compounds to produce a neutral, uncharged catalyst capable of selective ethylene oligomerization. For example, Lewis acidic reagents such as, for example, alkyl or aryl aluminum or boron compounds, can abstract a Lewis basic ligand such as, for example, THF or Et2O, from a compound yielding a coord inatively unsaturated catalyst capable of selective ethylene oligomerization.
[0093] When the cations of noncoordinating anion precursors are Brόnsted acids such as protons or protonated Lewis bases (excluding water), or reducible Lewis acids such as ferrocenium or silver cations, or alkali or alkaline earth metal cations such as those of sodium, magnesium or lithium, the activator-to-catalyst-precursor molar ratio may be any ratio, however, useful ratios can be from 1000:1 to 1 :1.
[0094] Combinations of two or more activators may also be used in the practice of this invention.
[0095] Another suitable ion forming, activating cocatalyst comprises a salt of a cationic oxidizing agent and a noncoordinating, compatible anion characterized by the general formula:
(OXΘ+)d (Ad )e
where OXe+ is a cationic oxidizing agent having a charge of e+; e is an integer from 1 to 3; d is an integer from 1 to 3, and Ad" is as previously defined. Examples of cationic oxidizing agents include: ferrocenium, hydrocarbyl-substituted ferrocenium, Ag+, or Pb+2. Preferred embodiments of Ad~ are those anions previously defined with respect to the Brόnsted acid containing activators, especially tetrakis(pentafluorophenyl)borate.
Group 13 Reagents, Divalent Metal Reagents, and Alkali Metal Reagents
[0096] Other general activators or compounds useful in an oligomerization reaction may be used. These compounds may be activators in some contexts, but may also serve other functions in the reaction system, such as alkylating a metal center or scavenging impurities. These compounds are within the general definition of "activator," but are not considered herein to be
ion-forming activators. These compounds include a group 13 reagent that may be characterized by the formula G13R5VpDp where G13 is selected from the group consisting of B, Al, Ga, In, and combinations thereof, p is 0, 1 or 2, each R50 is independently selected from the group consisting of hydrogen, halogen, and optionally substituted alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, aryl, heteroaryl, and combinations thereof, and each D is independently selected from the group consisting of halogen, hydrogen, alkoxy, aryloxy, amino, mercapto, alkylthio, arylthio, phosphino and combinations thereof. [0097] In other embodiments, the group 13 activator is an oligomehc or polymeric alumoxane compound, such as methylalumoxane and the known modifications thereof. See, for example, Barron, "Alkylalumoxanes, Synthesis, Structure and Reactivity", pp. 33-67 in Metallocene-Based Polyolefins: Preparation, Properties and Technology, J. Schiers and W. Kaminsky (eds.), Wiley Series in Polymer Science, John Wiley & Sons Ltd., Chichester, England, 2000, and references cited therein.
[0098] In other embodiments, a divalent metal reagent may be used that is characterized by the general formula M1R5Vp Dp' and p' is 0 or 1 in this embodiment and R50 and D are as defined above. M' is the metal and is selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Cd, Cu and combinations thereof.
[0099] In still other embodiments, an alkali metal reagent may be used that is defined by the general formula M'VR50 and in this embodiment R50 is as defined above, and M'v is the alkali metal and is selected from the group consisting of Li, Na, K, Rb, Cs and combinations thereof. Additionally, hydrogen and/or silanes may be used in the catalytic composition or added to the polymerization system. Silanes may be characterized by the formula SiR5VqDq where R50 is defined as above, q is 1 , 2, 3 or 4 and D is as defined above, with the proviso that at least one D is hydrogen. [00100] Non-limiting examples of Group 13 reagents, divalent metal reagents, and alkali metal reagents useful as activators for the catalyst compounds described above include methyl lithium, butyl lithium, phenyl
lithium, dihexylmercury, butylmagnesium, diethylcadmium, benzylpotassium, diethyl zinc, tri-n-butyl aluminum, diisobutyl ethylboron, diethylcadmium, di-n- butyl zinc and tri-n-amyl boron, and, in particular, the aluminum alkyls, such as thhexyl-aluminum, thethylaluminum, thmethylaluminum, and thisobutyl aluminum, diisobutyl aluminum bromide, diethylaluminum chloride, ethylaluminum dichlohde, isobutyl boron dichlohde, methyl magnesium chloride, ethyl beryllium chloride, ethyl calcium bromide, diisobutyl aluminum hydride, methyl cadmium hydride, diethyl boron hydride, hexylberyllium hydride, dipropylboron hydride, octylmagnesium hydride, butyl zinc hydride, dichloroboron hydride, di-bromo-aluminum hydride and bromocadmium hydride. Other Group 13 reagents, divalent metal reagents, and alkali metal reagents useful as activators for the catalyst compounds described above are known to those in the art, and a more complete discussion of these compounds may be found in U.S. Pat. Nos. 3,221 ,002 and 5,093,415, which are herein fully incorporated by reference.
[00101] Other activators include those described in PCT publication WO98/07515 such as ths(2,2',2"-nonafluorobiphenyl) fluoroaluminate, which publication is fully incorporated herein by reference. Combinations of activators are also contemplated by the invention, for example, alumoxanes and ionizing activators in combinations, see for example, EP0573120B1 , PCT publications WO94/07928 and WO95/14044 and U.S. Pat. Nos. 5,153,157 and 5,453,410, all of which are herein fully incorporated by reference.
[00102] Other suitable activators are disclosed in WO98/09996, incorporated herein by reference, which describes activating bulky ligand metallocene catalyst compounds with perchlorates, periodates and iodates including their hydrates. WO98/30602 and WO98/30603, incorporated by reference, describe the use of lithium (2,2'-bisphenyl-ditrimethylsilicate)*4THF as an activator for a bulky ligand metallocene catalyst compound. WO99/18135, incorporated herein by reference, describes the use of organo- boron-aluminum activators. EP0781299B1 describes using a silylium salt in combination with a non-coordinating compatible anion. Also, methods of activation such as using radiation (see EP0615981 B1 herein incorporated by reference), electro-chemical oxidation, and the like are also contemplated as
activating methods for the purposes of rendering the chromium complexes or compositions active for the selective oligomehzation of olefins. Other activators or methods are described in for example, U.S. Pat. Nos. 5,849,852, 5,859,653 and 5,869,723 and WO98/32775, WO99/42467 (dioctadecylmethylammonium-bis(ths(pentafluorophenyl)borane) benzimidazolide), which are herein incorporated by reference.
[00103] Additional optional activators include metal salts of noncoordinating or weakly coordinating anions, for example where the metal is selected from Li, Na, K, Ag, Ti, Zn, Mg, Cs, and Ba. [00104] It is within the scope of this invention that metal-ligand complexes and or ligand-metal-precursor-combinations can be combined with one or more activators or activation methods described above. For example, a combination of activators has been described in U.S. Pat. Nos. 5,153,157 and 5,453,410, EP0573120B1 , and PCT publications WO94/07928 and WO95/14044. These documents all discuss the use of an alumoxane in combination with an ionizing activator.
[00105] In one embodiment, the molar ratio of metal (from the metal-ligand- complex or the ligand-metal-precursor-combination) to activator (specifically Cr: activator, specifically Cr: Al or Cr:B) can range from 1 :1 to 1 :5000. In another embodiment, the molar ratio of metal to activator employed can range from 1 : 1 to 1 :500. In another embodiment, the molar ratio of metal to activator employed can range from 1 :1 to 1 :50. In another embodiment, the molar ratio of chromium to activator employed can range from 1 :1 to 1 :500. In another embodiment, the molar ratio of chromium to activator employed can range from 1 :1 to 1 :50.
[00106] In embodiments where more than one activator is used, the order in which the activators are combined with the metal-ligand-complex or the ligand-metal-precursor-combination may be varied.
[00107] In some embodiments, the process of the invention relates to the oligomerization, and more specifically the trimehzation and/or tetramerization of ethylene. The ligand-metal-precursor-combinations, metal-ligand- complexes, and/or catalyst systems of this invention are particularly effective
at oligomerizing and specifically trimerizing and/or tetramerizing ethylene to form 1 -hexene and/or 1 -octene.
[00108] In other embodiments, this invention relates to the oligomerization of α-olefins or co-oligomerization of ethylene with α-olefins. The trimerization of α-olefins is described in Kόhn et al., Angew. Chem. Int. Ed., 39 (23), pp 4337-4339 (2000).
[00109] Very generally, oligomerization can be carried out in the Ziegler- Natta or Kaminsky-Sinn methodology, including temperatures from -100°C to 3000C and pressures from atmospheric to 3000 atmospheres (303,900 kPa). Suspension, solution, slurry, gas phase, or high-pressure oligomerization processes may be employed with the catalysts and compounds of this invention. Such processes can be run in a batch, semi-batch, or continuous mode. Examples of such processes are well known in the art.
[00110] Suitable solvents for oligomerization are non-coordinating, inert liquids. Examples include straight and branched-chain hydrocarbons such as isobutane, butane, pentane, isopentane, hexane, isohexane, heptane, octane, dodecane, and mixtures thereof; cyclic and alicyclic hydrocarbons such as cyclohexane, cycloheptane, methylcyclohexane, methylcycloheptane, and mixtures thereof; perhalogenated hydrocarbons such as perfluorinated C4-io alkanes, chlorobenzene, and aromatic and alkylsubstituted aromatic compounds such as benzene, toluene, mesitylene, and xylene. Suitable solvents also include liquid olefins, which may act as monomers or comonomers including ethylene, propylene, 1-butene, 1 -hexene, 1 -pentene,
3-methyl-1 -pentene, 4-methyl-1 -pentene, 1 -octene, and 1 -decene. Additional suitable solvents include ionic liquids and supercritical fluids. Mixtures of the foregoing are also suitable.
[00111] Other additives that are useful in an oligomerization reaction may be employed, such as scavengers, promoters, modifiers, reducing agents, oxidizing agents, dihydrogen, aluminum alkyls, or silanes. For example, Jolly et al. (Organometallics, 16, pp 1511 -1513 (1997)) has reported the use of magnesium as a reducing agent for Cr compounds that were synthesized as models for intermediates in selective ethylene oligomerization reactions.
[00112] In some useful embodiments, the activator (such as methylalumoxane or modified methylalumoxane-3A) is combined with the metal-ligand-complex or the ligand-metal-precursor-combination immediately prior to introduction into the reactor. Such mixing may be achieved by mixing in a separate tank then swift injection into the reactor, mixing in-line just prior to injection into the reactor, or the like. It has been observed that in some instances, a short activation time is very useful. Likewise, in-situ activation, where the catalyst system components are injected separately into the reactor, with or without monomer, and allowed to combine within the reactor directly is also useful in the practice of this invention. In some embodiments, the catalyst system components are allowed to contact each other for 30 minutes or less, prior to contact with monomer, alternately for 5 minutes or less, alternately for 3 minutes or less, alternately for 1 minute or less.
[00113] In another embodiment, the present invention relates to methods of producing oligomers of olefins, catalysts, ligands used to prepare the catalyst and catalyst compositions as described in the following paragraphs.
[00114] In a first embodiment, the present invention pertains to a composition comprising:
(1 ) a ligand characterized by the following general formula:
wherein R1 is selected from the group consisting of optionally substituted hydrocarbyl and heteroatom containing hydrocarbyl;
T is a bridging group of the general formula -(T1R2R3)-, where T is selected from the group consisting of carbon and silicon, R2 and R3 are independently selected from the group consisting of hydrogen, halogen, and optionally substituted hydrocarbyl, heteroatom containing hydrocarbyl, silyl, boryl, and combinations thereof, provided that R2 and R3 groups may be
joined together to form one or more optionally substituted ring systems having from 3-50 non-hydrogen atoms;
R4, R5, R6 and R7 are independently selected from the group consisting of hydrogen, halogen, nitro, and optionally substituted hydrocarbyl and heteroatom containing hydrocarbyl, alkoxy, aryloxy, silyl, boryl, phosphino, amino, alkylthio, arylthio, and combinations thereof, and optionally two or more R1, R2, R3, R4, R5, R6 and R7 groups may be joined to form one or more optionally substituted ring systems;
(2) a metal precursor compound characterized by the general formula Cr(L)n where each L is independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, ether, thioether, carboxylates, thio, 1 ,3- dionates, oxalates, carbonates, nitrates, sulfates, ethers, thioethers and combinations thereof, wherein two or more L groups may be combined in a ring structure having from 3 to 50 non-hydrogen atoms; n is 1 , 2, 3, 4, 5, or 6; and (3) optionally, one or more activators.
2. The composition of paragraph 1 , wherein R1 through R7 are selected from the group consisting of hydrogen, optionally substituted alkyl, heteroalkyl, aryl, heteroaryl, and combinations thereof, provided that R2 and R3 groups may be joined together to form one or more optionally substituted ring systems having from 3-50 non-hydrogen atoms and optionally two or more R1, R2, R3, R4, R5, R6 and R7 groups may be joined to form one or more optionally substituted ring systems.
3. The composition of paragraph 1 , wherein R1 is selected from the group consisting of optionally substituted alkyl and aryl. 4. The composition of paragraph 1 , wherein R7 is selected from the group consisting of optionally substituted aryl and heteroaryl.
5. The composition of paragraph 1 , wherein R7 is optionally substituted phenyl.
6. The composition of paragraph 1 , wherein R3 is selected from the group consisting of optionally substituted alkyl, aryl and hydrogen. 7. The composition of paragraph 1 , wherein R1 is selected from the group consisting of optionally substituted alkyl, and aryl, R7 is selected from the group consisting of optionally substituted aryl and heteroaryl and R3 is selected from the group consisting of optionally substituted alkyl, aryl and hydrogen. 8. The composition of paragraph 1 , wherein the ligand is selected from the group consisting of ligand A1 to A10.
9. A method of producing oligomers of olefins, comprising reacting an olefin with a catalyst under oligomehzation conditions, wherein said oligomerization reaction has a selectivity of at least 70 mole percent for oligomer, and wherein said catalyst is said composition of any of claims 1 through 9.
10. The method of paragraph 9, wherein the activator is an alumoxane, which may optionally be used in any combination with group 13 reagents, divalent metal reagents, or alkali metal reagents. 11. The method of paragraph 9, wherein the activator is a neutral or ionic stoichiometric activator, which may optionally be used in any combination with group 13 reagents, divalent metal reagents, or alkali metal reagents.
12. The method of paragraph 9, wherein the activator is selected from the group consisting of modified methylaluminoxane (MMAO), methylaluminoxane (MAO), trimethylaluminum (TMA), triisobutyl aluminum (TIBA), diisobutylaluminumhydhde (DIBAL), polymethylaluminoxane-IP (PMAO-IP), triphenylcarbonium tetrakis(perfluorophenyl)borate, N,N-dimethyl-anilinium tetrakis(perfluorophenyl)borate, N,N-di(n-decyl)-4-n-butyl-anilinium tetrakis(perfluorophenyl)borate, and mixtures thereof. 13. The method of paragraph 9, wherein the metal precursor is selected from the group consisting of (THF)3CrMeC^, (Mes)sCr(THF) (Mes = mesityl =
2,4,6-trimethylphenyl), [{TFA}2Cr(OEt2)]2 (TFA = trifluoroacetate), (THF)3CrPh3, CrCI3(THF)3, CrCI4(NHs)2, Cr(NMe3)2CI3, CrCI3, Cr(acac)3 (acac = acetylacetonato), Cr(2-ethylhexanoate)3, Cr(neopentyl)4, Cr(CH2-C6H4-O- NMe2)3, Cr(TFA)3, Cr(CH(SiMe3)2)s, Cr(MeS)2(THF)3, Cr(MeS)2(THF), Cr(MeS)CI(THF)2, Cr(MeS)CI(THF)0 5, Cr(p-tolyl)CI2(THF)3,
Cr(diisopropylamide)3, Cr(picolinate)3, [Cr2Me8][Li(THF)]4, CrCI2(THF), Cr(NO3)3, [CrMe6][Li(Et2O)]S, [CrPh6][Li(THF)]3, [CrPh6][Li(n-Bu2O)]3, [Cr(C4H8)s][Li(THF)]3, CrCI2, Cr(hexafluoroacetylacetonato)3,
(THF)3Cr(η2-2,2'-Biphenyl)Br and mixtures thereof. 14. The method of paragraph 9, wherein the metal precursor is selected from the group consisting of (THF)3CrMeCI2, (THF)3CrCI3, (MeS)3Cr(THF), [{TFA}2Cr(OEt2)]2, (THF)3CrPh3, (THF)3Cr(η2-2,2'-Biphenyl)Br and mixtures thereof.
15. The method of any of paragraphs 9 through 14, wherein the olefin is a C2 to Ci2 olefin.
16. The method of any of paragraphs 9 through 14, wherein the olefin is a C2 to C8 olefin.
17. The method of any of paragraphs 9 through 14, wherein the olefin is ethylene. 18. The method of paragraph 17, wherein the process produces a trimer or tetramer of the olefin or mixture thereof.
19. The method of paragraph 17, wherein the process produces hexene.
20. The method of paragraph 17, wherein the process produces 1 -hexene.
21. The method of paragraph 17, wherein the process produces octene. 22. The method of paragraph 17, wherein the process produces 1 -octene.
23. The method of paragraph 17, wherein the process produces a mixture of hexene and octene.
24. The method of paragraph 17, wherein the process produces a mixture of 1 -hexene and 1 -octene.
25. The method of any of paragraphs 9 through 24, wherein the reaction occurs in a hydrocarbon solvent.
26. The method of any of paragraphs 9 through 24, wherein the reaction occurs in an aliphatic hydrocarbon solvent. EXAMPLES
[00115] General: All air sensitive procedures were performed under a purified argon or nitrogen atmosphere in a Vacuum Atmospheres or MBraun glove box. All solvents used were anhydrous, de-oxygenated and purified according to known techniques (see for example, D. D. Perrin & W. L. F. Armarego Purification of Laboratory Chemicals, 3rd Ed., (Pergamon Press: New York, 1988)). All ligands and metal precursors were prepared according to procedures known to those of skill in the art, e.g., under inert atmosphere conditions, etc. Ethylene oligomerization experiments were carried out in a parallel batch reactor with in situ injection capability, as described in WO 04/060550, and U.S. Application No. 2004/0121448, each of which is incorporated herein by reference.
[00116] Quantitative analysis of the liquid olefin products was performed using an automated Agilent 6890 Dual Channel Gas Chromatograph fitted with 2 Flame Ionization Detectors. The liquid olefin products were first separated using RT-x1 columns (1.25 m length x 0.25 mm thickness x 1 μm width; manufactured by Restek and spooled into module by RVM Scientific) and quantified by flame ionization detection by comparison with calibration standards. Samples were loaded onto the columns from an 8 x 12 array of 1 ml_ glass vials using a CTC HTS PAL LC-MS autosampler purchased from LEAPTEC. Polyethylene yields were determined using a Bohdan model BA-100 automated weighing module.
[00117] Chromatography was performed on a Biotage Flash÷ chromatography system (Biotage AB, Uppsala, Sweden).
Ligand Synthesis
Synthesis of Pyridine Ethers as in Scheme 1. Example 1. Synthesis of Ligand A10. Step i
[00118] To a solution of 0.250 g (1.36 mmol) of 6-phenyl-2-pyridine aldehyde in 5 ml_ of methanol was added sodium borohydride (0.08 g, 2.05 mmol) portionwise with stirring under N2 at ambient temperature. After 10 min, the reaction was quenched with 5 ml_ of saturated aqueous ammonium chloride solution. This solution was extracted with 3 x 50 ml_ EtOAc. The organic fractions were pooled, dried over Na2SO4 and concentrated. After removing the volatiles in vacuo, the resultant yellow oil was chromatographed on silica with 10% EtOAc/hexanes. Clean fractions were combined and the volatiles were removed to provide 0.250 g of 2-methylhydroxyl-6-phenyl pyridine as a clear oil (>99%).
Step 2
[00119] 2-Methylhydroxyl-6-phenyl pyridine (0.26 g, 1.4 mmol) and DIEA (0.30 ml_, 1.7 mmol) were dissolved in 8 ml_ of anhydrous methylene chloride. A 1 ml_ solution in methylene chloride of methanesulfonyl chloride (0.13 ml_, 1.7 mmol) was added via syringe at ambient temperature. The mixture was vigorously stirred under N2 for 12 h. The reaction was quenched with 5 ml_ MeOH and stirred for 10 min. The crude product was partitioned between
water and methylene chloride, and extracted 3 x 10 ml_ methylene chloride. After removing the volatiles in vacuo, the resultant yellow oil was used immediately without further purification.
Step 3
Ligand A10
[00120] To a solution of 30 g (0.2 mmol) of f-butylphenol in 2 ml_ of anhydrous DMF was added 5.0 mg (0.2 mmol) of sodium hydride at ambient temperature with vigorous stirring. After 1 h, a 1 ml_ DMF solution containing the pyridine mesylate (40 mg, 0.2 mmol) was added dropwise to the phenoxide. The resultant solution was heated at 50 0C for 1 h. After cooling, the crude material was concentrated in vacuo and purified via silica gel chromatography (20% EtOAc/Hexanes) to provide 50 mg of ligand A10 as a white solid (79%).
Alternative syntheses of Pyridine Ethers as in Scheme 2: Example 2: General Synthesis of Alcohol Intermediate.
[00121] To a vigorously-stirred solution of 6-phenyl-2-pyridine aldehyde (0.50 g, 2.73 mmol) in 30 ml_ of anhydrous Et2O under N2, was added a solution of benzylmagnesium chloride (3 ml_ of 1 M solution in Et2O, 3.0 mmol) at ambient temperature. After 12 h, the reaction was quenched with 5 ml_
saturated aqueous ammonium chloride. This solution was extracted with 3 x 10 ml_ EtOAc. The organic fractions were pooled, dried over Na2SO4 and concentrated. After removing the volatiles in vacuo, the resultant yellow oil was chromatographed on silica with 10% EtOAc/hexanes. Clean fractions were combined and the volatiles were removed to provide 0.31 g of the alcohol intermediate as a yellow oil (41 %).
Example 3: Synthesis of Ligand A8.
Ligand A8
[00122] The 2-(cyclohexylmethanol)-6-phenyl-pyhdine, prepared as in Example 2 and Scheme 2 step 1 above, (0.05 g, 0.2 mmol) was dissolved in 2.5 ml_ anhydrous DMF. To the vigorously-stirred solution was added NaH (0.005 g, 0.2 mmol), followed 5 min later by iodomethane (0.030 ml_, 0.24 mmol). After 12 h, the crude product was concentrated and purified via silica gel chromatography (20% EtOAc/Hex) to yield 0.056 g of Ligand A8 as a clear oil (100%).
Method 1 : Toluene 75 °C Temperature Complexation, Heptane Screening. [00123] The ligand array (0.3 μmol of each ligand) was contacted with a toluene solution of the chromium complex (60 μl_ of a 5.0 mM solution, 0.3 μmol per well) and was stirred at 75°C for a period of 1 hour (in the absence of ethylene). The array was then cooled to RT and the THF was removed by directing a stream of nitrogen or argon over each well in the array. Each well of the array was subsequently treated with 60 μl_ of n-Heptane and was stirred under 100-150 psi (0.69-1.03 MPa) of ethylene for 15 minutes. The array was then treated with a stock solution of the appropriate activator (200
μl_ per well, contact time of < 5 minutes), and placed into the parallel batch reactor and stirred at 500C under 150 psi (1.03 MPa) of ethylene for 1 hour.
Product Analysis.
[00124] After 1 hour of reaction, the parallel batch reactor was depressuhzed and the array was removed. The array of vials was then transferred to a room temperature aluminum block, and to each vial was added ca. 200 μl_ of toluene followed by 30-50 μl_ of water. The vials were stirred and then topped off with toluene to bring the total volume to ca. 800 μl_. A Teflon sheet and rubber gasket were placed over the top of the array and an aluminum cover was screwed on the top to seal the array. The array was then mechanically agitated and centhfuged at 1500 rpm for 10 minutes before analyzing the composition of each well using Gas Chromatography with a Flame Ionization Detector (e.g. the GC-FID technique). Following the GC analysis of the array, the volatiles were removed under vacuum centrifuge and the vials were weighed in order to determine the yield of solid product. The calculated catalyst and cocatalyst residues were then subtracted from the weight to give the yield of non-volatile product (e.g., polyethylene) produced. Table 1 presents selected results from the selective ethylene oligomerization reactions performed in 96-well formats. In Table 1 , 1 -hexene selectivity is shown as a percentage and is defined as 100 x [micromoles of 1 -hexene]/[sum of micromoles of Cβ-Ciβ olefins].
Table 1.
[00125] The results of selective ethylene trimerization or tetramerization using ligands of the invention in combination with chromium precursors or with isolated chromium metal complexes are surprising. The results illustrate that certain combinations are more productive in the trimerization of ethylene, for example, to produce 1 -hexene at a higher selectivity and a lower selectivity toward polyethylene when compared with other chromium-ligand catalysts under similar conditions.
[00126] All documents described herein are incorporated by reference herein, including any priority documents and/or testing procedures to the extent they are not inconsistent with this text. As is apparent from the foregoing general description and the specific embodiments, while forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited thereby. Likewise, the term "comprising" is considered synonymous with the term "including" for purposes of Australian law.
Claims
1. A composition comprising:
(1 ) a ligand characterized by the following general formula:
wherein R1 is selected from the group consisting of optionally substituted hydrocarbyl and heteroatom containing hydrocarbyl;
T is a bridging group of the general formula -(T1R2R3)-, where T is selected from the group consisting of carbon and silicon, R2 and R3 are independently selected from the group consisting of hydrogen, halogen, and optionally substituted hydrocarbyl, heteroatom containing hydrocarbyl, silyl, boryl, and combinations thereof, provided that R2 and R3 groups may be joined together to form one or more optionally substituted ring systems having from 3-50 non-hydrogen atoms;
R4, R5, R6 and R7 are independently selected from the group consisting of hydrogen, halogen, nitro, and optionally substituted hydrocarbyl and heteroatom containing hydrocarbyl, alkoxy, aryloxy, silyl, boryl, phosphino, amino, alkylthio, arylthio, and combinations thereof, and optionally two or more R1, R2, R3, R4, R5, R6 and R7 groups may be joined to form one or more optionally substituted ring systems;
(2) a metal precursor compound characterized by the general formula Cr(L)n where each L is independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, ether, thioether, carboxylates, thio, 1 ,3- dionates, oxalates, carbonates, nitrates, sulfates, ethers, thioethers and combinations thereof, wherein two or more L groups may be combined in a ring structure having from 3 to 50 non-hydrogen atoms; n is 1 , 2, 3, 4, 5, or 6; and
(3) optionally, one or more activators.
2. The composition of claim 1 , wherein R1 through R7 are selected from the group consisting of optionally substituted alkyl, heteroalkyl, aryl, heteroaryl, and combinations thereof, provided that R2 and R3 groups may be joined together to form one or more optionally substituted ring systems having from 3-50 non-hydrogen atoms and optionally two or more R1, R2, R3, R4, R5, R6 and R7 groups may be joined to form one or more optionally substituted ring systems.
3. The composition of claim 1 , wherein R1 is selected from the group consisting of optionally substituted alkyl and aryl.
4. The composition of claim 1 , wherein R7 is selected from the group consisting of optionally substituted aryl and heteroaryl.
5. The composition of claim 1 , wherein R7 is optionally substituted phenyl.
6. The composition of claim 1 , wherein R3 is selected from the group consisting of optionally substituted alkyl, aryl and hydrogen.
7. The composition of claim 1 , wherein R1 is selected from the group consisting of optionally substituted alkyl and aryl, R7 is selected from the group consisting of optionally substituted aryl and heteroaryl and R3 is selected from the group consisting of optionally substituted alkyl, aryl and hydrogen.
8. The composition of claim 1 , wherein the ligand is selected from the group consisting of ligands represented by the formulae
-48-
9. A method of producing oligomers of olefins, comprising reacting an olefin with a catalyst under oligomerization conditions, wherein said oligomerization reaction has a selectivity of at least 70 mole percent for oligomer, and wherein said catalyst is said composition of any of claims 1 through 9.
10. The method of claim 9, wherein the activator is an alumoxane, which may optionally be used in any combination with group 13 reagents, divalent metal reagents, or alkali metal reagents.
11. The method of claim 9, wherein the activator is a neutral or ionic stoichiometric activator, which may optionally be used in any combination with group 13 reagents, divalent metal reagents, or alkali metal reagents.
12. The method of claim 9, wherein the activator is selected from the group consisting of modified methylaluminoxane (MMAO), methylaluminoxane (MAO), trimethylaluminum (TMA), triisobutyl aluminum (TIBA), diisobutylaluminumhydhde (DIBAL), polymethylaluminoxane-IP (PMAO-IP), triphenylcarbonium tetrakis(perfluorophenyl)borate, N,N-dimethyl-anilinium tetrakis(perfluorophenyl)borate, N,N-di(n-decyl)-4-n-butyl-anilinium tetrakis(perfluorophenyl)borate, and mixtures thereof.
13. The method of claim 9, wherein the metal precursor is selected from the group consisting of (THF)3CrMeCI2, (MeS)3Cr(THF) (Mes = mesityl = 2,4,6-thmethylphenyl), [{TFA}2Cr(OEt2)]2 (TFA = trifluoroacetate), (THF)3CrPh3, CrCI3(THF)3, CrCI4(NHs)2, Cr(NMe3)2CI3, CrCI3, Cr(acac)3 (acac = acetylacetonato), Cr(2-ethylhexanoate)3, Cr(neopentyl)4, Cr(CH2-CeH4-O- NMe2)3, Cr(TFA)3, Cr(CH(SiMe3)2)3, Cr(MeS)2(THF)3, Cr(MeS)2(THF), Cr(MeS)CI(THF)2, Cr(MeS)CI(THF)0 5, Cr(p-tolyl)CI2(THF)3, Cr(diisopropylamide)3, Cr(picolinate)3, [Cr2Me8] [Li(TH F)]4, CrCI2(THF), Cr(NOs)3, [CrMe6][Li(Et2O)]S, [CrPh6][Li(THF)]3, [CrPh6][Li(n-Bu2O)]3, [Cr(C4H8)s][Li(THF)]3, CrCI2, Cr(hexafluoroacetylacetonato)3, (THF)3Cr(η2-2,2'-Biphenyl)Br and mixtures thereof.
14. The method of claim 9, wherein the metal precursor is selected from the group consisting of (THF)3CrMeCI2, (THF)3CrCI3, (MeS)3Cr(THF), [{TFA}2Cr(OEt2)]2, (THF)3CrPh3, (THF)3Cr(η2-2,2'-Biphenyl)Br and mixtures thereof.
15. The method of any of claims 9 through 14, wherein the olefin is a C2 to Ci2 olefin.
16. The method of any of claims 9 through 14, wherein the olefin is a C2 to Cs olefin.
17. The method of any of claims 9 through 14, wherein the olefin is ethylene.
18. The method of claim 17, wherein the process produces a trimer or tetramer of the olefin or mixture thereof.
19. The method of claim 17, wherein the process produces hexene.
20. The method of claim 17, wherein the process produces 1 -hexene.
21. The method of claim 17, wherein the process produces octene.
22. The method of claim 17, wherein the process produces 1 -octene.
23. The method of claim 17, wherein the process produces a mixture of hexene and octene.
24. The method of claim 17, wherein the process produces a mixture of 1 - hexene and 1 -octene.
25. The method of any of claims 9 through 24, wherein the reaction occurs in a hydrocarbon solvent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07855144A EP2114974A1 (en) | 2007-01-08 | 2007-12-13 | Methods for oligomerizing olefins with chromium pyridine ether catalysts |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US87913107P | 2007-01-08 | 2007-01-08 | |
US60/879,131 | 2007-01-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008085659A1 true WO2008085659A1 (en) | 2008-07-17 |
Family
ID=38229839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/087456 WO2008085659A1 (en) | 2007-01-08 | 2007-12-13 | Methods for oligomerizing olefins with chromium pyridine ether catalysts |
Country Status (3)
Country | Link |
---|---|
US (1) | US8629280B2 (en) |
EP (1) | EP2114974A1 (en) |
WO (1) | WO2008085659A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011048527A1 (en) | 2009-10-19 | 2011-04-28 | Sasol Technology (Pty) Limited | Oligomerisation of olefinic compounds with reduced polymer formation |
CN102909071A (en) * | 2011-08-01 | 2013-02-06 | 中国石油化工股份有限公司 | Catalyst for ethylene tetramerization and application thereof |
JP2021522243A (en) * | 2018-04-26 | 2021-08-30 | エクソンモービル ケミカル パテンツ インコーポレイテッド | Non-coordinating anion-type activator containing a cation having a long-chain alkyl group |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007092136A2 (en) * | 2006-02-03 | 2007-08-16 | Exxonmobil Chemical Patents, Inc. | Process for generating alpha olefin comonomers |
WO2011112184A1 (en) | 2010-03-09 | 2011-09-15 | Exxonmobil Chemical Patents Inc. | System and method for selective trimerization |
CN102909072B (en) * | 2011-08-01 | 2014-12-03 | 中国石油化工股份有限公司 | Catalyst for ethylene tetramerization and application thereof |
US8524972B1 (en) | 2012-04-18 | 2013-09-03 | Exxonmobil Chemical Patents Inc. | Low temperature steam stripping for byproduct polymer and solvent recovery from an ethylene oligomerization process |
CN116174040A (en) * | 2022-09-22 | 2023-05-30 | 中化泉州石化有限公司 | Ethylene trimerization catalyst composition and application thereof |
CN115463691B (en) * | 2022-09-22 | 2023-12-26 | 中化泉州石化有限公司 | Catalyst composition for preparing 1-hexene and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006096881A1 (en) * | 2005-03-09 | 2006-09-14 | Exxonmobil Chemical Patents Inc. | Methods for oligomerizing olefins |
Family Cites Families (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3333016A (en) | 1963-01-28 | 1967-07-25 | Monsanto Co | Polymerization process |
US3627700A (en) | 1968-11-22 | 1971-12-14 | Phillips Petroleum Co | Dimerization of olefins with chromium halide complex catalyst systems |
US3726939A (en) | 1968-11-22 | 1973-04-10 | Phillips Petroleum Co | Dimerization of olefins with chromium halide complex catalysts systems |
US4668838A (en) | 1986-03-14 | 1987-05-26 | Union Carbide Corporation | Process for trimerization |
US5376612A (en) | 1989-08-10 | 1994-12-27 | Phillips Petroleum Company | Chromium catalysts and process for making chromium catalysts |
CA2020509C (en) | 1989-08-10 | 1998-04-28 | William K. Reagen | Chromium compounds and uses thereof |
US5198563A (en) | 1989-08-10 | 1993-03-30 | Phillips Petroleum Company | Chromium compounds and uses thereof |
US5137994A (en) | 1991-05-23 | 1992-08-11 | Union Carbide Chemicals & Plastics Technology Corporation | Process for the simultaneous trimerization and copolymerization of ethylene |
US5811618A (en) | 1991-10-16 | 1998-09-22 | Amoco Corporation | Ethylene trimerization |
US5744677A (en) | 1991-10-16 | 1998-04-28 | Amoco Corporation | Ethylene oligomerization |
US5438027A (en) | 1991-12-13 | 1995-08-01 | Phillips Petroleum Company | Chromium compounds and uses thereof |
SG112883A1 (en) | 1992-09-17 | 2005-07-28 | Mitsubishi Chem Corp | Method for oligomerizing an alpha-olefin |
CA2087578C (en) | 1993-01-19 | 1998-10-27 | William Kevin Reagen | Preparing catalyst for olefin polymerization |
TW354300B (en) | 1993-02-17 | 1999-03-11 | Mitsubishi Chem Corp | Process for producing <alpha>-olefin oligomers |
CA2115639C (en) | 1993-03-03 | 2004-10-19 | Feng-Jung Wu | Ethylene trimerization |
TW279167B (en) | 1993-03-12 | 1996-06-21 | Sumitomo Chemical Co | |
US5439862A (en) | 1993-10-21 | 1995-08-08 | Kemp; Richard A. | Oligomerization catalyst and process |
US5543375A (en) | 1994-02-18 | 1996-08-06 | Phillips Petroleum Company | Olefin production |
MY115177A (en) | 1994-06-21 | 2003-04-30 | Mitsubishi Chem Corp | Process for producing (alpha) -olefin oligomers |
JP3613642B2 (en) | 1994-09-05 | 2005-01-26 | 住友化学株式会社 | Method for producing 1-hexene |
KR100414008B1 (en) | 1995-03-02 | 2004-04-29 | 미쓰비시 가가꾸 가부시키가이샤 | Production method of α-olefin oligomer |
US5637660A (en) | 1995-04-17 | 1997-06-10 | Lyondell Petrochemical Company | Polymerization of α-olefins with transition metal catalysts based on bidentate ligands containing pyridine or quinoline moiety |
US5859303A (en) | 1995-12-18 | 1999-01-12 | Phillips Petroleum Company | Olefin production |
US5856612A (en) | 1996-02-02 | 1999-01-05 | Mitsubishi Chemical Corporation | Process for producing α-olefin oligomer |
US6133495A (en) | 1996-03-14 | 2000-10-17 | Mitsubishi Chemical Corporation | Process for producing α-olefin oligomer |
US5856257A (en) | 1997-05-16 | 1999-01-05 | Phillips Petroleum Company | Olefin production |
US6103657A (en) | 1997-07-02 | 2000-08-15 | Union Carbide Chemicals & Plastics Technology Corporation | Catalyst for the production of olefin polymers |
JP2000169513A (en) | 1998-12-09 | 2000-06-20 | Mitsui Chemicals Inc | Olefin polymerization catalyst and process |
US6344594B1 (en) | 1999-04-16 | 2002-02-05 | The Penn State Research Foundation | Highly selective catalytic process for synthesizing 1-hexene from ethylene |
DE60005185T2 (en) | 1999-05-14 | 2004-05-27 | Dow Global Technologies, Inc., Midland | TRANSITION METAL COMPLEXES AND OLEFIN POLYMERIZATION PROCESS |
FR2802833B1 (en) | 1999-12-24 | 2002-05-10 | Inst Francais Du Petrole | CATALYTIC COMPOSITION AND PROCESS FOR THE OLIGOMERIZATION OF ETHYLENE, PARTICULARLY HEXENE-1 |
JP2001187345A (en) | 2000-01-05 | 2001-07-10 | Tosoh Corp | Catalyst component for trimerizing ethylene, trimerizing catalyst and method for trimerizing ethylene using the same |
IT1318394B1 (en) | 2000-03-17 | 2003-08-25 | Enichem Spa | PROCESS FOR THE PREPARATION OF 1-ESENE. |
GB0016895D0 (en) | 2000-07-11 | 2000-08-30 | Bp Chem Int Ltd | Olefin oligomerisation |
GB2369590B (en) | 2000-09-29 | 2005-05-04 | Tosoh Corp | Catalyst for trimerization of ethylene and process for trimerizing ethylene using the catalyst |
US6900321B2 (en) | 2000-11-07 | 2005-05-31 | Symyx Technologies, Inc. | Substituted pyridyl amine complexes, and catalysts |
WO2002066404A1 (en) | 2001-02-22 | 2002-08-29 | Stichting Dutch Polymer Institute | Catalyst system for the trimerisation of olefins |
WO2002083306A2 (en) | 2001-04-12 | 2002-10-24 | Sasol Technology (Pty) Ltd | Oligomerisation process and catalyst system |
EP1404446A2 (en) | 2001-07-02 | 2004-04-07 | Sasol Technology (Proprietary) Limited | Catalyst comprising chromium and a ligand comprising a substituted cyclopentadiene and its use for trimerising olefins |
US6911506B2 (en) | 2001-12-10 | 2005-06-28 | Chevron Phillips Chemical Company Lp | Catalyst composition and olefin polymerization using same |
BRPI0215088B1 (en) | 2001-12-20 | 2015-12-22 | Sasol Tech Pty Ltd | trimerization catalyst system and process for olefin oligomerization |
EP1325924B1 (en) | 2002-01-03 | 2005-03-16 | Repsol Quimica S.A. | Chromium catalysts active in olefin polymerisation |
EP1325925A1 (en) | 2002-01-03 | 2003-07-09 | Repsol Quimica S.A. | Chromium catalysts active in olefin polymerization |
EP1367069A1 (en) | 2002-05-28 | 2003-12-03 | Dow Global Technologies Inc. | Process for homo-or copolymerization of conjugated diens |
JP2006511694A (en) | 2002-12-20 | 2006-04-06 | サソル テクノロジー (ピーティーワイ) リミテッド | Tandem tetramerization of olefins-polymerization |
BRPI0317510B1 (en) | 2002-12-20 | 2020-01-07 | Sasol Technology ( Pty) Ltd | Olefin tetramerization process and catalyst system |
US7273959B2 (en) | 2003-10-10 | 2007-09-25 | Shell Oil Company | Catalytic trimerization of olefinic monomers |
WO2006036748A2 (en) | 2004-09-22 | 2006-04-06 | Symyx Technologies, Inc. | Heterocycle-amine ligands, compositions, complexes, and catalysts, and methods of making and using the same |
US7256296B2 (en) | 2004-09-22 | 2007-08-14 | Symyx Technologies, Inc. | Heterocycle-amine ligands, compositions, complexes, and catalysts |
US7414006B2 (en) | 2005-03-09 | 2008-08-19 | Exxonmobil Chemical Patents Inc. | Methods for oligomerizing olefins |
WO2007092136A2 (en) | 2006-02-03 | 2007-08-16 | Exxonmobil Chemical Patents, Inc. | Process for generating alpha olefin comonomers |
-
2007
- 2007-12-13 EP EP07855144A patent/EP2114974A1/en not_active Withdrawn
- 2007-12-13 US US11/956,133 patent/US8629280B2/en not_active Expired - Fee Related
- 2007-12-13 WO PCT/US2007/087456 patent/WO2008085659A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006096881A1 (en) * | 2005-03-09 | 2006-09-14 | Exxonmobil Chemical Patents Inc. | Methods for oligomerizing olefins |
Non-Patent Citations (2)
Title |
---|
HAN, JIN WOOK ET AL: "Synthesis and use in palladium-catalyzed asymmetric allylic alkylation of new planar chiral chromium complexes of 1,2-di-substituted arenes having pyridine and aryl phosphine groups", TETRAHEDRON: ASYMMETRY , 10(15), 2853-2861 CODEN: TASYE3; ISSN: 0957-4166, 1999, XP002442619 * |
SON, SEUNG UK ET AL: "New planar chiral P,N-ligands containing tricarbonyl(arene)chromium for enantioselective asymmetric hydroboration of styrenes", TETRAHEDRON: ASYMMETRY , 10(2), 347-354 CODEN: TASYE3; ISSN: 0957-4166, 1999, XP002442620 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011048527A1 (en) | 2009-10-19 | 2011-04-28 | Sasol Technology (Pty) Limited | Oligomerisation of olefinic compounds with reduced polymer formation |
US8859696B2 (en) | 2009-10-19 | 2014-10-14 | Sasol Technology (Pty) Limited | Oligomerisation of olefinic compounds with reduced polymer formation |
CN102909071A (en) * | 2011-08-01 | 2013-02-06 | 中国石油化工股份有限公司 | Catalyst for ethylene tetramerization and application thereof |
JP2021522243A (en) * | 2018-04-26 | 2021-08-30 | エクソンモービル ケミカル パテンツ インコーポレイテッド | Non-coordinating anion-type activator containing a cation having a long-chain alkyl group |
US11414436B2 (en) | 2018-04-26 | 2022-08-16 | Exxonmobil Chemical Patents Inc. | Non-coordinating anion type activators containing cation having large alkyl groups |
JP7196197B2 (en) | 2018-04-26 | 2022-12-26 | エクソンモービル ケミカル パテンツ インコーポレイテッド | Non-coordinating anionic activators containing cations with long-chain alkyl groups |
Also Published As
Publication number | Publication date |
---|---|
EP2114974A1 (en) | 2009-11-11 |
US8629280B2 (en) | 2014-01-14 |
US20080200743A1 (en) | 2008-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7414006B2 (en) | Methods for oligomerizing olefins | |
EP1856010B1 (en) | Methods for oligomerizing olefins | |
US8404915B2 (en) | Phosphine ligand-metal compositions, complexes, and catalysts for ethylene trimerizations | |
US8003839B2 (en) | Process for generating linear apha olefin comonomers | |
CA2777230C (en) | Oligomerisation of olefinic compounds with reduced polymer formation | |
US8629280B2 (en) | Methods for oligomerizing olefins with chromium pyridine ether catalysts | |
US8067609B2 (en) | Methods for oligomerizing olefins with chromium pyridine thioether catalysts | |
US20080182951A1 (en) | Chromium Pyridine Bis(Oxazoline) And Related Catalysts For Ethylene Dimerization | |
US7982085B2 (en) | In-line process for generating comonomer | |
US20080188633A1 (en) | Methods For Oligomerizing Olefins With Chromium Pyridine Phosphino Catalysts | |
US8138348B2 (en) | Methods for oligomerizing olefins with chromium pyridine mono-oxazoline catalysts | |
CN107282118B (en) | Catalyst composition for ethylene oligomerization and oligomerization method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07855144 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007855144 Country of ref document: EP |