WO2008084441A1 - System and method for implementing mbms handover during download delivery - Google Patents
System and method for implementing mbms handover during download delivery Download PDFInfo
- Publication number
- WO2008084441A1 WO2008084441A1 PCT/IB2008/050051 IB2008050051W WO2008084441A1 WO 2008084441 A1 WO2008084441 A1 WO 2008084441A1 IB 2008050051 W IB2008050051 W IB 2008050051W WO 2008084441 A1 WO2008084441 A1 WO 2008084441A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- request
- mbms
- fdt
- terminal
- http
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/16—Arrangements for providing special services to substations
- H04L12/18—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
- H04L12/189—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L51/00—User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
- H04L51/58—Message adaptation for wireless communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/60—Network streaming of media packets
- H04L65/61—Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
- H04L65/611—Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for multicast or broadcast
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/02—Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/04—Protocols specially adapted for terminals or networks with limited capabilities; specially adapted for terminal portability
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/06—Protocols specially adapted for file transfer, e.g. file transfer protocol [FTP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/30—Resource management for broadcast services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
- H04W80/06—Transport layer protocols, e.g. TCP [Transport Control Protocol] over wireless
Definitions
- the present invention relates generally to the use of the use of the Multimedia Broadcast Multicast Service (MBMS). More particularly, the present invention relates to handover of a MBMS file download session when a client device moves from a MBMS-covered area to a MBMS-outage area.
- MBMS Multimedia Broadcast Multicast Service
- MBMS 3rd Generation Partnership Project
- 3GPP MBMS enables the resource-efficient delivery of popular multimedia content to the mobile users.
- a MBMS client can receive content via download delivery, streaming delivery and a combination of streaming delivery and download delivery.
- MBMS is a feature described in 3GPP Release 6.
- MBMS may be deployed by operators in only a few areas where it is cost efficient to have broadcast/multicast distribution of popular content.
- the operator may distribute the MBMS content in unicast mode.
- application/transport layer signaling is required in order to ensure the seamless handover between broadcast/multicast mode reception and unicast mode reception of MBMS content.
- One of the objectives of a 3GPP SA4 Release 7 work item on MBMS user service extensions is to specify the application/transport layer signaling needed for MBMS content distribution in unicast mode (over streaming and interactive bearers). Another objective is to specify optimization techniques for MBMS content delivery.
- Table 1 below shows the current working assumptions in 3GPP SA4 for the mapping between protocols to be used in broadcast/multicast and unicast modes.
- the File Delivery over Unidirectional Transport (FLUTE) protocol is discussed in the Internet Engineering Task Force (IETF) Request for Comments (RFC) 3926, available at www.ietf.org/rfc/rfc3926.txt (incorporated herein by reference).
- the User Datagram Protocol (UDP) is discussed in IETF RFC 768, available at www.ietf.org/rfc/rfcO768.txt (incorporated herein by reference).
- RTP a transport protocol for real-time applications, is discussed in IETF RFC 3550, available at www.ietf.org/rfc/rfc3550.txt (incorporated herein by reference).
- WSP Wireless Session Protocol
- RTSP Real Time Streaming Protocol
- PSS 3GPP Packet-switched Streaming Service
- PSS is based on RTSP for session setup and control.
- 3GPP Packet-switched Streaming Service enhancements (PSSe) are currently being defined in 3GPP. The goal of these enhancements is to define extensions to 3GPP PSS Release No. 6 to optimize the streaming service.
- PSS Packet-switched Streaming Service enhancements
- a general description of PSS can be found in 3GPP TS 26.233 V6.0.0 (2004-09): Transparent end-to-end packet switched streaming service (PSS); General description (Release 6), available at www.3gpp.org/ftp/Specs/archive/26_series/26.233/ (incorporated herein by reference).
- OMA-PUSH session is one option for implementing such a handover but suffers from a number of drawbacks.
- the OMA- PUSH system is generally as follows according to the proposal in 3GPP TSG-SA4 #41 Tdoc S4-060662.
- UE MBMS user equipment
- an attribute providing an access address for example as an unicastAccessURI, is available in the deliver method description, then the MBMS UE registers its MBMS Download Services with the BM-SC.
- the unicast service delivery registration request includes an identification of the MBMS user service, for example as a scrviccld of the MBMS user service and an identification of the user device, for example as the Mobile Station Integrated Services Digital Network (MSISDN) of the MBMS UE.
- MSISDN Mobile Station Integrated Services Digital Network
- the MBMS UE makes a unicast service delivery registration request using the HTTP request method GET.
- HTTP is discussed in detail in the Internet Engineering Task Force (IETF) Request for Comments (RFC) 2616 (June 1999): "Hypertext Transfer Protocol - HTTP/1.1"] (available at www.ietf.org/rfc/rfc2616.txt and incorporated herein by reference).
- URI Uniform Resource Identifier
- a MBMS Download Delivery Session may contain one or more files.
- the files are described in the FLUTE File Delivery Table (FDT). If a MBMS Download Delivery Method contains more than one file, then Multipart MIME, as defined in IETF RFC 2557 (March 1999): "MIME Encapsulation of Aggregate Documents, such as HTML (MHTML)", J. Palme, A. Hopmann, N. Shelness. (available at www.ietf.org/rfc/rfc3986.txt, incorporated herein by reference) is used to encapsulate the files into an aggregate service announcement document.
- MHTML HyperText Markup Language
- MBMS download over HTTP push bearers are formatted according to the OMA Push Over-the-Air (OTA) specification, as discussed in OMA Push OTA Protocol (25-April-2001): WAP-235-PushOTA-20010425-a, available at www.openmobilealliance.org/tech/affiliates/wap/wap-235-pushota-20010425-a.pdf (incorporated herein by reference).
- OTA-HTTP is used over the HTTP push bearer.
- Application port addressing is used as specified in the OMA Push OTA Protocol.
- the application ID to be used is as allocated by the OMA Naming Authority (OMNA), as discussed in OMA OMNA Registered PUSH Application ID list www.openmobilealliance.org/tech/omna/omna-push-app-id.htm (incorporated herein by reference).
- OMNA OMA Naming Authority
- the Content-Encoding header is included if the GZip compression utility is used.
- the OMA-PUSH approach suffers from a number of drawbacks.
- the broadcast-multicast service center does not have any information on the state of the MBMS client, i.e., the BM-SC has no idea of which objects, source blocks or symbols are yet to be delivered to the MBMS client via OTA-HTTP.
- the behavior of the BM-SC, after receiving the above- referenced unicast registration request, is not clear.
- the BM-SC can behave in any one of two ways. If a FLUTE session involves multiple objects of various sizes, then the BM-SC has to transmit all objects of the FLUTE session via the OTA- HTTP session, including the objects that the client had already received in the FLUTE session.
- the BM-SC may send only the remaining objects via OTA-HTTP, which case the client has some 'holes' in the received data.
- the client has no data from the point when it stopped receiving FLUTE transmission and the point when the BM-SC starts sending the data via OTA-HTTP.
- the client still has to initiate another HTTP session for the point to point (PtP) repair of the incomplete objects/source blocks.
- PtP point to point
- the signaling overhead can be reduced if the two HTTP sessions can be combined into one, one HTTP session is initiated by the BM- SC, while the other HTTP session is initiated by the client in these situations.
- the BM-SC server may perform an OMA-PUSH operation to the client whenever there is an updated FDT. In this case, the client does not need do any polling for the FDT updates.
- the above-referenced drawbacks still exist.
- Another option for implementing a MBMS handover during download delivery involves using FLUTE/UDP over a unicast system.
- this method required unnecessary overhead for the inclusion of FLUTE headers and forward error correction (FEC) repair symbols.
- FLUTE headers and FEC repair symbols are unnecessary for point-to-point delivery.
- FLUTE/UDP transport a new RTSP session must also be established.
- the PtP repair request/response mechanism specified in MBMS TS 26.346 v.7.2.0 can also be extended for the MBMS handover use case under a few special circumstances.
- a MBMS client When a MBMS client moves from an MBMS-covered area into MBMS-outage area, it can trigger the PtP file repair mechanism. The client then attempts to perform FEC decoding of all source blocks of all objects received to that point, determine the number/identity of the missing symbols, and send an HTTP GET request to the repair server by including all required details (e.g., file URI, Source Block Number (SBN), number of missing symbols, Encoding Symbol IDs (ESI) of missing symbols etc). If the client had already received the FDT, and if the FDT remains static for the rest of the FLUTE session, then it knows which file URIs/objects to expect in the remainder of the FLUTE session.
- SBN Source Block Number
- EI Encoding Symbol IDs
- the client can then request the repair server for the remaining source blocks in the current object and the remaining objects in the current session.
- the MBMS client can reuse the PtP repair request mechanism for the MBMS handover use case also.
- the FDTs are very likely to be dynamic, i.e., there may be new instances of FDTs transferred in the same FLUTE session. Therefore, the client cannot assume that the FDTs are static, since FLUTE explicitly allows FDTs to be dynamic, and it allows new instances of FDTs to be delivered in-band of the FLUTE session. Therefore, the PtP repair request mechanism cannot always be overloaded to cover the MBMS handover use case.
- Various embodiments of the present invention involve the use of the HTTP/1.1 "chunked" mode to deliver updates of the FDT of a session in a push-like mode.
- Each part of a multipart Multipurpose Internet Mail Extensions (MIME) message is separated by a boundary that is declared in the Content-Type header. Any string that is not expected to appear in the message payload may be used as separator.
- Each part of the multipart mime message has also to specify the content type of that part.
- each FDT instance is encoded as one part of a multipart MIME message and is sent as a separate chunk. The receiver can interpret each of the separate chunks to extract the FDT instance from the chunks.
- the content type of each part of the message is set to "text/xml" or another MIMI type in order to indicate that the content is an FDT instance.
- the receiver After parsing the FDT instance and updating the FDT, the receiver is able to identify which files of the session are of interest and can perform a HTTP GET request to retrieve a specific file.
- the server may indicate the end of the session using the Connection header field of HTTP with a value set to "closed”.
- Figure 1 is a flow chart showing a process by which an embodiment of the present invention is implemented
- Figure 2 is a representation showing a MBMS handover during a file download session according to one embodiment of the present invention
- Figure 3 is a representation showing the transmittal of a plurality of FDT instances from a server to a client terminal via a plurality of chunks in accordance with an embodiment of the present invention
- Figure 4 is a perspective view of an electronic device that can be used in the implementation of the present invention.
- Figure 5 is a schematic representation of the circuitry of the electronic device of Figure 4.
- Various embodiments of the present invention involve the use of the HTTP/1.1 "chunked" mode to deliver updates of the FDT of a session in a push-like mode.
- the chunked mode is defined in HTTP/1.1 in order to support dynamic content generation and delivery from the server.
- a web server may not be aware of the exact length of the content.
- the chunked mode is a form of transfer encoding that allows the content to be split into chunks of known length, and each chunk can then be sent to the receiver in a message part.
- the HTTP 1.1 chunked mode is usually used with persistent connections which allows a push type delivery.
- the content of the message is transmitted using the multipart/mixed content type, with each part of the message being delivered as a separate chunk.
- the receiver can interpret each of the separate chunks in order to extract the FDT instance from the chunks.
- the content type of each part of the message is set to "text/xml" or another MIME type to indicate that the content is an FDT instance.
- the receiver After parsing the FDT instance and updating the FDT, the receiver is able to identify which files of the session are of interest and can perform a HTTP GET request to retrieve a specific file.
- the server may indicate the end of the session using the Connection header field of HTTP with a value set to "closed”.
- Figure 2 shows the MBMS handover process according to one embodiment of the invention in greater detail, with chunks are broadcast/multicast according to the FLUTE protocol before and at the time of the handover.
- FIG. 1 is a flow chart showing a process by which an embodiment of the present invention may be implemented.
- a terminal which had been within a MBMS coverage area, leaves the MBMS coverage area.
- the terminal retrieves a unicastAccessUPJ from a service announcement.
- the terminal establishes a persistent TCP connection with a HTTP or web server.
- the terminal sends a GET request towards the HTTP server.
- the request URL is identical to the unicastAccessURI, which uniquely identifies the FLUTE session at the HTTP server.
- the following is a sample of how the request may appear: GET /flute_service?serviceld 2987324 HTTP/1.1 Host: www.example.com
- the HTTP server identifies the received request from the terminal as a request to initiate the unicast delivery of a FLUTE session and identifies the service based on the "serviceld" parameter, which is identical to the serviceld indicated by the service announcement.
- the HTTP server creates a response message.
- the response message indicates whether it is willing to serve the terminal.
- the following is a sample response including an indication that the HTTP server is willing to serve the terminal: HTTP/1.1 200 OK Content-type: multipart/mixed Transfer-encoding: chunked
- a new FDT instance becomes available.
- the HTTP server creates a new chunk and dispatches the new FDT instance as a new part of the multipart MlMI message. This is repeated each time that a new FDT instance becomes available.
- Figure e is a representation showing the transmittal of FDT instances from the HTTP server to the terminal via a plurality of chunks, after the HTTP response message of 125 has been sent.
- the receiver receives and checks the chunk(s) and updates its FDT accordingly.
- the receiver can send a GET request in order to retrieve files of interest.
- Figures 4 and 5 show one representative electronic device 12 within which the present invention may be implemented. It should be understood, however, that the present invention is not intended to be limited to one particular type of electronic device 12.
- the electronic device 12 of Figures 4 and 5 includes a housing 30, a display 32 in the form of a liquid crystal display, a keypad 34, a microphone 36, an ear-piece 38, a battery 40, an infrared port 42, an antenna 44, a smart card 46 in the form of a UICC according to one embodiment of the invention, a card reader 48, radio interface circuitry 52, codec circuitry 54, a controller 56, a memory 58 and a battery 80.
- Individual circuits and elements are all of a type well known in the art, for example in the Nokia range of mobile telephones. [0035] mobile telephones.
- a computer-readable medium may include removable and non-removable storage devises including, but not limited to, Read Only Memory (ROM), Random Access Memory (RAM), compact discs (CDs), digital versatile disc (DVD), etc.
- program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
- Computer-executable instructions, associated data structures, and program modules represent examples of program code for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described in such steps.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Mobile Radio Communication Systems (AREA)
- Information Transfer Between Computers (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008800030527A CN101589630B (en) | 2007-01-10 | 2008-01-08 | System and method for implementing mbms handover during download delivery |
KR1020097016503A KR101151935B1 (en) | 2007-01-10 | 2008-01-08 | System and method for implementing mbms handover during download delivery |
CA2674996A CA2674996C (en) | 2007-01-10 | 2008-01-08 | System and method for implementing mbms handover during download delivery |
EP08700224.2A EP2103014B1 (en) | 2007-01-10 | 2008-01-08 | System and method for implementing mbms handover during download delivery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US88438807P | 2007-01-10 | 2007-01-10 | |
US60/884,388 | 2007-01-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008084441A1 true WO2008084441A1 (en) | 2008-07-17 |
Family
ID=39608409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2008/050051 WO2008084441A1 (en) | 2007-01-10 | 2008-01-08 | System and method for implementing mbms handover during download delivery |
Country Status (9)
Country | Link |
---|---|
US (1) | US8015296B2 (en) |
EP (1) | EP2103014B1 (en) |
KR (1) | KR101151935B1 (en) |
CN (1) | CN101589630B (en) |
AR (1) | AR064845A1 (en) |
CA (1) | CA2674996C (en) |
RU (1) | RU2436245C2 (en) |
TW (1) | TWI461022B (en) |
WO (1) | WO2008084441A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010058964A2 (en) * | 2008-11-18 | 2010-05-27 | Lg Electronics Inc. | Method for receiving a broadcast signal |
WO2010058958A2 (en) * | 2008-11-18 | 2010-05-27 | 엘지전자 주식회사 | Method for processing non-real time service and broadcast receiver |
WO2010082792A2 (en) * | 2009-01-15 | 2010-07-22 | 엘지전자 주식회사 | Non-real-time service processing method and a broadcasting receiver |
US8782725B2 (en) | 2009-01-15 | 2014-07-15 | Lg Electronics Inc. | Method of processing non-real time service and broadcast receiver |
CN103929445A (en) * | 2013-01-11 | 2014-07-16 | 中国科学院声学研究所 | Method for online analysis of HTTP chunked code data |
JP2014517558A (en) * | 2011-04-05 | 2014-07-17 | クアルコム,インコーポレイテッド | Distribution of IP broadcast streaming service using file distribution method |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7631085B2 (en) * | 2004-08-30 | 2009-12-08 | Nokia Corporation | Point-to-point delivery verification report mechanism for point-to-multipoint transmission systems |
JP5345702B2 (en) * | 2008-12-23 | 2013-11-20 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Bearer selection control technology |
US20110182272A1 (en) | 2010-01-25 | 2011-07-28 | Qualcomm Incorporated | Application-layer handoff of an access terminal from a first system of an access network to a second system of the access network during a communication session within a wireless communications system |
US8780876B2 (en) | 2010-08-13 | 2014-07-15 | Intel Corporation | Delivery of multicast and broadcast services concurrently with unicast data |
CN102164178B (en) * | 2011-03-28 | 2014-04-16 | 华为技术有限公司 | Content acquiring method and client |
US9451401B2 (en) * | 2011-05-27 | 2016-09-20 | Qualcomm Incorporated | Application transport level location filtering of internet protocol multicast content delivery |
BR112014003030B1 (en) * | 2011-08-11 | 2021-09-08 | Apple Inc | METHOD FOR SWITCHING FROM A DOWNLOAD OF MBMS TO AN HTTP-BASED DELIVERY OF DASH FORMATTED CONTENT, METHOD OF SWITCHING FROM AN HTTP-BASED DELIVERY OF DASH FORMATTED CONTENT TO A DOWNLOAD OF MBMS AND MOBILE DEVICE |
US9213605B2 (en) | 2012-01-23 | 2015-12-15 | Intel Corporation | IP multimedia subsystem and method for MBMS file repair using HTTP servers |
TWI590631B (en) * | 2012-03-15 | 2017-07-01 | 微軟技術授權有限責任公司 | Multi-modal communication priority over wireless networks |
US9438883B2 (en) * | 2012-04-09 | 2016-09-06 | Intel Corporation | Quality of experience reporting for combined unicast-multicast/broadcast streaming of media content |
US9820259B2 (en) * | 2012-05-04 | 2017-11-14 | Qualcomm Incorporated | Smooth transition between multimedia broadcast multicast service (MBMS) and unicast service by demand |
US9900166B2 (en) * | 2013-04-12 | 2018-02-20 | Qualcomm Incorporated | Methods for delivery of flows of objects over broadcast/multicast enabled networks |
US10127263B2 (en) * | 2013-05-30 | 2018-11-13 | Qualcomm Incorporated | Full file repair using schedule description fragment in eMBMS |
JP2016536914A (en) * | 2013-09-13 | 2016-11-24 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | Streaming media transmission method and system, user equipment and server |
WO2016056013A1 (en) * | 2014-10-07 | 2016-04-14 | Routier Ltd. | Systems and methods for http message content modification streaming |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060030312A1 (en) * | 2004-08-04 | 2006-02-09 | Lg Electronics Inc. | Broadcast/multicast service system and method providing inter-network roaming |
WO2006136203A1 (en) * | 2005-06-21 | 2006-12-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Provision of multimedia broadcast/multicast service (mbms) for roaming subscribe rs |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7188366B2 (en) * | 2000-09-12 | 2007-03-06 | Nippon Telegraph And Telephone Corporation | Distributed denial of service attack defense method and device |
US6973081B1 (en) * | 2000-10-12 | 2005-12-06 | Realnetworks, Inc. | System and method for seamlessly joining multicast session |
US20050245240A1 (en) * | 2004-04-30 | 2005-11-03 | Senaka Balasuriya | Apparatus and method for storing media during interruption of a media session |
US7376150B2 (en) * | 2004-07-30 | 2008-05-20 | Nokia Corporation | Point-to-point repair response mechanism for point-to-multipoint transmission systems |
US7590922B2 (en) * | 2004-07-30 | 2009-09-15 | Nokia Corporation | Point-to-point repair request mechanism for point-to-multipoint transmission systems |
US7631085B2 (en) * | 2004-08-30 | 2009-12-08 | Nokia Corporation | Point-to-point delivery verification report mechanism for point-to-multipoint transmission systems |
US20060059267A1 (en) * | 2004-09-13 | 2006-03-16 | Nokia Corporation | System, method, and device for downloading content using a second transport protocol within a generic content download protocol |
US20070168523A1 (en) * | 2005-04-11 | 2007-07-19 | Roundbox, Inc. | Multicast-unicast adapter |
EP1932315A4 (en) * | 2005-09-01 | 2012-05-09 | Nokia Corp | Method for embedding svg content into an iso base media file format for progressive downloading and streaming of rich media content |
WO2010021526A2 (en) * | 2008-08-22 | 2010-02-25 | Lg Electronics Inc. | A method for processing additional information related to an announced service or content in an nrt service and a broadcast receiver |
-
2008
- 2008-01-08 WO PCT/IB2008/050051 patent/WO2008084441A1/en active Application Filing
- 2008-01-08 EP EP08700224.2A patent/EP2103014B1/en active Active
- 2008-01-08 CN CN2008800030527A patent/CN101589630B/en active Active
- 2008-01-08 KR KR1020097016503A patent/KR101151935B1/en active IP Right Grant
- 2008-01-08 US US11/971,153 patent/US8015296B2/en active Active
- 2008-01-08 CA CA2674996A patent/CA2674996C/en active Active
- 2008-01-08 RU RU2009130149/09A patent/RU2436245C2/en active
- 2008-01-09 TW TW097100807A patent/TWI461022B/en active
- 2008-01-10 AR ARP080100108A patent/AR064845A1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060030312A1 (en) * | 2004-08-04 | 2006-02-09 | Lg Electronics Inc. | Broadcast/multicast service system and method providing inter-network roaming |
WO2006136203A1 (en) * | 2005-06-21 | 2006-12-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Provision of multimedia broadcast/multicast service (mbms) for roaming subscribe rs |
Non-Patent Citations (5)
Title |
---|
"MBMS Roaming Support", S4-060662, vol. S4-060662, 6 November 2006 (2006-11-06) - 10 November 2006 (2006-11-10), XP003022747, Retrieved from the Internet <URL:http://www.isearch.etsi.org/3GPPSearch/isysquery/6c0814f1/7d77-4037-97a1-39bff0d4da7c/2/doc/sub/S4-060662-MBMSROAMING.DOC> * |
"Using MBMS User Services on Unicast Bearer Services", vol. S4-060236, 15 May 2006 (2006-05-15) - 19 May 2006 (2006-05-19), XP003022748, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Specs/html-info/TDocExMtg--S4-39--25338.htm> * |
3GPP TS 26.233 V6.0.0, September 2004 (2004-09-01) |
J. PALME; A. HOPMANN; N. SHELNESS, MIME ENCAPSULATION OF AGGREGATE DOCUMENTS, SUCH AS HTML (MHTML, March 1999 (1999-03-01), Retrieved from the Internet <URL:www.ietforg/rfc/rfc3986.txt> |
See also references of EP2103014A4 |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9661400B2 (en) | 2008-11-18 | 2017-05-23 | Lg Electronics Inc. | Method for receiving a broadcast signal and broadcast receiver |
US11025997B2 (en) | 2008-11-18 | 2021-06-01 | Lg Electronics Inc. | Method for receiving a broadcast signal and broadcast receiver |
US8874683B2 (en) | 2008-11-18 | 2014-10-28 | Lg Electronics Inc. | Method of processing non-real time service and broadcast receiver |
WO2010058958A3 (en) * | 2008-11-18 | 2010-07-29 | 엘지전자 주식회사 | Method for processing non-real time service and broadcast receiver |
US10676922B2 (en) | 2008-11-18 | 2020-06-09 | Lg Electronics Inc. | Method of processing non-real time service and broadcast receiver |
WO2010058964A3 (en) * | 2008-11-18 | 2011-08-25 | Lg Electronics Inc. | Method for receiving a broadcast signal |
US10602238B2 (en) | 2008-11-18 | 2020-03-24 | Lg Electronics Inc. | Method for receiving a broadcast signal and broadcast receiver |
US8347343B2 (en) | 2008-11-18 | 2013-01-01 | Lg Electronics Inc. | Method for receiving a broadcast signal |
US10225626B2 (en) | 2008-11-18 | 2019-03-05 | Lg Electronics Inc. | Method for receiving a broadcast signal and broadcast receiver |
US9699498B2 (en) | 2008-11-18 | 2017-07-04 | Lg Electronics Inc. | Method of processing non-real time service and broadcast receiver |
WO2010058964A2 (en) * | 2008-11-18 | 2010-05-27 | Lg Electronics Inc. | Method for receiving a broadcast signal |
US9253546B2 (en) | 2008-11-18 | 2016-02-02 | Lg Electronics Inc. | Method for receiving a broadcast signal |
US9848251B2 (en) | 2008-11-18 | 2017-12-19 | Lg Electronics Inc. | Apparatus for receiving a broadcast signal, and method for transmitting a broadcast signal |
WO2010058958A2 (en) * | 2008-11-18 | 2010-05-27 | 엘지전자 주식회사 | Method for processing non-real time service and broadcast receiver |
US9674571B2 (en) | 2009-01-15 | 2017-06-06 | Lg Electronics Inc. | Method of processing non-real time service and broadcast receiver |
US9191717B2 (en) | 2009-01-15 | 2015-11-17 | Lg Electronics Inc. | Method for processing non-real timeservice and broadcast receiver |
US8839329B2 (en) | 2009-01-15 | 2014-09-16 | Lg Electronics Inc. | Method for processing non-real time service and broadcast receiver |
US9609389B2 (en) | 2009-01-15 | 2017-03-28 | Lg Electronics Inc. | Method of processing non-real time service and broadcast receiver |
WO2010082792A2 (en) * | 2009-01-15 | 2010-07-22 | 엘지전자 주식회사 | Non-real-time service processing method and a broadcasting receiver |
US8782725B2 (en) | 2009-01-15 | 2014-07-15 | Lg Electronics Inc. | Method of processing non-real time service and broadcast receiver |
US10070188B2 (en) | 2009-01-15 | 2018-09-04 | Lg Electronics Inc. | Method of processing non-real time service and broadcast receiver |
US9191718B2 (en) | 2009-01-15 | 2015-11-17 | Lg Electronics Inc. | Method of processing non-real time service and broadcast receiver |
US8307393B2 (en) | 2009-01-15 | 2012-11-06 | Lg Electronics Inc. | Method of processing non-real time service and broadcast receiver |
WO2010082792A3 (en) * | 2009-01-15 | 2010-09-23 | 엘지전자 주식회사 | Non-real-time service processing method and a broadcasting receiver |
JP2014517558A (en) * | 2011-04-05 | 2014-07-17 | クアルコム,インコーポレイテッド | Distribution of IP broadcast streaming service using file distribution method |
US9026671B2 (en) | 2011-04-05 | 2015-05-05 | Qualcomm Incorporated | IP broadcast streaming services distribution using file delivery methods |
CN103929445A (en) * | 2013-01-11 | 2014-07-16 | 中国科学院声学研究所 | Method for online analysis of HTTP chunked code data |
Also Published As
Publication number | Publication date |
---|---|
TW200840269A (en) | 2008-10-01 |
TWI461022B (en) | 2014-11-11 |
CN101589630A (en) | 2009-11-25 |
EP2103014A1 (en) | 2009-09-23 |
RU2009130149A (en) | 2011-02-20 |
US8015296B2 (en) | 2011-09-06 |
KR101151935B1 (en) | 2012-07-11 |
CA2674996C (en) | 2015-05-12 |
EP2103014B1 (en) | 2018-05-23 |
US20080307041A1 (en) | 2008-12-11 |
EP2103014A4 (en) | 2015-08-12 |
CN101589630B (en) | 2013-07-17 |
CA2674996A1 (en) | 2008-07-17 |
KR20090091247A (en) | 2009-08-26 |
RU2436245C2 (en) | 2011-12-10 |
AR064845A1 (en) | 2009-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2674996C (en) | System and method for implementing mbms handover during download delivery | |
US8495228B2 (en) | System and method for optimizing download user service delivery to roaming clients | |
EP1766937B1 (en) | Grouping of session objects | |
EP1782584B1 (en) | Methods and devices for changing quality of service | |
EP2122874A1 (en) | Method for supporting file versioning in mbms file repair | |
CN1996941B (en) | A robust processing method for header compression U mode error | |
EP3414884B1 (en) | Methods and apparatus for enhanced mbms content provisioning and content ingestion | |
US9215265B2 (en) | Caching directives for a file delivery protocol | |
US20080101317A1 (en) | System and method for providing advanced session control of a unicast session | |
EP3266183B1 (en) | Indication for partial segment | |
EP2685664A1 (en) | Multicast transmission using a unicast protocol | |
EP3266182B1 (en) | Indication for partial segment | |
CN101296416A (en) | Reinforced broadcast and multicast service activation method, system and service center | |
KR100902855B1 (en) | Grouping of session objects | |
WO2012000165A1 (en) | Network entity and method for providing data to at least one user entity in a communication network | |
WO2023151514A1 (en) | Method and apparatus for group message delivery | |
Becker et al. | Transport of CoAP over SMS: draftbecker-core. coap-sms-gprs-05 | |
Alliance | File and Stream Distribution for Mobile Broadcast Services | |
Kuladinithi et al. | CoRE M. Becker, Ed. Internet-Draft ComNets, TZI, University Bremen Intended status: Standards Track K. Li Expires: February 9, 2015 Huawei Technologies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880003052.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08700224 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2674996 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4162/CHENP/2009 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008700224 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020097016503 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2009130149 Country of ref document: RU Kind code of ref document: A |