WO2008075714A1 - Method for manufacturing thin film electronic device mounted substrate, and electronic apparatus - Google Patents

Method for manufacturing thin film electronic device mounted substrate, and electronic apparatus Download PDF

Info

Publication number
WO2008075714A1
WO2008075714A1 PCT/JP2007/074409 JP2007074409W WO2008075714A1 WO 2008075714 A1 WO2008075714 A1 WO 2008075714A1 JP 2007074409 W JP2007074409 W JP 2007074409W WO 2008075714 A1 WO2008075714 A1 WO 2008075714A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
electronic device
substrate
film electronic
layer
Prior art date
Application number
PCT/JP2007/074409
Other languages
French (fr)
Japanese (ja)
Inventor
Taimei Kodaira
Akira Tanaka
Manabu Tsuburaya
Original Assignee
Seiko Epson Corporation
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation, Zeon Corporation filed Critical Seiko Epson Corporation
Priority to JP2008550169A priority Critical patent/JPWO2008075714A1/en
Publication of WO2008075714A1 publication Critical patent/WO2008075714A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support

Definitions

  • the present invention relates to a method for manufacturing a thin film electronic device bonded substrate obtained by bonding a thin film electronic device on a substrate, and an electronic apparatus.
  • a thin film circuit device is configured by providing a thin film electronic device such as a semiconductor element on a substrate surface to form a thin film circuit layer.
  • a thin film electronic device such as a semiconductor element
  • As the substrate on which the thin film circuit layer is formed an inorganic substrate such as a single crystal silicon wafer, a quartz glass substrate or a heat-resistant glass substrate, or an organic substrate such as a resin film is used.
  • an appropriate material is selected according to the required performance and function of the thin film circuit device.
  • a thin film circuit device using a resin film as a substrate has an advantage that a thin film circuit device having a light weight and flexibility can be provided because the substrate itself is thin and flexible.
  • Patent Document 1 JP-A-10-125929
  • Patent Document 2 Japanese Patent Laid-Open No. 10-125930
  • Patent Document 3 Japanese Patent Laid-Open No. 10-125931
  • a thin film electronic device and a thin film circuit layer made of the thin film electronic device include many inorganic material thin films deposited on a substrate surface by a chemical vapor deposition method (CVD method) or a sputtering method. These inorganic material thin films have a large elastic constant of several tens of GPa and a small linear expansion coefficient of several to several tens of ppm / K.
  • organic materials such as resin film substrates, pressure-sensitive adhesives, and adhesives generally have a large coefficient of linear expansion of about 10 to several hundred ppm / K with a small elastic constant of several GPa.
  • the adhesive and / or the adhesive material Thermal stress is generated in both the organic layer and the inorganic layer constituting the thin film electronic device (thin film circuit layer). Therefore, if the two are not firmly bonded (adhered), as described above, the thin film electronic device (thin film circuit layer) is peeled off from the organic layer made of the adhesive and / or the adhesive material and peeled off from the resin film substrate. There is a problem that this phenomenon occurs.
  • the present invention has been made in view of such a problem, and the thin film circuit layer including the thin film electronic device bonded onto the substrate is prevented from being peeled off from the substrate, and the thin film electron device ensuring reliability.
  • a method of manufacturing a thin film electronic device bonding substrate of the present invention includes an electronic device manufacturing step of manufacturing a thin film electronic device on a first substrate, and a metal alkoxide layer on the surface of the thin film electronic device.
  • the second substrate is disposed on the thin film electronic device via a surface activation treatment layer made of a metal alkoxide having an organic functional group, for example.
  • a surface activation treatment layer made of a metal alkoxide having an organic functional group, for example.
  • the thin film electronic device is bonded and transferred to the second substrate. Therefore, the organic functional group of the metal alkoxide that forms the surface activation treatment layer is strongly bonded mainly to the second substrate side made of resin and is a hydrolyzable [OMe group (Me is a metal)] force. It is strongly bonded mainly to inorganic material films that make up thin film electronic devices.
  • the thin film electronic device can be firmly bonded onto the second substrate through the adhesive and / or the adhesive material and further through the surface activation treatment layer. Therefore, for example, even if a large temperature change is given, it is possible to prevent the thin film electronic device from being peeled off from the second substrate due to the difference in the linear expansion coefficient. Can get, S power.
  • the metal alkoxides Ti, Li, Si, Na, K, Mg, Ca, St, Ba, Al, In, Ge, Bi, Fe, Cu, Y, Zr, and Ta It is preferably at least one metal alkoxy compound selected from the group consisting of
  • the surface activation treatment step includes a purification step of purifying the thin film electronic device arrangement surface of the first substrate provided with the thin film electronic device, and a post-purification step.
  • the purification treatment on the surface on which the thin film electronic device is disposed in the purification step, it is possible to favorably adhere the metal alkoxide to the surface on which the thin film electronic device is disposed in the subsequent coupling treatment step. Further, by performing static electricity removal treatment on the surface on which the thin film electronic device is disposed, the force S can be bonded more favorably to the second substrate without deteriorating the electrical performance of the thin film electronic device.
  • at least one purification treatment step of an oxygen plasma treatment step, a UV plasma treatment step, a corona treatment step, and an etching treatment step is performed. Is preferred.
  • the surface of the thin film electronic device and the surface on which the thin film electronic device is provided are purified to remove, for example, organic substances as foreign matters, so that the metal alkoxide is better on the surface of the thin film electronic device. Will become attached to.
  • the metal alkoxide in the coupling treatment step, is used as a spin coating method, a vapor treatment method, a dip coating method, a screen printing method, a dispenser method, an inkjet method. It is preferable to use at least one of a spray method and a spray method.
  • the force S can be applied to favorably adhere the metal alkoxide to the surface on which the thin film electronic device is provided.
  • the substrate bonding step it is preferable to bond a second substrate made of resin on the thin film electronic device! /.
  • a thin film electronic device bonded substrate having a function as designed in advance can be obtained by preparing a substrate that satisfies the required functions such as flexibility and heat resistance. it can.
  • the second substrate is formed by applying a resin liquid on the thin film electronic device and curing it.
  • the present invention for example, when it is desired to make the second substrate into a thin resin film, etc.
  • the second substrate can be formed by applying a resin liquid and curing the resin. Therefore, productivity can be improved compared to the case of using a resin film that is relatively difficult to handle.
  • the electronic device manufacturing step of providing the thin film electronic device on the first substrate includes a step of forming a release layer on the ready-made substrate, and laminating a plurality of films on the release layer. And forming the thin film electronic device.
  • the peeling is performed.
  • the thin film electronic device is easily delaminated and reliably transferred onto the second substrate.
  • the electronic device manufacturing step includes a step of forming a release layer on a ready-made substrate, and a step of forming a thin film electronic device by laminating a plurality of films on the release layer. Bonding a temporary transfer substrate to the thin film electronic device forming surface of the ready-made substrate via an adhesive; applying energy to the release layer via the ready-made substrate; and providing the release layer and the ready-made substrate. And a step of transferring the thin film electronic device to the temporary transfer substrate by causing peeling at the interface with the peeling layer or in the peeling layer.
  • the thin film electronic device formed on the ready-made substrate is temporarily transferred to the temporary transfer substrate, and then transferred again to the second substrate, so that the upper and lower sides of the thin film electronic device to be bonded on the second substrate are transferred.
  • the electronic device manufacturing step preferably includes stacking a plurality of the thin film electronic devices on the first substrate.
  • the thin film electronic device is preferably a thin film transistor.
  • An electronic apparatus is characterized by comprising a thin film electronic device bonding substrate obtained by the method for manufacturing a thin film electronic device bonding substrate.
  • the electronic apparatus since the thin film electronic device bonding substrate has high reliability as described above, the electronic apparatus itself has high reliability.
  • FIG. 1 is a schematic configuration diagram of an example of a thin film electronic device bonding substrate according to the present invention.
  • FIG. 2A is an explanatory diagram of a manufacturing process of a thin film electronic device bonding substrate.
  • FIG. 2B is an explanatory diagram of the manufacturing process of the thin film electronic device bonding substrate.
  • FIG. 2C is an explanatory view of the manufacturing process of the thin film electronic device bonding substrate.
  • FIG. 2D is an explanatory diagram of a manufacturing process of the thin film electronic device bonding substrate.
  • FIG. 3 is a schematic configuration diagram of a thin film electronic device in a thin film electronic device layer.
  • FIG. 4A is another explanatory view of the manufacturing process of the thin film electronic device bonding substrate.
  • FIG. 4B is another explanatory view of the manufacturing process of the thin film electronic device bonding substrate.
  • FIG. 4C is an explanatory diagram of another manufacturing process of the thin film electronic device bonding substrate.
  • FIG. 4D is another explanatory view of the manufacturing process of the thin film electronic device bonding substrate.
  • FIG. 5A is an explanatory diagram of another manufacturing process of the thin film electronic device bonding substrate.
  • FIG. 5B is another explanatory view of the manufacturing process of the thin film electronic device bonding substrate.
  • FIG. 5C is an explanatory diagram of another manufacturing process of the thin film electronic device bonding substrate.
  • FIG. 5D is an explanatory diagram of another manufacturing process of the thin film electronic device bonding substrate.
  • FIG. 6 is a schematic configuration diagram of a display device as an example of the electronic apparatus of the invention.
  • FIG. 1 is a view showing an example of a thin film electronic device bonding substrate according to the present invention.
  • Reference numeral 1 in FIG. 1 is a thin film electronic device bonding substrate.
  • the thin film electronic device bonding substrate 1 is configured by bonding a thin film electronic device layer 4 on a resin substrate 2 via a surface activation treatment layer 3 made of a metal alkoxide having an organic functional group.
  • the thin film electronic device layer 4 is formed by arranging a number of thin film electronic devices 5.
  • an organic adhesive layer (not shown) made of an adhesive and / or an adhesive is provided as necessary.
  • thermoplastic resin and a thermosetting resin which are not particularly limited.
  • polyolefin cyclic polyolefins such as polyethylene, polypropylene, ethylene propylene polymer, ethylene acetate butyl copolymer (EVA), modified polyolefin, polychlorinated butyl, polyvinyl chloride, polystyrene, polyamide, polyimide, polyamide imide, polycarbonate, poly 1 (4 methylbenten 1), ionomer, acrylic resin, polymethyl methacrylate, acrylic styrene copolymer (AS resin), butadiene styrene copolymer, polio copolymer (EVOH), polyethylene terephthalate (PET ), Polybutylene terephthalate (PBT), polycyclohexane terephthalate ( PCT) and other polyesters, polyethers, polyether ketones (PEEK), poly
  • the thickness of the resin substrate 2 is not limited. For example, if the thickness of the resin substrate 2 is about several hundred nm to several tens of meters, the entire thin film electronic device bonding substrate 1 is formed. Can be made thinner and lighter, which is preferable. In addition, it is preferable that the resin substrate 2 has flexibility, since the thin film electronic device bonding substrate 1 itself can have flexibility.
  • an organic adhesive layer is provided on the resin substrate 2
  • various materials can be used as the adhesive (or adhesive material) constituting the organic adhesive layer without being particularly limited.
  • a resin having a functional group such as an epoxy group, a carboxyl group, a hydroxyl group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, a halogen group, an amino group, or a sulfone group is used.
  • a resin having a functional group such as an epoxy group, a carboxyl group, a hydroxyl group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, a halogen group, an amino group, or a sulfone group.
  • epoxy groups, acid anhydride groups, acid anhydride ring-opened groups, carboxyl groups, hydroxyl groups, silanols can be used because of their low modification rate and improved adhe
  • a thin film transistor Thin Film Transistor, TFT
  • thin film diodes photoelectric conversion elements (photosensors, solar cells) consisting of silicon PIN (p_intrinsi C -n) junctions, silicon resistance elements, other thin film semiconductor devices, and electrodes (eg: Indium Tin Oxide (ITO), transparent electrodes such as mesa films), switching elements, memory elements, piezoelectric elements, micromirrors (piezo thin film ceramics), magnetic recording thin film heads, coils, inductors, thin film high transparency Magnetic materials and microphones combining them Examples thereof include an oral magnetic device, a filter, a reflective film, and a dichroic mirror.
  • the thin-film electronic device layer 4 may be formed by arranging a plurality of single-type thin-film electronic devices 5 as described above, or a plurality of types of thin-film electronic devices 5.
  • a thin film circuit layer may be formed.
  • the thin film electronic device 5 is a thin film transistor (TFT)
  • the thin film electronic device 5 is arranged in a matrix, and pixel electrodes (pixel portions) are formed corresponding to the thin film electronic devices 5.
  • the thin film electronic device bonding substrate 1 can be an active matrix substrate.
  • thin film electronic devices 5 are arranged in a matrix by connecting to scanning lines and signal lines arranged in a matrix, and on the drain side of these thin film electronic devices 5 (TFT).
  • An active matrix substrate is formed from the thin film electronic device bonding substrate 1 by connecting a pixel electrode to form a pixel portion and further providing a driver circuit for supplying a signal to the scanning line and the signal line. Can do.
  • the metal alkoxide forming the surface activation treatment layer 3 includes Ti, Li, Si, Na, K, Mg, Ca, St, Ba, Al, In, Ge, Bi, Fe, Cu, and Y as metals.
  • a material containing one selected from Zr, Ta force, and the like is preferably used, and such a metal alkoxide is used by using one kind or plural kinds. The reason is that an alkoxide containing such a metal has both good versatility and good adhesion, and therefore a thin film electronic device bonding substrate 1 having high reliability can be obtained without causing a significant cost increase. Because it can be obtained.
  • this metal alkoxide has an organic functional group as a side chain in the alkoxide group.
  • This organic functional group is a reactive functional group such as an amino group, a mercapto group, a carboxyl group, or an epoxy group, and reacts with the organic matrix that forms the resin substrate 2 or the organic adhesive layer to bind firmly.
  • this metal alkoxide has a hydrolyzable group [OMe group (Me is a metal)], and this hydrolyzable group is firmly bonded to the inorganic material film constituting the thin film electronic device 5.
  • the thin-film electronic device 5 is configured to include many inorganic material thin films such as a SiO film as an insulating film and Si as a semiconductor layer.
  • the surface activation treatment layer 3 made of the metal alkoxide is a thin film electronic device 5 (thin film electronic device layer 4) having an inorganic material force even on the resin substrate 2 side made of an organic material. It also binds firmly. Therefore, the thin film electronic device 5 (thin film electronic device layer 4) is firmly bonded to the resin substrate 2.
  • the thin film electronic device bonding substrate 1 of the present embodiment firmly bonds the thin film electronic device 5 (thin film electronic device layer 4) on the resin substrate 2, for example, even if a large temperature change is given, The inconvenience that the thin film electronic device 5 is peeled off from the resin substrate 2 due to the difference in the linear expansion coefficient can be prevented, whereby high reliability can be obtained.
  • the thin film electronic device 5 is a thin film transistor (TFT)
  • TFT thin film transistor
  • the first substrate 10 is prepared as shown in FIG. 2A, and then, as a thin film electronic device disposing step, a number of thin film electronic devices are formed on one surface side of the first substrate 10.
  • a thin film electronic device layer 4 including 5 is formed.
  • a ready-made substrate such as a glass substrate is used as it is as the first substrate 10, and the thin film electronic device 5 is directly formed in the first substrate 10.
  • a method of forming a thin film electronic device layer 4 (thin film electronic device 5) on the peel layer can be employed.
  • this ready-made substrate is the first substrate 10 and this ready-made substrate (first substrate 10) is formed by a known semiconductor process.
  • a thin film electronic device layer 4 composed of the thin film electronic device 5 (TFT) is formed.
  • TFT thin film electronic device 5
  • a method of forming the thin film electronic device 5 via the release layer is suitable. In this method, as shown by a two-dot chain line in FIG. 2A, a configuration in which the ready-made substrate 11 and the release layer 12 are combined is the first substrate 10 in the present invention.
  • the ready-made substrate 11 is preferably a light-transmitting substrate through which light is transmitted when the release layer 12 is subjected to a release treatment as described later.
  • a ready-made substrate 11 is preferably made of a highly reliable material! /, And is particularly preferably made of a material having excellent heat resistance. Quartz glass and various heat-resistant glass are suitable.
  • the release layer 12 is a material that absorbs irradiated light and has a property of causing release in the layer and / or at the interface (hereinafter referred to as "in-layer release” or “interfacial release”).
  • in-layer release or “interfacial release”
  • the bonding force between atoms or molecules of the substance constituting the release layer 12 disappears or decreases due to light irradiation, that is, abrasion occurs to cause in-layer separation and / or interfacial separation. Good material.
  • This amorphous silicon may contain hydrogen (H).
  • the content of H is preferably about 2 to 20 atomic percent, more preferably about 2 atomic percent or more.
  • hydrogen is irradiated by light irradiation. Is released, and an internal pressure is generated in the release layer 12, which becomes a force for peeling the upper and lower thin films.
  • the oxide include a conductive material (ferroelectric material) such as a silicon oxide or a key compound, a titanium oxide or a titanate compound, a zirconium oxide or a zirconate compound, a lanthanum oxide or a lanthanum oxide compound. Can be mentioned.
  • a conductive material such as a silicon oxide or a key compound, a titanium oxide or a titanate compound, a zirconium oxide or a zirconate compound, a lanthanum oxide or a lanthanum oxide compound.
  • Nitride ceramics such as silicon nitride, aluminum nitride, titanium nitride
  • the organic polymer material may be a material having an aromatic hydrocarbon (one or more benzene rings or condensed rings thereof) in the structural formula.
  • Examples of the metal include Al, Li, Ti, Mn, In, Sn, Y, La, Ce, Nd, Pr, Gd, Sm, and alloys containing at least one of these.
  • the thickness of the release layer 12 varies depending on the purpose of the release, various conditions such as the composition, layer configuration, and formation method of the release layer 12, but is usually preferably about 11 111 20 111. More preferably, it is about 10 nm 2 ⁇ m, more preferably about 401 111 1 ⁇ 111. If the thickness of the release layer 12 is too thin, the uniformity of the film may be reduced, resulting in uneven peeling. In addition, if the thickness is too thick, the release layer 12 may have good peelability. In addition, it is necessary to increase the light power (light quantity), and it takes time power S to remove the release layer 12 later.
  • the film thickness of the release layer 12 is preferably as uniform as possible.
  • the method of forming the release layer 12 is not particularly limited, and is appropriately selected according to various conditions such as film composition and film thickness.
  • CVD including MOCVD PECVD, low pressure CVD ECR—CVD), molecular beam deposition (MB), sputtering, ion plating, PVD, etc.
  • Various vapor deposition methods such as seed vapor deposition method, electric plating, immersion plating (dating), electroless plating, Langmuir 'Projet (LB) method, spin coating, spray coating, roll coating, etc., various printing methods , Transfer method, ink jet method, powder jet method and the like, and two or more of these can also be formed in combination.
  • the composition of the release layer 12 is amorphous silicon (a-Si)
  • a-Si amorphous silicon
  • the release layer 12 is made of ceramics by the Zorgel method or made of an organic polymer material, it is preferable to form a film by a coating method, particularly by spin coating.
  • TFTs thin film electronic devices 5
  • the thin film electronic device layer 4 to be formed may be in a state where a plurality of thin film electronic devices 5 are stacked.
  • the thin film electronic device layer 4 includes a thin film electronic device 5 (TFT) formed on the intermediate layer 50 that also has a silicon oxide film force. Consists of including.
  • the thin film electronic device 5 includes a source / drain region 51 formed by implanting an n-type impurity into a polysilicon layer, a channel layer 52, a gate insulating film 53, a gate electrode 54, an interlayer insulating film 55, For example, an electrode 56 made of aluminum.
  • the intermediate layer 50 is a material formed for various purposes.
  • a protective layer that physically or chemically protects the thin film electronic device layer 4, an insulating layer, a laser light shielding layer, and a barrier for preventing migration.
  • It is a material that exhibits at least one of the functions of a layer and a reflective layer.
  • the thickness of the intermediate layer 50 is a force that is appropriately determined depending on the degree of function to be exerted, etc. Usually, it is preferably about 101 111 to 5 m, and about 401 111 to 1 111 is preferable. Is more preferable.
  • a surface activation treatment layer 3 made of a metal alkoxide having an organic functional group is formed on the surface of the thin film electronic device layer 4, that is, on the surface of each thin film electronic device 5.
  • the surface activation treatment process for forming the surface activation treatment layer 3 includes a purification process, a coupling treatment process, and a static electricity removal process.
  • the purification step is a step of purifying the surface of the first substrate 10 on which the thin film electronic device layer 4 is formed on the side on which the thin film electronic device layer 4 is formed (the surface on which the thin film electronic device is disposed).
  • the purification treatment method it is preferable to perform at least one of oxygen plasma treatment, UV plasma treatment, corona treatment, and etching treatment.
  • the surface of the thin film electronic device 5 and the arrangement surface provided with the thin film electronic device 5 can be purified, and for example, organic substances as foreign substances can be removed. Therefore, when the metal alkoxide is adhered to the surface where the thin film electronic device is disposed in the subsequent process, it can be adhered more favorably.
  • the coupling treatment step is the main step of the surface activation treatment step. Further, the coupling treatment process is a substantial treatment process for forming the surface activation treatment layer 3.
  • the coupling treatment step is a step of arranging the metal alkoxide on the surface where the thin film electronic device is disposed after the purification step.
  • the metal alkoxide the metal alkoxide having the organic functional group described above is used.
  • metal alkoxides Si-based metals containing Si, Ti-containing Ti-based materials, Zi-containing Zi-based materials, and A1-containing A1-based materials are highly versatile. This is preferable for reasons such as better adhesion when the thin film electronic device 5 is adhered.
  • Si-based metal alkoxides are more preferred because they have advantages such as high reactivity, relatively low reaction temperature, and high reaction rate.
  • the method for arranging (attaching) such a metal alkoxide on the surface on which the thin film electronic device is disposed is not particularly limited.
  • the thin film electronic device is contained in a solution containing the metal alkoxide.
  • a method of directly immersing the first substrate 10 on which the layer 4 is formed (a dip coating method), a method of applying a solution containing a metal alkoxide on the surface of the thin film electronic device (coating method), a surface of the thin film electronic device
  • coating methods include spin coating method, screen printing method, dispenser method, ink jet method, spray method and so on.
  • the metal alkoxide may be adjusted, for example, in terms of viscosity and the like, using a solvent, a dispersion medium, and various preparation agents.
  • the metal alkoxide is in a state where its hydrolyzable group is firmly bonded to the inorganic material film constituting the thin film electronic device 5 as described above.
  • a static electricity removing step is performed. This static electricity removing step is performed by performing static electricity removing treatment on the surface on which the thin film electronic device is provided, that is, on the surface on which the film made of metal alkoxide is formed by a known method.
  • the resin substrate 2 that is, the resin substrate 2, that is, the surface of the thin film electronic device layer 4 (thin film electronic device 5) is interposed via the surface activation treatment layer 3 formed as shown in FIG. 2C.
  • the resin-made second substrate in the present invention is disposed.
  • a method of bonding via an organic adhesive layer made of an adhesive and / or an adhesive material A method of directly bonding the resin substrate 2 without using an adhesive layer can be employed.
  • the organic adhesive layer described above is formed.
  • the adhesive or adhesive material to be formed is placed on the surface activation treatment layer 3 or the inner surface of the resin substrate 2, and then on the thin film electronic device layer 4 (thin film electronic device 5) through the organic adhesive layer. Place resin board 2 and stick.
  • the method for disposing the adhesive or the pressure-sensitive adhesive material on the surface activation treatment layer 3 or the inner surface of the resin substrate 2 is not particularly limited.
  • a solution casting method or a melt extrusion method can be used.
  • the solution casting method is preferable because the film thickness of the adhesive layer (adhesive layer) can be applied more uniformly.
  • the material constituting the adhesive layer is dissolved in an appropriate solvent to obtain a varnish, and this is, for example, reverse roll coating method, gravure coating method, air knife coating method, blade coating.
  • Method dip coating method, curtain coating method, Daiko It is applied to the surface activation treatment layer 3 or the inner surface of the resin substrate 2 by a technique such as a coating method or a spin coating method.
  • a technique such as a coating method or a spin coating method.
  • the reverse roll coating method, the gravure coating method, the die coating method, and the spin coating method are preferable because of easy film thickness control.
  • the resin substrate 2 When the resin substrate 2 is attached onto the thin film electronic device layer 4 (thin film electronic device 5) through such an organic adhesive layer, it is usually dried to remove the solvent in the organic adhesive layer. Process. As this drying treatment, for example, warm air heating, an inert gas heating furnace, an oven furnace or the like can be used. If a curing agent is mixed with the material for forming the organic adhesive layer, the adhesive can be directly cured by heating or the like.
  • a thin film electronic device bonding substrate 1 having a function as designed in advance is prepared by using a resin substrate 2 that satisfies the required functions of flexibility and heat resistance. Can be obtained.
  • the method for directly bonding the resin substrate 2 onto the thin film electronic device layer 4 (thin film electronic device 5) without passing through the organic adhesive layer the method for forming the organic adhesive layer described above is employed as it is. can do. That is, the organic adhesive layer formed and cured by the above method is used as the resin substrate 2 (resin-made second substrate in the present invention) as it is. In this case, the resin (adhesive or pressure-sensitive adhesive) to be used is naturally placed on the surface activation treatment layer 3 and cured.
  • the thickness of the resin substrate 2 obtained can be substantially determined by the thickness of the arranged (applied) resin, which is advantageous particularly when it is desired to reduce the film thickness. That is, for example, when the resin substrate 2 is thin! /, Formed into a resin film! /, In some cases, it is relatively difficult to arrange the electrode! / ⁇
  • the resin film is used as the resin substrate and is bonded via the organic adhesive layer. This is because productivity is often improved by forming a film-like resin substrate 2 by applying and curing a resin solution as in this method. Specifically, force that depends on the properties of the resin liquid used (solid content concentration, viscosity, etc.) By adopting the spin coating method, the film thickness is 0 ⁇ ; Can be formed with a uniform film thickness.
  • the metal alkoxide forming the surface activation treatment layer 3 has an organic functional group that is the resin substrate 2 or the organic contact group. It reacts with the organic matrix that forms the adhesion layer and is in a tightly bonded state.
  • the resin substrate 2 is formed by arranging and curing a resin
  • a material in which various additives are blended can be used as necessary.
  • curing agents, flame retardants, fillers, soft polymers, heat stabilizers, weathering stabilizers, anti-aging agents, leveling agents, antistatic agents, slip agents, antiblocking agents, antifogging agents, lubricants, natural oils Synthetic oils, waxes, emulsions, magnetic materials, dielectric property modifiers, toughening agents, and the like can be appropriately added depending on the required properties of the resin substrate 2 and the like.
  • the thin film electronic device layer 4 (thin film electronic device 5) side is peeled from the first substrate 10, that is, the thin film electronic device layer 4 (thin film electronic device).
  • the thin film electronic device layer 4 (thin film electronic device 5) is transferred onto the resin substrate 2 by peeling the first substrate 10 side from the device 5) side.
  • the release layer 12 is not formed as described above, the back side of the first substrate 10 (the side opposite to the side where the thin film electronic device 4 is formed) is ground and removed. For example, a method of scraping the surface layer portion of the first substrate 10 on the side where the thin film electronic device 4 (thin film electronic device 5) is formed is employed.
  • the release layer 12 When the release layer 12 is formed, light is irradiated from the back side of the first substrate 10 in order to cause the release layer 12 to release. Then, the irradiated light is applied to the release layer 12 after passing through the ready-made substrate 11 (first substrate 10). As a result, in-layer separation and / or interfacial separation occurs in the release layer 12, and the bonding force is reduced or eliminated.
  • the principle that peeling and / or interfacial peeling occurs in the release layer 12 is that the ablation force S is generated in the constituent material of the release layer 12, the gas contained in the release layer 12 is released, and immediately after irradiation. Presumed to be caused by phase changes such as melting and transpiration.
  • the abrasion means that the fixing material that absorbs the irradiation light (the constituent material of the release layer 12) is photochemically or thermally excited, and the surface or internal atoms or molecules bond is cut and emitted.
  • This phenomenon occurs mainly as a phenomenon in which all or part of the constituent material of the release layer 12 undergoes a phase change such as melting or transpiration (vaporization).
  • the phase change may result in a fine foamed state, resulting in a decrease in bonding strength.
  • Is the release layer 12 a force that causes in-layer peeling, a force that causes interfacial peeling, or both?
  • One of the factors is the type of light to be irradiated, the wavelength, the intensity, the depth of arrival, and the like.
  • the light to be irradiated may be any light as long as it causes light peeling and / or interfacial peeling on the peeling layer 12.
  • X-rays ultraviolet rays, visible light, infrared rays (heat rays), laser light , Millimeter wave, microwave, electron beam, radiation ( ⁇ ray, / 3 ray, ⁇ ray) and the like.
  • laser light is preferred in that it easily causes peeling (ablation) of the release layer 12.
  • Examples of the laser device that generates this laser beam include force S, excimer laser, Nd—YAG laser, Ar laser, CO laser, CO laser, He, and various gas lasers and solid lasers (semiconductor lasers). — Ne laser etc. are preferably used, among them
  • Excimer lasers output high energy in the short wavelength range.
  • the release layer 12 can be peeled without causing deterioration or damage.
  • the first substrate 10 the ready-made substrate 11
  • the thin film electronic device layer 4 (thin film electronic device 5) side is removed as necessary.
  • the release layer 12 remaining on the substrate is removed. Specifically, it is removed by a method such as cleaning, etching, ashing, polishing, or a combination thereof.
  • the thin film electronic device layer 4 (thin film electronic device 5) is transferred onto the resin substrate 2, and the thin film electronic device bonding substrate 1 as shown in FIG. 1 can be obtained.
  • a resin is interposed on the thin film electronic device layer 4 (thin film electronic device 5) via a surface activation treatment layer 3 made of a metal alkoxide having an organic functional group.
  • a base plate 2 is disposed, whereby a thin film electronic device layer 4 (thin film electronic device 5) is bonded and transferred to the resin substrate 2. Therefore, as described above, the organic functional group of the metal alkoxide is firmly bonded to the resin substrate 2 side, and the hydrolysis group is firmly bonded to the thin film electronic device layer 4 (thin film electronic device 5) side.
  • the thin film electronic device layer 4 (thin film electronic device 5) can be firmly bonded on top.
  • FIGS. 4A to 4D and FIGS. 5A to 5D are views showing another embodiment of the method for manufacturing a thin film electronic device bonding substrate of the present invention.
  • the main difference between this embodiment and the embodiment shown in FIGS. 2A to 2D is that the previous embodiment performed one transfer, whereas this embodiment performs two transfers. .
  • a thin film electronic device layer 4 (thin film electronic device 5) is formed on a ready-made substrate 11 with a release layer 12 interposed therebetween. This process is the same as the process described in the previous embodiment.
  • the surface of the ready-made substrate 11 on which the thin film electronic device layer 4 (thin film electronic device 5) is formed through an adhesive layer 13 made of an adhesive.
  • the temporary transfer substrate 14 is bonded.
  • materials for forming the organic adhesive layer materials that readily dissolve in a solvent such as water are preferably used as the adhesive for forming the adhesive layer 13.
  • the temporary transfer substrate 14 is not particularly limited, and various materials can be used. Specifically, various materials such as a glass substrate and a resin substrate are not limited to inorganic materials and organic materials.
  • the ready-made substrate 11 When the ready-made substrate 11 is peeled from the thin film electronic device layer 4 (thin film electronic device 5) side in this way, it remains on the thin film electronic device layer 4 (thin film electronic device 5) side as shown in FIG. 5A.
  • the release layer 12 is removed. Specifically, it is removed by a method such as cleaning, etching, ashing, polishing, or a combination thereof.
  • a structure in which the thin film electronic device layer 4 (thin film electronic device 5) is provided on the temporary transfer substrate 14 is obtained.
  • the temporary transfer substrate 14 and the adhesive layer 13 are formed by the thin film electronic device layer 4 ( This is the first substrate in the present invention provided with the thin film electronic device 5).
  • a surface activation treatment step as shown in FIG. 5B, a surface activation made of a metal alkoxide having an organic functional group on the back surface of the thin film electronic device layer 4, that is, on the back surface of each thin film electronic device 5, is performed.
  • the chemical conversion layer 3 is formed.
  • the surface activation treatment process for forming the surface activation treatment layer 3 can be performed by a purification process, a coupling treatment process, and a static electricity removal process, as in the previous embodiment.
  • the thin film electronic device layer 4 (thin film electronic device layer 4) is formed on the thin film electronic device layer 4 (thin film electronic device 5) via the surface activation treatment layer 3 formed as shown in FIG. 5C.
  • the resin substrate 2 (resin second substrate) is disposed on the back side of the thin film electronic device 5).
  • a method of bonding through an organic adhesive layer made of an adhesive and / or an adhesive material and It is possible to adopt a method of directly bonding resin substrate 2 without using an organic adhesive layer.
  • the adhesive layer 13 is dissolved in a solvent such as water as shown in Fig. 5D, so that the temporary transfer substrate 14 side is moved from the thin film electronic device layer 4 (thin film electronic device 5) side. Peel off and transfer the thin film electronic device layer 4 (thin film electronic device 5) onto the resin substrate 2.
  • the temporary transfer substrate 14 is peeled from the thin film electronic device layer 4 (thin film electronic device 5) side, it is necessary. Accordingly, the adhesive layer 13 remaining on the thin film electronic device layer 4 (thin film electronic device 5) side is removed. As a result, the thin film electronic device layer 4 (thin film electronic device 5) is transferred onto the resin substrate 2 to obtain the thin film electronic device bonding substrate 1 as shown in FIG.
  • the resin substrate 2 is disposed on the thin film electronic device layer 4 (thin film electronic device 5) via the surface activation treatment layer 3 as in the previous embodiment.
  • the thin film electronic device layer 4 (thin film electronic device 5) is bonded to the resin substrate 2 and transferred. Therefore, as described above, the organic functional group of the metal alkoxide is firmly bonded to the resin substrate 2 side, and the hydrolysis group is firmly bonded to the thin film electronic device layer 4 (thin film electronic device 5) side. To do. Thereby, the thin film electronic device layer 4 (thin film electronic device 5) can be strongly bonded onto the resin substrate 2.
  • the thin film electronic device bonding substrate 1 can be obtained. Further, in the manufacturing method of the present embodiment, the thin film electronic device 5 formed on the ready-made substrate 11 is temporarily transferred to the temporary transfer substrate 14 and then transferred again to the resin substrate 2 (second substrate). The upper and lower sides of the thin film electronic device 5 to be bonded onto the resin substrate 2, that is, the front surface side and the back surface side thereof can be matched with the upper and lower sides (front surface side and back surface side) when formed on the ready-made substrate 11.
  • FIG. 6 is a diagram showing a display device that includes an electrophoretic element as a display element.
  • the display device 18 includes an element substrate 20, a transparent substrate 21, and a microcapsule 22 sandwiched between the substrates 20 and 21 and encapsulating an electrophoretic dispersion.
  • the element substrate 20 also has the above-described thin film electronic device bonding substrate force of the present invention.
  • a driving element switching device
  • TFT thin film transistor
  • an intermediate layer such as an insulating layer.
  • Many elements 23 are arranged (transferred).
  • Each of the drive elements 23 is provided with a pixel electrode 24 corresponding to each of them, and the element substrate 20 is configured as an active matrix substrate.
  • the drive element 23 includes a semiconductor film 25 provided on the intermediate layer (not shown), a gate electrode 27 provided on the semiconductor film 25 via a gate insulating film 26, and the A source electrode 28 connected to the source region (not shown) of the semiconductor 25 and a pixel electrode (drain electrode) 24 connected to the drain region (not shown) of the semiconductor 25 are provided.
  • an interlayer insulating film 29 is formed on the gate electrode 27 so as to cover the gate electrode 27.
  • the source electrode 28 is electrically drawn onto the interlayer insulating film 29 through a contact hole 30 formed in the interlayer insulating film 29 and is formed on the contact hole 3. Further, a contact hole formed on the interlayer insulating film 29 is formed on the interlayer insulating film 29.
  • a relay electrode 31 is formed so as to be electrically connected to the nozzle 32. Further, an interlayer insulating film 33 is formed so as to cover the relay electrode 31 and the source electrode 28.
  • a pixel electrode 24 (drain electrode) is formed on the interlayer insulating film 33. The pixel electrode 24 is electrically drawn out through the contact hole 34 and is electrically connected to the relay electrode 31.
  • the transparent substrate 21 is a film-like flexible transparent flexible substrate made of a transparent resin or the like.
  • the transparent flexible substrate 21a and a transparent common electrode 35 made of a material made of ITO or the like on the inner surface of the transparent flexible substrate 21a.
  • the outer surface side of the transparent substrate 21 is a display surface (observation surface).
  • a material of the transparent flexible substrate 21a for example, polyethylene terephthalate (PET), polyethersulfone (PES), polycarbonate (PC), or the like is preferably used.
  • the microcapsule 22 is disposed on the pixel electrode 24, whereby the microcapsule 22 serves as a display area of the display device.
  • the microcapsule 22 contains an electrophoretic dispersion as a display material. All of the microcapsules 22 are formed to have substantially the same diameter. The diameter is about 30 m, for example.
  • the electrophoretic dispersion liquid includes electrophoretic particles and a liquid phase dispersion medium in which the electrophoretic particles are dispersed.
  • the liquid phase dispersion medium include water, alcohol solvents such as methanol, ethanol, isopropanol, butanol, octanol and methyl cellosolve, various esters such as ethyl acetate and butyl acetate, acetone, methyl ethyl ketone and methyl isobutyl.
  • Ketones such as ketones, aliphatic hydrocarbons such as pentane, hexane and octane, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, benzene, toluene, xylene, hexylbenzene, hebutinolebenzene, Octino benzene, nonino benzene, decino benzene, undecino benzene, aromatic hydrocarbons such as benzenes having a long chain alkyl group such as dodecyl benzene, tridecyl benzene, tetradecyl benzene, methylene chloride, black mouth form , Carbon tetrachloride, 1,2-dichloro Halogenated hydrocarbons such as Tan, leaving a carboxylic acid salt or a variety of other oils such as single or force S to use a material obtained by blending a surfactant or the like to
  • the electrophoretic particles move by electrophoresis due to a potential difference in a liquid phase dispersion medium.
  • Organic or inorganic particles having quality.
  • the electrophoretic particles include black pigments such as aniline black, carbon black, and titanium black, white pigments such as titanium dioxide, zinc white, and antimony trioxide, and azo pigments such as monoazo, diisazone, and polyazo.
  • blue pigments such as induslen blue, anthraquinone dyes, blue pigments, ultramarine blue, cobalt blue and the like
  • green pigments such as phthalocyanine green.
  • two types of electrophoretic particles are enclosed in the microcapsule 22, and one is negatively charged and the other is positively charged.
  • these two types of electrophoretic particles for example, titanium dioxide, which is a white pigment, and carbon black, which is a black pigment, are used.
  • white and black electrophoretic particles for example, when displaying characters or the like, the characters or the like are displayed with black electrophoretic particles, and the background is displayed with white electrophoretic particles. Can be displayed.
  • display may be performed by using only one type of electrophoretic particle and causing it to migrate to the common electrode 35 side or the pixel electrode 24 side.
  • microcapsules 22 are fixed to the transparent substrate 21 by a binder 36 on the common electrode 35, for example.
  • the microcapsules 22 are fixed to the element substrate 20 on the pixel electrodes 24 by, for example, a double-sided adhesive sheet 37.
  • the microcapsule 22 is sandwiched between the element substrate 20 and the transparent substrate 21 to constitute the display device 18.
  • the display device 18 having such a configuration includes the element substrate 20 made of the thin film electronic device bonding substrate 1, the thin film electronic device bonding substrate 1 has high reliability.
  • the element substrate 20 also has high reliability. Therefore, the display device 18 itself has high reliability.
  • the above-described electric device using an electrophoretic element as a display element is used.
  • the display device may be an organic EL display device, a liquid crystal display device, an electrochromic device or the like, and an electro-optical device using these display devices as display means, without being limited to the electrophoretic display device.
  • the thin-film electronic device is a memory element, it can be applied to various memory devices such as SRA M, central processing unit (CPU), or devices having a personal authentication function such as fingerprint sensors and sensor devices. it can.
  • a thin film electronic device containing a large amount of an inorganic material film on an organic substrate and a thin film circuit layer having a strong force are bonded with high adhesive force, thereby preventing peeling and high reliability. It is possible to achieve the object of providing a method for manufacturing a thin film electronic device bonding substrate and ensuring electronic equipment.

Abstract

Disclosed is a method for manufacturing a thin film electronic device mounted substrate, which comprises an electronic device-forming step wherein a thin film electronic device (4, 5) is formed on a first substrate (10), a surface activation step wherein a metal alkoxide layer (3) is formed on the surface of the thin film electronic device (4, 5), a substrate-bonding step wherein a second substrate (2) is bonded to the thin film electronic device (4, 5) through the metal alkoxide layer (3), and a separation step wherein the thin film electronic device (4, 5) is separated from the first substrate (10).

Description

明 細 書  Specification
薄膜電子デバイス接合基板の製造方法、及び電子機器  Thin film electronic device bonding substrate manufacturing method and electronic apparatus
技術分野  Technical field
[0001] 本発明は、基板上に薄膜電子デバイスを接合してなる薄膜電子デバイス接合基板 の製造方法、及び電子機器に関する。  The present invention relates to a method for manufacturing a thin film electronic device bonded substrate obtained by bonding a thin film electronic device on a substrate, and an electronic apparatus.
本願 (ま、 2006年 12月 21曰 ίこ出願された特願 2006— 344010号 ίこ基づき優先権 を主張し、その内容をここに援用する。  This application (together, December 2006, Japanese Patent Application No. 2006—No. 344010 filed on December 21, 2006) Priority is claimed based on this, the contents of which are incorporated herein by reference.
背景技術  Background art
[0002] 薄膜回路装置は、半導体素子等の薄膜電子デバイスが基板表面に設けられて、薄 膜回路層が形成されたことによって構成されている。薄膜回路層を形成する基板とし ては、単結晶シリコンウェハ、石英ガラス基板、耐熱ガラス基板等の無機基板や、樹 脂フィルム等の有機基板が用いられる。また、必要とされる薄膜回路装置の性能や 機能に応じて適切な材質が選択される。なかでも、樹脂フィルムを基板に用いた薄膜 回路装置は、基板そのものが薄ぐ可撓性を有するため、軽量で柔軟性を備えた薄 膜回路装置を提供できるといった利点がある。  A thin film circuit device is configured by providing a thin film electronic device such as a semiconductor element on a substrate surface to form a thin film circuit layer. As the substrate on which the thin film circuit layer is formed, an inorganic substrate such as a single crystal silicon wafer, a quartz glass substrate or a heat-resistant glass substrate, or an organic substrate such as a resin film is used. In addition, an appropriate material is selected according to the required performance and function of the thin film circuit device. Among these, a thin film circuit device using a resin film as a substrate has an advantage that a thin film circuit device having a light weight and flexibility can be provided because the substrate itself is thin and flexible.
[0003] 樹脂フィルムを基板に用いた薄膜回路装置の製造方法としては、半導体層、絶縁 体層、金属層等を樹脂フィルム上に順次積層し、薄膜回路層を形成する方法が知ら れている。しかし、樹脂フィルムは耐熱性が低いことなどから、プロセス上大きな制約 を受けてしまうといった問題がある。  [0003] As a method for manufacturing a thin film circuit device using a resin film as a substrate, a method of forming a thin film circuit layer by sequentially laminating a semiconductor layer, an insulator layer, a metal layer, etc. on the resin film is known. . However, there is a problem that the resin film is severely restricted by the process due to its low heat resistance.
[0004] このような問題を回避する技術として、近年では、予めガラス基板等の耐熱性基板 の表面に薄膜電子デバイスを形成し、前記薄膜電子デバイスを耐熱性基板から剥離 して樹脂フィルム上に接合 (転写)し、この樹脂フィルム上に薄膜回路層を形成すると いった技術が知られている(例えば、特許文献 1、特許文献 2、特許文献 3参照)。 特許文献 1 :特開平 10— 125929号公報  [0004] As a technique for avoiding such problems, in recent years, a thin film electronic device is formed in advance on the surface of a heat resistant substrate such as a glass substrate, and the thin film electronic device is peeled off from the heat resistant substrate and placed on a resin film. A technique of bonding (transferring) and forming a thin film circuit layer on the resin film is known (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3). Patent Document 1: JP-A-10-125929
特許文献 2:特開平 10— 125930号公報  Patent Document 2: Japanese Patent Laid-Open No. 10-125930
特許文献 3:特開平 10— 125931号公報  Patent Document 3: Japanese Patent Laid-Open No. 10-125931
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0005] しかしながら、接着剤及び/又は粘着材を用いて薄膜電子デバイスを樹脂フィルム 基板上に接合 (転写)し、薄膜回路層を形成する場合、樹脂フィルム基板と薄膜電子 デバイスとの間の接着力が十分でないと、薄膜電子デバイスやこれ力 なる薄膜回 路層が樹脂フィルム基板上から剥がれるといった現象が起こることがある。 However, when a thin film electronic device is bonded (transferred) onto a resin film substrate using an adhesive and / or an adhesive material to form a thin film circuit layer, the adhesion between the resin film substrate and the thin film electronic device is performed. If the force is not sufficient, a phenomenon may occur in which the thin film electronic device or the thin film circuit layer that is the force is peeled off from the resin film substrate.
[0006] 一般に、薄膜電子デバイスやこれからなる薄膜回路層は、化学気相成長法(CVD 法)やスパッタリング法によって基板表面に堆積された無機材料薄膜を、多く含んで 構成されている。これらの無機材料薄膜は、弾性定数が数十 GPaと大きぐ線膨張係 数は数〜十数 ppm/Kと小さい。一方、樹脂フィルム基板や、粘着剤、接着剤等の 有機材料は、一般にその弾性定数が数 GPaと小さぐ線膨張係数は 10〜数百 ppm /K程度と大きい。 [0006] In general, a thin film electronic device and a thin film circuit layer made of the thin film electronic device include many inorganic material thin films deposited on a substrate surface by a chemical vapor deposition method (CVD method) or a sputtering method. These inorganic material thin films have a large elastic constant of several tens of GPa and a small linear expansion coefficient of several to several tens of ppm / K. On the other hand, organic materials such as resin film substrates, pressure-sensitive adhesives, and adhesives generally have a large coefficient of linear expansion of about 10 to several hundred ppm / K with a small elastic constant of several GPa.
[0007] したがって、このような異種材料どうしが接合されてなる薄膜回路装置では、例えば 大きな温度変化が与えられると、前記した線膨張係数の差に起因して、接着剤及び /又は粘着材からなる有機層と、薄膜電子デバイス(薄膜回路層)を構成する無機層 との双方に熱応力が発生してしまう。よって、両者の間が強固に接合 (接着)されてい ないと、前記したように薄膜電子デバイス(薄膜回路層)が接着剤及び/又は粘着材 よりなる有機層から剥がれ、樹脂フィルム基板上から剥がれるとレ、つた現象が起きて しまうという問題がある。  Accordingly, in such a thin film circuit device in which different kinds of materials are joined together, for example, when a large temperature change is applied, due to the difference in the linear expansion coefficient described above, the adhesive and / or the adhesive material Thermal stress is generated in both the organic layer and the inorganic layer constituting the thin film electronic device (thin film circuit layer). Therefore, if the two are not firmly bonded (adhered), as described above, the thin film electronic device (thin film circuit layer) is peeled off from the organic layer made of the adhesive and / or the adhesive material and peeled off from the resin film substrate. There is a problem that this phenomenon occurs.
[0008] 本発明はこのような課題に鑑みてなされたもので、基板上に接着された薄膜電子デ バイスを含む薄膜回路層が、基板から剥がれることを防止し、信頼性を確保した薄膜 電子デバイス接合基板の製造方法、さらに電子機器を提供することを目的としている 課題を解決するための手段  [0008] The present invention has been made in view of such a problem, and the thin film circuit layer including the thin film electronic device bonded onto the substrate is prevented from being peeled off from the substrate, and the thin film electron device ensuring reliability. Means for solving the problems aimed at providing a device bonding substrate manufacturing method and electronic equipment
[0009] 前記目的を達成するため本発明の薄膜電子デバイス接合基板の製造方法は、第 1 基板上に薄膜電子デバイスを作製する電子デバイス作製工程と、前記薄膜電子デ バイス表面に金属アルコキシド層を形成する表面活性化処理工程と、前記金属アル コキシド層を介して、前記薄膜電子デバイスに第 2基板を接着する基板接着工程と、 前記第 1基板から前記薄膜電子デバイスを剥離する剥離工程と、を含むことを特徴と する。 [0009] In order to achieve the above object, a method of manufacturing a thin film electronic device bonding substrate of the present invention includes an electronic device manufacturing step of manufacturing a thin film electronic device on a first substrate, and a metal alkoxide layer on the surface of the thin film electronic device. A surface activation treatment step to be formed; a substrate bonding step for bonding a second substrate to the thin film electronic device through the metal alkoxide layer; and a peeling step for peeling the thin film electronic device from the first substrate; Including and with To do.
[0010] この薄膜電子デバイス接合基板の製造方法によれば、薄膜電子デバイス上に、例 えば有機官能基を有した金属アルコキシドからなる表面活性化処理層を介して第 2 基板を配設し、これにより第 2基板に薄膜電子デバイスを接合し転写している。したが つて、表面活性化処理層を形成する金属アルコキシドの有機官能基が、主に樹脂製 の第 2基板側に強固に結合し、加水分解基である [ OMe基 (Meは金属)]力 主 に薄膜電子デバイスを構成する無機材料膜に強固に結合する。これによつて、例え ば、接着剤及び/又は粘着材を介し、さらに前記表面活性化処理層を介することに より、第 2基板上に薄膜電子デバイスを強固に接合することができる。よって、例えば 大きな温度変化が与えられても、線膨張係数の差に起因して薄膜電子デバイスが第 2基板上から剥がれるといったことが防止され、これにより高い信頼性を有する薄膜 電子デバイス接合基板を、得ること力 Sできる。  [0010] According to this method for manufacturing a thin film electronic device bonded substrate, the second substrate is disposed on the thin film electronic device via a surface activation treatment layer made of a metal alkoxide having an organic functional group, for example. As a result, the thin film electronic device is bonded and transferred to the second substrate. Therefore, the organic functional group of the metal alkoxide that forms the surface activation treatment layer is strongly bonded mainly to the second substrate side made of resin and is a hydrolyzable [OMe group (Me is a metal)] force. It is strongly bonded mainly to inorganic material films that make up thin film electronic devices. Accordingly, for example, the thin film electronic device can be firmly bonded onto the second substrate through the adhesive and / or the adhesive material and further through the surface activation treatment layer. Therefore, for example, even if a large temperature change is given, it is possible to prevent the thin film electronic device from being peeled off from the second substrate due to the difference in the linear expansion coefficient. Can get, S power.
[0011] また、前記製造方法において、前記金属アルコキシドカ Ti、 Li、 Si、 Na、 K、 Mg 、 Ca、 St、 Ba、 Al、 In、 Ge、 Bi、 Fe、 Cu、 Y、 Zr、及び Taからなる群から選択された 少なくとも一種の金属アルコキシ化合物であることが好ましい。  [0011] In the manufacturing method, the metal alkoxides Ti, Li, Si, Na, K, Mg, Ca, St, Ba, Al, In, Ge, Bi, Fe, Cu, Y, Zr, and Ta It is preferably at least one metal alkoxy compound selected from the group consisting of
このような金属アルコキシドは、汎用性及び接着性がともに良好であることから、大 幅なコストアップを招くことなぐ高い信頼性を有する薄膜電子デバイス接合基板を得 ることカでさるようになる。  Since such a metal alkoxide has good versatility and adhesiveness, it is possible to obtain a thin film electronic device bonding substrate having high reliability without causing a significant cost increase.
[0012] また、前記製造方法において、前記表面活性化処理工程は、前記薄膜電子デバィ スを設けた第 1基板の薄膜電子デバイス配設面を浄化処理する浄化工程と、前記浄 化工程後の前記薄膜電子デバイス配設面に前記金属アルコキシドを配するカツプリ ング処理工程と、前記カップリング処理工程後の前記薄膜電子デバイス配設面に静 電気除去処理を行う静電気除去工程と、を含むのが好まし!/、。  [0012] In the manufacturing method, the surface activation treatment step includes a purification step of purifying the thin film electronic device arrangement surface of the first substrate provided with the thin film electronic device, and a post-purification step. A coupling treatment step of arranging the metal alkoxide on the surface of the thin film electronic device, and a static electricity removal step of performing an electrostatic removal treatment on the surface of the thin film electronic device after the coupling step. I like it!
このようにすれば、浄化工程で薄膜電子デバイス配設面を浄化処理することにより 、その後のカップリング処理工程で金属アルコキシドを薄膜電子デバイス配設面によ り良好に付着させること力できる。さらに、この薄膜電子デバイス配設面に静電気除 去処理を行うことにより、この薄膜電子デバイスの電気的性能を劣化させること無く第 2基板とより良好に接合させること力 Sでさる。 [0013] なお、この製造方法にお!/、て、前記浄化工程では、酸素プラズマ処理工程、 UVプ ラズマ処理工程、コロナ処理工程、エッチング処理工程のうちの少なくとも一種の浄 化処理工程を行うのが好ましい。 In this way, by performing the purification treatment on the surface on which the thin film electronic device is disposed in the purification step, it is possible to favorably adhere the metal alkoxide to the surface on which the thin film electronic device is disposed in the subsequent coupling treatment step. Further, by performing static electricity removal treatment on the surface on which the thin film electronic device is disposed, the force S can be bonded more favorably to the second substrate without deteriorating the electrical performance of the thin film electronic device. [0013] In this manufacturing method, in the purification step, at least one purification treatment step of an oxygen plasma treatment step, a UV plasma treatment step, a corona treatment step, and an etching treatment step is performed. Is preferred.
このような浄化処理を行えば、薄膜電子デバイスの表面やこれを設けた配設面が 浄化されて例えば異物としての有機物が除去されることにより、薄膜電子デバイス配 設面に金属アルコキシドがより良好に付着するようになる。  If such a purification treatment is performed, the surface of the thin film electronic device and the surface on which the thin film electronic device is provided are purified to remove, for example, organic substances as foreign matters, so that the metal alkoxide is better on the surface of the thin film electronic device. Will become attached to.
[0014] また、この製造方法にお!/、て、前記カップリング処理工程では、前記金属アルコキ シドを、スピンコート法、ベーパー処理法、ディップコート法、スクリーン印刷法、デイス ペンサ一法、インクジェット法、スプレー法のうちの少なくとも一種の手法で配するの が好ましい。 [0014] In addition, in this manufacturing method, in the coupling treatment step, the metal alkoxide is used as a spin coating method, a vapor treatment method, a dip coating method, a screen printing method, a dispenser method, an inkjet method. It is preferable to use at least one of a spray method and a spray method.
このようにすれば、前記薄膜電子デバイス配設面に金属アルコキシドを良好に付着 させること力 Sでさる。  In this case, the force S can be applied to favorably adhere the metal alkoxide to the surface on which the thin film electronic device is provided.
[0015] また、前記製造方法において、前記基板接着工程では、前記薄膜電子デバイス上 に樹脂製の第 2基板を接合するのが好まし!/、。  [0015] Further, in the manufacturing method, in the substrate bonding step, it is preferable to bond a second substrate made of resin on the thin film electronic device! /.
このようにすれば、可撓性や耐熱性などについての要求される機能を満たす基板 を用意し、これを用いることにより、予め設計した通りの機能を有する薄膜電子デバィ ス接合基板を得ることができる。  In this way, a thin film electronic device bonded substrate having a function as designed in advance can be obtained by preparing a substrate that satisfies the required functions such as flexibility and heat resistance. it can.
[0016] また、前記製造方法において、前記第 2基板が、前記薄膜電子デバイス上に樹脂 液を塗布し、硬化させることによって形成されることが好ましい。 [0016] In the manufacturing method, it is preferable that the second substrate is formed by applying a resin liquid on the thin film electronic device and curing it.
本発明によれば、例えば、第 2基板を薄い樹脂フィルム状にしたい場合等において According to the present invention, for example, when it is desired to make the second substrate into a thin resin film, etc.
、樹脂液を塗布し、この樹脂を硬化させて第 2基板を形成することができる。従って、 比較的取り扱いが難しい樹脂フィルムを用いる場合よりも、生産性を向上させることが 可能になる。 The second substrate can be formed by applying a resin liquid and curing the resin. Therefore, productivity can be improved compared to the case of using a resin film that is relatively difficult to handle.
[0017] また、前記製造方法において、前記第 1基板上に前記薄膜電子デバイスを設ける 電子デバイス作製工程が、既製基板上に剥離層を形成するステップと、前記剥離層 上に複数の膜を積層させて前記薄膜電子デバイスを形成するステップと、を含むこと が好ましい。  [0017] In the manufacturing method, the electronic device manufacturing step of providing the thin film electronic device on the first substrate includes a step of forming a release layer on the ready-made substrate, and laminating a plurality of films on the release layer. And forming the thin film electronic device.
このようにすれば、前記第 1基板から前記薄膜電子デバイスを剥離する際、前記剥 離層で剥離を起こさせることにより、薄膜電子デバイスが容易に剥離して前記第 2基 板上に確実に転写される。 In this way, when peeling the thin film electronic device from the first substrate, the peeling is performed. By causing delamination at the delamination, the thin film electronic device is easily delaminated and reliably transferred onto the second substrate.
[0018] また、前記製造方法において、前記電子デバイス作製工程は、既製基板上に剥離 層を形成するステップと、前記剥離層上に複数の膜を積層させて前記薄膜電子デバ イスを形成するステップと、前記既製基板の薄膜電子デバイス形成面に接着剤を介 して仮転写基板を接合させるステップと、前記既製基板を介して前記剥離層にエネ ルギーを付与し、前記剥離層と前記既製基板との界面もしくは前記剥離層の層内に 剥離を生じさせることにより、前記薄膜電子デバイスを前記仮転写基板に転写するス テツプと、を含むことが好ましい。  [0018] In the manufacturing method, the electronic device manufacturing step includes a step of forming a release layer on a ready-made substrate, and a step of forming a thin film electronic device by laminating a plurality of films on the release layer. Bonding a temporary transfer substrate to the thin film electronic device forming surface of the ready-made substrate via an adhesive; applying energy to the release layer via the ready-made substrate; and providing the release layer and the ready-made substrate. And a step of transferring the thin film electronic device to the temporary transfer substrate by causing peeling at the interface with the peeling layer or in the peeling layer.
このようにすれば、既製基板上に形成した薄膜電子デバイスを一旦仮転写基板に 転写し、その後、再度第 2基板上に転写するので、第 2基板上に接合される薄膜電 子デバイスの上下を、既製基板上に形成された際の上下に合わせることができる。  In this way, the thin film electronic device formed on the ready-made substrate is temporarily transferred to the temporary transfer substrate, and then transferred again to the second substrate, so that the upper and lower sides of the thin film electronic device to be bonded on the second substrate are transferred. Can be matched up and down when formed on a ready-made substrate.
[0019] また、前記製造方法において、前記電子デバイス作製工程は、複数の前記薄膜電 子デバイスを前記第 1基板上に積層することが好ましい。  [0019] In the manufacturing method, the electronic device manufacturing step preferably includes stacking a plurality of the thin film electronic devices on the first substrate.
このようにすれば、一度の転写で複数積層した薄膜電子デバイスを転写することが でき、効率的になる。  This makes it possible to transfer a plurality of thin film electronic devices stacked in one transfer, which is efficient.
[0020] また、前記製造方法において、前記薄膜電子デバイスは薄膜トランジスタであるの が好ましい。  [0020] In the manufacturing method, the thin film electronic device is preferably a thin film transistor.
[0021] 本発明の電子機器は、前記の薄膜電子デバイス接合基板の製造方法によって得 られた薄膜電子デバイス接合基板を具備してなることを特徴としている。  [0021] An electronic apparatus according to the present invention is characterized by comprising a thin film electronic device bonding substrate obtained by the method for manufacturing a thin film electronic device bonding substrate.
この電子機器によれば、前記したように薄膜電子デバイス接合基板が高い信頼性 を有するので、この電子機器自体も高!/、信頼性を有する。  According to this electronic apparatus, since the thin film electronic device bonding substrate has high reliability as described above, the electronic apparatus itself has high reliability.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]本発明に係る薄膜電子デバイス接合基板の一例の概略構成図である。  FIG. 1 is a schematic configuration diagram of an example of a thin film electronic device bonding substrate according to the present invention.
[図 2A]薄膜電子デバイス接合基板の製造工程説明図である。  FIG. 2A is an explanatory diagram of a manufacturing process of a thin film electronic device bonding substrate.
[図 2B]薄膜電子デバイス接合基板の製造工程説明図である。  FIG. 2B is an explanatory diagram of the manufacturing process of the thin film electronic device bonding substrate.
[図 2C]薄膜電子デバイス接合基板の製造工程説明図である。  FIG. 2C is an explanatory view of the manufacturing process of the thin film electronic device bonding substrate.
[図 2D]薄膜電子デバイス接合基板の製造工程説明図である。 [図 3]薄膜電子デバイス層中の薄膜電子デバイスの概略構成図である。 FIG. 2D is an explanatory diagram of a manufacturing process of the thin film electronic device bonding substrate. FIG. 3 is a schematic configuration diagram of a thin film electronic device in a thin film electronic device layer.
[図 4A]薄膜電子デバイス接合基板の他の製造工程説明図である。  FIG. 4A is another explanatory view of the manufacturing process of the thin film electronic device bonding substrate.
[図 4B]薄膜電子デバイス接合基板の他の製造工程説明図である。  FIG. 4B is another explanatory view of the manufacturing process of the thin film electronic device bonding substrate.
[図 4C]薄膜電子デバイス接合基板の他の製造工程説明図である。  FIG. 4C is an explanatory diagram of another manufacturing process of the thin film electronic device bonding substrate.
[図 4D]薄膜電子デバイス接合基板の他の製造工程説明図である。  FIG. 4D is another explanatory view of the manufacturing process of the thin film electronic device bonding substrate.
[図 5A]薄膜電子デバイス接合基板の他の製造工程説明図である。  FIG. 5A is an explanatory diagram of another manufacturing process of the thin film electronic device bonding substrate.
[図 5B]薄膜電子デバイス接合基板の他の製造工程説明図である。  FIG. 5B is another explanatory view of the manufacturing process of the thin film electronic device bonding substrate.
[図 5C]薄膜電子デバイス接合基板の他の製造工程説明図である。  FIG. 5C is an explanatory diagram of another manufacturing process of the thin film electronic device bonding substrate.
[図 5D]薄膜電子デバイス接合基板の他の製造工程説明図である。  FIG. 5D is an explanatory diagram of another manufacturing process of the thin film electronic device bonding substrate.
[図 6]本発明の電子機器の一例としての、表示装置の概略構成図である。  FIG. 6 is a schematic configuration diagram of a display device as an example of the electronic apparatus of the invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本発明を詳しく説明する。 [0023] Hereinafter, the present invention will be described in detail.
[薄膜電子デバイス接合基板]  [Thin film electronic device bonding substrate]
図 1は、本発明に係る薄膜電子デバイス接合基板の一例を示す図であり、図 1中符 号 1は薄膜電子デバイス接合基板である。この薄膜電子デバイス接合基板 1は、樹 脂基板 2上に、有機官能基を有した金属アルコキシドからなる表面活性化処理層 3を 介して、薄膜電子デバイス層 4が接合されて構成されている。薄膜電子デバイス層 4 は、薄膜電子デバイス 5が多数配置されて形成されている。また、樹脂基板 2上には 、必要に応じて接着剤及び/又は粘着材からなる有機接着層(図示せず)が設けら れている。  FIG. 1 is a view showing an example of a thin film electronic device bonding substrate according to the present invention. Reference numeral 1 in FIG. 1 is a thin film electronic device bonding substrate. The thin film electronic device bonding substrate 1 is configured by bonding a thin film electronic device layer 4 on a resin substrate 2 via a surface activation treatment layer 3 made of a metal alkoxide having an organic functional group. The thin film electronic device layer 4 is formed by arranging a number of thin film electronic devices 5. On the resin substrate 2, an organic adhesive layer (not shown) made of an adhesive and / or an adhesive is provided as necessary.
[0024] 樹脂基板 2としては、特に限定されることなぐ熱可塑性樹脂、熱硬化性樹脂の!/ヽ ずれも使用可能である。例えば、ポリエチレン、ポリプロピレン、エチレン プロピレン 重合体、エチレン 酢酸ビュル共重合体 (EVA)等のポリオレフイン環状ポリオレフィ ン、変性ポリオレフイン、ポリ塩化ビュル、ポリ塩化ビニレン、ポリスチレン、ポリアミド、 ポリイミド、ポリアミドイミド、ポリカーボネート、ポリ一(4 メチルベンテン 1)、アイォ ノマー、アクリル樹脂、ポリメチルメタタリレート、アクリル スチレン共重合体 (AS樹脂 )、ブタジエン スチレン共重合体、ポリオ共重合体(EVOH)、ポリエチレンテレフタ レート(PET)、ポリブチレンテレフタレート(PBT)、ポリシクロへキサンテレフタレート( PCT)等のポリエステル、ポリエーテル、ポリエーテルケトン(PEEK)、ポリエーテルィ ミド、ポリアセタール(POM)、ポリフエ二レンォキシド、変性ポリフエ二レンォキシド、ポ リアリレート、芳香族ポリエステル(液晶ポリマー)、ポリテトラフルォロエチレン、ポリフ ッ化ビユリデン、その他フッ素系樹脂、スチレン系、ポリオレフイン系、ポリ塩化ビュル 系、ポリウレタン系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可塑性エラスト マー、エポキシ樹脂、フエノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル 、シリコーン樹脂、ポリウレタン等から選択された 1種または 2種以上を組み合わせて( 例えば 2層以上の積層体として)用いることができる。 [0024] As the resin substrate 2, it is possible to use a thermoplastic resin and a thermosetting resin which are not particularly limited. For example, polyolefin cyclic polyolefins such as polyethylene, polypropylene, ethylene propylene polymer, ethylene acetate butyl copolymer (EVA), modified polyolefin, polychlorinated butyl, polyvinyl chloride, polystyrene, polyamide, polyimide, polyamide imide, polycarbonate, poly 1 (4 methylbenten 1), ionomer, acrylic resin, polymethyl methacrylate, acrylic styrene copolymer (AS resin), butadiene styrene copolymer, polio copolymer (EVOH), polyethylene terephthalate (PET ), Polybutylene terephthalate (PBT), polycyclohexane terephthalate ( PCT) and other polyesters, polyethers, polyether ketones (PEEK), polyetherimides, polyacetals (POM), polyphenylene oxides, modified polyphenylene oxides, polyarylates, aromatic polyesters (liquid crystal polymers), polytetrafluoroethylene , Polyvinylidene fluoride, other fluororesins, styrene, polyolefin, polychlorinated bur, polyurethane, fluoro rubber, chlorinated polyethylene, and other thermoplastic elastomers, epoxy resins, phenol resins, urea resins, One or a combination of two or more selected from melamine resin, unsaturated polyester, silicone resin, polyurethane and the like can be used (for example, as a laminate of two or more layers).
[0025] また、このような樹脂基板 2としては、その厚さについても限定されないが、例えば 厚さが数百 nmから数十 m程度のフィルム状にすれば、薄膜電子デバイス接合基 板 1全体をより薄くし、軽量化することができ、好ましい。また、樹脂基板 2が、特に可 撓性を有していれば、薄膜電子デバイス接合基板 1自体にフレキシブル性を持たせ ることが可能になり、好ましい。  [0025] The thickness of the resin substrate 2 is not limited. For example, if the thickness of the resin substrate 2 is about several hundred nm to several tens of meters, the entire thin film electronic device bonding substrate 1 is formed. Can be made thinner and lighter, which is preferable. In addition, it is preferable that the resin substrate 2 has flexibility, since the thin film electronic device bonding substrate 1 itself can have flexibility.
[0026] また、樹脂基板 2上に有機接着層が設けられている場合、この有機接着層を構成 する接着剤(あるいは粘着材)としては、特に限定されることなぐ種々の材料が使用 可能である。例えば、エポキシ基、カルボキシル基、ヒドロキシル基、エステル基、シラ ノーノレ基、シリル基、アミノ基、二トリル基、ハロゲン基、アシノレ基、スルホン基などの 官能基を有する樹脂が用いられる。なお、これらの官能基の中でも、少ない変性率で 接着性の向上が可能であるなどの理由から、エポキシ基、酸無水物基、酸無水物の 開環物基、カルボキシル基、ヒドロキシル基、シラノール基などの極性基を有する樹 脂が好適とされる。  [0026] When an organic adhesive layer is provided on the resin substrate 2, various materials can be used as the adhesive (or adhesive material) constituting the organic adhesive layer without being particularly limited. is there. For example, a resin having a functional group such as an epoxy group, a carboxyl group, a hydroxyl group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, a halogen group, an amino group, or a sulfone group is used. Among these functional groups, epoxy groups, acid anhydride groups, acid anhydride ring-opened groups, carboxyl groups, hydroxyl groups, silanols can be used because of their low modification rate and improved adhesion. A resin having a polar group such as a group is preferred.
[0027] 薄膜電子デバイス層 4を構成する代表的な薄膜電子デバイス 5としては、薄膜トラン ジスタ(Thin Film Transistor, TFT)を挙げること力 Sできる。また、これ以外にも、例え ば薄膜ダイオードや、シリコンの PIN (p_intrinsiC-n)接合からなる光電変換素子(光 センサ、太陽電池)、シリコン抵抗素子、その他の薄膜半導体デバイス、電極 (例: Ind ium Tin Oxide (ITO)、メサ膜のような透明電極)、スイッチング素子、メモリー素子、 圧電素子等のァクチユエータ、マイクロミラー(ピエゾ薄膜セラミックス)、磁気記録薄 膜ヘッド、コイル、インダクター、薄膜高透磁材料およびそれらを組み合わせたマイク 口磁気デバイス、フィルター、反射膜、ダイクロイツクミラー等が挙げられる。 As a representative thin film electronic device 5 constituting the thin film electronic device layer 4, a thin film transistor (Thin Film Transistor, TFT) can be cited. In addition, for example, thin film diodes, photoelectric conversion elements (photosensors, solar cells) consisting of silicon PIN (p_intrinsi C -n) junctions, silicon resistance elements, other thin film semiconductor devices, and electrodes (eg: Indium Tin Oxide (ITO), transparent electrodes such as mesa films), switching elements, memory elements, piezoelectric elements, micromirrors (piezo thin film ceramics), magnetic recording thin film heads, coils, inductors, thin film high transparency Magnetic materials and microphones combining them Examples thereof include an oral magnetic device, a filter, a reflective film, and a dichroic mirror.
[0028] そして、薄膜電子デバイス層 4としては、前記した単一種の薄膜電子デバイス 5が多 数配設されて形成されていてもよぐまた、複数種の薄膜電子デバイス 5が配設され て例えば薄膜回路層を形成してレ、てもよレ、。 [0028] The thin-film electronic device layer 4 may be formed by arranging a plurality of single-type thin-film electronic devices 5 as described above, or a plurality of types of thin-film electronic devices 5. For example, a thin film circuit layer may be formed.
また、特に薄膜電子デバイス 5を薄膜トランジスタ (TFT)とした場合、この薄膜電子 デバイス 5 (TFT)をマトリクス状に配置し、さらに各薄膜電子デバイス 5に対応させて 画素電極 (画素部)等を形成することにより、この薄膜電子デバイス接合基板 1をァク ティブマトリクス基板とすることができる。  In particular, when the thin film electronic device 5 is a thin film transistor (TFT), the thin film electronic device 5 (TFT) is arranged in a matrix, and pixel electrodes (pixel portions) are formed corresponding to the thin film electronic devices 5. Thus, the thin film electronic device bonding substrate 1 can be an active matrix substrate.
[0029] すなわち、マトリクス状に配置された走査線と信号線とに接続することで薄膜電子デ バイス 5 (TFT)をマトリクス状に配置するとともに、これら薄膜電子デバイス 5 (TFT) のドレイン側に画素電極を接続して画素部を構成し、さらに前記走査線および前記 信号線に信号を供給するためのドライバ回路を設けることにより、前記薄膜電子デバ イス接合基板 1からアクティブマトリクス基板を形成することができる。 That is, thin film electronic devices 5 (TFT) are arranged in a matrix by connecting to scanning lines and signal lines arranged in a matrix, and on the drain side of these thin film electronic devices 5 (TFT). An active matrix substrate is formed from the thin film electronic device bonding substrate 1 by connecting a pixel electrode to form a pixel portion and further providing a driver circuit for supplying a signal to the scanning line and the signal line. Can do.
[0030] 表面活性化処理層 3を形成する金属アルコキシドとしては、金属として Ti、 Li、 Si、 Na、 K、 Mg、 Ca、 St、 Ba、 Al、 In、 Ge、 Bi、 Fe、 Cu、 Y、 Zr、 Ta力、ら選択された一 種を含有する材料が好適に用いられ、このような金属アルコキシドがー種あるいは複 数種用いられて形成されている。その理由は、このような金属を含有してなるアルコキ シドは、汎用性及び接着性がともに良好であり、したがって大幅なコストアップを招く ことなく、高い信頼性を有する薄膜電子デバイス接合基板 1を得ることができるからで ある。 [0030] The metal alkoxide forming the surface activation treatment layer 3 includes Ti, Li, Si, Na, K, Mg, Ca, St, Ba, Al, In, Ge, Bi, Fe, Cu, and Y as metals. A material containing one selected from Zr, Ta force, and the like is preferably used, and such a metal alkoxide is used by using one kind or plural kinds. The reason is that an alkoxide containing such a metal has both good versatility and good adhesion, and therefore a thin film electronic device bonding substrate 1 having high reliability can be obtained without causing a significant cost increase. Because it can be obtained.
[0031] また、この金属アルコキシドは、そのアルコキシド基に、側鎖として有機官能基を有 している。この有機官能基は、アミノ基、メルカプト基、カルボキシル基、エポキシ基な どの反応性の官能基であって、前記樹脂基板 2あるいは前記有機接着層を形成する 有機マトリックスと反応し、強固に結合する。また、この金属アルコキシドは、加水分解 基である [ OMe基 (Meは金属)]を有しており、この加水分解基が、薄膜電子デバ イス 5を構成する無機材料膜に強固に結合する。すなわち、薄膜電子デバイス 5は、 絶縁膜としての SiO膜や半導体層である Siなど、無機材料薄膜を多く含んで構成さ  [0031] Further, this metal alkoxide has an organic functional group as a side chain in the alkoxide group. This organic functional group is a reactive functional group such as an amino group, a mercapto group, a carboxyl group, or an epoxy group, and reacts with the organic matrix that forms the resin substrate 2 or the organic adhesive layer to bind firmly. . Further, this metal alkoxide has a hydrolyzable group [OMe group (Me is a metal)], and this hydrolyzable group is firmly bonded to the inorganic material film constituting the thin film electronic device 5. In other words, the thin-film electronic device 5 is configured to include many inorganic material thin films such as a SiO film as an insulating film and Si as a semiconductor layer.
2  2
れているが、金属アルコキシドの加水分解基は、このような無機材料薄膜に強固に結 合する。 However, the hydrolyzable groups of metal alkoxides are strongly bonded to such inorganic material thin films. Match.
[0032] このように、この金属アルコキシドからなる表面活性化処理層 3は、有機材料からな る樹脂基板 2側に対しても、無機材料力 なる薄膜電子デバイス 5 (薄膜電子デバィ ス層 4)に対しても強固に結合する。よって、薄膜電子デバイス 5 (薄膜電子デバイス 層 4)は、樹脂基板 2に対して強固に接着されることになる。  [0032] Thus, the surface activation treatment layer 3 made of the metal alkoxide is a thin film electronic device 5 (thin film electronic device layer 4) having an inorganic material force even on the resin substrate 2 side made of an organic material. It also binds firmly. Therefore, the thin film electronic device 5 (thin film electronic device layer 4) is firmly bonded to the resin substrate 2.
したがって、本実施形態の薄膜電子デバイス接合基板 1は、樹脂基板 2上に薄膜 電子デバイス 5 (薄膜電子デバイス層 4)を強固に接合しているので、例えば大きな温 度変化が与えられても、線膨張係数の差に起因して薄膜電子デバイス 5が樹脂基板 2上から剥がれてしまうといった不都合が防止され、これにより高い信頼性を得ること ができる。  Therefore, since the thin film electronic device bonding substrate 1 of the present embodiment firmly bonds the thin film electronic device 5 (thin film electronic device layer 4) on the resin substrate 2, for example, even if a large temperature change is given, The inconvenience that the thin film electronic device 5 is peeled off from the resin substrate 2 due to the difference in the linear expansion coefficient can be prevented, whereby high reliability can be obtained.
[0033] [薄膜電子デバイス接合基板の製造方法]  [Method for Manufacturing Thin Film Electronic Device Bonding Substrate]
次に、このような薄膜電子デバイス接合基板 1の製造方法に基づき、本発明の薄膜 電子デバイス接合基板の製造方法の一実施形態を説明する。なお、この実施形態 では、薄膜電子デバイス 5が薄膜トランジスタ (TFT)である場合につ!/、て説明する。 この製造方法では、まず、図 2Aに示すように第 1基板 10を用意し、続いて、薄膜電 子デバイス配設工程として、この第 1基板 10の一方の面側に多数の薄膜電子デバィ ス 5を含む薄膜電子デバイス層 4を形成する。  Next, an embodiment of a method for manufacturing a thin film electronic device bonding substrate of the present invention will be described based on such a method for manufacturing a thin film electronic device bonding substrate 1. In this embodiment, the case where the thin film electronic device 5 is a thin film transistor (TFT) will be described. In this manufacturing method, first, the first substrate 10 is prepared as shown in FIG. 2A, and then, as a thin film electronic device disposing step, a number of thin film electronic devices are formed on one surface side of the first substrate 10. A thin film electronic device layer 4 including 5 is formed.
[0034] ここで、薄膜電子デバイス層 4を形成する方法としては、ガラス基板等の既製基板を 第 1基板 10としてそのまま用い、これに直接薄膜電子デバイス 5を作り込んで薄膜電 子デバイス層 4を形成する方法と、既製基板上に剥離層を形成し、この剥離層上に、 薄膜電子デバイス層 4 (薄膜電子デバイス 5)を形成する方法とが採用可能である。 既製基板に直接薄膜電子デバイス層 4 (薄膜電子デバイス 5)を作り込む方法にお いては、この既製基板が第 1基板 10であって、公知の半導体プロセスによってこの既 製基板 (第 1基板 10)に薄膜電子デバイス 5 (TFT)からなる薄膜電子デバイス層 4が 形成される。ここで、形成する薄膜電子デバイス層 4については、薄膜電子デバイス 5 を複数積層した状態にしてもょレヽ。 Here, as a method for forming the thin film electronic device layer 4, a ready-made substrate such as a glass substrate is used as it is as the first substrate 10, and the thin film electronic device 5 is directly formed in the first substrate 10. And a method of forming a thin film electronic device layer 4 (thin film electronic device 5) on the peel layer can be employed. In the method of forming the thin film electronic device layer 4 (thin film electronic device 5) directly on the ready-made substrate, this ready-made substrate is the first substrate 10 and this ready-made substrate (first substrate 10) is formed by a known semiconductor process. ), A thin film electronic device layer 4 composed of the thin film electronic device 5 (TFT) is formed. Here, regarding the thin film electronic device layer 4 to be formed, a plurality of thin film electronic devices 5 may be laminated.
この方法では、第 1基板 10から薄膜電子デバイス層 4を取り出す (剥離する)ために 、例えば、第 1基板 10自身を裏面から研磨しもしくはエッチングする等の手法を採る 必要がある。 In this method, in order to take out (peel) the thin film electronic device layer 4 from the first substrate 10, for example, a technique such as polishing or etching the first substrate 10 itself from the back surface is adopted. There is a need.
[0035] しかし、このような手法では薄膜電子デバイス層 4に割れ等が生じ、薄膜電子デバ イス 5を損傷してしまうおそれがある。そこで、特に歩留まりを重視する場合などでは、 前記の特開平 10— 125929号公報、特開平 10— 125930号公報、及び特開平 10 — 125931号公報等に開示されているように、既製基板上に剥離層を介して薄膜電 子デバイス 5を形成する方法が好適である。この方法では、図 2A中に二点鎖線で示 すように、既製基板 11と剥離層 12とを合わせた構成が、本発明における第 1基板 10 となる。  However, in such a method, there is a possibility that the thin film electronic device layer 4 is cracked and the thin film electronic device 5 is damaged. Therefore, especially in the case where the yield is important, as disclosed in the above-mentioned JP-A-10-125929, JP-A-10-125930, JP-A-10-125931, etc. A method of forming the thin film electronic device 5 via the release layer is suitable. In this method, as shown by a two-dot chain line in FIG. 2A, a configuration in which the ready-made substrate 11 and the release layer 12 are combined is the first substrate 10 in the present invention.
[0036] 既製基板 11としては、後述するように剥離層 12に対して剥離処理を行ううえで、光 が透過する透光性基板であるのが好ましい。また、このような既製基板 11としては、 信頼性の高レ、材料で構成されて!/、るのが好ましく、特に、耐熱性に優れた材料で構 成されているのが好ましぐ例えば石英ガラスや、各種の耐熱性ガラスが好適とされる [0036] The ready-made substrate 11 is preferably a light-transmitting substrate through which light is transmitted when the release layer 12 is subjected to a release treatment as described later. In addition, such a ready-made substrate 11 is preferably made of a highly reliable material! /, And is particularly preferably made of a material having excellent heat resistance. Quartz glass and various heat-resistant glass are suitable.
Yes
[0037] 剥離層 12は、照射される光を吸収し、その層内及び/又は界面において剥離 (以 下、「層内剥離」、「界面剥離」と言う)を生じるような性質を有する材料であり、好ましく は、光の照射により、剥離層 12を構成する物質の原子間または分子間の結合力が 消失または減少すること、すなわち、アブレーシヨンが生じて層内剥離及び/又は界 面剥離に至る材料がよい。  [0037] The release layer 12 is a material that absorbs irradiated light and has a property of causing release in the layer and / or at the interface (hereinafter referred to as "in-layer release" or "interfacial release"). Preferably, the bonding force between atoms or molecules of the substance constituting the release layer 12 disappears or decreases due to light irradiation, that is, abrasion occurs to cause in-layer separation and / or interfacial separation. Good material.
[0038] さらに、光の照射により、剥離層 12から気体が放出され、剥離 (分離)効果が発現さ れる場合もある。すなわち、剥離層 12に含有されていた成分が気体となって放出さ れる場合と、剥離層 12が光を吸収して一瞬気体になり、その蒸気が放出され、剥離( 分離)に寄与する場合とがある。このような剥離層 12については、前記特開平 10— 1 25931号公報に記載されているように、次の <A〉〜く F〉に示す材料が好適に用 いられる。  [0038] Furthermore, there is a case where a gas is released from the release layer 12 by light irradiation, and a release (separation) effect is exhibited. That is, when the component contained in the release layer 12 is released as a gas, and when the release layer 12 absorbs light and becomes a gas for a moment, its vapor is released and contributes to release (separation) There is. For such a release layer 12, materials described in the following <A> to <F> are preferably used as described in JP-A-10-125931.
[0039] <A〉アモルファスシリコン(a— Si)  [0039] <A> Amorphous silicon (a- Si)
このアモルファスシリコン中には、水素(H)が含有されていてもよい。この場合、 H の含有量は、 2原子%以上程度であるのが好ましぐ 2〜20原子%程度であるのがよ り好ましい。このように、水素(H)が所定量含有されていると、光の照射によって水素 が放出され、剥離層 12に内圧が発生し、それが上下の薄膜を剥離する力となる。 This amorphous silicon may contain hydrogen (H). In this case, the content of H is preferably about 2 to 20 atomic percent, more preferably about 2 atomic percent or more. Thus, when a predetermined amount of hydrogen (H) is contained, hydrogen is irradiated by light irradiation. Is released, and an internal pressure is generated in the release layer 12, which becomes a force for peeling the upper and lower thin films.
[0040] < B〉酸化物 [0040] <B> oxide
この酸化物として具体的には、酸化ケィ素又はケィ酸化合物、酸化チタン又はチタ ン酸化合物、酸化ジルコニウム又はジルコン酸化合物、酸化ランタン又はランタン酸 化化合物等の透電体(強誘電体)が挙げられる。  Specific examples of the oxide include a conductive material (ferroelectric material) such as a silicon oxide or a key compound, a titanium oxide or a titanate compound, a zirconium oxide or a zirconate compound, a lanthanum oxide or a lanthanum oxide compound. Can be mentioned.
< C〉PZT PLZT PLLZT PBZT等のセラミックスあるいは誘電体(強誘電体) < D〉窒化珪素、窒化アルミ、窒化チタン等の窒化物セラミックス  <C> PZT PLZT PLLZT PBZT or other ceramics or dielectric (ferroelectric) <D> Nitride ceramics such as silicon nitride, aluminum nitride, titanium nitride
[0041] < E〉有機高分子材料 [0041] <E> Organic polymer material
この有機高分子材料としては、 CH CO—(ケトン)、 CONH (アミド)、 NH (イミド)、 COO (エステル)、 N = N (ァゾ)、 CH = N (シフ)等 の結合(光の照射によりこれらの結合が切断される)を有する材料、特に、これらの結 合を多く有する材料であればいかなる材料でもよい。また、この有機高分子材料は、 構成式中に芳香族炭化水素(1または 2以上のベンゼン環またはその縮合環)を有す る材料であってもよい。  This organic polymer material includes CH CO— (ketone), CONH (amide), NH (imide), COO (ester), N = N (azo), CH = N (Schiff), etc. Any material may be used as long as it is a material having a large number of these bonds, particularly a material having a large number of these bonds. The organic polymer material may be a material having an aromatic hydrocarbon (one or more benzene rings or condensed rings thereof) in the structural formula.
< F〉金属  <F> Metal
この金属としては、 列えば、、 Al, Li, Ti, Mn, In, Sn, Y, La, Ce, Nd, Pr, Gd, S mまたはこれらのうちの少なくとも 1種を含む合金が挙げられる。  Examples of the metal include Al, Li, Ti, Mn, In, Sn, Y, La, Ce, Nd, Pr, Gd, Sm, and alloys containing at least one of these.
[0042] なお、剥離層 12の厚さは、剥離目的や剥離層 12の組成、層構成、形成方法等の 諸条件により異なるが、通常は、 11 111 20 111程度であるのが好ましぐ 10nm 2 〃m程度であるのがより好ましぐ 401 111 1〃111程度であるのがさらに好ましい。剥 離層 12の膜厚が薄すぎると、膜の均一性が低くなり、剥離にムラが生じることがあり、 また、膜厚が厚すぎると、剥離層 12の良好な剥離性を確保するために、光のパワー( 光量)を大きくする必要があるとともに、後に剥離層 12を除去する際に、その処理に 時間力 Sかかってしまうからである。なお、剥離層 12の膜厚は、できるだけ均一である のが好ましい。 [0042] The thickness of the release layer 12 varies depending on the purpose of the release, various conditions such as the composition, layer configuration, and formation method of the release layer 12, but is usually preferably about 11 111 20 111. More preferably, it is about 10 nm 2 〃m, more preferably about 401 111 1 〃111. If the thickness of the release layer 12 is too thin, the uniformity of the film may be reduced, resulting in uneven peeling. In addition, if the thickness is too thick, the release layer 12 may have good peelability. In addition, it is necessary to increase the light power (light quantity), and it takes time power S to remove the release layer 12 later. The film thickness of the release layer 12 is preferably as uniform as possible.
[0043] 剥離層 12の形成方法は、特に限定されず、膜組成や膜厚等の諸条件に応じて適 宜選択される。例えば、 CVD (MOCVD PECVD、低圧 CVD ECR—CVDを含 む) 蒸着、分子線蒸着(MB)、スパッタリング、イオンプレーティング、 PVD等の各 種気相成膜法、電気メツキ、浸漬メツキ(デイツビング)、無電解メツキ等の各種メツキ 法、ラングミュア 'プロジェット(LB)法、スピンコート、スプレーコート、ロールコート等 の塗布法、各種印刷法、転写法、インクジェット法、粉末ジェット法等が挙げられ、こ れらのうちの 2種以上を組み合わせて形成することもできる。 [0043] The method of forming the release layer 12 is not particularly limited, and is appropriately selected according to various conditions such as film composition and film thickness. For example, CVD (including MOCVD PECVD, low pressure CVD ECR—CVD), molecular beam deposition (MB), sputtering, ion plating, PVD, etc. Various vapor deposition methods such as seed vapor deposition method, electric plating, immersion plating (dating), electroless plating, Langmuir 'Projet (LB) method, spin coating, spray coating, roll coating, etc., various printing methods , Transfer method, ink jet method, powder jet method and the like, and two or more of these can also be formed in combination.
[0044] 例えば、剥離層 12の組成がアモルファスシリコン(a— Si)の場合には、 CVD法、特 に低圧 CVD法やプラズマ CVD法により成膜するのが好ましい。また、剥離層 12をゾ ルーゲル法によるセラミックスで構成する場合や、有機高分子材料で構成する場合 には、塗布法、特に、スピンコートにより成膜するのが好ましい。  [0044] For example, when the composition of the release layer 12 is amorphous silicon (a-Si), it is preferable to form a film by a CVD method, particularly, a low pressure CVD method or a plasma CVD method. Further, when the release layer 12 is made of ceramics by the Zorgel method or made of an organic polymer material, it is preferable to form a film by a coating method, particularly by spin coating.
[0045] このようにして剥離層 12を形成したら、図 2Aに示したように、公知の半導体プロセ スによって剥離層 12上に多数の薄膜電子デバイス 5 (TFT)を含む薄膜電子デバィ ス層 4を形成する。ここで、形成する薄膜電子デバイス層 4については、薄膜電子デ バイス 5を複数積層した状態にしてもよいのは前述した通りである。薄膜電子デバイス 層 4は、例えば、薄膜電子デバイス層 4中の一部を拡大した図 3に示すように、酸化 ケィ素膜力もなる中間層 50上に形成された薄膜電子デバイス 5 (TFT)を含んで構成 される。また、薄膜電子デバイス 5は、ポリシリコン層に n型不純物を注入して形成され たソース'ドレイン領域 51と、チャネル層 52と、ゲート絶縁膜 53と、ゲート電極 54と、 層間絶縁膜 55と、例えばアルミニウムからなる電極 56とを具備して構成されている。  When the release layer 12 is formed in this manner, as shown in FIG. 2A, a thin film electronic device layer 4 including a number of thin film electronic devices 5 (TFTs) on the release layer 12 by a known semiconductor process. Form. Here, as described above, the thin film electronic device layer 4 to be formed may be in a state where a plurality of thin film electronic devices 5 are stacked. For example, as shown in FIG. 3 in which a part of the thin film electronic device layer 4 is enlarged, the thin film electronic device layer 4 includes a thin film electronic device 5 (TFT) formed on the intermediate layer 50 that also has a silicon oxide film force. Consists of including. The thin film electronic device 5 includes a source / drain region 51 formed by implanting an n-type impurity into a polysilicon layer, a channel layer 52, a gate insulating film 53, a gate electrode 54, an interlayer insulating film 55, For example, an electrode 56 made of aluminum.
[0046] なお、剥離層 12に接して設けられる中間層 50としては、酸化ケィ素膜以外にも、窒 化ケィ素膜等の他の絶縁膜を用いることができる。この中間層 50は、種々の目的で 形成される材料で、例えば、薄膜電子デバイス層 4を物理的または化学的に保護す る保護層、絶縁層、レーザ光の遮光層、マイグレーション防止用のバリア層、反射層 としての機能のうちの、少なくとも 1つを発揮する材料である。この中間層 50の厚さと しては、発揮させる機能の程度等に応じて適宜決定される力 通常は、 101 111〜5 m程度とするのが好ましぐ 401 111〜1 111程度とするのがより好ましい。  [0046] As the intermediate layer 50 provided in contact with the release layer 12, in addition to the silicon oxide film, other insulating films such as a nitride nitride film can be used. The intermediate layer 50 is a material formed for various purposes. For example, a protective layer that physically or chemically protects the thin film electronic device layer 4, an insulating layer, a laser light shielding layer, and a barrier for preventing migration. It is a material that exhibits at least one of the functions of a layer and a reflective layer. The thickness of the intermediate layer 50 is a force that is appropriately determined depending on the degree of function to be exerted, etc. Usually, it is preferably about 101 111 to 5 m, and about 401 111 to 1 111 is preferable. Is more preferable.
[0047] このようにして薄膜電子デバイス層 4を形成したら、表面活性化処理工程として、図  [0047] Once the thin film electronic device layer 4 is formed in this way, as a surface activation process,
2Bに示すようにこの薄膜電子デバイス層 4の表面、すなわち各薄膜電子デバイス 5 の表面に、有機官能基を有した金属アルコキシドからなる表面活性化処理層 3を形 成する。 この表面活性化処理層 3を形成する表面活性化処理工程は、本実施形態では、浄 化工程と、カップリング処理工程と、静電気除去工程とを含んでいる。 As shown in FIG. 2B, a surface activation treatment layer 3 made of a metal alkoxide having an organic functional group is formed on the surface of the thin film electronic device layer 4, that is, on the surface of each thin film electronic device 5. In this embodiment, the surface activation treatment process for forming the surface activation treatment layer 3 includes a purification process, a coupling treatment process, and a static electricity removal process.
[0048] 浄化工程は、薄膜電子デバイス層 4を形成した第 1基板 10の、薄膜電子デバイス 層 4を形成した側の面(薄膜電子デバイス配設面)を浄化処理する工程である。浄化 処理方法としては、酸素プラズマ処理、 UVプラズマ処理、コロナ処理、エッチング処 理のうちの少なくとも一種の処理を行うのが好ましい。このような浄化処理を行うことに より、薄膜電子デバイス 5の表面やこれを設けた配設面を浄化し、例えば異物として の有機物を除去することができる。したがって、後工程で薄膜電子デバイス配設面に 金属アルコキシドを付着させる際、これをより良好に付着させることができるようになる [0048] The purification step is a step of purifying the surface of the first substrate 10 on which the thin film electronic device layer 4 is formed on the side on which the thin film electronic device layer 4 is formed (the surface on which the thin film electronic device is disposed). As the purification treatment method, it is preferable to perform at least one of oxygen plasma treatment, UV plasma treatment, corona treatment, and etching treatment. By performing such a purification treatment, the surface of the thin film electronic device 5 and the arrangement surface provided with the thin film electronic device 5 can be purified, and for example, organic substances as foreign substances can be removed. Therefore, when the metal alkoxide is adhered to the surface where the thin film electronic device is disposed in the subsequent process, it can be adhered more favorably.
[0049] カップリング処理工程は、表面活性化処理工程の主工程である。また、カップリング 処理工程は、表面活性化処理層 3を形成するための実質的な処理工程である。また 、カップリング処理工程は、前記浄化工程後の前記薄膜電子デバイス配設面に、前 記金属アルコキシドを配する工程である。金属アルコキシドとしては、前記した有機官 能基を有する金属アルコキシドが用いられる。金属アルコキシドの中でも、金属として Siを含有する Si系、 Tiを含有する Ti系、 Ziを含有する Zi系、 A1を含有する A1系が、 汎用性が高ぐ前述したように樹脂基板 2上に薄膜電子デバイス 5を接着させる際の 接着性がより良好である等の理由により、好ましい。さらに、 Si系の金属アルコキシド は、反応性が高ぐしたがって反応温度が比較的低ぐまた反応速度が速い等の利 点もあり、さらに好ましい。 [0049] The coupling treatment step is the main step of the surface activation treatment step. Further, the coupling treatment process is a substantial treatment process for forming the surface activation treatment layer 3. The coupling treatment step is a step of arranging the metal alkoxide on the surface where the thin film electronic device is disposed after the purification step. As the metal alkoxide, the metal alkoxide having the organic functional group described above is used. Among metal alkoxides, Si-based metals containing Si, Ti-containing Ti-based materials, Zi-containing Zi-based materials, and A1-containing A1-based materials are highly versatile. This is preferable for reasons such as better adhesion when the thin film electronic device 5 is adhered. Furthermore, Si-based metal alkoxides are more preferred because they have advantages such as high reactivity, relatively low reaction temperature, and high reaction rate.
[0050] このような金属アルコキシドを前記薄膜電子デバイス配設面に配する(付着させる) ための手法としては、特に限定されることなぐ例えば金属アルコキシドを含有する溶 液中に前記の薄膜電子デバイス層 4を形成した第 1基板 10を直接浸す方法 (デイツ プコート法)、前記薄膜電子デバイス配設面に金属アルコキシドを含有する溶液を塗 布する方法 (塗工法)、前記薄膜電子デバイス配設面に金属アルコキシドの蒸気を接 触させる方法 (ベーパー処理法)等を採用することができる。塗工法としては、スピン コート法、スクリーン印刷法、ディスペンサー法、インクジェット法、スプレー法等を挙 げること力 Sでさる。 [0051] なお、採用する手法に応じて、前記金属アルコキシドについては、例えば溶媒や分 散媒、さらには各種の調製剤を用い、粘度等についての性状を調整するようにしても よい。 [0050] The method for arranging (attaching) such a metal alkoxide on the surface on which the thin film electronic device is disposed is not particularly limited. For example, the thin film electronic device is contained in a solution containing the metal alkoxide. A method of directly immersing the first substrate 10 on which the layer 4 is formed (a dip coating method), a method of applying a solution containing a metal alkoxide on the surface of the thin film electronic device (coating method), a surface of the thin film electronic device It is possible to employ a method (vapor treatment method) in which metal alkoxide vapor is brought into contact with the substrate. The coating methods include spin coating method, screen printing method, dispenser method, ink jet method, spray method and so on. [0051] Depending on the method employed, the metal alkoxide may be adjusted, for example, in terms of viscosity and the like, using a solvent, a dispersion medium, and various preparation agents.
このようにして金属アルコキシドからなる膜を形成すると、金属アルコキシドは、前記 したようにその加水分解基が、薄膜電子デバイス 5を構成する無機材料膜に強固に 結合した状態となる。  When a film made of a metal alkoxide is formed in this way, the metal alkoxide is in a state where its hydrolyzable group is firmly bonded to the inorganic material film constituting the thin film electronic device 5 as described above.
[0052] このようにして金属アルコキシドからなる膜を形成したら、必要に応じて乾燥処理し た後、静電気除去工程を行う。この静電気除去工程は、前記薄膜電子デバイス配設 面、すなわち金属アルコキシドからなる膜の形成面を公知の手法によって静電気除 去処理することにより行う。  [0052] When a film made of a metal alkoxide is formed in this way, after performing a drying treatment as necessary, a static electricity removing step is performed. This static electricity removing step is performed by performing static electricity removing treatment on the surface on which the thin film electronic device is provided, that is, on the surface on which the film made of metal alkoxide is formed by a known method.
[0053] 次いで、基板接着工程として、図 2Cに示すように形成した表面活性化処理層 3を 介して、前記の薄膜電子デバイス層 4 (薄膜電子デバイス 5)上に樹脂基板 2、すなわ ち本発明における樹脂製の第 2基板を配設する。ここで、表面活性化処理層 3上へ の樹脂基板 2の配設 (接合)については、前記したように、接着剤及び/又は粘着材 からなる有機接着層を介して接合する方法と、有機接着層を介することなく樹脂基板 2を直接接着する方法とが採用可能である。  [0053] Next, as the substrate bonding step, the resin substrate 2, that is, the resin substrate 2, that is, the surface of the thin film electronic device layer 4 (thin film electronic device 5) is interposed via the surface activation treatment layer 3 formed as shown in FIG. 2C. The resin-made second substrate in the present invention is disposed. Here, regarding the disposition (bonding) of the resin substrate 2 on the surface activation treatment layer 3, as described above, a method of bonding via an organic adhesive layer made of an adhesive and / or an adhesive material, A method of directly bonding the resin substrate 2 without using an adhesive layer can be employed.
[0054] 樹脂基板 2を、有機接着層を介して表面活性化処理層 3上、すなわち前記薄膜電 子デバイス層 4 (薄膜電子デバイス 5)上に接合するには、前記した有機接着層を構 成する接着剤あるいは粘着材を、表面活性化処理層 3上または樹脂基板 2の内面に 配し、その後、この有機接着層を介して前記薄膜電子デバイス層 4 (薄膜電子デバィ ス 5)上に樹脂基板 2を配し、貼着する。  [0054] In order to bond the resin substrate 2 on the surface activation treatment layer 3 via the organic adhesive layer, that is, on the thin film electronic device layer 4 (thin film electronic device 5), the organic adhesive layer described above is formed. The adhesive or adhesive material to be formed is placed on the surface activation treatment layer 3 or the inner surface of the resin substrate 2, and then on the thin film electronic device layer 4 (thin film electronic device 5) through the organic adhesive layer. Place resin board 2 and stick.
[0055] 接着剤あるいは粘着材を表面活性化処理層 3上または樹脂基板 2の内面に配する 方法としては、特に限定されることなぐ例えば溶液キャスト法や溶融押出法を採用 すること力 Sできる。なかでも、溶液キャスト法が、接着剤層(粘着材層)の膜厚をより均 一に塗工することができるため、好ましい。溶液キャスト法で有機接着層を形成する 場合、接着層を構成する材料を適当な溶剤に溶解してワニスを得て、これを、例えば リバースロールコーティング法、グラビアコーティング法、エアナイフコーティング法、 ブレードコーティング法、ディップコーティング法、カーテンコーティング法、ダイコー ティング法、スピンコーティング法などの手法により、表面活性化処理層 3上または樹 脂基板 2の内面に塗布する。このような手法の中でも、膜厚制御の容易性から、リバ ースロールコーティング法、グラビアコーティング法、ダイコーティング法、スピンコー ティングが好適とされる。 [0055] The method for disposing the adhesive or the pressure-sensitive adhesive material on the surface activation treatment layer 3 or the inner surface of the resin substrate 2 is not particularly limited. For example, a solution casting method or a melt extrusion method can be used. . Among these, the solution casting method is preferable because the film thickness of the adhesive layer (adhesive layer) can be applied more uniformly. In the case of forming an organic adhesive layer by the solution casting method, the material constituting the adhesive layer is dissolved in an appropriate solvent to obtain a varnish, and this is, for example, reverse roll coating method, gravure coating method, air knife coating method, blade coating. Method, dip coating method, curtain coating method, Daiko It is applied to the surface activation treatment layer 3 or the inner surface of the resin substrate 2 by a technique such as a coating method or a spin coating method. Among these methods, the reverse roll coating method, the gravure coating method, the die coating method, and the spin coating method are preferable because of easy film thickness control.
[0056] また、このような有機接着層を介して前記薄膜電子デバイス層 4 (薄膜電子デバイス 5)上に樹脂基板 2を貼着したら、通常は、有機接着層内の溶剤を除去するため乾燥 処理を行う。この乾燥処理として、例えば温風加熱、不活性ガス加熱炉、オーブン炉 などを用いて行うことができる。なお、有機接着層形成用の材料に硬化剤などを混合 しておけば、加熱などによって直接接着剤を硬化させることもできる。  [0056] When the resin substrate 2 is attached onto the thin film electronic device layer 4 (thin film electronic device 5) through such an organic adhesive layer, it is usually dried to remove the solvent in the organic adhesive layer. Process. As this drying treatment, for example, warm air heating, an inert gas heating furnace, an oven furnace or the like can be used. If a curing agent is mixed with the material for forming the organic adhesive layer, the adhesive can be directly cured by heating or the like.
この方法では、樹脂基板 2として、可撓性や耐熱性などについての要求される機能 を満たす基板を用意し、これを用いることにより、予め設計した通りの機能を有する薄 膜電子デバイス接合基板 1を得ることができる。  In this method, a thin film electronic device bonding substrate 1 having a function as designed in advance is prepared by using a resin substrate 2 that satisfies the required functions of flexibility and heat resistance. Can be obtained.
[0057] また、有機接着層を介することなぐ前記薄膜電子デバイス層 4 (薄膜電子デバイス 5)上に樹脂基板 2を直接接着する方法としては、前述した有機接着層を形成する方 法をそのまま採用することができる。すなわち、前記方法によって形成し、硬化させた 有機接着層を、そのまま樹脂基板 2 (本発明における樹脂製の第 2基板)として使用 する。なお、その場合には、使用する樹脂 (接着剤あるいは粘着材)を、当然ながら 表面活性化処理層 3上に配し、硬化させる。  [0057] As the method for directly bonding the resin substrate 2 onto the thin film electronic device layer 4 (thin film electronic device 5) without passing through the organic adhesive layer, the method for forming the organic adhesive layer described above is employed as it is. can do. That is, the organic adhesive layer formed and cured by the above method is used as the resin substrate 2 (resin-made second substrate in the present invention) as it is. In this case, the resin (adhesive or pressure-sensitive adhesive) to be used is naturally placed on the surface activation treatment layer 3 and cured.
[0058] この方法では、配した(塗布した)樹脂の厚さによって得られる樹脂基板 2の厚さを ほぼ決定できるため、特に膜厚を薄くしたい場合などに有利となる。すなわち、例え ば樹脂基板 2を薄!/、樹脂フィルム状にした!/、場合などに、比較的取り极レ、が難し!/ヽ 樹脂フィルムを樹脂基板として用い、有機接着層を介して貼着するよりも、本方法の ように樹脂液を塗布し硬化させることでフィルム状の樹脂基板 2を形成する方が、生 産性が向上することが多いからである。具体的に、用いる樹脂液の性状(固形分濃度 や粘度等)にもよる力 スピンコート法を採用することにより、膜厚が 0· ;!〜 10 m程 度の薄!/、樹脂基板 2を、均一な膜厚で形成することができる。  [0058] In this method, the thickness of the resin substrate 2 obtained can be substantially determined by the thickness of the arranged (applied) resin, which is advantageous particularly when it is desired to reduce the film thickness. That is, for example, when the resin substrate 2 is thin! /, Formed into a resin film! /, In some cases, it is relatively difficult to arrange the electrode! / ヽ The resin film is used as the resin substrate and is bonded via the organic adhesive layer. This is because productivity is often improved by forming a film-like resin substrate 2 by applying and curing a resin solution as in this method. Specifically, force that depends on the properties of the resin liquid used (solid content concentration, viscosity, etc.) By adopting the spin coating method, the film thickness is 0 ·; Can be formed with a uniform film thickness.
[0059] このようにして表面活性化処理層 3上に樹脂基板 2を配設すると、表面活性化処理 層 3を形成する金属アルコキシドは、その有機官能基が樹脂基板 2あるいは有機接 着層を形成する有機マトリックスと反応し、強固に結合した状態となる。 When the resin substrate 2 is disposed on the surface activation treatment layer 3 in this manner, the metal alkoxide forming the surface activation treatment layer 3 has an organic functional group that is the resin substrate 2 or the organic contact group. It reacts with the organic matrix that forms the adhesion layer and is in a tightly bonded state.
なお、特に樹脂を配し硬化させることで樹脂基板 2を形成する場合、この樹脂につ いては、必要に応じて各種の添加剤を配合した材料を用いることができる。例えば、 硬化剤、難燃剤、充填剤、軟質重合体、耐熱安定剤、耐候安定剤、老化防止剤、レ ベリング剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、天然油、 合成油、ワックス、乳剤、磁性体、誘電特性調整剤、靱性剤などを、要求される樹脂 基板 2の性状等に応じて適宜に添加することができる。  In particular, when the resin substrate 2 is formed by arranging and curing a resin, for this resin, a material in which various additives are blended can be used as necessary. For example, curing agents, flame retardants, fillers, soft polymers, heat stabilizers, weathering stabilizers, anti-aging agents, leveling agents, antistatic agents, slip agents, antiblocking agents, antifogging agents, lubricants, natural oils Synthetic oils, waxes, emulsions, magnetic materials, dielectric property modifiers, toughening agents, and the like can be appropriately added depending on the required properties of the resin substrate 2 and the like.
[0060] その後、転写工程として、図 2Dに示すように前記第 1基板 10から前記薄膜電子デ ノ イス層 4 (薄膜電子デバイス 5)側を剥離する、すなわち薄膜電子デバイス層 4 (薄 膜電子デバイス 5)側から第 1基板 10側を剥離することにより、前記薄膜電子デバィ ス層 4 (薄膜電子デバイス 5)を樹脂基板 2上に転写する。第 1基板 10側を剥離する 方法としては、前述したように剥離層 12を形成していない場合、第 1基板 10の裏面 側(薄膜電子デバイス 4を形成した側と反対の側)を研削及びエッチングすることなど により、第 1基板 10の薄膜電子デバイス 4 (薄膜電子デバイス 5)を形成した側の表層 部を削り取るといった手法等が採用される。  [0060] Thereafter, as a transfer step, as shown in FIG. 2D, the thin film electronic device layer 4 (thin film electronic device 5) side is peeled from the first substrate 10, that is, the thin film electronic device layer 4 (thin film electronic device). The thin film electronic device layer 4 (thin film electronic device 5) is transferred onto the resin substrate 2 by peeling the first substrate 10 side from the device 5) side. As described above, when the release layer 12 is not formed as described above, the back side of the first substrate 10 (the side opposite to the side where the thin film electronic device 4 is formed) is ground and removed. For example, a method of scraping the surface layer portion of the first substrate 10 on the side where the thin film electronic device 4 (thin film electronic device 5) is formed is employed.
[0061] また、剥離層 12を形成している場合には、この剥離層 12にて剥離を生じさせるた めに、第 1基板 10の裏面側から光を照射する。すると、照射した光は、既製基板 11 ( 第 1基板 10)を透過した後に剥離層 12に照射される。これにより、剥離層 12に層内 剥離及び/又は界面剥離が生じ、結合力が減少または消滅する。剥離層 12に層内 剥離及び/又は界面剥離が生じる原理は、剥離層 12の構成材料にアブレーシヨン 力 S生じること、また、剥離層 12に含まれているガスの放出、さらには照射直後に生じ る溶融、蒸散等の相変化によって生じると推定される。  When the release layer 12 is formed, light is irradiated from the back side of the first substrate 10 in order to cause the release layer 12 to release. Then, the irradiated light is applied to the release layer 12 after passing through the ready-made substrate 11 (first substrate 10). As a result, in-layer separation and / or interfacial separation occurs in the release layer 12, and the bonding force is reduced or eliminated. The principle that peeling and / or interfacial peeling occurs in the release layer 12 is that the ablation force S is generated in the constituent material of the release layer 12, the gas contained in the release layer 12 is released, and immediately after irradiation. Presumed to be caused by phase changes such as melting and transpiration.
[0062] ここで、アブレーシヨンとは、照射光を吸収した固定材料 (剥離層 12の構成材料)が 光化学的または熱的に励起され、その表面や内部の原子または分子の結合が切断 されて放出することをいい、主に、剥離層 12の構成材料の全部または一部が溶融、 蒸散 (気化)等の相変化を生じる現象として現れる。また、前記相変化によって微小 な発泡状態となり、結合力が低下することもある。  [0062] Here, the abrasion means that the fixing material that absorbs the irradiation light (the constituent material of the release layer 12) is photochemically or thermally excited, and the surface or internal atoms or molecules bond is cut and emitted. This phenomenon occurs mainly as a phenomenon in which all or part of the constituent material of the release layer 12 undergoes a phase change such as melting or transpiration (vaporization). In addition, the phase change may result in a fine foamed state, resulting in a decrease in bonding strength.
剥離層 12が層内剥離を生じる力、、界面剥離を生じる力、、またはその両方であるか は、剥離層 12の組成や、その他種々の要因に左右され、その要因の 1つとして、照 射される光の種類、波長、強度、到達深さ等の条件が挙げられる。 Is the release layer 12 a force that causes in-layer peeling, a force that causes interfacial peeling, or both? Depends on the composition of the release layer 12 and various other factors. One of the factors is the type of light to be irradiated, the wavelength, the intensity, the depth of arrival, and the like.
[0063] 照射する光としては、剥離層 12に層内剥離及び/又は界面剥離を起こさせる光で あればいかなる光でもよぐ例えば、 X線、紫外線、可視光、赤外線 (熱線)、レーザ 光、ミリ波、マイクロ波、電子線、放射線(α線、 /3線、 γ線)等が挙げられる。そのな かでも、剥離層 12の剥離(アブレーシヨン)を生じさせ易いという点で、レーザ光が好 ましい。 [0063] The light to be irradiated may be any light as long as it causes light peeling and / or interfacial peeling on the peeling layer 12. For example, X-rays, ultraviolet rays, visible light, infrared rays (heat rays), laser light , Millimeter wave, microwave, electron beam, radiation (α ray, / 3 ray, γ ray) and the like. Of these, laser light is preferred in that it easily causes peeling (ablation) of the release layer 12.
[0064] このレーザ光を発生させるレーザ装置としては、各種気体レーザ、固体レーザ(半 導体レーザ)等が挙げられる力 S、エキシマレーザ、 Nd— YAGレーザ、 Arレーザ、 C Oレーザ、 COレーザ、 He— Neレーザ等が好適に用いられ、その中でもエキシマレ [0064] Examples of the laser device that generates this laser beam include force S, excimer laser, Nd—YAG laser, Ar laser, CO laser, CO laser, He, and various gas lasers and solid lasers (semiconductor lasers). — Ne laser etc. are preferably used, among them
2 2
一ザが特に好ましい。エキシマレーザは、短波長域で高エネルギーを出力するため Isa is particularly preferred. Excimer lasers output high energy in the short wavelength range.
、極めて短時間で剥離層 12にアブレーシヨンを生じさせることができ、よって樹脂基 板 2や既製基板 11等において温度上昇がほとんど生じることない。これにより劣化、 損傷を生じさせることなく、剥離層 12にて剥離をなさせることができる。 As a result, abrasion can be generated in the release layer 12 in an extremely short time, so that the temperature rise hardly occurs in the resin substrate 2 or the ready-made substrate 11. As a result, the release layer 12 can be peeled without causing deterioration or damage.
[0065] このようにして薄膜電子デバイス層 4 (薄膜電子デバイス 5)側から第 1基板 10 (既製 基板 11)を剥離したら、必要に応じて、薄膜電子デバイス層 4 (薄膜電子デバイス 5) 側に残存している剥離層 12を除去する。具体的には、洗浄、エッチング、アツシング 、研磨等の方法またはこれらを組み合わせた方法により、除去する。これにより、薄膜 電子デバイス層 4 (薄膜電子デバイス 5)を樹脂基板 2上に転写し、図 1に示したような 薄膜電子デバイス接合基板 1を得ることができる。  [0065] When the first substrate 10 (the ready-made substrate 11) is peeled from the thin film electronic device layer 4 (thin film electronic device 5) side in this way, the thin film electronic device layer 4 (thin film electronic device 5) side is removed as necessary. The release layer 12 remaining on the substrate is removed. Specifically, it is removed by a method such as cleaning, etching, ashing, polishing, or a combination thereof. Thereby, the thin film electronic device layer 4 (thin film electronic device 5) is transferred onto the resin substrate 2, and the thin film electronic device bonding substrate 1 as shown in FIG. 1 can be obtained.
[0066] このような製造方法にお!/、ては、薄膜電子デバイス層 4 (薄膜電子デバイス 5)上に 、有機官能基を有した金属アルコキシドからなる表面活性化処理層 3を介して樹脂基 板 2を配設し、これによつて樹脂基板 2に薄膜電子デバイス層 4 (薄膜電子デバイス 5 )を接合し転写している。このため、前記したように金属アルコキシドの有機官能基が 樹脂基板 2側に強固に結合し、加水分解基が薄膜電子デバイス層 4 (薄膜電子デバ イス 5)側に強固に結合し、樹脂基板 2上に薄膜電子デバイス層 4 (薄膜電子デバイス 5)を強固に接合することができる。よって、例えば大きな温度変化が与えられても、 線膨張係数の差に起因して薄膜電子デバイス 5が樹脂基板 2上から剥がれてしまうと いった不都合を防止することができる。これにより高い信頼性を有する薄膜電子デバ イス接合基板 1を得ることができる。 [0066] In such a manufacturing method, a resin is interposed on the thin film electronic device layer 4 (thin film electronic device 5) via a surface activation treatment layer 3 made of a metal alkoxide having an organic functional group. A base plate 2 is disposed, whereby a thin film electronic device layer 4 (thin film electronic device 5) is bonded and transferred to the resin substrate 2. Therefore, as described above, the organic functional group of the metal alkoxide is firmly bonded to the resin substrate 2 side, and the hydrolysis group is firmly bonded to the thin film electronic device layer 4 (thin film electronic device 5) side. The thin film electronic device layer 4 (thin film electronic device 5) can be firmly bonded on top. Therefore, for example, even if a large temperature change is given, if the thin film electronic device 5 is peeled off from the resin substrate 2 due to the difference in linear expansion coefficient Such inconvenience can be prevented. As a result, a highly reliable thin film electronic device bonding substrate 1 can be obtained.
[0067] 図 4A〜図 4D及び図 5A〜図 5Dは、本発明の薄膜電子デバイス接合基板の製造 方法の他の実施形態を示す図である。この実施形態が図 2A〜図 2Dに示した実施 形態と主に異なるところは、先の実施形態が 1回の転写を行ったのに対し、この実施 形態では 2回の転写を行う点である。  [0067] FIGS. 4A to 4D and FIGS. 5A to 5D are views showing another embodiment of the method for manufacturing a thin film electronic device bonding substrate of the present invention. The main difference between this embodiment and the embodiment shown in FIGS. 2A to 2D is that the previous embodiment performed one transfer, whereas this embodiment performs two transfers. .
[0068] この実施形態では、まず、図 4Aに示すように既製基板 11上に剥離層 12を介して 薄膜電子デバイス層 4 (薄膜電子デバイス 5)を形成する。この工程については、先の 実施形態において説明した工程と同様である。  In this embodiment, first, as shown in FIG. 4A, a thin film electronic device layer 4 (thin film electronic device 5) is formed on a ready-made substrate 11 with a release layer 12 interposed therebetween. This process is the same as the process described in the previous embodiment.
続いて、図 4Bに示すように前記既製基板 11の薄膜電子デバイス層 4 (薄膜電子デ バイス 5)を形成した側の面(薄膜電子デバイス形成面)に接着剤からなる接着層 13 を介して仮転写基板 14を接合させる。  Subsequently, as shown in FIG. 4B, the surface of the ready-made substrate 11 on which the thin film electronic device layer 4 (thin film electronic device 5) is formed (thin film electronic device forming surface) through an adhesive layer 13 made of an adhesive. The temporary transfer substrate 14 is bonded.
[0069] 接着層 13を形成する接着剤としては、前記した有機接着層を形成する材料のうち 、例えば水などの溶剤に容易に溶解する材料が好適に用いられる。  [0069] Of the materials for forming the organic adhesive layer, materials that readily dissolve in a solvent such as water are preferably used as the adhesive for forming the adhesive layer 13.
また、仮転写基板 14としては、特に限定されることなく種々の材料が使用可能であ る。具体的には、ガラス基板や樹脂基板など、無機材料、有機材料に限定されること なく種々の材質の材料が使用される。  The temporary transfer substrate 14 is not particularly limited, and various materials can be used. Specifically, various materials such as a glass substrate and a resin substrate are not limited to inorganic materials and organic materials.
[0070] 次いで、図 4Cに示すように前記剥離層 12にて剥離を起こさせるベぐ先の実施形 態と同様にして既製基板 11の裏面側から光を照射し、これを剥離層 12に照射する。 これにより、剥離層 12にエネルギーを付与してアブレーシヨンを生じさせ、剥離層 12 に層内剥離及び/又は界面剥離を生じさせることにより、図 4Dに示すように剥離層 1 2にて剥離をなさせることができる。  Next, as shown in FIG. 4C, light is irradiated from the back side of the ready-made substrate 11 in the same manner as in the previous embodiment in which peeling is caused in the peeling layer 12, and this is applied to the peeling layer 12. Irradiate. As a result, energy is applied to the release layer 12 to cause abrasion, and the release layer 12 is subjected to in-layer release and / or interfacial release, whereby the release layer 12 is released as shown in FIG. 4D. Can be made.
[0071] このようにして薄膜電子デバイス層 4 (薄膜電子デバイス 5)側から既製基板 11を剥 離したら、図 5Aに示すように薄膜電子デバイス層 4 (薄膜電子デバイス 5)側に残存し ている剥離層 12を除去する。具体的には、洗浄、エッチング、アツシング、研磨等の 方法またはこれらを組み合わせた方法により、除去する。これにより、薄膜電子デバィ ス層 4 (薄膜電子デバイス 5)を仮転写基板 14上に設けてなる構造が得られる。そして 、このような構造において、仮転写基板 14と接着層 13とが、薄膜電子デバイス層 4 ( 薄膜電子デバイス 5)を設けてなる本発明における第 1基板となる。 When the ready-made substrate 11 is peeled from the thin film electronic device layer 4 (thin film electronic device 5) side in this way, it remains on the thin film electronic device layer 4 (thin film electronic device 5) side as shown in FIG. 5A. The release layer 12 is removed. Specifically, it is removed by a method such as cleaning, etching, ashing, polishing, or a combination thereof. As a result, a structure in which the thin film electronic device layer 4 (thin film electronic device 5) is provided on the temporary transfer substrate 14 is obtained. In such a structure, the temporary transfer substrate 14 and the adhesive layer 13 are formed by the thin film electronic device layer 4 ( This is the first substrate in the present invention provided with the thin film electronic device 5).
[0072] 次いで、表面活性化処理工程として、図 5Bに示すようにこの薄膜電子デバイス層 4 の裏面、すなわち各薄膜電子デバイス 5の裏面に、有機官能基を有した金属アルコ キシドからなる表面活性化処理層 3を形成する。 [0072] Next, as a surface activation treatment step, as shown in FIG. 5B, a surface activation made of a metal alkoxide having an organic functional group on the back surface of the thin film electronic device layer 4, that is, on the back surface of each thin film electronic device 5, is performed. The chemical conversion layer 3 is formed.
この表面活性化処理層 3を形成する表面活性化処理工程は、先の実施形態と同様 に、浄化工程と、カップリング処理工程と、静電気除去工程とによって行うことができ  The surface activation treatment process for forming the surface activation treatment layer 3 can be performed by a purification process, a coupling treatment process, and a static electricity removal process, as in the previous embodiment.
[0073] 次いで、基板接着工程として、図 5Cに示すように形成した表面活性化処理層 3を 介して、前記の薄膜電子デバイス層 4 (薄膜電子デバイス 5)上、すなわち薄膜電子 デバイス層 4 (薄膜電子デバイス 5)の裏面側に樹脂基板 2 (樹脂製の第 2基板)を配 設する。ここで、表面活性化処理層 3上への樹脂基板 2の配設 (接合)については、 前記したように、接着剤及び/又は粘着材からなる有機接着層を介して接合する方 法と、有機接着層を介することなく樹脂基板 2を直接接着する方法とが採用可能であ [0073] Next, as a substrate bonding step, the thin film electronic device layer 4 (thin film electronic device layer 4) is formed on the thin film electronic device layer 4 (thin film electronic device 5) via the surface activation treatment layer 3 formed as shown in FIG. 5C. The resin substrate 2 (resin second substrate) is disposed on the back side of the thin film electronic device 5). Here, regarding the disposition (bonding) of the resin substrate 2 on the surface activation treatment layer 3, as described above, a method of bonding through an organic adhesive layer made of an adhesive and / or an adhesive material, and It is possible to adopt a method of directly bonding resin substrate 2 without using an organic adhesive layer.
[0074] その後、転写工程として、図 5Dに示すように接着層 13を水等の溶剤に溶解するこ とにより、前記薄膜電子デバイス層 4 (薄膜電子デバイス 5)側から仮転写基板 14側を 剥離し、前記薄膜電子デバイス層 4 (薄膜電子デバイス 5)を樹脂基板 2上に転写す このようにして薄膜電子デバイス層 4 (薄膜電子デバイス 5)側から仮転写基板 14を 剥離したら、必要に応じて、薄膜電子デバイス層 4 (薄膜電子デバイス 5)側に残存し ている接着層 13を除去する。これにより、薄膜電子デバイス層 4 (薄膜電子デバイス 5 )を樹脂基板 2上に転写し、図 1に示したような薄膜電子デバイス接合基板 1を得るこ と力 Sできる。 [0074] Thereafter, as a transfer step, the adhesive layer 13 is dissolved in a solvent such as water as shown in Fig. 5D, so that the temporary transfer substrate 14 side is moved from the thin film electronic device layer 4 (thin film electronic device 5) side. Peel off and transfer the thin film electronic device layer 4 (thin film electronic device 5) onto the resin substrate 2. Thus, if the temporary transfer substrate 14 is peeled from the thin film electronic device layer 4 (thin film electronic device 5) side, it is necessary. Accordingly, the adhesive layer 13 remaining on the thin film electronic device layer 4 (thin film electronic device 5) side is removed. As a result, the thin film electronic device layer 4 (thin film electronic device 5) is transferred onto the resin substrate 2 to obtain the thin film electronic device bonding substrate 1 as shown in FIG.
[0075] このような製造方法にあっても、先の実施形態と同様に、薄膜電子デバイス層 4 (薄 膜電子デバイス 5)上に表面活性化処理層 3を介して樹脂基板 2を配設し、これによ つて樹脂基板 2に薄膜電子デバイス層 4 (薄膜電子デバイス 5)を接合し転写してレ、る 。そのため、前記したように金属アルコキシドの有機官能基が樹脂基板 2側に強固に 結合し、加水分解基が薄膜電子デバイス層 4 (薄膜電子デバイス 5)側に強固に結合 する。これにより、樹脂基板 2上に薄膜電子デバイス層 4 (薄膜電子デバイス 5)を強 固に接合することができる。 Even in such a manufacturing method, the resin substrate 2 is disposed on the thin film electronic device layer 4 (thin film electronic device 5) via the surface activation treatment layer 3 as in the previous embodiment. As a result, the thin film electronic device layer 4 (thin film electronic device 5) is bonded to the resin substrate 2 and transferred. Therefore, as described above, the organic functional group of the metal alkoxide is firmly bonded to the resin substrate 2 side, and the hydrolysis group is firmly bonded to the thin film electronic device layer 4 (thin film electronic device 5) side. To do. Thereby, the thin film electronic device layer 4 (thin film electronic device 5) can be strongly bonded onto the resin substrate 2.
従って、例えば大きな温度変化が与えられても、線膨張係数の差に起因して薄膜 電子デバイス 5が樹脂基板 2上から剥がれてしまうといった不都合を防止することがで き、これにより高い信頼性を有する薄膜電子デバイス接合基板 1を得ることができる。 また、本実施形態の製造方法にあっては既製基板 11上に形成した薄膜電子デバ イス 5を一旦仮転写基板 14に転写し、その後、再度樹脂基板 2 (第 2基板)上に転写 するので、樹脂基板 2上に接合される薄膜電子デバイス 5の上下、すなわちその表面 側、裏面側を、既製基板 11上に形成した際の上下 (表面側、裏面側)に合わせること ができる。  Therefore, for example, even if a large temperature change is given, it is possible to prevent the inconvenience that the thin film electronic device 5 is peeled off from the resin substrate 2 due to the difference in linear expansion coefficient. The thin film electronic device bonding substrate 1 can be obtained. Further, in the manufacturing method of the present embodiment, the thin film electronic device 5 formed on the ready-made substrate 11 is temporarily transferred to the temporary transfer substrate 14 and then transferred again to the resin substrate 2 (second substrate). The upper and lower sides of the thin film electronic device 5 to be bonded onto the resin substrate 2, that is, the front surface side and the back surface side thereof can be matched with the upper and lower sides (front surface side and back surface side) when formed on the ready-made substrate 11.
[0076] 次に、本発明の電子機器の一例としての表示装置について説明する。図 6は、表 示素子として電気泳動素子を有して構成された表示装置を示す図である。この表示 装置 18は、素子基板 20と、透明基板 21と、これら基板 20、 21間に挟持されていると 共に電気泳動分散液が封入されているマイクロカプセル 22とを有する。  [0076] Next, a display device as an example of the electronic apparatus of the invention will be described. FIG. 6 is a diagram showing a display device that includes an electrophoretic element as a display element. The display device 18 includes an element substrate 20, a transparent substrate 21, and a microcapsule 22 sandwiched between the substrates 20 and 21 and encapsulating an electrophoretic dispersion.
[0077] 素子基板 20は、前記した本発明の薄膜電子デバイス接合基板力もなる。また、素 子基板 20においては、樹脂からなるフィルム状で可撓性の樹脂基板 20aの内面に、 絶縁層等の中間層(図示せず)を介して TFT (薄膜トランジスタ)からなる駆動素子( スイッチング素子) 23が多数配設(転写)されている。これら駆動素子 23には、それ ぞれに対応して画素電極 24が形成されており、素子基板 20は、アクティブマトリクス 基板として構成されている。  The element substrate 20 also has the above-described thin film electronic device bonding substrate force of the present invention. In the element substrate 20, a driving element (switching device) made of TFT (thin film transistor) is provided on the inner surface of a film-like flexible resin substrate 20 a made of resin via an intermediate layer (not shown) such as an insulating layer. Many elements 23 are arranged (transferred). Each of the drive elements 23 is provided with a pixel electrode 24 corresponding to each of them, and the element substrate 20 is configured as an active matrix substrate.
[0078] 駆動素子 23は、前記の中間層(図示せず)の上に設けられた半導体膜 25と、この 半導体膜 25上にゲート絶縁膜 26を介して設けられたゲート電極 27と、前記半導体 2 5のソース領域(図示せず)に接続するソース電極 28と、前記半導体 25のドレイン領 域(図示せず)に接続する画素電極(ドレイン電極) 24とを有する。  The drive element 23 includes a semiconductor film 25 provided on the intermediate layer (not shown), a gate electrode 27 provided on the semiconductor film 25 via a gate insulating film 26, and the A source electrode 28 connected to the source region (not shown) of the semiconductor 25 and a pixel electrode (drain electrode) 24 connected to the drain region (not shown) of the semiconductor 25 are provided.
[0079] なお、前記ゲート電極 27上には、ゲート電極 27を覆うように層間絶縁膜 29が形成 されている。前記ソース電極 28は、層間絶縁膜 29に形成されたコンタクトホール 30 を通って前記層間絶縁膜 29上に電気的に引き出され、コンタクトホール 3上に形成さ れている。また、層間絶縁膜 29上には、層間絶縁膜 29に形成されたコンタクトホー ノレ 32と電気的に接続するように、中継電極 31が形成されている。また、これら中継電 極 31及びソース電極 28を覆うように層間絶縁膜 33が形成されている。この層間絶縁 膜 33上には、画素電極 24 (ドレイン電極)が形成されている。画素電極 24は、コンタ タトホール 34を通じて電気的に引き出されており、前記中継電極 31に導通している。 Note that an interlayer insulating film 29 is formed on the gate electrode 27 so as to cover the gate electrode 27. The source electrode 28 is electrically drawn onto the interlayer insulating film 29 through a contact hole 30 formed in the interlayer insulating film 29 and is formed on the contact hole 3. Further, a contact hole formed on the interlayer insulating film 29 is formed on the interlayer insulating film 29. A relay electrode 31 is formed so as to be electrically connected to the nozzle 32. Further, an interlayer insulating film 33 is formed so as to cover the relay electrode 31 and the source electrode 28. A pixel electrode 24 (drain electrode) is formed on the interlayer insulating film 33. The pixel electrode 24 is electrically drawn out through the contact hole 34 and is electrically connected to the relay electrode 31.
[0080] 透明基板 21は、透明樹脂等からなるフィルム状で可撓性の透明フレキシブル基板 [0080] The transparent substrate 21 is a film-like flexible transparent flexible substrate made of a transparent resin or the like.
21aと、透明フレキシブル基板 21aの内面に、 ITO等からなる材料によって構成され た透明の共通電極 35と、を有する。透明基板 21の外面側は表示面 (観測面)である 。ここで、この透明フレキシブル基板 21aの材料としては、例えばポリエチレンテレフ タレート(PET)、ポリエーテルスルホン(PES)、ポリカーボネイト(PC)などが好適に 用いられる。  21a and a transparent common electrode 35 made of a material made of ITO or the like on the inner surface of the transparent flexible substrate 21a. The outer surface side of the transparent substrate 21 is a display surface (observation surface). Here, as a material of the transparent flexible substrate 21a, for example, polyethylene terephthalate (PET), polyethersulfone (PES), polycarbonate (PC), or the like is preferably used.
[0081] 素子基板 20と透明基板 21との間には、特に前記の画素電極 24上にマイクロカプ セル 22が配置されており、これによつてマイクロカプセル 22は、表示装置の表示領 域を形成している。マイクロカプセル 22には、表示材料としての電気泳動分散液が 封入されている。マイクロカプセル 22の全ては、ほぼ同一の直径に形成されている。 その直径は、例えば約 30 m程度である。  [0081] Between the element substrate 20 and the transparent substrate 21, in particular, the microcapsule 22 is disposed on the pixel electrode 24, whereby the microcapsule 22 serves as a display area of the display device. Forming. The microcapsule 22 contains an electrophoretic dispersion as a display material. All of the microcapsules 22 are formed to have substantially the same diameter. The diameter is about 30 m, for example.
[0082] 電気泳動分散液は、電気泳動粒子と、これを分散させる液相分散媒とを含む。前 記液相分散媒としては、水、メタノール、エタノール、イソプロパノール、ブタノール、 ォクタノール、メチルセルソルブ等のアルコール系溶媒、酢酸ェチル、酢酸ブチル等 の各種エステル類、アセトン、メチルェチルケトン、メチルイソブチルケトン等のケトン 類、ペンタン、へキサン、オクタン等の脂肪族炭化水素、シクロへキサン、メチルシク 口へキサン等の脂環式炭化水素、ベンゼン、トルエン、キシレン、へキシルベンゼン、 へブチノレベンゼン、ォクチノレベンゼン、ノニノレベンゼン、デシノレベンゼン、ゥンデシノレ ベンゼン、ドデシルベンゼン、トリデシルベンゼン、テトラデシルベンゼン等の長鎖ァ ルキル基を有するベンゼン類等の芳香族炭化水素、塩化メチレン、クロ口ホルム、四 塩化炭素、 1 , 2—ジクロロェタン等のハロゲン化炭化水素、カルボン酸塩又はその 他の種々の油類等の単独、またはこれらの混合物に界面活性剤等を配合した材料 を用いること力 Sでさる。  [0082] The electrophoretic dispersion liquid includes electrophoretic particles and a liquid phase dispersion medium in which the electrophoretic particles are dispersed. Examples of the liquid phase dispersion medium include water, alcohol solvents such as methanol, ethanol, isopropanol, butanol, octanol and methyl cellosolve, various esters such as ethyl acetate and butyl acetate, acetone, methyl ethyl ketone and methyl isobutyl. Ketones such as ketones, aliphatic hydrocarbons such as pentane, hexane and octane, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, benzene, toluene, xylene, hexylbenzene, hebutinolebenzene, Octino benzene, nonino benzene, decino benzene, undecino benzene, aromatic hydrocarbons such as benzenes having a long chain alkyl group such as dodecyl benzene, tridecyl benzene, tetradecyl benzene, methylene chloride, black mouth form , Carbon tetrachloride, 1,2-dichloro Halogenated hydrocarbons such as Tan, leaving a carboxylic acid salt or a variety of other oils such as single or force S to use a material obtained by blending a surfactant or the like to a mixture of these.
[0083] また、電気泳動粒子は、液相分散媒中で電位差による電気泳動により移動する性 質を有する有機あるいは無機の粒子(高分子あるレ、はコロイド)である。 この電気泳動粒子としては、例えば、ァニリンブラック、カーボンブラック、チタンブラ ック等の黒色顔料、二酸化チタン、亜鉛華、三酸化アンチモン等の白色顔料、モノア ゾ、ジイスァゾン、ポリアゾ等のァゾ系顔料、イソインドリノン、黄鉛、黄色酸化鉄、カド ミゥムイェロー、チタンイェロー、アンチモン等の黄色顔料、モノァゾ、ジスァゾ、ポリア ゾ等のァゾ系顔料、キナクリドンレッド、クロムバーミリオン等の赤色顔料、フタロシア ニンブルー、インダスレンブルー、アントラキノン系染料、紺青、群青、コバルトブルー 等の青色顔料、フタロシアニングリーン等の緑色顔料等の 1種又は 2種以上を用いる こと力 Sでさる。 [0083] In addition, the electrophoretic particles move by electrophoresis due to a potential difference in a liquid phase dispersion medium. Organic or inorganic particles (high molecular weight or colloid) having quality. Examples of the electrophoretic particles include black pigments such as aniline black, carbon black, and titanium black, white pigments such as titanium dioxide, zinc white, and antimony trioxide, and azo pigments such as monoazo, diisazone, and polyazo. , Isoindolinone, yellow lead, yellow iron oxide, cadmium yellow, titanium yellow, antimony and other yellow pigments, monoazo, disazo, polyazo and other azo pigments, quinacridone red, chrome vermillion and other red pigments, phthalocyanine ninblue Using one or two or more of blue pigments such as induslen blue, anthraquinone dyes, blue pigments, ultramarine blue, cobalt blue and the like, and green pigments such as phthalocyanine green.
[0084] なお、本例の表示装置においては、前記マイクロカプセル 22に電気泳動粒子が二 種類封入されており、一方が負に、他方が正に帯電している。これら二種類の電気泳 動粒子としては、例えば白色顔料である二酸化チタンと、黒色顔料であるカーボンブ ラックが用いられる。そして、このような白色、黒色の二種類の電気泳動粒子を用いる ことにより、例えば文字等の表示をなす場合に、黒色の電気泳動粒子によって文字 等を表示し、白色の電気泳動粒子によってその背景を表示することができる。  [0084] In the display device of this example, two types of electrophoretic particles are enclosed in the microcapsule 22, and one is negatively charged and the other is positively charged. As these two types of electrophoretic particles, for example, titanium dioxide, which is a white pigment, and carbon black, which is a black pigment, are used. Then, by using such two types of white and black electrophoretic particles, for example, when displaying characters or the like, the characters or the like are displayed with black electrophoretic particles, and the background is displayed with white electrophoretic particles. Can be displayed.
また、電気泳動粒子を一種類のみ用い、これを共通電極 35側、あるいは画素電極 24側に泳動させることで、表示をなすようにしてもよい。  In addition, display may be performed by using only one type of electrophoretic particle and causing it to migrate to the common electrode 35 side or the pixel electrode 24 side.
[0085] また、これらマイクロカプセル 22は、例えば透明基板 21に対して、その共通電極 35 上にてバインダ 36により固定されている。  In addition, the microcapsules 22 are fixed to the transparent substrate 21 by a binder 36 on the common electrode 35, for example.
一方、これらマイクロカプセル 22は、素子基板 20に対して、その画素電極 24上に て例えば両面接着シート 37により固定されている。  On the other hand, the microcapsules 22 are fixed to the element substrate 20 on the pixel electrodes 24 by, for example, a double-sided adhesive sheet 37.
このような構成によってマイクロカプセル 22は、素子基板 20と透明基板 21との間に 挟着され、表示装置 18を構成している。  With such a configuration, the microcapsule 22 is sandwiched between the element substrate 20 and the transparent substrate 21 to constitute the display device 18.
[0086] このような構成の表示装置 18にあっては、前記の薄膜電子デバイス接合基板 1から なる素子基板 20を備えているので、前記薄膜電子デバイス接合基板 1が高い信頼 性を有することから素子基板 20も高い信頼性を有し、したがつてこの表示装置 18自 体も高い信頼性を有する。  [0086] Since the display device 18 having such a configuration includes the element substrate 20 made of the thin film electronic device bonding substrate 1, the thin film electronic device bonding substrate 1 has high reliability. The element substrate 20 also has high reliability. Therefore, the display device 18 itself has high reliability.
[0087] なお、本発明の電子機器としては、表示素子として電気泳動素子を用いた前記電 気泳動表示装置に限定されることなぐ有機 EL表示装置や液晶表示装置、エレクト 口クロミック装置などの表示装置、さらにこれら表示装置を表示手段とする電気光学 装置などとしてもよい。また、薄膜電子デバイスをメモリー素子とした場合には、 SRA M等の各種のメモリー装置、中央演算処理装置(CPU)、または指紋センサーなどの 個人認証機能を有する装置及びセンサー装置に適用することもできる。 [0087] Note that in the electronic device of the present invention, the above-described electric device using an electrophoretic element as a display element is used. The display device may be an organic EL display device, a liquid crystal display device, an electrochromic device or the like, and an electro-optical device using these display devices as display means, without being limited to the electrophoretic display device. If the thin-film electronic device is a memory element, it can be applied to various memory devices such as SRA M, central processing unit (CPU), or devices having a personal authentication function such as fingerprint sensors and sensor devices. it can.
上述した通り、本発明によれば、有機基板上に無機材料膜を多く含む薄膜電子デ ノ イスやこれ力 なる薄膜回路層を高い接着力で接合させ、これにより剥がれを防止 して高い信頼性を確保した薄膜電子デバイス接合基板の製造方法、さらに電子機器 を提供するという目的を達成することができる。  As described above, according to the present invention, a thin film electronic device containing a large amount of an inorganic material film on an organic substrate and a thin film circuit layer having a strong force are bonded with high adhesive force, thereby preventing peeling and high reliability. It is possible to achieve the object of providing a method for manufacturing a thin film electronic device bonding substrate and ensuring electronic equipment.

Claims

請求の範囲 The scope of the claims
[1] 第 1基板上に薄膜電子デバイスを作製する電子デバイス作製工程と、  [1] an electronic device fabrication process for fabricating a thin film electronic device on a first substrate;
前記薄膜電子デバイス表面に金属アルコキシド層を形成する表面活性化処理工 程と、  A surface activation process for forming a metal alkoxide layer on the surface of the thin film electronic device;
前記金属アルコキシド層を介して、前記薄膜電子デバイスに第 2基板を接着する基 板接着工程と、  A substrate bonding step of bonding a second substrate to the thin film electronic device via the metal alkoxide layer;
前記第 1基板から前記薄膜電子デバイスを剥離する剥離工程と、を含むことを特徴 とする薄膜電子デバイス接合基板の製造方法。  And a peeling step of peeling the thin film electronic device from the first substrate. A method for manufacturing a thin film electronic device bonding substrate, comprising:
[2] 前記金属ァノレコキシドカ Ti、 Li、 Si、 Na、 K、 Mg、 Ca、 St、 Ba、 Al、 In、 Ge、 Bi、[2] The above metal alcoholoxide Ti, Li, Si, Na, K, Mg, Ca, St, Ba, Al, In, Ge, Bi,
Fe、 Cu、 Y、 Zr、及び Taからなる群から選択された少なくとも一種の金属アルコキシ 化合物であることを特徴とする請求項 1に記載の薄膜電子デバイス接合基板の製造 方法。 2. The method for producing a thin film electronic device bonding substrate according to claim 1, wherein the method is at least one metal alkoxy compound selected from the group consisting of Fe, Cu, Y, Zr, and Ta.
[3] 前記表面活性化処理工程は、前記薄膜電子デバイスを設けた第 1基板の薄膜電 子デバイス配設面を浄化処理する浄化工程と、  [3] The surface activation treatment step includes a purification step of purifying the thin film electronic device arrangement surface of the first substrate provided with the thin film electronic device;
前記浄化工程後の前記薄膜電子デバイス配設面に前記金属アルコキシドを配する カップリング処理工程と、  A coupling treatment step of arranging the metal alkoxide on the thin film electronic device arrangement surface after the purification step;
前記カップリング処理工程後の前記薄膜電子デバイス配設面に静電気除去処理を 行う静電気除去工程と、を含むことを特徴とする請求項 1又は請求項 2に記載の薄膜 電子デバイス接合基板の製造方法。  The method for producing a thin film electronic device bonding substrate according to claim 1, further comprising: a static electricity removing step of performing static electricity removing treatment on the surface on which the thin film electronic device is disposed after the coupling treatment step. .
[4] 前記浄化工程では、酸素プラズマ処理工程、 UVプラズマ処理工程、コロナ処理工 程、エッチング処理工程のうちの少なくとも一種の浄化処理工程を行うことを特徴とす る請求項 3に記載の薄膜電子デバイス接合基板の製造方法。 [4] The thin film according to claim 3, wherein the purification step includes performing at least one purification treatment step among an oxygen plasma treatment step, a UV plasma treatment step, a corona treatment step, and an etching treatment step. Manufacturing method of electronic device bonding substrate.
[5] 前記カップリング処理工程では、前記金属アルコキシドを、スピンコート法、ベーパ 一処理法、ディップコート法、スクリーン印刷法、ディスペンサー法、インクジェット法、 スプレー法のうちの少なくとも一種の手法で配することを特徴とする請求項 3又は請 求項 4に記載の薄膜電子デバイス接合基板の製造方法。 [5] In the coupling treatment step, the metal alkoxide is arranged by at least one of a spin coating method, a vapor treatment method, a dip coating method, a screen printing method, a dispenser method, an ink jet method, and a spray method. 5. The method for manufacturing a thin film electronic device bonding substrate according to claim 3 or claim 4, wherein:
[6] 前記基板接着工程では、前記薄膜電子デバイス上に樹脂製の第 2基板を接合す ることを特徴とする請求項 1から請求項 5のいずれか一項に記載の薄膜電子デバイス 接合基板の製造方法。 [6] The thin film electronic device according to any one of [1] to [5], wherein, in the substrate bonding step, a resin-made second substrate is bonded onto the thin film electronic device. A method for manufacturing a bonded substrate.
[7] 前記第 2基板が、前記薄膜電子デバイス上に樹脂液を塗布し、硬化させることによ つて形成されることを特徴とする請求項 1から請求項 5のいずれか一項に記載の薄膜 電子デバイス接合基板の製造方法。  [7] The second substrate according to any one of claims 1 to 5, wherein the second substrate is formed by applying and curing a resin liquid on the thin film electronic device. A method of manufacturing a thin film electronic device bonding substrate.
[8] 前記第 1基板上に前記薄膜電子デバイスを設ける電子デバイス作製工程が、 既製基板上に剥離層を形成するステップと、  [8] An electronic device manufacturing step of providing the thin film electronic device on the first substrate includes forming a release layer on a ready-made substrate;
前記剥離層上に複数の膜を積層させて前記薄膜電子デバイスを形成するステップ と、を含むことを特徴とする請求項 1から請求項 7のいずれか一項に記載の薄膜電子 デバイス接合基板の製造方法。  The step of laminating a plurality of films on the release layer to form the thin film electronic device, The thin film electronic device bonding substrate according to any one of claims 1 to 7, Production method.
[9] 前記電子デバイス作製工程は、 [9] The electronic device manufacturing step includes
既製基板上に剥離層を形成するステップと、  Forming a release layer on a ready-made substrate;
前記剥離層上に複数の膜を積層させて前記薄膜電子デバイスを形成するステップ と、  Laminating a plurality of films on the release layer to form the thin film electronic device;
前記既製基板の薄膜電子デバイス形成面に接着剤を介して仮転写基板を接合さ 前記既製基板を介して前記剥離層にエネルギーを付与し、前記剥離層と前記既製 基板との界面もしくは前記剥離層の層内に剥離を生じさせることにより、前記薄膜電 子デバイスを前記仮転写基板に転写するステップと、を含むことを特徴とする請求項 1から請求項 7のいずれか一項に記載の薄膜電子デバイス接合基板の製造方法。  The temporary transfer substrate is bonded to the thin film electronic device forming surface of the ready-made substrate via an adhesive, energy is applied to the release layer via the ready-made substrate, and the interface between the release layer and the ready-made substrate or the release layer The thin film according to claim 1, further comprising: transferring the thin film electronic device to the temporary transfer substrate by causing peeling in the layer of the thin film. Manufacturing method of electronic device bonding substrate.
[10] 前記電子デバイス作製工程は、  [10] The electronic device manufacturing process includes:
複数の前記薄膜電子デバイスを前記第 1基板上に積層することを特徴とする請求 項 1から請求項 9のいずれか一項に記載の薄膜電子デバイス接合基板の製造方法。  10. The method for manufacturing a thin film electronic device bonding substrate according to claim 1, wherein a plurality of the thin film electronic devices are stacked on the first substrate.
[11] 前記薄膜電子デバイスは薄膜トランジスタであることを特徴とする請求項 1から請求 項 10のいずれか一項に記載の薄膜電子デバイス接合基板の製造方法。  11. The method of manufacturing a thin film electronic device bonding substrate according to claim 1, wherein the thin film electronic device is a thin film transistor.
[12] 請求項 1から請求項 11のいずれか一項に記載の製造方法によって得られた薄膜 電子デバイス接合基板を具備してなることを特徴とする電子機器。  [12] An electronic apparatus comprising the thin film electronic device bonding substrate obtained by the manufacturing method according to any one of [1] to [11].
PCT/JP2007/074409 2006-12-21 2007-12-19 Method for manufacturing thin film electronic device mounted substrate, and electronic apparatus WO2008075714A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008550169A JPWO2008075714A1 (en) 2006-12-21 2007-12-19 Thin film electronic device bonding substrate manufacturing method and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-344010 2006-12-21
JP2006344010 2006-12-21

Publications (1)

Publication Number Publication Date
WO2008075714A1 true WO2008075714A1 (en) 2008-06-26

Family

ID=39536341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074409 WO2008075714A1 (en) 2006-12-21 2007-12-19 Method for manufacturing thin film electronic device mounted substrate, and electronic apparatus

Country Status (3)

Country Link
JP (1) JPWO2008075714A1 (en)
TW (1) TW200835996A (en)
WO (1) WO2008075714A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056408A (en) * 2008-08-29 2010-03-11 Hitachi Chem Co Ltd Aluminum-containing organic compound solution, field-effect transistor, and method of manufacturing field-effect transistor
WO2019108730A1 (en) * 2017-11-30 2019-06-06 The Trustees Of Princeton University Adhesion layer bonded to an activated surface

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319826A (en) * 1986-07-14 1988-01-27 Hitachi Ltd Semiconductor device
JPH0230677A (en) * 1987-12-22 1990-02-01 Nec Kansai Ltd Bonded structural unit of electronic component
JPH02146114A (en) * 1988-11-28 1990-06-05 Ricoh Co Ltd Information recording medium
JP2001189460A (en) * 1999-12-28 2001-07-10 Seiko Epson Corp Method of transferring and manufacturing thin-film device
JP2003142666A (en) * 2001-07-24 2003-05-16 Seiko Epson Corp Transfer method for element, method for manufacturing element, integrated circuit, circuit board, electrooptic device, ic card and electronic apparatus
JP2004349539A (en) * 2003-05-23 2004-12-09 Seiko Epson Corp Method of peeling and manufacturing laminate, electrooptic device, and electronic equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319826A (en) * 1986-07-14 1988-01-27 Hitachi Ltd Semiconductor device
JPH0230677A (en) * 1987-12-22 1990-02-01 Nec Kansai Ltd Bonded structural unit of electronic component
JPH02146114A (en) * 1988-11-28 1990-06-05 Ricoh Co Ltd Information recording medium
JP2001189460A (en) * 1999-12-28 2001-07-10 Seiko Epson Corp Method of transferring and manufacturing thin-film device
JP2003142666A (en) * 2001-07-24 2003-05-16 Seiko Epson Corp Transfer method for element, method for manufacturing element, integrated circuit, circuit board, electrooptic device, ic card and electronic apparatus
JP2004349539A (en) * 2003-05-23 2004-12-09 Seiko Epson Corp Method of peeling and manufacturing laminate, electrooptic device, and electronic equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056408A (en) * 2008-08-29 2010-03-11 Hitachi Chem Co Ltd Aluminum-containing organic compound solution, field-effect transistor, and method of manufacturing field-effect transistor
WO2019108730A1 (en) * 2017-11-30 2019-06-06 The Trustees Of Princeton University Adhesion layer bonded to an activated surface

Also Published As

Publication number Publication date
JPWO2008075714A1 (en) 2010-04-15
TW200835996A (en) 2008-09-01

Similar Documents

Publication Publication Date Title
EP1744365B1 (en) Exfoliating method and transferring method of thin film device
US6127199A (en) Manufacturing method of active matrix substrate, active matrix substrate and liquid crystal display device
JP3809733B2 (en) Thin film transistor peeling method
JP4478268B2 (en) Thin film device manufacturing method
JP4619461B2 (en) Thin film device transfer method and device manufacturing method
JP4410456B2 (en) Thin film device device manufacturing method and active matrix substrate manufacturing method
JP3809712B2 (en) Thin film device transfer method
TW200416966A (en) Circuit board and its manufacturing method, transfer chip, transfer source substrate, optoelectronic apparatus, and electronic machine
JPH10125931A (en) Transfer of thin film element, thin film element, thin film integrated circuit device, active materix substrate and liquid crystal display device
JP3738799B2 (en) Active matrix substrate manufacturing method, active matrix substrate, and liquid crystal display device
JPH11243209A (en) Transfer method of thin-film device, the thin-film device, thin-film integrated circuit device, active matrix substrate, liquid crystal display device, and electronic apparatus
JPH11251517A (en) Manufacture of three-dimensional device
JP2002217391A (en) Method for manufacturing laminate and semiconductor device
JP4061846B2 (en) Laminated body manufacturing method and semiconductor device manufacturing method
JP2010229272A (en) Method for joining and joined body
JP2010232394A (en) Bonding method, and bonded structure
JPH1126734A (en) Transfer method of thin film device, thin film device, thin film integrated circuit device, active matrix substrate and liquid crystal display device
JPH10177187A (en) Method for attaining electric conduction between transferred thin film structure blocks, production of active matrix substrate, the active matrix substrate, and liquid crystal device
JP2009076852A (en) Thin-film device, method for manufacturing thin-film device, and display
WO2008075714A1 (en) Method for manufacturing thin film electronic device mounted substrate, and electronic apparatus
JP4525603B2 (en) Thin film transistor transfer method
JP3809833B2 (en) Thin film element transfer method
JP2004072050A (en) Thin film device and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850879

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008550169

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850879

Country of ref document: EP

Kind code of ref document: A1