WO2008071038A1 - Gan led chip and the method of the same - Google Patents

Gan led chip and the method of the same Download PDF

Info

Publication number
WO2008071038A1
WO2008071038A1 PCT/CN2006/003421 CN2006003421W WO2008071038A1 WO 2008071038 A1 WO2008071038 A1 WO 2008071038A1 CN 2006003421 W CN2006003421 W CN 2006003421W WO 2008071038 A1 WO2008071038 A1 WO 2008071038A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive layer
emitting diode
diode chip
zno
Prior art date
Application number
PCT/CN2006/003421
Other languages
French (fr)
Chinese (zh)
Inventor
Philip Chan
Raymond Wang
Original Assignee
Podium Photonics (Guangzhou) Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Podium Photonics (Guangzhou) Ltd. filed Critical Podium Photonics (Guangzhou) Ltd.
Priority to PCT/CN2006/003421 priority Critical patent/WO2008071038A1/en
Priority to TW096104177A priority patent/TW200834957A/en
Publication of WO2008071038A1 publication Critical patent/WO2008071038A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen

Definitions

  • the present invention relates to a gallium nitride light emitting diode, and more particularly to a high brightness gallium nitride light emitting diode chip and a method of fabricating the same. Background technique
  • GaN LEDs are ultra-high brightness LEDs, which not only save energy, but also have the characteristics of no pollution, long life, small size and vivid colors, so they are widely used in communication, transportation, display, backlight. Source and other fields.
  • people have done a lot of research work in developing and improving the P-type ohmic contact of LEDs, and have developed many suitable structures, which basically meet the requirements of practical devices.
  • a conventional GaN LED chip includes an N-type GaN layer, a P-type GaN layer, and a transparent conductive layer, and a P-type ohmic contact of the LED chip, particularly a transparent conductive layer, usually deposited on the surface of the epitaxial chip by electron beam evaporation equipment or A multi-layer high-work function metal, such as Ni metal, is deposited on the front side of the electron beam, and then a layer of a conductive metal such as gold (Au) is vapor-deposited in the same manner, and finally the alloy is treated to reduce the contact resistance, but due to Ni /Au has a large absorption of light in the visible light band, so that the light emission rate of the LED is only 50-70%.
  • the main object of the present invention is to provide a high-brightness gallium nitride light-emitting diode chip and a manufacturing method thereof, which can effectively improve the luminous efficiency of a GaN LED chip, and prepare a low-attenuation, high-brightness LED light-emitting chip with good thermal stability.
  • the technical solution of the present invention is:
  • the high-brightness gallium nitride light emitting diode chip comprises an N-type GaN layer, a P-type GaN layer and a transparent conductive layer, and is characterized in that: a transparent conductive ZnO is grown on the surface of the P-type GaN material
  • the electric layer, the ZnO transparent conductive layer is grown or deposited on the surface of the P-type GaN by an organometallic chemical vapor deposition method, molecular beam epitaxy, electron beam evaporation, or the like, as a current diffusion and light-emitting layer, and the element for the ZnO transparent conductive layer
  • the first and third groups of metals in the periodic table are doped, and the film thickness of the transparent conductive layer is controlled between 5 nm and 100 Onm.
  • the film is a transparent conductive layer having a high current conductivity and having positive ion characteristics or negative ion characteristics.
  • the above first and third group metals are usually Be, Al, In.
  • the method of manufacturing the above high brightness gallium nitride light emitting diode chip comprises the following steps:
  • Etching, cleaning, and heat-treating the surface of the P-type GaN layer to reduce the contact resistance with the ZnO conductive layer is a commonly used method.
  • the ZnO material is grown or deposited on the surface of the P-type GaN by organometallic chemical vapor deposition, molecular beam epitaxy, and electron beam evaporation, as a current diffusion and light source extraction layer.
  • the above method also includes the following steps:
  • the chip is gradually heated in a low pressure chamber at a rate of 0.1 ° C - 10 CTC per minute in a hydrogen or inert atmosphere, at 250 ° C - 1000 ° C Annealing under temperature conditions for 30 seconds - 45 minutes.
  • the above method also includes the following steps:
  • the above method also includes the following steps:
  • the hexagonal wurtzite structure of ZnO easily absorbs water vapor in the air and affects the electrical characteristics, so the wafer needs to be baked after the pure water cleaning process.
  • the above method also includes the following steps:
  • the dry etching must use a protective film which can be removed by a general organic solution as a material for protecting the P-type light-emitting layer.
  • the present invention uses a photoresist as a protective layer of the P-type ZnO light-emitting layer, and is etched by an inductively coupled ion etching machine.
  • An organic solution such as methyltetrahydropyrrole (NMP) which dissolves the photoresist without reacting with ZnO.
  • the wire electrode material which forms an ohmic contact with the transparent conductive layer of ZnO uses at least two layers of high work function metals.
  • high work function metals are Cr/Pt/Au, Cr/Pd/Au, Cr/Al/Cr/Au, Cr/Al/Pt/Au, Cr/Al/Pd/Au, Cr/Al/Ti/Au, Cr/Al/Co/Au, Cr/Al/Ni/Au, Pd/Al/Ti/Au and Pd/Al/Pt/Au.
  • the wire electrode is deposited by electron beam or sputtering equipment and a metal stripping technique is used to form a symmetrical electrode shape for subsequent packaging 'J test and wiring.
  • the above chip is annealed in an inert gas atmosphere at a temperature of 200 ° C to 30 ° C for 5 to 30 minutes to achieve optimum thermal stability and minimum contact resistance of the wire electrode and the light-emitting layer and GaN.
  • the present invention grows a surface of the ZnO transparent conductive layer with a refractive index close to that of ZnO.
  • the silicon material Si 3 N 4 ) increases the light extraction rate by about 15% or more than the conventional Si0 2 as a protective layer.
  • the high-brightness gallium nitride light-emitting diode chip of the present invention utilizes ZnO material and GaN as compared with the conventional gallium nitride light-emitting diode chip using Ni/Au as the P-type ohmic contact light-emitting layer material.
  • the material's low refractive index difference and good lattice matching characteristics can control the light intensity attenuation of GaN LED within 10 hours within 10%, and have good thermal stability.
  • Sexuality whose characteristic contact resistance is reduced to nE-5 ⁇ -cm 2 (where n is any number between 1-10), is a stable and reliable core component of semiconductor solid-state lighting.
  • the method for manufacturing a high-brightness gallium nitride light-emitting diode chip according to the present invention optimizes the conductivity and luminous efficiency of the chip through a targeted chip fabrication process, and improves the diffusion efficiency of the current while reducing the contact resistance of the P-type light-emitting region. Finally, the balance between contact resistance and luminous efficiency is achieved, thereby increasing the life of the chip.
  • the high-brightness gallium nitride light-emitting diode chip produced by the process has good electrical conductivity and over 90% light penetration performance (450-540 nm band).
  • the luminous intensity is about 1.7 times higher than that of the conventional Ni/Au material as the transparent conductive layer, so that it can well meet the market demand for preparing high-brightness LED chips, and other photoelectric properties are in line with backlight, display and Application standards such as lighting.
  • FIG. 1 is a process flow diagram of one embodiment of a method for fabricating a high-brightness gallium nitride light-emitting diode chip according to the present invention
  • FIG. 2 is a process flow diagram of a second embodiment of a method for fabricating a high-brightness gallium nitride light-emitting diode chip according to the present invention
  • FIG. 3 is an exploded perspective view showing an N-type GaN layer, a P-type GaN layer, and a ZnO transparent conductive layer of the high-brightness gallium nitride light-emitting diode chip according to the present invention
  • FIG. 4 is a schematic view showing a structure of a ZnO transparent conductive layer of the chip shown in FIG. 1.
  • FIG. 5 is a plan view of a high-brightness gallium nitride light-emitting diode chip according to the present invention. detailed description
  • a method for manufacturing a high-brightness gallium nitride light-emitting diode chip includes the following steps:
  • a transparent conductive layer of ZnO is grown on the GaN layer, and the ZnO is deposited by an electron beam evaporation (E-BEAM) method, a sputtering (SPUTTER) method, or the like, and is doped with an A1 or In metal cross layer.
  • E-BEAM electron beam evaporation
  • SPUTTER sputtering
  • the (NMP) solution is cleaned to complete the etching of the N electrode on the N-type GaN layer.
  • a protective layer of silicon nitride (Si 3 N 4 ) or silicon dioxide is grown, and the film thickness of the ZnO transparent conductive layer is 300 nm.
  • a method for manufacturing a high-brightness gallium nitride light-emitting diode chip includes the following steps:
  • a layer of silicon dioxide is grown on the surface of the P-type GaN layer not to be etched, protected by a photoresist on the surface of the silicon dioxide, and etched by the solution to be etched. SiO 2, remove the protective photoresist after etching,
  • ZnO transparent conductive layer is grown by electron beam evaporation on the surface of P-type GaN,
  • a protective layer of silicon nitride (Si 3 N 4 ) or silicon dioxide is grown on the surface of the ZnO transparent conductive layer.
  • the ZnO transparent conductive layer has a film thickness of 1000 nm.
  • the method for manufacturing a high-intensity gallium illuminide LED chip according to the present invention comprises the following steps:
  • the chip is gradually heated at a rate of 0.2 ° C per minute in a low pressure chamber in a hydrogen or inert gas atmosphere, and annealed at a temperature of 255 ° C. Minutes,
  • the chip prepared in the above step 8) is annealed in an inert gas atmosphere at a temperature of 210 ° C for 20 minutes.
  • a silicon nitride material is grown on the surface of the ZnO transparent conductive layer prepared in the above step 9), and the ZnO transparent conductive layer has a film thickness of 5 nm.
  • the method for manufacturing a high-brightness gallium nitride light-emitting diode chip according to the present invention comprises the following steps Step:
  • the chip is gradually heated at a rate of 90 ° C per minute in a low-pressure chamber in a hydrogen or inert gas atmosphere, and annealed at a temperature of 900 45 for 45 seconds.
  • the chip prepared in the above step 8) is grown on the surface of the ZnO transparent conductive layer at a temperature of 300 ° C (10) in an inert gas atmosphere, and the ZnO transparent conductive layer has a thickness of 100 nm. .
  • the method for manufacturing a high-brightness gallium nitride light-emitting diode chip according to the present invention comprises the following steps:
  • the chip is gradually heated in a low-pressure chamber at a rate of 50 ⁇ per minute in a hydrogen atmosphere, and annealed at a temperature of 600 ° C for 7 minutes.
  • wet etching the ZnO transparent conductive layer
  • the chip prepared in the above step 8) is annealed in an inert gas atmosphere at a temperature of 250 ° C for 10 minutes.
  • a layer of vaporized silicon material is grown on the surface of the above ZnO transparent conductive layer, and the ZnO transparent conductive layer has a film thickness of 380 nm.
  • the method for manufacturing a high-brightness gallium nitride light-emitting diode chip according to the present invention comprises the following steps:
  • the chip is gradually heated at a rate of 3.5 ° C per minute in a low pressure chamber in a hydrogen or inert gas atmosphere, and annealed at a temperature of 550 ° C. 5 minutes.
  • the conductive layer of the conductive layer has a thickness of 580 nm.
  • the method for manufacturing a high-brightness gallium nitride light-emitting diode chip according to the present invention comprises the following steps
  • the chip prepared by the step 2) is completed by a conventional subsequent processing step.
  • the high-brightness gallium nitride light-emitting diode t-tube chip of the present invention includes a sapphire
  • the surface of the LED epitaxial layer is grown with a highly doped ZnO layer, it is wet etched.
  • a transparent conductive layer pattern of ZnO material is formed on the surface of the P-type GaN, as shown in FIG.
  • the P electrode 4 and the P-type GaN layer are connected.
  • Table 1 shows the chip of Ni/Au material as transparent conductive layer and the chip using ZnO material as transparent conductive layer.
  • the same piece of LED epitaxial wafer is used for fabrication, divided into two halves. Two materials are used as the chip transparent conductive layer, driven by 20mA current.
  • the luminescence intensity of the Ni/Au material as the transparent conductive layer was 143.17 mcd, and the luminescence intensity of the chip using the ZnO material as the transparent conductive layer was 245.18 mcd, which was found to be about 1.7 times higher than that of the ⁇ / ⁇ material as the transparent conductive layer.
  • the reliability data of the chip is shown in Table 2 and Table 3.
  • the ZnO chip is packaged into a flat-head LED tube with a diameter of 5mni, and then passed through 20mA
  • Vf changes Wd after the experiment.

Abstract

A GaN LED chip and the method of the same are provided to solve the problem in the prior art that the transparent conductive layer made of Ni/Au emits light poorly. The LED chip comprises a n-type GaN layer (1), a p-type GaN layer (2) and transparent conductive layer (3), wherein the ZnO transparent conductive layer formed on the surface of the GaN layer (2), the ZnO layer is doped with III group metal and has a thickness of 5nm-1000nm. The LED chip increase the light extraction rate to more than 90%, the light extraction rate is 1.7 times compare to the Ni/Au severed as transparent conductive layer. The performance of high current diffusionand perfect heat stability are provided. The LED chip can be used widely in the filed of communication, traffic, display, backlight source and so on.

Description

技术领域  Technical field
本发明涉及氮化镓发光二极管, 尤其涉及一种高亮度氮化镓发光二极 管芯片及其制造方法。 背景技术  The present invention relates to a gallium nitride light emitting diode, and more particularly to a high brightness gallium nitride light emitting diode chip and a method of fabricating the same. Background technique
氮化镓发光二极管(GaN LED )为超高亮度的 LED, 它不但能够节约 能源, 更具有无污染、 寿命长、 体积小和色彩鲜明的特点, 因而被广泛应 用在通讯、 交通、 显示器、 背光源等领域。 近年来, 人们在研制和改善 LED 的 P型欧姆接触方面作了大量的研究工作, 研制出了许多适合要求的结构, 巳基本满足了实用化器件的要求。传统的 GaN LED芯片包括 N型 GaN层、 P型 GaN层和透明导电层, LED芯片的 P型欧姆接触,特别是透明导电层, 通常是用电子束蒸镀设备在外延芯片表面沉积一层或多层高功函数金属, 如 Ni金属依靠电子束正面沉积后, 再用同样的方式蒸镀一层导电金属, 如 金(Au ) 等, 最后利用合金处理达到降低接触阻抗的目的, 但由于 Ni/Au 在可见光波段对光具有较大的吸收性, 使 LED的光出射率只有 50-70%。 发明内容  GaN LEDs are ultra-high brightness LEDs, which not only save energy, but also have the characteristics of no pollution, long life, small size and vivid colors, so they are widely used in communication, transportation, display, backlight. Source and other fields. In recent years, people have done a lot of research work in developing and improving the P-type ohmic contact of LEDs, and have developed many suitable structures, which basically meet the requirements of practical devices. A conventional GaN LED chip includes an N-type GaN layer, a P-type GaN layer, and a transparent conductive layer, and a P-type ohmic contact of the LED chip, particularly a transparent conductive layer, usually deposited on the surface of the epitaxial chip by electron beam evaporation equipment or A multi-layer high-work function metal, such as Ni metal, is deposited on the front side of the electron beam, and then a layer of a conductive metal such as gold (Au) is vapor-deposited in the same manner, and finally the alloy is treated to reduce the contact resistance, but due to Ni /Au has a large absorption of light in the visible light band, so that the light emission rate of the LED is only 50-70%. Summary of the invention
本发明的主要目的是提供一种高亮度氮化镓发光二极管芯片及其制造 方法, 能有效提高 GaN LED芯片的发光效率, 制备具有良好热稳定性的低 衰减、 高亮度 LED发光芯片。  The main object of the present invention is to provide a high-brightness gallium nitride light-emitting diode chip and a manufacturing method thereof, which can effectively improve the luminous efficiency of a GaN LED chip, and prepare a low-attenuation, high-brightness LED light-emitting chip with good thermal stability.
为解决 _h述技术问题, 本发明的技术方案为:  In order to solve the technical problem, the technical solution of the present invention is:
该高亮度氮化镓发光二极管芯片, 包括 N型 GaN层、 P型 GaN层 和透明导电层, 它的特点是: 在所述 P型 GaN材料表面生长 ZnO透明导 电层, ZnO透明导电层釆用有机金属化学气相沉积法、 分子束磊晶及电子 束蒸发等方法生长或沉积于 P型 GaN表面, 作为电流扩散和发光层, 所 述 ZnO透明导电层用元素周期表中的第一、 三族金属进行掺杂, 透明导 电层的膜厚控制在 5 nm- 100 Onm之间。 该薄膜为具有高的电流传导率的, 具有正离子特性或负离子特性的透明导电层。 The high-brightness gallium nitride light emitting diode chip comprises an N-type GaN layer, a P-type GaN layer and a transparent conductive layer, and is characterized in that: a transparent conductive ZnO is grown on the surface of the P-type GaN material The electric layer, the ZnO transparent conductive layer is grown or deposited on the surface of the P-type GaN by an organometallic chemical vapor deposition method, molecular beam epitaxy, electron beam evaporation, or the like, as a current diffusion and light-emitting layer, and the element for the ZnO transparent conductive layer The first and third groups of metals in the periodic table are doped, and the film thickness of the transparent conductive layer is controlled between 5 nm and 100 Onm. The film is a transparent conductive layer having a high current conductivity and having positive ion characteristics or negative ion characteristics.
上述第一、 三族金属通常是 Be、 Al、 In。  The above first and third group metals are usually Be, Al, In.
制造上述高亮度氮化镓发光二极管芯片的方法包括下述步骤:  The method of manufacturing the above high brightness gallium nitride light emitting diode chip comprises the following steps:
1 )对 P型 GaN层表面进行蚀刻、清洗处理,和加热处理 GaN LED 晶 元片, 以使其降低与 ZnO 导电层的接触阻抗。 所述蚀刻或清洗方法为常 用的方法。  1) Etching, cleaning, and heat-treating the surface of the P-type GaN layer to reduce the contact resistance with the ZnO conductive layer. The etching or cleaning method is a commonly used method.
2 )在所述 GaN材料表面生长 ZnO透明导电层。 ZnO材料釆用有机 金属化学气相沉积法、分子束磊晶及电子束蒸发等方法生长或沉积于 P型 GaN表面, 作为电流扩散和光源萃取层。  2) growing a ZnO transparent conductive layer on the surface of the GaN material. The ZnO material is grown or deposited on the surface of the P-type GaN by organometallic chemical vapor deposition, molecular beam epitaxy, and electron beam evaporation, as a current diffusion and light source extraction layer.
上述方法还包括下述步骤:  The above method also includes the following steps:
3 )对所述 ZnO透明导电层进行退火处理, 所述芯片在氢气或惰性气 体环境内,在低压腔体内以每分钟 0.1 °C - 10CTC的速度逐渐升温,在 250°C - 1000 °C的温度条件下退火 30秒- 45分钟。  3) annealing the ZnO transparent conductive layer, the chip is gradually heated in a low pressure chamber at a rate of 0.1 ° C - 10 CTC per minute in a hydrogen or inert atmosphere, at 250 ° C - 1000 ° C Annealing under temperature conditions for 30 seconds - 45 minutes.
上述方法还包括下述步骤:  The above method also includes the following steps:
4 )对 ZnO透明导电层进行湿蚀刻。所述 ZnO透明导电层发光区电极 图案的实现需要通过非金属氧化物或光阻剂保护不需要被蚀刻的 ZnO层, 然后通过各种酸或碱的稀释液进行蚀刻, 如使用盐酸、磷酸、 醋酸、 BOE、 NaOE KOH等进行湿蚀刻。其中 BOE是 HF和 NH4F的混合物, HF:NH4F 的比例可以是 1 :6, 1 :7或 1 :9。 4) Wet etching the ZnO transparent conductive layer. The realization of the ZnO transparent conductive layer light-emitting region electrode pattern needs to protect the ZnO layer that does not need to be etched by a non-metal oxide or a photoresist, and then etched by various acid or alkali dilutions, such as using hydrochloric acid, phosphoric acid, Acetate, BOE, NaOE KOH, etc. are wet etched. Wherein BOE is a mixture of HF and NH 4 F, and the ratio of HF:NH 4 F may be 1:6, 1:7 or 1:9.
上述方法还包括下述步骤:  The above method also includes the following steps:
5 )用纯水对 GaN LED芯片进行清洁处理, 6 )在 60°C - 100°C的条件下对经步骤 5 )处理过的芯片烘烤 5 - 20分 钟。 与传统 GaN LED芯片透明导电层不同, ZnO的六方纤锌矿结构容易吸 收空气中的水蒸气, 影响电特性, 故在进行纯水清洁处理后需要对晶片进 行烘烤。 5) cleaning the GaN LED chip with pure water, 6) Bake the chip treated in step 5) for 5-20 minutes at 60 ° C - 100 ° C. Unlike the transparent conductive layer of the conventional GaN LED chip, the hexagonal wurtzite structure of ZnO easily absorbs water vapor in the air and affects the electrical characteristics, so the wafer needs to be baked after the pure water cleaning process.
上述方法还包括下述步骤:  The above method also includes the following steps:
7 )对 GaN N电极进行干蚀刻。干蚀刻必须使用一般有机溶液可以去除 的保护膜作为保护 P型发光层的材料, 本发明使用光阻剂作为 P型 ZnO发 光层的保护层, 经电感偶合离子蚀刻机进行蚀刻后, 釆用 N - 甲基四氢吡 咯(NMP ) 等可溶解光阻剂而不与 ZnO反应的有机溶液进行清洗。  7) Dry etching the GaN N electrode. The dry etching must use a protective film which can be removed by a general organic solution as a material for protecting the P-type light-emitting layer. The present invention uses a photoresist as a protective layer of the P-type ZnO light-emitting layer, and is etched by an inductively coupled ion etching machine. - An organic solution such as methyltetrahydropyrrole (NMP) which dissolves the photoresist without reacting with ZnO.
与 ZnO透明导电层形成欧姆接触的焊线电极材料釆用至少两层高功函 数金属。 常用高功函数金属有 Cr/Pt/Au, Cr/Pd/Au, Cr/Al/Cr/Au, Cr/Al/Pt/Au, Cr/Al/Pd/Au, Cr/Al/Ti/Au, Cr/Al/Co/Au, Cr/Al/Ni/Au, Pd/Al/Ti/Au 和 Pd/Al/Pt/Au。 所述焊线电极釆用电子束或溅射设备沉积, 并用金属剥离技 术形成对称的电极形状, 该焊线电极用于后续封装 'J试和接线。  The wire electrode material which forms an ohmic contact with the transparent conductive layer of ZnO uses at least two layers of high work function metals. Commonly used high work function metals are Cr/Pt/Au, Cr/Pd/Au, Cr/Al/Cr/Au, Cr/Al/Pt/Au, Cr/Al/Pd/Au, Cr/Al/Ti/Au, Cr/Al/Co/Au, Cr/Al/Ni/Au, Pd/Al/Ti/Au and Pd/Al/Pt/Au. The wire electrode is deposited by electron beam or sputtering equipment and a metal stripping technique is used to form a symmetrical electrode shape for subsequent packaging 'J test and wiring.
上述芯片在惰性气体环境内, 在 200°C-30(TC的温度下退火 5-30分钟。 以使所述焊线电极与发光层和 GaN 达到最佳的热稳定性和最低的接触阻 抗。  The above chip is annealed in an inert gas atmosphere at a temperature of 200 ° C to 30 ° C for 5 to 30 minutes to achieve optimum thermal stability and minimum contact resistance of the wire electrode and the light-emitting layer and GaN.
上述电极工艺完成后, 针对 ZnO与空气的折射率差较大, 出光效率较 弱, 为增加光的取出效率, 本发明在所述的 ZnO透明导电层表面生长一层 折射率接近 ZnO的氮化硅材料 (Si3N4 ), 使光的取出率较传统 Si02作为保 护层增加约 15%或 15%以上。 After the electrode process is completed, the refractive index difference between ZnO and air is large, and the light extraction efficiency is weak. To increase the light extraction efficiency, the present invention grows a surface of the ZnO transparent conductive layer with a refractive index close to that of ZnO. The silicon material (Si 3 N 4 ) increases the light extraction rate by about 15% or more than the conventional Si0 2 as a protective layer.
由于采用了上述技术方案, 与现有以 Ni/Au作为 P型欧姆接触发光层材 料的氮化镓发光二极管芯片相比, 本发明所述的高亮度氮化镓发光二极管芯 片利用 ZnO材料与 GaN材料的低折射率差及良好的晶格匹配特性, 能够将 GaN LED 1000小时内的光强衰减控制在 10%以内, 并且具有良好的热稳定 性, 其特征接触阻抗降低到 nE-5 Ω-cm2 (其中 n为 1-10之间的任意数), 是 半导体固态照明稳定可靠的核心组件。 Due to the above technical solution, the high-brightness gallium nitride light-emitting diode chip of the present invention utilizes ZnO material and GaN as compared with the conventional gallium nitride light-emitting diode chip using Ni/Au as the P-type ohmic contact light-emitting layer material. The material's low refractive index difference and good lattice matching characteristics can control the light intensity attenuation of GaN LED within 10 hours within 10%, and have good thermal stability. Sexuality, whose characteristic contact resistance is reduced to nE-5 Ω-cm 2 (where n is any number between 1-10), is a stable and reliable core component of semiconductor solid-state lighting.
本发明所述的高亮度氮化镓发光二极管芯片的制造方法, 通过有针对 性的芯片制作工艺使芯片导电和发光效率更加优化, 在降低 P型发光区接 触阻抗的同时提高电流的扩散效率, 最终达到接触阻值和发光效率的平衡, 从而使芯片寿命增加, 采用该工艺生产的高亮度氮化镓发光二极管芯片具 备良好的导电性能, 及超过 90%的光穿透性能 (450-540nm波段), 发光强 度较传统使用 Ni/Au材料作为透明导电层的芯片高约 1.7倍,从而能够很好 的满足制备高亮度 LED芯片的巿场需求, 同时其他各项光电性能均符合背 光、 显示及照明等应用标准。 附图说明  The method for manufacturing a high-brightness gallium nitride light-emitting diode chip according to the present invention optimizes the conductivity and luminous efficiency of the chip through a targeted chip fabrication process, and improves the diffusion efficiency of the current while reducing the contact resistance of the P-type light-emitting region. Finally, the balance between contact resistance and luminous efficiency is achieved, thereby increasing the life of the chip. The high-brightness gallium nitride light-emitting diode chip produced by the process has good electrical conductivity and over 90% light penetration performance (450-540 nm band). ), the luminous intensity is about 1.7 times higher than that of the conventional Ni/Au material as the transparent conductive layer, so that it can well meet the market demand for preparing high-brightness LED chips, and other photoelectric properties are in line with backlight, display and Application standards such as lighting. DRAWINGS
图 1 是本发明所述的高亮度氮化镓发光二极管芯片制造方法的具体实 施例之一的工艺流程图;  1 is a process flow diagram of one embodiment of a method for fabricating a high-brightness gallium nitride light-emitting diode chip according to the present invention;
图 2是本发明所述的高亮度氮化镓发光二极管芯片制造方法的具体实 施例之二的工艺流程图;  2 is a process flow diagram of a second embodiment of a method for fabricating a high-brightness gallium nitride light-emitting diode chip according to the present invention;
图 3是本发明所述的高亮度氮化镓发光二极管芯片的 N型 GaN层、 P 型 GaN层和 ZnO透明导电层的分解示意图;  3 is an exploded perspective view showing an N-type GaN layer, a P-type GaN layer, and a ZnO transparent conductive layer of the high-brightness gallium nitride light-emitting diode chip according to the present invention;
图 4是图 1所示芯片的 ZnO透明导电层带有图案的结构示意图; 图 5是本发明所述的高亮度氮化镓发光二极管芯片的俯视图。 具体实施方式  4 is a schematic view showing a structure of a ZnO transparent conductive layer of the chip shown in FIG. 1. FIG. 5 is a plan view of a high-brightness gallium nitride light-emitting diode chip according to the present invention. detailed description
实施例 1  Example 1
请参照图 1 ,本发明所述的高亮度氮化镓发光二极管芯片的制造方法, 包括下述步骤:  Referring to FIG. 1, a method for manufacturing a high-brightness gallium nitride light-emitting diode chip according to the present invention includes the following steps:
( 1 )对 P型 GaN层作表面处理, 利用有机金属化学气相沉积法在 P 型 GaN层上生长一层 ZnO透明导电层、 利用电子束蒸镀(E-BEAM)法, 溅射( SPUTTER)法等工艺蒸镀该 ZnO, 与 A1或 In金属交叉层作离子浓 度掺杂, (1) Surface treatment of a P-type GaN layer using an organometallic chemical vapor deposition method in P A transparent conductive layer of ZnO is grown on the GaN layer, and the ZnO is deposited by an electron beam evaporation (E-BEAM) method, a sputtering (SPUTTER) method, or the like, and is doped with an A1 or In metal cross layer.
( 2 )用光刻胶保护不需要被蚀刻的 ZnO层, 对 ZnO透明导电层进行 光刻,  (2) protecting the ZnO transparent conductive layer by photoresist with a ZnO layer that does not need to be etched,
(3) 完成对 ZnO透明导电层的光刻, 洗去光刻胶,  (3) Finishing photolithography of the ZnO transparent conductive layer, washing away the photoresist,
(4)对 ZnO透明导电层进行干燥处理, 在 65°C的条件下烘烤 10分 钟,  (4) Dry the ZnO transparent conductive layer and bake at 65 ° C for 10 minutes.
(5)对 GaNN电极进行干蚀刻,用光刻胶作为 ZnO发光层的保护层, (6) 经电感耦合离子蚀刻机进行蚀刻后, 釆用 N - 甲基四氢吡咯 (5) dry etching the GaNN electrode, using photoresist as a protective layer of the ZnO light-emitting layer, (6) after etching by an inductively coupled ion etching machine, using N-methyltetrahydropyrrole
(NMP)溶液进行清洗, 完成 N型 GaN层上的 N电极的蚀刻, The (NMP) solution is cleaned to complete the etching of the N electrode on the N-type GaN layer.
(7)釆用溅射设备蒸鍍焊线电极金属, 并用金属剥离技术形成对称 的电极形状, 焊线电极材料采用 Cr/Pt/Au,  (7) using a sputtering device to evaporate the wire electrode metal and form a symmetrical electrode shape by metal stripping technique, and the wire electrode material is Cr/Pt/Au.
(8) 生长一层氮化硅 (Si3N4)或二氧化硅的保护层, ZnO透明导电 层膜厚 300nm。 (8) A protective layer of silicon nitride (Si 3 N 4 ) or silicon dioxide is grown, and the film thickness of the ZnO transparent conductive layer is 300 nm.
实施例 2  Example 2
请参照图 2,本发明所述的高亮度氮化镓发光二极管芯片的制造方法, 包括下述步骤:  Referring to FIG. 2, a method for manufacturing a high-brightness gallium nitride light-emitting diode chip according to the present invention includes the following steps:
(1)对 P型 GaN层作表面处理,  (1) surface treatment of a P-type GaN layer,
(2)对 GaN层的 N电极进行干蚀刻之前, 在不需刻蚀的 P型 GaN 层表面生长一层二氧化硅, 在二氧化硅表面用光刻胶进行保护, 并用溶 液蚀刻掉需要蚀刻的 Si02, 蚀刻完后去除起保护作用的光刻胶,  (2) Before dry etching the N electrode of the GaN layer, a layer of silicon dioxide is grown on the surface of the P-type GaN layer not to be etched, protected by a photoresist on the surface of the silicon dioxide, and etched by the solution to be etched. SiO 2, remove the protective photoresist after etching,
( 3 )利用感应耦合等离子体刻蚀完成 N型 GaN层的蚀刻,  (3) etching the N-type GaN layer by inductively coupled plasma etching,
(4)在 P型 GaN表面用电子束蒸发生长 ZnO透明导电层,  (4) ZnO transparent conductive layer is grown by electron beam evaporation on the surface of P-type GaN,
(5)对 ZnO透明导电层进行光刻, (6)在 450°C的条件下对上述步骤 5)所制得的芯片退火 10分钟。(5) Photolithography of the ZnO transparent conductive layer, (6) The chip obtained in the above step 5) was annealed at 450 ° C for 10 minutes.
(7)釆用溅射设备蒸镀焊线电极金属, 并用金属剥离技术形成对称 的电极形状, 焊线电极材料釆用 Cr/Pt/Au, (7) using a sputtering device to vapor-deposit the wire electrode metal, and forming a symmetrical electrode shape by a metal stripping technique, and the wire electrode material is Cr/Pt/Au,
(8)在 ZnO透明导电层表面生长一层氮化硅(Si3N4)或二氧化硅的 保护层。 ZnO透明导电层膜厚 1000nm。 (8) A protective layer of silicon nitride (Si 3 N 4 ) or silicon dioxide is grown on the surface of the ZnO transparent conductive layer. The ZnO transparent conductive layer has a film thickness of 1000 nm.
实施例 3  Example 3
本发明所述的高亮度氣化镓发光二极管芯片的制造方法,包括下述步 骤:  The method for manufacturing a high-intensity gallium illuminide LED chip according to the present invention comprises the following steps:
( 1 )对 P型 GaN层表面进行蚀刻、清洗处理,然后加热处理 GaN LED 晶元片,  (1) etching and cleaning the surface of the P-type GaN layer, and then heat-treating the GaN LED wafer,
(2)在所述 GaN材料表面生长 ZnO透明导电层,  (2) growing a transparent conductive layer of ZnO on the surface of the GaN material,
(3)对所述 ZnO透明导电层进行退火处理, 所述芯片在氢气或惰性 气体环境内,在低压腔体内以每分钟 0.2°C的速度逐渐升温,在 255°C的温 度条件下退火 40分钟,  (3) annealing the ZnO transparent conductive layer, the chip is gradually heated at a rate of 0.2 ° C per minute in a low pressure chamber in a hydrogen or inert gas atmosphere, and annealed at a temperature of 255 ° C. Minutes,
(4)对 ZnO透明导电层进行湿蚀刻,  (4) wet etching the ZnO transparent conductive layer,
(5)用纯水对 GaNLED芯片进行清洁处理,  (5) cleaning the GaN LED chip with pure water,
(6)在 7(TC的条件下对经步骤 5) 处理过的芯片烘烤 8分钟, ( 7 )对 GaN N电极进行干蚀刻,  (6) Baking the chip treated in step 5 under 7 (TC conditions) for 8 minutes, (7) dry etching the GaN N electrode,
(8)蒸镀焊线电极金属, 采用 QVPd/Au作为焊线电极材料,  (8) vapor deposition wire electrode metal, using QVPd/Au as the wire electrode material,
(9)上述步骤 8)所制得的芯片在惰性气体环境内, 在 210°C的温度 下退火 20分钟,  (9) The chip prepared in the above step 8) is annealed in an inert gas atmosphere at a temperature of 210 ° C for 20 minutes.
( 10 )在上述步骤 9 )所制得的 ZnO透明导电层表面生长一层氮化硅 材料, ZnO透明导电层膜厚 5nm。  (10) A silicon nitride material is grown on the surface of the ZnO transparent conductive layer prepared in the above step 9), and the ZnO transparent conductive layer has a film thickness of 5 nm.
实施例 4  Example 4
本发明所述的高亮度氮化镓发光二极管芯片的制造方法,包括下述步 骤: The method for manufacturing a high-brightness gallium nitride light-emitting diode chip according to the present invention comprises the following steps Step:
( 1 )对 P型 GaN层表面进行蚀刻、清洗处理,然后加热处理 GaN LED 晶元片,  (1) etching and cleaning the surface of the P-type GaN layer, and then heat-treating the GaN LED wafer,
( 2 )在所述 P型 GaN材料表面生长 ZnO透明导电层,  (2) growing a transparent conductive layer of ZnO on the surface of the P-type GaN material,
(3)对所述 ZnO透明导电层进行退火处理, 所述芯片在氢气或惰性 气体环境内, 在低压腔体内以每分钟 90°C的速度逐渐升温, 在 900Ό的温 度条件下退火 45秒,  (3) annealing the ZnO transparent conductive layer, the chip is gradually heated at a rate of 90 ° C per minute in a low-pressure chamber in a hydrogen or inert gas atmosphere, and annealed at a temperature of 900 45 for 45 seconds.
(4)对 ZnO透明导电层进行湿蚀刻,  (4) wet etching the ZnO transparent conductive layer,
( 5 )用纯水对 GaN LED芯片进行清洁处理,  (5) cleaning the GaN LED chip with pure water,
(6)在 70°C的条件下对经步骤 5) 处理过的芯片烘烤 10分钟, (6) baking the chip treated in step 5) for 10 minutes at 70 ° C,
( 7 )对 GaN 电极进行干蚀刻, (7) dry etching the GaN electrode,
(8)蒸镀焊线电极金属, 釆用 Pd/Al/Ti/Au作为焊线电极材料, (8) Evaporating the wire electrode metal, using Pd/Al/Ti/Au as the wire electrode material,
(9)上述步骤 8)所制得的芯片在惰性气体环境内, 在 300°C的温度 (10)在上述的 ZnO透明导电层表面生长一层氮化硅材料, ZnO透 明导电层膜厚 100nm。 (9) The chip prepared in the above step 8) is grown on the surface of the ZnO transparent conductive layer at a temperature of 300 ° C (10) in an inert gas atmosphere, and the ZnO transparent conductive layer has a thickness of 100 nm. .
实施例 5  Example 5
本发明.所述的高亮度氮化镓发光二极管芯片的制造方法,包括下述步 骤:  The method for manufacturing a high-brightness gallium nitride light-emitting diode chip according to the present invention comprises the following steps:
( 1 )对 P型 GaN层表面进行蚀刻、清洗处理,然后加热处理 GaN LED 晶元片,  (1) etching and cleaning the surface of the P-type GaN layer, and then heat-treating the GaN LED wafer,
( 2 )在所述 GaN材料表面生长 ZnO透明导电层,  (2) growing a transparent conductive layer of ZnO on the surface of the GaN material,
( 3 )对所述 ZnO透明导电层进行退火处理,所述芯片在氢气环境内, 在低压腔体内以每分钟 50Ό的速度逐渐升温,在 600°C的温度条件下退火 7分钟, (4)对 ZnO透明导电层进行湿蚀刻, (3) annealing the ZnO transparent conductive layer, the chip is gradually heated in a low-pressure chamber at a rate of 50 Å per minute in a hydrogen atmosphere, and annealed at a temperature of 600 ° C for 7 minutes. (4) wet etching the ZnO transparent conductive layer,
(5)用纯水对 GaN LED芯片进行清洁处理,  (5) cleaning the GaN LED chip with pure water,
(6)在 60°C的条件下对经步骤 5)处理过的芯片烘烤 15分钟, ( 7 )对 GaNN电极进行干蚀刻,  (6) baking the chip treated in the step 5) for 15 minutes at 60 ° C, (7) dry etching the GaNN electrode,
(8)蒸镀焊线电极金属, 釆用至少两层高功函数金属作为焊线电极 材料,  (8) vapor-depositing the wire electrode metal, using at least two layers of high work function metal as the wire electrode material,
(9)上述步骤 8)所制得的芯片在惰性气体环境内, 在 250°C的温度 下退火 10分钟,  (9) The chip prepared in the above step 8) is annealed in an inert gas atmosphere at a temperature of 250 ° C for 10 minutes.
(10)在上述的 ZnO透明导电层表面生长一层氣化硅材料, ZnO透 明导电层膜厚 380nm。  (10) A layer of vaporized silicon material is grown on the surface of the above ZnO transparent conductive layer, and the ZnO transparent conductive layer has a film thickness of 380 nm.
实施例 6  Example 6
本发明所述的高亮度氮化镓发光二极管芯片的制造方法,包括下述步 骤:  The method for manufacturing a high-brightness gallium nitride light-emitting diode chip according to the present invention comprises the following steps:
( 1 )对 P型 GaN层表面进行蚀刻、清洗处理,然后加热处理 GaN LED 晶元片 ,  (1) etching and cleaning the surface of the P-type GaN layer, and then heat-treating the GaN LED wafer,
(2)在所述 GaN材料表面生长 ZnO透明导电层,  (2) growing a transparent conductive layer of ZnO on the surface of the GaN material,
(3)对所述 ZnO透明导电层进行退火处理, 所述芯片在氢气或惰性 气体环境内,在一低压腔体内以每分钟 3.5°C的速度逐渐升温,在 550°C的 温度条件下退火 5分钟。  (3) annealing the ZnO transparent conductive layer, the chip is gradually heated at a rate of 3.5 ° C per minute in a low pressure chamber in a hydrogen or inert gas atmosphere, and annealed at a temperature of 550 ° C. 5 minutes.
( 4 )对 ZnO透明导电层进行湿蚀刻,  (4) wet etching the ZnO transparent conductive layer,
( 5 )用纯水对 GaN LED芯片进行清洁处理,  (5) cleaning the GaN LED chip with pure water,
(6)在 70°C的条件下对经步骤 5)处理过的芯片烘烤 10分钟, (6) baking the chip treated in the step 5) at 70 ° C for 10 minutes,
(7)对 GaNN电极进行干蚀刻, (7) dry etching the GaNN electrode,
(8)蒸镀焊线电极金属, 釆用 Pd/Al/Ti/Au作为焊线电极材料, (9)上述步骤 8)所制得的芯片在惰性气体环境内, 在 300°C的温度 下退火 5分钟, (8) vapor deposition wire electrode metal, using Pd/Al/Ti/Au as the wire electrode material, (9) the chip prepared in the above step 8) is in an inert gas atmosphere at a temperature of 300 ° C Annealing for 5 minutes,
( 10 )在上述的 ZnO透明导电层表面生长一层氮化硅材料, ZnO透  (10) growing a layer of silicon nitride material on the surface of the ZnO transparent conductive layer, and ZnO is transparent.
明导电层膜厚 580nm。 实施例 7 The conductive layer of the conductive layer has a thickness of 580 nm. Example 7
本发明所述的高亮度氮化镓发光二极管芯片的制造方法,包括下述步  The method for manufacturing a high-brightness gallium nitride light-emitting diode chip according to the present invention comprises the following steps
骤:  Step:
( 1 )对 P型 GaN层表面进行蚀刻、清洗处理,然后加热处理 GaN LED 晶元片,  (1) etching and cleaning the surface of the P-type GaN layer, and then heat-treating the GaN LED wafer,
( 2 )在所述 GaN材料表面生长 ZnO透明导电层,  (2) growing a transparent conductive layer of ZnO on the surface of the GaN material,
然后, 经步骤 2 )所制得的芯片釆用常规的后续处理步骤完成制作即 可。  Then, the chip prepared by the step 2) is completed by a conventional subsequent processing step.
oo。\  Oo. \
请参照图 3 , 本发明所述的高亮度氮化镓发光二极 t管芯片, 包括蓝宝  Referring to FIG. 3, the high-brightness gallium nitride light-emitting diode t-tube chip of the present invention includes a sapphire
石基板和 N型 GaN层 1 , P型 GaN层 2和 ZnO透明导电层 3 , 在 GaN的 Stone substrate and N-type GaN layer 1, P-type GaN layer 2 and ZnO transparent conductive layer 3, in GaN
LED 外延层表面生长一层具备高浓度掺杂的 ZnO层以后, 利用湿蚀刻的 After the surface of the LED epitaxial layer is grown with a highly doped ZnO layer, it is wet etched.
方法, 在 P型 GaN表面形成 ZnO材料的透明导电层图案, 如图 4所示。 Method, a transparent conductive layer pattern of ZnO material is formed on the surface of the P-type GaN, as shown in FIG.
如图 5所示, 芯片制造完成后, 具有与 P型 GaN层相接的 P电极 4和与 As shown in FIG. 5, after the chip is manufactured, the P electrode 4 and the P-type GaN layer are connected.
N型 GaN层相接的 N电极 5。 N-electrode 5 to which the N-type GaN layer is connected.
对上述芯片进行测试,试验结果见表 1、表 2和表 3,其中表 1为 Ni/Au 材料作为透明导电层的芯片与使用 ZnO材料作为透明导电层的芯片的发  The above chips were tested. The test results are shown in Table 1, Table 2 and Table 3. Table 1 shows the chip of Ni/Au material as transparent conductive layer and the chip using ZnO material as transparent conductive layer.
光强度的比较; 表 2和表 3为可靠度数据。 测试 内部编 综合分 独立分析 Comparison of light intensity; Tables 2 and 3 are reliability data. Test internal compilation comprehensive analysis
PAD ESD  PAD ESD
§20mA Vf (V 综合  §20mA Vf (V synthesis
Ir (uA) Iv(mcd) Wd(nm) Vf Ir Iv Wd  Ir (uA) Iv(mcd) Wd(nm) Vf Ir Iv Wd
PWZ10602 ) 良率 PWZ10602) Yield
21104 80.99 93.39 93.39  21104 80.99 93.39 93.39
14mil ZnO 4.29 0.09 245.18 500.29 98.35%  14mil ZnO 4.29 0.09 245.18 500.29 98.35%
% % %  % % %
§20mA  §20mA
91.74  91.74
PWZ10602 14mil Ni/Au 3.53 0.01 143.17 500.89 80.79% PWZ10602 14mil Ni/Au 3.53 0.01 143.17 500.89 80.79%
%  %
21104 表 1中所示的数据为使用同一标准, 用探针测试仪测试的结果。 21104 The data shown in Table 1 is the result of testing with a probe tester using the same standard.
使用同种芯片尺寸, 制作时使用同一片 LED 外延片, 分为两个半片 分别使用两种材料作为芯片透明导电层, 在 20mA 电流驱动下, 使用  Using the same chip size, the same piece of LED epitaxial wafer is used for fabrication, divided into two halves. Two materials are used as the chip transparent conductive layer, driven by 20mA current.
Ni/Au材料作为透明导电层的发光强度为 143.17mcd, 而使用 ZnO材料 作为透明导电层的芯片发光强度为 245.18mcd, 可看出比 Μ/Αιι材料作 为透明导电层的芯片高约 1.7倍。  The luminescence intensity of the Ni/Au material as the transparent conductive layer was 143.17 mcd, and the luminescence intensity of the chip using the ZnO material as the transparent conductive layer was 245.18 mcd, which was found to be about 1.7 times higher than that of the Μ/Αι material as the transparent conductive layer.
芯片的可靠度数据见表 2和表 3。  The reliability data of the chip is shown in Table 2 and Table 3.
将 ZnO 芯片封装成直径为 5mni的平头 LED灯管, 然后通以 20mA  The ZnO chip is packaged into a flat-head LED tube with a diameter of 5mni, and then passed through 20mA
或 30mA, 40mA电流, 持续在常温或高温环境中点亮测试 1000小时或 Or 30mA, 40mA current, continuously illuminate in normal temperature or high temperature environment for 1000 hours or
0 72小时做烧测实验, 得出烧测前后光强的衰减比例。 0 72 hours to do the burning test, the attenuation ratio of the light intensity before and after the burning was obtained.
加速老化寿命试验报告  Accelerated aging life test report
编号: P19~QE- RF- 010 版本: 02 No.: P19~QE- RF- 010 Version: 02
I试验条件: ~~高温 (55°C ) 恒亮 72H±2H, 顺向电流(If) =30mA。 I test conditions: ~ ~ high temperature (55 ° C) constant bright 72H ± 2H, forward current (If) = 30mA.
(详见信赖性测试标准: P19- QE- IC- 001 )  (See Reliability Test Standard: P19- QE- IC- 001)
P Z1060 试验单  P Z1060 test sheet
批 号 Wafer NO. QR-C-T-015  Lot No. Wafer NO. QR-C-T-015
221104 号  221104
厂 商 取样数量 17 有效数量 17  Manufacturer Sample Quantity 17 Effective Quantity 17
实验前 实验后 Vf变 Wd变 判 Before the experiment, Vf changes Wd after the experiment.
NO. NO.
Vf Ir Iv Wd Vf Ir Iv Wd 化值 减率 化值 定 Vf Ir Iv Wd Vf Ir Iv Wd value reduction value
1 4. 26 0 857. 1 502. 1 4. 14 0. 04 1063. 1 501. 9 -0. 12 -24% -0. 2 0K1 4. 26 0 857. 1 502. 1 4. 14 0. 04 1063. 1 501. 9 -0. 12 -24% -0. 2 0K
2 4. 28 0 1067. 7 502. 3 4. 15 0. 02 1104. 4 501. 7 - 0. 13 -3% -0. 6 0K2 4. 28 0 1067. 7 502. 3 4. 15 0. 02 1104. 4 501. 7 - 0. 13 -3% -0. 6 0K
3 4. 23 0 1065. 6 501. 3 4. 13 0. 01 966, 6 501 -0. 10 9% - 0. 3 0K3 4. 23 0 1065. 6 501. 3 4. 13 0. 01 966, 6 501 -0. 10 9% - 0. 3 0K
4 4. 28 0. 03 851. 1 - 502. 5 4. 16 0. 15 841. 3 501. 9 -0. 12 1% -0. 6 0K4 4. 28 0. 03 851. 1 - 502. 5 4. 16 0. 15 841. 3 501. 9 -0. 12 1% -0. 6 0K
5 4. 26 0 841. 6 501. 4 4. 15 0. 01 931. 1 501. 2 - 0. 11 -11% -0. 2 05 4. 26 0 841. 6 501. 4 4. 15 0. 01 931. 1 501. 2 - 0. 11 -11% -0. 2 0
6 4. 25 0. 05 905. 2 501. 4 4. 14 0. 03 1134. 1 501 - 0. 11 -25% - 0. 4 06 4. 25 0. 05 905. 2 501. 4 4. 14 0. 03 1134. 1 501 - 0. 11 -25% - 0. 4 0
7 4. 26 0. 08 889. 5 501. 3 4. 14 0. 02 873. 8 501. 7 -0. 12 2% 0. 4 0K7 4. 26 0. 08 889. 5 501. 3 4. 14 0. 02 873. 8 501. 7 -0. 12 2% 0. 4 0K
8 4. 28 0 809. 1 502. 3 4. 15 1. 16 898. 1 501. 6 -0. 13 -11% 0. 7 0K8 4. 28 0 809. 1 502. 3 4. 15 1. 16 898. 1 501. 6 -0. 13 -11% 0. 7 0K
9 4. 27 0 963. 7 502. 1 4. 16 0. 03 970. 2 500. 9 - 0. 11 -1% - 1. 2 0K9 4. 27 0 963. 7 502. 1 4. 16 0. 03 970. 2 500. 9 - 0. 11 -1% - 1. 2 0K
10 4. 24 0 973. 5 501. 5 4. 14 0. 01 1049. 3 501. 3 -0. 10 -8% - 0. 2 0K10 4. 24 0 973. 5 501. 5 4. 14 0. 01 1049. 3 501. 3 -0. 10 -8% - 0. 2 0K
11 4. 27 0. 01 908. 1 502. 7 4. 15 0. 05 879. 2 501. 9 -0. 12 3% -0. 8 0K11 4. 27 0. 01 908. 1 502. 7 4. 15 0. 05 879. 2 501. 9 -0. 12 3% -0. 8 0K
12 4. 28 0. 01 849. 1 502. 5 4. 16 0. 03 1004. 6 501. 8 -0. 12 -18% -0. 7 0K 13 4.27 0 956.5 502.4 4.15 0.03 975.3 500.7 -0.12 -2% - 1.7 OK12 4. 28 0. 01 849. 1 502. 5 4. 16 0. 03 1004. 6 501. 8 -0. 12 -18% -0. 7 0K 13 4.27 0 956.5 502.4 4.15 0.03 975.3 500.7 -0.12 -2% - 1.7 OK
14 4.23 0 975.3 501.1 4.12 0.05 896 501.9 -0.11 8% 0.8 OK14 4.23 0 975.3 501.1 4.12 0.05 896 501.9 -0.11 8% 0.8 OK
15 4.3 0 913.8 502.5 4.16 0.03 502 -0.14 - 8% -0.5 OK15 4.3 0 913.8 502.5 4.16 0.03 502 -0.14 - 8% -0.5 OK
16 4.29 0 898.3 501.9 4.17 0.02 501.4 -0.12 4% - 0.5 OK16 4.29 0 898.3 501.9 4.17 0.02 501.4 -0.12 4% - 0.5 OK
17 4.28 0.04 1007.3 502.5 4.15 0.32 501.8 -0.13 4% -0.7 OK17 4.28 0.04 1007.3 502.5 4.15 0.32 501.8 -0.13 4% -0.7 OK
18 18
19  19
20  20
MIN 4.23 0 809.1 501.1 4.12 0.01 841.3 500.7 -0.14 -25% -1.7 MIN 4.23 0 809.1 501.1 4.12 0.01 841.3 500.7 -0.14 -25% -1.7
AVG 4.2665 0.0129 925.44 501.99 0, 1182 964.97 501.51 -0.118 -5% -0.476AVG 4.2665 0.0129 925.44 501.99 0, 1182 964.97 501.51 -0.118 -5% -0.476
MAX 4.3 0.08 1067.7 502.7 4.17 1.16 1134.1 502 -0.1 9% 0.8 MAX 4.3 0.08 1067.7 502.7 4.17 1.16 1134.1 502 -0.1 9% 0.8
实验结论: i 合格 门 不合格 Experimental conclusion: i qualified door failed
备注:  Remarks:
验证 ZnO实验芯片的可靠度 30mA  Verify the reliability of the ZnO experimental chip 30mA
表 2 Table 2
老化寿命试验报告  Aging life test report
编号: P19- QE- RF- 010 版本: 02 试验条件: 常温恒亮, 1000小时, If-20mA. No.: P19- QE- RF- 010 Version: 02 Test conditions: Normal temperature constant brightness, 1000 hours, If-20mA.
PWZ 10602 PWZ 10602
批 号 Wafer NO. 试验单号 QR-C-T-015  Batch No. Wafer NO. Test No. QR-C-T-015
21104  21104
厂 商 取样数量 15 有效数量 15 实验前 实验后 Vf变 Iv衰 Wd变 判 The number of samples sampled by the manufacturer 15 Effective quantity 15 Before the experiment Vf change after Iv Id Wd change
N0. N0.
Vf Ir Iv Wd Vf Ir Iv Wd 化值 减率 化值 定 Vf Ir Iv Wd Vf Ir Iv Wd value reduction value
1 4.27 0.02 989.3 501.4 4.13 0.01 890.8 500.9 - 0.14 10% -0.5 0K1 4.27 0.02 989.3 501.4 4.13 0.01 890.8 500.9 - 0.14 10% -0.5 0K
2 4.43 0.28 737.8 503.9 4.18 0.02 812.6 503.6 -0.25 -10% -0.3 0K2 4.43 0.28 737.8 503.9 4.18 0.02 812.6 503.6 -0.25 -10% -0.3 0K
3 4.55 0.71 941.8 503.8 4.34 1.01 835.1 503.1 -0.21 11% -0.7 0K3 4.55 0.71 941.8 503.8 4.34 1.01 835.1 503.1 -0.21 11% -0.7 0K
4 4.49 0.02 815.9 503.9 4.32 0.04 750 503.2 -0.17 8% - 0.7 0K4 4.49 0.02 815.9 503.9 4.32 0.04 750 503.2 -0.17 8% - 0.7 0K
5 4.46 0.01 808.6 503.8 4.16 0.1 899.5 503.4 - 0.30 -11% -0.4 0K5 4.46 0.01 808.6 503.8 4.16 0.1 899.5 503.4 - 0.30 -11% -0.4 0K
6 4.49 0.06 717.2 503.9 4.31 0.26 698.7 503.1 - 0.18 3% -0.8 0K 03421 6 4.49 0.06 717.2 503.9 4.31 0.26 698.7 503.1 - 0.18 3% -0.8 0K 03421
Figure imgf000014_0001
表 3
Figure imgf000014_0001
table 3

Claims

杈利要求书 Profit request
1、 一种高亮度氮化镓发光二极管芯片, 包括 N型 GaN层、 P型 GaN 层和透明导电层, 其特征在于: 在所述 P型 GaN材料表面生长有 ZnO透 明导电层, 所述 ZnO透明导电层用元素周期表中的第一、 三族金属进行 掺杂, 透明导电层的膜厚在 5nm-1000nm之间。  A high-brightness gallium nitride light-emitting diode chip comprising an N-type GaN layer, a P-type GaN layer and a transparent conductive layer, wherein: a transparent conductive layer of ZnO is grown on a surface of the P-type GaN material, and the ZnO The transparent conductive layer is doped with the first and third groups of metals in the periodic table, and the transparent conductive layer has a film thickness of between 5 nm and 1000 nm.
2、 如权利要求 1所述的高亮度氮化镓发光二极管芯片, 其特征在于: 所述第一、 三族金属是 Be、 Al、 In。  2. The high-brightness gallium nitride light-emitting diode chip according to claim 1, wherein the first and third group metals are Be, Al, and In.
3、 一种制造高亮度氮化镓发光二极管芯片的方法, 所述高亮度氮化 镓发光二极管芯片包括 N型 GaN层、 P型 GaN层和透明导电层, 在所述 P型 GaN材料表面生长有 ZnO透明导电层, 所述 ZnO透明导电层用元素 周期表中的第一、 三族金属进行掺杂, 透明导电层的膜厚控制在 5nm-1000nm之间, 该方法包括下述步骤: .  3. A method of fabricating a high brightness gallium nitride light emitting diode chip, the high brightness gallium nitride light emitting diode chip comprising an N-type GaN layer, a P-type GaN layer, and a transparent conductive layer grown on a surface of the P-type GaN material The ZnO transparent conductive layer is doped with the first and third metals in the periodic table, and the thickness of the transparent conductive layer is controlled between 5 nm and 1000 nm. The method comprises the following steps:
1 )对 P型 GaN层表面先后进行蚀刻、 清洗处理, 然后加热处理 GaN LED 晶元片,  1) etching and cleaning the surface of the P-type GaN layer, and then heat-treating the GaN LED wafer,
2 )在所述 GaN材料表面生长 ZnO透明导电层。  2) growing a ZnO transparent conductive layer on the surface of the GaN material.
4、 如杈利要求 3所述的制造高亮度氮化镓发光二极管芯片的方法, 其特征在于: 所述方法还包括下述步骤:  4. The method of manufacturing a high brightness gallium nitride light emitting diode chip according to claim 3, wherein the method further comprises the steps of:
3 )对所述 ZnO透明导电层进行退火处理, 步骤 2 )所得的发光二极 管芯片在氢气或惰性气体环境内,在低压腔体内以每分钟 o.rc - locrc的 速度升温, 在 250Ό - 1000 °C的温度条件下退火 30秒- 45分钟。  3) annealing the ZnO transparent conductive layer, and the light-emitting diode chip obtained in step 2) is heated in a low-pressure chamber at a rate of o.rc - locrc per minute in a hydrogen or inert gas atmosphere, at 250 Ό - 1000 ° Annealing at a temperature of C for 30 seconds - 45 minutes.
5、 如权利要求 4所述的制造高亮度氮化镓发光二极管芯片的方法, 其特征在于: 所述方法还包括下述步骤:  5. The method of manufacturing a high brightness gallium nitride light emitting diode chip according to claim 4, wherein: the method further comprises the steps of:
4 ) 对 ZnO透明导电层进行湿蚀刻。  4) Wet etching the ZnO transparent conductive layer.
6、 如权利要求 5所述制造高亮度氮化镓发光二极管芯片的方法, 其 特征在于: 所述方法还包括下述步骤: 5 )用纯水对 GaN LED芯片进行清洁处理, 6. The method of manufacturing a high brightness gallium nitride light emitting diode chip according to claim 5, wherein: the method further comprises the steps of: 5) cleaning the GaN LED chip with pure water,
6 )在 60°C - 100°C的条件下对经步骤 5 ) 处理过的芯片烘烤 5 - 20分 钟。  6) Bake the chip treated in step 5) for 5 - 20 minutes at 60 ° C - 100 ° C.
7、 如杈利要求 6所述的制造高亮度氮化镓发光二极管芯片的方法, 其特征在于: 所述方法还包括下述步骤:  7. The method of manufacturing a high brightness gallium nitride light emitting diode chip according to claim 6, wherein the method further comprises the steps of:
7 )对 GaN N电极进行干蚀刻。  7) Dry etching the GaN N electrode.
8、 如权利要求 7所述的制造高亮度氮化镓发光二极管芯片的方法, 其特征在于: 与 ZnO透明导电层形成欧姆接触的焊线电极材料采用至少两 层高功函数金属。  8. A method of fabricating a high brightness gallium nitride light emitting diode chip according to claim 7, wherein: the wire electrode material forming an ohmic contact with the ZnO transparent conductive layer employs at least two layers of high work function metal.
9、 如权利要求 8所述的制造高亮度氮化镓发光二极管芯片的方法, 其特征在于: 所述芯片在惰性气体环境内, 在 200°C-300°C的温度下退火 5-30分钟。  9. The method of manufacturing a high brightness gallium nitride light emitting diode chip according to claim 8, wherein: said chip is annealed in an inert gas atmosphere at a temperature of 200 ° C to 300 ° C for 5 to 30 minutes. .
10、 如杈利要求 9所述的制造高亮度氮化镓发光二极管芯片的方法, 其特征在于: 在所述的 ZnO透明导电层表面生长一层氮化硅材料。  10. The method of manufacturing a high brightness gallium nitride light emitting diode chip according to claim 9, wherein: a silicon nitride material is grown on the surface of the ZnO transparent conductive layer.
11、 如权利要求 10所述的制造高亮度氮化镓发光二极管芯片的方法, 其特征在于: 在所述的步骤 3 )中, 发光二极管芯片在低压腔体内以每分钟 3.5°C的速度升温, 在 550°C的温度条件下退火 25分钟。  11. The method of manufacturing a high-brightness gallium nitride light-emitting diode chip according to claim 10, wherein in said step 3), the light-emitting diode chip is heated at a rate of 3.5 ° C per minute in the low-pressure chamber. Annealed at 550 ° C for 25 minutes.
PCT/CN2006/003421 2006-12-15 2006-12-15 Gan led chip and the method of the same WO2008071038A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2006/003421 WO2008071038A1 (en) 2006-12-15 2006-12-15 Gan led chip and the method of the same
TW096104177A TW200834957A (en) 2006-12-15 2007-02-05 GaN LED chip and the method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2006/003421 WO2008071038A1 (en) 2006-12-15 2006-12-15 Gan led chip and the method of the same

Publications (1)

Publication Number Publication Date
WO2008071038A1 true WO2008071038A1 (en) 2008-06-19

Family

ID=39511235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/003421 WO2008071038A1 (en) 2006-12-15 2006-12-15 Gan led chip and the method of the same

Country Status (2)

Country Link
TW (1) TW200834957A (en)
WO (1) WO2008071038A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102499308B1 (en) * 2017-08-11 2023-02-14 서울바이오시스 주식회사 Light emitting diode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510765A (en) * 2002-12-26 2004-07-07 炬鑫科技股份有限公司 Gallium nitride of group III-V compound semiconductor LED luminating device and manufacture thereof
US6992331B2 (en) * 2002-11-06 2006-01-31 Supernova Optoelectronics Corp. Gallium nitride based compound semiconductor light-emitting device
CN1753199A (en) * 2004-09-23 2006-03-29 璨圆光电股份有限公司 Gallium nitride series luminous diode
CN1259735C (en) * 2002-12-17 2006-06-14 夏普株式会社 Lighting diode
CN1851941A (en) * 2006-04-30 2006-10-25 普光科技(广州)有限公司 Method for making gallium nitride light-emitting-diode chip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992331B2 (en) * 2002-11-06 2006-01-31 Supernova Optoelectronics Corp. Gallium nitride based compound semiconductor light-emitting device
CN1259735C (en) * 2002-12-17 2006-06-14 夏普株式会社 Lighting diode
CN1510765A (en) * 2002-12-26 2004-07-07 炬鑫科技股份有限公司 Gallium nitride of group III-V compound semiconductor LED luminating device and manufacture thereof
CN1753199A (en) * 2004-09-23 2006-03-29 璨圆光电股份有限公司 Gallium nitride series luminous diode
CN1851941A (en) * 2006-04-30 2006-10-25 普光科技(广州)有限公司 Method for making gallium nitride light-emitting-diode chip

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG X. ET AL.: "DEVELOPMENT ON THEOREIS AND EXPERIMENTS OF P-TYPE ZNO", MATERIALS REVIEW, vol. 20, no. 1, January 2006 (2006-01-01), pages 104 - 107 *
XU X. ET AL.: "THE RESEARCH PROGRESS OF P-TYPE ZNO AND ZNO P-N HOMOJUNCTIONS", vol. 34, no. 2, 28 February 2003 (2003-02-28), pages 121 - 124 *

Also Published As

Publication number Publication date
TW200834957A (en) 2008-08-16

Similar Documents

Publication Publication Date Title
US9472727B2 (en) Vertical structure LEDs
US20070246700A1 (en) Light Emitting Device and Method of Manufacturing the Same
TWI359509B (en) Semiconductor light emitting element, process for
TWI363440B (en) Light-emitting device, light-emitting diode and method for forming a light-emitting device
TWI253770B (en) Light emitting diode and manufacturing method thereof
CN104157765B (en) A kind of light emitting semiconductor device and preparation method thereof
CN105140368B (en) A kind of high performance lED chip and preparation method thereof
CN102709426A (en) Manufacture method of GaN (gallium nitride)-based LED (light emitting diode) chip with roughened surface
WO2015003564A1 (en) Gallium nitride based light emitting diode and manufacturing method thereof
TW201104913A (en) Vertical light-emitting diode and manufacture method thereof
US20070252165A1 (en) Light emitting device having vertical structure and method for manufacturing the same
CN108767083B (en) Stress-adjustable vertical-structure LED chip and preparation method thereof
KR20050123028A (en) Light emitting diode with vertical structure and method manufacturing for the same
US20110133159A1 (en) Semiconductor light-emitting device with passivation in p-type layer
Guo et al. High-performance GaN-based light-emitting diodes on patterned sapphire substrate with a novel patterned SiO2/Al2O3 passivation layer
US20050236630A1 (en) Transparent contact for light emitting diode
WO2008071038A1 (en) Gan led chip and the method of the same
TWI281758B (en) Transparent positive electrode
CN105742441A (en) GaN-based LED chip with passivating layer roughening structure and production method therefor
CN109755356B (en) Method for improving built-in ohmic contact performance of GaN-based light emitting diode
Kuo et al. Enhanced Light Output of AlGaInP Light Emitting Diodes Using an Indium–Zinc Oxide Transparent Conduction Layer and Electroplated Metal Substrate
CN108511568B (en) Vertical-structure LED chip with double-insertion-layer reflector structure and preparation method thereof
TWI431812B (en) Light emitting diode with zno nanotips and manufacturing method thereof
CN114883456A (en) ZnO micron line heterojunction high-brightness red light emitting diode and manufacturing method thereof
CN116632124A (en) LED chip and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06828335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06828335

Country of ref document: EP

Kind code of ref document: A1