WO2008068959A1 - Air supply unit - Google Patents

Air supply unit Download PDF

Info

Publication number
WO2008068959A1
WO2008068959A1 PCT/JP2007/070046 JP2007070046W WO2008068959A1 WO 2008068959 A1 WO2008068959 A1 WO 2008068959A1 JP 2007070046 W JP2007070046 W JP 2007070046W WO 2008068959 A1 WO2008068959 A1 WO 2008068959A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll chamber
winding angle
blower
line
range
Prior art date
Application number
PCT/JP2007/070046
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Fujimoto
Toshikatsu Mori
Toshiaki Tsutsumi
Original Assignee
Valeo Thermal Systems Japan Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermal Systems Japan Corporation filed Critical Valeo Thermal Systems Japan Corporation
Publication of WO2008068959A1 publication Critical patent/WO2008068959A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00457Ventilation unit, e.g. combined with a radiator
    • B60H1/00471The ventilator being of the radial type, i.e. with radial expulsion of the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/4233Fan casings with volutes extending mainly in axial or radially inward direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H2001/006Noise reduction

Definitions

  • the present invention relates to a blower unit used for a vehicle air conditioner and the like, and more particularly to reduction of a scroll chamber.
  • the scroll chamber is configured to expand not only in the radial direction but also in the axial direction toward the blower discharge port of the casing, so that the size in the axial direction is increased (rate ) Is changed so that the amount of expansion (rate) of the cross-sectional area of the scroll chamber becomes substantially constant with respect to the scroll winding angle (see Patent Document 1).
  • rate rate
  • the size of the scroll chamber in the radial direction can be reduced while maintaining the air feeding efficiency and quietness.
  • Patent Document 1 JP 2002-202098
  • Patent Document 1 the enlargement ratio of the cross-sectional area of the scroll chamber is made substantially constant with respect to the wrap angle (Patent Document 1, Paragraph 0036). (See Figure 4, “Line ⁇ ”).
  • the expansion of the scroll chamber in the axial direction starts immediately after the scroll starts to roll (near the tongue) (see the same document, paragraph 0027, Fig. 3, "Line X").
  • an object of the present invention is to maintain a blowing capacity (efficiency), quietness, etc. at a higher level than before in designing a reduced scroll chamber.
  • the present invention for solving the above problems is a blower unit that is designed so that the size of a scroll chamber having a spiral shape and through which an air flow generated by a blower flows is expanded in a radial direction and an axial direction.
  • the scroll chamber's cross-sectional area enlargement ratio power changes in a range greater than or equal to the first winding angle to be larger than the enlargement ratio in a range smaller than the first winding angle, and the scroll chamber's axial dimensional force It expands in the range beyond the first winding angle (Claim 1).
  • the enlargement ratio of the cross-sectional area of the scroll chamber changes greatly starting from the first winding angle.
  • the size of the scroll chamber in the axial direction 1S expands in the range equal to or larger than the first winding angle, and does not expand in the range smaller than the first winding angle. That is, up to the first winding angle of the scroll starting force and the first winding angle, the cross-sectional area of the scroll chamber is enlarged only in the radial direction.
  • the internal air flow in which the cross-sectional area of the scroll chamber does not rapidly increase from the beginning of winding is more stable than in the conventional structure. Therefore, when designing a reduced scroll chamber, the blowing capacity (efficiency), quietness It becomes possible to maintain the property etc. at a higher level than before.
  • the shape of the scroll chamber having a spiral shape and through which the air flow generated by the blower circulates is a characteristic line (D ),
  • the characteristic line (D) has the same expansion ratio as the reference line (A) set based on the predetermined blower diameter and the first divergence angle.
  • Line (C) and a reduced line (B) set based on a predetermined blower diameter and a second spread angle smaller than the first spread angle, and the scroll chamber winding angle is In a range smaller than the first winding angle, it overlaps with the reduction line (B), and the scroll chamber is wound.
  • the corner overlaps the quasi-reference line (c) in the range of the first winding angle or more, and the axial dimensional force of the scroll chamber expands in the range of the first winding angle or more. (Claim 2).
  • the characteristic line is indicated as D
  • the reference line is indicated as A
  • the quasi-reference line is indicated as C
  • the reduced line is indicated as B.
  • the quasi-reference line C is obtained by translating the reference line A so that it intersects the reduction line B at the first winding angle ⁇ .
  • the characteristic line D used for the design of the scroll shape overlaps with the reduction line B in the range where the winding angle is smaller than ⁇ , and overlaps with the quasi-reference line C in the range beyond ⁇ .
  • the shape of the scroll chamber is designed based on the enlargement ratio of the reduction line B set with a small divergence angle in the range where the winding angle is smaller than ⁇ , and in the range where the winding angle is more than ⁇ , It is designed based on the magnification of reference line A set with a large divergence angle.
  • the magnification ratio power of the cross-sectional area of the scroll chamber greatly changes at the first winding angle ⁇ .
  • the axial dimension of the scroll chamber is not expanded to the first winding angle ⁇ .
  • the blowing capacity (efficiency) It is possible to maintain quietness at a higher level than before.
  • the blower diameter and divergence angle of the reference line (quasi-reference line) and the reduction line the blower diameter and divergence angle of the reference line (quasi-reference line) and the reduction line, the optimum scroll shape at each blower diameter and divergence angle can be obtained by calculation, reducing man-hours, etc. Is possible.
  • the first winding angle in the configuration according to claim 1 or 2 is preferably 150 ° to 170 ° (claim). 3)
  • the enlargement ratio of the cross-sectional area of the scroll chamber varies greatly at the first winding angle (150 ° to 170 °), and the axial dimension of the scroll chamber Is expanded only in the range of the first winding angle or more, so that the internal air flow that the cross-sectional area of the scroll chamber does not rapidly expand from the start of winding is more stable than the conventional structure.
  • the ventilation capacity efficiency
  • quietness etc. It becomes possible to maintain at a higher level than ever.
  • the blower diameter and divergence angle of the reference line (quasi-reference line) and the reduction line are selected as appropriate so The optimal scroll shape can be calculated, and man-hours can be reduced.
  • FIG. 1 is a cross-sectional view showing a structure of a blower unit according to the present embodiment.
  • FIG. 2 is a view showing the features of the scroll chamber according to the present embodiment, where (a) is a plan view and (b) is a front view.
  • FIG. 3 (a) is a graph showing the relationship between the winding angle and the cross-sectional area of the air passage, with respect to the reference line, reduction line, and quasi-reference line, and (b) is the air angle and cross-sectional area of the air passage. Is a graph showing the relationship between the reference line, the reduction line, the quasi-reference line, and the characteristic line.
  • FIG. 4 is a graph showing the relationship between the axial dimension and the winding angle of the scroll chamber (air passage) according to this example.
  • FIG. 5 is a graph showing the relationship between the air flow rate, the total pressure, the blower speed, the sound pressure, and the current used in the scroll chamber according to the present embodiment.
  • FIG. 1 shows a blower unit 1 that constitutes a part of the HVAC unit.
  • the blower unit 1 includes a casing 2, a motor 3, and a blower 4.
  • the casing 2 is made of a material such as resin, and houses the motor 3, blower 4, and other necessary mechanisms therein.
  • the casing 2 generally consists of two parts 2a and 2b, and is configured to sandwich the mechanism from above and below in the figure.
  • the casing 2 includes a motor installation unit 10 where the motor 3 is installed, a blower installation unit 11 where the blower 4 is installed, an air flow path 12 serving as an air flow path through the blower 4, and an upper part of the blower 4 (the motor installation unit Open to the center of the blower 4 at a position opposite to the blower 10) and open to the suction port 13 communicating with one end of the air supply path 12 through the blower installation part 11 and to the other end of the air supply path 12.
  • a discharge port 14 is formed.
  • a scroll chamber 20 is configured by the blower installation part 11 and the air passage 12.
  • the motor 3 is a drive source for rotating the blower 4, and includes a main body portion 25 that houses an electromagnet, a rotor, and the like, and a drive shaft 26 that transmits a driving force generated in the main body portion 25 to the outside. It is configured with The main body 25 is fixed to the motor installation part 10 formed in the casing 2, and the blower 4 is fixed to the drive shaft 26. In this embodiment, screw grooves are formed in the drive shaft 26.
  • the motor 3 is driven by a current from a vehicle-mounted battery, and is controlled by a control signal from a predetermined control unit.
  • the blower 4 generates an air flow by rotating with the driving force of the motor 3.
  • the blower 4 faces the motor 3 and has a bottom face 30 having a substantially triangular pyramid shape, a plurality of wing parts 31 erected along the outer edge of the bottom face part 30, and the suction port 13 and the upper end of each wing part 32. It has a ring-shaped upper surface portion 32 to be connected.
  • a boss portion 35 in which a screw groove is formed is formed at the top of the triangular pyramid shape of the lower surface portion 30, and the screw groove of the boss portion 35 and the motor 3 After screwing the screw groove of the drive shaft 26, the end of the drive shaft 26 protruding from the boss portion 25 is tightened by the bolt 36 to fix the motor 3 and the blower 4.
  • the central portion 32 Since the upper surface portion 32 has a ring shape, the central portion thereof is an opening 40, so that air from the suction port 13 is taken into the central portion of the blower 4.
  • Each wing part 31 is installed at an angle with respect to the radial direction of the blower 4. With the above configuration, when the blower 4 rotates, an air flow is generated substantially radially from the center of the blower 4.
  • FIGS. 2 to 4 show the shape characteristics of the scroll chamber 20 of the blower unit 1 according to the present invention.
  • the cross-sectional area of the air passage 12 constituting the scroll chamber 20 is designed to gradually increase from the tongue portion 19 toward the outlet 13.
  • the enlargement ratio of the cross-sectional area of the air passage 12 with respect to the winding angle changes so as to increase from a first winding angle ⁇ described later.
  • the radial dimension D1 of the air passage 12 (see FIG. 2 (a)) is expanded from the tongue portion 19 to the discharge port 13 as in the prior art, and the shaft The direction dimension D2 (see Fig. 2 (b)) extends from the first winding angle ⁇ to the discharge port 13 and is constant in the range of winding angles 0 ° to ⁇ .
  • the preferred range of the first winding angle ⁇ is 150 ° to 170.
  • FIG. 3 (a) shows a graph showing the relationship between the winding angle of the air passage and the cross-sectional area.
  • Solid line A is data in the case where the scroll shape of the air passage 12 is a blower diameter of 140 mm and a spread angle of 4.5 °, and this is referred to as a reference line.
  • the broken line B is the data when the blower diameter is 140 mm and the spread angle is 2.8 °, and this is called the reduction line.
  • the scroll shape related to the reference line A is said to be excellent in terms of air blowing capacity, quietness, and the like, and is an example of a design that is generally used when there is no particular restriction on the in-vehicle space.
  • the scroll shape with a blower diameter of 140mm and a wide S angle of 2.8 ° related to the reduction line B is an example of a design that can be made to meet the restrictions on in-vehicle space.
  • the alternate long and short dash line C is obtained by translating the reference line A so that the reference line A and the reduction line B intersect at the position of the winding angle ⁇ , and is called a quasi-reference line.
  • the scroll chamber 20 according to the present embodiment is designed according to a characteristic line indicated by a thick line D in Fig. 3 (b).
  • the characteristic line D has the same characteristics as the contraction line B in the range up to the winding angle 0 ° force ⁇ , and the same characteristics as the quasi-reference line C in the range beyond the winding angle ⁇ . It is what has. That is, in the scroll chamber 20 according to the present invention, the enlargement ratio of the cross-sectional area greatly changes at the winding angle ⁇ .
  • the axial dimension D2 of the air passage 12 is constant in the range from the winding angle 0 ° to ⁇ , as shown by the solid line E in Fig. 4, and in the range above the winding angle ⁇ .
  • the dashed-dotted line 9 in FIG. 1 is not enlarged in the axial direction! / Is a virtual line indicating the discharge port in the case). That is, the expansion of the air passage 12 in this configuration is performed only by increasing the radial dimension D1 in the range up to the winding angle 0 ° force, and ⁇ , and in the range beyond the winding angle ⁇ , the radial direction is increased. This is done by expanding both the dimension D1 and the axial dimension D2.
  • the entire scroll chamber 20 can be reduced in the radial direction rather than the reference scroll shape (blower diameter 140mm, spread angle 4.5 ⁇ 5 °) indicated by the reference line A above. Since the cross-sectional area (total volume) of the air passage 12 can be made larger than the scroll shape (blower diameter 140mm, spread angle 2.8 °) shown by the reduction line B, the air blowing capacity or efficiency can be reduced. Can be kept high. In addition, since the expansion of the dimension D2 in the axial direction does not start until the winding angle ⁇ , turbulent flow and noise are generated that do not cause the cross-sectional area of the air passage 12 to rapidly increase from the vicinity of the tongue portion 19 as in the conventional structure. It has a structure that is difficult to do.
  • Table 1 below shows a scroll chamber 20 having the shape of the characteristic line D according to the present embodiment (this configuration) and a scroll chamber having the shape of the reduction line B (blower diameter 140 mm, spread angle 2). It is a performance comparison with 8 °). As shown in this table, this configuration exceeds all of the total pressure, power consumption, total efficiency, noise, and specific noise when using high speed (480m 3 / h), and when using low speed ( Even at 330 m 3 / h), significant improvements are seen in noise and specific noise.
  • FIG. 5 shows the relationship between the amount of air blown in the blower unit 1 according to this embodiment and the total pressure, blower rotational speed, or sound pressure. As shown in the figure, the sound pressure is kept almost constant even when the air flow increases. From this, the blower unit 1 according to the present embodiment is It turns out that it has sufficient silence.
  • the blower diameter of reference line A (quasi-reference line C) is 140 mm and the spread angle is 4.5 °
  • the blower diameter of reduction line B is 140 mm
  • the spread angle is 2.8 °.
  • Force The present invention is not limited to this, and the blower diameter and divergence angle of each line can be appropriately selected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Air supply capacity, silent properties, and the like, can be sustained at higher levels as compared with the prior art when a reduced scroll chamber is designed. In an air supply unit designed such that the dimensions of a spiral scroll chamber (20) letting air flow generated by a fan (4) pass are enlarged in the radial and axial directions, enlargement ratio of cross-sectional area of the scroll chamber (20) varies to become larger in the range of first winding angle ϑ or above than the enlargement ratio in the range smaller than the first winding angle ϑ, and the axial dimension of the scroll chamber (20) is enlarged in the range of first winding angle ϑ or above.

Description

明 細 書  Specification
送風ユニット  Blower unit
技術分野  Technical field
[0001] 本発明は、車両用空調装置等に用いられる送風ユニットに関し、特にスクロール室 の縮小に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a blower unit used for a vehicle air conditioner and the like, and more particularly to reduction of a scroll chamber.
背景技術  Background art
[0002] 車両用空調装置の設計において、 HVACユニットの小型化は、常に求められてい る課題である力 HVACユニットの小型化を図る方法の一つとして、ブロワが設置さ れるスクロール室を縮小することが考えられる。スクロール室を縮小する際には、送風 路の最適形状を変化させることに起因する送風能力の低下や乱気流による騒音等 が問題となる。そこで、送風能力や静粛性を損なうことなぐスクロール室を縮小でき る送風路形状を設計することが重要となる。  [0002] In designing a vehicle air conditioner, downsizing the HVAC unit is a constantly required issue. One of the ways to reduce the size of the HVAC unit is to reduce the scroll chamber in which the blower is installed. It is possible. When reducing the size of the scroll chamber, there are problems such as a reduction in blowing capacity and noise due to turbulence caused by changing the optimum shape of the blowing path. Therefore, it is important to design an air passage shape that can reduce the scroll chamber without impairing the air blowing capacity and quietness.
[0003] 上記のような問題に対処するものとして、スクロール室をケーシングの送風吐出口 へ向かって径方向だけでなく軸方向にも拡大するように構成し、軸方向の寸法の拡 大幅(率)を変化させ、スクロール室の断面積の拡大量 (率)がスクロール巻き角に対 して略一定となるようにする発明が開示されている(特許文献 1参照)。これにより、送 風効率や静粛性を保ちながらスクロール室の径方向の大きさを小さくすることができ るとされている。 [0003] In order to deal with the above problems, the scroll chamber is configured to expand not only in the radial direction but also in the axial direction toward the blower discharge port of the casing, so that the size in the axial direction is increased (rate ) Is changed so that the amount of expansion (rate) of the cross-sectional area of the scroll chamber becomes substantially constant with respect to the scroll winding angle (see Patent Document 1). As a result, it is said that the size of the scroll chamber in the radial direction can be reduced while maintaining the air feeding efficiency and quietness.
特許文献 1 :特開 2002— 202098号公報  Patent Document 1: JP 2002-202098
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 上記特許文献 1に開示される発明にお!/、ては、スクロール室の断面積の拡大率が 巻き角に対して略一定となるようになされている(同文献 1、段落 0036、図 4「折れ線 α」参照)。また、スクロール室の軸方向への拡大は、スクロールの巻き始め(舌部付 近)から直ちに開始される構造となっている(同文献、段落 0027、図 3「折れ線 X」参 昭) [0004] In the invention disclosed in Patent Document 1 above, the enlargement ratio of the cross-sectional area of the scroll chamber is made substantially constant with respect to the wrap angle (Patent Document 1, Paragraph 0036). (See Figure 4, “Line α”). In addition, the expansion of the scroll chamber in the axial direction starts immediately after the scroll starts to roll (near the tongue) (see the same document, paragraph 0027, Fig. 3, "Line X").
[0005] しかしながら、上記従来発明にお!/、ては、スクロール室の断面積の拡大率が全巻き 角範囲において略一定であると共に、スクロール室の軸方向の寸法の拡大が舌部付 近から直ちに開始されることにより、スクロール室の断面積が巻き初めから急激に拡 大し、乱気流が発生しやすい構造であったため、送風能力(効率)や静粛性の面で 改善の余地があった。 [0005] However, according to the above-mentioned conventional invention! In addition to being substantially constant in the angular range, the axial dimension of the scroll chamber starts to increase immediately from the vicinity of the tongue. Because of its easy structure, there was room for improvement in terms of air blowing capacity (efficiency) and quietness.
[0006] そこで、本発明は、縮小されたスクロール室を設計する上で、送風能力(効率)、静 粛性等を従来よりも高いレベルで維持できるようにすることを目的とする。  [0006] Therefore, an object of the present invention is to maintain a blowing capacity (efficiency), quietness, etc. at a higher level than before in designing a reduced scroll chamber.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題の解決を図る本発明は、渦巻形状を有し送風機により発生された空気流 が流通するスクロール室の寸法が、径方向及び軸方向に拡大するように設計された 送風ユニットにおいて、前記スクロール室の断面積の拡大率力 第 1の巻き角以上の 範囲において該第 1の巻き角より小さい範囲の拡大率より大きくなるように変化すると 共に、前記スクロール室の軸方向の寸法力 前記第 1の巻き角以上の範囲において 拡大することを特徴とするものである(請求項 1)。  [0007] The present invention for solving the above problems is a blower unit that is designed so that the size of a scroll chamber having a spiral shape and through which an air flow generated by a blower flows is expanded in a radial direction and an axial direction. The scroll chamber's cross-sectional area enlargement ratio power changes in a range greater than or equal to the first winding angle to be larger than the enlargement ratio in a range smaller than the first winding angle, and the scroll chamber's axial dimensional force It expands in the range beyond the first winding angle (Claim 1).
[0008] 上記のように、本発明においては、第 1の巻き角を起点としてスクロール室の断面積 の拡大率が大きく変化する。また、本発明においては、スクロール室の軸方向の寸法 1S 第 1の巻き角以上の範囲において拡大し、第 1の巻き角より小さい範囲において は拡大しない。即ち、スクロールの巻き始め力、ら前記第 1の巻き角までは、スクロール 室の断面積の拡大は径方向の拡大のみによってなされる。これにより、スクロール室 の断面積が巻き始めから急激に拡大することがなぐ内部の空気流が従来構造よりも 安定するため、縮小されたスクロール室を設計する上で、送風能力(効率)、静粛性 等を従来よりも高いレベルで維持することが可能となる。 [0008] As described above, in the present invention, the enlargement ratio of the cross-sectional area of the scroll chamber changes greatly starting from the first winding angle. Further, in the present invention, the size of the scroll chamber in the axial direction 1S expands in the range equal to or larger than the first winding angle, and does not expand in the range smaller than the first winding angle. That is, up to the first winding angle of the scroll starting force and the first winding angle, the cross-sectional area of the scroll chamber is enlarged only in the radial direction. As a result, the internal air flow in which the cross-sectional area of the scroll chamber does not rapidly increase from the beginning of winding is more stable than in the conventional structure. Therefore, when designing a reduced scroll chamber, the blowing capacity (efficiency), quietness It becomes possible to maintain the property etc. at a higher level than before.
[0009] また、本発明は、渦巻形状を有し送風機により発生された空気流が流通するスクロ ール室の形状が、該スクロール室の断面積と巻き角との関係を示す特性線 (D)に基 づいて設計される送風ユニットにおいて、前記特性線 (D)は、所定のブロワ径及び第 1の広がり角に基づいて設定された基準線 (A)と同一の拡大率を有する準基準線( C)と、所定のブロワ径及び前記第 1の広がり角より小さい第 2の広がり角に基づいて 設定された縮小線 (B)とに基づいて作成され、前記スクロール室の巻き角が前記第 1 の巻き角より小さい範囲において前記縮小線(B)と重なり、前記スクロール室の巻き 角が前記第 1の巻き角以上の範囲において前記準基準線 (c)と重なり、また前記ス クロール室の軸方向の寸法力 前記第 1の巻き角以上の範囲において拡大すること を特徴とするものである(請求項 2)。 [0009] Further, according to the present invention, the shape of the scroll chamber having a spiral shape and through which the air flow generated by the blower circulates is a characteristic line (D ), The characteristic line (D) has the same expansion ratio as the reference line (A) set based on the predetermined blower diameter and the first divergence angle. Line (C) and a reduced line (B) set based on a predetermined blower diameter and a second spread angle smaller than the first spread angle, and the scroll chamber winding angle is In a range smaller than the first winding angle, it overlaps with the reduction line (B), and the scroll chamber is wound. The corner overlaps the quasi-reference line (c) in the range of the first winding angle or more, and the axial dimensional force of the scroll chamber expands in the range of the first winding angle or more. (Claim 2).
[0010] 図 3にお!/、て、上記特性線は D、基準線は A、準基準線は C、縮小線は Bとして示さ れている。準基準線 Cは、基準線 Aを第 1の巻き角 Θにおいて縮小線 Bと交わるよう に平行移動させたものである。そして、スクロール形状の設計に用いられる特性線 D は、巻き角が Θより小さい範囲において縮小線 Bと重なり、 Θ以上の範囲において準 基準線 Cと重なる。これにより、スクロール室の形状は、巻き角が Θより小さい範囲に おいては、小さな広がり角をもって設定された縮小線 Bの拡大率に基づいて設計され 、巻き角が Θ以上の範囲においては、大きな広がり角をもって設定された基準線 Aの 拡大率に基づいて設計される。即ち、スクロール室の断面積の拡大率力 第 1の巻き 角 Θにおいて大きく変化する。また、上記請求項 1の構成と同様に、スクロール室の 軸方向の寸法が、第 1の巻き角 Θまで拡大されない構成となる。これにより、スクロー ル室の断面積が巻き始めから急激に拡大することがなぐ内部の空気流が従来構造 よりも安定するため、縮小されたスクロール室を設計する上で、送風能力(効率)、静 粛性等を従来よりも高いレベルで維持することが可能となる。また、基準線 (準基準線 )及び縮小線のブロワ径、広がり角を適宜選択することにより、各ブロワ径、広がり角 における最適なスクロール形状を、計算上で求めることができ、工数の削減等が可能 となる。 [0010] In FIG. 3, the characteristic line is indicated as D, the reference line is indicated as A, the quasi-reference line is indicated as C, and the reduced line is indicated as B. The quasi-reference line C is obtained by translating the reference line A so that it intersects the reduction line B at the first winding angle Θ. The characteristic line D used for the design of the scroll shape overlaps with the reduction line B in the range where the winding angle is smaller than Θ, and overlaps with the quasi-reference line C in the range beyond Θ. As a result, the shape of the scroll chamber is designed based on the enlargement ratio of the reduction line B set with a small divergence angle in the range where the winding angle is smaller than Θ, and in the range where the winding angle is more than Θ, It is designed based on the magnification of reference line A set with a large divergence angle. In other words, the magnification ratio power of the cross-sectional area of the scroll chamber greatly changes at the first winding angle Θ. Further, similarly to the configuration of claim 1, the axial dimension of the scroll chamber is not expanded to the first winding angle Θ. As a result, the internal air flow that the cross-sectional area of the scroll chamber does not rapidly increase from the beginning of winding is more stable than the conventional structure. Therefore, in designing a reduced scroll chamber, the blowing capacity (efficiency), It is possible to maintain quietness at a higher level than before. In addition, by appropriately selecting the blower diameter and divergence angle of the reference line (quasi-reference line) and the reduction line, the optimum scroll shape at each blower diameter and divergence angle can be obtained by calculation, reducing man-hours, etc. Is possible.
[0011] また、本発明者による調査の結果、上記請求項 1又は 2記載の構成における前記 第 1の巻き角は、 150° 〜; 170° であることが好ましいことがわかっている(請求項 3) Further, as a result of an investigation by the present inventor, it has been found that the first winding angle in the configuration according to claim 1 or 2 is preferably 150 ° to 170 ° (claim). 3)
Yes
発明の効果  The invention's effect
[0012] 以上のように、本発明によれば、スクロール室の断面積の拡大率が第 1の巻き角(1 50° 〜; 170° )において大きく変化すると共に、スクロール室の軸方向の寸法が該 第 1の巻き角以上の範囲でのみ拡大される構成としたことにより、スクロール室の断面 積が巻き始めから急激に拡大することがなぐ内部の空気流が従来構造よりも安定す るため、縮小されたスクロール室を設計する上で、送風能力(効率)、静粛性等を従 来よりも高いレベルで維持することが可能となる。また、スクロール形状を特性線に基 づレ、て設計する場合には、上記基準線 (準基準線)及び縮小線のブロワ径、広がり 角を適宜選択することにより、各ブロワ径、広がり角における最適なスクロール形状を 計算上で求めることができ、工数の削減等が可能となる。 As described above, according to the present invention, the enlargement ratio of the cross-sectional area of the scroll chamber varies greatly at the first winding angle (150 ° to 170 °), and the axial dimension of the scroll chamber Is expanded only in the range of the first winding angle or more, so that the internal air flow that the cross-sectional area of the scroll chamber does not rapidly expand from the start of winding is more stable than the conventional structure. In designing a scroll room with a reduced size, follow the ventilation capacity (efficiency), quietness, etc. It becomes possible to maintain at a higher level than ever. When designing the scroll shape based on the characteristic line, the blower diameter and divergence angle of the reference line (quasi-reference line) and the reduction line are selected as appropriate so The optimal scroll shape can be calculated, and man-hours can be reduced.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]本実施例に係る送風ユニットの構造を示す断面図である。  FIG. 1 is a cross-sectional view showing a structure of a blower unit according to the present embodiment.
[図 2]本実施例に係るスクロール室の特徴を示す図であり、(a)は平面図、(b)は正面 図である。  FIG. 2 is a view showing the features of the scroll chamber according to the present embodiment, where (a) is a plan view and (b) is a front view.
[図 3] (a)は送風路の巻き角と断面積との関係を、基準線、縮小線、及び準基準線に ついて示すグラフであり、(b)は送風路の巻き角と断面積との関係を、基準線、縮小 線、準基準線、及び特性線について示すグラフである。  [Fig. 3] (a) is a graph showing the relationship between the winding angle and the cross-sectional area of the air passage, with respect to the reference line, reduction line, and quasi-reference line, and (b) is the air angle and cross-sectional area of the air passage. Is a graph showing the relationship between the reference line, the reduction line, the quasi-reference line, and the characteristic line.
[図 4]本実施例に係るスクロール室(送風路)の軸方向の寸法と巻き角との関係を示 すグラフである。  FIG. 4 is a graph showing the relationship between the axial dimension and the winding angle of the scroll chamber (air passage) according to this example.
[図 5]本実施例に係るスクロール室における送風量と、全圧、ブロワ速度、音圧、及び 使用電流との関係を示すグラフである。  FIG. 5 is a graph showing the relationship between the air flow rate, the total pressure, the blower speed, the sound pressure, and the current used in the scroll chamber according to the present embodiment.
符号の説明  Explanation of symbols
[0014] 1 送風ユニット [0014] 1 Blower unit
2 ケーシング  2 Casing
3 モータ  3 Motor
4 ブロワ  4 Blower
12 送風路  12 Air duct
13 吸入口  13 Suction port
14 吐出口  14 Discharge port
19 舌部  19 Tongue
20 スクロール室  20 Scroll room
A 基準線  A Reference line
B 縮小線  B reduction line
C 準基準線 D 特性線 C quasi-reference line D Characteristic line
Dl 径方向寸法  Dl radial dimension
D2 軸方向寸法  D2 Axial dimension
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、添付した図面を参照して本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
実施例 1  Example 1
[0016] 図 1に示すのは、 HVACユニットの一部を構成する送風ユニット 1であり、この送風 ユニット 1は、ケーシング 2、モータ 3、ブロワ 4を有して構成される。  FIG. 1 shows a blower unit 1 that constitutes a part of the HVAC unit. The blower unit 1 includes a casing 2, a motor 3, and a blower 4.
[0017] ケーシング 2は、樹脂等の素材からなり、その内部にモータ 3、ブロワ 4、その他必要 な機構を収納する。ケーシング 2は、 2つのパーツ 2a, 2b力、らなり、図中上下方向か ら上記機構を挟み込むように構成されるものが一般的である。ケーシング 2には、モ ータ 3が設置されるモータ設置部 10、ブロワ 4が設置されるブロワ設置部 11、ブロワ 4 による空気流の通路となる送風路 12、ブロワ 4の上部(モータ設置部 10に対して反 対側の位置)においてブロワ 4の中心部に向けて開口しブロワ設置部 11を通して送 風路 12の一端側と連通する吸入口 13、送風路 12の他端側に開口する吐出口 14が 形成されている。ブロワ設置部 11と送風路 12とにより、スクロール室 20が構成されて いる。  The casing 2 is made of a material such as resin, and houses the motor 3, blower 4, and other necessary mechanisms therein. The casing 2 generally consists of two parts 2a and 2b, and is configured to sandwich the mechanism from above and below in the figure. The casing 2 includes a motor installation unit 10 where the motor 3 is installed, a blower installation unit 11 where the blower 4 is installed, an air flow path 12 serving as an air flow path through the blower 4, and an upper part of the blower 4 (the motor installation unit Open to the center of the blower 4 at a position opposite to the blower 10) and open to the suction port 13 communicating with one end of the air supply path 12 through the blower installation part 11 and to the other end of the air supply path 12. A discharge port 14 is formed. A scroll chamber 20 is configured by the blower installation part 11 and the air passage 12.
[0018] モータ 3は、ブロワ 4を回転させるための駆動源であり、電磁石、ロータ等を収納す る本体部 25と、本体部 25内で発生した駆動力を外部に伝達する駆動軸 26とを有し て構成される。本体部 25はケーシング 2に形成されたモータ設置部 10に固定され、 駆動軸 26にはブロワ 4が固定される。この実施例においては、駆動軸 26に螺子溝が 形成されている。このモータ 3は、車載バッテリからの電流により駆動され、所定のコ ントロールユニットからの制御信号により制御される。  [0018] The motor 3 is a drive source for rotating the blower 4, and includes a main body portion 25 that houses an electromagnet, a rotor, and the like, and a drive shaft 26 that transmits a driving force generated in the main body portion 25 to the outside. It is configured with The main body 25 is fixed to the motor installation part 10 formed in the casing 2, and the blower 4 is fixed to the drive shaft 26. In this embodiment, screw grooves are formed in the drive shaft 26. The motor 3 is driven by a current from a vehicle-mounted battery, and is controlled by a control signal from a predetermined control unit.
[0019] ブロワ 4は、モータ 3の駆動力により回転することにより、空気流を発生させるもので ある。ブロワ 4は、モータ 3と対面し略三角錐形状を有する下面部 30、下面部 30の外 縁に沿って立設する複数の翼部 31、吸入口 13と対面し各翼部 32の上端と連結する リング状の上面部 32を有して構成される。下面部 30の三角錐形状の頂部には、螺 子溝が形成されたボス部 35が形成されており、このボス部 35の螺子溝とモータ 3の 駆動軸 26の螺子溝とを螺合させた後、ボス部 25から突出した駆動軸 26の端部をボ ノレト 36により締め付けることにより、モータ 3とブロワ 4とが固定される。上面部 32はリ ング形状であるためその中心部が開口部 40となっており、吸入口 13からの空気がブ ロワ 4の中心部に取り込まれるようになされている。各翼部 31は、ブロワ 4の放射方向 に対して所定角度傾けられて設置されている。上記構成により、ブロワ 4が回転すると 、ブロワ 4の中心部から略放射状に空気流が発生する。 The blower 4 generates an air flow by rotating with the driving force of the motor 3. The blower 4 faces the motor 3 and has a bottom face 30 having a substantially triangular pyramid shape, a plurality of wing parts 31 erected along the outer edge of the bottom face part 30, and the suction port 13 and the upper end of each wing part 32. It has a ring-shaped upper surface portion 32 to be connected. A boss portion 35 in which a screw groove is formed is formed at the top of the triangular pyramid shape of the lower surface portion 30, and the screw groove of the boss portion 35 and the motor 3 After screwing the screw groove of the drive shaft 26, the end of the drive shaft 26 protruding from the boss portion 25 is tightened by the bolt 36 to fix the motor 3 and the blower 4. Since the upper surface portion 32 has a ring shape, the central portion thereof is an opening 40, so that air from the suction port 13 is taken into the central portion of the blower 4. Each wing part 31 is installed at an angle with respect to the radial direction of the blower 4. With the above configuration, when the blower 4 rotates, an air flow is generated substantially radially from the center of the blower 4.
[0020] 図 2〜図 4において、本発明に係る送風ユニット 1のスクロール室 20の形状的特徴 が示されている。スクロール室 20を構成する送風路 12の断面積は、舌部 19から吐 出口 13へ向かって徐々に拡大するように設計されている。  [0020] FIGS. 2 to 4 show the shape characteristics of the scroll chamber 20 of the blower unit 1 according to the present invention. The cross-sectional area of the air passage 12 constituting the scroll chamber 20 is designed to gradually increase from the tongue portion 19 toward the outlet 13.
[0021] 本実施例に係る構成においては、巻き角に対する送風路 12の断面積の拡大率が 、後述する第 1の巻き角 Θを起点として、大きくなるように変化する。更に、本実施例 に係る構成においては、送風路 12の径方向の寸法 D1 (図 2 (a)参照)が、従来のよう に舌部 19から吐出口 13まで拡大していると共に、その軸方向の寸法 D2 (図 2 (b)参 照)が、第 1の巻き角 Θを起点として吐出口 13まで拡大しており、巻き角 0° 〜 Θの 範囲においては一定となっている。第 1の巻き角 Θの好適な範囲は、 150° 〜; 170 である。  In the configuration according to the present embodiment, the enlargement ratio of the cross-sectional area of the air passage 12 with respect to the winding angle changes so as to increase from a first winding angle Θ described later. Further, in the configuration according to the present embodiment, the radial dimension D1 of the air passage 12 (see FIG. 2 (a)) is expanded from the tongue portion 19 to the discharge port 13 as in the prior art, and the shaft The direction dimension D2 (see Fig. 2 (b)) extends from the first winding angle Θ to the discharge port 13 and is constant in the range of winding angles 0 ° to Θ. The preferred range of the first winding angle Θ is 150 ° to 170.
[0022] 図 3 (a)において、送風路の巻き角と断面積との関係を示すグラフが示されている。  FIG. 3 (a) shows a graph showing the relationship between the winding angle of the air passage and the cross-sectional area.
実線 Aは、送風路 12のスクロール形状がブロワ径 140mm、広がり角 4. 5° の場合 のデータであり、これを基準線と称する。破線 Bは、ブロワ径 140mm、広がり角 2. 8 ° の場合のデータであり、これを縮小線と称する。基準線 Aに係るスクロール形状は 、送風能力、静粛性等の面で優れているとされ、車載スペースに特段の制約がない 場合に一般的に用いられる設計の一例である。縮小線 Bに係るブロワ径 140mm、広 力 Sり角 2. 8° のスクロール形状は、車載スペース上の制約に対応するためになされ る設計の一例である。また、一点鎖線 Cは、基準線 Aと縮小線 Bとが、巻き角 Θの位 置で交差するように基準線 Aを平行移動させたものであり、準基準線と称する。  Solid line A is data in the case where the scroll shape of the air passage 12 is a blower diameter of 140 mm and a spread angle of 4.5 °, and this is referred to as a reference line. The broken line B is the data when the blower diameter is 140 mm and the spread angle is 2.8 °, and this is called the reduction line. The scroll shape related to the reference line A is said to be excellent in terms of air blowing capacity, quietness, and the like, and is an example of a design that is generally used when there is no particular restriction on the in-vehicle space. The scroll shape with a blower diameter of 140mm and a wide S angle of 2.8 ° related to the reduction line B is an example of a design that can be made to meet the restrictions on in-vehicle space. The alternate long and short dash line C is obtained by translating the reference line A so that the reference line A and the reduction line B intersect at the position of the winding angle Θ, and is called a quasi-reference line.
[0023] そして、本実施例に係るスクロール室 20は、図 3 (b)中、太線 Dで示す特性線に従 つて設計される。特性線 Dは、巻き角 0° 力 Θまでの範囲において、前記縮小線 B と同一の特性を有し、巻き角 Θ以上の範囲において、前記準基準線 Cと同一の特性 を有するものである。即ち、本発明に係るスクロール室 20は、巻き角 Θにおいてその 断面積の拡大率が大きく変化してレ、る。 [0023] The scroll chamber 20 according to the present embodiment is designed according to a characteristic line indicated by a thick line D in Fig. 3 (b). The characteristic line D has the same characteristics as the contraction line B in the range up to the winding angle 0 ° force Θ, and the same characteristics as the quasi-reference line C in the range beyond the winding angle Θ. It is what has. That is, in the scroll chamber 20 according to the present invention, the enlargement ratio of the cross-sectional area greatly changes at the winding angle Θ.
[0024] 更に、送風路 12の軸方向の寸法 D2が、図 4中、実線 Eで示すように、巻き角 0° か ら Θまでの範囲においては一定であり、巻き角 Θ以上の範囲で拡大している(図 1中 一点鎖線 9は、軸方向への拡大がなされな!/、場合の吐出口を示す仮想線である)。 即ち、本構成における送風路 12の拡大は、巻き角 0° 力、ら Θまでの範囲においては 、径方向の寸法 D1の拡大のみによりなされ、巻き角 Θ以上の範囲においては、径方 向の寸法 D1及び軸方向の寸法 D2の両者の拡大によりなされている。  [0024] Furthermore, the axial dimension D2 of the air passage 12 is constant in the range from the winding angle 0 ° to Θ, as shown by the solid line E in Fig. 4, and in the range above the winding angle Θ. (The dashed-dotted line 9 in FIG. 1 is not enlarged in the axial direction! / Is a virtual line indicating the discharge port in the case). That is, the expansion of the air passage 12 in this configuration is performed only by increasing the radial dimension D1 in the range up to the winding angle 0 ° force, and Θ, and in the range beyond the winding angle Θ, the radial direction is increased. This is done by expanding both the dimension D1 and the axial dimension D2.
[0025] このような設計とすることにより、上記基準線 Aで示した基準となるスクロール形状( ブロワ径 140mm、広がり角 4· 5° )よりも、スクロール室 20全体を径方向に縮小する ことができると共に、縮小線 Bで示したスクロール形状(ブロワ径 140mm、広がり角 2 . 8° )よりも、送風路 12の断面積 (総容積)を大きくとることができるので、送風能力 又は効率を高く維持することができる。また、軸方向の寸法 D2の拡大が、巻き角 Θま で開始されないので、従来構造のように舌部 19付近から急激に送風路 12の断面積 が拡大することがなぐ乱流及び騒音が発生しにくい構造となっている。  [0025] By adopting such a design, the entire scroll chamber 20 can be reduced in the radial direction rather than the reference scroll shape (blower diameter 140mm, spread angle 4.5 · 5 °) indicated by the reference line A above. Since the cross-sectional area (total volume) of the air passage 12 can be made larger than the scroll shape (blower diameter 140mm, spread angle 2.8 °) shown by the reduction line B, the air blowing capacity or efficiency can be reduced. Can be kept high. In addition, since the expansion of the dimension D2 in the axial direction does not start until the winding angle Θ, turbulent flow and noise are generated that do not cause the cross-sectional area of the air passage 12 to rapidly increase from the vicinity of the tongue portion 19 as in the conventional structure. It has a structure that is difficult to do.
[0026] 下記、表 1に示すのは、本実施例に係る特性線 Dの形状を有するスクロール室 20 ( 本構成)と、縮小線 Bの形状を有するスクロール室(ブロワ径 140mm、広がり角 2. 8 ° )との性能比較である。この表で示すように、高回転使用時 (480m3/h)において は、全圧、消費電力、全効率、騒音、比騒音の全てについて、本構成が上回っており 、また低回転使用時(330m3/h)においても、騒音、比騒音について、大きな改善 がみられる。 [0026] Table 1 below shows a scroll chamber 20 having the shape of the characteristic line D according to the present embodiment (this configuration) and a scroll chamber having the shape of the reduction line B (blower diameter 140 mm, spread angle 2). It is a performance comparison with 8 °). As shown in this table, this configuration exceeds all of the total pressure, power consumption, total efficiency, noise, and specific noise when using high speed (480m 3 / h), and when using low speed ( Even at 330 m 3 / h), significant improvements are seen in noise and specific noise.
[0027] [表 1]  [0027] [Table 1]
Figure imgf000009_0001
Figure imgf000009_0001
[0028] また、図 5において、本実施例に係る送風ユニット 1における送風量と、全圧又はブ ロワ回転速度又は音圧との関係が示されている。同図が示すように、送風量が増加し ても、音圧は略一定に保たれている。このことから、本実施例に係る送風ユニット 1が 十分な静粛性を有するものであることがわかる。 [0028] FIG. 5 shows the relationship between the amount of air blown in the blower unit 1 according to this embodiment and the total pressure, blower rotational speed, or sound pressure. As shown in the figure, the sound pressure is kept almost constant even when the air flow increases. From this, the blower unit 1 according to the present embodiment is It turns out that it has sufficient silence.
尚、上記実施例においては、基準線 A (準基準線 C)のブロワ径を 140mm、広がり 角を 4. 5° とし、縮小線 Bのブロワ径を 140mm、広がり角を 2. 8° とした力 本発明 はこれに限られるものではなぐ各線のブロワ径、広がり角は適宜選択可能なもので ある。  In the above example, the blower diameter of reference line A (quasi-reference line C) is 140 mm and the spread angle is 4.5 °, the blower diameter of reduction line B is 140 mm, and the spread angle is 2.8 °. Force The present invention is not limited to this, and the blower diameter and divergence angle of each line can be appropriately selected.

Claims

請求の範囲 The scope of the claims
[1] 渦巻形状を有し送風機により発生された空気流が流通するスクロール室の寸法が、 径方向及び軸方向に拡大するように設計された送風ユニットにおいて、  [1] In a blower unit that has a spiral shape and is designed so that the dimensions of the scroll chamber in which the airflow generated by the blower flows is expanded in the radial direction and the axial direction.
前記スクロール室の断面積の拡大率力 s、第 1の巻き角以上の範囲において該第 1 の巻き角より小さい範囲の拡大率より大きくなるように変化すると共に、前記スクロー ル室の軸方向の寸法力 前記第 1の巻き角以上の範囲において拡大することを特徴 とする送風ユニット。  The expansion ratio power s of the cross-sectional area of the scroll chamber changes so as to be larger than the expansion ratio in a range smaller than the first winding angle in a range greater than or equal to the first winding angle, and in the axial direction of the scroll chamber. Dimensional force Expanding in a range equal to or greater than the first winding angle.
[2] 渦巻形状を有し送風機により発生された空気流が流通するスクロール室の形状が、 該スクロール室の断面積と巻き角との関係を示す特性線に基づいて設計される送風 ユニットにおいて、  [2] In the air blowing unit, the shape of the scroll chamber having a spiral shape and through which the air flow generated by the blower flows is designed based on the characteristic line indicating the relationship between the cross-sectional area of the scroll chamber and the winding angle.
前記特性線は、所定のブロワ径及び第 1の広がり角に基づ!/、て設定された基準線 と同一の拡大率を有する準基準線と、所定のブロワ径及び前記第 1の広がり角より小 さ!/、第 2の広がり角に基づ!/、て設定された縮小線とに基づ!/、て作成され、前記スクロ ール室の巻き角が前記第 1の巻き角より小さい範囲において前記縮小線と重なり、前 記スクロール室の巻き角が前記第 1の巻き角以上の範囲において前記準基準線と重 なり、  The characteristic line is based on a predetermined blower diameter and a first divergence angle! /, A quasi-reference line having the same magnification as the reference line set, and a predetermined blower diameter and the first divergence angle. Smaller! /, Based on the second divergence angle! /, And based on the set reduction line! /, And the scroll chamber winding angle is greater than the first winding angle. The scroll line overlaps with the reduced line in a small range, and the wrapping angle of the scroll chamber overlaps with the quasi-reference line in a range of the first winding angle or more,
前記スクロール室の軸方向の寸法力 前記第 1の巻き角以上の範囲において拡大 することを特徴とする送風ユニット。  Dimensional force in the axial direction of the scroll chamber The blower unit expands in a range equal to or greater than the first winding angle.
[3] 前記第 1の巻き角は、 150° 〜; 170° であることを特徴とする請求項 1又は 2記載 の送風ユニット。 [3] The blower unit according to claim 1 or 2, wherein the first winding angle is 150 ° to 170 °.
PCT/JP2007/070046 2006-12-05 2007-10-15 Air supply unit WO2008068959A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-328359 2006-12-05
JP2006328359A JP5163974B2 (en) 2006-12-05 2006-12-05 Blower unit

Publications (1)

Publication Number Publication Date
WO2008068959A1 true WO2008068959A1 (en) 2008-06-12

Family

ID=39491869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070046 WO2008068959A1 (en) 2006-12-05 2007-10-15 Air supply unit

Country Status (2)

Country Link
JP (1) JP5163974B2 (en)
WO (1) WO2008068959A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8667960B2 (en) 2010-04-06 2014-03-11 3M Innovative Properties Company Radial blower with shaped scroll profile
WO2020250363A1 (en) * 2019-06-13 2020-12-17 三菱電機株式会社 Centrifugal blower, air conditioning device, and refrigeration cycle device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907620B2 (en) * 2008-09-11 2012-04-04 パナソニック株式会社 Drum type washer / dryer
JP5282778B2 (en) * 2010-11-17 2013-09-04 ダイキン工業株式会社 Moisture absorption unit
JP5675298B2 (en) * 2010-11-25 2015-02-25 三菱重工業株式会社 Multiblade centrifugal fan and air conditioner using the same
CN103512065A (en) * 2012-06-21 2014-01-15 博西华电器(江苏)有限公司 Ventilator and spiral case thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338248U (en) * 1976-09-08 1978-04-04
JPS61229999A (en) * 1985-04-03 1986-10-14 Matsushita Refrig Co Blower
JPH04164197A (en) * 1990-10-25 1992-06-09 Matsushita Electric Ind Co Ltd Multiblade blower
JP2002161896A (en) * 2000-11-24 2002-06-07 Calsonic Kansei Corp Centrifugal fan
JP2005220786A (en) * 2004-02-04 2005-08-18 Mitsubishi Heavy Ind Ltd Blower device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2690731B2 (en) * 1987-08-05 1997-12-17 株式会社デンソー Centrifugal blower
JPH10252695A (en) * 1997-03-13 1998-09-22 Zexel Corp Centrifugal blower and its shape deciding method therefor
JP3131598B2 (en) * 1997-07-17 2001-02-05 株式会社ゼクセルヴァレオクライメートコントロール Blower unit
JP4302960B2 (en) * 2002-10-23 2009-07-29 カルソニックカンセイ株式会社 Centrifugal multi-blade blower

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338248U (en) * 1976-09-08 1978-04-04
JPS61229999A (en) * 1985-04-03 1986-10-14 Matsushita Refrig Co Blower
JPH04164197A (en) * 1990-10-25 1992-06-09 Matsushita Electric Ind Co Ltd Multiblade blower
JP2002161896A (en) * 2000-11-24 2002-06-07 Calsonic Kansei Corp Centrifugal fan
JP2005220786A (en) * 2004-02-04 2005-08-18 Mitsubishi Heavy Ind Ltd Blower device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8667960B2 (en) 2010-04-06 2014-03-11 3M Innovative Properties Company Radial blower with shaped scroll profile
WO2020250363A1 (en) * 2019-06-13 2020-12-17 三菱電機株式会社 Centrifugal blower, air conditioning device, and refrigeration cycle device
JPWO2020250363A1 (en) * 2019-06-13 2021-12-02 三菱電機株式会社 Centrifugal blower, air conditioner and refrigeration cycle device
US11976824B2 (en) 2019-06-13 2024-05-07 Mitsubishi Electric Corporation Centrifugal fan, air conditioning apparatus, and refrigeration cycle apparatus

Also Published As

Publication number Publication date
JP2008138643A (en) 2008-06-19
JP5163974B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
WO2008068959A1 (en) Air supply unit
EP2343458B1 (en) Blower and heat pump utilizing said blower
JP2007127089A (en) Centrifugal air blower and air-conditioning equipment including the same
JP2007024004A (en) Axial fan
JP2010100108A (en) Blower and vehicular air-conditioner having the same
WO2016139732A1 (en) Sirocco fan and indoor unit of air conditioner using this sirocco fan
WO2010113391A1 (en) Centrifugal blower and automobile seat
JP4865654B2 (en) Centrifugal blower and vehicle air conditioner
JP3812537B2 (en) Centrifugal blower
JP5448874B2 (en) Multiblade centrifugal fan and air conditioner using the same
JP4505885B2 (en) Blower, air conditioner using the same, and air purifier
JP4769118B2 (en) Centrifugal multiblade blower
WO2015079670A1 (en) Blower
JP5008386B2 (en) Centrifugal multiblade blower
JP4302960B2 (en) Centrifugal multi-blade blower
JP4178992B2 (en) Ventilation unit for vehicle air conditioning
JP4720203B2 (en) Centrifugal blower, air conditioner
JP5389191B2 (en) Blower and air conditioner equipped with this blower
JP3832009B2 (en) Centrifugal blower
JP2004308442A (en) Centrifugal fan
JP2009036049A (en) Centrifugal fan motor
JP2006144678A (en) Centrifugal blower
JP6760376B2 (en) Centrifugal blower
JP5504624B2 (en) Centrifugal blower
JPWO2019146015A1 (en) Centrifugal blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829780

Country of ref document: EP

Kind code of ref document: A1