WO2008063902A2 - Biofunctional materials - Google Patents

Biofunctional materials Download PDF

Info

Publication number
WO2008063902A2
WO2008063902A2 PCT/US2007/084050 US2007084050W WO2008063902A2 WO 2008063902 A2 WO2008063902 A2 WO 2008063902A2 US 2007084050 W US2007084050 W US 2007084050W WO 2008063902 A2 WO2008063902 A2 WO 2008063902A2
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
digestive
protein
composition according
group
Prior art date
Application number
PCT/US2007/084050
Other languages
French (fr)
Other versions
WO2008063902A3 (en
Inventor
Ping Wang
Minjuan Zhang
Hongfei Jia
Archana H. Trivedi
Masahiko Ishii
Original Assignee
Toyota Motor Engineering & Manufacturing North America, Inc.
Toyota Motor Corporation
University Of Akron
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation, University Of Akron filed Critical Toyota Motor Engineering & Manufacturing North America, Inc.
Priority to EP07871408.6A priority Critical patent/EP2087165B1/en
Priority to JP2009538445A priority patent/JP2010510380A/en
Priority to CN200780032838.7A priority patent/CN101600835B/en
Publication of WO2008063902A2 publication Critical patent/WO2008063902A2/en
Publication of WO2008063902A3 publication Critical patent/WO2008063902A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1637Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1687Use of special additives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/06Enzymes or microbial cells immobilised on or in an organic carrier attached to the carrier via a bridging agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • C12N9/54Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea bacteria being Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21062Subtilisin (3.4.21.62)
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/552Detecting local intrusion or implementing counter-measures involving long-term monitoring or reporting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/554Detecting local intrusion or implementing counter-measures involving event detection and direct action
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/56Computer malware detection or handling, e.g. anti-virus arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/6218Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/20Network architectures or network communication protocols for network security for managing network security; network security policies in general
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/03Indexing scheme relating to G06F21/50, monitoring users, programs or devices to maintain the integrity of platforms
    • G06F2221/033Test or assess software
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/03Indexing scheme relating to G06F21/50, monitoring users, programs or devices to maintain the integrity of platforms
    • G06F2221/034Test or assess a computer or a system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2107File encryption
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2113Multi-level security, e.g. mandatory access control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2145Inheriting rights or properties, e.g., propagation of permissions or restrictions within a hierarchy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/06Network architectures or network communication protocols for network security for supporting key management in a packet data network

Definitions

  • the present invention relates to self-cleaning compositions and a process for preventing and reducing surface stain accumulation due to bird droppings, bug wastes, food debris, and other stain causing materials.
  • Interior surfaces and coatings may also be easily get stained with oil, protein, sugar and other ingredients in foods and beverages, and timely removal of such 20 stains may present certain challenges.
  • the present invention specifically involves the incorporation of digestive proteins including lysozymes, proteases, lipases, cellulases, etc., onto surfaces such as paints and coatings.
  • the catalytic activity of the digestive proteins enables ongoing self- cleaning to reduce and eliminate stain contaminations.
  • the mechanism of action of these 25 digestive proteins is mainly enzymatic in nature and does not involve the use of any corrosive or oxidative components; therefore, they are environmentally friendly.
  • Stains of interests in the initial stage of this work include those formed from broken bodies of bugs, animal (like bird) wastes, foods, milk and other beverages, and cosmetic and personal care products. Although the detailed components vary with
  • U.S. 6,818,212 discloses an enzymatic antimicrobial ingredient for disinfection and for killing microbial cells.
  • U.S. 3,705,398 discloses polymeric articles having active antibacterial, antifungal and combinations of antibacterial and antifungal properties. The antibacterial and antifungal activating agents are distributed within the polymeric composition and migrate to the surface.
  • U.S. 5,914,367 discloses a method of preparing a polymer-protein composite including polymerizing a monomer in the presence of a protein dissolved in an organic phase via the ion-pairing of the protein with a surfactant. This reference, however, does not seem to mention the prevention or reduction of stain accumulation using the digestive power of such a polymer-protein composite.
  • U.S. 6,150,146 discloses a method of releasing a compound having antimicrobial activity from a matrix at a controlled rate.
  • the method includes an enzyme and a substrate within the matrix beforehand to allow the enzyme and substrate to react with each other in the matrix, thereby to produce a compound having antimicrobial activity.
  • the patent also discloses a coating composition comprising a film-forming resin, an enzyme, a substrate and any enzyme capable of reacting with the substrate.
  • U.S. 2005/0058689 discloses paints and coatings having antifungal growth and antibacterial materials. Specific chemicals and formations are disclosed for incorporation into painted surfaces which are antifungal compositions to inhibit growth of mold, bacterial, and fungi on building materials.
  • the object of the present invention is to provide self-cleaning composition and process containing digestive proteins for preventing and reducing stain accumulation.
  • the present invention provides, in a first aspect, a composition
  • a composition comprising a substrate, a digestive protein capable of decomposing a stain molecule, and a linker moiety.
  • the composition of the invention may be useful as a mechanism to prevent the accumulation of contacting stains and dirt by an "automatic" enzymatic degradation reaction.
  • the digestive proteins of the composition may include proteases which hydrolyze protein molecules, lipases which hydrolyze lipids and fats, cellulases which hydrolyze cellulose, and amylases which hydrolyze carbohydrates, etc. It is neither required nor necessary for the digestive proteins to have their functional binding pockets all facing towards stain particles. A layer of digestive proteins delivers enough coverage and digesting activity even though the digestive proteins may be randomly arranged on a surface.
  • a surface may be pretreated with a layer of polymer comprising one or more active groups.
  • a digestive protein suspension may be spin coated onto the polymer layer with the active groups to form covalent bonds between the proteins and the polymer layer.
  • the active groups may comprise alcohol, thiol, aldehyde, carboxylic acid, anhydride,, epoxy, and ester, etc.
  • digestive proteins may be attached to nanoparticles before their suspension with paints or coatings.
  • the invention may be further directed to: a composition comprising a digestive protein for decomposing a stain molecule, and a coating substrate wherein the digestive protein is entrapped in the coating substrate.
  • the digestive protein may be selected from lysozymes, proteases, lipases, cellulases, glycosidases, amylases, etc.
  • a process for reducing and or eliminating stain contaminations. The process comprises binding a substrate to a surface and forming a linker moiety between an active group of a digestive protein and the substrate.
  • said substrate may comprise surface functional groups such as alcohol, thiol;, aldehyde, carboxylic acid, anhydride, epoxy, ester, or any combination thereof.
  • FIG. 1 is a depiction of an attachment of enzymes to the surface of polymeric nanoparticles.
  • FIG. 2 is a depiction of fluorescence images of protease coating prepared via adsorption and covalent cross-linking.
  • FIG. 3 shows a protein assay calibration curve.
  • FIG. 4 shows a calibration curve for tyrosine (product of hydrolysis).
  • FIG. 5 shows a representative GPC cliromatograph indicating egg white stain degradation.
  • FIG. 6 shows the time course of egg white stain degradation.
  • FIG. 7 shows thermal stability of protease coating at 8O 0 C.
  • the present invention relates to, in a first aspect, a composition
  • a composition comprising a substrate, a digestive protein capable of decomposing a stain molecule, and a linker moiety.
  • the present invention specifically involves the incorporation of one or more digestive proteins including lysozymes, proteases, lipases, cellulases, etc., onto surfaces such as paints and coatings.
  • the catalytic activity of the digestive proteins enables ongoing self-cleaning to reduce and eliminate stain contaminations.
  • Various stains include those formed from broken bodies of bugs, animal (such as bird) wastes, foods, milk and other beverages, and cosmetic and personal care products. Although the detailed components vary with sources of stains, the major components of stains that are adhesive to surfaces are proteins, polysaccharides, fats or oils.
  • the activity of the digestive proteins toward different stain sources is evaluated in a solution environment. Tests are conducted at different conditions including different pH and temperature, in an attempt to evaluate the proteins' performance in an automobile environment instead of that in a washer machine as they have been traditionally applied. Tests include protein-related activity; starch-related activity tests; tests with oily stains. Protein activity unit is defined as: one unit of digestive protein hydrolyzes casein to produce absorbance difference equivalent to 1.0 ⁇ mol of tyrosine per minute at 37 0 C under the conditions of the assay. Results of activity assay show covalent cross-linked protease present an activity that is nine times more than that of a physically absorbed protease. . There are several ways to incorporate the digestive proteins onto a substrate.
  • free amine groups of the digestive proteins may be covalently bound to an active group of the substrate.
  • active groups include alcohol, thiol, aldehyde, carboxylic acid, anhydride, epoxy, ester, or any combination thereof.
  • TWs method of incorporating digestive proteins delivers unique advantages.
  • the covalent bonds tether the proteins permanently to the substrate and thus place them as an integral part of the final composition with much less, if not at all, leakage of digestive protein species.
  • the covalent bonds provide for extended enzyme lifetime. Over time, proteins typically lose activity because of the unfolding of their polypeptide chains. Chemical binding such as covalent bonding effectively restricts such unfolding, and thus improves the protein life.
  • the life of a protein is typically determined by comparing the amount of activity reduction of a protein that is free or being physically adsorbed with that of a protein covalently-imrnobilized over a period of time. Results have shown that a protein that is in free form or being physically adsorbed to a substrate loses its activity much faster that a protein in covalent-bond form.
  • digestive proteins may be uniformly dispersed throughout the substrate network to create a homogenous protein platform. In so doing, digestive proteins may be first modified with polymerizable groups. The modified proteins may be solubilized into organic solvents in the presence of surfactant, and thus engage the subsequent polymerization with monomers such as methyl methacrylate (MMA) or styrene in the organic solution.
  • the resulted composition includes digestive protein molecules homogeneously dispersed throughout Hie network.
  • digestive proteins may be attached to surfaces of a substrate in comparison to the above mentioned cross-linking methods.
  • An attachment of digestive proteins corresponding to ⁇ 100% surface coverage was achieved with polystyrene particles with diameters range form 100 to 1000 nm.
  • the digestive proteins of the composition may include proteases which hydrolyze protein molecules, lipases which hydrolyze lipids and fats, cellulases which hydrolyze cellulose, and amylases which hydrolyze carbohydrates. It is neither required nor necessary for the digestive proteins to have their functional binding pockets all facing toward stain particles. A layer of digestive proteins delivers enough coverage and digesting activity even though the digestive proteins may be randomly arranged on a surface.
  • a surface is pretreated with a layer of polymer comprising one or more surface active groups of succinimide ester.
  • a digestive protein suspension is spin coated onto the layer of the polymer with the active groups to form covalent bonds with, the proteins.
  • digestive proteins may be attached to nanoparticles before their suspension with paints or coatings.
  • the invention is further directed to a composition
  • a composition comprising a digestive protein capable of decomposing a stain molecule, and a coating substrate wherein the digestive protein may be entrapped in the coating substrate.
  • the digestive protein may be selected from lysozymes, proteases, lipases, cellulases, glycosidases, and amylases.
  • a process for reducing and or eliminating stain contaminations.
  • the process comprises binding a substrate to a surface and forming a linker moiety between an active group of a digestive protein and the substrate.
  • the substrate may comprise surface active groups such as alcohol, thiol, aldehyde, carboxylic acid, anhydride, epoxy, ester, and any combinations thereof.
  • EXAMPLE l Enzymes may be attached to surfaces of plastics.
  • An enzyme attachment corresponding to -100% surface coverage may be achieved with polystyrene particles with diameters range from 100 to 1000 nm.
  • these particles may be used along with paints or coatings to functionalize the surfaces of materials.
  • the same chemical bonding approach may be applied to coat enzymes onto preformed plastic parts, and thus form a protein coating on the parts' surfaces.
  • particles with diameters ranging from 100 nm to 1000 nm may be synthesized by emulsion polymerization.
  • Emulsion polymerization is a type of polymerization that takes place in an emulsion typically incorporating water, monomer, and surfactant.
  • emulsion polymerization is an oil-in-water emulsion, in which droplets of monomer (the oil) are emulsified (with surfactants) in a continuous phase of water.
  • Particles as previously described may be synthesized by mixing an aqueous solution (mixture of water and ethanol, ⁇ 20 ml), containing a polymerizable surfactant (2-sulfoethylrnethacrylate), a stabilizer (polyvinylpyrrolidone, PVP) and an initiator (2,2'-Azobis [2-methyl-N-(2 ⁇ hydroxyethyl) propionamide]), will be mixed with an organic solution ( ⁇ 1 ml) of styrene, N-acryloxysuccinimide (NAS 3 a functionalized vinyl monomer), and divinyl benzene ( ⁇ 1% v/v).
  • aqueous solution mixture of water and ethanol, ⁇ 20 ml
  • PVP polyvinylpyrrol
  • the particle size may be controlled by adjusting phase ratio (1/30-1/15, oil/aqueous) and the concentration of ethanol (0.125-0.50 ml/ml), 2-sulfoethyl methacrylate and PVP (0-5.5 mg/ml).
  • the reaction may be performed with stirring at 70°C for 10 h, followed by washing the resulted particles with ethanol and DI water in a stirred ultrafiltration cell with a polyethersulfone membrane (cut off MW: 30O kDa).
  • Stains may be generated from different sources of contacts. Body residues of bugs, animal wastes, food, milk and other beverages, and cosmetic and personal care products may all cause stains. Although the detailed components vary with sources of stains, the major components that are adhesive to surfaces are proteins, simple sugars and polysaccharides, fats and/or oils. Digestive proteins including lipases, proteases, amylase and cellulose, each of them attacks different components, are thus far the most effective, safe and economic agents to fight against such stains. As shown below in Table 1. these proteins were examined and tested in our initial screening tests, and eventually we selected protease to proceed for the majority of the subsequent experiments due to the easiness in activity measurement. Table 1
  • the enzyme was applied onto the active polymer coated plate via 3-step layer-by-layer spin coating: 1) 1 ml of the protease solution, 2) 1 ml of protease solution containing 0.5 % (VfV) of glutaraldehyde, 3) 1 ml of protease solution.
  • the spin-coated plates were kept at 4 0 C for 12 h, followed by extensive washing with
  • Fluorescent dye (Oregon green, Invitrogen Corp.) was first dissolved in dimethyl sulfoxide at a concentration of 2 mg /ml. The sample plates with physical adsorbed and covalently immobilized enzyme were incubated in the dye solution at room temperature with gentle shaking for 2 hours, followed by rinsing with DI water. The plates were then dried in nitrogen and observed under a fluorescence microscope. The images are shown in Figure 2, where green color denotes the area covered with enzyme. Compared with physical adsorption, much more enzyme was immobilized on the surface using covalent cross-linking method.
  • the amount of enzyme attached to the plastic plate was determined by a reversed Bradford method. Typically, a working solution was first prepared by diluting Bradford reagent with DI water (1:5, by volume). A calibration curve was first obtained using free protease as the standards. In a 1 ml cuvette, 0.5 ml of protease solution was mixed with 0.5 ml of the working solution and then allowed to react for 5 min. The absorbance of the solution was measured at 465 nm on a spectrophotometer. After testing a series of different protease concentrations, a calibration curve was obtained as shown in Figure 3.
  • the activity unit was defined as: one unit of enzyme hydro lyzes casein to produce absorbance difference equivalent to 1.0 ⁇ mol of tyrosine per minute at 37 0 C under the conditions of the assay. Tyrosine amino acid was used for calibration. Various concentrations of tyrosine were reacted with Folin-Ciocalteau reagent and the resulting calibration curve is shown in Figure 4.
  • Enzyme coating The activity of the immobilized protease was determined in a similar manner by using an enzyme coated polymer piece (1 x 2 cm) instead of enzyme in solution and a blank polymer coated piece as control. The activity of protein was termed as surface activity per unit area. Results of activity assay showed that plates with covalent cross-linked protease afford 5.6 ⁇ 10 "3 unit/cm 2 , while physical adsorbed enzyme only displayed an activity of 0.6x10 "3 unit/cm 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Computer Security & Cryptography (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Plant Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Bioethics (AREA)
  • Virology (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Paints Or Removers (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Detergent Compositions (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to compositions and a process in the field of self-cleaning system using digestive proteins. One composition includes a substrate, a digestive protein capable of decomposing a stain molecule, and a link moiety bound to both said digestive protein and said substrate. An alternative composition includes a digestive protein capable of decomposing a stain molecule and a coating substrate wherein said digestive protein may be dispersed in said coating substrate. The process claim includes binding a substrate to a surface and forming a linker moiety between a digestive protein and said substrate.

Description

BIOFUNCTIONAL MATERIALS
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority on U.S. Patent Application Serial Number 11/562,503, filed
November 22, 2006.
BACKGROUND OF THE INVENTION
1. FIELD OF THE INVENTION
10 The present invention relates to self-cleaning compositions and a process for preventing and reducing surface stain accumulation due to bird droppings, bug wastes, food debris, and other stain causing materials.
2. TECHNICAL BACKGROUND
Both interior and exterior surfaces of automobile, such as coatings, paints, and 15 seat fabrics, are subject to contamination and corrosions when they are under prolonged exposure to bird dropping, insect debris, resins of conifer, microbes, gums, etc. Certain stains, such as insect-originated stains, are hard to remove with regular automatic brush- free washing. Interior surfaces and coatings may also be easily get stained with oil, protein, sugar and other ingredients in foods and beverages, and timely removal of such 20 stains may present certain challenges.
Here, the present invention specifically involves the incorporation of digestive proteins including lysozymes, proteases, lipases, cellulases, etc., onto surfaces such as paints and coatings. The catalytic activity of the digestive proteins enables ongoing self- cleaning to reduce and eliminate stain contaminations. The mechanism of action of these 25 digestive proteins is mainly enzymatic in nature and does not involve the use of any corrosive or oxidative components; therefore, they are environmentally friendly.
Stains of interests in the initial stage of this work include those formed from broken bodies of bugs, animal (like bird) wastes, foods, milk and other beverages, and cosmetic and personal care products. Although the detailed components vary with
30 sources of stains, the major components of stains that are adhesive to surfaces are proteins, polysaccharides, fats or oils. 3. DESCRIPTION OF RELATED ART
It is known to incorporate enzymes into coating or into substrates for the purpose of providing a surface with antimicrobial, antifungal or antifouling properties. Yet it is novel to the best knowledge of Applicants to attach digestive proteins to a surface for the purpose of enzymatically decomposing stain molecules in contact with the surface.
U.S. 6,818,212 discloses an enzymatic antimicrobial ingredient for disinfection and for killing microbial cells.
Wang et al. 2001 discloses lifespan extension of an enzyme upon its covalent binding at wet conditions; yet the reference does not seem to mention the utilization of such covalently bound enzyme in the area of surface self-cleaning.
U.S. 3,705,398 discloses polymeric articles having active antibacterial, antifungal and combinations of antibacterial and antifungal properties. The antibacterial and antifungal activating agents are distributed within the polymeric composition and migrate to the surface. U.S. 5,914,367 discloses a method of preparing a polymer-protein composite including polymerizing a monomer in the presence of a protein dissolved in an organic phase via the ion-pairing of the protein with a surfactant. This reference, however, does not seem to mention the prevention or reduction of stain accumulation using the digestive power of such a polymer-protein composite. U.S. 6,150,146 discloses a method of releasing a compound having antimicrobial activity from a matrix at a controlled rate. The method includes an enzyme and a substrate within the matrix beforehand to allow the enzyme and substrate to react with each other in the matrix, thereby to produce a compound having antimicrobial activity. The patent also discloses a coating composition comprising a film-forming resin, an enzyme, a substrate and any enzyme capable of reacting with the substrate.
U.S. 2005/0058689 discloses paints and coatings having antifungal growth and antibacterial materials. Specific chemicals and formations are disclosed for incorporation into painted surfaces which are antifungal compositions to inhibit growth of mold, bacterial, and fungi on building materials. The object of the present invention is to provide self-cleaning composition and process containing digestive proteins for preventing and reducing stain accumulation. SUMMARY OF THE INVENTION
The present invention provides, in a first aspect, a composition comprising a substrate, a digestive protein capable of decomposing a stain molecule, and a linker moiety. The composition of the invention may be useful as a mechanism to prevent the accumulation of contacting stains and dirt by an "automatic" enzymatic degradation reaction. The digestive proteins of the composition may include proteases which hydrolyze protein molecules, lipases which hydrolyze lipids and fats, cellulases which hydrolyze cellulose, and amylases which hydrolyze carbohydrates, etc. It is neither required nor necessary for the digestive proteins to have their functional binding pockets all facing towards stain particles. A layer of digestive proteins delivers enough coverage and digesting activity even though the digestive proteins may be randomly arranged on a surface. hi a preferred embodiment of the invention, a surface may be pretreated with a layer of polymer comprising one or more active groups. A digestive protein suspension may be spin coated onto the polymer layer with the active groups to form covalent bonds between the proteins and the polymer layer. The active groups may comprise alcohol, thiol, aldehyde, carboxylic acid, anhydride,, epoxy, and ester, etc. Alternatively, digestive proteins may be attached to nanoparticles before their suspension with paints or coatings. The invention may be further directed to: a composition comprising a digestive protein for decomposing a stain molecule, and a coating substrate wherein the digestive protein is entrapped in the coating substrate. In this composition, the digestive protein may be selected from lysozymes, proteases, lipases, cellulases, glycosidases, amylases, etc. hi another aspect of the invention, a process is disclosed for reducing and or eliminating stain contaminations. The process comprises binding a substrate to a surface and forming a linker moiety between an active group of a digestive protein and the substrate. In this process, said substrate may comprise surface functional groups such as alcohol, thiol;, aldehyde, carboxylic acid, anhydride, epoxy, ester, or any combination thereof. BRIEF DESCRIPTION OF DRAWINGS
The present invention is further illustrated by reference to the accompanying drawings, in which
FIG. 1 is a depiction of an attachment of enzymes to the surface of polymeric nanoparticles.
FIG. 2 is a depiction of fluorescence images of protease coating prepared via adsorption and covalent cross-linking.
FIG. 3 shows a protein assay calibration curve. FIG. 4 shows a calibration curve for tyrosine (product of hydrolysis). FIG. 5 shows a representative GPC cliromatograph indicating egg white stain degradation.
FIG. 6 shows the time course of egg white stain degradation. FIG. 7 shows thermal stability of protease coating at 8O0C.
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to, in a first aspect, a composition comprising a substrate, a digestive protein capable of decomposing a stain molecule, and a linker moiety.
The present invention specifically involves the incorporation of one or more digestive proteins including lysozymes, proteases, lipases, cellulases, etc., onto surfaces such as paints and coatings. The catalytic activity of the digestive proteins enables ongoing self-cleaning to reduce and eliminate stain contaminations.
Various stains include those formed from broken bodies of bugs, animal (such as bird) wastes, foods, milk and other beverages, and cosmetic and personal care products. Although the detailed components vary with sources of stains, the major components of stains that are adhesive to surfaces are proteins, polysaccharides, fats or oils.
The activity of the digestive proteins toward different stain sources is evaluated in a solution environment. Tests are conducted at different conditions including different pH and temperature, in an attempt to evaluate the proteins' performance in an automobile environment instead of that in a washer machine as they have been traditionally applied. Tests include protein-related activity; starch-related activity tests; tests with oily stains. Protein activity unit is defined as: one unit of digestive protein hydrolyzes casein to produce absorbance difference equivalent to 1.0 μmol of tyrosine per minute at 370C under the conditions of the assay. Results of activity assay show covalent cross-linked protease present an activity that is nine times more than that of a physically absorbed protease. . There are several ways to incorporate the digestive proteins onto a substrate. One of which involves the application of covalent bonds. Specifically, free amine groups of the digestive proteins may be covalently bound to an active group of the substrate. Such active groups include alcohol, thiol, aldehyde, carboxylic acid, anhydride, epoxy, ester, or any combination thereof. TWs method of incorporating digestive proteins delivers unique advantages. First, the covalent bonds tether the proteins permanently to the substrate and thus place them as an integral part of the final composition with much less, if not at all, leakage of digestive protein species. Second, the covalent bonds provide for extended enzyme lifetime. Over time, proteins typically lose activity because of the unfolding of their polypeptide chains. Chemical binding such as covalent bonding effectively restricts such unfolding, and thus improves the protein life. The life of a protein is typically determined by comparing the amount of activity reduction of a protein that is free or being physically adsorbed with that of a protein covalently-imrnobilized over a period of time. Results have shown that a protein that is in free form or being physically adsorbed to a substrate loses its activity much faster that a protein in covalent-bond form. Alternatively, digestive proteins may be uniformly dispersed throughout the substrate network to create a homogenous protein platform. In so doing, digestive proteins may be first modified with polymerizable groups. The modified proteins may be solubilized into organic solvents in the presence of surfactant, and thus engage the subsequent polymerization with monomers such as methyl methacrylate (MMA) or styrene in the organic solution. The resulted composition includes digestive protein molecules homogeneously dispersed throughout Hie network.
Also, digestive proteins may be attached to surfaces of a substrate in comparison to the above mentioned cross-linking methods. An attachment of digestive proteins corresponding to ~100% surface coverage was achieved with polystyrene particles with diameters range form 100 to 1000 nm. The digestive proteins of the composition may include proteases which hydrolyze protein molecules, lipases which hydrolyze lipids and fats, cellulases which hydrolyze cellulose, and amylases which hydrolyze carbohydrates. It is neither required nor necessary for the digestive proteins to have their functional binding pockets all facing toward stain particles. A layer of digestive proteins delivers enough coverage and digesting activity even though the digestive proteins may be randomly arranged on a surface.
In a preferred embodiment of the invention, a surface is pretreated with a layer of polymer comprising one or more surface active groups of succinimide ester. A digestive protein suspension is spin coated onto the layer of the polymer with the active groups to form covalent bonds with, the proteins. Alternatively, digestive proteins may be attached to nanoparticles before their suspension with paints or coatings.
The invention is further directed to a composition comprising a digestive protein capable of decomposing a stain molecule, and a coating substrate wherein the digestive protein may be entrapped in the coating substrate. In this composition, the digestive protein may be selected from lysozymes, proteases, lipases, cellulases, glycosidases, and amylases.
In another aspect of the invention, a process is disclosed for reducing and or eliminating stain contaminations. The process comprises binding a substrate to a surface and forming a linker moiety between an active group of a digestive protein and the substrate. In this process, the substrate may comprise surface active groups such as alcohol, thiol, aldehyde, carboxylic acid, anhydride, epoxy, ester, and any combinations thereof.
EXAMPLE l Enzymes may be attached to surfaces of plastics. An enzyme attachment corresponding to -100% surface coverage may be achieved with polystyrene particles with diameters range from 100 to 1000 nm. By coating with digestive protein, these particles may be used along with paints or coatings to functionalize the surfaces of materials. The same chemical bonding approach may be applied to coat enzymes onto preformed plastic parts, and thus form a protein coating on the parts' surfaces. As shown in Figure 1, particles with diameters ranging from 100 nm to 1000 nm may be synthesized by emulsion polymerization. Emulsion polymerization is a type of polymerization that takes place in an emulsion typically incorporating water, monomer, and surfactant. The most common type of emulsion polymerization is an oil-in-water emulsion, in which droplets of monomer (the oil) are emulsified (with surfactants) in a continuous phase of water. Particles as previously described may be synthesized by mixing an aqueous solution (mixture of water and ethanol, ~20 ml), containing a polymerizable surfactant (2-sulfoethylrnethacrylate), a stabilizer (polyvinylpyrrolidone, PVP) and an initiator (2,2'-Azobis [2-methyl-N-(2~hydroxyethyl) propionamide]), will be mixed with an organic solution (~1 ml) of styrene, N-acryloxysuccinimide (NAS3 a functionalized vinyl monomer), and divinyl benzene (~1% v/v). The particle size may be controlled by adjusting phase ratio (1/30-1/15, oil/aqueous) and the concentration of ethanol (0.125-0.50 ml/ml), 2-sulfoethyl methacrylate and PVP (0-5.5 mg/ml). The reaction may be performed with stirring at 70°C for 10 h, followed by washing the resulted particles with ethanol and DI water in a stirred ultrafiltration cell with a polyethersulfone membrane (cut off MW: 30O kDa).
EXAMPLE 2
Stains may be generated from different sources of contacts. Body residues of bugs, animal wastes, food, milk and other beverages, and cosmetic and personal care products may all cause stains. Although the detailed components vary with sources of stains, the major components that are adhesive to surfaces are proteins, simple sugars and polysaccharides, fats and/or oils. Digestive proteins including lipases, proteases, amylase and cellulose, each of them attacks different components, are thus far the most effective, safe and economic agents to fight against such stains. As shown below in Table 1. these proteins were examined and tested in our initial screening tests, and eventually we selected protease to proceed for the majority of the subsequent experiments due to the easiness in activity measurement. Table 1
Figure imgf000010_0001
EXAMPLE 3
Preparation of enzyme coating N-acryloxy succinimide (392 mg), 1.2 ml of styrene and 29.2 mg of 4,4:-azobis-
(4-cyanovaleric acid) were mixed with 16 ml of chloroform in a 20 ml glass reaction vial. The vial was purged with nitrogen, sealed and incubated at 7O0C for 12 lirs with stirring, followed by the removal of solvent by purging nitrogen. The polymer product was re- dissolved in chloroform at a concentration of 50 mg/ml. One milliliter of the resulting solution was spin-coated onto a polystyrene plate (11 cm in diameter) at 6000 rpm. Protease from Subtilisin Carlsberg was dissolved in 0.05 M phosphate buffer at a concentration of 10 mg/ml. The enzyme was applied onto the active polymer coated plate via 3-step layer-by-layer spin coating: 1) 1 ml of the protease solution, 2) 1 ml of protease solution containing 0.5 % (VfV) of glutaraldehyde, 3) 1 ml of protease solution. The spin-coated plates were kept at 40C for 12 h, followed by extensive washing with
0.05 M Tris buffer (pH 8), 2M NaCl solution and DI water. Finally the plates were air- dried and cut into small pieces (1 x 2 cm). This method was designated as covalent cross-Unking. As a comparison, similar procedure was applied on a polystyrene plate without the active polymer coating, which was called as physical adsorption.
EXAMPLE 4 Visualization of enzyme coating
Fluorescent dye (Oregon green, Invitrogen Corp.) was first dissolved in dimethyl sulfoxide at a concentration of 2 mg /ml. The sample plates with physical adsorbed and covalently immobilized enzyme were incubated in the dye solution at room temperature with gentle shaking for 2 hours, followed by rinsing with DI water. The plates were then dried in nitrogen and observed under a fluorescence microscope. The images are shown in Figure 2, where green color denotes the area covered with enzyme. Compared with physical adsorption, much more enzyme was immobilized on the surface using covalent cross-linking method.
EXAMPLE 5 Determination of enzyme loading
The amount of enzyme attached to the plastic plate was determined by a reversed Bradford method. Typically, a working solution was first prepared by diluting Bradford reagent with DI water (1:5, by volume). A calibration curve was first obtained using free protease as the standards. In a 1 ml cuvette, 0.5 ml of protease solution was mixed with 0.5 ml of the working solution and then allowed to react for 5 min. The absorbance of the solution was measured at 465 nm on a spectrophotometer. After testing a series of different protease concentrations, a calibration curve was obtained as shown in Figure 3.
To determine the loading of immobilized enzyme, a piece of enzyme-coated plate (1 cm x 2 cm) was placed into a 20-ml glass vial, followed by the addition of 0.5 ml of DI water and 0.5 ml of the working solution. The vial was slightly agitated for 5 min at room temperature to allow binding of the dye to the immobilized enzyme. The absorbance of the supernatants was then recorded at 465 nm. Similarly a blank plastic plate without enzyme coating was also measured as the control. The reading obtained with the blank plate was subtracted from the reading obtained from the enzyme loaded plate. Comparing the obtained reading difference with the calibration curve gave the loading on the plate, which was then normalized into a unit of Dg/cm2. The enzyme loading by covalent cross-linking and physical adsorption were 8.5 and 1.0 Dg/cm2, respectively.
EXAMPLE 6
Verification of the proteolytic activity of enzyme coating Enzyme in solution: The proteolytic activity of protease was determined using
0.65 % (w/v) casein as the substrate. Protease solution (0.1 ml) was incubated with 0.5 ml of casein solution for 10 min at 37°C. The reaction was stopped by the addition of 0.5 ml of tricholoro acetic acid (110 mM). The mixture was centrifuged to remove the precipitation. The resulting supernatant (0.4 ml) was mixed with 1 ml of sodium carbonate (0.5 M) and 0.2 ml of diluted Folin & Ciocalteu's phenol reagent (1 :4 by diluting Folin & Ciocalteu's phenol reagent with DI water), followed by incubation at 370C for 30 min. Finally the mixture was centrifuged again and the absorbance of the supernatant was measured at 660 nm on a spectrophotometer. Blank experiment was performed without enzyme solution by adding 100 μl of buffer and carrying out similar test. The absorbance of the blank was subtracted from the sample (enzyme solution).
The activity unit was defined as: one unit of enzyme hydro lyzes casein to produce absorbance difference equivalent to 1.0 μmol of tyrosine per minute at 370C under the conditions of the assay. Tyrosine amino acid was used for calibration. Various concentrations of tyrosine were reacted with Folin-Ciocalteau reagent and the resulting calibration curve is shown in Figure 4.
Enzyme coating: The activity of the immobilized protease was determined in a similar manner by using an enzyme coated polymer piece (1 x 2 cm) instead of enzyme in solution and a blank polymer coated piece as control. The activity of protein was termed as surface activity per unit area. Results of activity assay showed that plates with covalent cross-linked protease afford 5.6χ 10"3 unit/cm2, while physical adsorbed enzyme only displayed an activity of 0.6x10"3 unit/cm2.
EXAMPLE 7
Stain degradation on enzyme coating Egg white was used as the model stain to determine the stain degradation on enzyme coating. Onto a plate (11 cm in diameter) with protease-coating, 2 ml of egg white solution (10 mg/ml in DI water) was spin-coated at 2000 rpm. The plate was then cut into smaller pieces (1 x 2 cm) and kept at room temperature (25°C) for various period of time to allow the degradation of egg white. After certain intervals, one small plate was carefully washed with DI water and the egg white in the washing solution was analyzed using gel permeation chromatography (GPC) to determine the molecular weight changes. Typically two peaks were found in the GPC chromatograph (Figure 5): one has shorter retention time and the other has longer retention time, corresponding to the egg white and degradation products, respectively. Based on the area of the egg white peaks, a time course of egg white degradation was obtained as shown in Figure 6. Control experiments were also performed using plates without protease coating, but no clear product peaks were identified.
EXAMPLE 8
Thermal Stability of the Enzyme Coating Thermal stability of the enzyme coating was studied at 80°C in an air-heating oven. At certain time intervals, the sample plate(s) were taken out of the oven and the activity were measured following the procedure as described in Working Example 2. The decrease of activity with time was plotted in Figure 9. It appeared that covalent cross- linked enzyme afforded better stability against thermal inactivation, as compared to physical adsorbed enzyme. The inventions are not restricted to the illustrative examples described above.
The examples are not intended as a limitation on the scope of inventions, Methods, apparatus, compositions and the like described herein are exemplary and not intended as a limitation on the scope of the inventions. Changes therein and other uses will occur to those skilled in the art. The scope of the inventions is defined by the scope of the claims.

Claims

CLAIMS 1. A composition comprising: a digestive protein capable of decomposing a stain molecule, a substrate, and a linker moiety bound to said substrate and an active group of said digestive protein.
2. The composition according to claim 1, wherein the digestive protein comprises lysozymes, proteases, lipases, cellulases, glycosidases, amylases.
3. The composition according to claim I5 wherein said stain molecule is selected from the group consisting of proteins, oils, fats, carbohydrates, and cellulose.
4. The composition according to claim I1 wherein said substrate comprises one or more groups selected from alcohol, thiol, aldehyde, carboxylic acid, anhydride, epoxy, and ester.
5. The composition according to claim 1, wherein said active group is selected from the group consisting of alcohol, amine, thiol, and carboxylic acid.
6. The composition according to claim 1, wherein said linker moiety is a covalent bond.
7. The composition according to claim 1, wherein the end product of said stain molecule decomposed by said digestive protein is removable by water-rinsing.
8. A composition comprising: a digestive protein capable of decomposing a stain molecule, a coating substrate wherein said digestive protein is entrapped in said coating substrate.
9. The composition according to claim 8, wherein said digestive protein comprises lysozymes, proteases, Upases, cellulases, glycosidases, amylases.
10. The composition according to claim 8, wherein said stain molecule is selected from the group consisting of proteins, oils, fats, carbohydrates, and cellulose.
11. The composition according to claim 8, wherein said coating substrate comprises paint, polymer, and other coatings.
12. A process for self-cleaning, comprising: binding a substrate to a surface; and forming a linker moiety between an active group of a digestive protein and said substrate.
13. The process according to claim 12, wherein said substrate comprises one or more selected from the group consisting of alcohol, thiol, aldehyde, carboxylic acid, anhydride, epoxy, and ester.
14. The process according to claim 12, wherein said surface is selected from the group consisting of metal, glass, paint, plastic, and fabrics.
15. The process according to claim 12, wherein said active group is selected from the group consisting of alcohol, amine, thiol, and carboxylic acid.
16. The process of claim 12, wherein the degradation of a stain molecule by said digestive protein occurs in a dry environment.
17. The process of claim 16, wherein the end product of said degradation is removable by water or rain.
PCT/US2007/084050 2006-11-22 2007-11-08 Biofunctional materials WO2008063902A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07871408.6A EP2087165B1 (en) 2006-11-22 2007-11-08 Process for self-cleaning
JP2009538445A JP2010510380A (en) 2006-11-22 2007-11-08 Biofunctional materials
CN200780032838.7A CN101600835B (en) 2006-11-22 2007-11-08 Biofunctional materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/562,503 US9828597B2 (en) 2006-11-22 2006-11-22 Biofunctional materials
US11/562,503 2006-11-22

Publications (2)

Publication Number Publication Date
WO2008063902A2 true WO2008063902A2 (en) 2008-05-29
WO2008063902A3 WO2008063902A3 (en) 2008-11-13

Family

ID=39417622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/084050 WO2008063902A2 (en) 2006-11-22 2007-11-08 Biofunctional materials

Country Status (5)

Country Link
US (6) US9828597B2 (en)
EP (1) EP2087165B1 (en)
JP (5) JP2010510380A (en)
CN (1) CN101600835B (en)
WO (1) WO2008063902A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009136186A1 (en) * 2008-05-09 2009-11-12 Airbus Uk Limited Surfaces with immobilized enzymes or anti-icing proteins
EP2479225A2 (en) * 2009-09-18 2012-07-25 LG Chem, Ltd. Novel use of a lipolytic enzyme for forming an anti-fingerprint coating, method for forming anti-fingerprint coating, substrate comprising the anti-fingerprint coating formed by the method, and products comprising the substrate
JP2012516926A (en) * 2009-02-05 2012-07-26 ダニスコ・エー・エス Composition
US10563094B2 (en) 2011-09-09 2020-02-18 Toyota Motor Engineering & Manufacturing North America, Inc. Coatings containing polymer modified enzyme for stable self-cleaning of organic stains
US10767141B2 (en) 2010-06-21 2020-09-08 Toyota Motor Engineering & Manufacturing North America, Inc. Thermolysin for easy-cleaning of insect body stains
WO2020181099A1 (en) * 2019-03-06 2020-09-10 Curie Co. Inc. Preservative compositions and methods of use thereof
US10781438B2 (en) 2006-11-22 2020-09-22 Toyota Motor Engineering & Manufacturing North America, Inc. Biofunctional materials
US10988714B2 (en) 2010-06-21 2021-04-27 Regents Of The University Of Minnesota Methods of facilitating removal of a fingerprint from a substrate or a coating
US11015149B2 (en) 2010-06-21 2021-05-25 Toyota Motor Corporation Methods of facilitating removal of a fingerprint
US11624044B2 (en) 2010-06-21 2023-04-11 Toyota Motor Corporation Compositions for facilitating biological stain removal

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090238811A1 (en) * 2002-09-09 2009-09-24 Mcdaniel C Steven Enzymatic Antimicrobial and Antifouling Coatings and Polymeric Materials
US20110070376A1 (en) * 2002-09-09 2011-03-24 Reactive Surfaces, Ltd. Anti-fouling Paints & Coatings
US20040109853A1 (en) * 2002-09-09 2004-06-10 Reactive Surfaces, Ltd. Biological active coating components, coatings, and coated surfaces
US8618066B1 (en) 2003-07-03 2013-12-31 Reactive Surfaces, Ltd., Llp Coating compositions having peptidic antimicrobial additives and antimicrobial additives of other configurations
US8394618B2 (en) * 2010-06-21 2013-03-12 Toyota Motor Engineering & Manufacturing North America, Inc. Lipase-containing polymeric coatings for the facilitated removal of fingerprints
US8911986B2 (en) * 2011-04-29 2014-12-16 Toyota Motor Engineering & Manufacturing North America, Inc. Coatings containing polymer modified enzyme for stable self-cleaning of organic stains
DE102012110664A1 (en) * 2012-11-07 2014-05-08 Henkel Ag & Co. Kgaa Peptides which can be used in coating compositions, adhesion promoters or adhesives for oxidic surfaces
CN111175220A (en) * 2020-02-24 2020-05-19 中国第一汽车股份有限公司 Method for detecting bird dung resistance of artificial bird dung liquid and coating
CN114395918B (en) * 2021-12-29 2024-09-24 江苏恒生环保科技有限公司 Preparation method of bedding fabric capable of radically curing and preventing mite damage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5988200A (en) 1997-09-16 1999-11-23 Custom Metalcraft, Inc. Repetitive stamped valve guard
US6291582B1 (en) 1996-10-10 2001-09-18 Biotechnology Research & Development Corp. Polymer-protein composites and methods for their preparation and use

Family Cites Families (190)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3220928A (en) 1962-07-06 1965-11-30 Schwarz Lab Inc Enzymatic cleaning process
US3519538A (en) 1968-09-05 1970-07-07 Corning Glass Works Chemically coupled enzymes
US3672955A (en) 1970-05-20 1972-06-27 Us Agriculture Preparation of an insoluble active enzyme
US3705938A (en) 1971-02-02 1972-12-12 Hercules Protective Fabric Cor Activated polymer materials and process for making same
US3857934A (en) 1971-02-02 1974-12-31 Herculite Protective Fab Activated polymer materials and process for making same
US4034078A (en) 1971-02-16 1977-07-05 Ralston Purina Company Product and method for controlling odors
US3935862A (en) 1974-06-12 1976-02-03 Personal Products Company Inhibition of conditions arising from microbial production of ammonia
US4026814A (en) 1974-09-09 1977-05-31 Lever Brothers Company Oxido-reductase in soap
US3957974A (en) 1974-11-05 1976-05-18 Seikenkai Method for deodorization of excrements
DE2625544C2 (en) 1975-06-10 1986-09-11 W.R. Grace & Co., New York, N.Y. Method for immobilizing a biological material and composition for carrying out the method
US4195127A (en) 1975-06-10 1980-03-25 W. R. Grace & Co. Process for immobilizing proteins
US4016043A (en) 1975-09-04 1977-04-05 Akzona Incorporated Enzymatic immunological method for the determination of antigens and antibodies
US4195129A (en) 1975-11-26 1980-03-25 Kansai Paint Co., Ltd. Method for immobilizing enzymes and microbial cells
GB1553633A (en) 1976-02-03 1979-09-26 Nicholas Pty Ltd Management of incontinence
US4098645A (en) 1976-02-24 1978-07-04 W. R. Grace & Co. Immobilization of proteins with polyurethane polymers
US4195128A (en) 1976-05-03 1980-03-25 Bayer Aktiengesellschaft Polymeric carrier bound ligands
US4094744A (en) 1976-11-18 1978-06-13 W. R. Grace & Co. Water-dispersible protein/polyurethane reaction product
US4322308A (en) 1977-02-15 1982-03-30 Lever Brothers Company Detergent product containing deodorant compositions
FR2384010A1 (en) 1977-03-15 1978-10-13 Nal Pour Expl Oceans Centre ANTI-FOULING PAINT
US4237591A (en) 1977-05-23 1980-12-09 Personal Products Company Deodorant mini-pad sanitary napkin
US4315828A (en) 1978-03-10 1982-02-16 Max L. Wymore Water based window glass and chrome cleaner composition
US4229536A (en) 1978-12-28 1980-10-21 Uop Inc. Process for preparing immobilized enzymes
SE432194B (en) 1980-09-17 1984-03-26 Landstingens Inkopscentral MOISTURIZING AND BACTERIODIC ABSORPTION BODY FOR URINE AND FAECES, WHICH INCLUDE A WATER-SOLUBLE COPPER SALT
US4552813A (en) 1982-02-12 1985-11-12 Grams Ralph R Method of inhibiting the growth of marine life on surfaces in contact with seawater
FR2539418A1 (en) 1983-01-13 1984-07-20 Inst Textile De France NOVEL MERCUROBUTOL DERIVATIVES AND THEIR APPLICATION TO THE PROTECTION OF PARTICULARLY TEXTILE CARRIERS
US4539982A (en) 1983-02-28 1985-09-10 Bailly Richard Louis Odor absorbing wrap
US4551187A (en) 1984-06-08 1985-11-05 Brush Wellman Inc. Copper alloy
US5998200A (en) 1985-06-14 1999-12-07 Duke University Anti-fouling methods using enzyme coatings
JPS6377998A (en) * 1986-09-19 1988-04-08 日立化成工業株式会社 Detergent compositon
JPS6377999A (en) * 1986-09-19 1988-04-08 日立化成工業株式会社 Enzyme bonded builder
JP2573936B2 (en) * 1987-01-06 1997-01-22 株式会社資生堂 Modified solid material
JPS63202677A (en) 1987-02-19 1988-08-22 Mitsubishi Yuka Badische Co Ltd Algicidal coating composition
EP0286243B1 (en) 1987-03-12 1993-11-03 Nippon Paint Co., Ltd. Disintegration type resin particles, its preparation and coating composition containing the same
JPH0693910B2 (en) 1987-04-23 1994-11-24 日本ゼオン株式会社 Urethane foam containing deodorant and method for producing the same
DK687387D0 (en) 1987-12-28 1987-12-28 Novo Industri As IMMOBILIZED LIPASE
US4897352A (en) 1988-01-15 1990-01-30 The Dow Chemical Company Acrylate based adsorbent resin for the immobilization of enzymes
JPH01285188A (en) * 1988-05-12 1989-11-16 S T Chem Co Ltd Lipase-immobilized polyacrylic acid-based material and utilization thereof
JPH0268117A (en) 1988-09-02 1990-03-07 Asahi Chem Ind Co Ltd Deodorizing air filter
JP2805799B2 (en) * 1989-02-28 1998-09-30 大日本インキ化学工業株式会社 Composite resin for antifouling paint containing immobilized enzyme and antifouling paint containing the same
US5213791A (en) 1989-10-10 1993-05-25 The Gillette Company Amino acid β-lyase enzyme inhibitors as deodorants
CA2075282C (en) 1990-02-12 1999-11-30 Sue B. Lyon Alternative enzyme substrates as deodorants
FR2661682B1 (en) 1990-05-04 1993-12-10 Norsolor NEW RESINOUS COMPOSITIONS BASED ON UNSATURATED POLYESTER RESINS AND NEW ANTI-SHRINKAGE ADDITIVES.
EP0476915B1 (en) * 1990-09-14 1997-05-14 The Clorox Company Lipase-surface complex and methods of formation and use
CA2073511A1 (en) 1990-11-14 1992-05-29 Matthew R. Callstrom Conjugates of poly(vinylsaccharide) with proteins for the stabilization of proteins
KR930002966B1 (en) 1990-11-24 1993-04-16 주식회사 미 원 Process for producing dipeptide
US5559163A (en) 1991-01-28 1996-09-24 The Sherwin-Williams Company UV curable coatings having improved weatherability
US5279955A (en) 1991-03-01 1994-01-18 Pegg Randall K Heterofunctional crosslinking agent for immobilizing reagents on plastic substrates
US5643559A (en) 1991-10-30 1997-07-01 Colgate-Palmolive Company Deodorant compositions comprising inhibitors of odor-producing axillary bacterial exoenzymes
US5303290A (en) 1991-11-29 1994-04-12 At&T Bell Laboratories System for elminating glare in virtual private line circuits
CA2064683A1 (en) 1992-03-26 1993-09-27 Krishna Mohan Rao Kallury Formation of thermostable enzymes with extra-ordinary heat tolerance by immobilization on phospholipid matrices
US5496710A (en) 1992-06-08 1996-03-05 Sagami Chemical Research Center Protease
JPH08126489A (en) * 1992-06-24 1996-05-21 Osaka Prefecture Base material for carrying enzyme, enzyme carrier and production thereof
GB9225054D0 (en) 1992-11-30 1993-01-20 Baxenden Chem Enzymatic synthesis
US5360847A (en) 1993-01-19 1994-11-01 National Starch And Chemical Investment Holding Corp. Dissipative curing and coating composition for concrete
JPH06240297A (en) * 1993-02-16 1994-08-30 Toray Ind Inc Washing assistant containing immobilized enzyme
EP0616033B1 (en) 1993-03-17 2001-06-13 Holland Sweetener Company V.O.F. Mutants of a thermostable neutral protease from Bacillus
GB9309243D0 (en) 1993-05-05 1993-06-16 Allied Colloids Ltd Enzyme dispersions,their production and compositions containing them
US5523226A (en) 1993-05-14 1996-06-04 Biotechnology Research And Development Corp. Transgenic swine compositions and methods
US5739004A (en) 1993-05-20 1998-04-14 Minnesota Mining And Manufacturing Company Biological sterilization indication for use with or without test pack materials or devices
JP3366697B2 (en) 1993-08-27 2003-01-14 オリヱント化学工業株式会社 Long wavelength ultraviolet absorber and method for producing the same
TW306932B (en) 1993-08-27 1997-06-01 Holland Sweetener Co
US5800804A (en) 1993-09-09 1998-09-01 The Gillette Company O-acyl serines and threonines as deodorants
JP2678341B2 (en) 1993-09-27 1997-11-17 富士紡績株式会社 Immobilized lipase
DE69432599D1 (en) 1993-12-07 2003-06-05 Sagami Chemical Res Ct Sagamih MUTANTS OF A THERMOSTABLE NEUTRAL PROTASE FROM BACILLUS
TW287192B (en) 1994-01-21 1996-10-01 Ei Du Pont De Nemours Amd Co
DE4406753A1 (en) 1994-03-02 1995-09-07 Basf Lacke & Farben Detergent, process for the preparation of the detergent and its use
US5505713A (en) 1994-04-01 1996-04-09 Minimed Inc. Indwelling catheter with stable enzyme coating
US5593398A (en) 1994-05-25 1997-01-14 Weimer; Chester L. Protective underwear with malodorous flatus filter
DE4439669A1 (en) 1994-11-07 1996-05-09 Basf Lacke & Farben Aqueous two-component polyurethane coating agent, process for its preparation and its use in processes for producing a multi-layer coating
US5543309A (en) 1994-11-28 1996-08-06 Pischel; Ernie Carrier containing enzymes for treating sewage sludge
US5719039A (en) 1995-06-01 1998-02-17 University Of Iowa Research Foundation Enzyme-surfactant ion-pair complex catalyzed reactions in organic solvents
US5912408A (en) 1995-06-20 1999-06-15 The Procter & Gamble Company Dry cleaning with enzymes
JP3562668B2 (en) 1995-07-31 2004-09-08 高砂香料工業株式会社 Deodorant composition
JPH0959470A (en) 1995-08-29 1997-03-04 Asahi Chem Ind Co Ltd Water-base cross-linkable resin composition
GB2306473B (en) 1995-10-26 1998-12-23 Nippon Paint Co Ltd Glucoxide derivatives for enzyme modification, lipid-coated enzymes, method of producing such enzymes and antifouling paint composition
WO1997021804A1 (en) 1995-12-11 1997-06-19 Sagami Chemical Research Center Novel thermolysin-like protease and use thereof
JPH11502255A (en) 1995-12-29 1999-02-23 ザ、プロクター、エンド、ギャンブル、カンパニー Detergent composition containing immobilized enzyme
DE19634122A1 (en) 1996-08-23 1998-02-26 Inst Physikalische Hochtech Ev Novel baths for the production of microstructures
WO1998015620A1 (en) 1996-10-10 1998-04-16 Biotechnology Research And Development Corporation Polymer-protein composites and methods for their preparation and use
US5837483A (en) 1996-10-15 1998-11-17 Holland Sweetener Company V.O.F. Enzymatic method for producing N-formyl-α-L-aspartyl-L-phenylalanine methyl ester
US5919689A (en) * 1996-10-29 1999-07-06 Selvig; Thomas Allan Marine antifouling methods and compositions
US6342386B1 (en) 1996-10-29 2002-01-29 Warren Paul Powers Methods for removing undesired growth from a surface
JPH10259326A (en) 1997-03-17 1998-09-29 Nippon Paint Co Ltd Method for sustainedly releasing compound having antibiotic activity and coating composition
US5981743A (en) 1997-03-28 1999-11-09 University Of Massachusetts Cyclic ester ring-opened oligomers and methods of preparation
US5817300A (en) 1997-06-02 1998-10-06 Calwood Chemical Industries, Inc. Odor reducing compositions
US6080391A (en) 1997-08-14 2000-06-27 Novo Nordisk A/S Reduction of malodour
ID23661A (en) 1997-08-14 2000-05-11 Novo Nordisk As ANTIMIXROBA COMPOSITION CONTAINING HALOPEROXIDATION OF HALIDA SOURCES AND AMMONIUM SOURCES
USH1818H (en) 1997-10-17 1999-11-02 Sasol Technology (Proprietary) Limited Detergent and cleaning compositions derived from new detergent alcohols
US6149636A (en) 1998-06-29 2000-11-21 The Procter & Gamble Company Disposable article having proactive sensors
US6060043A (en) 1998-02-03 2000-05-09 The Gillette Company Deodorant composition containing D-amino acid
WO1999057155A1 (en) 1998-05-01 1999-11-11 The Procter & Gamble Company Laundry detergent and/or fabric care compositions comprising a modified antimicrobial protein
US6638526B1 (en) 1998-06-23 2003-10-28 Novozymes A/S Polypeptides conjugated to copolymers of ethylene oxide and propylene oxide to reduce allergenicity
US6093869A (en) 1998-06-29 2000-07-25 The Procter & Gamble Company Disposable article having a responsive system including a feedback control loop
US5998512A (en) 1998-07-20 1999-12-07 The University Of Akron Reduced-lipid natural rubber latex
DE69927824T3 (en) 1998-07-24 2010-07-29 Kao Corp. DESODORATING ABSORBENT LAYER
JP2002526430A (en) * 1998-09-22 2002-08-20 ザ、プロクター、エンド、ギャンブル、カンパニー Personal care compositions containing active proteins associated with a water-insoluble substrate
US6716610B2 (en) 1998-12-07 2004-04-06 Kao Corporation Esterification or hydrolysis with substrate treated un-dried immobilized lipolytic enzyme
CA2379729A1 (en) * 1999-07-22 2001-02-01 The Procter & Gamble Company Protease conjugates having sterically protected clip sites
US6759220B1 (en) 1999-11-17 2004-07-06 Agentase, Llc Enzyme-containing polyurethanes
US6472493B1 (en) 1999-11-23 2002-10-29 E. I. Du Pont De Nemours And Company Clear coating composition having improved early hardness and water resistance
ES2162593B1 (en) 2000-01-20 2002-07-01 Univ Madrid Complutense ENZYMATIC PROCEDURE TO FLUIDIFY OR UNLOCK BIOFILMS OF DIFFERENT INTERFACES.
AU2001242318A1 (en) 2000-03-24 2001-10-08 Biolocus Aps Antifouling paint composition comprising rosin and enzyme
US20050164902A1 (en) 2003-10-24 2005-07-28 Ecolab Inc. Stable compositions of spores, bacteria, and/or fungi
WO2002016521A1 (en) 2000-08-22 2002-02-28 Onebiosci Pty Limited Anti-graffiti paint formulations and removal
US6303290B1 (en) 2000-09-13 2001-10-16 The Trustees Of The University Of Pennsylvania Encapsulation of biomaterials in porous glass-like matrices prepared via an aqueous colloidal sol-gel process
AU1142001A (en) 2000-10-19 2002-04-29 Dsm N.V. Protein hydrolysates
EP1404516A2 (en) 2000-12-13 2004-04-07 Purdue Research Foundation Microencapsulation of drugs by solvent exchange
AR032424A1 (en) 2001-01-30 2003-11-05 Procter & Gamble COATING COMPOSITIONS TO MODIFY SURFACES.
JP2002332739A (en) 2001-05-10 2002-11-22 Oomi Kagaku Touki Kk External facing building material, its manufacturing method, and construction method for external facing building material
US6844028B2 (en) 2001-06-26 2005-01-18 Accelr8 Technology Corporation Functional surface coating
US6905733B2 (en) 2001-07-24 2005-06-14 University Of Pittsburgh Irreversible immobilization of enzymes into polyurethane coatings
US7335400B2 (en) 2001-07-24 2008-02-26 University Of Pittsburgh Irreversible immobilization of enzymes into polyurethane coatings
US7183248B2 (en) 2001-08-23 2007-02-27 Treyco Supply Co. Enzymatic cleaner having high pH stability
US6881711B1 (en) 2001-10-26 2005-04-19 Prestone Products Corporation Low VOC cleaning compositions for hard surfaces
FR2832145A1 (en) 2001-11-09 2003-05-16 Atofina Production (meth)acryloyl (oligo)lactic acid derivatives, polymers of which useful as binders in marine antifouling paints, comprises reacting (oligo)lactic acid with (meth)acrylic anhydride or 2-hydroxyethyl (meth)acrylate
JP2003144147A (en) 2001-11-15 2003-05-20 Kansai Paint Co Ltd Method for producing granular formed product for immobilizing enzyme or microbial cell
US7361719B2 (en) 2002-01-31 2008-04-22 Micro Science Tech Co., Ltd. Monomer with anti-microbial character, polymer using the same, and manufacturing method thereof
EP1497382A1 (en) 2002-04-12 2005-01-19 Biolocus Aps Antifouling composition comprising an enzyme in the absence of its substrate
MY140680A (en) 2002-05-20 2010-01-15 Bristol Myers Squibb Co Hepatitis c virus inhibitors
JP2006506242A (en) 2002-07-12 2006-02-23 ポルセンスキー,マーティン,ジェイ. Coating with enhanced microbial function
US20110070376A1 (en) 2002-09-09 2011-03-24 Reactive Surfaces, Ltd. Anti-fouling Paints & Coatings
US20100210745A1 (en) 2002-09-09 2010-08-19 Reactive Surfaces, Ltd. Molecular Healing of Polymeric Materials, Coatings, Plastics, Elastomers, Composites, Laminates, Adhesives, and Sealants by Active Enzymes
US20090238811A1 (en) 2002-09-09 2009-09-24 Mcdaniel C Steven Enzymatic Antimicrobial and Antifouling Coatings and Polymeric Materials
US20040109853A1 (en) 2002-09-09 2004-06-10 Reactive Surfaces, Ltd. Biological active coating components, coatings, and coated surfaces
US20110240064A1 (en) 2002-09-09 2011-10-06 Reactive Surfaces, Ltd. Polymeric Coatings Incorporating Bioactive Enzymes for Cleaning a Surface
US20050058689A1 (en) 2003-07-03 2005-03-17 Reactive Surfaces, Ltd. Antifungal paints and coatings
US20110250626A1 (en) 2002-09-09 2011-10-13 Reactive Surfaces, Ltd. Visual Assays for Coatings Incorporating Bioactive Enzymes for Catalytic Functions
US20120097194A1 (en) 2002-09-09 2012-04-26 Reactive Surfaces, Ltd. Polymeric Coatings Incorporating Bioactive Enzymes for Catalytic Function
IL167413A (en) 2002-09-09 2010-12-30 Steven C Mcdaniel Biological active coating components, coatings and coated surfaces
CN1497028A (en) 2002-09-30 2004-05-19 罗姆和哈斯公司 Coating preparation containing polymer nanoparticle and biological active material
US20050079594A1 (en) 2002-10-31 2005-04-14 Karine Marion Method of removing a biofilm
US7691296B2 (en) 2002-11-25 2010-04-06 Amorepacific Corporation Method for stabilizing active components using polyol/polymer microcapsule, and cosmetic composition containing the microcapsule
DE10257094A1 (en) 2002-12-05 2004-06-24 Basf Ag Enzymatic production of (meth) acrylic acid esters containing urethane groups
JP2004352804A (en) 2003-05-28 2004-12-16 Tdk Corp Electron beam-curable resin for magnetic recording medium, its manufacturing process, and magnetic recording medium using it
US20040242831A1 (en) 2003-05-30 2004-12-02 Dong Tian Enzyme catalyzed polyesters and polyol polymers
US7524664B2 (en) 2003-06-17 2009-04-28 California Institute Of Technology Regio- and enantioselective alkane hydroxylation with modified cytochrome P450
US20040259746A1 (en) 2003-06-20 2004-12-23 Warren Jonathan N. Concentrate composition and process for removing coatings from surfaces such as paint application equipment
US8618066B1 (en) 2003-07-03 2013-12-31 Reactive Surfaces, Ltd., Llp Coating compositions having peptidic antimicrobial additives and antimicrobial additives of other configurations
US20050049166A1 (en) 2003-08-29 2005-03-03 Huang Tsao-Chin Clare Enzyme-based cleaning composition and method of use
WO2005026269A1 (en) 2003-09-04 2005-03-24 Mcdaniel C Steven Microorganism coating components, coatings, and coated surfaces
EP1664128B1 (en) 2003-09-11 2009-01-21 Ciba Holding Inc. Water based concentrated product forms of light stabilizers made by a heterophase polymerization technique
US7452956B2 (en) 2003-10-10 2008-11-18 Dow Corning Corporation Urethane compositions containing carbinol-functional silicone resins
KR100591282B1 (en) 2003-11-18 2006-06-19 주식회사 이지싱크 handheld terminals, system and method for managing golf score
WO2005072125A2 (en) 2004-01-16 2005-08-11 Massachusetts Institute Of Technology Composite materials for controlled release of water soluble products
US8216559B2 (en) 2004-04-23 2012-07-10 Jnc Corporation Deodorant fiber and fibrous article and product made thereof
DE102004020355A1 (en) 2004-04-26 2005-11-10 Call, Krimhild Oxidative, reductive, hydrolytic and other enzymatic systems for the oxidation, reduction, coating, coupling and crosslinking of natural and artificial fibers, plastics or other natural and artificial mono- to polymeric materials
US20050277564A1 (en) 2004-06-15 2005-12-15 Heise Karl A Method of formulating a cleaning composition for use in cleaning surfaces
KR100606021B1 (en) 2004-06-21 2006-07-31 삼성전자주식회사 Antibacterial coating composition containing nano silver particle and coating method thereof
US20080038241A1 (en) 2004-07-01 2008-02-14 Biolocus A/S Self-Polishing Anti-Fouling coating Compositions Comprising An Enzyme
EP1630163A1 (en) 2004-08-25 2006-03-01 Boehringer Ingelheim Pharma GmbH & Co.KG Dihydropteridinones, methods for their preparation and their use as drugs
ATE450620T1 (en) 2004-10-05 2009-12-15 Siemens Healthcare Diagnostics STABLE CREATININE BIOSENSOR WITH THREE ENZYMES
EP1661955A1 (en) 2004-11-29 2006-05-31 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Antifouling coating comprising a polymer with functional groups bonded to an enzyme
JP4877225B2 (en) 2005-02-18 2012-02-15 日油株式会社 Polyoxyalkylene derivatives
DE102005011719A1 (en) 2005-03-15 2006-09-28 Clariant Produkte (Deutschland) Gmbh Detergents and cleaning agents containing acetals as organic solvents
US7933647B2 (en) 2005-06-07 2011-04-26 Transfert Plus, S.E.C. Methods of increasing lipolysis
US8026328B2 (en) 2005-08-09 2011-09-27 University Of Sunderland Hydrophobic silica particles and methods of making same
KR20140027423A (en) 2005-10-12 2014-03-06 다니스코 유에스 인크. Use and production of storage-stable neutral metalloprotease
US7781388B2 (en) 2006-05-04 2010-08-24 American Sterilizer Company Cleaning compositions for hard to remove organic material
WO2007136645A2 (en) 2006-05-16 2007-11-29 E. I. Du Pont De Nemours And Company Highly productive coating composition for automotive refinishing
ATE497502T1 (en) 2006-06-27 2011-02-15 Basf Se BENZOTRIAZOLE UV ABSORBERS SHIFTED TO LONG WAVELENGTHS AND THEIR USE
US8563636B2 (en) 2006-10-23 2013-10-22 Kansai Paint Co., Ltd. Aqueous two-package type clear coating composition and process for the formation of multilayer finish coating film
US9828597B2 (en) 2006-11-22 2017-11-28 Toyota Motor Engineering & Manufacturing North America, Inc. Biofunctional materials
JP5286677B2 (en) 2007-03-13 2013-09-11 トヨタ自動車株式会社 Method for forming ohmic electrode on P-type 4H-SiC substrate
US8222015B2 (en) 2007-05-11 2012-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Heat resistant bioactive composition
CN102037065B (en) 2007-08-10 2015-01-07 埃瑟克斯化学有限责任公司 Styrenated phenol ethoxylates in emulsion polymerization
US20090104086A1 (en) 2007-10-19 2009-04-23 Adam Zax Photocatalytic titanium dioxide nanocrystals
JP5670736B2 (en) 2007-11-12 2015-02-18 コートザイム アンパーツゼルスカブ Antifouling composition comprising airgel
CN101461719B (en) 2007-12-18 2012-02-01 深圳迈瑞生物医疗电子股份有限公司 Method and apparatus for realizing Doppler scan conversion
US8011938B2 (en) 2008-05-21 2011-09-06 Tyco Electroniccs Corporation Electrical connector having linear actuator
WO2009155115A2 (en) 2008-05-30 2009-12-23 Reactive Surfaces, Ltd. Coatings and surface treatments having active enzymes and peptides
US8895040B2 (en) 2008-06-06 2014-11-25 Lubrizol Advanced Materials, Inc. Ester compounds for use in personal care products
US8011381B2 (en) 2008-10-02 2011-09-06 Applied Material, Inc. Balanced purge slit valve
US8388904B1 (en) 2008-12-22 2013-03-05 Reactive Surfaces, Ltd., Llp Equipment decontamination system and method
KR20110131194A (en) * 2009-01-30 2011-12-06 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Polymer and polymer-nanoparticle compositions
US8252571B2 (en) 2009-05-01 2012-08-28 Toyota Motor Engineering & Manufacturing North America, Inc. Preparation of solvent-borne polymeric bioactive coatings
US8679825B2 (en) 2009-05-01 2014-03-25 Toyota Motor Engineering & Manufacturing North America, Inc. Method facilitating removal of bioorganic stains from surfaces
US8287658B2 (en) 2009-06-02 2012-10-16 Ecolab Usa Inc. Biodegradable surfactant blend
DE102009029513A1 (en) 2009-09-16 2011-03-24 Henkel Ag & Co. Kgaa Storage-stable liquid washing or cleaning agent containing proteases
US8932717B2 (en) 2009-09-18 2015-01-13 Lg Chem, Ltd. Lipolytic enzyme for formation of anti-fingerprint coating, method of forming anti-fingerprint coating, substrate comprising the anti-fingerprint coating formed by the method, and product comprising the substrate
EP4159833A3 (en) 2009-12-09 2023-07-26 The Procter & Gamble Company Fabric and home care products
US8394618B2 (en) 2010-06-21 2013-03-12 Toyota Motor Engineering & Manufacturing North America, Inc. Lipase-containing polymeric coatings for the facilitated removal of fingerprints
US9388370B2 (en) 2010-06-21 2016-07-12 Toyota Motor Engineering & Manufacturing North America, Inc. Thermolysin-like protease for cleaning insect body stains
US9121016B2 (en) 2011-09-09 2015-09-01 Toyota Motor Engineering & Manufacturing North America, Inc. Coatings containing polymer modified enzyme for stable self-cleaning of organic stains
US8796009B2 (en) 2010-06-21 2014-08-05 Toyota Motor Engineering & Manufacturing North America, Inc. Clearcoat containing thermolysin-like protease from Bacillus stearothermophilus for cleaning of insect body stains
KR101791599B1 (en) 2010-10-08 2017-10-30 한국교통대학교산학협력단 Bulk nanocomposite thermoelectric materials, nanocomposite thermoelectric materials powder and method for manufacturing the same
US8324295B2 (en) 2011-02-10 2012-12-04 Toyota Motor Engineering & Manufacturing North America, Inc. UV-stabilized protein-polymer compositions
MX2013009176A (en) 2011-02-16 2013-08-29 Novozymes As Detergent compositions comprising metalloproteases.
US8911986B2 (en) 2011-04-29 2014-12-16 Toyota Motor Engineering & Manufacturing North America, Inc. Coatings containing polymer modified enzyme for stable self-cleaning of organic stains
BR112014028366A2 (en) 2012-05-21 2017-06-27 Genentech Inc anti-ly6e and immunoconjugate antibodies and methods of use
DE102012112519A1 (en) 2012-12-18 2014-06-18 Eads Deutschland Gmbh Cleaning mixture for removing or avoiding insect deposits on surfaces

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291582B1 (en) 1996-10-10 2001-09-18 Biotechnology Research & Development Corp. Polymer-protein composites and methods for their preparation and use
US5988200A (en) 1997-09-16 1999-11-23 Custom Metalcraft, Inc. Repetitive stamped valve guard

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10781438B2 (en) 2006-11-22 2020-09-22 Toyota Motor Engineering & Manufacturing North America, Inc. Biofunctional materials
US11236323B2 (en) 2006-11-22 2022-02-01 Toyota Motor Corporation Biofunctional materials
US11225654B2 (en) 2006-11-22 2022-01-18 Toyota Motor Corporation Biofunctional materials
WO2009136186A1 (en) * 2008-05-09 2009-11-12 Airbus Uk Limited Surfaces with immobilized enzymes or anti-icing proteins
JP2012516926A (en) * 2009-02-05 2012-07-26 ダニスコ・エー・エス Composition
EP2479225A2 (en) * 2009-09-18 2012-07-25 LG Chem, Ltd. Novel use of a lipolytic enzyme for forming an anti-fingerprint coating, method for forming anti-fingerprint coating, substrate comprising the anti-fingerprint coating formed by the method, and products comprising the substrate
EP2479225A4 (en) * 2009-09-18 2013-10-16 Lg Chemical Ltd Novel use of a lipolytic enzyme for forming an anti-fingerprint coating, method for forming anti-fingerprint coating, substrate comprising the anti-fingerprint coating formed by the method, and products comprising the substrate
US8932717B2 (en) 2009-09-18 2015-01-13 Lg Chem, Ltd. Lipolytic enzyme for formation of anti-fingerprint coating, method of forming anti-fingerprint coating, substrate comprising the anti-fingerprint coating formed by the method, and product comprising the substrate
US10767141B2 (en) 2010-06-21 2020-09-08 Toyota Motor Engineering & Manufacturing North America, Inc. Thermolysin for easy-cleaning of insect body stains
US10988714B2 (en) 2010-06-21 2021-04-27 Regents Of The University Of Minnesota Methods of facilitating removal of a fingerprint from a substrate or a coating
US11015149B2 (en) 2010-06-21 2021-05-25 Toyota Motor Corporation Methods of facilitating removal of a fingerprint
US11692156B2 (en) 2010-06-21 2023-07-04 Toyota Motor Corporation Bioactive protein-polymer compositions for stain removal
US11624044B2 (en) 2010-06-21 2023-04-11 Toyota Motor Corporation Compositions for facilitating biological stain removal
US11254898B2 (en) 2010-06-21 2022-02-22 Toyota Motor Corporation Bioactive protein-polymer compositions
US10563094B2 (en) 2011-09-09 2020-02-18 Toyota Motor Engineering & Manufacturing North America, Inc. Coatings containing polymer modified enzyme for stable self-cleaning of organic stains
US11542410B2 (en) 2011-09-09 2023-01-03 Toyota Motor Corporation Coatings containing enzyme for stable self-cleaning of organic stains
US11566149B2 (en) 2011-09-09 2023-01-31 Toyota Motor Corporation Coatings containing polymer modified enzyme for stable self-cleaning of organic stains
US11597853B2 (en) 2011-09-09 2023-03-07 Toyota Motor Corporation Coatings containing polymer modified enzyme for stable self-cleaning of organic stains
US11535773B2 (en) 2011-09-09 2022-12-27 Toyota Motor Corporation Coatings containing polymer modified enzyme for stable self-cleaning of organic stains
US12060497B2 (en) 2011-09-09 2024-08-13 Toyota Motor Corporation Coatings containing polymer modified enzyme for stable self-cleaning of organic stains
WO2020181099A1 (en) * 2019-03-06 2020-09-10 Curie Co. Inc. Preservative compositions and methods of use thereof

Also Published As

Publication number Publication date
CN101600835B (en) 2014-01-22
US9828597B2 (en) 2017-11-28
US20200342098A1 (en) 2020-10-29
JP2021101015A (en) 2021-07-08
JP2019108550A (en) 2019-07-04
US20190153422A1 (en) 2019-05-23
JP2010510380A (en) 2010-04-02
EP2087165A2 (en) 2009-08-12
US11225654B2 (en) 2022-01-18
JP6522570B2 (en) 2019-05-29
US11236323B2 (en) 2022-02-01
JP6845268B2 (en) 2021-03-17
JP2017071779A (en) 2017-04-13
EP2087165A4 (en) 2009-12-02
US20080119381A1 (en) 2008-05-22
WO2008063902A3 (en) 2008-11-13
US10781438B2 (en) 2020-09-22
JP6096748B2 (en) 2017-03-15
CN101600835A (en) 2009-12-09
US20180044658A1 (en) 2018-02-15
EP2087165B1 (en) 2015-09-02
US20190153423A1 (en) 2019-05-23
JP2015096610A (en) 2015-05-21
US20190153424A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
US11225654B2 (en) Biofunctional materials
Chiou et al. Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups
Gür et al. Optimization of enzyme co-immobilization with sodium alginate and glutaraldehyde-activated chitosan beads
Alsarra et al. Effects of preparative parameters on the properties of chitosan hydrogel beads containing Candida rugosa lipase
Kutcherlapati et al. Urease immobilized polymer hydrogel: Long-term stability and enhancement of enzymatic activity
US10563094B2 (en) Coatings containing polymer modified enzyme for stable self-cleaning of organic stains
US8361768B2 (en) Heat resistant bioactive composition
US9193873B2 (en) Method of facilitating removal of bioorganic stains from surfaces
Gherardi et al. Immobilized enzymes on gold nanoparticles: From enhanced stability to cleaning of heritage textiles
Riccardi et al. Nanoarmoring of enzymes by interlocking in cellulose fibers with poly (acrylic acid)
Akdemir et al. Preparation and characterization of UV-curable polymeric support for covalent immobilization of xylanase enzyme
EP2534483B1 (en) Test arrangement
Tasso et al. Covalent immobilization of subtilisin A onto thin films of maleic anhydride copolymers
Ang et al. Characteristics of β-glucosidase production by Paecilomyces variotii and its potential application in bioassay system for boric acid determination
Califano et al. Diaminated Cellulose Beads as a Sustainable Support for Industrially Relevant Lipases
Wu Enzyme-polymer hybrids for highly stable functional materials and self-cleaning coatings

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780032838.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07871408

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007871408

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009538445

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE