WO2008060616A2 - Process for producing pentafluoro-propene and certain azeotropes comprising hf and halopropenes of the formula c3hcif4 - Google Patents

Process for producing pentafluoro-propene and certain azeotropes comprising hf and halopropenes of the formula c3hcif4 Download PDF

Info

Publication number
WO2008060616A2
WO2008060616A2 PCT/US2007/024065 US2007024065W WO2008060616A2 WO 2008060616 A2 WO2008060616 A2 WO 2008060616A2 US 2007024065 W US2007024065 W US 2007024065W WO 2008060616 A2 WO2008060616 A2 WO 2008060616A2
Authority
WO
WIPO (PCT)
Prior art keywords
hcfc
chf
hfc
catalyst
optionally
Prior art date
Application number
PCT/US2007/024065
Other languages
French (fr)
Other versions
WO2008060616A3 (en
Inventor
V. N. Mallikarjuna Rao
Allen C. Sievert
Original Assignee
E. I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E. I. Du Pont De Nemours And Company filed Critical E. I. Du Pont De Nemours And Company
Priority to US12/514,348 priority Critical patent/US8163964B2/en
Publication of WO2008060616A2 publication Critical patent/WO2008060616A2/en
Publication of WO2008060616A3 publication Critical patent/WO2008060616A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • C07C17/354Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction by hydrogenation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to processes that involve the production of halogenated hydrocarbon products comprising 1 ,2,3,3,3- pentafluoropropene.
  • U.S. Patent No. 5,396,000 discloses a process for producing HFC-1225ye by dehydrofluorination of CF 3 CFHCF 2 H (HFC-236ea). There is a need for new manufacturing processes for the production of HFC-1225ye.
  • the present invention also provides a composition
  • the present invention provides a process for making HFC- 1225ye or mixtures thereof with HFC-1225yc employing a multi-step process.
  • the multi-step process involves HCFC-1224yd and in some embodiments, HCFC-1224ye, as intermediate reaction products.
  • HFC-1225ye, HCFC-1224yd and HCFC-1224ye may exist as one of two configurational isomers, E- or Z-.
  • HFC-1225ye as used herein refers to the isomers, E-HFC-1225ye (CAS Reg No. [5595-10-8]) or Z- HFC-1225ye (CAS Reg. No. [5528-43-8]), as well as any combinations or mixtures of such isomers.
  • HCFC-1224yd refers to the isomers, E-HCFC-1224yd (CAS Reg. No. [111512-52-8]) or Z-HCFC- 1224ye (CAS Reg. No. [111512-60-8]), as well as any combinations or mixtures of such isomers.
  • HCFC-1224ye refers to the isomers, £-HCFC-1224ye (CAS Reg. No. [84195-40-4]) or Z-HCFC- 1224ye, as well as any combinations or mixtures of such isomers.
  • HCFC-235cb is dehydrofluorinated over a suitable catalyst for a time sufficient to convert at least a portion of HCFC-235 (that is, the total of HCFC-235cb and HCFC-235cc) to HCFC-1224 (that is, the total of HCFC- 1224yd and HCFC-1224ye).
  • Dehydrofluorination of HCFC-235cb produces HCFC-1224yd. If HCFC-235cc is present during the contacting step, the HCFC-1224 produced comprises HCFC-1224ye.
  • C 3 H 2 CIFs component that is, the total of HCFC- 235cb and HCFC-235cc
  • the C 3 H 2 CIF 5 subjected to dehydrofluorination is essentially free of HCFC-235cc.
  • HCFC-235cb free of HCFC-235cc, can be prepared by the reaction of potassium chloride with P-CHsC 6 H 4 SO 2 CH 2 C 2 F 5 as reported by McBee, et al. in Journal of the American Chemical Society, Volume 77, pages 3149-3151 (1955) or by the chlorination of CH 3 CF 2 CF 3 as disclosed by Boudakian, et. al. in British Patent No.1 ,171 , 202.
  • the dehydrofluorination reaction may be conducted in the vapor phase in a reaction zone containing the dehydrofluorination catalyst at temperatures of from about 200 0 C to about 500 0 C and preferably from about 300 0 C to about 450 0 C.
  • the contact time is typically from about 1 to about 450 seconds, preferably from about 10 to about 120 seconds.
  • the reaction pressure can be sub-atmospheric, atmospheric or super-atmospheric. Near atmospheric pressures are preferred. However, the dehydrofluorination of C 3 HCI 2 F 5 can be beneficially run under reduced pressure (i.e., pressures less than one atmosphere).
  • the catalytic dehydrofluorination can optionally be carried out in the presence of an inert gas such as nitrogen, helium or argon.
  • an inert gas such as nitrogen, helium or argon.
  • the addition of an inert gas can be used to increase the extent of dehydrofluorination.
  • Nitrogen is the preferred inert gas.
  • Typical dehydrofluorination reaction conditions and dehydrofluorination catalysts are disclosed in U.S. Patent No. 5,396,000, which is incorporated herein by reference in its entirety.
  • the dehydrofluorination catalyst comprises at least one catalyst selected from the group consisting of carbon, aluminum fluoride, fluorided alumina, and trivalent chromium oxide.
  • dehydrofluorination catalysts useful for converting C 3 H 2 CIFs to HCFC-1224 are described in U. S. Patent No. 6,093,859 and U. S.
  • the effluent from the dehydrofluorination reactor typically includes HF, HCFC-1224yd, CF 3 CHFCHCIF (HCFC-235ea) and any unconverted HCFC-235cb.
  • HCFC-235cc is present as a starting material
  • the effluent typically also contains HCFC-1224ye, CCIF 2 CHFCHF 2 (HCFC- 235eb) and any unconverted HCFC-235cc.
  • the HCFC-1224yd, and HCFC-1224ye if present, may be separated from the product mixture formed in the dehydrofluorination reactor by methods known to the art. Since HF is present in the effluent, if desired, this separation can also include isolation of an azeotrope or near azeotrope composition of HCFC-1224yd and HF.
  • the azeotrope or near azeotrope composition of HCFC-1224yd and HF is disclosed in above- referenced U. S. Patent Application No. 60/855,513.
  • this separation can also include isolation of an azeotrope or near azeotrope composition of a mixture of HCFC-1224yd and HCFC-1224ye and HF.
  • the ratio of HCFC-1224yd to HCFC-1224ye, present in the HCFC-1224 mixture forming the azeotrope or near azeotrope with HF can vary depending on the ratio of HCFC- 235cb and HCFC-235cc fed and/or converted in the dehydrofluorination reactor.
  • HF-free HCFC-1224yd may be obtained using procedures similar to those disclosed in U.S. Patent Application Publication No. 2006/0106263, incorporated herein by reference. Unreacted HCFC-235cb (and HCFC-235cc if present in the starting material), can be recycled back to the dehydrofluorination reactor.
  • HCFC-1224 is fluorinated in a reaction zone, optionally in the presence of a fluorination catalyst, for a time sufficient to convert at least a portion of HCFC-1224 to HFC-1225 (that is, HFC-1225ye and HFC-1225yc). Fluorination of HCFC- 1224yd produces HFC-1225ye. If HCFC-1224ye is present during the fluorination reaction, the fluorination product also comprises HFC-1225yc.
  • the C 3 HCIF 4 component that is, the total of HCFC-1224yd and HCFC-1224ye
  • subjected to fluorination is primarily HCFC-1224yd.
  • the C 3 HCIF 4 component, subjected to fluorination is essentially free of HCFC- 1224ye.
  • the fluorination is preferably conducted in the vapor phase in the presence of a fluorination catalyst.
  • Suitable fluorination catalysts which may be used in the vapor phase reaction of the invention include carbon; graphite; alumina; fluorided alumina; aluminum fluoride; alumina supported on carbon; aluminum fluoride supported on carbon; fluorided alumina supported on carbon; magnesium fluoride supported on aluminum fluoride; metals (including elemental metals, metal oxides, metal halides, and/or other metal salts); metals supported on aluminum fluoride; metals supported on fluorided alumina; metals supported on alumina; and metals supported on carbon; mixtures of metals.
  • Suitable metals for use as catalysts include chromium, iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, manganese, rhenium, scandium, yttrium, lanthanum, titanium, zirconium, and hafnium, copper, silver, gold, zinc, and/or metals having an atomic number of 58 through 71 (i.e., the lanthanide metals).
  • the total metal content of the catalyst will be from about 0.1 to about 20 percent by weight based on the total weight of the catalyst; typically from about 0.1 to about 10 percent by weight based on the total weight of the catalyst.
  • the fluorination catalysts include chromium-containing catalysts including chromium(lll) oxide (Cr2 ⁇ 3); Cr2 ⁇ 3 with other metals such as magnesium halides or zinc halides supported on Cr2 ⁇ 3; chromium(lll) halides supported on carbon; mixtures of chromium and magnesium (including elemental metals, metal oxides, metal halides, and/or other metal salts) optionally supported on graphite; and mixtures of chromium and other metals (including elemental metals, metal oxides, metal halides, and/or other metal salts) optionally supported on graphite, alumina, or aluminum halides such as aluminum fluoride.
  • chromium-containing catalysts including chromium(lll) oxide (Cr2 ⁇ 3);
  • Chromium-containing catalysts are well known in the art. They may be prepared by either precipitation methods or impregnation methods as generally described by Satterfield on pages 87-112 in Heterogeneous Catalysis in Industrial Practice, 2 nd edition (McGraw-Hill, New York, 1991 ).
  • the fluorination catalysts described above can be pretreated with HF.
  • This pretreatment can be accomplished, for example, by placing the metal-containing catalyst in a suitable container, and thereafter, passing HF over the metal-containing catalyst.
  • a suitable container can be the reactor used to perform the fluorination reaction in this invention.
  • the pretreatment time is from about 15 to about 300 minutes, and the pretreatment temperature is from about 200 0 C to about 450 0 C.
  • Suitable temperatures for the vapor-phase fluorination of HCFC-1224 are from about 12O 0 C to about 500 0 C, preferably from about 200 0 C to about 450°C and most preferably from about 250 0 C to about 35O 0 C.
  • Suitable reactor pressures for the vapor-phase fluorination reactor may be from about 1 to about 30 atmospheres. A reactor pressure of from about 1 atmosphere to about 5 atmospheres is preferred.
  • a suitable reaction time may vary from about 1 to about 120 seconds, preferably from about 5 to about 60 seconds.
  • the molar ratio of HF to the total amount of HCFC-1224 for the vapor phase fluorination reaction is typically from about the stoichiometric ratio of HF to the total amount of HCFC-1224 to about 30:1 and is preferably from about 2: 1 to about 10:1.
  • HF present in the product mixture from the dehydrofluorination is not separated from the HCFC-1224 produced in (i), and the HCFC-1224 and HF from the dehydrofluorination is fed to fluorination reactor (e.g., as an azeotrope and/or as a non-azeotropic mixture).
  • the effluent from the reaction zone of the vapor-phase fluorination reactor typically includes HCI, HF, HFC-1225ye, CF 3 CHFCHF 2 (HFC-236ea), and any unreacted HCFC-1224yd. If HCFC-1224ye is fed to the reactor, the effluent typically also includes HFC-1225yc, and any unreacted HCFC-1224ye. Any unreacted HCFC-1224 (that is HCFC- 1224yd and HCFC-1224ye), alone, or combined as HF azeotrope or near azeotrope, is recycled back to the vapor-phase fluorination reactor.
  • HFC-1225yc from the reactor effluent, is separated by methods known to the art.
  • a portion of HFC-1225ye can be separated from mixtures of HFC-1225ye and HFC ⁇ 1225yc by known methods such as distillation.
  • this separation can also include isolation of azeotrope or near azeotrope compositions of HFC-1225ye and HF, and, azeotrope or near azeotrope compositions of HFC-1225yc and HF (if HCFC-1224ye is present as part of the C 3 HCIF 4 component in the fluorination reactor), and further processing to produce HF-free HFC-1225ye and HF-free HFC- 1225yc by using procedures similar to that disclosed in U.S. Patent
  • HF hydrogen fluoride
  • HFC-1225ye can be used for the production of HFC-1234yf.
  • a process for production of HFC-1234yf using HFC-1225ye characterized by said HFC-1225ye being produced by the method disclosed herein.
  • an azeotropic composition is a constant boiling or substantially constant boiling liquid admixture of two or more different substances, wherein the admixture distills without substantial composition change and behaves as a constant boiling composition. Accordingly, the essential features of an azeotropic composition are that at a given pressure, the boiling point of the liquid composition is fixed and that the composition of the vapor above the boiling composition is essentially that of the boiling liquid composition (i.e., no substantial fractionation of the components of the liquid composition takes place).
  • an azeotropic composition may be defined in terms of the unique relationship that exists among the components or in terms of the compositional ranges of the components or in terms of the weight percentages of each component of the composition characterized by a fixed boiling point at a specified pressure. It is also recognized in the art that various azeotropic compositions (including their boiling points at particular pressures) may be calculated (see, e.g., W. Schotte Ind. Eng. Chem. Process Des. Dev. (1980) 19, 432-439). Experimental identification of azeotropic compositions involving the same components may be used to confirm the accuracy of such calculations and/or to modify the calculations at the same temperature and pressure or at other temperatures and pressures.
  • compositions comprising hydrogen fluoride combined with a mixture of HCFC-1224yd and HCFC-1224ye.
  • compositions which comprise HCFC-1224yd, HCFC-1224ye and HF, wherein the HF is present in an effective amount to form an azeotropic combination with the HCFC-1224yd and HCFC-1224ye.
  • compositions include embodiments comprising from about 80 mole percent to about 50 mole percent HF and from about 20 mole percent to about 50 mole percent total HCFC-1224yd and HCFC-1224ye (which form azeotropes boiling at temperatures between about -25 0 C and about 100 0 C and at pressures between about 3 psia (20.7 kPa) and about 300 psia (2070 kPa)).
  • Compositions may be formed that consist essentially of azeotropic combinations of hydrogen fluoride with HCFC-1224yd and HCFC-1224ye.
  • Azeotropic compositions of HF, HCFC-1224yd and HCFC- 1224ye are useful as sources of HF in fluorination reactions.
  • the reactor, distillation columns, and their associated feed lines, effluent lines, and associated units used in applying the process of this invention should be constructed of materials resistant to hydrogen fluoride and hydrogen chloride.
  • Typical materials of construction, well-known to the fluorination art include stainless steels, in particular of the austenitic type, the well-known high nickel alloys, such as Monel nickel-copper alloys, Hastelloy nickel-based alloys and, lnconel nickel-chromium alloys, and copper-clad steel.
  • HCFC-235cb CFsCF 2 CHgCI
  • chromium oxide pellets 5 cc, 7.18 g, 12-20 mesh (1.68-0.84 mm)
  • the tube is connected to a reactor system and surrounded with an electrically- heated furnace.
  • the chromium oxide is prepared by the pyrolysis of ammonium dichromate as described in U.S. Patent No. 5,036,036, herein incorporated by reference.
  • the catalyst is then activated according to the following sequence (time in hours, flow rate nitrogen, flow rate HF, temperature):
  • a mixture of HCFC-235cb and nitrogen in a molar ratio of 1:3 is then passed through the catalyst bed with a contact time of about 30 seconds at a temperature of 350 0 C.
  • the pressure in the reactor is nominally atmospheric.
  • a metal oxide fluorination catalyst comprising 95 atom% chromium and 5 atom% zinc is prepared by co-precipitation of a mixture of chromium and zinc hydroxides as disclosed in U. S. Patent No. 7,285,691. The mixture is dried and calcined at 900 0 C. The calcined catalyst is pelletized (12-20 mesh (1.68-0.84 mm)) and 14 g (10 cc) of the solid is placed in a 30.5 cm x 1.27 cm o.d. Hastelloy® tube. The tube is connected to a reactor system and is surrounded with an electrically-heated furnace.
  • the tube is heated from 5O 0 C to 175 0 C in a flow of nitrogen (50 cc/min; 8.3(10) "7 m 3 /sec) over the course of about one hour.
  • HF is then admitted to the reactor at a flow rate of 50 cc/min (8.3(10)-7m 3 /sec).
  • the nitrogen flow is decreased to 20 cc/min (3.3(10) '7 m 3 /sec) and the HF flow is increased to 80 cc/min (1.3(10) ' 6m 3 /sec); this flow is maintained for about 1 hour.
  • the reactor temperature is then gradually increased to 400 0 C over 5 hours. At the end of this period, the HF flow is stopped and the reactor cooled to 300 0 C under 20 seem (3.3(10)" 7 m 3 /sec) nitrogen flow.
  • a mixture of hydrogen fluoride and an E/Z-mixture of HCFC-1224yd is then fed to the catalyst at 300 0 C with a contact time of 30 seconds; the molar ratio of HF to HCFC-1224yd is 8:1.
  • the effluent also contains unreacted starting materials and lesser amounts of CF 3 CHFCHF 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A process is disclosed for making CF3CF=CHF or a mixture thereof with CF2=CFCHF2. The process involves (i) contacting CH2ClCF2CF3, and optionally CH2FCF2CClF2, in a reaction zone in the presence of a catalytically effective amount of dehydrofluorination catalyst to produce CHCl=CFCF3, and, if CH2FCF2CClF2 is present, CHF=CFCClF2; (ii) contacting CHCl=CFCF3, and CHF=CFCClF2, if any, formed in (i) with hydrogen fluoride (HF) in a reaction zone, optionally in the presence of a fluorination catalyst, to produce a product mixture comprising CHF=CFCF3, and, if CHF=CFCClF2 is present, CF2=CFCHF2; and (iii) recovering CF3CF=CHF, or a mixture thereof with CF2=CFCHF2, from the product mixture formed in (ii); and optionally (iv) separating at least a portion of any CF3CF=CHF in the product mixture formed in (ii) from the CF2=CFCHF2 in the product mixture formed in (ii). Also disclosed is an azeotropic composition involving CHCl=CFCF3, CHF=CFCClF2 and HF.

Description

TITLE
PROCESSES FOR PRODUCING PENTAFLUOROPROPENES AND CERTAIN AZEOTROPES COMPRISING HF AND CERTAIN
HALOPROPENES OF THE FORMULA C3HCIF4
FIELD OF THE INVENTION
The present invention relates to processes that involve the production of halogenated hydrocarbon products comprising 1 ,2,3,3,3- pentafluoropropene.
BACKGROUND OF THE INVENTION
As a result of the Montreal Protocol phasing out ozone depleting chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), industry has been working for the past few decades to find replacement refrigerants. The solution for most refrigerant producers has been the commercialization of hydrofluorocarbon (HFC) refrigerants. The new hydrofluorocarbon refrigerants, HFC-134a (CF3CH2F) being the most widely used at this time, have zero ozone depletion potential and thus are not affected by the current regulatory phase out as a result of the Montreal Protocol. The production of other hydrofluorocarbons for use in applications such as solvents, blowing agents, cleaning agents, aerosol propellants, heat transfer media, dielectrics, fire extinguishants and power cycle working fluids has also been the subject of considerable interest. There is considerable interest in developing new refrigerants with reduced global warming potential, as well as zero ozone depletion potential, for the mobile air-conditioning market, and in other refrigeration applications.
HFC-1225ye (CF3CF=CHF), having zero ozone depletion and a low global warming potential, has been identified as a potential refrigerant. U.S. Patent No. 5,396,000 discloses a process for producing HFC-1225ye by dehydrofluorination of CF3CFHCF2H (HFC-236ea). There is a need for new manufacturing processes for the production of HFC-1225ye.
1 ,1,2,3,3-Pentafluoro-1-propene (CF2=CFCHF2, HFC-1225yc) is useful as a monomer for the manufacture of fluoropolymers. SUMMARY OF THE INVENTION
The present invention provides a process for making CF3CF=CHF (HFC-1225ye) or a mixture thereof with CF2=CFCHF2 (HFC-1225yc). The process comprises (i) contacting CH2CICF2CF3 (HCFC-235cb), and optionally CH2FCF2CCIF2 (HCFC-235cc), in a reaction zone in the presence of a catalytically effective amount of dehydrofluorination catalyst to produce E- and/or Z-CHCI=CFCF3 (HCFC-1224yd), and, if CH2FCF2CCIF2 (HCFC-235cc) is present, E- and/or Z-CHF=CFCCIF2 (HCFC-1224ye); (ii) contacting E- and/or Z-CHCI=CFCF3 (HCFC-1224yd) and, E- and/or Z-CHF=CFCCIF2 (HCFC-1224ye), if any, formed in (i) with hydrogen fluoride (HF) in a reaction zone, optionally in the presence of a fluorination catalyst, to produce a product mixture comprising E- and/or Z- CHF=CFCF3 (HFC-1225ye), and, if E- and/or Z-CHF=CFCCIF2 (HCFC- 1224ye) is present, CF2=CFCHF2 (HFC-1225yc); and (iii) recovering CF3CF=CHF (HFC-1225ye), or a mixture thereof with CF2=CFCHF2 (HFC- 1225yc), from the product mixture formed in (ii); and optionally (iv) separating at least a portion of any E- and/or Z-CF3CF=CHF (HFC- 1225ye) in the product mixture formed in (ii) from the CF2=CFCHF2 (HFC- 1225yc) in the product mixture formed in (ii). The present invention also provides a composition comprising (a) a mixture of E- and/or Z-CHCI=CFCF3 (HCFC-1224yd) and E- and/or Z- CHF=CFCCIF2 (HCFC-1224ye) and (b) HF; wherein the HF is present in an effective amount to form an azeotropic combination with said mixture of E- and/or Z-CHCI=CFCF3 (HCFC-1224yd) and E- and/or Z-CHF=CFCCIF2 (HCFC-1224ye).
DETAILED DESCRIPTION
The present invention provides a process for making HFC- 1225ye or mixtures thereof with HFC-1225yc employing a multi-step process. As noted above the multi-step process involves HCFC-1224yd and in some embodiments, HCFC-1224ye, as intermediate reaction products. HFC-1225ye, HCFC-1224yd and HCFC-1224ye may exist as one of two configurational isomers, E- or Z-. HFC-1225ye as used herein refers to the isomers, E-HFC-1225ye (CAS Reg No. [5595-10-8]) or Z- HFC-1225ye (CAS Reg. No. [5528-43-8]), as well as any combinations or mixtures of such isomers. HCFC-1224yd as used herein refers to the isomers, E-HCFC-1224yd (CAS Reg. No. [111512-52-8]) or Z-HCFC- 1224ye (CAS Reg. No. [111512-60-8]), as well as any combinations or mixtures of such isomers. HCFC-1224ye as used herein refers to the isomers, £-HCFC-1224ye (CAS Reg. No. [84195-40-4]) or Z-HCFC- 1224ye, as well as any combinations or mixtures of such isomers.
In the first step of the process, HCFC-235cb, and optionally HCFC-235cc, is dehydrofluorinated over a suitable catalyst for a time sufficient to convert at least a portion of HCFC-235 (that is, the total of HCFC-235cb and HCFC-235cc) to HCFC-1224 (that is, the total of HCFC- 1224yd and HCFC-1224ye). Dehydrofluorination of HCFC-235cb produces HCFC-1224yd. If HCFC-235cc is present during the contacting step, the HCFC-1224 produced comprises HCFC-1224ye. Of note are embodiments wherein the C3H2CIFs component (that is, the total of HCFC- 235cb and HCFC-235cc) subjected to dehydrofluorination is primarily HCFC-235cb. Of particular note are embodiments wherein the C3H2CIF5 subjected to dehydrofluorination is essentially free of HCFC-235cc. Mixtures of HCFC-235cb and HCFC-235cc can be prepared by the reaction of chlorofluoromethane (CH2CIF) with tetrafluoroethylene (CF2=CF2) in the presence of an aluminum halide as disclosed in U. S. Patent Application No. 60/855,513, filed October 31, 2006, which is herein incorporated by reference in its entirety (see also PCT/US2007/XXXXXX [Docket No. FL1316], filed October 31 , 2007). In particular, C3H2CIF5 (i.e., HCFC-235cb and HCFC-235cc) can be produced by reacting CH2CIF with CF2=CF2 in a reaction zone in the presence of a catalytically effective amount of composition having a bulk formula of AICIxBryF3-x-y wherein the average value of x is 0 to 3, the average value of y is 0 to 3-x, provided that the average values of x and y are not both 0,
HCFC-235cb, free of HCFC-235cc, can be prepared by the reaction of potassium chloride with P-CHsC6H4SO2CH2C2F5 as reported by McBee, et al. in Journal of the American Chemical Society, Volume 77, pages 3149-3151 (1955) or by the chlorination of CH3CF2CF3 as disclosed by Boudakian, et. al. in British Patent No.1 ,171 , 202.
The dehydrofluorination reaction may be conducted in the vapor phase in a reaction zone containing the dehydrofluorination catalyst at temperatures of from about 2000C to about 5000C and preferably from about 3000C to about 4500C. The contact time is typically from about 1 to about 450 seconds, preferably from about 10 to about 120 seconds.
The reaction pressure can be sub-atmospheric, atmospheric or super-atmospheric. Near atmospheric pressures are preferred. However, the dehydrofluorination of C3HCI2F5 can be beneficially run under reduced pressure (i.e., pressures less than one atmosphere).
The catalytic dehydrofluorination can optionally be carried out in the presence of an inert gas such as nitrogen, helium or argon. The addition of an inert gas can be used to increase the extent of dehydrofluorination. Of note are processes where the mole ratio of inert gas to C3H2CIF5 is from about 5:1 to 1:1. Nitrogen is the preferred inert gas. Typical dehydrofluorination reaction conditions and dehydrofluorination catalysts are disclosed in U.S. Patent No. 5,396,000, which is incorporated herein by reference in its entirety. Preferably, the dehydrofluorination catalyst comprises at least one catalyst selected from the group consisting of carbon, aluminum fluoride, fluorided alumina, and trivalent chromium oxide.
Other dehydrofluorination catalysts useful for converting C3H2CIFs to HCFC-1224 are described in U. S. Patent No. 6,093,859 and U. S.
Patent No. 6,369,284; the teachings of these disclosures are incorporated herein by reference
The effluent from the dehydrofluorination reactor typically includes HF, HCFC-1224yd, CF3CHFCHCIF (HCFC-235ea) and any unconverted HCFC-235cb. When HCFC-235cc is present as a starting material, the effluent typically also contains HCFC-1224ye, CCIF2CHFCHF2 (HCFC- 235eb) and any unconverted HCFC-235cc.
The HCFC-1224yd, and HCFC-1224ye if present, may be separated from the product mixture formed in the dehydrofluorination reactor by methods known to the art. Since HF is present in the effluent, if desired, this separation can also include isolation of an azeotrope or near azeotrope composition of HCFC-1224yd and HF. The azeotrope or near azeotrope composition of HCFC-1224yd and HF is disclosed in above- referenced U. S. Patent Application No. 60/855,513. If HCFC-1224ye is present in the reactor effluent, this separation, if desired, can also include isolation of an azeotrope or near azeotrope composition of a mixture of HCFC-1224yd and HCFC-1224ye and HF. The ratio of HCFC-1224yd to HCFC-1224ye, present in the HCFC-1224 mixture forming the azeotrope or near azeotrope with HF, can vary depending on the ratio of HCFC- 235cb and HCFC-235cc fed and/or converted in the dehydrofluorination reactor. HF-free HCFC-1224yd, or HF-free HCFC-1224yd/HCFC-1224ye mixture, may be obtained using procedures similar to those disclosed in U.S. Patent Application Publication No. 2006/0106263, incorporated herein by reference. Unreacted HCFC-235cb (and HCFC-235cc if present in the starting material), can be recycled back to the dehydrofluorination reactor.
In the second step of the process of the invention, HCFC-1224 is fluorinated in a reaction zone, optionally in the presence of a fluorination catalyst, for a time sufficient to convert at least a portion of HCFC-1224 to HFC-1225 (that is, HFC-1225ye and HFC-1225yc). Fluorination of HCFC- 1224yd produces HFC-1225ye. If HCFC-1224ye is present during the fluorination reaction, the fluorination product also comprises HFC-1225yc. Of note are embodiments wherein the C3HCIF4 component (that is, the total of HCFC-1224yd and HCFC-1224ye) subjected to fluorination is primarily HCFC-1224yd. Of particular note are embodiments wherein the C3HCIF4 component, subjected to fluorination is essentially free of HCFC- 1224ye. The fluorination is preferably conducted in the vapor phase in the presence of a fluorination catalyst. Suitable fluorination catalysts which may be used in the vapor phase reaction of the invention include carbon; graphite; alumina; fluorided alumina; aluminum fluoride; alumina supported on carbon; aluminum fluoride supported on carbon; fluorided alumina supported on carbon; magnesium fluoride supported on aluminum fluoride; metals (including elemental metals, metal oxides, metal halides, and/or other metal salts); metals supported on aluminum fluoride; metals supported on fluorided alumina; metals supported on alumina; and metals supported on carbon; mixtures of metals. Suitable metals for use as catalysts, (optionally supported on alumina, aluminum fluoride, fluorided alumina, or carbon), include chromium, iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, manganese, rhenium, scandium, yttrium, lanthanum, titanium, zirconium, and hafnium, copper, silver, gold, zinc, and/or metals having an atomic number of 58 through 71 (i.e., the lanthanide metals). Preferably when used on a support, the total metal content of the catalyst will be from about 0.1 to about 20 percent by weight based on the total weight of the catalyst; typically from about 0.1 to about 10 percent by weight based on the total weight of the catalyst. Of note are vapor phase fluorination embodiments wherein the fluorination catalysts include chromium-containing catalysts including chromium(lll) oxide (Cr2θ3); Cr2θ3 with other metals such as magnesium halides or zinc halides supported on Cr2θ3; chromium(lll) halides supported on carbon; mixtures of chromium and magnesium (including elemental metals, metal oxides, metal halides, and/or other metal salts) optionally supported on graphite; and mixtures of chromium and other metals (including elemental metals, metal oxides, metal halides, and/or other metal salts) optionally supported on graphite, alumina, or aluminum halides such as aluminum fluoride.
Chromium-containing catalysts are well known in the art. They may be prepared by either precipitation methods or impregnation methods as generally described by Satterfield on pages 87-112 in Heterogeneous Catalysis in Industrial Practice, 2nd edition (McGraw-Hill, New York, 1991 ).
Optionally, the fluorination catalysts described above can be pretreated with HF. This pretreatment can be accomplished, for example, by placing the metal-containing catalyst in a suitable container, and thereafter, passing HF over the metal-containing catalyst. In one embodiment of this invention, such container can be the reactor used to perform the fluorination reaction in this invention. Typically, the pretreatment time is from about 15 to about 300 minutes, and the pretreatment temperature is from about 2000C to about 4500C.
Suitable temperatures for the vapor-phase fluorination of HCFC-1224 are from about 12O0C to about 5000C, preferably from about 2000C to about 450°C and most preferably from about 2500C to about 35O0C. Suitable reactor pressures for the vapor-phase fluorination reactor may be from about 1 to about 30 atmospheres. A reactor pressure of from about 1 atmosphere to about 5 atmospheres is preferred. A suitable reaction time may vary from about 1 to about 120 seconds, preferably from about 5 to about 60 seconds.
The molar ratio of HF to the total amount of HCFC-1224 for the vapor phase fluorination reaction is typically from about the stoichiometric ratio of HF to the total amount of HCFC-1224 to about 30:1 and is preferably from about 2: 1 to about 10:1.
Of note are embodiments wherein the HF present in the product mixture from the dehydrofluorination is not separated from the HCFC-1224 produced in (i), and the HCFC-1224 and HF from the dehydrofluorination is fed to fluorination reactor (e.g., as an azeotrope and/or as a non-azeotropic mixture).
The effluent from the reaction zone of the vapor-phase fluorination reactor typically includes HCI, HF, HFC-1225ye, CF3CHFCHF2 (HFC-236ea), and any unreacted HCFC-1224yd. If HCFC-1224ye is fed to the reactor, the effluent typically also includes HFC-1225yc, and any unreacted HCFC-1224ye. Any unreacted HCFC-1224 (that is HCFC- 1224yd and HCFC-1224ye), alone, or combined as HF azeotrope or near azeotrope, is recycled back to the vapor-phase fluorination reactor. The desired HFC-1225ye, and mixtures thereof with HFC-
1225yc from the reactor effluent, is separated by methods known to the art. Optionally, a portion of HFC-1225ye can be separated from mixtures of HFC-1225ye and HFC~1225yc by known methods such as distillation. Since HF is present in the effluent from the vapor-phase fluorination reactor, if desired, this separation can also include isolation of azeotrope or near azeotrope compositions of HFC-1225ye and HF, and, azeotrope or near azeotrope compositions of HFC-1225yc and HF (if HCFC-1224ye is present as part of the C3HCIF4 component in the fluorination reactor), and further processing to produce HF-free HFC-1225ye and HF-free HFC- 1225yc by using procedures similar to that disclosed in U.S. Patent
Application Publication No. 2006/0106263, which is incorporated herein by reference. The azeotrope and near azeotrope of HFC-1225yc and HF is disclosed in U.S. Patent Application No. 60/859,186 filed November 15, 2006. It is noted that any HCFC-1224ye in the product of step (i) need not be forwarded to step (ii); and that any HFC-1225yc in the product of step (ii) need not be recovered. Accordingly, a process is provided for making CF3CF=CHF, comprising (i) contacting CH2CICF2CF3, and optionally CH2FCF2CCIF2, in a reaction zone in the presence of a catalytically effective amount of dehydrofluorination catalyst to produce CHCI=CFCF3, and, if CH2FCF2CCIF2 is present, CHF=CFCCIF2; (ii) contacting CHCI=CFCF3, and optionally CHF=CFCCIF2, if any, formed in (i) with hydrogen fluoride (HF) in a reaction zone, optionally in the presence of a fluorination catalyst, to produce a product mixture comprising CHF=CFCF3; and (iii) recovering CF3CF=CHF, from the product mixture formed in (ii).
HFC-1225ye can be used for the production of HFC-1234yf. Of note is a process for production of HFC-1234yf using HFC-1225ye characterized by said HFC-1225ye being produced by the method disclosed herein. HFC-1234yf may be produced from the HFC-1225ye by adding hydrogen and CF3CF=CHF to a reaction vessel containing a hydrogenation catalyst; reacting said CF3CF=CHF with hydrogen over said hydrogenation catalyst to produce CF3CHFCH2F; and dehydrofluorinating CF3CHFCH2F in the vapor phase over a dehydrofluorination catalyst. Suitable dehydrofluorination catalysts are selected from the group consisting of aluminum fluoride; gamma alumina, fluorided alumina; metals on aluminum fluoride; metals on fluorided alumina; oxides, fluorides, and oxyfluorides of magnesium, zinc and mixtures of magnesium and zinc and/or aluminum; lanthanum oxide and fluorided lanthanum oxide; chromium oxides, fluorided chromium oxides, cobalt-substituted chromium oxides, and cubic chromium trifluoride; carbon, acid-washed carbon, activated carbon, three dimensional matrix carbonaceous materials; and metal compounds supported on carbon, to produce CF3CF=CH2. Further details regarding the production of HFC-1234yf from HFC-1225ye are provided in International Application No. PCT/US2007/19315, which is hereby incorporated herein by reference.
The consideration of processes for the separation of individual products by distillation from the various product mixtures obtained from the different reaction steps of the processes of this invention includes the azeotropic combinations of the individual products thereof with HF. As recognized in the art, an azeotropic composition is a constant boiling or substantially constant boiling liquid admixture of two or more different substances, wherein the admixture distills without substantial composition change and behaves as a constant boiling composition. Accordingly, the essential features of an azeotropic composition are that at a given pressure, the boiling point of the liquid composition is fixed and that the composition of the vapor above the boiling composition is essentially that of the boiling liquid composition (i.e., no substantial fractionation of the components of the liquid composition takes place). It is also recognized in the art that both the boiling point and the weight percentages of each component of the azeotropic composition may change when the azeotrope composition is subjected to boiling at different pressures. Thus, an azeotropic composition may be defined in terms of the unique relationship that exists among the components or in terms of the compositional ranges of the components or in terms of the weight percentages of each component of the composition characterized by a fixed boiling point at a specified pressure. It is also recognized in the art that various azeotropic compositions (including their boiling points at particular pressures) may be calculated (see, e.g., W. Schotte Ind. Eng. Chem. Process Des. Dev. (1980) 19, 432-439). Experimental identification of azeotropic compositions involving the same components may be used to confirm the accuracy of such calculations and/or to modify the calculations at the same temperature and pressure or at other temperatures and pressures.
As noted above, the present invention provides azeotropic compositions comprising hydrogen fluoride combined with a mixture of HCFC-1224yd and HCFC-1224ye. In accordance with this invention, compositions are provided which comprise HCFC-1224yd, HCFC-1224ye and HF, wherein the HF is present in an effective amount to form an azeotropic combination with the HCFC-1224yd and HCFC-1224ye. According to calculations, these compositions include embodiments comprising from about 80 mole percent to about 50 mole percent HF and from about 20 mole percent to about 50 mole percent total HCFC-1224yd and HCFC-1224ye (which form azeotropes boiling at temperatures between about -250C and about 1000C and at pressures between about 3 psia (20.7 kPa) and about 300 psia (2070 kPa)). Compositions may be formed that consist essentially of azeotropic combinations of hydrogen fluoride with HCFC-1224yd and HCFC-1224ye. These include compositions calculated to consist essentially of from about 80 mole percent to about 50 mole percent HF and from about 20 mole percent to about 50 mole percent total HCFC-1224yd and HCFC-1224ye (which form azeotropes boiling at temperatures between about -250C and about 1000C and at pressures between about 3 psia (20.7 kPa) and about 300 psia (2070 kPa)). Azeotropic compositions of HF, HCFC-1224yd and HCFC- 1224ye are useful as sources of HF in fluorination reactions. For example by combining the azeotrope of HF, HCFC-1224yd and HCFC-1224ye with fluorination precursor compounds it is possible to obtain HF-free HCFC- 1224yd and HCFC-1224ye and a fluorinated product (see for example, U. S. Patent No.6,224,781).
The reactor, distillation columns, and their associated feed lines, effluent lines, and associated units used in applying the process of this invention should be constructed of materials resistant to hydrogen fluoride and hydrogen chloride. Typical materials of construction, well-known to the fluorination art, include stainless steels, in particular of the austenitic type, the well-known high nickel alloys, such as Monel nickel-copper alloys, Hastelloy nickel-based alloys and, lnconel nickel-chromium alloys, and copper-clad steel. EXAMPLES
The processes of the present invention are demonstrated by the following prophetic examples.
EXAMPLE 1
Dehvdrofluorination of HCFC-235cb (CFsCF2CHgCI) An Inconel™ tube (5/8 inch OD (1.59 cm)) is charged with chromium oxide pellets (5 cc, 7.18 g, 12-20 mesh (1.68-0.84 mm)). The tube is connected to a reactor system and surrounded with an electrically- heated furnace. The chromium oxide is prepared by the pyrolysis of ammonium dichromate as described in U.S. Patent No. 5,036,036, herein incorporated by reference. The catalyst is then activated according to the following sequence (time in hours, flow rate nitrogen, flow rate HF, temperature):
1 h, 8.3x10-8 rrvVs, 0, 2000C; 1 h, 8.3x1 C8 m3/s, 0, 4000C; 1 h, 8.3x10'8 πrVs, 0, 3000C; 1 h, 5.8x10"7 m3/s, 2.0x10-7 m3/s, 3000C; 1 h, 5.8x1 O^ m3/s, 2.0x10'7 m3/s, 35O0C; 1 h, 5.8x10"7 m3/s, 2.0x10"7 m3/s, 375°C; 0.5 h, 5.8x10"7 m3/s, 2.0x10-7 m3/s, 4000C; 0.5 h, 5.8x10'7 m3/s, 2.0x10'7 m3/s, 425°C; 0.5 h, 4.2x10"7 m3/s, 3.3x10"7 m3/s, 425°C; 0.5 h, 2.5x10'7 m3/s, 4.7x10"7 m3/s, 4250C; and 0.5 h, 5.0x10"8 πrVs, 6.0x10"7 πrVs, 425°C. The flow of hydrogen fluoride is then stopped and the reactor is purged with nitrogen.
A mixture of HCFC-235cb and nitrogen in a molar ratio of 1:3 is then passed through the catalyst bed with a contact time of about 30 seconds at a temperature of 3500C. The pressure in the reactor is nominally atmospheric. Analysis of the reactor effluent shows at least 50% of the HCFC-235cb is converted and the major reaction product is HCFC-1224yd (E/Z-CF3CF=CHCI).
EXAMPLE 2 Fluorination of HCFC-1224yd (CFaCF=CHCI)
A metal oxide fluorination catalyst comprising 95 atom% chromium and 5 atom% zinc is prepared by co-precipitation of a mixture of chromium and zinc hydroxides as disclosed in U. S. Patent No. 7,285,691. The mixture is dried and calcined at 9000C. The calcined catalyst is pelletized (12-20 mesh (1.68-0.84 mm)) and 14 g (10 cc) of the solid is placed in a 30.5 cm x 1.27 cm o.d. Hastelloy® tube. The tube is connected to a reactor system and is surrounded with an electrically-heated furnace. The tube is heated from 5O0C to 1750C in a flow of nitrogen (50 cc/min; 8.3(10)"7m3/sec) over the course of about one hour. HF is then admitted to the reactor at a flow rate of 50 cc/min (8.3(10)-7m3/sec). After 2 hours, the nitrogen flow is decreased to 20 cc/min (3.3(10)'7m3/sec) and the HF flow is increased to 80 cc/min (1.3(10)'6m3/sec); this flow is maintained for about 1 hour. The reactor temperature is then gradually increased to 4000C over 5 hours. At the end of this period, the HF flow is stopped and the reactor cooled to 3000C under 20 seem (3.3(10)"7m3/sec) nitrogen flow.
A mixture of hydrogen fluoride and an E/Z-mixture of HCFC-1224yd is then fed to the catalyst at 3000C with a contact time of 30 seconds; the molar ratio of HF to HCFC-1224yd is 8:1. The pressure in the reactor is nominally atmospheric. Under these conditions, at least 50% of the HCFC-1224yd is converted with E/Z-CF3CF=CHF being the major reaction product. The effluent also contains unreacted starting materials and lesser amounts of CF3CHFCHF2.

Claims

CLAIMSWhat is claimed is:
1. A process for making CF3CF=CHF, comprising:
(i) contacting CH2CICF2CF3, and optionally CH2FCF2CCIF2, in a reaction zone in the presence of a catalytically effective amount of dehydrofluorination catalyst to produce CHCI=CFCF3, and, if CH2FCF2CCIF2 is present, CHF=CFCCIF2; (ii) contacting CHCI=CFCF3, and optionally CHF=CFCCIF2, if any, formed in (i) with hydrogen fluoride (HF) in a reaction zone, optionally in the presence of a fluorination catalyst, to produce a product mixture comprising CHF=CFCF3; and
(iii) recovering CF3CF=CHF, from the product mixture formed in (ii).
2. The process of Claim 1 wherein the C3H2CIF5 dehydrofluorinated in (i) is prepared by reacting CH2CIF with CF2=CF2 in a reaction zone in the presence of a catalytically effective amount of an aluminum halide composition having a bulk formula of AICIxBryF3-x-y wherein the average value of x is 0 to 3, the average value of y is 0 to 3-x, provided that the average values of x and y are not both 0.
3. The process of Claim 1 wherein the C3H2CIF5 dehydrofluorinated in (i) is essentially free of CH2FCF2CCIF2.
4. The process of Claim 1 wherein the C3HCIF4 fluorinated in (ii) is essentially free of CHF=CFCCIF2.
5. A process for producing HFC-1234yf using HFC-1225ye, characterized by making said HFC-1225ye by the process of claim 1.
6. The process of claim 5 comprising the steps of:
(A) adding hydrogen and CF3CF=CHF to a reaction vessel containing a hydrogenation catalyst;
(B) reacting said CF3CF=CHF with hydrogen over said hydrogenation catalyst to produce CF3CHFCH2F; and (C) dehydrofluorinating CF3CHFCH2F in the vapor phase over a dehydrofluorination catalyst.
7. A composition comprising (a) a mixture of CHCI=CFCF3 and CHF=CFCCIF2 and (b) HF; wherein the HF is present in an effective amount to form an azeotropic combination with said mixture of CHCI=CFCF3 and CHF=CFCCIF2.
PCT/US2007/024065 2006-11-15 2007-11-15 Process for producing pentafluoro-propene and certain azeotropes comprising hf and halopropenes of the formula c3hcif4 WO2008060616A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/514,348 US8163964B2 (en) 2006-11-15 2007-11-15 Processes for producing pentafluoropropenes and certain azeotropes comprising HF and certain halopropenes of the formula C3 HClF4

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US85917306P 2006-11-15 2006-11-15
US60/859,173 2006-11-15

Publications (2)

Publication Number Publication Date
WO2008060616A2 true WO2008060616A2 (en) 2008-05-22
WO2008060616A3 WO2008060616A3 (en) 2009-02-05

Family

ID=39277976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/024065 WO2008060616A2 (en) 2006-11-15 2007-11-15 Process for producing pentafluoro-propene and certain azeotropes comprising hf and halopropenes of the formula c3hcif4

Country Status (3)

Country Link
US (1) US8163964B2 (en)
TW (1) TW200831446A (en)
WO (1) WO2008060616A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7872161B2 (en) 2006-11-15 2011-01-18 E. I. Du Pont De Nemours And Company Process for producing 2,3,3,3-tetrafluoropropene
US8058489B2 (en) 2006-11-15 2011-11-15 E.I. Du Pont De Nemours And Company Processes for producing pentafluoropropenes and azeotropes comprising HF and certain halopropenes of the formula C3Cl2F4, C3ClF5, or C3HF5
JP2011529447A (en) * 2008-07-29 2011-12-08 ダイキン工業株式会社 Method for producing fluorine-containing propene by gas phase fluorination
FR3010996A1 (en) * 2013-09-24 2015-03-27 Arkema France GAS PHASE FLUORINATION PROCESS
WO2020036836A1 (en) * 2018-08-13 2020-02-20 The Chemours Company Fc, Llc Compositions and processes for producing chlorofluoroalkenes

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101535223A (en) * 2006-09-05 2009-09-16 纳幕尔杜邦公司 A process and methods of purification for the manufacture fluorocarbons
EP2091897B2 (en) * 2006-10-31 2021-12-01 The Chemours Company FC, LLC Processes for the production of fluoropropanes and halopropenes
EP2957616A1 (en) 2011-02-04 2015-12-23 E. I. du Pont de Nemours and Company Azeotrope-like compositions involving certain haloolefins and uses thereof
CN104907065B (en) * 2014-03-12 2019-08-02 北京宇极科技发展有限公司 Fluorination catalyst, Preparation method and use
PL3668937T3 (en) * 2017-08-18 2023-08-07 The Chemours Company Fc, Llc Compositions and uses of z-1-chloro-2,3,3,3-tetrafluoroprop-1-ene

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396000A (en) * 1993-05-24 1995-03-07 E. I. Du Pont De Nemours And Company Process for the manufacture of 1,1,1,2,3,-pentafluoropropane
US6369284B1 (en) * 1997-01-31 2002-04-09 E. I. Du Pont De Nemours And Company Catalytic manufacture of pentafluoropropenes
US6958424B1 (en) * 2004-12-10 2005-10-25 Honeywell International Inc. Process for fluoroalkenes
WO2008002501A2 (en) * 2006-06-27 2008-01-03 E. I. Du Pont De Nemours And Company 1,2,3,3,3-pentafluoropropene production processes
WO2008030444A2 (en) * 2006-09-05 2008-03-13 E. I. Du Pont De Nemours And Company Process for producing 1,2,3,3,3-pentafluoropropene and related azeotropic compositions
WO2008030442A1 (en) * 2006-09-05 2008-03-13 E. I. Du Pont De Nemours And Company Processes for producing 1,2,3,3,3-pentafluoropropene and precursors thereof
WO2008054778A2 (en) * 2006-10-31 2008-05-08 E. I. Du Pont De Nemours And Company Processes for producing 2,3,3,3-tetrafluoropropene, a process for producing 1-chloro-2,2,3,3,3-pentafluoropropane and azeotropic compositions of 1-chloro-2,3,3,3-tetrafluoropropene with hf
WO2008060612A2 (en) * 2006-11-15 2008-05-22 E. I. Du Pont De Nemours And Company Processes for producing pentafluoropropenes and azeotropes comprising hf and certain halopropenes of the formula c3ci2f4, c3cif5, or c3hf5
WO2008075017A2 (en) * 2006-12-19 2008-06-26 Ineos Fluor Holdings Limited Process for the preparation of c3-7 fluoroalkenes by base-mediated dehydrohalogenatation of hydrohalogenated c3 -7 fluoroalkanes

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3381042A (en) * 1967-01-27 1968-04-30 Squibb & Sons Inc Process for preparing halogenated propanes
JP3778298B2 (en) 1995-01-13 2006-05-24 ダイキン工業株式会社 Method for producing hexafluoropropene
US7897823B2 (en) * 2004-10-29 2011-03-01 E. I. Du Pont De Nemours And Company Process for production of azeotrope compositions comprising hydrofluoroolefin and hydrogen fluoride and uses of said azeotrope compositions in separation processes
US7335804B2 (en) * 2005-11-03 2008-02-26 Honeywell International Inc. Direct conversion of HCFC 225ca/cb mixture
ES2392591T3 (en) * 2006-03-31 2012-12-12 E.I. Du Pont De Nemours And Company Co-production of hydrofluoroolefins
WO2008003044A2 (en) 2006-06-28 2008-01-03 The Regents Of University Of California Method and apparatus for human behavioral monitoring
DE102006030312A1 (en) 2006-06-30 2008-01-03 Schaeffler Kg Sensor unit for a wheel set bearing
CN101534734B (en) 2006-07-05 2012-08-08 博维医药公司 Apparatus and method for skin tightening and corrective forming
US8524640B2 (en) 2006-07-07 2013-09-03 M-I L.L.C. Fluid loss additive for oil-based muds
JP4169055B2 (en) 2006-07-14 2008-10-22 ダイキン工業株式会社 Rotating electric machine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396000A (en) * 1993-05-24 1995-03-07 E. I. Du Pont De Nemours And Company Process for the manufacture of 1,1,1,2,3,-pentafluoropropane
US6369284B1 (en) * 1997-01-31 2002-04-09 E. I. Du Pont De Nemours And Company Catalytic manufacture of pentafluoropropenes
US6958424B1 (en) * 2004-12-10 2005-10-25 Honeywell International Inc. Process for fluoroalkenes
WO2008002501A2 (en) * 2006-06-27 2008-01-03 E. I. Du Pont De Nemours And Company 1,2,3,3,3-pentafluoropropene production processes
WO2008030444A2 (en) * 2006-09-05 2008-03-13 E. I. Du Pont De Nemours And Company Process for producing 1,2,3,3,3-pentafluoropropene and related azeotropic compositions
WO2008030442A1 (en) * 2006-09-05 2008-03-13 E. I. Du Pont De Nemours And Company Processes for producing 1,2,3,3,3-pentafluoropropene and precursors thereof
WO2008054778A2 (en) * 2006-10-31 2008-05-08 E. I. Du Pont De Nemours And Company Processes for producing 2,3,3,3-tetrafluoropropene, a process for producing 1-chloro-2,2,3,3,3-pentafluoropropane and azeotropic compositions of 1-chloro-2,3,3,3-tetrafluoropropene with hf
WO2008060612A2 (en) * 2006-11-15 2008-05-22 E. I. Du Pont De Nemours And Company Processes for producing pentafluoropropenes and azeotropes comprising hf and certain halopropenes of the formula c3ci2f4, c3cif5, or c3hf5
WO2008075017A2 (en) * 2006-12-19 2008-06-26 Ineos Fluor Holdings Limited Process for the preparation of c3-7 fluoroalkenes by base-mediated dehydrohalogenatation of hydrohalogenated c3 -7 fluoroalkanes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AOYAMA ET AL: "Preparation of hexafluoropropene" CAPLUS,, 1 January 1996 (1996-01-01), XP002484314 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7872161B2 (en) 2006-11-15 2011-01-18 E. I. Du Pont De Nemours And Company Process for producing 2,3,3,3-tetrafluoropropene
US8058489B2 (en) 2006-11-15 2011-11-15 E.I. Du Pont De Nemours And Company Processes for producing pentafluoropropenes and azeotropes comprising HF and certain halopropenes of the formula C3Cl2F4, C3ClF5, or C3HF5
JP2011529447A (en) * 2008-07-29 2011-12-08 ダイキン工業株式会社 Method for producing fluorine-containing propene by gas phase fluorination
FR3010996A1 (en) * 2013-09-24 2015-03-27 Arkema France GAS PHASE FLUORINATION PROCESS
WO2015044558A1 (en) * 2013-09-24 2015-04-02 Arkema France Method of fluorination in the gaseous phase
US9783471B2 (en) 2013-09-24 2017-10-10 Arkema France Method of fluorination in the gaseous phase
CN105579425B (en) * 2013-09-24 2018-12-25 阿科玛法国公司 Fluorination process in the gas phase
WO2020036836A1 (en) * 2018-08-13 2020-02-20 The Chemours Company Fc, Llc Compositions and processes for producing chlorofluoroalkenes
JP2021534175A (en) * 2018-08-13 2021-12-09 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Compositions and Processes for Producing Chlorofluoroalkenes
US11565987B2 (en) 2018-08-13 2023-01-31 The Chemours Company Fc, Llc Compositions and processes for producing chlorofluoroalkenes
JP7487173B2 (en) 2018-08-13 2024-05-20 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Compositions and processes for producing chlorofluoroalkenes - Patents.com

Also Published As

Publication number Publication date
TW200831446A (en) 2008-08-01
WO2008060616A3 (en) 2009-02-05
US20100051853A1 (en) 2010-03-04
US8163964B2 (en) 2012-04-24

Similar Documents

Publication Publication Date Title
US8058489B2 (en) Processes for producing pentafluoropropenes and azeotropes comprising HF and certain halopropenes of the formula C3Cl2F4, C3ClF5, or C3HF5
US7872161B2 (en) Process for producing 2,3,3,3-tetrafluoropropene
US8163964B2 (en) Processes for producing pentafluoropropenes and certain azeotropes comprising HF and certain halopropenes of the formula C3 HClF4
EP2091897B1 (en) Processes for the production of fluoropropanes and halopropenes and azeotropic compositions of 2-chloro-3,3,3-trifluoro-1-propene with hf and of 1,1,1,2,2-pentafluoropropane with hf
US7906693B2 (en) Processes for producing 2,3,3,3-tetrafluoropropene, a process for producing 1-chloro-2,3,3,3-pentafluoropropane and azeotropic compositions of 1-chloro-2,3,3,3-tetrafluoropropene with HF
JP5660891B2 (en) Hydrodechlorination process for producing dihydrofluorinated olefins
US5563304A (en) Production of 1,2-dihydro and 2,2-dihydro hexafluoropropanes and azeotropes thereof with HF
EP2438033B1 (en) Process to manufacture 2,3,3,3-tetrafluoropropene
US8133406B2 (en) Processes for producing 2,3,3,3-tetrafluoropropene and/or 1,2,3,3-tetrafluoropropene
WO2008054782A1 (en) Processes for the production of fluoropropanes and halopropenes
WO2007019358A2 (en) Process for the preparation of 1,3,3,3-tetrafluoropropene and/or 1,1,3,3,3-pentafluoropropene
US7928271B2 (en) Process for producing 1,2,3,3,3-pentafluoropropene and related azeotropic compositions
WO2008079265A1 (en) Process for the synthesis and separation of hydrofluoroolefins
US20080207963A1 (en) Preparation of composition containing chromium, oxygen, and either silver or palladium, and their use as catalysts and catalyst precursors
WO2008030442A1 (en) Processes for producing 1,2,3,3,3-pentafluoropropene and precursors thereof
Rao et al. Processes for producing pentafluoropropenes and certain azeotropes comprising HF and certain halopropenes of the formula C 3 HClF 4

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07867487

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12514348

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07867487

Country of ref document: EP

Kind code of ref document: A2