WO2008056530A1 - Semiconductor laser and process for manufacture thereof - Google Patents

Semiconductor laser and process for manufacture thereof Download PDF

Info

Publication number
WO2008056530A1
WO2008056530A1 PCT/JP2007/070516 JP2007070516W WO2008056530A1 WO 2008056530 A1 WO2008056530 A1 WO 2008056530A1 JP 2007070516 W JP2007070516 W JP 2007070516W WO 2008056530 A1 WO2008056530 A1 WO 2008056530A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane
substrate
semiconductor laser
layer
gan
Prior art date
Application number
PCT/JP2007/070516
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Aoki
Takekazu Ujiie
Original Assignee
Koha Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koha Co., Ltd. filed Critical Koha Co., Ltd.
Publication of WO2008056530A1 publication Critical patent/WO2008056530A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/173The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0202Cleaving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0218Substrates comprising semiconducting materials from other groups of the Periodic Table than the materials of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/320225Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth polar orientation

Definitions

  • the present invention relates to a semiconductor laser and a method of manufacturing the same, and in particular, using a ⁇ -GaO substrate.
  • the present invention relates to a semiconductor laser and a manufacturing method thereof.
  • Shortening of the wavelength of a semiconductor laser is highly expected in order to enable high-density optical recording and high-speed and large-capacity optical communication over a long distance.
  • semiconductor lasers are expected to have shorter wavelengths.
  • Patent Document 1 discloses such a conventional semiconductor laser.
  • a semiconductor laser is formed by reactive ion beam etching using C1 gas.
  • Patent Document 1 Japanese Patent Laid-Open No. 11 145566
  • an object of the present invention is to provide a semiconductor laser having a structure in which a laser resonator with high accuracy is formed by cleavage without using etching or the like, and a method for manufacturing the same.
  • the present invention provides a substrate comprising a 13-GaO-based single crystal
  • the present invention provides a semiconductor laser having a laser resonator formed with a 1100) plane as an end face of a resonant surface.
  • the present invention provides a group comprising a 13-GaO single crystal.
  • FIG. 1 is a schematic perspective view of a semiconductor laser according to a first embodiment of the present invention.
  • FIG. 2 shows the crystal orientation and the / 3 Ga O-based single crystal. It is a figure which shows a crystal plane.
  • Fig. 3 shows the hexagonal crystal G on the (100) plane of the substrate 10 made of / 3-GaO single crystal.
  • FIG. 4 is a schematic perspective view of a semiconductor laser according to the second embodiment of the present invention.
  • FIG. 1 is a schematic perspective view of a semiconductor laser according to the first embodiment of the present invention.
  • the semiconductor laser 1 includes a substrate 10 made of a / 3-GaO single crystal exhibiting n-type conductivity, and a substrate 10.
  • An epitaxial layer 11 formed by growing a (0001) plane of a GaN-based compound with a wurtzite structure on the plate 10, and a resonator end face 13 which is a cleavage plane of the epitaxial layer 11 at both ends of the active region 12 And a laser resonator formed.
  • FIG. 2 is a diagram showing the crystal orientation and crystal plane of a ⁇ -Ga 2 O single crystal.
  • the crystal orientation is
  • the axis angle ⁇ is °.
  • the substrate 10 of the semiconductor laser according to the first embodiment of the present invention has the above crystal orientation and crystal plane, and exhibits ⁇ -type conductivity.
  • the substrate 10 is made of / 3—GaO single crystal as described above.
  • It may be composed of an oxide composed mainly of Ga to which one or more selected from the group consisting of Cu, Ag, Zn, Cd, Al, In, Si, Ge and Sn are added. .
  • the lattice constant or the band gap energy can be controlled.
  • A1 and In elements (Ga Al In) O (just ⁇ y (1 -xy) 2 3 and 0 ⁇ x ⁇ l, 0 ⁇ y ⁇ l, 0 ⁇ x + y ⁇ A substrate 10 represented by l) can be obtained.
  • Figure 3 shows the hexagonal G on the (100) plane (A3) of the substrate 10 that also has a / 3-GaO single crystal force.
  • the b-axis (bl) and c-axis (cl) of the substrate 10 and the a-axis (a2) and b of the hexagonal GaN compound when the (0001) plane (A5) of the aN compound is epitaxially grown This shows the relationship of the axis (b2).
  • the semiconductor laser 1 includes a substrate 10 made of a ⁇ -Ga 2 O-based single crystal (10
  • the AlGaN layer 27, the p—GaN layer 28, the p—AlGaN layer 29, and the p—GaN layer 30 are formed as the epitaxial layer 11. Further, an n-electrode 31 is formed on the surface of the substrate 10 where the epitaxial layer 11 is not formed, and a p-electrode 32 is formed on the opposite surface. Note that the epitaxial layer 11 is configured to include all or a part of each of the above layers.
  • the GaN buffer layer 21 is a buffer layer for relaxing lattice mismatch with the substrate 10
  • the n-GaN layer 22 is a contact layer
  • the n- InGaN layer 23 is a cladding layer
  • n-A1G aN layer 24 is an underlayer
  • n—GaN layer 25 is a guide layer
  • InGaN MQW layer 26 is a light emitting layer
  • p—AlGaN layer 27 is a cap layer
  • p—GaN layer 28 is a guide layer
  • p—AlGaN layer 29 is a cladding layer.
  • the p-GaN layer 30 functions as a contact layer.
  • the p-electrode 32 is a stripe-type electrode, and the range of the active region 12 is set by defining the range of current confinement by the stripe width.
  • the (100) plane (A3) of the substrate 10 also has ⁇ -GaO single crystal force.
  • the laser resonator of the semiconductor laser 1 includes (1) of the epitaxial layer 11 including the active region 12.
  • the (100) plane () 4), that is, the cleavage plane at both ends of the epitaxial layer 11 is formed as the resonator end face 13.
  • the semiconductor laser 1 is provided with wiring for current supply to the ⁇ electrode 31 and the ⁇ electrode 32 by wire bonding or the like, and packaging for mounting is performed. .
  • the first embodiment has the following operational effects.
  • the (100) face (A3) of the substrate 10 also has ⁇ -Ga ⁇ -based single crystal force.
  • the cleavage plane is a plane in almost the same direction. Therefore, a good-quality resonator end face 13 can be easily obtained using cleavage.
  • the electrode Since the substrate 10 made of ⁇ -GaO single crystal has conductivity, the electrode is
  • a semiconductor laser can be manufactured by a simple manufacturing process.
  • FIG. 4 is a schematic perspective view of a semiconductor laser according to the second embodiment of the present invention. Unlike the first embodiment, in the second embodiment, the 13-GaO single connection is
  • the GaN buffer layer 21, n—GaN layer 22, n—InGaN layer 23, n—AlGaN layer 24, n—GaN layer 25 InGaN MQW layer 26, p—AlGaN layer 27, p—GaN layer 28, p—AlGaN layer 29, and p—GaN layer 30 are formed as the epitaxial layer 11.
  • the configuration of the n-electrode 31, the p-electrode 32, and the like is the same as that of the first embodiment, and thus description thereof is omitted.
  • B2 indicates the (01 0) plane of the substrate 50
  • B3 indicates a plane perpendicular to the (001) plane of the substrate 50.
  • the (001) plane (B1) of the substrate 50 forms an angle of 90 ° with the growth plane of the epitaxial layer. Therefore, the (001) plane (B 1) that is the cleavage plane of the substrate 50 and the (1-100) plane (B4) that is the cleavage plane of the epitaxial layer 11 are planes in the same direction! / RU
  • the epitaxial layer 11 is formed on the plane (B3) perpendicular to the (001) plane (B1) of the substrate 50, it is the cleavage plane (001) of the substrate 50.
  • the plane (B 1) and the (1-100) plane (B4) which is the cleavage plane of the epitaxial layer 11 coincide with each other, and a rectangular chip can be obtained.
  • the cleavage of the epitaxial layer 11 is easier and more accurate than in the first embodiment, so that a high-precision laser resonator can be formed by a simple manufacturing process using cleavage.
  • a semiconductor laser can be realized.
  • Other functions and effects are the same as those of the first embodiment.
  • the manufacturing method of the semiconductor laser 1 according to the first embodiment and the second embodiment includes a step of preparing a substrate made of a ⁇ -GaO single crystal and a predetermined plane orientation of the substrate.
  • An epitaxial process in which a (0001) plane of a GaN-based compound with a wurtzite structure is grown on the surface to form an epitaxy layer; And a resonator forming step to be formed.
  • a substrate 10 or a substrate 50 made of a ⁇ —Ga 2 O-based single crystal is prepared.
  • the plate 50 is manufactured by an EFG (Edge Defined Film Fed Growth) method or an FZ (Floating Zone) method.
  • EFG Electronic Film Fed Growth
  • FZ Floating Zone
  • the epitaxial layer growth surface of the substrate 10 is a (100) plane (A3), or the epitaxial layer growth surface of the substrate 50 is a plane (B3) perpendicular to the (001) plane (B1).
  • the epitaxy process can be performed by a known semiconductor process as described below.
  • GaN buffer layer 21, n— GaN layer 2 2, n— InGaN layer 23, n—AlGaN layer 24, n— GaN layer 25, InGaN MQW layer 26, p— AlGaN layer 27, p— GaN layer 28, p— AlGaN The layers 29 and the p-GaN layer 30 are epitaxially grown sequentially by MOCVD (Metal Organic Chemical Vapor Deposition) method or the like.
  • the InGaN MQW layer 26 is formed of, for example, a semiconductor made of non-doped InGaN to which no impurity is added, and has a multiple quantum well structure (MQW).
  • MQW multiple quantum well structure
  • the bare substrate obtained by the epitaxial process is cleaved at the (001) plane (Al, B1) which is the cleavage plane of the substrate 10 or the substrate 50 so as to have a predetermined resonator length.
  • the cleavage plane (001) (Al, B1) is formed as a cavity end face 13 parallel to both ends of the epitaxial layer 11, and constitutes the cavity of the semiconductor laser 1.
  • the direction perpendicular to the cleavage plane (001) (Al, B1) is cut by dicing, etc. A chip is produced.
  • the n-electrode 31 and the p-electrode 32 are wired for supplying current by wire bonding or the like, and packaged for mounting, whereby the semiconductor laser 1 is manufactured.
  • the method for manufacturing the semiconductor laser 1 has the following operational effects.
  • the electrode Since the substrate made of ⁇ -GaO single crystal has conductivity, the electrode is
  • the semiconductor laser can be manufactured by a simple manufacturing process.
  • a substrate made of ⁇ -GaO single crystal has a thermal expansion coefficient very close to that of GaN.
  • a uniform epitaxial layer 11 can be obtained over the entire substrate, which is less affected by warpage of the substrate during the process, and the yield is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Disclosed is a semiconductor laser equipped with an accurate laser resonator formed by a simple manufacture process. Also disclosed is a process for manufacturing the semiconductor laser. An epitaxial layer (11) is provided on a substrate (10,50) comprising a β-Ga2O3-type single crystal. The epitaxial layer (11) can be formed by growing (0001)face (A5) of a GaN-type compound having a wurtzite structure on a face (A3,B3) defined in a given substrate orientation. The semiconductor laser has a laser resonator which is formed by utilizing (1-100)face (A4,B4) (which is a cleavage plane of the epitaxial layer (11)) as the edge face of the resonance surface.

Description

明 細 書  Specification
半導体レーザ及びその製造方法  Semiconductor laser and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、半導体レーザ及びその製造方法に関し、特に、 β—Ga O基板を使用  [0001] The present invention relates to a semiconductor laser and a method of manufacturing the same, and in particular, using a β-GaO substrate.
2 3 した半導体レーザ及びその製造方法に関する。 背景技術  The present invention relates to a semiconductor laser and a manufacturing method thereof. Background art
[0002] 半導体レーザの短波長化は、光記録の高密度化や高速かつ大容量の光通信を長 距離において可能にするため大いに期待されている。また、光センシングゃレーザ 加工、ディスプレイ関連の分野においても、半導体レーザの短波長化が非常に期待 されている。  [0002] Shortening of the wavelength of a semiconductor laser is highly expected in order to enable high-density optical recording and high-speed and large-capacity optical communication over a long distance. In addition, in the fields of optical sensing and laser processing and displays, semiconductor lasers are expected to have shorter wavelengths.
[0003] 従来の半導体レーザとしては、サファイア基板上に窒化物半導体から成る複数の 層を形成し、レーザ共振器部分を残して他の部分をエッチングにより除去することで 、共振器をメサ型に形成した半導体レーザがある。例えば、特許文献 1はかかる従来 の半導体レーザを開示する。  [0003] As a conventional semiconductor laser, a plurality of layers made of a nitride semiconductor are formed on a sapphire substrate, and the other portion is removed by etching while leaving the laser resonator portion, thereby making the resonator a mesa type. There is a semiconductor laser formed. For example, Patent Document 1 discloses such a conventional semiconductor laser.
[0004] この構成では、 C1ガスを用いて反応性イオンビームエッチングにより半導体レーザ  In this configuration, a semiconductor laser is formed by reactive ion beam etching using C1 gas.
2  2
のレーザ共振器を形成するので、エッチングレートの高いエッチングが可能となり、ま た、レーザ共振器端面の鏡面精度を向上させることができる。  Therefore, etching with a high etching rate is possible, and the mirror surface accuracy of the end face of the laser resonator can be improved.
特許文献 1:特開平 11 145566号公報  Patent Document 1: Japanese Patent Laid-Open No. 11 145566
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかし、特許文献 1の半導体レーザによれば、サファイア基板上に窒化物半導体か ら成る複数の層を形成している力 サファイア基板には劈開性がほとんどないため、 劈開により共振器端面を形成することが困難である。よって、エッチングによりレーザ 共振器を形成する必要があり、簡易な製造プロセスにより精度のよいレーザ共振器を 形成することが難しレ、と!/、う問題がある。  [0005] However, according to the semiconductor laser of Patent Document 1, the force of forming a plurality of layers made of a nitride semiconductor on a sapphire substrate Since the sapphire substrate has almost no cleavage, Is difficult to form. Therefore, it is necessary to form a laser resonator by etching, and it is difficult to form an accurate laser resonator by a simple manufacturing process.
[0006] したがって、本発明の目的は、エッチング等を用いず劈開により精度のよいレーザ 共振器が形成された構成の半導体レーザ及びその製造方法を提供することにある。 課題を解決するための手段 Accordingly, an object of the present invention is to provide a semiconductor laser having a structure in which a laser resonator with high accuracy is formed by cleavage without using etching or the like, and a method for manufacturing the same. Means for solving the problem
[0007] [ 1 ]本発明は、上記の目的を達成するため、 13— Ga O系単結晶からなる基板と、 [0007] [1] In order to achieve the above object, the present invention provides a substrate comprising a 13-GaO-based single crystal,
2 3  twenty three
前記基板の所定の面方位で規定される面上に、ウルッ鉱型構造の GaN系化合物の (0001 )面が成長して形成されたェピタキシャル層と、前記ェピタキシャル層の劈開 面である(1 100)面を共振面端面として形成されるレーザ共振器と、を有する半導 体レーザを提供する。  An epitaxy layer formed by growing a (0001) plane of a GaN-based compound having a wurtzite structure on a plane defined by a predetermined plane orientation of the substrate, and a cleavage plane of the epitaxy layer ( 1. The present invention provides a semiconductor laser having a laser resonator formed with a 1100) plane as an end face of a resonant surface.
[0008] [2]前記基板の所定の面方位で規定される面は、前記基板の(100)面であること を特徴とする上記 [ 1 ]に記載の半導体レーザであってもよい。  [2] The semiconductor laser according to [1], wherein the surface defined by a predetermined plane orientation of the substrate is a (100) plane of the substrate.
[0009] [3]前記基板の所定の面方位で規定される面は、前記基板の(001 )面と垂直な面 であることを特徴とする上記 [ 1 ]に記載の半導体レーザであってもよい。 [3] The semiconductor laser according to [1], wherein the surface defined by the predetermined plane orientation of the substrate is a surface perpendicular to the (001) surface of the substrate. Also good.
[0010] [4]また、本発明は、上記の目的を達成するため、 13— Ga O系単結晶からなる基 [0010] [4] In order to achieve the above object, the present invention provides a group comprising a 13-GaO single crystal.
2 3  twenty three
板を準備する工程と、前記基板の所定の面方位で規定される面上に、ウルッ鉱型構 造の GaN系化合物の(0001 )面を成長させてェピタキシャル層を形成するェピタキ シャル工程と、前記ェピタキシャル層の(1 100)面を劈開してレーザ共振器を形成 する共振器形成工程と、を有する半導体レーザの製造方法を提供する。  A step of preparing a plate, and an epitaxial step of forming an epitaxial layer by growing a (0001) plane of a GaN-based compound having a wurtzite structure on a surface defined by a predetermined plane orientation of the substrate. And a resonator forming step of cleaving the (1100) plane of the epitaxial layer to form a laser resonator.
[0011] [5]前記基板の所定の面方位で規定される面は、前記基板の(100)面であること を特徴とする上記 [4]に記載の半導体レーザの製造方法であってもよい。  [5] The method of manufacturing a semiconductor laser as described in [4] above, wherein the plane defined by the predetermined plane orientation of the substrate is the (100) plane of the substrate. Good.
[0012] [6]前記基板の所定の面方位で規定される面は、前記基板の(001 )面と垂直な面 であることを特徴とする上記 [4]に記載の半導体レーザの製造方法であってもよい。 発明の効果  [6] The method of manufacturing a semiconductor laser as described in [4] above, wherein the plane defined by the predetermined plane orientation of the substrate is a plane perpendicular to the (001) plane of the substrate. It may be. The invention's effect
[0013] 本発明によると、簡易な製造プロセスにより精度のよいレーザ共振器が形成された 半導体レーザ及びその製造方法を提供することができる。  [0013] According to the present invention, it is possible to provide a semiconductor laser in which an accurate laser resonator is formed by a simple manufacturing process and a manufacturing method thereof.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]図 1は、本発明の第 1の実施の形態に係る半導体レーザの模式的斜視図であ [図 2]図 2は、 /3 Ga O系単結晶の結晶方位及び結晶面を示す図である。  FIG. 1 is a schematic perspective view of a semiconductor laser according to a first embodiment of the present invention. FIG. 2 shows the crystal orientation and the / 3 Ga O-based single crystal. It is a figure which shows a crystal plane.
2 3  twenty three
[図 3]図 3は、 /3— Ga O系単結晶からなる基板 10の(100)面上へ六方結晶系の G  [Fig. 3] Fig. 3 shows the hexagonal crystal G on the (100) plane of the substrate 10 made of / 3-GaO single crystal.
2 3  twenty three
aN系化合物の(0001 )面をェピタキシャル成長させた場合の、それぞれ a軸、 b軸、 c 軸の関係を示すものである。 a-axis, b-axis, and c, respectively, when the (0001) plane of aN compound is epitaxially grown It shows the relationship of the axes.
園 4]図 4は、本発明の第 2の実施の形態に係る半導体レーザの模式的斜視図であ 符号の説明  4] FIG. 4 is a schematic perspective view of a semiconductor laser according to the second embodiment of the present invention.
[0015] 10、 50 基板  [0015] 10, 50 substrate
1 1 ェピタキシャノレ層  1 1 Epitakishanore layer
12 活性領域  12 Active region
13 共振 ¾ ^耑 HP  13 Resonance ¾ ^ 耑 HP
21 GaNバッファ層  21 GaN buffer layer
22 n— GaN層  22 n— GaN layer
23 n— InGaN層  23 n— InGaN layer
24 n—AlGaN層  24 n—AlGaN layer
25 n— GaN層  25 n— GaN layer
26 InGaN MQW  26 InGaN MQW
27 p— AlGaN層  27 p— AlGaN layer
28 p— GaN層  28 p— GaN layer
29 p— AlGaN層  29 p— AlGaN layer
30 p— GaN層  30 p— GaN layer
31  31
32 p it極  32 p it pole
A1 , B1 基板の(001)面  (001) plane of A1 and B1 substrates
A2、 B2 基板の(010)面  (010) surface of A2 and B2 boards
A3、 B3 基板の(100)面  (100) side of A3, B3 board
A4, B4 ェピタキシャル層 1 1の(1 - A4, B4 Epoxy layer 1 1 (1-
A5 ェピタキシャノレ層 11の(0001 ) A5 Epitakishanore layer 11 (0001)
a 軸角  a axis angle
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] (第 1の実施の形態) 図 1は、本発明の第 1の実施の形態に係る半導体レーザの模式的斜視図である。 半導体レーザ 1は、 n型の導電性を示す /3— Ga O系単結晶からなる基板 10と、基 [0016] (First embodiment) FIG. 1 is a schematic perspective view of a semiconductor laser according to the first embodiment of the present invention. The semiconductor laser 1 includes a substrate 10 made of a / 3-GaO single crystal exhibiting n-type conductivity, and a substrate 10.
2 3  twenty three
板 10の上にウルッ鉱型構造の GaN系化合物の(0001)面が成長して形成されたェ ピタキシャル層 11と、活性領域 12の両端にェピタキシャル層 11の劈開面である共振 器端面 13が形成されたレーザ共振器とを有する。  An epitaxial layer 11 formed by growing a (0001) plane of a GaN-based compound with a wurtzite structure on the plate 10, and a resonator end face 13 which is a cleavage plane of the epitaxial layer 11 at both ends of the active region 12 And a laser resonator formed.
[0017] 図 2は、 β—Ga O系単結晶の結晶方位及び結晶面を示す図である。結晶方位は FIG. 2 is a diagram showing the crystal orientation and crystal plane of a β-Ga 2 O single crystal. The crystal orientation is
2 3  twenty three
、 &軸< 100〉(al)、 1^軸< 010〉(bl)、 c軸 < 001〉(cl)で、 a軸と c軸は 103. 7 , & Axis <100> (al), 1 ^ axis <010> (bl), c axis <001> (cl), a axis and c axis are 103.7
° の軸角 αを成している。本発明の第 1の実施の形態に係る半導体レーザの基板 1 0は、上記の結晶方位及び結晶面を有し、 η型の導電性を示すものである。 The axis angle α is °. The substrate 10 of the semiconductor laser according to the first embodiment of the present invention has the above crystal orientation and crystal plane, and exhibits η-type conductivity.
[0018] 尚、 /3— Ga O系単結晶力、らなる基板 10は、上記のように /3— Ga O単結晶から [0018] It should be noted that the / 3—GaO single crystal force, the substrate 10 is made of / 3—GaO single crystal as described above.
2 3 2 3  2 3 2 3
なることを基本とする力 Cu、 Ag、 Zn、 Cd、 Al、 In、 Si、 Geおよび Snからなる群から 選ばれる 1種以上を添加した Gaを主成分とした酸化物で構成してもよい。これらの元 素を添加することにより、格子定数あるいはバンドギャップエネルギーを制御すること ができる。例えば、 A1と Inの元素を添加することにより、 (Ga Al In ) O (ただ χ y (1 -x-y) 2 3 し、 0≤x≤l , 0≤y≤l , 0≤x + y≤l)で表わされる基板 10を得ることができる。  It may be composed of an oxide composed mainly of Ga to which one or more selected from the group consisting of Cu, Ag, Zn, Cd, Al, In, Si, Ge and Sn are added. . By adding these elements, the lattice constant or the band gap energy can be controlled. For example, by adding A1 and In elements, (Ga Al In) O (just χ y (1 -xy) 2 3 and 0≤x≤l, 0≤y≤l, 0≤x + y≤ A substrate 10 represented by l) can be obtained.
[0019] 図 3は、 /3— Ga O系単結晶力もなる基板 10の(100)面(A3)上へ六方晶系の G [0019] Figure 3 shows the hexagonal G on the (100) plane (A3) of the substrate 10 that also has a / 3-GaO single crystal force.
2 3  twenty three
aN系化合物の(0001)面(A5)をェピタキシャル成長させた場合の、基板 10の b軸( bl)、 c軸(cl )と六方晶系の GaN系化合物の a軸(a2)、 b軸(b2)の関係を示すもの である。 β—Ga O系単結晶の(001)面(A1)と GaN系化合物の(1— 100)面(A4  The b-axis (bl) and c-axis (cl) of the substrate 10 and the a-axis (a2) and b of the hexagonal GaN compound when the (0001) plane (A5) of the aN compound is epitaxially grown This shows the relationship of the axis (b2). β-GaO single crystal (001) plane (A1) and GaN compound (1-100) plane (A4
2 3  twenty three
)と力 基板 10の(100)面 (A3)上において一致するので、基板 10と GaN系化合物 のェピタキシャル層 11との劈開方向が同じ方向になる。  ) And force coincide with each other on the (100) plane (A3) of the substrate 10, so that the cleavage direction of the substrate 10 and the epitaxial layer 11 of the GaN-based compound is the same direction.
[0020] 半導体レーザ 1は、図 1に示すように、 β—Ga O系単結晶からなる基板 10の(10 As shown in FIG. 1, the semiconductor laser 1 includes a substrate 10 made of a β-Ga 2 O-based single crystal (10
2 3  twenty three
0)面(A3)上に、 GaNバッファ層 21、 n— GaN層 22、 n— InGaN層 23、 n-AlGaN 層 24、 n— GaN層 25、 InGaN MQW (多重量子井戸)層 26、 p— AlGaN層 27、 p — GaN層 28、 p— AlGaN層 29、及び、 p— GaN層 30がェピタキシャル層 11として 形成されている。また、基板 10のェピタキシャル層 11が形成されていない側の面に n 電極 31、その反対側の面に p電極 32が形成されている。尚、ェピタキシャル層 11は 、上記の各層の全部または一部を有して構成されるものである。 [0021] 上記において、主に、 GaNバッファ層 21は基板 10との格子不整合を緩和するため のバッファ層、 n— GaN層 22はコンタクト層、 n— InGaN層 23はクラッド層、 n— A1G aN層 24は下地層、 n— GaN層 25はガイド層、 InGaN MQW層 26は発光層、 p— AlGaN層 27はキャップ層、 p— GaN層 28はガイド層、 p—AlGaN層 29はクラッド層 、及び、 p— GaN層 30はコンタクト層として機能する。 On the (0) plane (A3), GaN buffer layer 21, n—GaN layer 22, n—InGaN layer 23, n-AlGaN layer 24, n—GaN layer 25, InGaN MQW (multiple quantum well) layer 26, p— The AlGaN layer 27, the p—GaN layer 28, the p—AlGaN layer 29, and the p—GaN layer 30 are formed as the epitaxial layer 11. Further, an n-electrode 31 is formed on the surface of the substrate 10 where the epitaxial layer 11 is not formed, and a p-electrode 32 is formed on the opposite surface. Note that the epitaxial layer 11 is configured to include all or a part of each of the above layers. [0021] In the above, mainly, the GaN buffer layer 21 is a buffer layer for relaxing lattice mismatch with the substrate 10, the n-GaN layer 22 is a contact layer, the n- InGaN layer 23 is a cladding layer, and n-A1G aN layer 24 is an underlayer, n—GaN layer 25 is a guide layer, InGaN MQW layer 26 is a light emitting layer, p—AlGaN layer 27 is a cap layer, p—GaN layer 28 is a guide layer, and p—AlGaN layer 29 is a cladding layer. The p-GaN layer 30 functions as a contact layer.
[0022] p電極 32は、図 1に示すように、ストライプ型の電極とされ、ストライプ幅により電流狭 窄の範囲を規定することにより活性領域 12の範囲を設定している。  As shown in FIG. 1, the p-electrode 32 is a stripe-type electrode, and the range of the active region 12 is set by defining the range of current confinement by the stripe width.
[0023] ここで、図 1に示すように、 β—Ga O系単結晶力もなる基板 10の(100)面(A3)  [0023] Here, as shown in FIG. 1, the (100) plane (A3) of the substrate 10 also has β-GaO single crystal force.
2 3  twenty three
にェピタキシャル層 11が平行に形成される力 基板 10の(001)面(A1)は(100)面 (A3)と 103· 7° の軸角(α )を成している。従って、基板 10の劈開面である(001) 面(A1)とェピタキシャル層 11の劈開面である(1— 100)面(Α4)とは、上記の軸角 « = 103. 7° に対応した角度を有するが、劈開性に特に問題は生じない。  In addition, the force of forming the epitaxial layer 11 in parallel The (001) plane (A1) of the substrate 10 forms an axial angle (α) of 10 · 7 ° with the (100) plane (A3). Therefore, the (001) plane (A1), which is the cleavage plane of the substrate 10, and the (1-100) plane (4), which is the cleavage plane of the epitaxial layer 11, correspond to the above axial angle «= 103.7 ° However, there is no particular problem with the cleaving property.
[0024] 半導体レーザ 1のレーザ共振器は、活性領域 12を含むェピタキシャル層 11の(1The laser resonator of the semiconductor laser 1 includes (1) of the epitaxial layer 11 including the active region 12.
— 100)面 (Α4)、すなわち、ェピタキシャル層 11の両端の劈開面を共振器端面 13と して形成されている。 — The (100) plane () 4), that is, the cleavage plane at both ends of the epitaxial layer 11 is formed as the resonator end face 13.
[0025] 尚、図示は省略するが、上記の半導体レーザ 1は、 η電極 31及び ρ電極 32にワイヤ ボンディング等により電流供給のための配線が施され、実装のためのパッケージング が施される。  [0025] Although not shown, the semiconductor laser 1 is provided with wiring for current supply to the η electrode 31 and the ρ electrode 32 by wire bonding or the like, and packaging for mounting is performed. .
[0026] (第 1の実施の形態の作用効果)  [0026] (Effects of the first embodiment)
第 1の実施の形態によれば、以下に示す作用効果を有する。  The first embodiment has the following operational effects.
(1) β—Ga Ο系単結晶力もなる基板 10の(100)面(A3)に GaN系化合物の(000  (1) The (100) face (A3) of the substrate 10 also has β-Ga Ο-based single crystal force.
2 3  twenty three
1)面 (A5)を成長させているので、劈開面がほぼ同じ方向の面となる。よって劈開を 利用して、容易に良質な共振器端面 13が得られる。  1) Since the plane (A5) is grown, the cleavage plane is a plane in almost the same direction. Therefore, a good-quality resonator end face 13 can be easily obtained using cleavage.
(2) β—Ga O系単結晶からなる基板 10は、導電性を有するので、電極をェピタキ  (2) Since the substrate 10 made of β-GaO single crystal has conductivity, the electrode is
2 3  twenty three
シャル層 11の側およびそれと反対側の基板 10に設けた垂直構造とすることが可能と なるので、半導体レーザを簡易な製造プロセスにより作製することが可能となる。  Since the vertical structure provided on the side of the partial layer 11 and the substrate 10 on the opposite side can be provided, a semiconductor laser can be manufactured by a simple manufacturing process.
(3) β—Ga O系単結晶からなる基板 10は、 GaNと熱膨張率が非常に近いため、  (3) Since the substrate 10 made of β-GaO single crystal has a thermal expansion coefficient very close to that of GaN,
2 3  twenty three
プロセス中の基板 10の反りの影響が少なぐ基板 10の全体に亘つて均一なェピタキ シャル層 1 1が得られ歩留まりが向上する。 Uniform epitaxy across the entire substrate 10 that is less affected by substrate warpage during processing Shal layer 1 1 is obtained and the yield is improved.
[0027] 以上から、従来技術で実施されている、例えば、サファイア基板をレーザリフト法に より除去して Si基板等へ貼りかえる工程を設ける必要がなぐ劈開を利用して簡易な 製造プロセスにより精度のよいレーザ共振器が形成された、半導体レーザを提供す ること力 S可倉 となる。 [0027] From the above, it is possible to achieve accuracy with a simple manufacturing process using cleavage, which is performed in the prior art, for example, without the need to provide a process for removing the sapphire substrate by the laser lift method and attaching it to a Si substrate or the like. The ability to provide a semiconductor laser with a good laser cavity is possible.
[0028] (第 2の実施の形態) [0028] (Second Embodiment)
図 4は、本発明の第 2の実施の形態に係る半導体レーザの模式的斜視図である。 第 1の実施の形態と異なるところとして、第 2の実施の形態では、 13— Ga O系単結  FIG. 4 is a schematic perspective view of a semiconductor laser according to the second embodiment of the present invention. Unlike the first embodiment, in the second embodiment, the 13-GaO single connection is
2 3 晶からなる基板 50の(001 )面(B 1 )に垂直な面に、 GaNバッファ層 21、 n— GaN層 22、 n— InGaN層 23、 n— AlGaN層 24、 n— GaN層 25、 InGaN MQW層 26、 p — AlGaN層 27、 p— GaN層 28、 p— AlGaN層 29、及び、 p— GaN層 30をェピタキ シャル層 1 1として形成している。その他、 n電極 31、 p電極 32等の構成は第 1の実施 の形態と同様であるので、説明を省略する。また、図 4において、 B2は基板 50の(01 0)面を示し、 B3は基板 50の(001 )面と垂直な面を示す。  On the surface perpendicular to the (001) plane (B 1) of the 2 3 crystal substrate 50, the GaN buffer layer 21, n—GaN layer 22, n—InGaN layer 23, n—AlGaN layer 24, n—GaN layer 25 InGaN MQW layer 26, p—AlGaN layer 27, p—GaN layer 28, p—AlGaN layer 29, and p—GaN layer 30 are formed as the epitaxial layer 11. In addition, the configuration of the n-electrode 31, the p-electrode 32, and the like is the same as that of the first embodiment, and thus description thereof is omitted. In FIG. 4, B2 indicates the (01 0) plane of the substrate 50, and B3 indicates a plane perpendicular to the (001) plane of the substrate 50.
[0029] 図 4において、基板 50の(001 )面(B1 )は、ェピタキシャル層の成長面と 90° の角 度を成している。従って、基板 50の劈開面である(001 )面(B 1 )とェピタキシャル層 1 1の劈開面である(1— 100)面(B4)とは、同一の方向の面となって!/、る。  In FIG. 4, the (001) plane (B1) of the substrate 50 forms an angle of 90 ° with the growth plane of the epitaxial layer. Therefore, the (001) plane (B 1) that is the cleavage plane of the substrate 50 and the (1-100) plane (B4) that is the cleavage plane of the epitaxial layer 11 are planes in the same direction! / RU
[0030] (第 2の実施の形態の作用効果)  [0030] (Effects of Second Embodiment)
第 2の実施の形態によれば、基板 50の(001 )面(B 1 )に垂直な面(B3)上にェピタ キシャル層 1 1を形成するので、基板 50の劈開面である(001 )面(B 1 )とェピタキシャ ル層 1 1の劈開面である(1— 100)面(B4)とが一致し、矩形状のチップとすることが できる。これにより、ェピタキシャル層 1 1の劈開が第 1の実施の形態よりも更に容易で 、かつ、高精度にできるので、劈開を利用して簡易な製造プロセスにより精度のよい レーザ共振器が形成された半導体レーザが可能となる。その他の作用効果は、第 1 の実施の形態と同様である。  According to the second embodiment, since the epitaxial layer 11 is formed on the plane (B3) perpendicular to the (001) plane (B1) of the substrate 50, it is the cleavage plane (001) of the substrate 50. The plane (B 1) and the (1-100) plane (B4) which is the cleavage plane of the epitaxial layer 11 coincide with each other, and a rectangular chip can be obtained. As a result, the cleavage of the epitaxial layer 11 is easier and more accurate than in the first embodiment, so that a high-precision laser resonator can be formed by a simple manufacturing process using cleavage. A semiconductor laser can be realized. Other functions and effects are the same as those of the first embodiment.
[0031] (第 1及び第 2の実施の形態に係る半導体レーザの製造方法)  (Semiconductor laser manufacturing method according to first and second embodiments)
第 1の実施の形態および第 2の実施の形態に係る半導体レーザ 1の製造方法は、 β—Ga O系単結晶からなる基板を準備する工程と、基板の所定の面方位で規定さ れる面上に、ウルッ鉱型構造の GaN系化合物の(0001)面を成長させてェピタキシ ャル層を形成するェピタキシャル工程と、ェピタキシャル層の所定の劈開面を劈開し てレーザ共振器を形成する共振器形成工程と、を有する製造工程により提供される。 The manufacturing method of the semiconductor laser 1 according to the first embodiment and the second embodiment includes a step of preparing a substrate made of a β-GaO single crystal and a predetermined plane orientation of the substrate. An epitaxial process in which a (0001) plane of a GaN-based compound with a wurtzite structure is grown on the surface to form an epitaxy layer; And a resonator forming step to be formed.
[0032] (基板 10を準備する工程) [0032] (Process for Preparing Substrate 10)
β—Ga O系単結晶からなる基板 10または基板 50を準備する。基板 10または基 A substrate 10 or a substrate 50 made of a β—Ga 2 O-based single crystal is prepared. Board 10 or base
2 3 twenty three
板 50は、 EFG (Edge Defined Film Fed Growth)法あるいは FZ (Floating Zone)法等により作製される。この工程では、基板 10におけるェピタキシャル層成長 面が(100)面 (A3)、または、基板 50におけるェピタキシャル層成長面が(001)面( B1)に垂直な面(B3)とされた基板を準備する。  The plate 50 is manufactured by an EFG (Edge Defined Film Fed Growth) method or an FZ (Floating Zone) method. In this process, the epitaxial layer growth surface of the substrate 10 is a (100) plane (A3), or the epitaxial layer growth surface of the substrate 50 is a plane (B3) perpendicular to the (001) plane (B1). Prepare.
[0033] (ェピタキシャル工程) [0033] (Epitaxial process)
ェピタキシャル工程は、以下に示すように、公知の半導体プロセスにより可能である 。第 1の実施の形態では、基板 10の(100)面 (A3)に、また、第 2の実施の形態では 、基板 50の(001)面(B1)に垂直な面(B3)上に、 GaNバッファ層 21、 n— GaN層 2 2、 n— InGaN層 23、 n—AlGaN層 24、 n— GaN層 25、 InGaN MQW層 26、 p— AlGaN層 27、 p— GaN層 28、 p— AlGaN層 29、及び、 p— GaN層 30を、 MOCVD (Metal Organic Chemical Vapor Deposition)法等により各層を順次ェピタ キシャル成長させる。  The epitaxy process can be performed by a known semiconductor process as described below. In the first embodiment, on the (100) plane (A3) of the substrate 10, and in the second embodiment, on the plane (B3) perpendicular to the (001) plane (B1) of the substrate 50, GaN buffer layer 21, n— GaN layer 2 2, n— InGaN layer 23, n—AlGaN layer 24, n— GaN layer 25, InGaN MQW layer 26, p— AlGaN layer 27, p— GaN layer 28, p— AlGaN The layers 29 and the p-GaN layer 30 are epitaxially grown sequentially by MOCVD (Metal Organic Chemical Vapor Deposition) method or the like.
[0034] InGaN MQW層 26は、例えば、不純物を添加していないノンドープ InGaNから なる半導体により形成され、多重量子井戸構造 (MQW)をなしている。 Inと Gaの組 成比を調節したり、 p型あるいは n型の導電性とすることにより、 InGaN発光層のバン ドギャップを変化させて発光波長を変化させることができる。  [0034] The InGaN MQW layer 26 is formed of, for example, a semiconductor made of non-doped InGaN to which no impurity is added, and has a multiple quantum well structure (MQW). By adjusting the composition ratio of In and Ga, or by using p-type or n-type conductivity, the emission wavelength can be changed by changing the band gap of the InGaN light-emitting layer.
[0035] (共振器形成工程)  [0035] (Resonator forming step)
ェピタキシャル工程により得られたベア基板を、所定の共振器長になるよう、基板 1 0または基板 50の劈開面である(001)面 (Al , B1)で劈開する。この劈開面(001) ( Al , B1)は、共振器端面 13としてェピタキシャル層 11の両端に平行に形成されて、 半導体レーザ 1の共振器を構成する。  The bare substrate obtained by the epitaxial process is cleaved at the (001) plane (Al, B1) which is the cleavage plane of the substrate 10 or the substrate 50 so as to have a predetermined resonator length. The cleavage plane (001) (Al, B1) is formed as a cavity end face 13 parallel to both ends of the epitaxial layer 11, and constitutes the cavity of the semiconductor laser 1.
[0036] (その他の工程)  [0036] (Other processes)
劈開面(001) (Al , B1)と垂直な方向はダイシング等により切断され、矩形状のベ ァチップが作製される。 n電極 31及び p電極 32にワイヤボンディング等により電流供 給のための配線が施され、実装のためのパッケージングが施されて、半導体レーザ 1 が製造される。 The direction perpendicular to the cleavage plane (001) (Al, B1) is cut by dicing, etc. A chip is produced. The n-electrode 31 and the p-electrode 32 are wired for supplying current by wire bonding or the like, and packaged for mounting, whereby the semiconductor laser 1 is manufactured.
[0037] (半導体レーザ 1の製造方法の作用効果) [0037] (Effects of manufacturing method of semiconductor laser 1)
半導体レーザ 1の製造方法によれば、以下に示す作用効果を有する。  The method for manufacturing the semiconductor laser 1 has the following operational effects.
(1) β—Ga O系単結晶からなる基板 10の(100)面 (A3)または基板 50の劈開面  (1) (100) plane (A3) of substrate 10 made of β-Ga O single crystal or cleavage plane of substrate 50
2 3  twenty three
である(001)面(B1)に垂直な面(B3)上に GaN系化合物の(0001)面を成長させ ているので、劈開面がほぼ同じ面となる。よって劈開を利用して、容易に良質な共振 器端面 13が得られる。  Since the (0001) plane of the GaN compound is grown on the plane (B3) perpendicular to the (001) plane (B1), the cleaved planes are almost the same plane. Therefore, a high-quality resonator end face 13 can be easily obtained using cleavage.
(2) β—Ga O系単結晶からなる基板は、導電性を有するので電極をェピタキシャ  (2) Since the substrate made of β-GaO single crystal has conductivity, the electrode is
2 3  twenty three
ル層 11の側およびそれと反対側の基板に設けた垂直構造とすることが可能となるの で、半導体レーザの簡易的な製造プロセスにより作製することが可能となる。  Since the vertical structure provided on the side of the laser layer 11 and the substrate on the opposite side can be provided, the semiconductor laser can be manufactured by a simple manufacturing process.
(3) β—Ga O系単結晶からなる基板は、 GaNと熱膨張率が非常に近いため、プロ  (3) A substrate made of β-GaO single crystal has a thermal expansion coefficient very close to that of GaN.
2 3  twenty three
セス中の基板の反りの影響が少なぐ基板の全体に亘つて均一なェピタキシャル層 1 1が得られ歩留まりが向上する。  A uniform epitaxial layer 11 can be obtained over the entire substrate, which is less affected by warpage of the substrate during the process, and the yield is improved.
[0038] 以上から、従来技術で実施されている、例えば、サファイア基板をレーザリフト法に より除去して Si基板等へ貼りかえる工程の必要がなぐ劈開を利用して簡易な製造プ ロセスにより精度のよいレーザ共振器が形成された半導体レーザの製造方法を提供 すること力 S可倉 となる。 [0038] From the above, for example, accuracy is achieved by a simple manufacturing process using the cleavage that is not necessary for the process of removing the sapphire substrate by the laser lift method and pasting it to the Si substrate or the like, which is performed in the prior art. Providing a method of manufacturing a semiconductor laser with a good laser cavity is a powerful force.
産業上の利用可能性  Industrial applicability
[0039] 本発明によると、簡易な製造プロセスにより精度のよいレーザ共振器が形成された 半導体レーザ及びその製造方法を提供することが可能になる。 [0039] According to the present invention, it is possible to provide a semiconductor laser in which an accurate laser resonator is formed by a simple manufacturing process and a manufacturing method thereof.

Claims

請求の範囲 The scope of the claims
[1] β—Ga O系単結晶からなる基板と、 [1] A substrate made of β-GaO single crystal;
2 3  twenty three
前記基板の所定の面方位で規定される面上に、ウルッ鉱型構造の GaN系化合物 の(0001)面が成長して形成されたェピタキシャル層と、  An epitaxial layer formed by growing a (0001) plane of a GaN-based compound having a wurtzite structure on a plane defined by a predetermined plane orientation of the substrate;
前記ェピタキシャル層の劈開面である(1 100)面を共振面端面として形成される レーザ共振器と、  A laser resonator formed with a (1 100) plane which is a cleavage plane of the epitaxy layer as an end face of the resonance plane;
を有する半導体レーザ。  A semiconductor laser.
[2] 前記基板の所定の面方位で規定される面は、前記基板の(100)面であることを特 徴とする請求項 1に記載の半導体レーザ。 2. The semiconductor laser according to claim 1, wherein the surface defined by the predetermined plane orientation of the substrate is a (100) surface of the substrate.
[3] 前記基板の所定の面方位で規定される面は、前記基板の(001)面と垂直な面であ ることを特徴とする請求項 1に記載の半導体レーザ。 [3] The semiconductor laser according to [1], wherein the plane defined by the predetermined plane orientation of the substrate is a plane perpendicular to the (001) plane of the substrate.
[4] β—Ga O系単結晶からなる基板を準備する工程と、 [4] preparing a substrate made of β-GaO single crystal;
2 3  twenty three
前記基板の所定の面方位で規定される面上に、ウルッ鉱型構造の GaN系化合物 の(0001)面を成長させてェピタキシャル層を形成するェピタキシャル工程と、 前記ェピタキシャル層の(1 100)面を劈開してレーザ共振器を形成する共振器 形成工程と、  An epitaxial process for forming an epitaxial layer by growing a (0001) plane of a GaN-based compound having a wurtzite structure on a plane defined by a predetermined plane orientation of the substrate; and (1 A resonator forming step of cleaving the (100) plane to form a laser resonator;
を有する半導体レーザの製造方法。  A method for manufacturing a semiconductor laser comprising:
[5] 前記基板の所定の面方位で規定される面は、前記基板の(100)面であることを特 徴とする請求項 4に記載の半導体レーザの製造方法。 5. The method for manufacturing a semiconductor laser according to claim 4, wherein the surface defined by the predetermined plane orientation of the substrate is a (100) surface of the substrate.
[6] 前記基板の所定の面方位で規定される面は、前記基板の(001)面と垂直な面であ ることを特徴とする請求項 4に記載の半導体レーザの製造方法。 6. The method for manufacturing a semiconductor laser according to claim 4, wherein the plane defined by the predetermined plane orientation of the substrate is a plane perpendicular to the (001) plane of the substrate.
PCT/JP2007/070516 2006-11-06 2007-10-22 Semiconductor laser and process for manufacture thereof WO2008056530A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006300522A JP2008117966A (en) 2006-11-06 2006-11-06 Semiconductor laser and manufacturing method therefor
JP2006-300522 2006-11-06

Publications (1)

Publication Number Publication Date
WO2008056530A1 true WO2008056530A1 (en) 2008-05-15

Family

ID=39364353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070516 WO2008056530A1 (en) 2006-11-06 2007-10-22 Semiconductor laser and process for manufacture thereof

Country Status (2)

Country Link
JP (1) JP2008117966A (en)
WO (1) WO2008056530A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220268715A1 (en) * 2019-11-01 2022-08-25 Mitsubishi Electric Corporation Crystal defect observation method for compound semiconductor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316571A (en) * 1995-03-16 1996-11-29 Fujitsu Ltd Semiconductor laser and manufacture thereof
JPH1051064A (en) * 1996-08-02 1998-02-20 Fujitsu Ltd Semiconductor laser and its manufacture
JP2004056098A (en) * 2002-05-31 2004-02-19 Koha Co Ltd Light emitting device and method of manufacture the same
JP2006135268A (en) * 2004-11-09 2006-05-25 Koha Co Ltd Semiconductor device and its fabrication process
JP2006135269A (en) * 2004-11-09 2006-05-25 Koha Co Ltd Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316571A (en) * 1995-03-16 1996-11-29 Fujitsu Ltd Semiconductor laser and manufacture thereof
JPH1051064A (en) * 1996-08-02 1998-02-20 Fujitsu Ltd Semiconductor laser and its manufacture
JP2004056098A (en) * 2002-05-31 2004-02-19 Koha Co Ltd Light emitting device and method of manufacture the same
JP2006135268A (en) * 2004-11-09 2006-05-25 Koha Co Ltd Semiconductor device and its fabrication process
JP2006135269A (en) * 2004-11-09 2006-05-25 Koha Co Ltd Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220268715A1 (en) * 2019-11-01 2022-08-25 Mitsubishi Electric Corporation Crystal defect observation method for compound semiconductor
US12038396B2 (en) * 2019-11-01 2024-07-16 Mitsubishi Electric Corporation Crystal defect observation method for compound semiconductor

Also Published As

Publication number Publication date
JP2008117966A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
CN111095483B (en) Method for removing substrate by cutting technology
KR100917260B1 (en) Crystal film, crystal substrate and semiconductor device
US8344413B2 (en) Nitride semiconductor wafer, nitride semiconductor chip, and method of manufacture of nitride semiconductor chip
WO2008041521A1 (en) Light-emitting device
US8093685B2 (en) Nitride compound semiconductor element
JP2009081374A (en) Semiconductor light-emitting device
JP2000040858A (en) Optical semiconductor device, manufacture thereof and semiconductor wafer
KR20100099066A (en) Gallium nitride-based semiconductor optical device, method of manufacturing gallium nitride-based semiconductor optical device, and epitaxial wafer
JP3087829B2 (en) Method for manufacturing nitride semiconductor device
JP2000223417A (en) Growing method of semiconductor, manufacture of semiconductor substrate, and manufacture of semiconductor device
EP2239790B1 (en) Method for manufacturing light emitting device
US20210013365A1 (en) Method of fabricating non-polar and semi-polar devices using epitaxial lateral overgrowth
JP4698053B2 (en) Method for producing group III nitride compound semiconductor
JP4097343B2 (en) Manufacturing method of nitride semiconductor laser device
US20090250719A1 (en) Nitride compound semiconductor device and semiconductor laser
EP1873880A1 (en) Process for producing gallium nitride-based compound semiconductor laser element and gallium nitride-based compound semiconductor laser element
JP3528814B2 (en) Method for manufacturing single substrate made of nitride semiconductor
JP2001308458A (en) Semiconductor light emitting element and method for manufacturing the same and semiconductor device and method for manufacturing the same
JP4712241B2 (en) Semiconductor laser device and manufacturing method thereof
WO2008056530A1 (en) Semiconductor laser and process for manufacture thereof
JP2000299530A (en) Semiconductor light-emitting device
JPH10256661A (en) Nitride semiconductor element and its manufacture
JP2009224602A (en) Nitride semiconductor laser, method of manufacturing nitride semiconductor laser, and epitaxial wafer for nitride semiconductor laser
JP2009212343A (en) Nitride semiconductor element, and method of manufacturing the same
JP4363415B2 (en) Crystal film, crystal substrate and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830250

Country of ref document: EP

Kind code of ref document: A1