WO2008051849A1 - Polycarbonates de tert-butylhydroquinone - Google Patents

Polycarbonates de tert-butylhydroquinone Download PDF

Info

Publication number
WO2008051849A1
WO2008051849A1 PCT/US2007/081958 US2007081958W WO2008051849A1 WO 2008051849 A1 WO2008051849 A1 WO 2008051849A1 US 2007081958 W US2007081958 W US 2007081958W WO 2008051849 A1 WO2008051849 A1 WO 2008051849A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate
bis
dihydroxy
mol
carbonate
Prior art date
Application number
PCT/US2007/081958
Other languages
English (en)
Other versions
WO2008051849B1 (fr
Inventor
Jan Henk Kamps
Edward Kung
Brian Mullen
Original Assignee
Sabic Innovative Plastics Ip B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sabic Innovative Plastics Ip B.V. filed Critical Sabic Innovative Plastics Ip B.V.
Priority to CN2007800393028A priority Critical patent/CN101568569B/zh
Publication of WO2008051849A1 publication Critical patent/WO2008051849A1/fr
Publication of WO2008051849B1 publication Critical patent/WO2008051849B1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates

Definitions

  • Polycarbonate is a thermoplastic that has excellent mechanical properties such as impact resistance, heat resistance and transparency. Polycarbonates are widely used in applications ranging from football helmets to automobile parts to transparent security windows. More recently, polycarbonates have also proven to be the material of choice for optical media applications such as optical discs, for example compact discs (CD) and digital versatile discs (DVD).
  • Conventional polycarbonates are usually produced by (1) an interfacial polymerization, in which bisphenol A (BPA) is reacted directly with phosgene or by (2) a melt polymerization process in which BPA is transesterified with a diaryl carbonate such as diphenylcarbonate (DPC) or an activated diaryl carbonate such as bismethylsalicylcarbonate (BMSC).
  • BPA bisphenol A
  • DPC diphenylcarbonate
  • BMSC activated diaryl carbonate
  • the present invention relates to polycarbonate comprising repeat units derived from tert-butylhydroquinone (TBHQ). It has herein been found that polycarbonate having a Mw (PC) greater than 9,000 and comprising repeat units derived from TBHQ is amorphous and has other superior properties as compared to polycarbonate comprising repeat units derived from other monomers and in particular other hydroquinone-type dihydroxy compounds.
  • PC tert-butylhydroquinone
  • the present invention provides a polycarbonate comprising repeat units derived from a first dihydroxy compound having the structure:
  • polycarbonate has a Mw (PC) of at least 9,000 g/mol.
  • the present invention provides a method of producing polycarbonate.
  • the method comprises the steps of:
  • Figs. 1-4 are graphical representations of results from the example section.
  • the present invention may be understood more readily by reference to the following detailed description of preferred embodiments of the invention and the examples included herein.
  • the present invention relates to polycarbonate comprising repeat units derived from tert-butylhydroquinone (TBHQ) and a method of making the same. It has herein been found that polycarbonate having a Mw (PC) greater than 9,000 and comprising repeat units derived from TBHQ is amorphous and has superior properties as compared to polycarbonate comprising repeat units derived from other hydroquinone-type dihydroxy compounds.
  • an aromatic dihydroxy compound refers to either a single species of compound or a mixture of such species unless the context indicates otherwise.
  • Polycarbonate refers to an oligomer or polymer comprising residues of at least one dihydroxy compound joined by carbonate linkages.
  • the polycarbonate comprises residues of an aromatic dihydroxy compound and has a weight average molecular weight, Mw, that can be measured by gel permeation chromatography, GPC, using a crosslinked styrene-divinylbenzene column and calibrated to a BPA polycarbonate (PC) reference or to a polystyrene (PS) reference.
  • GPC gel permeation chromatography
  • PC BPA polycarbonate
  • PS polystyrene
  • Calibration standards of 13 different PS standards (ranging from 1,000 to 2,000,000 g/mol) and toluene are prepared to set up a calibration curve.
  • the concentration used is 1 mg/ml for each individual standard.
  • the polycarbonate's Mw (PC) (i.e. measured by GPC relative to BPA polycarbonate) is roughly one half the polycarbonate's Mw (PS) (i.e. measured by GPC relative to polystyrene).
  • the polycarbonate will have a Mw (PC) of at least 9,000 g/mol.
  • the polycarbonate will have a Mw (PC) in a range between 9,000 g/mol and 160,000 g/mol.
  • the Mw (PC) is between 10,000 g/mol and 160,000 g/mol, for example between 12,000 g/mol and 160,000 g/mol, and preferably between 15,000 and 160,000 g/mol.
  • the Mw (PC) is between 20,000 g/mol and 102,000 g/mol.
  • polycarbonate encompasses poly(carbonate- coester) polymers. None in the description and claims of this application should be taken as limiting the polycarbonate to only one dihydroxy residue unless the context is expressly limiting. Thus, the application encompasses copolycarbonates with residues of 2, 3, 4, or more types of dihydroxy compounds.
  • polycarbonate oligomer mixture as it is used herein to describe the reaction mixture within the oligomerization system is herein understood to mean that at least partial reaction has occurred to produce polycarbonate oligomer having at least from 2 to 40 repeat units derived from dihydroxy compound(s).
  • the polycarbonate oligomer mixture comprises a polycarbonate oligomer, a byproduct phenolic compound, and unreacted reactants from the initial reactants.
  • Amorphous polycarbonate is understood to mean that the polycarbonate does not form crystalline structures upon being cooled. In one embodiment, the amorphous polycarbonate will have no melting point (Tm). In another embodiment no melting endotherms or crystallization exotherms are found when the material is tested via DSC according to ISO 1 1357.
  • Dihydroxy compound(s) include both aromatic and non-aromatic dihydroxy compounds.
  • Repeat units refers to the part of the dihydroxy (or in the case of a co- polyestercarbonate, the diester) compound that is incorporated into the polycarbonate after reaction to form the polymer linkages. Such repeat units are referred to as "derived from” the corresponding dihydroxy (or diester) compound.
  • Tert-butylhydroquinone is a dihydroxy compound and has the following structure:
  • BPA is herein defined as bisphenol A or 2,2-bis(4-hydroxyphenyi)propane.
  • high molecular weight polycarbonate comprising repeat units derived from a tert-butyl hydroquinone (TBHQ) monomer is an amorphous polymer.
  • TBHQ polycarbonates also offer improved optical properties with lower refractive index and less refractive index dispersion (i.e. high Abbe number) compared to BPA homopolycarbonate. Unlike other quinone-type monomers, TBHQ will not cause crystallization, even at high loadings. See Table 1 and Figure 1. Also included in Table 1 is a comparison to BPA homopolycarbonate. Although BPA homopolycarbonate is normally considered an amorphous polymer, it can be crystallized as seen in the results of solvent cast films; conversely, TBHQ polymer in accordance with the invention cannot be crystallized even when cast from a solvent.
  • polycarbonate comprising repeat units derived from TBHQ dihydroxy. See Brunelle, Daniel J. "Solvent-Resistant Polycarbonates", Trends in Polymer Science 1995, 3(5), 154-158. See also, Brunelle, Daniel J.; Krabbenhoft, Herman 0.; Bonauto David K. Macromol. Symp. 1994, 77, 117-124. These polycarbonates are crystalline or semi-crystalline as indicated by the fact that they have melting points. Furthermore, these polymers are low molecular weight (i.e. Mw (PC) of less than 9,000 g/mol) polymers due to the fact that they are produced via the interfacial polymerization process. This is confirmed in Examples 51 and 52 below. The inventors have found that polycarbonate comprising repeat units derived from TBHQ that has a Mw (PC) of greater than 9,000 can be prepared by the melt polymerization process. This polycarbonate is amorphous.
  • the present invention provides a polycarbonate comprising repeat units derived from a first dihydroxy compound having the structure:
  • the polycarbonate has a Mw (PC) of at least 9,000 g/mol.
  • PC Mw
  • the polycarbonate has a Mw (PC) greater than 10,000 g/mol, more preferably greater than 12,000 g/mol, greater than 15,000 g/mol, greater than 20,000 g/mol, greater than 25,000 g/mol.
  • the Mw (PC) is between 10,000 g/mol and 160,000 g/mol, for example between 12,000 g/mol and 160,000 g/mol, and preferably between 15,000 and 160,000 g/mol.
  • the Mw (PC) is between 20,000 g/mol and 102,000 g/mol.
  • the polycarbonate is a homopolymer wherein all repeat units are derived from the first dihydroxy compound.
  • the polycarbonate may also comprise repeat units derived from one or more dihydroxy compounds that are different from the TBHQ dihydroxy compound. In this embodiment it is preferred that at least 10%, more preferably at least 30%, for example at least 50% or 70%, of the repeat units are derived from the TBHQ "first" dihydroxy compound.
  • the polycarbonate is a copolycarbonate the second dihydroxy is BPA. It is preferred that the mole ratio of the TBHQ dihydroxy to the second dihydroxy is in an amount between 90:10 and 10:90, for example between 70:30 and 30:70 or between 60:40 and 40:60.
  • the present invention provides a method of producing polycarbonate.
  • the method comprises the steps of:
  • the dihydroxy component, the diaryl carbonate, and the melt transesterification are combined to form a reaction mixture introduced to an oligomerization system.
  • a transesterification reaction occurs to produce a polycarbonate oligomer mixture comprising an equilibrium mixture of oligomeric polycarbonate, by-product phenolic compound, transesterification catalyst, and low levels of the starting materials (dihydroxy component and diaryl carbonate). This is referred to as "equilibrating" the reactants.
  • the "equilibrated" product mixture is then introduced into a plug flow reactor, such as that as described in US patent application serial number 11/863,723 which is incorporated herein by reference for all purposes, also operating under melt polymerization conditions, to effect removal of the by-product ester-substituted phenol while converting the oligomeric polycarbonate into a higher molecular weight product polycarbonate.
  • the melt transesterfication reaction proceeds such that the polycarbonate has a Mw (PC) greater than 10,000 g/mol, more preferably greater than 12,000 g/mol, greater thanl 5,000 g/mol, greater than 20,000 g/mol, greater than 25,000 g/mol.
  • the melt transesterfication reaction proceeds such that the polycarbonate has a measured Mw (PC) is between 10,000 g/mol and 160,000 g/mol, for example between 12,000 g/mol and 160,000 g/mol, and preferably between 15,000 and 160,000 g/mol. In another embodiment, the melt transesterfication reaction proceeds such that the Mw (PC) is between 20,000 g/mol and 102,000 g/mol.
  • the polycarbonate prepared is a homopolymer wherein all repeat units are derived from the first dihydroxy compound.
  • the polycarbonate prepared may also comprise repeat units derived from one or more dihydroxy compounds that are different from the TBHQ dihydroxy compound.
  • the one or more additional dihydroxy compounds may be combined with the other reactants in the reaction mixture. It is preferred that at least 10%, more preferably at least 30%, for example at least 50% or at least 70%, of the repeat units are derived from the TBHQ "first" dihydroxy compound.
  • the second dihydroxy is BPA. It is preferred that the mole ratio of the TBHQ dihydroxy to the second dihydroxy is in an amount between 90:10 and 10:90, for example between 80:20 and 20:80, between 70:30 and 30:70, between 60:40 and 40:60; or 50:50.
  • the compounds which react with the dihydroxy compounds to form carbonate linkages may be carbonate diesters, carbonyl halides, etc.
  • Specific examples diaryl carbonates include: diphenylcarbonate, ditolyl carbonate, bis(chlorophenyl) carbonate, m-cresyl carbonate dinaphthyl carbonate, bis(diphenyl)carbonate, diethyl carbonate, dimethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, and other carbonate diesters, phosgene, and other carbonyl halides.
  • diphenylcarbonate is often preferred.
  • the diaryl carbonate can also be derived from an activated diaryl carbonate or a mixture of an activated diaryl carbonate with non-activated diaryl carbonate.
  • a preferred activated carbonate of the present invention is an activated diaryl carbonate such as bismethylsalicylcarbonate (BMSC).
  • BMSC bismethylsalicylcarbonate
  • activated diaryl carbonate is defined as a diaryl carbonate which is more reactive than diphenylcarbonate toward transesterification reactions.
  • Such activated diaryl carbonates are of the general formula:
  • Q and Q 1 are each independently activating groups.
  • a and A' are each independently aromatic rings which can be the same or different depending on the number and location of their substituent groups, and n or n' are whole numbers of zero up to a maximum equivalent to the number of replaceable hydrogen groups substituted on the aromatic rings A and A', wherein a + a' is greater than or equal to 1.
  • R and R 1 are each independently substituent groups such as alkyl, substituted alkyl, cycloalkyl, alkoxy, aryl, alkylaryl, cyano, nitro, halogen, and carboalkoxy.
  • the number of R groups is a whole number and can be 0 up to a maximum equivalent to the number of replaceable hydrogen groups on the aromatic rings A minus the number n.
  • the number of R' groups is a whole number and can be 0 up to a maximum equivalent to the number of replaceable hydrogen groups on the aromatic rings A minus the number n'.
  • the number and type of the R and R' substituents on the aromatic ring are not limited unless they deactivate the carbonate and lead to a carbonate which is less reactive than diphenylcarbonate.
  • the location of the R and R' substituents on the aromatic ring are any one or any combination of the para and/or two ortho positions.
  • Non-limiting examples of activating groups Q and Q' are: alkoxycarbonyl groups, halogens, nitro groups, amide groups, sulfone groups, sulfoxide groups, imine groups, or cyano groups with structures indicated below:
  • M N-Dialkyl, Alkyl, Aiyl, Aryloxy, Alkoxy
  • Rl Alkyl or Aryl
  • activated carbonates include bis(o-methoxycarbonylphenyl)carbonate, bis(o-chlorophenyl)carbonate, bis(o-nitrophenyl)carbonate, bis(o-acetylphenyl)carbonate, bis(o-phenylketonephenyl)carbonate, bis(o-formylphenyl)carbonate, and bis(o-cyanophenyl)carbonate.
  • activated carbonates include bis(o-methoxycarbonylphenyl)carbonate, bis(o-chlorophenyl)carbonate, bis(o-nitrophenyl)carbonate, bis(o-acetylphenyl)carbonate, bis(o-phenylketonephenyl)carbonate, bis(o-formylphenyl)carbonate, and bis(o-cyanophenyl)carbonate.
  • R 1 is independently at each occurrence a C 1 -C 20 alkyl radical, C 4 -C 20 cycloalkyl radical, or C 4 -C 2n aromatic radical;
  • R 2 is independently at each occurrence a halogen atom, cyano group, nitro group, C 1 -C 20 alkyl radical, C 4 -C 20 cycloalkyl radical, C 4 -C 20 aromatic radical, C 1 -C 20 alkoxy radical, C 4 -C 20 cycloalkoxy radical, C 4 -C 20 aryloxy radical, C 1 -C 20 alkylthio radical, C 4 -C 20 cycloalkylthio radical, C 4 -C 20 arylthio radical, C 1 -C 20 alkylsulfinyl radical, C 4 -C 20 cycloalkylsulfinyl radical, C 4 -C 20 arylsulf ⁇ nyl radical, C 1 -C 20 alkylsulfon
  • ester-substituted diaryl carbonates include but are not limited to bis(methylsalicyl)carbonate (CAS Registry No. 82091-12-1), bis(ethyl salicyl)carbonate, bis(propyl salicyl) carbonate, bis(butylsalicyl) carbonate, bis(bcnzyl salicyl)carbonate, bis(methyl 4-chlorosalicyl)carbonate and the like.
  • bis(methylsalicyl)carbonate is preferred for use in melt polycarbonate synthesis due to its lower molecular weight and higher vapor pressure.
  • One method for determining whether a certain diaryl carbonate is activated or is not activated is to carry out a model transesterification reaction between the certain diaryl carbonate with a phenol such as para-cumyl phenol.
  • a phenol such as para-cumyl phenol.
  • This phenol is preferred because it possesses only one reactive site, possesses a low of volatility and possesses a similar reactivity to bisphenol-A.
  • the model transesterification reaction was carried out at temperatures above the melting points of the certain diaryl carbonate and para-cumyl phenol and in the presence of a transesterification catalyst, which is usually an aqueous solution of sodium hydroxide or sodium phenoxide.
  • Preferred concentrations of the transesterification catalyst are about 0.001 mole % based on the number of moles of the phenol or diaryl carbonate.
  • a preferred reaction temperature is 200 C.
  • the choice of conditions and catalyst concentration can be adjusted depending on the reactivity of the reactants and melting points of the reactants to provide a convenient reaction rate.
  • the only limitation to reaction temperature is that the temperature must be below the degradation temperature of the reactants. Sealed tubes can be used if the reaction temperatures cause the reactants to volatilize and effect the reactant molar balance.
  • the determination of the equilibrium concentration of reactants is accomplished through reaction sampling during the course of the reaction and then analysis of the reaction mixture using a well-know detection method to those skilled in the art such as HPLC (high pressure liquid chromatography).
  • reaction quenching acid such as acetic acid in the water phase of the HPLC solvent system. It may also be desirable to introduce a reaction quenching acid directly into the reaction sample in addition to cooling the reaction mixture.
  • a preferred concentration for the acetic acid in the water phase of the HPLC solvent system is 0.05 % (v/v).
  • the equilibrium constant can be determined from the concentration of the reactants and product when equilibrium is reached. Equilibrium is assumed to have been reached when the concentration of components in the reaction mixture reach a point of little or no change on sampling of the reaction mixture.
  • the equilibrium constant can be determined from the concentration of the reactants and products at equilibrium by methods well known to those skilled in the art.
  • a diaryl carbonate which possesses an equilibrium constant of greater than 1 is considered to possess a more favorable equilibrium than diphenylcarbonate and is an activated carbonate, whereas a diaryl carbonate which possesses an equilibrium constant of 1 or less is considered to possess the same or a less favorable equilibrium than diphenylcarbonate and is considered not to be activated. It is generally preferred to employ an activated carbonate with very high reactivity compared to diphenylcarbonate when conducting transesterification reactions. Preferred are activated carbonates with an equilibrium constant greater than at least 10 times that of diaryl carbonate.
  • non-limiting examples of non-activating groups which, when present in an ortho position relative to the carbonate group, would not be expected to result in activated carbonates are alkyl and cycolalkyl.
  • Some specific and non-limiting examples of non-activated carbonates are bis(o-methylphenyl)carbonate, bis(p-cumylphenyl)carbonate, and bis(p-(l,l,3,3-tetramethyl)butylphenyl)carbonate. Unsymmetrical combinations of these structures are also expected to result in non-activated carbonates.
  • the theoretical stoichiometry of the reaction within the melt polymerization reaction mixture requires a molar ratio of dihydroxy composition to diaryl carbonate composition of 1 : 1.
  • the molar ratio in the melt reaction mixture is suitably between 0.25 : 1 to 3: 1 , more preferably 1 :0.95 to 1 : 1.05 and more preferably 1 :0.98 to 1:1.02.
  • the polycarbonate of the present invention comprises repeat units derived from a first dihydroxy compound "TBHQ".
  • the polycarbonate may also comprise units derived one or more different dihydroxy compounds. These dihydroxy compounds are not limited to aromatic dihydroxy compounds. However, such dihydroxy aromatic compounds are often preferred. It is also contemplated that the additional dihydroxy compound comprises aliphatic diols and/or acids. The following is a non limiting list of such compounds:
  • Isosorbide 1 ,4:3,6-dianhydro-D-sorbitol, Tricyclodecane-dimelhanol (TCDDM),
  • DDDA 1,10-Dodecanedioic acid
  • Adipic Hexanedioic acid
  • Isophthalic acid l,3-Benzenedicarboxylic acid
  • Terephthalic acid 1,4-Benzenedicarboxylic acid
  • the additional dihydroxy composition comprises a dihydroxy aromatic compound.
  • a preferred dihydroxy aromatic composition of the present invention is bisphenol A (BPA).
  • BPA bisphenol A
  • other dihydroxy aromatic compounds of the present invention can be used and are selected from the group consisting of bisphenols having structure,
  • R 3 - R 10 are independently a hydrogen atom, halogen atom, nitro group, cyano group, C, - C 20 alkyl radical, C 4 - C 20 cycloalkyl radical, or C 6 - C 20 C aryl radical;
  • W is a bond, an oxygen atom, a sulfur atom, a SO 2 group, a C 1 - C 20 aliphatic radical, a C 6 - C 20 aromatic radical, a C 6 - C 20 cycloaliphatic radical, or the group L .s ⁇
  • R 11 and R 12 are independently a hydrogen atom, C 1 - C 20 alkyl radical, C 4 - C 20 cycloalkyl radical, or C 4 - C 20 aryl radical; or R 1 ! and R 12 together form a C 4 - C 20 cycloaliphatic ring which is optionally substituted by one or more C 1 - C 20 alkyl, C 6 - C 20 aryl, C 5 - C 21 , aralkyl, C 5 - C 20 cycloalkyl groups, or a combination thereof; dihydroxy benzenes having structure
  • R 15 is independently at each occurrence a hydrogen atom, halogen atom, nitro group, cyano group, C 1 - C 20 alkyl radical, C 4 - C 20 cycloalkyl radical, or C 4 - C 20 aryl radical, d is an integer from O to 4; and dihydroxy naphthalenes having structures,
  • R 16 , R 17 , R 18 and R 19 are independently at each occurrence a hydrogen atom, halogen atom, nitro group, cyano group, C 1 - C 20 alkyl radical, C 4 - C 20 cycloalkyl radical, or C 4 - C 20 aryl radical; e and f are integers from O to 3, g is an integer from 0 to 4, and h is an integer from 0 to 2.
  • PPP-BP 2-phenyl-3,3-bis(4hydroxyphenyl)phthalimide
  • BPS 4,4-dihydroxy diphenyl sulphone
  • bisphenol A 2,2-bis(4-hydiOxyphenyl)propane
  • Suitable dihydroxy benzenes are illustrated by hydroquinone, resorcinol, methylhydroquinone, butylhydroquinone, phenylhydroq ⁇ inone, 4-phenylresorcinol and 4-methylresorcinol.
  • Suitable dihydroxy naphthalenes are illustrated by 2,6-dihydroxy naphthalene; 2,6-dihydroxy-3-methyl naphthalene; 2,6-dihydroxy-3-phenyl naphthalene; 1,4-dihydroxy naphthalene; l,4-diliydroxy-2-methyl naphthalene; l,4-dihydroxy-2-phenyl naphthalene and 1,3-dihydroxy naphthalene.
  • TBHQ and other comonomers are selected based on the desired composition of the oligomers. However, BPA is often preferred.
  • the invention provides a method of producing polycarbonate.
  • a catalyst or catalyst system
  • a catalyst will be added to the dihydroxy component and the diaryl carbonate thereby forming a melt reaction mixture that is introduced to the melt polymerization system to build molecular weight of the polycarbonate.
  • the catalyst system used in this method of the present invention comprises a base, and preferably comprises at least one source of alkaline earth ions or alkali metal ions, and/or at least one quaternary ammonium compound, a quaternary phosphonium compound or a mixture thereof.
  • the source of alkaline earth ions or alkali metal ions being used in an amount such that the amount of alkaline earth or alkali metal ions present in the reaction mixture is in a range between 10 "5 and 10 "8 moles alkaline earth or alkali metal ion per mole of dihydroxy compound employed.
  • the quaternary ammonium compound is selected from the group of organic ammonium compounds having structure,
  • R 20 - R 23 are independently a C 1 - C 20 alkyl radical, C 4 - C 20 cycloalkyl radical, or a C 4 - C 20 aryl radical; and X " is an organic or inorganic anion.
  • anion X ' is selected from the group consisting of hydroxide, halide, carboxylate, sulfonate, sulfate, formate, carbonate, and bicarbonate.
  • Non-limiting examples of suitable organic quaternary ammonium compounds are tetramethyl ammonium hydroxide, tetrabutyl ammonium hydroxide, tetramethyl ammonium acetate, tetramethyl ammonium formate and tetrabutyl ammonium acetate. Tetramethyl ammonium hydroxide is often preferred.
  • the quaternary phosphonium compound is selected from the group of organic phosphonium compounds having structure,
  • R 24 - R 27 are independently a C - C 20 alkyl radical, C 4 - C 20 cycloalkyl radical, or a C 4 - C 20 aryl radical; and X " is an organic or inorganic anion.
  • anion X ' is an anion selected from the group consisting of hydroxide, halide, carboxylate, sulfonate, sulfate, formate, carbonate, and bicarbonate.
  • Suitable organic quaternary phosphonium compounds are illustrated by tetramethyl phosphonium hydroxide, tetramethyl phosphonium acetate, tetramethyl phosphonium formate, tetrabutyl phosphonium hydroxide, and tetrabutyl phosphonium acetate (TBPA).
  • TBPA is often preferred.
  • X ' is a polyvalent anion such as carbonate or sulfate it is understood that the positive and negative charges in the quaternary ammonium and phosphonium structures are properly balanced.
  • R 20 - R 23 are each methyl groups and X ' is carbonate, it is understood that X ' represents 1 A (CO 3 '2 ).
  • Suitable sources of alkaline earth ions include alkaline earth hydroxides such as magnesium hydroxide and calcium hydroxide.
  • Suitable sources of alkali metal ions include the alkali metal hydroxides illustrated by lithium hydroxide, sodium hydroxide and potassium hydroxide.
  • Other sources of alkaline earth and alkali metal ions include salts of carboxylic acids, such as sodium acetate and derivatives of ethylene diamine tetraacetic acid (EDTA) such as EDTA tetrasodium salt, and EDTA magnesium disodium salt.
  • EDTA ethylene diamine tetraacetic acid
  • EDTA ethylene diamine tetraacetic acid
  • EDTA magnesium disodium salt EDTA magnesium disodium salt.
  • Sodium hydroxide is often preferred. Further sodium hydroxide is often contained within the reaction components as an impurity and is contained in such an amount to catalyze the reaction without the addition of additional catalysts.
  • an effective amount of catalyst must be employed.
  • the amount of catalyst employed is typically based upon the total number of moles of dihydroxy compounds employed in the polymerization reaction.
  • the ratio of catalyst, for example phosphonium salt, to all dihydroxy compounds employed in the polymerization reaction it is convenient to refer to moles of phosphonium salt per mole of the dihydroxy compound(s), meaning the number of moles of phosphonium salt divided by the sum of the moles of each individual dihydroxy compound present in the reaction mixture.
  • the amount of organic ammonium or phosphonium salts employed typically will be in a range between 1 x 10 ⁇ 2 and 1 x 10 ⁇ 6 , preferably between 1 x 10 "4 and 1 x 10 "5 moles per mole of the first and second dihydroxy compounds combined.
  • the inorganic metal hydroxide catalyst typically will be used in an amount corresponding to between 1 x 10 4 and 1 x 10 "8 , preferably 1 x 1(T* and 1 x 10 "7 moles of metal hydroxide per mole of the first and second dihydroxy compounds combined.
  • alkali metal hydroxide In a third catalyst system according to the method of the present invention, solely a alkali metal hydroxide may be employed.
  • alkali metal hydroxides are illustrated by sodium hydroxide, lithium hydroxide, and potassium hydroxide. Due to its relatively low cost, sodium hydroxide is often preferred.
  • Blends of polymers are typical in industry.
  • the polycarbonate of the present invention may be blended with other polymeric materials, for example, other polycarbonates, polyestercarbonates, polyesters and olefin polymers such as ABS.
  • the polycarbonates of the present invention may be blended with conventional additives such as reinforcing agents, thermal stabilizers, radiation stabilizers, antioxidants, light stabilizers, UV stabilizers, plasticizers, visual effect enhancers, extenders, antistatic agents, catalyst quenchers, mold release agents, flame retardants, infrared shielding agents, whitening agents, blowing agents, anti-drip agents, impact modifiers and processing aids.
  • blends or polycarbonate of the present invention itself may be molded into various articles such as optical disks, optical lenses, automobile lamp components and the like.
  • Examples 1-12 are provided to demonstrate that polycarbonates comprising repeat units derived from TBHQ dihydroxy have superior properties as compared to polycarbonate not containing repeat units derived from TBHQ dihydroxy. Unlike other quinone-type monomers, TBHQ will not cause crystallization, even at high loadings, even up to 100%. See Table 1 and Figure 1.
  • BPA homopolycarbonate is normally considered an amorphous polymer (i.e. no melting point of the polymerized resin), it can be crystallized as seen in the results of solvent cast films.
  • TBHQ polycarbonate (Example 2) cannot be crystallized even when cast from a solvent.
  • Solvent cast films were prepared by the following process. 1 gram of a polymer was dissolved in 20 ml methylene chloride. After the polymer is completely dissolved the solution is poured out in a Petri dish with a diameter of 10 cm. The pelridish is covered with aluminum foil prepared with some small holes to allow the methylene chloride to evaporate slowly (at room temperature in a fumehood). After 24 hours the methylene chloride is evaporated and a solid film can be pulled from the Petri dish.
  • Mw and Mn were measured by GPC analysis of 1 mg/ml polymer solutions in methylene chloride versus polystyrene (PS) standards. It is noted that the Mw (PS) value is approximately equal to twice the Mw (PC). Table 1 : (Examples 1-12) Properties
  • TBHQ also gives improved melt flow (as measured by MVR) with minimal reduction in heat performance (as measured by Tg).
  • MVR melt flow
  • Tg heat performance
  • other quinone-type monomers do not offer both advantages.
  • RS is known to improve melt flow, but at a cost of lowering Tg. MeHQ, does not significantly improve melt flow, yet still lowers Tg. HQ improves melt flow and lowers Tg slightly.
  • Table 2 shows Mw, MVR and Tg data. The MVR versus Mw data is plotted in a Log-Log form in Figure 2. In Figure 3 Tg is polotted versus Mw.
  • Mw was determined via GPC using polycarbonate standards relative to polycarbonate. Melting points and Tg's were determined via DSC according to standard ISO 11357. MVRs were determined at 300 0 C and 1.2 kg according to standard ISO 1133. Solvent cast films were made by dissolving 1 g of polymer in 20 mL of dichloromethane and casting the solution into Petri dishes and then allowing the solvent to evaporate at room temperature. The refractive index and the Abbe number of the polymers were measured using a J. A. Woollam spectroscopic ellipsometer (M-2000®) on spun-cast films. Abbe number is defined as:
  • n D , n F and r ⁇ are the refractive indices of the material at the wavelengths of the Fraunhofcr D-, F- and C- spectral lines (589.2 nm, 486.1 nm and 656.3 run, respectively).
  • the mixture was charged with phosgene (21.6 g, 2 g/min, 0.22 mol).
  • base 50 wt% NaOH in deionized water
  • the reaction was purged with nitrogen gas, the organic layer was tested for chloroformates with phosgene paper (strong chloroformates were present) and 150 grams of the organic layer (BCF solution) was extracted into a pre-tared glass container.
  • the mixture was charged with phosgene (21.6 g, 2 g/min, 0.22 mol).
  • base 50 wt% NaOH in deionized water
  • the reaction was purged with nitrogen gas, the organic layer was tested for chloroformates with phosgene paper (strong chloroformates were present) and 150 grams of the organic layer (BCF solution) was extracted into a pre-tared glass container.
  • Examples 51 and 52 show that linear, low molecular weight oligomers were formed.
  • the interfacial method can not be used to produce high molecular weight polymer (Mw > 9,000 g/mol for example greater than 10,000 or 15,000 g/mol) even though there was no chain terminator used in the experiments.
  • the interfacial method produces materials that do crystallize as shown in Table 4 (i.e. the polymer measured, Example 52, had a melting point).
  • a 100% TBHQ polycarbonate was synthesized using a non-activated diaryl carbonate DPC (rather than an activated diaryl carbonate BMSC).
  • a batch tube glass reactor was charged with t-Butyl Hydroquinone (14.3691 g, 0.086 mole) and diphenylcarbonate (20.00 g, 0.093 mole). The system was vacuumized several times in order to create an oxygen free atmosphere. 100 microliter of a catalyst solution containing NaOH (4.375 x 10 '7 mole) and tetramethylammonium hydroxide (2.16 x 10 "5 mole) was injected into the powder, while preventing any oxygen from entering into the reactor tube.
  • the reactor was electrically heated at 180 0 C at atmospheric pressure in a nitrogen atmosphere in order to melt the ingredients (lOminutes).
  • a 20% TBHQ copolymer with BPA was prepared by melt transesterification reaction, carried out in a 25 gram scale batch reactor. To remove any sodium from the glass the reactor was soaked in IM HCl for at least 24 hours followed by rinsing at least 5 times with 18.2 M ohm. The temperature of the reactor was maintained using a heating mantle with a PID controller. The pressure over the reactor was controlled by a nitrogen bleed into a vacuum pump downstream of the distillate collection flasks and measured with a pressure gauge.
  • TMAH tetramethylammonium hydroxide
  • NaOH 0.5 mol/1
  • Reactions where carried out in the presence of 2.5 x 10 "4 mol of TMAH / mol diol, which was added in 100 microliter together with the 2.5 x 10 "6 mol of NaOH / mol diol. The total amount of catalyst solution added is maintained at 100 microliter.
  • the glass reactor tube was charged with the solid BPA (0.08645 mol), solid TBHQ (0.02161 mol) and solid DPC (0.1 167 mol), targeted molar ratio 1.08 (carbonate / sum of dihydroxy compounds).
  • the reactor was then assembled, sealed and the atmosphere was exchanged with nitrogen three times.
  • the catalyst was added to the monomers.
  • the reactor was brought to near atmospheric pressure. During polymerization the overhead of the reactor system is maintained at 100 0 C. The following temperature/pressure profile was used.
  • Step 1 230 0 C, 170 mbar, 60 minutes
  • Step 2 270 0 C, 20 mbar, 30 minutes
  • Step 3 300 0 C, full vacuum (-0.5 mbar), 30 minutes
  • the reactor After completion of the polymerization, the reactor is brought back to atmospheric pressure with a gentle nitrogen flow. When atmospheric pressure is reached, the stirrers are stopped and the produced material is drained from the reactor tubes by opening the reactors at the bottom and pushing out the material with a slight nitrogen over-pressure. The harvested material is then used for analysis. The reaction yielded in a slightly yellow, transparent polymer with molecular weight ' of 35 kg/mol (PS), Pd of 2.50.
  • PS molecular weight
  • Example 55 Melt polymerization with TBHO using BMSC
  • TMAH tetramethylammonium hydroxide
  • NaOH sodium hydroxide
  • the reactor was then evacuated and purged with nitrogen three times to remove residual oxygen and then held at a constant vacuum pressure of 800 mbar. The reactor was then heated to 170 0 C in order to melt and react the mixture.
  • the reactor was pressurized with nitrogen to a constant overpressure of 0.9 bar, and the molten reaction mixture was fed through a 170 °C heated feed-line into an extruder at a rate of about 10 kg/h. 15 minutes before starting the feed to the extruder an aqueous catalyst solution of sodium hydroxide (NaOH) in an amount corresponding to 17.0 x 10 "6 moles of NaOH per total number of moles of BPA/TBHQ.
  • NaOH sodium hydroxide
  • the feed into the extruder comprised a flash-valve to prevent boiling of the molten mixture.
  • the reaction mixture was reactively extruded at a screw speed of 300 rpm.
  • the extruder was equipped with five forward vacuum vents and one back-vent.
  • the methyl salicylate byproduct is removed via devolatilization through these vents.
  • the vacuum pressure of the back-vent was 11 mbar.
  • the vacuum pressure of the first forward vent was 3 mbar.
  • the vacuum pressure of the final four forward vents was less than 1 mbar.
  • This TBHQ/BPA (80/20) copolymer has been made with all the extruder barrels at a temperature of 270 0 C and the extruder die head at a temperature of 280 0 C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

La présente invention concerne du polycarbonate ayant des unités de répétition dérivé de la tert-butylhydroquinone (TBHQ). Il a été trouvé par les présentes que du polycarbonate ayant des unités de répétition dérivé de la TBHQ a des propriétés supérieures par comparaison à du polycarbonate ayant des unités de répétition dérivé d'autres composés du type dihydroxy(hydroquinone). Selon un mode de réalisation, la présente invention fournit un polycarbonate ayant des unités de répétition dérivé de la tert-butylhydroquinone. Le polycarbonate a un Mw (PC) d'au moins 9000 g/mole.
PCT/US2007/081958 2006-10-23 2007-10-19 Polycarbonates de tert-butylhydroquinone WO2008051849A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007800393028A CN101568569B (zh) 2006-10-23 2007-10-19 叔丁基氢醌聚碳酸酯

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US86255506P 2006-10-23 2006-10-23
US60/862,555 2006-10-23

Publications (2)

Publication Number Publication Date
WO2008051849A1 true WO2008051849A1 (fr) 2008-05-02
WO2008051849B1 WO2008051849B1 (fr) 2008-06-26

Family

ID=39137590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/081958 WO2008051849A1 (fr) 2006-10-23 2007-10-19 Polycarbonates de tert-butylhydroquinone

Country Status (2)

Country Link
CN (2) CN101541854B (fr)
WO (1) WO2008051849A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013028610A1 (fr) * 2011-08-22 2013-02-28 Sabic Innovative Plastics Ip B.V. Compositions de polycarbonate, et procédés pour la fabrication et l'utilisation de ces compositions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269017A (ja) * 1990-03-19 1991-11-29 Chisso Corp 耐熱性ポリカーボネート樹脂
WO2000047679A1 (fr) * 1999-02-12 2000-08-17 General Electric Company Melanges pc/abs a indice de fluage eleve ayant des niveaux regules d'especes de ramification fries
US6608165B2 (en) * 2000-09-12 2003-08-19 Teijin Limited Aromatic polycarbonate and production process therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365710B1 (en) * 2001-08-29 2002-04-02 General Electric Company Method for removing volatile components from solid polymeric materials
US6504002B1 (en) * 2001-12-21 2003-01-07 General Electric Company Process for the production of branched melt polycarbonate by late addition of fries-inducing catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269017A (ja) * 1990-03-19 1991-11-29 Chisso Corp 耐熱性ポリカーボネート樹脂
WO2000047679A1 (fr) * 1999-02-12 2000-08-17 General Electric Company Melanges pc/abs a indice de fluage eleve ayant des niveaux regules d'especes de ramification fries
US6608165B2 (en) * 2000-09-12 2003-08-19 Teijin Limited Aromatic polycarbonate and production process therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BRUNELLE D J ET AL: "PREPARATION OF CRYSTALLINE AND SOLVENT RESISTANT POLYCARBONATES VIA RING-OPENING POLYMERIZATION OF CYCLIC OLIGOMERS", POLYMER PREPRINTS, AMERICAN CHEMICAL SOCIETY, US, vol. 34, no. 1, 1993, pages 73 - 74, XP009029783, ISSN: 0032-3934 *
DATABASE WPI Week 199203, Derwent World Patents Index; AN 1992-020260, XP002472433 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013028610A1 (fr) * 2011-08-22 2013-02-28 Sabic Innovative Plastics Ip B.V. Compositions de polycarbonate, et procédés pour la fabrication et l'utilisation de ces compositions
US8669315B2 (en) 2011-08-22 2014-03-11 Sabic Innovative Plastics Ip B.V. Polycarbonate compositions and methods for the manufacture and use thereof
KR20140051448A (ko) * 2011-08-22 2014-04-30 사빅 이노베이티브 플라스틱스 아이피 비.브이. 폴리카르보네이트 조성물, 그의 제조방법 및 그의 용도
KR102021494B1 (ko) 2011-08-22 2019-09-17 사빅 글로벌 테크놀러지스 비.브이. 폴리카르보네이트 조성물, 그의 제조방법 및 그의 용도

Also Published As

Publication number Publication date
CN101568569B (zh) 2012-07-18
CN101541854B (zh) 2012-02-22
CN101541854A (zh) 2009-09-23
CN101568569A (zh) 2009-10-28
WO2008051849B1 (fr) 2008-06-26

Similar Documents

Publication Publication Date Title
US7132498B2 (en) Process to make polycarbonate from bismethylsalicylcarbonate (BMSC)
EP1716196B1 (fr) Procede de production de copolycarbonates de couleur reduite
US7115700B2 (en) Method of polycarbonate preparation
EP1427771B1 (fr) Procede de preparation de polycarbonate par polymerisation a l'etat solide
KR20070012448A (ko) 폴리카보네이트를 제조를 위한 폴리카보네이트 올리고머혼합물의 저온에서의 제조 방법
US7495064B2 (en) Manufacture of polycarbonates
WO2009045759A1 (fr) Solution de monomère pour produire un polycarbonate
US7501481B2 (en) Process for production of copolycarbonates with reduced color
US7674872B2 (en) Method of producing high molecular weight polymer
US7601794B2 (en) Monomer solution for producing polycarbonate
US7629432B2 (en) Tert-butylhydroquinone polycarbonates
WO2008051849A1 (fr) Polycarbonates de tert-butylhydroquinone
US20070057400A1 (en) Polycarbonate useful in making solvent cast films

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780039302.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07844461

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07844461

Country of ref document: EP

Kind code of ref document: A1