WO2008044797A1 - Osteopenia model animal - Google Patents

Osteopenia model animal Download PDF

Info

Publication number
WO2008044797A1
WO2008044797A1 PCT/JP2007/070309 JP2007070309W WO2008044797A1 WO 2008044797 A1 WO2008044797 A1 WO 2008044797A1 JP 2007070309 W JP2007070309 W JP 2007070309W WO 2008044797 A1 WO2008044797 A1 WO 2008044797A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
rankl
animal
osteopenia
gst
Prior art date
Application number
PCT/JP2007/070309
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiya Tomimori
Hisataka Yasuda
Original Assignee
Oriental Yeast Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2007/063871 external-priority patent/WO2008044379A1/en
Application filed by Oriental Yeast Co., Ltd. filed Critical Oriental Yeast Co., Ltd.
Priority to EP07830043A priority Critical patent/EP2084961A4/en
Priority to EP11169483.2A priority patent/EP2389803B1/en
Priority to US12/445,050 priority patent/US8334261B2/en
Priority to JP2008538785A priority patent/JP5219823B2/en
Priority to CA2666443A priority patent/CA2666443C/en
Priority to AU2007307504A priority patent/AU2007307504B2/en
Publication of WO2008044797A1 publication Critical patent/WO2008044797A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4705Regulators; Modulating activity stimulating, promoting or activating activity
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases

Definitions

  • the present invention relates to an osteopenia animal model in which the bone mass is reduced as compared to a normal animal.
  • Osteoclasts which control bone destruction, are large multinucleated cells derived from monocyte / macrophage hematopoietic cells.
  • the progenitor cells are differentiated and matured into osteoclasts by being regulated by osteoblasts / stromal cells on the bone surface.
  • the osteoclast differentiation factor (RANKL) belongs to the tumor necrosis factor (TNF) family that is induced on osteoblasts / stromal cells by bone resorption factor. It is a membrane-bound protein and is an essential factor for osteoclast differentiation 'maturation (see Non-Patent Documents 1 and 2). It is known that a part of RANKL is cleaved by meta-oral protease in the extracellular region and becomes soluble.
  • soluble RANKL induces osteoclasts from bone marrow cells, splenocytes, progenitor cells in peripheral blood, or macrophage progenitor cells such as macrophage cell lines in the presence of M-CSF in vitro. It is known to do.
  • Non-patent literature 1 Yasuda et al., Proc Natl Acad Sci USA 95: 3597, 1998
  • Non-patent literature 2 Lacey et al., Cell 93: 165, 1998
  • Non-Patent Document 3 Thompson et al., Bone 17 (Suppl.): S125, 1995
  • Non-Patent Document 4 Wronski et al., Calcif Tissue Int 42: 179, 1988
  • Non-Patent Document 5 Wronski et al., Endocrinology 123: 681, 1988
  • Non-Patent Document 6 Wronski et al., Calcif Tissue Int 45: 360, 1989
  • Non-Patent Document 7 de Winter et al., Calcif Tissue Res 17: 303, 1975
  • Non-Patent Document 8 Geusens et al., J Bone Miner Res 6: 791, 1991
  • Non-Patent Document 9 Wakley et al., Calcif Tissue Int 43, 383, 1988
  • Non-Patent Document 1 0 Globus et al., J Bone Miner Res 1: 191, 1986 Disclosure of Invention
  • An object of the present invention is to provide a method for producing an osteopenia animal model by administering RANKL and an osteopenia animal model.
  • the present inventors have intensively studied a method for producing a bone loss model animal that can solve the problems of conventional bone loss model animals.
  • administration of soluble RANKL or fusion protein of soluble RANKL and Epitope tag directly to non-human animals directly activates osteoclasts and causes bone loss rapidly (within a few days)
  • This osteopenia animal model is effective for rapid drug evaluation.
  • the mechanism of bone loss in the osteopenia model animal of the present invention is extremely simple: RANKL promotes osteoclast differentiation and activation. It is a pure osteoclast inhibitor (bisphosphonate, Cathepsin). It is extremely effective as an evaluation system when developing K inhibitors. It can also be used to evaluate drugs that increase bone mass (such as PTH) by comparing the speed of bone loss once it returns to its original level.
  • the present invention is as follows.
  • Bone mass comprising administering soluble RANKL or a fusion protein of soluble RANKL and an epitope tag to a non-human animal, and promoting osteoclast differentiation and activation in the non-human animal body
  • a method for producing a reduction model animal comprising administering soluble RANKL or a fusion protein of soluble RANKL and an epitope tag to a non-human animal, and promoting osteoclast differentiation and activation in the non-human animal body
  • a bone loss model of [1] or [2] can be produced within one week after administration of soluble RANKL or a fusion protein of soluble RANKL and an epitope tag to a non-human animal.
  • a method for producing a reduction model animal is
  • [8] [1 :! A method for producing an osteopenia animal model according to any one of [7], wherein bone loss of different severity is achieved by changing the dose of soluble RANKL or a fusion protein of soluble RANKL and an epitope tag A method for creating a bone loss model animal that produces a disease model animal.
  • the ovary is removed from an animal to which soluble RANKL or a fusion protein of soluble RANKL and an epitope tag is administered, and the osteopenia model animal of any of [1] to [: 8] Production method.
  • Osteopenia model animal can be created within 72 hours after administration of soluble RANKL or fusion protein of soluble RANKL and epotope tag to non-human animals [9] How to make animals.
  • [1 1] A bone loss model animal produced by any one of the methods [1] to [1 0].
  • At least one of blood estrogen concentration, blood PTH concentration and blood 0PG concentration is not changed compared to normal individuals [1 1] to [1 4] Le animals.
  • Bone resorption inhibitor or a bone resorption inhibitor candidate substance was administered to any bone loss model animal of any one of [1 1] to [1 5] and decreased in the bone loss model animal It is a method for evaluating the effect of the bone resorption inhibitor or the bone resorption inhibitor candidate substance by using whether or not the bone mass increases as an index, and when the bone mass increases, A method for evaluating a bone resorption inhibitor or a bone resorption inhibitor candidate substance to be determined.
  • [1 8] [1 1;] to any one of the osteopenia model animals of [1 5] is administered with an osteogenesis promoter or an osteogenesis promoter candidate substance, and decreases in the osteopenia model animal
  • This is a method for evaluating the effect of the osteogenesis promoting agent or the osteogenesis promoting agent candidate substance by using whether or not the increased bone mass is an index, and is effective in promoting osteogenesis when the bone mass increases.
  • a method for evaluating an osteogenesis promoter or an osteogenesis promoter candidate substance is a method for evaluating the effect of the osteogenesis promoting agent or the osteogenesis promoting agent candidate substance by using whether or not the increased bone mass is an index, and is effective in promoting osteogenesis when the bone mass increases.
  • a hormone or hormone receptor in a bone loss model animal produced by administering a soluble RANKL or a fusion protein of soluble RANKL and an epitope tag by the method according to claim 8 and further extracting the ovary
  • a method for evaluating the effect of the hormone or hormone receptor modulator using the modulator as an indicator of whether or not the decreased bone mass increases in the osteopenia model animal, wherein the bone mass increased A method for evaluating a hormone or a hormone receptor modulator, which is judged to be effective in inhibiting bone resorption.
  • Hormone or hormone receptor modulator is selective estrogen receptor A method for evaluating a [20] honolemon or honolemon receptor modulator, which is a body modulator.
  • [2 2] Increased bone mass, increased bone formation marker level in body, increased bone density, increased bone mass, increased trabecular number, decreased osteoclast number in osteopenia model animals, Evaluate [2 0] or [2 1] hormone or hormone receptor modulators based on at least one selected from the group consisting of an increase in osteoblastic surface and an increase in bone mass observed by CT how to.
  • FIG. 1 is a graph showing the blood Ca concentration in mice administered and not administered with GST-RANKL.
  • FIG. 2 is a graph showing blood CTx concentrations in mice administered and not administered with GST-RANKL.
  • FIG. 3 is a graph showing blood TRAP-5b concentrations in mice administered with and without GST-RANKL.
  • FIG. 4 is a graph showing blood osteocalcin concentrations in mice administered with and without GST-RANKL.
  • FIG. 5 is a graph showing blood ALP concentrations in mice administered with and without GST-RANKL.
  • FIG. 6 is a graph showing femur bone density in mice administered and not administered with GST-RANKL.
  • FIG. 7 is a graph showing the unit bone mass of the tibia in mice administered GST-RANKL and mice not administered.
  • FIG. 8 is a graph showing the number of tibia osteoclasts in mice administered with and without GST-RANKL.
  • Figure 9 shows tibia bones in mice administered and not treated with GST-RANKL. It is a figure which shows the number of powers.
  • FIG. 10 is a photograph showing bone morphology of mice treated with GST-RANKL and measured with a mouth-mouth CT of the femurs of mice not administered with GST-RANKL.
  • FIG. 11 is a diagram showing the osteoblastic surface of the tibia in mice administered with and without GST-RANKL.
  • FIG. 12 is a graph showing blood Ca concentration in mice administered with 213 nmol to 852 nmol of GST-RANKL and in mice not administered with GST-RANKL.
  • Fig. 13 is a graph showing blood CTx concentrations in mice administered with 213mnol to 852nmol of GST-RANKL and in mice not administered with GST-RANKL.
  • FIG. 14 is a graph showing blood TRAP-5b concentrations in mice administered with 213 nmol to 852 nmol of GST-RANKL and mice not administered with GST-RANKL.
  • FIG. 15 is a graph showing femoral bone density in mice administered with 213 nmol to 852 nmol of GST-RANKL and mice not administered with GST-RANKL.
  • FIG. 16 is a photograph showing bone morphology of mice treated with 213 nmol to 852 nmol of GST-RANKL and of the femurs of mice not administered with microscopic CT.
  • FIG. 17 is a graph showing the blood TRAP-5b concentration when risedronate was administered to osteopenia model mice produced by administering GST-RANKL.
  • FIG. 18 is a graph showing the blood CTx concentration when risedronate was administered to osteopenia model mice produced by administering GST-RANKL.
  • FIG. 19 is a graph showing the ALP concentration in blood when risedronate was administered to an osteopenia model mouse produced by administering GST-RANKL.
  • FIG. 20 is a graph showing blood osteocalcin concentration when risedronate was administered to a mouse model for osteopenia produced by administration of GST-RANKL.
  • FIG. 21 is a graph showing the bone density of the femur when risedronate is administered to an osteopenia model mouse produced by administering GST-RANKL.
  • Fig. 22 is a photograph showing the bone morphology measured by micro-CT of the femur of a mouse administered with risedronate to an osteopenia model mouse produced by administering GST-RANKL.
  • Figure 23 shows blood levels in mice administered and not treated with soluble RANKL. It is a figure which shows Ca density
  • FIG. 24 is a graph showing blood CTx concentrations in mice administered and not administered soluble RANKL.
  • FIG. 25 is a graph showing blood TRAP-5b concentrations in mice with and without soluble RANKL.
  • FIG. 26 is a graph showing the blood osteocalcin concentration in mice with and without soluble RANKL.
  • FIG. 27 is a diagram showing blood ALP concentrations in mice with and without soluble RANKL.
  • FIG. 28 is a graph showing femur bone density in mice administered and not administered soluble RANKL.
  • FIG. 29 is a diagram showing unit bone mass in mice administered with GST-RANKL and mice administered with PBS.
  • FIG. 30 is a diagram showing trabecular width in mice administered with GST-RANKL and mice administered with PBS.
  • FIG. 31 shows the number of trabeculae in mice administered with GST-RANKL and mice administered with PBS.
  • FIG. 32 shows the osteoid thickness in mice administered with GST-RANKL and mice administered with PBS.
  • FIG. 33 is a diagram showing the absorption surface in mice administered with GST-RANKL and mice administered with PBS.
  • FIG. 34 is a graph showing the number of osteoclasts in mice administered with GST-RANKL and mice administered with PBS.
  • FIG. 35 is a diagram showing the osteoclast surface in mice administered with GST-RANKL and mice administered with PBS.
  • FIG. 36 is a photograph showing a TRAP-stained image showing an increase in osteoclasts in a mouse administered with GST-RANKL and a mouse administered with PBS.
  • FIG. 37 shows the blood Ca, TRAP-5b and ALP concentrations when risedronate was administered to mice administered with GST-RANKL.
  • FIG. 38 shows the bone density when risedronate was administered to mice administered with GST-RANKL.
  • Fig. 39 is a photograph showing the results of image analysis using a mouth-to-mouth CT when risedronate was administered to mice administered with GST-RANKL.
  • FIG. 40 shows blood Ca, ALP and TRAP-5b concentrations when mice treated with GST-RANKL were treated with etidronate, and mouth-mouth, or risedronate.
  • FIG. 41 is a graph showing bone density when etidronate, and-andoate or risedronate was administered to mice administered with GST-RANKL.
  • Fig. 42 is a photograph showing the results of image analysis using micro-CT when etidronate, and oral mouthnate, or risedronate was administered to mice administered with GST-RANKL.
  • FIG. 43 shows blood Ca, TRAP-5b, and ALP concentrations in mice that had been ovariectomized after administration of GST-RANKL.
  • FIG. 44 is a graph showing the bone density of a mouse administered with GST-RANKL and excised from the ovaries.
  • Fig. 45 is a photograph showing the results of image analysis using micro-CT of mice that had been treated with GST-RANKL and removed their ovaries.
  • FIG. 46 is a graph showing blood Ca, ALP and TRAP-5b concentrations when CSTBL / 6 mice were administered GST-RANKL and PBS.
  • FIG. 47 shows the bone density when GST-RANKL and PBS were administered to C57BL / 6 mice.
  • Fig. 48 is a photograph showing the results of image analysis using micro CT when GST-RANKL and PBS were administered to C57BL / 6 mice.
  • FIG. 49 is a diagram showing blood Ca, ALP and TRAP-5b concentrations when PTH was administered to mice that had been GST-RANKL-administered and ovariectomized.
  • FIG. 50 is a graph showing the bone density when PTH is administered to mice in which ovary has been removed by administration of GST-RANKL.
  • FIG. 51 is a photograph showing the results of image analysis using micro-CT when GTH-RANKL is administered and PTH is administered to a mouse whose ovaries have been removed.
  • FIG. 52 shows the Ca, ALP and TRAP-5b concentrations in male mice administered with GST-RANKL and PBS.
  • FIG. 53 shows the bone density of male mice administered with GST-RANKL and PBS.
  • FIG. 54 is a photograph showing the results of image analysis using micro CT of male mice administered with GST-RANKL and PBS.
  • FIG. 55 shows the blood Ca, ALP and TRAP-5b concentrations in ICR mice administered with GST-RANKL and PBS.
  • FIG. 56 shows the bone density of ICR mice administered with GST-RANKL and PBS.
  • FIG. 57 is a photograph showing the result of image analysis using micro CT of ICR mice administered with GST-RANKL and PBS.
  • FIG. 58 shows the blood Ca, ALP and TRAP_5b concentrations in fisher rats administered with GST-RANKL and PBS.
  • FIG. 59 shows the bone density of fisher rats administered with GST-RANKL and PBS.
  • FIG. 60 is a photograph showing the results of image analysis using micro CT of fisher rats administered with GST-RANKL and PBS.
  • FIG. 61 shows the RANKL concentration in the serum of mice that received GST-RANKL once.
  • FIG. 62 shows the concentrations of Ca, ALP and TRAP-5b in the serum of mice that received GST-RANKL and PBS once.
  • FIG. 63 shows the bone density of mice that received GST-RANKL and PBS once.
  • FIG. 64 is a photograph showing the result of image analysis using micro CT of a mouse administered with GST-RANKL and PBS once.
  • FIG. 65 shows the serum Ca, ALP and TRAP-5b concentrations in mice administered with GST-RANKL and PBS for 7 consecutive days.
  • FIG. 66 shows the bone density of mice administered with GST-RANKL and PBS for 7 consecutive days.
  • FIG. 67 is a photograph showing the results of image analysis using micro CT of mice administered with GST-RANKL and PBS for 7 consecutive days.
  • FIG. 68 shows the bone density of mice administered GST-RANKL and PBS to the calvaria.
  • Figure 69 shows a photograph showing bone mass when LFM-A13 is administered to GST-RANKL-treated mice.
  • FIG. 70 shows the unit bone mass (Bone volume / tissue volumej) when LFM-A13 is administered to GST-RANKL-treated mice.
  • FIG. 71 shows the trabecular width (Trabecular / thickness) when LFM-A13 is administered to GST-RANKL-treated mice.
  • FIG. 72 is a graph showing the number of trabecular bone (Trabecular / Aberration) when LFM-A13 is administered to GST-RANKL-treated mice.
  • Fig. 73 shows the number of osteoclasts (Osteoclast number / bone perimeter) when LFM-A13 is administered to GST-RANKL-treated mice.
  • Fig. 74 shows the absorption surface (Eroded surface / bone surf ace) when LFM-A13 is administered to GST-RANKL-treated mice [S3.
  • FIG. 75 shows the blood Ca concentration when LFM-A13 was administered to GST-RANKL-treated mice.
  • FIG. 76 shows the serum Ca, ALP and TRAP-5b concentrations when raloxifone was administered to GST-RANKL-treated mice from which the ovaries had been removed.
  • FIG. 77 shows the total bone density when raloxifene was administered to GST-RANKL-treated mice from which the ovaries had been removed.
  • FIG. 78 shows the cortical bone mineral density when raloxifene is administered to GST-RANKL-treated mice from which the ovaries have been removed.
  • FIG. 79 shows the cortical bone thickness when raloxifene was administered to GST-RANKL-treated mice from which the ovaries had been removed.
  • FIG. 80 is a photograph showing the results of image analysis using micro CT when raloxifene was administered to GST-RANKL-treated mice from which the ovaries had been removed.
  • FIG. 81 shows the blood Ca, ALP and TRAP_5b concentrations when raloxifene was administered to GST-RANKL-treated mice from which the ovaries had been removed.
  • Figure 8-2 shows that raloxifene was administered to GST-RANKL-treated mice from which the ovaries were removed. It is a figure which shows cancellous bone density in the case.
  • FIG. 83 shows the total bone density when PTH was administered to GST-RANKL-treated mice.
  • FIG. 84 shows the cortical bone density when PTH was administered to GST-RANKL-treated mice.
  • FIG. 85 is a graph showing the amount of cortical bone mineral when GTH-RANKL-administered mice are administered PTH.
  • FIG. 86 shows the cortical bone thickness when PTH was administered to GST-RANKL-treated mice.
  • FIG. 87 is a graph showing cortical bone density in the diaphysis when PTH is administered to GST-RANKL-treated mice.
  • FIG. 88 is a photograph showing the results of image analysis using micro CT when PTH was administered to GST-RANKL-treated mice.
  • FIG. 89 shows the serum Ca, ALP, and TRAP_5b concentrations when GST-RANKL was administered to 12-week-old mice.
  • FIG. 90 shows the total bone density when GST-RANKL was administered to 12-week-old mice.
  • FIG. 91 is a photograph showing the results of image analysis using micro CT when GST-RANKL was administered to 12-week-old mice.
  • the osteopenia animal model of the present invention can be produced by administering a soluble RANKL or a fusion protein of soluble RANKL and an epitope tag to a non-human animal,
  • RANKL Receptor activator of NF- ⁇ B l igand
  • RANK NF- ⁇ ⁇ ⁇ receptor activator
  • a domain consisting of amino acids 1 to 48), a type 2 transmembrane protein with a transmembrane domain and an extracellular domain
  • RANKL From the 152th amino acid from the N-terminal in the extracellular domain The domain is a homology domain of the TNF ligand family. Soluble RANKL does not contain an intracellular domain. RANKL has functions such as osteoclast differentiation activation, lymphocyte differentiation, dendritic cell activation, mammary epithelial cell differentiation and lymph node formation.
  • Soluble RANKL includes soluble RANKL derivatives and soluble RANKL analogs.
  • the animal species from which soluble RANKL is derived is not limited, and RANKL derived from any animal species such as human-derived RANKL, mouse-derived RANKL, rat-derived RANKL and the like can be used.
  • the full-length base sequence and amino acid sequence of RANKL derived from human are shown in SEQ ID NOs: 1 and 2, respectively.
  • the soluble RANKL derivative or the soluble RANKL analog includes a protein having a partial RANKL amino acid sequence, such as a RANKL tranchete, and having a RANKL activity.
  • the soluble RANKL derivative preferably comprises a TNF ligand family homology domain starting from amino acid 152 in the amino acid sequence of SEQ ID NO: 2.
  • Examples of the soluble RANKL derivative include a protein consisting of the 127th amino acid to the 317th amino acid sequence, a protein consisting of the 140th amino acid to the 317th amino acid sequence, or the 159th amino acid to the Examples include a protein comprising the 317th amino acid sequence.
  • RAMLs derived from animal species other than human RANKL which are composed of amino acid sequences corresponding to the partial amino acid sequences of human RANKL.
  • the soluble RANKL derivative or the soluble RANKL analog includes an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 2, and A protein having activity, or an amino acid sequence of a protein consisting of a partial sequence of the amino acid sequence of RANKL, including an amino acid sequence in which one or several amino acids have been deleted, substituted or added, and the activity of RANKL
  • 1 or several is 1 to 9, preferably 1 to 5, and more preferably 1 or 2.
  • Examples of the epitope tag that forms a fusion protein with soluble RANKL include a protein or peptide having a sequence that can bind to a specific compound such as an antibody.
  • an epitope tag is used for purification of a fusion protein.
  • an epitope tag has a function of enhancing the activity of soluble RANKL.
  • Epitope tags include glutathione-S-transferase (GST), 2-12, preferably 4 or more, more preferably 4-7, more preferably 5 or 6 histidine polyhistidine, FLAG Tag (amino acid sequence DYKDDDDK; SEQ ID NO: 3), Myc tag (amino acid sequence EQKLISEEDL; SEQ ID NO: 4), V5 tag (amino acid sequence GKPIPNPLLGLDST; SEQ ID NO: 5), Xpress tag, HQ tag (amino acid sequence HQHQHQ; SEQ ID NO: 6), HA tag (amino acid sequence YPYDVPDYA; SEQ ID NO: 7), AU1 tag (amino acid sequence DTYRYI; SEQ ID NO: 8), T7 tag (amino acid sequence MASMTGGQQMG; SEQ ID NO: 9), VSV-G tag (amino) Acid sequence YTDIEMNRLGK; SEQ ID NO: 10), DDDDK tag (amino
  • a gene encoding RANKL and a gene encoding an epitope tag can be performed by conventional gene recombination techniques. In this case, it can be carried out by introducing an appropriate restriction site. Make sure that no stop codon appears between the genes to be fused.
  • the distance between the genes to be fused is not limited, and a linker may be included between them. Also, match the open reading frames of the two genes.
  • the above epitope tag may be fused to the N-terminal side of the amino acid sequence of RANKL, or may be fused to the C-terminal side.
  • SEQ ID NO: 2 1 And 22 shows the base sequence of DNA encoding the protein in which GST is fused to the protein comprising the amino acid sequence from the 140th amino acid to the 317th amino acid sequence in the amino acid sequence of RANKL, and the amino acid sequence of the protein.
  • SEQ ID NOS: 23 and 24 include a nucleotide sequence of DNA encoding a protein in which GST is fused to a protein comprising the 159th amino acid sequence to the 317th amino acid sequence in the RANKL amino acid sequence, and The amino acid sequence of the protein is shown.
  • the fusion gene thus prepared can be incorporated into an appropriate expression vector available for expression, and the target fusion protein can be recovered and purified. In this case, it can also be expressed in a cell-free system (cell-free system).
  • Any vector can be used as long as it can replicate in a host cell such as a plasmid, phage, or virus.
  • the vector contains a replication origin, a selectable marker, and a promoter, and may contain an enhancer, a transcription termination sequence (terminator), a ribosome binding site, a polyaduration signal, and the like as necessary.
  • a vector in which a gene encoding an epitope tag such as glutathione-S-transferase is previously incorporated can also be used.
  • the vector preferably contains a polylinker with various restriction sites within it, or preferably contains a single restriction site.
  • a specific uniform site in a vector can be cleaved with a specific restriction enzyme, and DNA can be inserted into the cleaved site.
  • An expression vector containing the fusion gene can be used for transformation of an appropriate host cell to cause the host cell to express and produce a fusion protein encoding the fusion gene.
  • host cells include bacterial cells such as E. coli, Streptomyces, Bacillus subtilis, fungal cells, baker's yeast, yeast cells, insect cells, and mammalian cells.
  • the transformation can be performed by a known method such as calcium chloride, calcium phosphate, DEAE-dextran mediated transformation, electroporation, ribophatation and the like.
  • the obtained recombinant fusion protein can be separated and purified by various separation and purification methods. For example, ammonium sulfate precipitation, gel filtration, ion exchange chromatography, affinity chromatography, etc. alone or as appropriate Can be used in combination.
  • the expression product when expressed as a fusion protein with GST or the like, it can be purified using the properties of the protein or peptide fused with the target protein.
  • GST when expressed as a fusion protein with GST, GST has affinity for dartathione, so it must be efficiently purified by affinity chromatography using a column in which daltathione is bound to a carrier. Can do.
  • the protein having the histidine tag binds to the chelate column and can be purified using the chelate column.
  • any epitope tag when used, it can be purified by affinity chromatography using an antibody that recognizes the epitope associated with the epitope tag.
  • Animal species to which soluble RANKL or fusion protein of soluble RANKL and Epitope tag is administered are not limited, and mice, rats, guinea pigs, hamsters, horses, horses, hidges, pigs, monkeys, inu, cats, etc. All mammals other than humans are targeted, and osteopenia model animals can be produced in these animals. Both males and females can be used to create osteopenia model animals. Further, the age of the animal used for producing the osteopenia model animal is not limited, and the osteopenia model animal of the present invention can be produced using an elderly animal. For example, when a mouse is used as an animal, a model animal for osteopenia can be produced using a mouse 1 to 5 weeks old, preferably 4 to 12 weeks old.
  • the dose of the soluble RANKL or the fusion protein of soluble RANKL and epotope tag to the animal is not limited and can be appropriately determined depending on the animal species. For example, 10 nmol to 5000 nmol per animal, preferably 50 nmol to 1000 nmol, or 100 ug / kg to 50 mg / kg, preferably 500 g / kg to 5 mg / kg per body weight of the animal to be administered.
  • the route of administration is not limited, and may be administered by intravenous injection, intraperitoneal injection, subcutaneous injection, intramuscular injection, suppository, eye drops, calvarial administration, and the like.
  • the number of administrations is not limited, and it may be a single administration or a plurality of continuous administrations of 2 to h several times.
  • the administration interval is not limited, and for example, administration may be performed for several days every day.
  • the degree of bone loss in the model animal can be adjusted, for example, when a single dose is given,
  • a soluble RANKL or a fusion protein of soluble RANKL and an epitope tag When a soluble RANKL or a fusion protein of soluble RANKL and an epitope tag is administered to an animal, it directly differentiates and activates osteoclasts in the animal body. This makes it possible to produce bone loss model animals more quickly.
  • the osteopenia model animal of the present invention has the following characteristics.
  • a normal animal refers to an animal that does not suffer from a bone metabolic disease and has not been administered a soluble RANKL or a fusion protein of soluble RANKL and an epitope tag.
  • animals that have been administered PBS or the like can be used as normal animals when creating a model animal for dose reduction.
  • Bone resorption marker concentration in body fluid (level) Force S temporarily increased compared to normal animals of the same type (normal individuals). Although it depends on the dose of soluble RANKL or fusion protein of soluble RANKL and epitopog, it is, for example, 1.1 times or more, preferably 1.2 times or more, more preferably 1.3 times that of normal animals. More than double, particularly preferably 1.4 or more.
  • Serum bone resorption markers include serum calcium, serum collagen degradation products (CTx ⁇ type 1 collagen cross-linked C-telopeptide ⁇ , NTx ⁇ type 1 collagen bridge N-telopeptide ⁇ , PICP ⁇ type I procollagen- C-propeptide ⁇ , or PINP
  • ⁇ Type I procollagen-N-peptide ⁇ serum tartrate-resistant acid phosphatase (TRAP-5 b), etc.
  • urinary bone resorption markers include urinary CTx or NTx, urinary hydroxyproline And urinary pyridinoline, deoxypyridinoline and the like.
  • hydroxylysine glycosides (in serum and urine), bone shaloprotein (in serum) and the like can be mentioned. These markers are elevated when osteoclasts proliferate and promote activity. These markers are usually used as bone metabolism markers in osteoporotic bone metabolic diseases. These markers can be measured by a colorimetric method or an immunoassay using a specific antibody.
  • Serum bone formation marker concentration does not vary from normal animals.
  • Serum osteocalcin, as serum bone formation marker Examples include alkaline phosphatase (especially bone-specific alkaline phosphatase). These markers are osteoblast-derived proteins that increase in concentration when osteoblasts proliferate. These markers are usually used as bone metabolic markers in osteoporotic bone metabolic diseases. These markers can be measured by an immunoassay using a colorimetric method or a specific antibody. Soluble RANKL or fusion protein of soluble RANKL and Epitope tag do not act directly on osteoblasts, but indirectly due to the force-pulling phenomenon of bone resorption and osteogenesis. One concentration may vary. The presence or absence of variation varies depending on the dose of soluble RANKL or the fusion protein of soluble RANKL and an epitope tag, the number of doses, and the time course after administration.
  • the bone resorption marker (1) and the bone formation marker (2) are collectively referred to as a bone metabolism marker.
  • Bone density decreases compared to normal animals.
  • Bone density is a numerical representation of the density of mineral components such as calcium in bone.
  • Bone density includes cancellous bone density, total bone density, and cortical bone density. In the present invention, when simply referred to as bone density, it can be referred to as cancellous bone density. It can be measured by ' ⁇ density, pQCT (peripheral quantitative computerized tomography), DXA (Dual Energy X-Ray Absorptiometry), etc.
  • the growth plate when the bone density of the femur or tibia is measured by pQCT, the growth plate
  • the bone density is 1% or more, 2% or more, 3% or more, 5% or more, preferably 7.5% or more, more preferably 10% or more, and most preferably 20%. More than that.
  • the total bone density is lower than that of normal animals, and when the bone density of the femur or tibia is measured by pQCT, it varies depending on the distance from the growth plate.
  • the total bone density is 1% or more, 2% or more, 3% or more, 5% or more, preferably 7.5% or more, more preferably 10% or more, and most preferably 20% or more.
  • Cortical bone density is also lower than that of normal animals.
  • the bone density of the femur or tibia is measured by PQCT, it varies depending on the distance from the growth plate. 2% or more, 3% or more, 5% or more, preferably 7.5% or more, more preferably 10% or more, and most preferably 20% or more.
  • Bone mineral content is the amount of bone mineral (hydroxyapatite) and reflects bone density. Bone mineral content can be measured by pQCT.
  • the cortical bone mineral content of the femur or tibia is measured by pQCT, depending on the distance from the growth plate, for example, the cortical bone mineral content is 5% or more, preferably 7.5% or more, more preferably 10%. In addition, it is preferably reduced by 15% or more, and most preferably by 20% or more.
  • cortical bone thickness is reduced compared to normal animals.
  • Cortical bone thickness can be measured by pQCT.
  • the cortical bone thickness of the femur or tibia is measured by pQCT, depending on the distance from the growth plate, for example, the cortical bone thickness is 5% or more, preferably 7.5% or more, more preferably 10% or more, More preferably, it decreases by 15% or more, and most preferably by 20% or more.
  • Unit bone mass refers to the area of the entire trabecular bone that occupies the entire tissue area in the pathological section.
  • the trabecular bone is the part of the epiphysial cancellous bone that appears to be finely loosened.
  • the unit bone mass and the number of trabecular bone depend on the dose of soluble RANKL or fusion protein of soluble RANKL and Epitope tag, but compared to normal animals, For example, it is reduced by 10% or more, preferably 20% or more, more preferably 30% or more, further preferably 40% or more, and particularly preferably 50% or more.
  • the number of osteoclasts is increased compared to normal animals.
  • the number of osteoclasts can be measured by bone morphometry according to a conventional method.
  • the number of osteoclasts depends on the dose of soluble RANKL or the fusion protein of soluble RANKL and epitope tag, but for example 20% or more, preferably 30% or more, more preferably 40% compared to normal animals. % Or more, more preferably 50% or more, particularly preferably 60% or more.
  • Osteoblast surface / bone surface (0b. S / BS) is significantly increased compared to normal animals.
  • the osteoblast surface is the attachment of osteoblasts across the trabecular surface. This is the percentage (%) of the surface.
  • the osteoblast surface depends on the dose of soluble RANKL or fusion protein of soluble RANKL and epitope tag, for example, 20% or more, preferably 30% or more, more preferably 40% compared to normal animals. % Or more, more preferably 50% or more, particularly preferably 60% or more.
  • the dose of the fusion protein of soluble RANKL and Epitope tag is increased, for example, when administered to mice at 2 mg / kg, it takes time until the coupling phenomenon between bone resorption and bone formation is observed. The appearance of changes in the blast surface may be delayed. Therefore, depending on the time of observation of the osteoblast surface, an increase in the osteoblast surface may not be observed.
  • Osteoid refers to the state prior to calcification to become a bone matrix
  • resorption surface refers to the proportion of the surface that has been eroded by the erosion of the entire trabecular surface.
  • the osteoclast surface refers to the ratio of the surface to which osteoclasts adhere on the entire trabecular surface.
  • Osteoid thickness, resorption surface, and osteoclast cell surface are, for example, 20% or more, preferably 30 compared to normal animals, depending on the dose of soluble RANKL or fusion protein of soluble RANKL and Epitope tag. % Or more, more preferably 40% or more, further preferably 50% or more, particularly preferably 60% or more.
  • the bone shape can be measured by micro CT or the like.
  • a model animal for osteopenia can be produced by administering soluble RANKL or a fusion protein of soluble RANKL and an epitope tag to the animal, and further removing the ovary.
  • the ovaries are preferably removed after administration of RANKL.
  • the present invention includes a model animal for osteopenia that can be produced by administering soluble RANKL or a fusion protein of soluble RANKL and an epitope tag, and further extracting the ovaries.
  • the osteopenia model animal can be used as a human disease model animal having abnormalities in bone metabolism after menopause.
  • bone loss, bone density and unit bone mass observed by micro-CT directly reflecting bone loss are particularly characteristic, followed by osteoclast number / An increase in bone perimeter) and a decrease in the number of trabeculae are characteristic.
  • a decrease in cortical bone mineral content is also observed.
  • the above characteristics become more prominent as the amount of GST-RANKL administered increases, and the degree of characteristics depends on the dosage.
  • the degree of the above characteristics indicates the severity of osteopenia, and the osteopenia animal model of the present invention can control the severity by changing the amount of GST-RANKL to be administered. .
  • a small amount of GST-RANKL should be administered when trying to obtain a mild bone loss model animal, and a large amount of GST when trying to obtain a severe bone loss model animal.
  • -RANKL should be administered.
  • a severe bone loss model animal is a model animal in which the above-mentioned characteristics are strongly manifested.
  • bone resorption marker concentration (level) in body fluid force Normal animal of the same type Is a model animal that has risen relatively relatively temporarily compared to normal animals, for example, a model animal that has increased by a factor of 1.2 or more, preferably 1.3 or more times, more preferably 1.4 or more times that of normal animals .
  • it is a model animal whose bone density is relatively low compared to normal animals.
  • the bone density of the femur or tibia is measured by pQCT, it varies depending on the distance from the growth plate. %, Preferably 10% or more, more preferably 20% or more.
  • S / Bs; osteoclast surface / Done surface is a model animal with a relatively large increase compared to normal animals, for example, 20% or more, preferably 30% or more, more preferably 40% or more, more preferably 50% or more compared to normal animals. Particularly preferred is a model animal that is elevated by 60% or more.
  • an animal in which bone density and / or unit bone mass is decreased as compared with a normal animal, and an increase in the number of osteoclasts and Z or Examples include animals in which the number of trabeculae is reduced compared to normal animals. Furthermore, there are animals in which a decrease in trabecular width is observed compared to normal animals, and animals in which increases in osteoid thickness, resorption surface, osteoclast surface, etc. are observed compared to normal animals.
  • the bone resorption marker (1) varies after administration of soluble RANKL or soluble RANKL and epitope-tagged fusion protein, but gradually increases after the creation of osteopenia model animals Eventually, it will return to the normal value.
  • osteopenia animal model of the present invention when evaluating or screening a drug related to bone metabolism using the osteopenia animal model of the present invention, when the bone mass is decreasing according to the purpose, when the bone mass is most reduced, Alternatively, use a model animal at an appropriate time when the bone mass once decreased is increasing again. Therefore, an animal whose bone mass is decreasing after administration of soluble RANKL or a fusion protein of soluble RANKL and an epitope tag, regardless of the strength of the above-described characteristics, The characteristics of Are included in the osteopenia animal model of the present invention.
  • the osteopenia animal model of the present invention is produced by a simple mechanism not involving other substances as described above. Therefore, within 1 week, preferably within 3 days (72 hours or less), more preferably within 2 days after administration of soluble RA dish L or soluble RANKL and epitopic tag fusion protein to normal animals ( Within 50 hours), more preferably within 24 hours, it will have the above characteristics and a bone loss model animal will be created.
  • Osteoporosis hypercalcemia, Paget's disease, renal osteodystrophy, kuru disease / osteomalacia, rheumatoid arthritis, etc. It can be used as a disease model animal. Specifically, it can be used as follows.
  • the bone loss model animal of the present invention can be used for evaluation of a bone resorption inhibitor or screening of a new bone resorption inhibitor (bone resorption inhibitor). In the present invention, these are sometimes referred to as evaluation of a bone resorption inhibitor or a bone resorption inhibitor candidate substance.
  • Known bone resorption inhibitors include risedronate, etidronate, bisphosphonates such as alendronate, canorecitonin, Cathepsin K inhibitor, and proton pump inhibitor. Bone resorption inhibitors work when bone mass is decreasing. Therefore, it is desirable to evaluate at the time when bone mass is decreased after administration of soluble RANKL or fusion protein of soluble RANKL and epotope tag.
  • the bone resorption inhibitor or the bone resorption inhibitor candidate substance is administered to the osteopenia model animal of the present invention, and the bone resorption inhibitor or the bone resorption inhibitor depends on whether the bone loss is suppressed or not.
  • the candidate substance may be administered before administration of soluble RANKL or a fusion protein of soluble RANKL and an epitope tag, for example, 1 to 3 days, preferably 1 day before. In other words, it is only necessary to use an index as to whether the decrease in bone mass or the increase in bone mass in the osteopenia model animal is reduced.
  • the increase in bone mass was achieved by reducing the bone resorption marker level in the bone loss model animal, increasing bone density, increasing unit bone mass, increasing trabecular number, trabecular width, osteoid Judgment can be made using at least one selected from the group consisting of thickness, increase in resorption surface, decrease in the number of osteoclasts, increase in osteoblast surface, and increase in bone mass observed by CT.
  • the model animal of the present invention By using it, the drug can be evaluated within a few days, for example, about 3 to 4 days.
  • the osteopenia model animal of the present invention from which the ovaries have been removed can be used for drug evaluation of hormones such as estrogen androgen or hormone receptor modulators or screening of new hormone receptor modulators.
  • hormones such as estrogen androgen or hormone receptor modulators or screening of new hormone receptor modulators.
  • a selective estrogen receptor modulator which is a hormone receptor modulator, is one of the bone formation and absorption inhibitors, and has the effect of suppressing bone resorption through the action of the hormone estrogen. Evaluation with normal wild animals with endogenous estrogen is difficult.
  • By extracting the ovary (0VX) of the osteopenia animal model of the present invention it is possible to perform drug evaluation of a selective estrogen receptor modulator much faster than the evaluation using a model animal that simply removes the ovary. .
  • osteopenia animal model of the present invention can be used for evaluation of osteogenesis promoters or screening for new osteogenesis promoters. In the present invention, these may be referred to as evaluation of osteogenesis promoter or osteogenesis promoter candidate substance. Bone formation promoters are effective when bone mass is once reduced and restored. Therefore, soluble type RANKL or soluble type
  • the osteogenesis promoter or osteogenesis promoter candidate substance is administered to the osteopenia animal model of the present invention, and the osteogenesis promoter or The effect of the osteogenesis promoter candidate substance can be evaluated.
  • the candidate substance is preferably administered after administration of soluble RANKL or a fusion protein of soluble RANKL and an epitope tag to an animal and a decrease in bone mass is observed. The evaluation may be based on whether or not the decreased bone mass increases in the osteopenia model animal.
  • the increase in bone mass can be achieved by increasing the bone formation marker level in the body, increasing bone density, increasing unit bone mass, trabecular number, trabecular width, Judgment can be made using at least one selected from the group consisting of an increase in thickness, a decrease in the number of osteoclasts and resorption surface, an increase in the osteoblast surface, and an increase in bone mass observed by CT.
  • osteogenesis promoters include PTH (parathyroid hormone).
  • the above bone resorption inhibitor and osteogenesis promoter can be used as a therapeutic agent for osteoporosis and osteopenia.
  • the osteopenia animal model of the present invention can be used as an experimental animal for bone metabolism research. That is, in the osteopenia animal model of the present invention, bone formation (coupling) accompanying bone resorption occurs and can be used for basic research such as elucidation of the mechanism for regulating bone remodeling. It can also be used to search for coupling factors that couple bone resorption and bone formation. It can also be used to evaluate drugs that inhibit the RANKL signal and to study mechanism including osteoclast differentiation. Examples of drugs that suppress the RANKL signal include LFM-A13, which is an inhibitor of the Tec kinase family.
  • osteopenia animal model of the present invention since bone loss is observed in only about 1 to 2 days after administration of soluble RANKL or a fusion protein of soluble RANKL and an epitope tag, universities, etc. Can be used to practice bone loss in vivo.
  • a bone loss model animal is sent to a research institution such as a university or a pharmaceutical manufacturer to provide the boner of the present invention to the researcher. It is possible to provide a model animal for dose reduction.
  • the cDNA encoding human RANKL residues 140-317 was ligated with Sal I and Not I sites by PCR, and pGEX-4T-2 (GE healthcare) was used with these endonucleases.
  • Genclo Accession Number U13854 was cloned downstream of Glutathione S-transferase.
  • the cells After induction of protein expression by IPTG (final concentration: 0.5 mM) in BL21 (DE3) Escherischia coli (invitrogen), the cells are extracted into buffer — (50 mM Tris-HCl, pH 8.0, lOO mM NaCl, The suspension was suspended in 1 mM EDTA, 1 mM DTT, l% (v / v) TritonX-100) and crushed using a sonicator at 4 ° C. After centrifugation at 18000 X g for 15 min, the supernatant was recovered and applied to a Glutathione Sepharose column.
  • buffer — 50 mM Tris-HCl, pH 8.0, lOO mM NaCl
  • the suspension was suspended in 1 mM EDTA, 1 mM DTT, l% (v / v) TritonX-100) and crushed using a sonicator at 4 ° C. After centrifugation at 18000
  • the femur, tibia, cerebrum, lung, heart, liver, thymus, spleen, kidney, and skin were collected, and the cerebrum, lung, heart, liver, thymus, spleen, kidney, and skin were stained with HE. Thus, spontaneous lesions were observed.
  • the proximal end of the distal growth plate is 0.6 jobs, 0.8 mm, 1.
  • Bone density was measured at the position of 0 mm cancellous bone, and a section was prepared for the tibia and bone morphology was measured. Each measured value was compared with the control mouth group by Dunnett's method and tested. Bone resorption parameters and bone formation parameters
  • GST-RANKL As a result of measuring bone mineral density of the femur by PQCT, at a position 0.6 mm proximal to the growth plate, GST-RANKL was administered at a high dose of 10%, 0.8 at 23%, and 20 at 20% decrease. It was observed. Anova; Dunnett's method was used to test for significant differences. When GST-RANKL was administered at a high dose, p was 0.01 at all positions measured. In addition, no significant difference was obtained when GST RANKL was administered at a low dose (Fig. 6).
  • the unit bone mass and trabecular number decreased to about 50% by the high dose of GST-RANKL, and the number of osteoclasts increased. In addition, no decrease was observed at low doses (Figs. 78 and 9).
  • the collected cerebrum, lung, heart, liver, thymus, spleen, kidney and skin were stained with HE, and no abnormal findings or spontaneous lesions were observed in all groups.
  • GST-RANKL was prepared in the same manner as in Example 1.
  • GST-RANKL213 nmol, 426 nmol, and 852 nmol were intraperitoneally administered every 24 hours three times to 10 7-week-old female C57BL / 6N mice, and whole blood was collected 1.5 hours after the third administration. PBS was administered in the same manner as a comparison target.
  • GST-RANKL 213 nmol, 426 nmol and 852 nmol correspond to 10 20 g and 40 g, respectively.
  • the femur and tibia were collected from the mouse, and for the femur, the bone density of the cancellous bone of 0.6, 0.8, and 1.0 mm was measured proximally from the growth plate using pQCT. went.
  • GST-RANKL administration increased serum Ca, CTx, and TRAP-5b in a dose-dependent manner (Figs. 12, 13, and 14 respectively).
  • the increase in calcium was significantly increased to p 0.05 at 213 nmol administration, and more pronounced at 0.01 at 426 nmol and 852 nmol administration. An increase was seen.
  • CTx and TRAP-5b no significant increase was observed at 213 nmol, but a marked increase was observed at 0.01 and 426 nmol and 852 nmol, respectively.
  • the conventional method required several weeks for preparation of model mice and required special techniques such as ovariectomy (0VX).
  • ovariectomy a simple method of intraperitoneal administration was used.
  • Model mice can be made in time.
  • there was no technology for creating model mice that could easily change the degree of osteoporosis and bone loss but by changing the dose of GST-RANKL, it was possible to increase bone resorption parameters and decrease bone mass.
  • a model mouse can be created that can be freely adjusted to match the degree of osteoporosis and osteopenia.
  • GST-RANKL was prepared in the same manner as in Example 1.
  • GST-RANKL426 nmol was administered intraperitoneally three times every 24 hours to 5 to 6 females of 7-week-old C57BL / 6N mice.
  • the osteoporosis drug (risedronate) was administered 0.01 mg from 3 days before GST-RANKL administration.
  • the drug was administered subcutaneously at / kg and continued every 24 hours until the end of the experiment.
  • Serum and femur and tibia were collected 5 hours after the third administration of GST-RANKL.
  • Serum bone resorption parameters calcium, CTx, TRAP_5b
  • bone formation parameters
  • TRAP-5b a bone resorption marker
  • CTx was 1.4-fold.
  • a significant increase was observed (P 0. 05).
  • GST-RANKL and risedronate combined administration group TRAP-5b and CTx decreased by about 30% compared to the control mouth group. ( Figures 17 and 18).
  • the decrease in the GST_RANKL and risedronate combination group is considered to be due to the risedronate suppressing the osteoclasts originally present in the mouse.
  • Al force phosphatase and osteocalcin which are bone formation markers, were not changed in the GST-RANKL administration group, GST-RANKL, and risedronate combination administration group compared to the control mouth group ( Figures 19 and 20). .
  • the bone density was significantly decreased in the GST-RANKL-treated group compared to the control group, and 20% at any position of 0.6 thigh, 0.8 mm, and 1.0 mm proximal to the growth plate. A significant decrease was observed (p 0. Q1).
  • the GST-RANKL and risedronate combination group showed bone mineral density values similar to those of the control group.
  • Fig. 21 shows the bone density of the femur
  • Fig. 22 shows the bone morphology measured by micro CT. From the above results, it can be used for the evaluation of new therapeutic agents by administering osteoporosis and osteopenia treatment drug to this model mouse from the above results, and in the osteopenia model mouse using conventional 0VX etc. Compared to drug evaluation, it will be possible to shorten the time of several weeks and significantly reduce the amount of drug used.
  • Example 4 Production of osteopenia model mouse using soluble RANKL
  • 57 nmol and 426 nmol of soluble RANKL were intraperitoneally administered to 10 females of 7-week-old C57BL / 6N mice every 24 hours three times, and serum 1.5 hours after the third administration At the same time, the femur was collected. Serum was measured for bone resorption markers and bone formation markers, and femur was measured for bone density at 0.6, 0.8, and 1.0 mm proximal to the growth plate by PQCT. Bone resorption markers, blood calcium and CTx, were significantly increased by about 1.4 and 1.5 times, respectively, with high doses of 426 nmol ( Figures 2 and 2), and TRAP-5b was significant.
  • osteopenia model mouse can be produced specifically for GST-RANKL. This technology can be applied to all soluble RANKL and can be used for drug evaluation as well as GST-RANKL.
  • mice Seven-week-old female C57BL / 6N mice were administered GST-RANKL at 2 mg / kg three times every 24 hours, then dissected, and the tibia was stained with toluidine blue, and morphometry was performed.
  • the control group was similarly administered solvent (PBS).
  • GST-RANKL intraperitoneally administered tibia bone morphology was measured and compared to the control mouth group, the unit bone mass (BV / TV) was about 30% (P 0.03), trabecular width (Tb. Th) decreased by about 10% (P-0.03), and the number of trabeculae (Tb. N) decreased by about 20% (p-0.05) (Figs. 29-31).
  • the osteoid thickness (0.
  • Th is about 1.2 times (p ⁇ 0.04)
  • the resorption surface (ES / BS) is about 1.8 times (p ⁇ 0.001)
  • the number of osteoclasts (N Oc / B. Pm) increased approximately 1.9 times (p ⁇ 0. 001)
  • osteoclast surface (Oc. S / BS) increased approximately L 8 times (p> 0.001) (Fig. 3 2-3 5).
  • GST-RANKL administration significantly increased osteoid thickness, but no increase in osteoblast surface was observed.
  • Significant in the resorption system items such as resorption surface, number of osteoclasts, and osteoclast surface. Since the increase was observed, it was found that GST-RANKL did not act on osteoblasts but caused bone loss by directly differentiating and activating osteoclasts. That is, the mechanism of GST-RANKL-administered bone loss was not bone formation, but increased bone resorption.
  • the number of doses, and the time course after administration bone formation may be promoted by the coupling phenomenon, and an increase in the osteoblast surface may be observed.
  • femur and serum were collected, and TRAP-5b, calcium (Ca), Al force phosphatase (ALP) was measured, and the femur was analyzed for bone density by pQCT and image analysis using micro CT.
  • TRAP-5b significantly increased approximately 2-fold by administration of RANKL (p 0.01).
  • the elevated TRAP-5b concentration was about 30% (p. 01), 50% (p. 0.01), 70% (p. ⁇ 0. 01) and decreased in a dose-dependent manner.
  • ALP was significantly decreased (p ⁇ 0.01) compared to the RANKL single administration group by risedronate 30 w.g / kg administration (Fig. 37).
  • the femoral bone was measured by pQCT at a position of 0.6, 0.8, 1.0 mm proximal to the growth plate, and compared with the PBS-administered group, the RANKL-administered group showed 27% (p. ⁇ 0.
  • mice 7-week-old female C57BL / 6N mice were dosed with etidronate at 3, 30 mg / kg, alendronate at 3, 30, 300 ⁇ g / kg, risedronate at 1, 10, 100 ⁇ g / kg. It was administered subcutaneously every 24 hours from the day before RANKL administration until the end of the experiment. GST-RANKL was administered intraperitoneally 3 times every 24 hours at 1 mg / kg. After the third GST-RANKL administration, the femur, tibia, and serum were collected 5 hours later, and TRAP_5b, calcium (Ca), and alkaliphosphatase (ALP) in the serum were measured. The femur was examined by pQCT. Density measurement and image analysis were performed using micro CT.
  • TRAP-5b increased by about 40% with RANKL administration, but no significant difference was obtained.
  • Alendronate administration significantly suppressed the increase in TRAP-5b at a dose of 300 g / kg (p 0.01).
  • risedronate administration was 1, 10, and 100 ⁇ , respectively.
  • W was significantly suppressed at a dose of 200 g / kg (p 0.05, p 0.01, p ⁇ 0.01) ( Figure 40).
  • alendronate and risedronate decreased about 20 to 30% (p 0.01) compared to the RANKL group, and this decrease was dose-dependent (Figure 40).
  • the femur was measured by PQCT at a bone density of 0.6, 0.8 and 1.0 mm proximal to the growth plate.
  • mice Seven-week-old female C57BL / 6N mice were bred for 25 days, and GST-RANKL was intraperitoneally administered twice every 24 hours at 1 mg / kg. Ovariectomy was performed 24 hours after the second administration, and femur, tibia, and serum were collected 24 hours after ovariectomy. These samples were compared to samples from a group that was raised 4 weeks after ovariectomy. PBS was administered as a comparative control for GST-RANKL, and sham surgery was performed as a comparative control for ovariectomy. (Sham) was done.
  • Bone metabolism markers were TRAP-5b, calcium (Ca), and alkaline phosphatase (ALP) in blood. Femur was measured for bone density by pQCT and image analysis by micro CT. The day when 0VX or Sham operation was performed after the start of breeding was expressed as (day X).
  • TRAP-5b increased about 1.8 times in all GST-RANKL administration groups compared with PBS administration + Sham (day 27) group, but no significant difference was observed.
  • Ca is about 11 ° / in the OVX (dayO) group compared to Sham (dayO). However, there was no change in all the 0VX treatment groups.
  • ALP there was no change in the Sham (dayO) group and the OVX (dayO) group, compared with the PBS-treated Sham (day27) group, about 40% (p ⁇ 0.p.) In the GST-RANKL-treated OVX (day27) group. 01) was observed (Fig. 4 3).
  • the bone density of the femur was measured at 0.6, 0.8, and 1.0 mm proximal to the growth plate.
  • the decrease was about 16% (p ⁇ 0. 01) and about 12% (p ⁇ 0. 05).
  • the GST-RAML-administered 0VX (day 27) group had a significant decrease of about 4%, about 13%, and about 15% (p 0.01), compared with the PBS-treated Sham (day 27) group. There was no difference from the Sham (day 27) group administered with GST-RANKL (Fig. 44). These results were also confirmed by image analysis using micro CT (Fig. 45).
  • the osteopenia model mouse produced by GST-RANKL administration showed the same symptoms as the conventional ovariectomized mouse. Usually, it takes more than 4 weeks to produce a model mouse with osteopenia by ovariectomy, but ovariectomy after GST-RANKL administration can shorten the production period to only 72 hours. It was. Mice that have been ovariectomized after GST-RANKL administration have almost lost their estrogen one day after excision, and their hormone balance is similar to that of a model mouse model for osteopenia due to normal ovariectomy. Therefore, it was possible to easily and quickly produce a mouse having almost the same state as the model for osteopenia due to ovariectomy. this
  • the GST-RANKL / 0VX model is a bone loss model that is physiologically similar to that of postmenopausal women and can be created in a short period of 72 hours. Bone healing that can be applied to rapid drug evaluation
  • GST-RANKL was intraperitoneally administered at a dose of 1 mg / kg twice every 24 hours to 7-week-old female C57BL / 6N mice, and 24 hours after the second administration was defined as 0 week 0, 1, 4, 6, Eight-week serum and thigh bones were collected and compared with mice that received PBS in the same manner. Bone metabolism markers were measured for TRAP-5b, calcium (Ca), and alkaline phosphatase (ALP) in the blood, and the femur was analyzed for bone density by pQCT and image analysis using microphone-mouth CT. There was no significant difference in Ca in the serum, but TRAP-5b increased approximately 3 times compared to the PBS-administered group 24 hours after RANKL administration (week 0). Showed behavior. As for ALP, an increase of about 1.4-fold was observed at 0 and 1 week, and after that, behavior similar to that of the PBS-administered group was observed (Fig. 46).
  • the bone density of the femur was measured at 0.6 mm, 0.8 mm, and 1.0 mm proximal from the growth plate by PQCT.
  • osteopenia model mouse by RANKL administration is useful for comparing the recovery of bone mass. That is, it was found that it is possible to evaluate a drug that promotes bone mass increase in the period up to 6 weeks after two administrations of RANKL.
  • GST-RANKL was administered to 7-week-old female C57BL / 6N mice at 1 mg / kg twice every 24 hours, and ovariectomy was performed 24 hours after the second administration. From 24 hours after ovariectomy, parathyroid hormone (PTH) was administered subcutaneously at 160 ⁇ ug / kg for 10 consecutive days. In addition, PBS administration and sham surgery (Sham) were performed as comparative controls, and serum markers and The bone density of the femur was measured.
  • PTH parathyroid hormone
  • Serum ALP decreased about 24% in all GST-RANKL administration groups, and Ca was not changed.
  • all PTH-treated groups showed a significant increase of about 1.5 times (p 0.05) compared to the non-PTH-treated groups (Fig. 49).
  • p 0.05 the PBS-administered + Sham group
  • Bone density was measured at 0.6 mm, 0.8 thigh, and 1.0 mm proximal to the growth plate.
  • the GST-RANKL + Sham group was approximately 17% of the PBS + Sham group, respectively. There was a decrease of (p ⁇ 0. 05), 15% (p ⁇ 0. 05), 18% (p ⁇ 0.05). In the 0VX group, decreases of about 5%, 4%, and 8% were observed, respectively. However, the bone density was not sufficiently decreased 10 days after 0VX. In the GST-RANKL + 0VX group, there was no decrease in bone density compared to the PBS + Sham group.
  • Bone metabolism markers are TRAP-5b, calcium (Ca), and alkaline phosphatase (ALP) in blood. Femur is measured by bone density using pQCT and microphone mouth.
  • GCR-RANKL was intraperitoneally administered 3 times every 24 hours at 1 mg / kg to 7-week-old female ICR mice. Femur and serum were collected 1.5 hours after the third administration and compared with the PBS group. did. Bone metabolism markers were TRAP-5b, calcium (Ca), and alkaline phosphatase (ALP) in blood. Femur was measured by bone density using pQCT and image analysis using micro CT. .
  • Serum TRAP-5b, Ca, and ALP did not change compared to the control group (Fig. 58), but the bone density of the femur was measured at a distance of 3 mm proximal to the growth plate. There was a decrease in% (p ⁇ 0.02) (Fig. 59). These results were also confirmed by image analysis using micro CT (Fig. 60). From this result, it was found that the bone loss model by RANKL administration can be used not only for mice but also for other animals such as rats.
  • GST-RANKL was intraperitoneally administered to 7-week-old female C57BL / 6N mice at 1 mg / kg, and serum bone resorption and bone formation markers were measured 12, 24, and 48 hours later. Serum human RANKL concentrations were collected before and after GST-RANKL administration, 2, 4, 8, 12 2, 24, 48, 72 hours, and measured using ELISA. The bone density of the femur 24 and 48 hours after administration was also measured by pQCT.
  • the bone density of the femur was measured at a position of 0.6, 0.8, 1.0 mm proximal to the growth plate. After 24 hours, the bone density after 48 hours was 0.6.
  • GST-RANKL was administered intraperitoneally for 7 days to 7-week-old female C57BL / 6 mice at 2 rag / kg / day, and serum and femur were collected 1.5 hours after the seventh administration. Serum and femur obtained were measured for serum markers and bone density by pQCT.
  • the experiment was conducted in a total of 3 groups: 2 experimental groups administered once a day and PBS groups administered with PBS as a comparative control.
  • the collected femurs were 0.6 mm, 0.8 mm proximal to the growth plate by pQCT, 1. Bone mineral density of cancellous bone was measured at 0 mm.
  • LFM-A13 is a drug that inhibits the activity of Tec kinase by binding specifically to the ATP binding region of Btk belonging to Tec family kinase (Mahajan et al., J. Biol. Chem., 274, 9587-9599, 1999; Fer ⁇ des et al., J. Leukoc. Biol., 78, 524-532, 2005).
  • GST-RANKL was intraperitoneally administered at a dose of 1 mg / kg every 7 hours to 7-week-old C57BL / 6N female mice, and ovariectomy (0VX) or sham surgery (Sham) 24 hours after the second administration After 24 hours, raloxifene 1 mg / kg and 10 mg / kg were orally administered every 24 hours for 14 days.
  • PBS i. P.
  • ultrapure water P. O.
  • Serum opal femurs were collected 24 hours after the administration of raloxifene on day 14.
  • the collected serum was measured for bone resorption markers (Ca, TRAP-5b) and osteogenesis markers (ALP) in the blood.
  • the femur was measured proximal to the growth plate by pQCT.
  • the bone density, bone mineral content, and cortical bone thickness were measured at a distance of 1.0 mm. Image analysis was performed by micro CT.
  • the GST-RANKL-treated 0VX group showed an increasing trend compared to the PBS-treated Sham group, but decreased significantly with raloxifene l mg / kg and 10 mg / kg respectively (p 0. 05, p 0 01) (Fig. 7 6).
  • raloxifene l mg / kg and 10 mg / kg respectively p 0. 05, p 0 01
  • Fig. 7 6 bone density measurements using pQCT
  • the total bone density was significantly decreased in the PBS-administered 0VX group compared to the PBS-administered Sham group, but the GST-RANKL-administered 0VX group showed a decrease but no significant difference.
  • raloxifene was administered at 10 mg / kg, and the cortical bone thickness was 92% (p.0. 01), 123% (p ⁇ 0.01), 133% (p ⁇ 0.01) increased (Fig. 7 9).
  • cortical bone thickness was 101% at a position of 0.8 and 1.0 mm proximal to the growth plate, respectively.
  • GST-RANKL was intraperitoneally administered at a dose of 1 mg / kg twice every 24 hours to 7-week-old female C57BL / 6N mice. After 24 hours from the second administration, wrinkles were continued for 10 days every 24 hours. Subcutaneous administration was performed at 40 and 80 ⁇ g / kg, respectively. PBS was administered as a comparative control of GST-RANKL and PTH administration. Serum and femur were collected from the mice 24 hours after the administration.
  • the collected serum was measured for bone resorption markers (Ca, TRAP-5b) and osteogenesis markers (ALP) in the blood, and femur was measured at 0.6, 0.8 on the proximal side of the growth plate by pQCT.
  • the total bone density, cortical bone density, cortical bone thickness, cortical bone mineral density, and cortical bone density of the diaphysis were measured at 1.0 mm. Image analysis was performed by micro CT.
  • cortical bone density is 0.8 on the proximal side of the growth plate
  • GST-RANKL was administered intraperitoneally at 12 mg / kg every 12 hours to male and female 12-week-old C57BL / 6N mice three times every 24 hours, and the serum and femur were evaluated 1.5 hours after the third dose. Collected. The collected serum is measured for bone resorption markers (Ca, TRAP-5b) and bone formation markers (ALP) in the blood, and the femur is checked for bone density by dual energy X-ray absorptiometry (DEXA). Measurement was performed and image analysis was performed by micro CT.
  • Ca, TRAP-5b bone resorption markers
  • ALP bone formation markers
  • DEXA dual energy X-ray absorptiometry
  • Serum TRAP-5b was significantly increased in males compared to PBS following GST-RANKL administration (p 0. 05). Although Ca and ALP showed an upward trend, no significant changes were observed (Fig. 89). On the other hand, Ca and TRAP-5b in blood were significantly increased in females by GST-RANKL administration compared to PBS administration (p 0. 05, p 0. 01). However, although ALP showed an upward trend, there was no significant change ( Figure 89). As a result of bone density measurement by DEXA, the total bone density decreased by 8% (p ⁇ 0.05) and 6% (p ⁇ 0. 05) in both males and females in the GST-RANKL administration group compared to the control group. (Fig. 90).
  • a model animal for osteopenia can be rapidly produced by a simple mechanism of direct differentiation / activation promotion of osteoclasts by administration of soluble RANKL or a fusion protein of soluble RANKL and an epitope tag. Can be created.
  • drug evaluation can be performed quickly.
  • osteopenia animal model of the present invention since osteoclast differentiation / activation occurs directly by RANKL, the effect of the bone resorption inhibitor on bone destruction caused by pure osteoclast action can be evaluated.
  • a model animal for bone loss If attention is paid to the speed with which the bone mass is restored after the production, it is possible to evaluate a bone mass increasing drug.
  • the ovary which normally takes several weeks to produce, with a physiologically similar hormone balance to menopause
  • a bone loss model animal can be created more rapidly than an excised model.
  • the osteopenia model animal of the present invention can be used for screening drugs used for the treatment of bone metabolic diseases and the like, and can also be used as a research animal for bone metabolic diseases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Disclosed are: a method for producing an osteopenia model animal by administering RANKL; and an osteopenia model animal. Specifically disclosed are: a method for producing an osteopenia model animal, which comprises administering soluble RANKL or a fusion protein of soluble RANKL and an epitope tag to a non-human animal to stimulate the differentiation and activation of an osteoclast in the non-human animal; and an osteopenia model animal produced by the method.

Description

明 細 書 骨量減少症モデル動物 技術分野  Description Bone loss model animal Technical field
本発明は、 骨量が正常動物に比べて減少した骨量減少症モデル動物に関する。 背景技術  The present invention relates to an osteopenia animal model in which the bone mass is reduced as compared to a normal animal. Background art
骨破壌を司る破骨細胞は単球 ·マク口ファージ系の造血細胞に由来する大型の 多核細胞である。その前駆細胞は骨表面にお 、て骨芽細胞/間質細胞による調節を 受け破骨細胞へと分化'成熟する。破骨細胞分化因子(RANKL ; receptor activator of NF- κ Β l igand)は、 骨吸収因子によって骨芽細胞/間質細胞上に誘導される腫 瘍壊死因子(TNF; tumor necrosis factor)フアミリーに属する膜結合タンパク質 で、破骨細胞の分化'成熟に必須の因子である(非特許文献 1及び 2を参照)。 RANKL の一部は細胞外領域でメタ口プロテアーゼにより切断されて、 可溶型になること が知られている。実際に可溶型 RANKLは in vitroにおいて M-CSFとの共存下で骨 髄細胞、 脾細胞、 末梢血中の前駆細胞、 あるいはマクロファージ細胞株などのマ クロファージ系の前駆細胞から破骨細胞を誘導することが知られている。  Osteoclasts, which control bone destruction, are large multinucleated cells derived from monocyte / macrophage hematopoietic cells. The progenitor cells are differentiated and matured into osteoclasts by being regulated by osteoblasts / stromal cells on the bone surface. The osteoclast differentiation factor (RANKL) belongs to the tumor necrosis factor (TNF) family that is induced on osteoblasts / stromal cells by bone resorption factor. It is a membrane-bound protein and is an essential factor for osteoclast differentiation 'maturation (see Non-Patent Documents 1 and 2). It is known that a part of RANKL is cleaved by meta-oral protease in the extracellular region and becomes soluble. In fact, soluble RANKL induces osteoclasts from bone marrow cells, splenocytes, progenitor cells in peripheral blood, or macrophage progenitor cells such as macrophage cell lines in the presence of M-CSF in vitro. It is known to do.
一方、 これまで骨量減少症のモデルとしては卵巣摘出(非特許文献 3〜 6を参 照)、 低カルシウム食(非特許文献 7及び 8を参照)、 神経切除(非特許文献 9を参 照)、後肢懸垂による不動化(非特許文献 1 0を参照)などの方法が行われてきたが、 どれも骨量減少症を発症するまでに、 1〜 4週間程度の期間を要した。 このため に、 骨吸収抑制剤 (ビスフォスホネート、 Cathepsin K 阻害剤など) や骨形成促 進剤 {副甲状腺ホルモン(PTH)など } などの薬剤の評価に時間がかかっていた。 ま た、 上記の動物モデルは、 エス トロゲンの消失、 PTH の增加などによって間接的 に破骨細胞を活性化させるので、 薬物の評価をする際に生体内において、 どの過 程に効いているのかを証明することが容易ではなかった。  On the other hand, ovariectomy (see non-patent documents 3 to 6), low calcium diet (see non-patent documents 7 and 8), and nerve resection (see non-patent document 9) as bone loss models. ), Immobilization by hind limb suspension (see Non-Patent Document 10), etc., but all took about 1 to 4 weeks to develop bone loss. For this reason, it took time to evaluate drugs such as bone resorption inhibitors (such as bisphosphonates and Cathepsin K inhibitors) and bone formation promoters (such as parathyroid hormone (PTH)). In addition, the above animal model indirectly activates osteoclasts by estrogen loss, increased PTH, etc., so how effective is it in vivo when evaluating drugs? It was not easy to prove.
非特許文献 1 Yasudaら、 Proc Natl Acad Sci USA 95 : 3597, 1998 非特許文献 2 Laceyら、 Cell 93: 165, 1998 非特許文献 3 Thompsonら、 Bone 17 (Suppl. ): S125, 1995 Non-patent literature 1 Yasuda et al., Proc Natl Acad Sci USA 95: 3597, 1998 Non-patent literature 2 Lacey et al., Cell 93: 165, 1998 Non-Patent Document 3 Thompson et al., Bone 17 (Suppl.): S125, 1995
非特許文献 4 Wronski ら、 Calcif Tissue Int 42: 179, 1988  Non-Patent Document 4 Wronski et al., Calcif Tissue Int 42: 179, 1988
非特許文献 5 Wronski ら、 Endocrinology 123: 681, 1988  Non-Patent Document 5 Wronski et al., Endocrinology 123: 681, 1988
非特許文献 6 Wronski ら、 Calcif Tissue Int 45: 360, 1989  Non-Patent Document 6 Wronski et al., Calcif Tissue Int 45: 360, 1989
非特許文献 7 de Winterら、 Calcif Tissue Res 17 : 303, 1975 非特許文献 8 Geusensら、 J Bone Miner Res 6: 791, 1991  Non-Patent Document 7 de Winter et al., Calcif Tissue Res 17: 303, 1975 Non-Patent Document 8 Geusens et al., J Bone Miner Res 6: 791, 1991
非特許文献 9 Wakleyら、 Calcif Tissue Int 43, 383, 1988  Non-Patent Document 9 Wakley et al., Calcif Tissue Int 43, 383, 1988
非特許文献 1 0 Globusら、 J Bone Miner Res 1 : 191, 1986 発明の開示  Non-Patent Document 1 0 Globus et al., J Bone Miner Res 1: 191, 1986 Disclosure of Invention
本発明は、 RANKL を投与することにより骨量減少症モデル動物を作出する方法 及ぴ骨量減少症モデル動物の提供を目的とする。  An object of the present invention is to provide a method for producing an osteopenia animal model by administering RANKL and an osteopenia animal model.
本発明者らは、 従来の骨量減少症モデル動物の問題点を解消し得る骨量減少症 モデル動物の作出方法について鋭意検討を行った。 その結果、 可溶型 RANKL又は 可溶型 RANKLとェピトープタグの融合タンパク質を非ヒ ト動物に投与することに より、 直接破骨細胞を活性化し、 骨量減少を迅速に (数日間内で) 引き起こすこ とができ、 骨量減少症モデル動物を作出することができることを見出した。 この 骨量減少症モデル動物は迅速な薬物評価に有効である。 本発明の骨量減少症モデ ル動物における骨量減少のメカニズムは RANKLによる破骨細胞の分化 ·活性化促 進という極めて単純なものであり、 純粋に破骨細胞の阻害剤 (ビスフォスホネー ト、 Cathepsin K 阻害剤など) を開発する場合には、 評価系として極めて有効で ある。 また、 一度骨量減少が起こってから元に戻るまでの早さを比べることによ り、 骨量を増加させる薬剤(PTHなど)の評価にも用いることができる。  The present inventors have intensively studied a method for producing a bone loss model animal that can solve the problems of conventional bone loss model animals. As a result, administration of soluble RANKL or fusion protein of soluble RANKL and Epitope tag directly to non-human animals directly activates osteoclasts and causes bone loss rapidly (within a few days) It was found that a model animal for osteopenia can be produced. This osteopenia animal model is effective for rapid drug evaluation. The mechanism of bone loss in the osteopenia model animal of the present invention is extremely simple: RANKL promotes osteoclast differentiation and activation. It is a pure osteoclast inhibitor (bisphosphonate, Cathepsin). It is extremely effective as an evaluation system when developing K inhibitors. It can also be used to evaluate drugs that increase bone mass (such as PTH) by comparing the speed of bone loss once it returns to its original level.
すなわち、 本発明は以下のとおりである。  That is, the present invention is as follows.
[ 1 ] 可溶型 RANKL又は可溶型 RANKLとェピトープタグの融合タンパク質を非ヒ ト動物に投与し、 該非ヒ ト動物体内における破骨細胞の分化及び活性化を促進す ることを含む、 骨量減少症モデル動物の作出方法。 [1] Bone mass comprising administering soluble RANKL or a fusion protein of soluble RANKL and an epitope tag to a non-human animal, and promoting osteoclast differentiation and activation in the non-human animal body A method for producing a reduction model animal.
[ 2 ] ェピト一プタグがグルタチオン - S -トランスフェラーゼである [ 1 ]の骨量 減少症モデル動物の作出方法。 [ 3 ] 可溶型 RANKL又は可溶型 RANKLとェピトープタグの融合タンパク質を非ヒ ト動物に投与後、 1週間以内に骨量減少症モデル動物を作出し得る [ 1 ]又は [ 2 ] の骨量減少症モデル動物の作出方法。 [2] The method for producing an osteopenia animal model according to [1], wherein the epitag is glutathione-S-transferase. [3] A bone loss model of [1] or [2] can be produced within one week after administration of soluble RANKL or a fusion protein of soluble RANKL and an epitope tag to a non-human animal. A method for producing a reduction model animal.
[4] 50時間以内に骨量減少症モデル動物を作出し得る [3]の骨量減少症モデ ル動物の作出方法。  [4] The method for producing an osteopenia model animal according to [3], wherein an osteopenia animal model can be produced within 50 hours.
[5] 24時間以内に骨量減少症モデル動物を作出し得る [4]の骨量減少症モデ ル動物の作出方法。  [5] The method for producing an osteopenia model animal according to [4], wherein an osteopenia animal model can be produced within 24 hours.
[6] 非ヒ ト動物がげつ歯類に属する動物である [1 ]〜[5]のいずれかの骨量減 少症モデル動物。  [6] The bone loss model animal according to any one of [1] to [5], wherein the non-human animal is an animal belonging to rodents.
[7] 非ヒ ト動物がマウスである [6]の骨量減少症モデル動物の作出方法。  [7] The method for producing a bone loss model animal according to [6], wherein the non-human animal is a mouse.
[8] [1:!〜 [7]のいずれかの骨量減少症モデル動物の作出方法であって、 可溶 型 RANKL又は可溶型 RANKLとェピトープタグの融合タンパク質の投与量を変える ことにより、 重症度の異なる骨量減少症モデル動物を作出する、 骨量減少症モデ ル動物の作出方法。 [8] [1 :! A method for producing an osteopenia animal model according to any one of [7], wherein bone loss of different severity is achieved by changing the dose of soluble RANKL or a fusion protein of soluble RANKL and an epitope tag A method for creating a bone loss model animal that produces a disease model animal.
[9] さらに、 可溶型 RANKL又は可溶型 RANKLとェピトープタグの融合タンパク 質を投与する動物から卵巣を摘出する、 [1]〜[: 8]のいずれかの骨量減少症モデ ル動物の作出方法。  [9] Furthermore, the ovary is removed from an animal to which soluble RANKL or a fusion protein of soluble RANKL and an epitope tag is administered, and the osteopenia model animal of any of [1] to [: 8] Production method.
[1 0] 可溶型 RANKL又は可溶型 RANKLとェピトープタグの融合タンパク質を非 ヒ ト動物に投与後、 72時間以内に骨量減少症モデル動物を作出し得る [9]の骨 量減少症モデル動物の作出方法。  [10] Osteopenia model animal can be created within 72 hours after administration of soluble RANKL or fusion protein of soluble RANKL and epotope tag to non-human animals [9] How to make animals.
[1 1] [1]〜[1 0]のいずれかの方法により作出された骨量減少症モデル動物。  [1 1] A bone loss model animal produced by any one of the methods [1] to [1 0].
[1 2] 体内の骨吸収マーカーレベルが正常個体に比べ上昇した [1 1]の骨量減 少症モデル動物。 [1 2] The bone loss model animal according to [1 1], wherein the bone resorption marker level in the body is increased compared to normal individuals.
[1 3] 骨密度及び/又は単位骨量が正常個体に比べ低下した [1 1]の骨量減少 症モデル動物。  [1 3] The bone loss model animal according to [1 1], wherein bone density and / or unit bone mass have decreased compared to normal individuals.
[1 4] さらに、 破骨細胞数及び/又は骨梁数が正常個体に比べ低下した [1 3] の骨量減少症モデル動物。  [1 4] Furthermore, the osteopenia animal model according to [1 3], wherein the number of osteoclasts and / or the number of trabeculae has decreased compared to normal individuals.
[1 5] 血中エストロゲン濃度、 血中 PTH濃度及ぴ血中 0PG濃度の少なくとも 1 つが正常個体に比べ変動していない [1 1]〜[1 4]のいずれかの骨量減少症モデ ル動物。 [1 5] At least one of blood estrogen concentration, blood PTH concentration and blood 0PG concentration is not changed compared to normal individuals [1 1] to [1 4] Le animals.
[1 6] [1 1]~[1 5]のいずれかの骨量減少症モデル動物に、 骨吸収抑制剤又 は骨吸収抑制剤候補物質を投与し、 骨量減少症モデル動物における減少した骨量 が増加するか否かを指標にして、 前記骨吸収抑制剤又は骨吸収抑制剤候補物質の 効果を評価する方法であって、 骨量が増加した場合に骨吸収抑制に効果があると 判定する、 骨吸収抑制剤又は骨吸収抑制剤候補物質を評価する方法。  [1 6] Bone resorption inhibitor or a bone resorption inhibitor candidate substance was administered to any bone loss model animal of any one of [1 1] to [1 5] and decreased in the bone loss model animal It is a method for evaluating the effect of the bone resorption inhibitor or the bone resorption inhibitor candidate substance by using whether or not the bone mass increases as an index, and when the bone mass increases, A method for evaluating a bone resorption inhibitor or a bone resorption inhibitor candidate substance to be determined.
[1 7] 骨量の増加を、 骨量減少症モデル動物における体内の骨吸収マーカーレ ベルの上昇、骨密度の上昇、単位骨量の上昇、骨梁数の上昇、破骨細胞数の低下、 骨芽細胞面の低下、及び CTにより認められる骨量の増加からなる群から選択され る少なくとも 1つを指標に判断する [1 6]の骨吸収抑制剤又は骨吸収抑制剤候補 物質を評価する方法。 [1 7] Increased bone mass, increased bone resorption marker level, increased bone density, increased unit bone mass, increased trabecular number, decreased osteoclast number in osteopenia model animals, Judgment is made using at least one selected from the group consisting of a decrease in osteoblastic surface and an increase in bone mass observed by CT as an index. Method.
[1 8] [1 1;]〜 [1 5]のいずれかの骨量減少症モデル動物に、 骨形成促進剤又 は骨形成促進剤候補物質を投与し、 骨量減少症モデル動物における減少した骨量 が増加するか否かを指標にして、 前記骨形成促進剤又は骨形成促進剤候補物質の 効果を評価する方法であって、 骨量が増加した場合に骨形成促進に効果があると 判定する、 骨形成促進剤又は骨形成促進剤候補物質を評価する方法。  [1 8] [1 1;] to any one of the osteopenia model animals of [1 5] is administered with an osteogenesis promoter or an osteogenesis promoter candidate substance, and decreases in the osteopenia model animal This is a method for evaluating the effect of the osteogenesis promoting agent or the osteogenesis promoting agent candidate substance by using whether or not the increased bone mass is an index, and is effective in promoting osteogenesis when the bone mass increases. A method for evaluating an osteogenesis promoter or an osteogenesis promoter candidate substance.
[1 9] 骨量の増加を、 骨量減少症モデル動物における体内の骨形成マーカーレ ベルの上昇、骨密度の上昇、単位骨量の上昇、骨梁数の上昇、破骨細胞数の低下、 骨芽細胞面の上昇、及ぴ CTにより認められる骨量の増加からなる群から選択され る少なくとも 1つを指標に判断する [1 8]の骨形成促進剤又は骨形成促進剤候補 物質を評価する方法。 [1 9] Increased bone mass, increased bone formation marker level in body, increased bone density, increased bone mass, increased trabecular number, decreased osteoclast number in osteopenia model animals, Judgment is made using at least one selected from the group consisting of an increase in osteoblastic surface and an increase in bone mass observed by CT as an index. how to.
[20] 請求項 8記載の方法により可溶型 RANKL又は可溶型 RANKLとェピトープ タグの融合タンパク質を投与しさらに卵巣を摘出して作出された骨量減少症モデ ル動物にホルモン又はホルモン受容体モジュレーターを投与し、 骨量減少症モデ ル動物における減少した骨量が増加するか否かを指標にして、 前記ホルモン又は ホルモン受容体モジュレーターの効果を評価する方法であって、 骨量が増加した 場合に骨吸収抑制に効果があると判定する、 ホルモン又はホルモン受容体モジュ レーターを評価する方法。  [20] A hormone or hormone receptor in a bone loss model animal produced by administering a soluble RANKL or a fusion protein of soluble RANKL and an epitope tag by the method according to claim 8 and further extracting the ovary A method for evaluating the effect of the hormone or hormone receptor modulator using the modulator as an indicator of whether or not the decreased bone mass increases in the osteopenia model animal, wherein the bone mass increased A method for evaluating a hormone or a hormone receptor modulator, which is judged to be effective in inhibiting bone resorption.
[2 1] ホルモン又はホルモン受容体モジュレーターが選択的エストロゲン受容 体モジュレーターである、 [ 2 0 ]のホノレモン又はホノレモン受容体モジュレーター を評価する方法。 [2 1] Hormone or hormone receptor modulator is selective estrogen receptor A method for evaluating a [20] honolemon or honolemon receptor modulator, which is a body modulator.
[ 2 2 ] 骨量の増加を、 骨量減少症モデル動物における体内の骨形成マーカーレ ベルの上昇、骨密度の上昇、単位骨量の上昇、骨梁数の上昇、破骨細胞数の低下、 骨芽細胞面の上昇、及ぴ CTにより認められる骨量の増加からなる群から選択され る少なくとも 1つを指標に判断する [ 2 0 ]又は [ 2 1 ]のホルモン又はホルモン受 容体モジュレーターを評価する方法。  [2 2] Increased bone mass, increased bone formation marker level in body, increased bone density, increased bone mass, increased trabecular number, decreased osteoclast number in osteopenia model animals, Evaluate [2 0] or [2 1] hormone or hormone receptor modulators based on at least one selected from the group consisting of an increase in osteoblastic surface and an increase in bone mass observed by CT how to.
本明細書は本願の優先権の基礎である日本国特許出願 2006-278029 号、 2007-095017号及ぴ国際特許出願 PCT/JP2007/063871号の明細書および Zまたは 図面に記載される内容を包含する。 図面の簡単な説明  This specification includes the contents of the Japanese patent applications 2006-278029, 2007-095017 and international patent application PCT / JP2007 / 063871 which are the basis of the priority of this application and the Z or drawings. To do. Brief Description of Drawings
図 1は、 GST- RANKLを投与したマウス及び投与しないマウスにおける血中 Ca濃 度を示す図である。  FIG. 1 is a graph showing the blood Ca concentration in mice administered and not administered with GST-RANKL.
図 2は、 GST- RANKL を投与したマウス及び投与しないマウスにおける血中 CTx 濃度を示す図である。  FIG. 2 is a graph showing blood CTx concentrations in mice administered and not administered with GST-RANKL.
図 3は、 GST- RANKL を投与したマウス及び投与しないマウスにおける血中 TRAP-5b濃度を示す図である。  FIG. 3 is a graph showing blood TRAP-5b concentrations in mice administered with and without GST-RANKL.
図 4は、 GST- RANKL を投与したマウス及び投与しないマウスにおける血中ォス テオカルシン濃度を示す図である。  FIG. 4 is a graph showing blood osteocalcin concentrations in mice administered with and without GST-RANKL.
図 5は、 GST- RANKL を投与したマウス及び投与しないマウスにおける血中 ALP 濃度を示す図である。  FIG. 5 is a graph showing blood ALP concentrations in mice administered with and without GST-RANKL.
図 6は、 GST- RANKL を投与したマウス及び投与しないマウスにおける大腿骨の 骨密度を示す図である。  FIG. 6 is a graph showing femur bone density in mice administered and not administered with GST-RANKL.
図 7は、 GST- RANKL を投与したマウス及び投与しないマウスにおける脛骨の単 位骨量を示す図である。  FIG. 7 is a graph showing the unit bone mass of the tibia in mice administered GST-RANKL and mice not administered.
図 8は、 GST- RANKL を投与したマウス及び投与しないマウスにおける脛骨の破 骨細胞数を示す図である。  FIG. 8 is a graph showing the number of tibia osteoclasts in mice administered with and without GST-RANKL.
図 9は、 GST- RANKL を投与したマウス及び投与しないマウスにおける脛骨の骨 粱数を示す図である。 Figure 9 shows tibia bones in mice administered and not treated with GST-RANKL. It is a figure which shows the number of powers.
図 1 0は、 GST- RANKL を投与したマウス及び投与しないマウスの大腿骨の、 マ イク口 CTにより測定した骨形態を示す写真である。  FIG. 10 is a photograph showing bone morphology of mice treated with GST-RANKL and measured with a mouth-mouth CT of the femurs of mice not administered with GST-RANKL.
図 1 1は、 GST- RANKL を投与したマウス及び投与しないマウスにおける脛骨の 骨芽細胞面を示す図である。  FIG. 11 is a diagram showing the osteoblastic surface of the tibia in mice administered with and without GST-RANKL.
図 1 2は、 GST- RANKLを 213nmol〜852nmol投与したマウス及び投与しないマウ スにおける血中 Ca濃度を示す図である。  FIG. 12 is a graph showing blood Ca concentration in mice administered with 213 nmol to 852 nmol of GST-RANKL and in mice not administered with GST-RANKL.
図 1 3は、 GST- RANKLを 213mnol〜852nmol投与したマウス及び投与しないマゥ スにおける血中 CTx濃度を す図である。  Fig. 13 is a graph showing blood CTx concentrations in mice administered with 213mnol to 852nmol of GST-RANKL and in mice not administered with GST-RANKL.
図 1 4は、 GST- RANKLを 213nmol〜852nmol投与したマウス及び投与しないマウ スにおける血中 TRAP-5b濃度を示す図である。  FIG. 14 is a graph showing blood TRAP-5b concentrations in mice administered with 213 nmol to 852 nmol of GST-RANKL and mice not administered with GST-RANKL.
図 1 5は、 GST- RANKLを 213nmol〜852nmol投与したマウス及び投与しないマウ スにおける大腿骨の骨密度を示す図である。  FIG. 15 is a graph showing femoral bone density in mice administered with 213 nmol to 852 nmol of GST-RANKL and mice not administered with GST-RANKL.
図 1 6は、 GST-RANKLを 213nmol〜852nmol投与したマウス及び投与しないマウ スの大腿骨の、 マイクロ CTにより測定した骨形態を示す写真である。  FIG. 16 is a photograph showing bone morphology of mice treated with 213 nmol to 852 nmol of GST-RANKL and of the femurs of mice not administered with microscopic CT.
図 1 7は、 GST- RANKL を投与して作出した骨量減少症モデルマウスにリセドロ ネートを投与した場合の血中 TRAP- 5 b濃度を示す図である。  FIG. 17 is a graph showing the blood TRAP-5b concentration when risedronate was administered to osteopenia model mice produced by administering GST-RANKL.
図 1 8は、 GST- RANKL を投与して作出した骨量減少症モデルマウスにリセドロ ネートを投与した場合の血中 CTx濃度を示す図である。  FIG. 18 is a graph showing the blood CTx concentration when risedronate was administered to osteopenia model mice produced by administering GST-RANKL.
図 1 9は、 GST- RANKL を投与して作出した骨量減少症モデルマウスにリセドロ ネートを投与した場合の血中 ALP濃度を示す図である。  FIG. 19 is a graph showing the ALP concentration in blood when risedronate was administered to an osteopenia model mouse produced by administering GST-RANKL.
図 2 0は、 GST- RANKL を投与して作出した骨量減少症モデルマウスにリセドロ ネートを投与した場合の血中ォステオカルシン濃度を示す図である。  FIG. 20 is a graph showing blood osteocalcin concentration when risedronate was administered to a mouse model for osteopenia produced by administration of GST-RANKL.
図 2 1は、 GST- RANKL を投与して作出した骨量減少症モデルマウスにリセドロ ネートを投与した場合の大腿骨の骨密度を示す図である。  FIG. 21 is a graph showing the bone density of the femur when risedronate is administered to an osteopenia model mouse produced by administering GST-RANKL.
図 2 2は、 GST- RANKL を投与して作出した骨量減少症モデルマウスにリセドロ ネートを投与したマウスの大腿骨の、マイクロ CTにより測定した骨形態を示す写 真である。  Fig. 22 is a photograph showing the bone morphology measured by micro-CT of the femur of a mouse administered with risedronate to an osteopenia model mouse produced by administering GST-RANKL.
図 2 3は、 可溶型 RANKLを投与したマウス及び投与しないマウスにおける血中 Ca濃度を示す図である。 Figure 23 shows blood levels in mice administered and not treated with soluble RANKL. It is a figure which shows Ca density | concentration.
図 2 4は、 可溶型 RANKLを投与したマウス及ぴ投与しないマウスにおける血中 CTx濃度を示す図である。  FIG. 24 is a graph showing blood CTx concentrations in mice administered and not administered soluble RANKL.
図 2 5は、 可溶型 RANKLを投与したマウス及ぴ投与しないマウスにおける血中 TRAP- 5b濃度を示す図である。  FIG. 25 is a graph showing blood TRAP-5b concentrations in mice with and without soluble RANKL.
図 2 6は、 可溶型 RANKLを投与したマウス及ぴ投与しないマウスにおける血中 ォステオカルシン濃度を示す図である。  FIG. 26 is a graph showing the blood osteocalcin concentration in mice with and without soluble RANKL.
図 2 7は、 可溶型 RANKLを投与したマウス及ぴ投与しないマウスにおける血中 ALP濃度を示す図である。  FIG. 27 is a diagram showing blood ALP concentrations in mice with and without soluble RANKL.
図 2 8は、 可溶型 RANKLを投与したマウス及び投与しないマウスにおける大腿 骨の骨密度を示す図である。  FIG. 28 is a graph showing femur bone density in mice administered and not administered soluble RANKL.
図 2 9は、 GST- RANKLを投与したマウス及び PBSを投与したマウスにおける単 位骨量を表す図である。  FIG. 29 is a diagram showing unit bone mass in mice administered with GST-RANKL and mice administered with PBS.
図 3 0は、 GST- RANKLを投与したマウス及び PBSを投与したマウスにおける骨 梁幅を表す図である。  FIG. 30 is a diagram showing trabecular width in mice administered with GST-RANKL and mice administered with PBS.
図 3 1は、 GST- RANKLを投与したマウス及び PBSを投与したマウスにおける骨 梁数を表す図である。  FIG. 31 shows the number of trabeculae in mice administered with GST-RANKL and mice administered with PBS.
図 3 2は、 GST- RANKLを投与したマウス及び PBSを投与したマウスにおける類 骨厚を表す図である。  FIG. 32 shows the osteoid thickness in mice administered with GST-RANKL and mice administered with PBS.
図 3 3は、 GST- RANKLを投与したマウス及び PBSを投与したマウスにおける吸 収面を表す図である。  FIG. 33 is a diagram showing the absorption surface in mice administered with GST-RANKL and mice administered with PBS.
図 3 4は、 GST- RANKLを投与したマウス及び PBSを投与したマウスにおける破 骨細胞数を表す図である。  FIG. 34 is a graph showing the number of osteoclasts in mice administered with GST-RANKL and mice administered with PBS.
図 3 5は、 GST- RANKLを投与したマウス及ぴ PBSを投与したマウスにおける破 骨細胞面を表す図である。  FIG. 35 is a diagram showing the osteoclast surface in mice administered with GST-RANKL and mice administered with PBS.
図 3 6は、 GST-RANKLを投与したマウス及び PBSを投与したマウスにおける破 骨細胞の増加を示す TRAP染色像を示す写真である。  FIG. 36 is a photograph showing a TRAP-stained image showing an increase in osteoclasts in a mouse administered with GST-RANKL and a mouse administered with PBS.
図 3 7は、 GST- RANKL を投与したマウスにリセドロネートを投与した場合の血 中 Ca、 TRAP- 5bおよび ALP濃度を示す図である。 図 3 8は、 GST- RANKL を投与したマウスにリセドロネートを投与した場合の骨 密度を示す図である。 FIG. 37 shows the blood Ca, TRAP-5b and ALP concentrations when risedronate was administered to mice administered with GST-RANKL. FIG. 38 shows the bone density when risedronate was administered to mice administered with GST-RANKL.
図 3 9は、 GST- RANKL を投与したマウスにリセドロネートを投与した場合のマ イク口 CTを用いた画像解析の結果を示す写真である。  Fig. 39 is a photograph showing the results of image analysis using a mouth-to-mouth CT when risedronate was administered to mice administered with GST-RANKL.
図 4 0は、 GST- RANKL を投与したマウスにェチドロネート、 アンド口ネートま たはリセドロネ一トを投与した場合の血中 Ca、 ALPおよび TRAP- 5b濃度を示す図 である。  FIG. 40 shows blood Ca, ALP and TRAP-5b concentrations when mice treated with GST-RANKL were treated with etidronate, and mouth-mouth, or risedronate.
図 4 1は、 GST - RANKL を投与したマウスにェチドロネート、 アンド口ネートま たはリセドロネートを投与した場合の骨密度を示す図である。  FIG. 41 is a graph showing bone density when etidronate, and-andoate or risedronate was administered to mice administered with GST-RANKL.
図 4 2は、 GST-RANKL を投与したマウスにェチドロネート、 アンド口ネートま たはリセドロネートを投与した場合のマイクロ CT を用いた画像解析の結果を示 す写真である。  Fig. 42 is a photograph showing the results of image analysis using micro-CT when etidronate, and oral mouthnate, or risedronate was administered to mice administered with GST-RANKL.
図 4 3は、 GST- RANKLを投与し卵巣を摘出したマウスの血中 Ca、 TRAP- 5bおよ ぴ ALP濃度を示す図である。  FIG. 43 shows blood Ca, TRAP-5b, and ALP concentrations in mice that had been ovariectomized after administration of GST-RANKL.
図 4 4は、 GST-RANKLを投与し卵巣を摘出したマウスの骨密度を示す図である。 図 4 5は、 GST- RANKLを投与し卵巣を摘出したマウスのマイクロ CTを用いた画 像解析の結果を示す写真である。  FIG. 44 is a graph showing the bone density of a mouse administered with GST-RANKL and excised from the ovaries. Fig. 45 is a photograph showing the results of image analysis using micro-CT of mice that had been treated with GST-RANKL and removed their ovaries.
図 4 6は、 C57BL/6マウスに GST-RANKL及び PBSを投与した場合の血中 Ca、 ALP および TRAP- 5b濃度を示す図である。  FIG. 46 is a graph showing blood Ca, ALP and TRAP-5b concentrations when CSTBL / 6 mice were administered GST-RANKL and PBS.
図 4 7は、 C57BL/6マウスに GST- RANKL及び PBSを投与した場合の骨密度を示 す図である。  FIG. 47 shows the bone density when GST-RANKL and PBS were administered to C57BL / 6 mice.
図 4 8は、 C57BL/6マウスに GST- RANKL及ぴ PBSを投与した場合のマイクロ CT を用いた画像解析の結果を示す写真である。  Fig. 48 is a photograph showing the results of image analysis using micro CT when GST-RANKL and PBS were administered to C57BL / 6 mice.
図 4 9は、 GST- RANKLを投与し卵巣を摘出したマウスに PTHを投与した場合の 血中 Ca、 ALPおよび TRAP - 5b濃度を示す図である。  FIG. 49 is a diagram showing blood Ca, ALP and TRAP-5b concentrations when PTH was administered to mice that had been GST-RANKL-administered and ovariectomized.
図 5 0は、 GST- RANKLを投与し卵巣を摘出したマウスに PTHを投与した場合の 骨密度を示す図である。  FIG. 50 is a graph showing the bone density when PTH is administered to mice in which ovary has been removed by administration of GST-RANKL.
図 5 1は、 GST- RANKLを投与し卵巣を摘出したマウスに PTHを投与した場合の マイクロ CTを用いた画像解析の結果を示す写真である。 図 5 2は、 GST- RANKL及ぴ PBS を投与したォスマウスの血中 Ca、 ALP および TRAP- 5b濃度を示す図である。 Fig. 51 is a photograph showing the results of image analysis using micro-CT when GTH-RANKL is administered and PTH is administered to a mouse whose ovaries have been removed. FIG. 52 shows the Ca, ALP and TRAP-5b concentrations in male mice administered with GST-RANKL and PBS.
図 5 3は、 GST- RANKL及び PBSを投与したォスマウスの骨密度を示す図である。 図 5 4は、 GST- RANKL及び PBSを投与したォスマウスのマイクロ CTを用いた画 像解析の結果を示す写真である。  FIG. 53 shows the bone density of male mice administered with GST-RANKL and PBS. FIG. 54 is a photograph showing the results of image analysis using micro CT of male mice administered with GST-RANKL and PBS.
図 5 5は、 GST- RANKL及び PBS を投与した ICRマウスの血中 Ca、 ALPおよび TRAP-5b濃度を示す図である。  FIG. 55 shows the blood Ca, ALP and TRAP-5b concentrations in ICR mice administered with GST-RANKL and PBS.
図 5 6は、 GST- RANKL及び PBSを投与した ICRマウスの骨密度を示す図である。 図 5 7は、 GST-RANKL及び PBSを投与した ICRマウスのマイクロ CTを用いた画 像解析の結果を示す写真である。  FIG. 56 shows the bone density of ICR mice administered with GST-RANKL and PBS. FIG. 57 is a photograph showing the result of image analysis using micro CT of ICR mice administered with GST-RANKL and PBS.
図 5 8は、 GST- RANKL及び PBS を投与したフィッシヤーラットの血中 Ca、 ALP およぴ TRAP_5b濃度を示す図である。  FIG. 58 shows the blood Ca, ALP and TRAP_5b concentrations in fisher rats administered with GST-RANKL and PBS.
図 5 9は、 GST- RANKL及び PBSを投与したフィッシヤーラットの骨密度を示す 図である。  FIG. 59 shows the bone density of fisher rats administered with GST-RANKL and PBS.
図 6 0は、 GST- RANKL及び PBSを投与したフィッシヤーラットのマイクロ CTを 用いた画像解析の結果を示す写真である。  FIG. 60 is a photograph showing the results of image analysis using micro CT of fisher rats administered with GST-RANKL and PBS.
図 6 1は、 GST- RANKLを単回投与したマウスの血清中 RANKL濃度を示す図であ る。  FIG. 61 shows the RANKL concentration in the serum of mice that received GST-RANKL once.
図 6 2は、 GST-RANKL及ぴ PBSを単回投与したマウスの血清中 Ca、 ALPおよび TRAP - 5b濃度を示す図である。  FIG. 62 shows the concentrations of Ca, ALP and TRAP-5b in the serum of mice that received GST-RANKL and PBS once.
図 6 3は、 GST- RANKL及ぴ PBSを単回投与したマウスの骨密度を示す図である。 図 6 4は、 GST- RANKL及び PBSを単回投与したマウスのマイクロ CTを用いた画 像解析の結果を示す写真である。  FIG. 63 shows the bone density of mice that received GST-RANKL and PBS once. FIG. 64 is a photograph showing the result of image analysis using micro CT of a mouse administered with GST-RANKL and PBS once.
図 6 5は、 GST- RANKL及ぴ PBS を 7日間連続投与したマウスの血清中 Ca、 ALP およぴ TRAP- 5b濃度を示す図である。  FIG. 65 shows the serum Ca, ALP and TRAP-5b concentrations in mice administered with GST-RANKL and PBS for 7 consecutive days.
図 6 6は、 GST- RANKL及び PBSを 7日間連続投与したマウスの骨密度を示す図 である。  FIG. 66 shows the bone density of mice administered with GST-RANKL and PBS for 7 consecutive days.
図 6 7は、 GST-RANKL及び PBSを 7日間連続投与したマウスのマイクロ CTを用 いた画像解析の結果を示す写真である。 図 6 8は、 GST- RANKL及び PBSを頭蓋冠に投与したマウスの骨密度を示す図で ある。 Fig. 67 is a photograph showing the results of image analysis using micro CT of mice administered with GST-RANKL and PBS for 7 consecutive days. FIG. 68 shows the bone density of mice administered GST-RANKL and PBS to the calvaria.
図 6 9は、 GST- RANKL投与マウスに LFM- A13を投与した場合の骨量を示す写真 でめる。  Figure 69 shows a photograph showing bone mass when LFM-A13 is administered to GST-RANKL-treated mice.
図 7 0は、 GST- RANKL投与マウスに LFM- A13 を投与した場合の単位骨量(Bone volume/tissue volumejを示す図でめる。  FIG. 70 shows the unit bone mass (Bone volume / tissue volumej) when LFM-A13 is administered to GST-RANKL-treated mice.
図 7 1 は、 GST- RANKL 投与マウスに LFM- A13 を投与した場合の骨梁幅 (Trabecular/thickness) を示す図である。  FIG. 71 shows the trabecular width (Trabecular / thickness) when LFM-A13 is administered to GST-RANKL-treated mice.
図 7 2は、 GST- RANKL 投与マウスに LFM- A13 を投与した場合の骨梁数 (Trabecular/薩 ber) を示す図である。  FIG. 72 is a graph showing the number of trabecular bone (Trabecular / Aberration) when LFM-A13 is administered to GST-RANKL-treated mice.
図 7 3は、 GST- RANKL 投与マウスに LFM-A13 を投与した場合の破骨細胞数 (Osteoclast number/bone perimeter)を示 図でめる。  Fig. 73 shows the number of osteoclasts (Osteoclast number / bone perimeter) when LFM-A13 is administered to GST-RANKL-treated mice.
図 7 4は、 GST- RANKL投与マウスに LFM- A13 を投与した場合の吸収面(Eroded surface/bone surf ace)を示す [S3である。  Fig. 74 shows the absorption surface (Eroded surface / bone surf ace) when LFM-A13 is administered to GST-RANKL-treated mice [S3.
図 7 5は、 GST- RANKL投与マウスに LFM- A13を投与した場合の血中 Ca濃度を示 す図である。  FIG. 75 shows the blood Ca concentration when LFM-A13 was administered to GST-RANKL-treated mice.
図 7 6は、 卵巣を摘出した GST-RANKL投与マウスにラロキシフヱンを投与した 場合の、 血清中 Ca、 ALPおよび TRAP- 5b濃度を示す図である。  FIG. 76 shows the serum Ca, ALP and TRAP-5b concentrations when raloxifone was administered to GST-RANKL-treated mice from which the ovaries had been removed.
図 7 7は、 卵巣を摘出した GST- RANKL投与マウスにラロキシフェンを投与した 場合の、 全骨密度を示す図である。  FIG. 77 shows the total bone density when raloxifene was administered to GST-RANKL-treated mice from which the ovaries had been removed.
図 7 8は、 卵巣を摘出した GST- RANKL投与マウスにラロキシフェンを投与した 場合の、 皮質骨塩量を示す図である。  FIG. 78 shows the cortical bone mineral density when raloxifene is administered to GST-RANKL-treated mice from which the ovaries have been removed.
図 7 9は、 卵巣を摘出した GST-RANKL投与マウスにラロキシフェンを投与した 場合の、 皮質骨厚を示す図である。  FIG. 79 shows the cortical bone thickness when raloxifene was administered to GST-RANKL-treated mice from which the ovaries had been removed.
図 8 0は、 卵巣を摘出した GST-RANKL投与マウスにラロキシフェンを投与した 場合の、 マイクロ CTを用いた画像解析の結果を示す写真である。  FIG. 80 is a photograph showing the results of image analysis using micro CT when raloxifene was administered to GST-RANKL-treated mice from which the ovaries had been removed.
図 8 1は、 卵巣を摘出した GST- RANKL投与マウスにラロキシフェンを投与した 場合の、 血中 Ca、 ALPおよび TRAP_5b濃度を示す図である。  FIG. 81 shows the blood Ca, ALP and TRAP_5b concentrations when raloxifene was administered to GST-RANKL-treated mice from which the ovaries had been removed.
図 8 2は、 卵巣を摘出した GST- RANKL投与マウスにラロキシフェンを投与した 場合の、 海綿骨密度を示す図である。 Figure 8-2 shows that raloxifene was administered to GST-RANKL-treated mice from which the ovaries were removed. It is a figure which shows cancellous bone density in the case.
図 8 3は、 GST- RANKL投与マウスに PTHを投与した場合の、 全骨密度を示す図 である。  FIG. 83 shows the total bone density when PTH was administered to GST-RANKL-treated mice.
図 8 4は、 GST- RANKL投与マウスに PTHを投与した場合の、 皮質骨密度を示す 図である。  FIG. 84 shows the cortical bone density when PTH was administered to GST-RANKL-treated mice.
図 8 5は、 GST- RANKL投与マウスに PTHを投与した場合の、 皮質骨塩量を示す 図である。  FIG. 85 is a graph showing the amount of cortical bone mineral when GTH-RANKL-administered mice are administered PTH.
図 8 6は、 GST- RANKL投与マウスに PTHを投与した場合の、 皮質骨厚を示す図 である。  FIG. 86 shows the cortical bone thickness when PTH was administered to GST-RANKL-treated mice.
図 8 7は、 GST- RANKL投与マウスに PTHを投与した場合の、 骨幹における皮質 骨密度を示す図である。  FIG. 87 is a graph showing cortical bone density in the diaphysis when PTH is administered to GST-RANKL-treated mice.
図 8 8は、 GST- RANKL投与マウスに PTHを投与した場合の、 マイクロ CTを用い た画像解析の結果を示す写真である。  FIG. 88 is a photograph showing the results of image analysis using micro CT when PTH was administered to GST-RANKL-treated mice.
図 8 9は、 12週齢マウスに GST- RANKLを投与した場合の、 血清中 Ca、 ALPおよ び TRAP_5b濃度を示す図である。  FIG. 89 shows the serum Ca, ALP, and TRAP_5b concentrations when GST-RANKL was administered to 12-week-old mice.
図 9 0は、 12週齢マウスに GST- RANKLを投与した場合の、 全骨密度を示す図で ある。  FIG. 90 shows the total bone density when GST-RANKL was administered to 12-week-old mice.
図 9 1は、 12週齢マウスに GST - RANKLを投与した場合の、 マイクロ CTを用い た画像解析の結果を示す写真である。  FIG. 91 is a photograph showing the results of image analysis using micro CT when GST-RANKL was administered to 12-week-old mice.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の骨量減少症モデル動物は、非ヒ ト動物に可溶型 RANKL又は可溶型 RANKL とェピトープタグの融合タンパク質を投与することにより作出することができる, The osteopenia animal model of the present invention can be produced by administering a soluble RANKL or a fusion protein of soluble RANKL and an epitope tag to a non-human animal,
RANKL (Receptor activator of NF - κ B l igand) は、 TNF スーノヽ0—フアミリー のメンバーである RANK (NF - κ Βの受容体ァクティベータ一) のリガンドであり、 細胞内ドメイン (RANKの Ν末端から第 1番目から 48番目のアミノ酸からなるド メイン)、膜貫通ドメイン及び細胞外ドメインを有する 2型貫通タンパク質であるRANKL (Receptor activator of NF-κ B l igand) is a ligand of RANK (NF-κ 受 容 receptor activator) that is a member of TNF Suno ヽ0 — Family, and is an intracellular domain (from the Ν end of RANK). A domain consisting of amino acids 1 to 48), a type 2 transmembrane protein with a transmembrane domain and an extracellular domain
(特表 2002-509430 号公報、 国際公開第 W098/46644 号パンフレツト (特許第(Special Table 2002-509430 Publication, International Publication No. W098 / 46644 Pamphlet (Patent No.
3523650号公報))。細胞外ドメイン中、 N末端から第 152番目以降のアミノ酸から なるドメィンは、 TNF リガンドファミリ一相同性ドメインである。 可溶型 RANKL は、 細胞内ドメインを含まない。 RANKL は、 破骨細胞の分化 '活性化、 リンパ球 分化、 樹状細胞活性化、 乳腺上皮細胞分化、 リンパ節形成等の機能を有する。 No. 3523650))). From the 152th amino acid from the N-terminal in the extracellular domain The domain is a homology domain of the TNF ligand family. Soluble RANKL does not contain an intracellular domain. RANKL has functions such as osteoclast differentiation activation, lymphocyte differentiation, dendritic cell activation, mammary epithelial cell differentiation and lymph node formation.
可溶型 RANKLには、可溶型 RANKL誘導体及ぴ可溶型 RANKLアナログが含まれる。 可溶型 RANKLの由来動物種は限定されず、 ヒ ト由来 RANKL、 マウス由来 RANKL、 ラ ッ ト由来 RANKL等あらゆる動物種由来の RANKLを用いることができる。 ヒ ト由来 の RANKLの全長塩基配列及ぴァミノ酸配列を、それぞれ配列番号 1及び 2に示す。 可溶型 RANKL誘導体又は可溶型 RANKLアナログは、 RANKLのトランケ一ト体等、 RANKLのァミノ酸配列の一部配列からなるタンパク質であって、 RANKLの活性を有 するタンパク質を含む。 可溶型 RANKL誘導体は、 好ましくは配列番号 2のァミノ 酸配列において、 第 152番目のアミノ酸から始まる TNF リガンドファミ リー相同 ドメインを含む。 可溶型 RANKL誘導体として、 例えば、 第 127番目のアミノ酸か ら第 317番目のアミノ酸配列からなるタンパク質、 第 140番目のアミノ酸から第 317番目のアミノ酸配列からなるタンパク質、 又は第 159番目のアミノ酸から第 317 番目のアミノ酸配列からなるタンパク質等が挙げられる。 また、 ヒ ト以外の 動物種由来の. RAMLであって、 上記のヒ ト RANKLの部分アミノ酸配列に対応する 部分のアミノ酸配列からなる RANKL誘導体も含まれる。 さらに、 可溶型 RANKL誘 導体又は可溶型 RANKLアナログは、 配列番号 2で表わされるアミノ酸配列におい て 1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列を含 み、 かつ RANKLの活性を有するタンパク質、 あるいは上記の RANKLのアミノ酸配 列の部分配列からなるタンパク質のアミノ酸配列において 1若しくは数個のアミ ノ酸が欠失、 置換若しくは付加されたァミノ酸配列を含み、 かつ RANKLの活性を 有するタンパク質を含む。 ここで、 1又は数個とは 1〜 9個、 好ましくは 1〜 5 個、 さらに好ましくは 1若しくは 2個である。  Soluble RANKL includes soluble RANKL derivatives and soluble RANKL analogs. The animal species from which soluble RANKL is derived is not limited, and RANKL derived from any animal species such as human-derived RANKL, mouse-derived RANKL, rat-derived RANKL and the like can be used. The full-length base sequence and amino acid sequence of RANKL derived from human are shown in SEQ ID NOs: 1 and 2, respectively. The soluble RANKL derivative or the soluble RANKL analog includes a protein having a partial RANKL amino acid sequence, such as a RANKL tranchete, and having a RANKL activity. The soluble RANKL derivative preferably comprises a TNF ligand family homology domain starting from amino acid 152 in the amino acid sequence of SEQ ID NO: 2. Examples of the soluble RANKL derivative include a protein consisting of the 127th amino acid to the 317th amino acid sequence, a protein consisting of the 140th amino acid to the 317th amino acid sequence, or the 159th amino acid to the Examples include a protein comprising the 317th amino acid sequence. Also included are RAMLs derived from animal species other than human RANKL, which are composed of amino acid sequences corresponding to the partial amino acid sequences of human RANKL. Further, the soluble RANKL derivative or the soluble RANKL analog includes an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 2, and A protein having activity, or an amino acid sequence of a protein consisting of a partial sequence of the amino acid sequence of RANKL, including an amino acid sequence in which one or several amino acids have been deleted, substituted or added, and the activity of RANKL A protein having Here, 1 or several is 1 to 9, preferably 1 to 5, and more preferably 1 or 2.
可溶型 RANKLと共に融合タンパク質を形成させるェピトープタグとして、 抗体 等の特定の化合物と結合し得る配列を有するタンパク質又はべプチドが挙げられ る。 通常、 ェピトープタグは、 融合タンパク質の精製のために用いられるが、 本 発明においては、 ェピトープタグは可溶型 RANKLの活性を高めるという機能を有' している。 ェピトープタグとしては、 グルタチオン- S-トランスフェラーゼ (GST)、 2〜12 個、 好ましくは 4個以上、 さらに好ましくは 4〜7個、 さらに好ましくは 5個若 しくは 6個のヒスチジンからなるポリ ヒスチジン、 FLAG タグ (ァミノ酸配列 DYKDDDDK;配列番号 3 )、 Mycタグ (ァミノ酸配列 EQKLISEEDL;配列番号 4 )、 V5 タグ (ァミノ酸配列 GKPIPNPLLGLDST;配列番号 5 )、 Xpressタグ、 HQタグ (アミ ノ酸配列 HQHQHQ;配列番号 6 )、 HAタグ(ァミノ酸配列 YPYDVPDYA;配列番号 7 )、 AU1タグ(ァミノ酸配列 DTYRYI;配列番号 8 )、T7タグ(ァミノ酸配列 MASMTGGQQMG; 配列番号 9 )、 VSV-Gタグ (ァミノ酸配列 YTDIEMNRLGK;配列番号 1 0 )、 DDDDKタ グ(ァミノ酸配列 DDDDK ;配列番号 1 1 )、 Sタグ(ァミノ酸配列 KETAAAKFERQHIDSC; 配列番号 1 2 )、 CruzTag09 (ァミノ酸配列 MKAEFRRQESDR; 配列番号 1 3 )、 CruzTag22 (ァミノ酸配列 MRDALDRLDRLA;配列番号 1 4 )、 CruzTag41 (アミノ酸 配列 MKDGEEYSRAFR;配列番号 1 5 )、 Glu-Gluタグ (ァミノ酸配列 EEEEYMPME;配 列番号 1 6 )、 Ha. 11 タグ (ァミノ酸配列 CTPTDVPDYASL;配列番号 1 7 )、 KT3 タ グ (アミノ酸配列 PPEPET;配列番号 1 8 )、 チォレドキシン、 マルトース結合タ ンパク質 (MBP)、 免疫グロプリン Fc領域、 ;3ガラク トシダーゼ等があるが、 ここ に列挙されたものには限定されない。 この中でも、 ダルタチオン- S-トランスフエ ラーゼが好ましい。 Examples of the epitope tag that forms a fusion protein with soluble RANKL include a protein or peptide having a sequence that can bind to a specific compound such as an antibody. Usually, an epitope tag is used for purification of a fusion protein. In the present invention, an epitope tag has a function of enhancing the activity of soluble RANKL. Epitope tags include glutathione-S-transferase (GST), 2-12, preferably 4 or more, more preferably 4-7, more preferably 5 or 6 histidine polyhistidine, FLAG Tag (amino acid sequence DYKDDDDK; SEQ ID NO: 3), Myc tag (amino acid sequence EQKLISEEDL; SEQ ID NO: 4), V5 tag (amino acid sequence GKPIPNPLLGLDST; SEQ ID NO: 5), Xpress tag, HQ tag (amino acid sequence HQHQHQ; SEQ ID NO: 6), HA tag (amino acid sequence YPYDVPDYA; SEQ ID NO: 7), AU1 tag (amino acid sequence DTYRYI; SEQ ID NO: 8), T7 tag (amino acid sequence MASMTGGQQMG; SEQ ID NO: 9), VSV-G tag (amino) Acid sequence YTDIEMNRLGK; SEQ ID NO: 10), DDDDK tag (amino acid sequence DDDDK; SEQ ID NO: 1 1), S tag (amino acid sequence KETAAAKFERQHIDSC; SEQ ID NO: 12), CruzTag09 (amino acid sequence MKAEFRRQESDR; SEQ ID NO: 1 3), CruzTag22 (amino acid sequence MRDALDRLDRLA; SEQ ID NO: 14), CruzTag41 (amino acid sequence MKDGEEYSRAFR; SEQ ID NO: 15), Glu-Glu tag (amino acid sequence EEEEYMPME; SEQ ID NO: 16), Ha. 11 tag (Amino acid sequence CTPTDVPDYASL; SEQ ID NO: 17), KT3 tag (amino acid sequence PPEPET; SEQ ID NO: 18), thioredoxin, maltose-binding protein (MBP), immune globulin Fc region, and 3 galactosidase It is not limited to those listed here. Of these, dartathione-S-transferase is preferred.
可溶型 RANKLとェピトープタグの融合タンパク質を得るには両者をそれぞれコ ードする遺伝子を連結し、 発現させればよい。 RANKL をコードする遺伝子及びェ ピトープタグをコードする遺伝子の融合は、 通常の遺伝子組換えの手法により行 うことができる。 この際、適当な制限部位を導入して行うことができる。 この際、 融合する遺伝子の間にストップコ ドンが現れないようにする。 融合する遺伝子の 間の距離は限定されず、 両者の間にリンカ一が含まれていてもよい。 また、 2つ の遺伝子のオープンリ一ディングフレームを合わせるようにする。 上記ェピトー プタグは、 RANKLのアミノ酸配列の N末端側に融合させてもよいし、 C末端側に融 合させてもよレ、。  In order to obtain a fusion protein of soluble RANKL and epitope tag, the genes that code for both are linked and expressed. Fusion of a gene encoding RANKL and a gene encoding an epitope tag can be performed by conventional gene recombination techniques. In this case, it can be carried out by introducing an appropriate restriction site. Make sure that no stop codon appears between the genes to be fused. The distance between the genes to be fused is not limited, and a linker may be included between them. Also, match the open reading frames of the two genes. The above epitope tag may be fused to the N-terminal side of the amino acid sequence of RANKL, or may be fused to the C-terminal side.
配列番号 1 9及び 2 0に、 RANKLのァミノ酸配列中第 127番目のァミノ酸から 第 317番目のァミノ酸配列からなるタンパク質に GSTが融合したタンパク質をコ 一ドする DNAの塩基配列及び該タンパク質のアミノ酸配列を示す。 配列番号 2 1 及び 2 2に、 RANKLのアミノ酸配列中第 140番目のアミノ酸から第 317番目のァ ミノ酸配列からなるタンパク質に GSTが融合したタンパク質をコードする DNAの 塩基配列及び該タンパク質のアミノ酸配列を示す。 また、 配列番号 2 3及び 2 4 に、 RANKLのァミノ酸配列中第 159番目のァミノ酸から第 317番目のァミノ酸配 列からなるタンパク質に GSTが融合したタンパク質をコードする DNAの塩基配列 及び該タンパク質のアミノ酸配列を示す。 The nucleotide sequence of DNA encoding GST fused protein to the protein consisting of the 127th amino acid sequence from the 127th amino acid sequence to the 317th amino acid sequence in the amino acid sequence of RANKL in SEQ ID NOS: 19 and 20 and the protein The amino acid sequence of is shown. SEQ ID NO: 2 1 And 22 shows the base sequence of DNA encoding the protein in which GST is fused to the protein comprising the amino acid sequence from the 140th amino acid to the 317th amino acid sequence in the amino acid sequence of RANKL, and the amino acid sequence of the protein. In addition, SEQ ID NOS: 23 and 24 include a nucleotide sequence of DNA encoding a protein in which GST is fused to a protein comprising the 159th amino acid sequence to the 317th amino acid sequence in the RANKL amino acid sequence, and The amino acid sequence of the protein is shown.
このようにして作製した融合遺伝子を入手可能な適当な発現ベクターに組み込 んで、 発現させ、 目的の融合タンパク質を回収、 精製することができる。 また、 この際無細胞系 (セルフリーシステム) で発現させることもできる。  The fusion gene thus prepared can be incorporated into an appropriate expression vector available for expression, and the target fusion protein can be recovered and purified. In this case, it can also be expressed in a cell-free system (cell-free system).
ベクターとして、 プラスミ ド、 ファージ、 ウィルス等の宿主細胞において複製 可能である限りいかなるベクターも用いることができる。 ベクターは、 複製開始 点、 選択マーカー、 プロモーターを含み、 必要に応じてェンハンサー、 転写終結 配列 (ターミネータ一)、 リボソーム結合部位、 ポリアデュル化シグナル等を含ん でいてもよい。 また、 あらかじめグルタチオン- S-トランスフェラーゼ等のェピト ープタグをコードする遺伝子を組み込んだベクターを用いることもできる。  Any vector can be used as long as it can replicate in a host cell such as a plasmid, phage, or virus. The vector contains a replication origin, a selectable marker, and a promoter, and may contain an enhancer, a transcription termination sequence (terminator), a ribosome binding site, a polyaduration signal, and the like as necessary. In addition, a vector in which a gene encoding an epitope tag such as glutathione-S-transferase is previously incorporated can also be used.
DNAのベクターへの導入は、公知の方法で行うことができる。ベクターは、種々 の制限部位をその内部に持つポリ リンカ一を含んでいるか、 または単一の制限部 位を含んでいることが望ましい。 ベクター中の特定の制服部位を特定の制限酵素 で切断し、 その切断部位に DNAを挿入することができる。 融合遺伝子を含む発現 ベクターを適切な宿主細胞の形質転換に用いて、 宿主細胞に前記融合遺伝子がコ ードする融合タンパク質を発現、 産生させることができる。  Introduction of DNA into a vector can be performed by a known method. The vector preferably contains a polylinker with various restriction sites within it, or preferably contains a single restriction site. A specific uniform site in a vector can be cleaved with a specific restriction enzyme, and DNA can be inserted into the cleaved site. An expression vector containing the fusion gene can be used for transformation of an appropriate host cell to cause the host cell to express and produce a fusion protein encoding the fusion gene.
宿主細胞としては、 大腸菌、 ス トレプトミセス、 枯草菌等の細菌細胞、 真菌細 胞、 パン酵母、 酵母細胞、 昆虫細胞、 哺乳類細胞等が挙げられる。  Examples of host cells include bacterial cells such as E. coli, Streptomyces, Bacillus subtilis, fungal cells, baker's yeast, yeast cells, insect cells, and mammalian cells.
形質転換は、 塩化カルシウム、 リン酸カルシウム、 DEAE-デキス トラン介在トラ ンスフエクシヨン、 エレク トロポレーション、 リボフエタション等の公知の方法 で行うことができる。  The transformation can be performed by a known method such as calcium chloride, calcium phosphate, DEAE-dextran mediated transformation, electroporation, ribophatation and the like.
得られたリコンビナント融合タンパク質は、各種の分離精製方法により、分離 - 精製することができる。 例えば、 硫酸アンモニゥム沈殿、 ゲルろ過、 イオン交換 クロマトグラフィー、 ァフィ二ティークロマトグラフィ一等を単独でまたは適宜 組合せて用いることができる。 この際、 発現産物が GST等との融合タンパク質と して発現される場合は、 目的タンパク質と融合しているタンパク質またはぺプチ ドの性質を利用して精製することもできる。 例えば GSTとの融合タンパク質とし て発現させた場合、 GST はダルタチオンに対して親和性を有するので、 ダルタチ オンを担体に結合させたカラムを用いるァフィ二ティークロマトグラフィ一によ り効率的に精製することができる。 また、 ヒスチジンタグとの融合タンパク質と して発現させた場合、 ヒスチジンタグを有するタンパク質はキレートカラムに結 合するので、 キレートカラムを用いて精製することができる。 さらに、 いずれの ェピトープタグを用いた場合も、 そのェピトープタグが有するェピトープを認識 する抗体を用いたァフィ二ティークロマトグラフィ一により精製することができ る。 The obtained recombinant fusion protein can be separated and purified by various separation and purification methods. For example, ammonium sulfate precipitation, gel filtration, ion exchange chromatography, affinity chromatography, etc. alone or as appropriate Can be used in combination. In this case, when the expression product is expressed as a fusion protein with GST or the like, it can be purified using the properties of the protein or peptide fused with the target protein. For example, when expressed as a fusion protein with GST, GST has affinity for dartathione, so it must be efficiently purified by affinity chromatography using a column in which daltathione is bound to a carrier. Can do. In addition, when expressed as a fusion protein with a histidine tag, the protein having the histidine tag binds to the chelate column and can be purified using the chelate column. Furthermore, when any epitope tag is used, it can be purified by affinity chromatography using an antibody that recognizes the epitope associated with the epitope tag.
可溶型 RANKL又は可溶型 RANKLとェピトープタグの融合タンパク質を投与する 動物種は限定されず、 マウス、 ラット、 モルモッ ト、 ハムスター、 ゥマ、 ゥシ、 ヒッジ、 ブタ、 サル、 ィヌ、 ネコ等ヒ ト以外のあらゆる哺乳動物が対象となり、 これらの動物において骨量減少症モデル動物を作出することができる。 また、 雌 雄ともに骨量減少症モデル動物の作出に用いることができる。 また、 骨量減少症 モデル動物の作出に用いる動物の齢も限定されず、 高齢動物を用いても本発明の 骨量減少症モデル動物を作出することができる。 例えば、 動物としてマウスを用 いる場合、 1〜5 2週齢、 好ましくは 4〜 1 2週齢のマウスを用いて骨量減少症 モデル動物を作出することができる。  Animal species to which soluble RANKL or fusion protein of soluble RANKL and Epitope tag is administered are not limited, and mice, rats, guinea pigs, hamsters, horses, horses, hidges, pigs, monkeys, inu, cats, etc. All mammals other than humans are targeted, and osteopenia model animals can be produced in these animals. Both males and females can be used to create osteopenia model animals. Further, the age of the animal used for producing the osteopenia model animal is not limited, and the osteopenia model animal of the present invention can be produced using an elderly animal. For example, when a mouse is used as an animal, a model animal for osteopenia can be produced using a mouse 1 to 5 weeks old, preferably 4 to 12 weeks old.
可溶型 RANKL又は可溶型 RANKLとェピトープタグの融合タンパク質の動物への 投与量は限定されず、 動物種に応じて適宜決定され得るが、 例えば、 1頭当たり 10 nmol〜5000 nmol、 好ましくは 50 nmol〜1000 nmol、 あるいは投与する動物の 体重当たりでは、 100 ; u g/kg〜50 mg/kg、 好ましくは 500 g/kg〜5 mg/kgを投 与すればよい。 投与経路は限定されず、 静脈注射、 腹腔内注射、 皮下注射、 筋肉 注射、 座薬、 点眼、 頭蓋冠投与などによって投与すればよい。  The dose of the soluble RANKL or the fusion protein of soluble RANKL and epotope tag to the animal is not limited and can be appropriately determined depending on the animal species. For example, 10 nmol to 5000 nmol per animal, preferably 50 nmol to 1000 nmol, or 100 ug / kg to 50 mg / kg, preferably 500 g / kg to 5 mg / kg per body weight of the animal to be administered. The route of administration is not limited, and may be administered by intravenous injection, intraperitoneal injection, subcutaneous injection, intramuscular injection, suppository, eye drops, calvarial administration, and the like.
また、 投与回数は限定されず、 単回投与でもよいし、 2〜~ h数回の複数回連続 投与でもよい。 連続投与を行う場合、 投与間隔は限定されず、 例えば、 毎日数日 間にわたって投与すればよい。 また、 トータルの投与量を調節することにより、 モデル動物の骨量減少の程度を調節することができ、例えば単回投与を行う場合、In addition, the number of administrations is not limited, and it may be a single administration or a plurality of continuous administrations of 2 to h several times. When continuous administration is performed, the administration interval is not limited, and for example, administration may be performed for several days every day. Also, by adjusting the total dose, The degree of bone loss in the model animal can be adjusted, for example, when a single dose is given,
1回の投与量を増やすことにより、 骨量減少の程度の大きいモデル動物を作出す ることができる。 By increasing the dose at one time, a model animal with a large degree of bone loss can be produced.
可溶型 RANKL又は可溶型 RANKLとェピトープタグの融合タンパク質を動物に投 与した場合、 これらが動物体内において、 破骨細胞を直接分化させ、 活性化する という、 他の物質を介在しない単純なメカュズムにより迅速に骨量減少症モデル 動物を作出することができる。  When a soluble RANKL or a fusion protein of soluble RANKL and an epitope tag is administered to an animal, it directly differentiates and activates osteoclasts in the animal body. This makes it possible to produce bone loss model animals more quickly.
本発明の骨量減少症モデル動物は以下の特徴を有する。 なお、 以下の記載で正 常動物とは、 骨代謝疾患に罹患しておらず、 また可溶型 RANKL若しくは可溶型 RANKL とェピトープタグの融合タンパク質を投与されていない動物をいい、 例え ば、 骨量減少症モデル動物作出の際に、 コントロールとして PBS等を投与した動 物を正常な動物とすることができる。  The osteopenia model animal of the present invention has the following characteristics. In the following description, a normal animal refers to an animal that does not suffer from a bone metabolic disease and has not been administered a soluble RANKL or a fusion protein of soluble RANKL and an epitope tag. As a control, animals that have been administered PBS or the like can be used as normal animals when creating a model animal for dose reduction.
( 1 ) 体液中の骨吸収マーカー濃度 (レベル) 力 S、 同じ種類の正常な動物 (正常 個体) に比べ一時的に上昇する。 可溶型 RANKL又は可溶型 RANKLとェピトープタ グの融合タンパク質の投与量にもよるが、正常動物に対して、例えば 1. 1倍以上、 好ましくは 1. 2倍以上、 さらに好ましくは 1. 3倍以上、 特に好ましくは 1. 4倍以 上上昇する。 血清中骨吸収マーカーとして、 血清中カルシウム、 血清中コラーゲ ン分解物 (CTx { 1型コラーゲン架橋 C -テロペプチド }、 NTx { 1型コラーゲン架 橋 N-テロペプチド }、 PICP { I型プロコラーゲン- C -プロペプチド }、 または PINP (1) Bone resorption marker concentration in body fluid (level) Force S, temporarily increased compared to normal animals of the same type (normal individuals). Although it depends on the dose of soluble RANKL or fusion protein of soluble RANKL and epitopog, it is, for example, 1.1 times or more, preferably 1.2 times or more, more preferably 1.3 times that of normal animals. More than double, particularly preferably 1.4 or more. Serum bone resorption markers include serum calcium, serum collagen degradation products (CTx {type 1 collagen cross-linked C-telopeptide}, NTx {type 1 collagen bridge N-telopeptide}, PICP {type I procollagen- C-propeptide}, or PINP
{ I型プロコラーゲン- N-プロぺプチド})、血清中酒石酸耐性酸フォスファターゼ (TRAP- 5 b ) 等が挙げられ、 尿中骨吸収マーカーとして、 尿中 CTxまたは NTx、 尿中ハイ ドロキシプロリン、 尿中ピリジノリン、 デォキシピリジノリン等が挙げ られる。そのほか、 ヒ ドロキシリジン配糖体(血清中及び尿中)、骨シァロ蛋白(血 清中) 等が挙げられる。 これらのマーカーは破骨細胞が増殖し、 活性が促進され たときに上昇する。 これらのマーカーは、 通常骨粗鬆症の骨代謝疾患における骨 代謝マーカーとして用いられている。 これらのマーカーは、 比色法や特異的抗体 を用いた免疫学的測定法により測定することができる。 {Type I procollagen-N-peptide}), serum tartrate-resistant acid phosphatase (TRAP-5 b), etc., and urinary bone resorption markers include urinary CTx or NTx, urinary hydroxyproline And urinary pyridinoline, deoxypyridinoline and the like. In addition, hydroxylysine glycosides (in serum and urine), bone shaloprotein (in serum) and the like can be mentioned. These markers are elevated when osteoclasts proliferate and promote activity. These markers are usually used as bone metabolism markers in osteoporotic bone metabolic diseases. These markers can be measured by a colorimetric method or an immunoassay using a specific antibody.
( 2 ) 血清中骨形成マーカー濃度 (レベル) が正常な動物に対して変動しない。 血清中骨形成マーカ一として、 血清中ォステオカルシン (osteocalcin)、 血清中 アルカリフォスファターゼ (特に骨特異的アルカリフォスファターゼ) が挙げら れる。 これらのマーカーは、 骨芽細胞由来のタンパク質であり、 骨芽細胞が増殖 したときに濃度が上昇する。 これらのマーカーは、 通常骨粗鬆症の骨代謝疾患に おける骨代謝マーカーとして用いられている。 これらのマーカーは、 比色法ゃ特 異的抗体を用いた免疫学的測定法により測定することができる。 可溶型 RANKL又 は可溶型 RANKLとェピトープタグの融合タンパク質は、 直接骨芽細胞に対して作 用しないが、 骨吸収と骨形成の力ップリング現象のため間接的に血清中骨形成マ 一力一濃度が変動することがある。 変動の有無は可溶型 RANKL又は可溶型 RANKL とェピトープタグの融合タンパク質の投与量、 投与回数、 投与後の時間経過によ つて異なる。 (2) Serum bone formation marker concentration (level) does not vary from normal animals. Serum osteocalcin, as serum bone formation marker Examples include alkaline phosphatase (especially bone-specific alkaline phosphatase). These markers are osteoblast-derived proteins that increase in concentration when osteoblasts proliferate. These markers are usually used as bone metabolic markers in osteoporotic bone metabolic diseases. These markers can be measured by an immunoassay using a colorimetric method or a specific antibody. Soluble RANKL or fusion protein of soluble RANKL and Epitope tag do not act directly on osteoblasts, but indirectly due to the force-pulling phenomenon of bone resorption and osteogenesis. One concentration may vary. The presence or absence of variation varies depending on the dose of soluble RANKL or the fusion protein of soluble RANKL and an epitope tag, the number of doses, and the time course after administration.
なお、 (1 ) の骨吸収マーカー及び (2 ) の骨形成マーカーを併せて骨代謝マー カーという。  The bone resorption marker (1) and the bone formation marker (2) are collectively referred to as a bone metabolism marker.
( 3 ) 骨密度が正常動物に比べ低下する。 骨密度とは、 骨中のカルシウムなどミ ネラル成分の密度を数字で表したものをいう。 骨密度には、 海綿骨密度、 全骨密 度、 皮質骨密度があるが、 本発明において、 単に骨密度という場合、 海綿骨密度 の こ と をい つ 。 '^密度 ίま、 pQCT (peripheral quantitative computerized tomography ; 末梢骨 X線 CT装置)、 DXA (Dual Energy X-Ray Absorptiometry ; 二 重エネルギー X線吸収法) 等により計測することができる。 可溶型 RANKL又は可 溶型 RANKLとェピトープタグの融合タンパク質の投与量にもよるが、 本発明の骨 量減少症モデル動物においては、 pQCTで大腿骨又は脛骨の骨密度を計測した場合、 成長板からの距離により異なるが、 例えば骨密度が 1 %以上、 2 %以上、 3 %以 上、 5 %以上、 好ましくは 7· 5%以上、 さらに好ましくは 10%以上、 最も好まし くは 20%以上低下する。  (3) Bone density decreases compared to normal animals. Bone density is a numerical representation of the density of mineral components such as calcium in bone. Bone density includes cancellous bone density, total bone density, and cortical bone density. In the present invention, when simply referred to as bone density, it can be referred to as cancellous bone density. It can be measured by '^ density, pQCT (peripheral quantitative computerized tomography), DXA (Dual Energy X-Ray Absorptiometry), etc. Depending on the dosage of soluble RANKL or fusion protein of soluble RANKL and Epitope tag, in the osteopenia animal model of the present invention, when the bone density of the femur or tibia is measured by pQCT, the growth plate For example, the bone density is 1% or more, 2% or more, 3% or more, 5% or more, preferably 7.5% or more, more preferably 10% or more, and most preferably 20%. More than that.
また、 全骨密度も正常動物に比べ低下し、 pQCTで大腿骨又は脛骨の骨密度を計 測した場合、成長板からの距離により異なるが、例えば全骨密度が 1 %以上、 2 % 以上、 3 %以上、 5 %以上、好ましくは 7. 5%以上、 さらに好ましくは 10%以上、 最も好ましくは 20%以上低下する。  In addition, the total bone density is lower than that of normal animals, and when the bone density of the femur or tibia is measured by pQCT, it varies depending on the distance from the growth plate.For example, the total bone density is 1% or more, 2% or more, 3% or more, 5% or more, preferably 7.5% or more, more preferably 10% or more, and most preferably 20% or more.
また、 皮質骨密度も正常動物に比べ低下し、 PQCTで大腿骨又は脛骨の骨密度を 計測した場合、成長板からの距離により異なるが、例えば皮質骨密度が 1 %以上、 2 %以上、 3 %以上、 5 %以上、 好ましくは 7. 5%以上、 さらに好ましくは 10% 以上、 最も好ましくは 20%以上低下する。 Cortical bone density is also lower than that of normal animals. When the bone density of the femur or tibia is measured by PQCT, it varies depending on the distance from the growth plate. 2% or more, 3% or more, 5% or more, preferably 7.5% or more, more preferably 10% or more, and most preferably 20% or more.
また、 皮質骨塩量が正常動物に比べ低下する。 骨塩量は骨塩 (ヒドロキシァパ タイ ト) の量であり、骨密度を反映している。 骨塩量は pQCT等により計測するこ とができる。 pQCTで大腿骨又は脛骨の皮質骨塩量を計測した場合、成長板からの 距離により異なるが、 例えば皮質骨塩量が 5 %以上、 好ましくは 7. 5%以上、 さ らに好ましくは 10%以上、 さらに、 好ましくは 15%以上、 最も好ましくは 20% 以上低下する。  In addition, the amount of cortical bone salt decreases compared to normal animals. Bone mineral content is the amount of bone mineral (hydroxyapatite) and reflects bone density. Bone mineral content can be measured by pQCT. When the cortical bone mineral content of the femur or tibia is measured by pQCT, depending on the distance from the growth plate, for example, the cortical bone mineral content is 5% or more, preferably 7.5% or more, more preferably 10%. In addition, it is preferably reduced by 15% or more, and most preferably by 20% or more.
さらに、皮質骨厚が正常動物に比べ低下する。皮質骨厚は pQCT等により計測す ることができる。 pQCTで大腿骨又は脛骨の皮質骨厚を計測した場合、 成長板から の距離により異なるが、 例えば皮質骨厚が 5 %以上、 好ましくは 7. 5%以上、 さ らに好ましくは 10%以上、 さらに好ましくは 15%以上、 最も好ましくは 20%以 上低下する。  Furthermore, cortical bone thickness is reduced compared to normal animals. Cortical bone thickness can be measured by pQCT. When the cortical bone thickness of the femur or tibia is measured by pQCT, depending on the distance from the growth plate, for example, the cortical bone thickness is 5% or more, preferably 7.5% or more, more preferably 10% or more, More preferably, it decreases by 15% or more, and most preferably by 20% or more.
( 4 )骨形態計測において、単位骨量(BV/TV ; bone volume/total tissue volume)、 骨梁数 (Tb. N; trabecular number) 骨梁幅 (Tb. Th; trabecular thickness) 正常な動物に比べ低下する。 単位骨量とは、 病理切片に置いて組織全体の面積に 占める骨梁全体の面積をいう。 骨梁とは、 骨端海綿質の骨組織の、 細かくほぐれ たような部分をいう。 本発明の骨量減少症モデル動物において、.単位骨量及び骨 梁数は、 可溶型 RANKL又は可溶型 RANKLとェピトープタグの融合タンパク質の投 与量にもよるが、 正常な動物に比べ、 例えば 10%以上、 好ましくは 20%以上、 さ らに好ましくは 30%以上、 さらに好ましくは 40%以上、 特に好ましくは 50%以 上減少している。  (4) In bone morphometry, bone volume / total tissue volume (BV / TV), trabecular number (Tb. N), trabecular width (Tb. Th; trabecular thickness) Compared to decrease. Unit bone mass refers to the area of the entire trabecular bone that occupies the entire tissue area in the pathological section. The trabecular bone is the part of the epiphysial cancellous bone that appears to be finely loosened. In the osteopenia animal model of the present invention, the unit bone mass and the number of trabecular bone depend on the dose of soluble RANKL or fusion protein of soluble RANKL and Epitope tag, but compared to normal animals, For example, it is reduced by 10% or more, preferably 20% or more, more preferably 30% or more, further preferably 40% or more, and particularly preferably 50% or more.
( 5 ) 破骨細胞数が正常な動物に比べ、 増加している。 破骨細胞数は、 常法に従 い、 骨形態計測により測定することができる。 破骨細胞数は、 可溶型 RANKL又は 可溶型 RANKLとェピトープタグの融合タンパク質の投与量にもよるが、 正常な動 物に比べ、例えば 20%以上、好ましくは 30%以上、 さらに好ましくは 40%以上、 さらに好ましくは 50%以上、 特に好ましくは 60%以上上昇している。  (5) The number of osteoclasts is increased compared to normal animals. The number of osteoclasts can be measured by bone morphometry according to a conventional method. The number of osteoclasts depends on the dose of soluble RANKL or the fusion protein of soluble RANKL and epitope tag, but for example 20% or more, preferably 30% or more, more preferably 40% compared to normal animals. % Or more, more preferably 50% or more, particularly preferably 60% or more.
( 6 ) 骨芽細胞面(0b. S/BS ; osteoblast surface/bone surface) が正常な動物に 比べて有意に上昇する。 骨芽細胞面とは、 骨梁表面全体における骨芽細胞が付着 している面の割合 (%) をいう。 骨芽細胞面は、 可溶型 RANKL又は可溶型 RANKL とェピトープタグの融合タンパク質の投与量にもよるが、 正常な動物に比べ、 例 えば 20%以上、 好ましくは 30%以上、 さらに好ましくは 40%以上、 さらに好ま しくは 50%以上、 特に好ましくは 60%以上上昇している。 (6) Osteoblast surface / bone surface (0b. S / BS) is significantly increased compared to normal animals. The osteoblast surface is the attachment of osteoblasts across the trabecular surface. This is the percentage (%) of the surface. The osteoblast surface depends on the dose of soluble RANKL or fusion protein of soluble RANKL and epitope tag, for example, 20% or more, preferably 30% or more, more preferably 40% compared to normal animals. % Or more, more preferably 50% or more, particularly preferably 60% or more.
なお、 可溶型 RANKLとェピトープタグの融合タンパク質の投与量を大きく した 場合、 例えばマウスに 2 mg/kgで投与した場合、 骨吸収と骨形成のカップリング 現象が認められるまでに時間がかかり、 骨芽細胞面の変化の出現が遅れる場合が ある。 従って、 骨芽細胞面の観察時期によっては、 骨芽細胞面の上昇が認められ ない場合もある。  In addition, when the dose of the fusion protein of soluble RANKL and Epitope tag is increased, for example, when administered to mice at 2 mg / kg, it takes time until the coupling phenomenon between bone resorption and bone formation is observed. The appearance of changes in the blast surface may be delayed. Therefore, depending on the time of observation of the osteoblast surface, an increase in the osteoblast surface may not be observed.
( 7 ) 類骨厚 (0. Th; osteoid thi ckness)、 吸収面 (ES/BS; eroded surface/bone surface)及び破骨糸田月包面 Oc. S/Bs; osteoclast surface/bone surface)力正常な 動物に比べ上昇する。 類骨とは、 石灰化して骨基質になる前の状態をいい、 吸収 面とは、 骨梁表面全体における浸食を受けて凹凸になっている面の割合をいう。 破骨細胞面とは、骨梁表面全体における破骨細胞が付着している面の割合をいう。 類骨厚、 吸収面及び破骨細胞面は、 可溶型 RANKL又は可溶型 RANKLとェピトープ タグの融合タンパク質の投与量にもよるが、正常な動物に比べ、例えば 20%以上、 好ましくは 30%以上、さらに好ましくは 40%以上、さらに好ましくは 50%以上、 特に好ましくは 60%以上上昇している。  (7) Normal bone thickness (0. Th; osteoid thickness, ES / BS; eroded surface / bone surface) and osteoclast tatsuki wrapping surface (Oc. S / Bs; osteoclast surface / bone surface) normal Increased compared to other animals. Osteoid refers to the state prior to calcification to become a bone matrix, and resorption surface refers to the proportion of the surface that has been eroded by the erosion of the entire trabecular surface. The osteoclast surface refers to the ratio of the surface to which osteoclasts adhere on the entire trabecular surface. Osteoid thickness, resorption surface, and osteoclast cell surface are, for example, 20% or more, preferably 30 compared to normal animals, depending on the dose of soluble RANKL or fusion protein of soluble RANKL and Epitope tag. % Or more, more preferably 40% or more, further preferably 50% or more, particularly preferably 60% or more.
( 8 ) 骨形態を観察した場合、 正常な動物に比べ、 骨の減少が認められる。 骨形 態はマイクロ CT等により測定することができる。  (8) When bone morphology is observed, bone loss is observed compared to normal animals. The bone shape can be measured by micro CT or the like.
( 9 ) 本発明の骨量減少症モデル動物において、 エス トロゲンは体内で合成され るので、 正常な動物と比べて血中エス トロゲン濃度は変動しない。 この点、 従来 の卵巣を摘出することにより作出されるモデル動物とは異なる。 また、 血中 PTH 濃度は、 正常な動物と比べて、 上昇することはない。 この点、 従来の低カルシゥ ム濃度の食餌を動物に与えることにより作出されるモデル動物とは異なる。  (9) In the osteopenia animal model of the present invention, since estrogen is synthesized in the body, the blood estrogen concentration does not vary compared to normal animals. This is different from the model animal produced by extracting the conventional ovary. In addition, blood PTH levels do not increase compared to normal animals. This is different from the model animals produced by feeding animals with a low calcium diet.
さらに、 従来の卵巣を摘出することにより作出されるモデル動物及び低カルシ ゥム濃度の食餌を動物に与えることにより作出されるモデル動物においては、 血 中 OPG (osteoprotegerin)濃度が低下するが、本発明の骨量減少症モデル動物では 変動しない。 さらに、 動物に可溶型 RANKL若しくは可溶型 RANKLとェピトープタグの融合タ ンパク質を投与し、 さらに卵巣を摘出しても、 骨量減少症モデル動物を作出する ことができる。 この場合、 好ましくは RANKLを投与した後に卵巣を摘出する。 卵 巣摘出と可溶型 RANKL若しくは可溶型 RANKLとェピトープタグの融合タンパク質 の投与を併用することにより、 生理的な閉経状態に類似した骨量減少症モデル動 物を作出することができる。 本発明は、 可溶型 RANKL若しくは可溶型 RANKLとェ ピトープタグの融合タンパク質を投与し、 さらに卵巣を摘出することにより作出 できる骨量減少症モデル動物を包含する。 該骨量減少症モデル動物は、 閉経後の 骨代謝に異常のあるヒ トの病態モデル動物として利用することができる。 Furthermore, in the model animals produced by removing the conventional ovaries and in the model animals produced by feeding animals with a low calcium diet, the blood OPG (osteoprotegerin) concentration decreases. It does not change in the osteopenia animal model of the invention. Further, a model animal for osteopenia can be produced by administering soluble RANKL or a fusion protein of soluble RANKL and an epitope tag to the animal, and further removing the ovary. In this case, the ovaries are preferably removed after administration of RANKL. By combining ovariectomy and soluble RANKL, or administration of a soluble RANKL and an epitope protein, a bone loss model animal similar to a physiological menopausal state can be produced. The present invention includes a model animal for osteopenia that can be produced by administering soluble RANKL or a fusion protein of soluble RANKL and an epitope tag, and further extracting the ovaries. The osteopenia model animal can be used as a human disease model animal having abnormalities in bone metabolism after menopause.
上記の特徴のうち、直接骨量の減少を反映しているマイクロ CTにより観察され る骨の減少、 骨密度及び単位骨量の低下が特に特徴的であり、 次いで破骨細胞数 (osteoclast number/bone perimeter)の増加及び骨梁数の減少が特徴的である。 さらに、 皮質骨塩量の減少も認められる。  Among the above features, bone loss, bone density and unit bone mass observed by micro-CT directly reflecting bone loss are particularly characteristic, followed by osteoclast number / An increase in bone perimeter) and a decrease in the number of trabeculae are characteristic. In addition, a decrease in cortical bone mineral content is also observed.
また、 上記の特徴は投与する GST- RANKL量が多いほど、 顕著に現れ、 特徴の程 度は投与量に依存する。上記の特徴の程度は、骨量減少症の重症度を示しており、 本発明の骨量減少症モデル動物は、投与する GST- RANKLの量を変えることにより、 重症度をコントロールすることができる。 すなわち、 軽症の骨量減少症モデル動 物を得ようとする場合は、 小量の GST-RANKLを投与すればよく、 重症の骨量減少 症モデル動物を得ようとする場合は、 大量の GST- RANKLを投与すればよい。 ここ で、 重症の骨量減少症モデル動物とは、 上記の特徴が強く現れているモデル動物 をいい、 例えば、 体液中の骨吸収マーカー濃度 (レベル) 力 同じ種類の正常な 動物 (正常個体) に比べ一時的に比較的大きく上昇したモデル動物であり、 正常 動物に対して、例えば 1. 2倍以上、好ましくは 1. 3倍以上、 さらに好ましくは 1. 4 倍以上上昇したモデル動物である。 また、 骨密度が正常動物に比べ比較的大きく 低下したモデル動物であり、 pQCTで大腿骨又は脛骨の骨密度を計測した場合、 成 長板からの距離により異なるが、 例えば骨密度が 7. 5%以上、 好ましくは 10%以 上、 さらに好ましくは 20%以上低下したモデル動物である。 さらに、 骨形態計測 において、 単位骨量(BV/TV; bone volume/total tissue volume)、 骨梁数 (Tb. N; trabecular number) 及び骨梁幅 (Tb. Th; trabecular thickness)が正常な動物に 比べ比較的大きく低下したモデル動物であり、 正常な動物に比べ、 例えば 10%以 上、 好ましくは 20%以上、 さらに好ましくは 30%以上、 さらに好ましくは 40% 以上、 特に好ましくは 50%以上減少しているモデル動物である。 さらに、 骨形態 計測において、 類骨厚(0. Th; osteoi d thickness)、 吸収面 (ES/BS ; eroded surface/bone surf ace)及ひ破骨細胞面 (0c. S/Bs ; osteoclast surface/Done surface)が正常な動物に比べ比較的大きく上昇したモデル動物であり、 正常な動 物に比べ、例えば 20%以上、好ましくは 30%以上、 さらに好ましくは 40%以上、 さらに好ましくは 50%以上、特に好ましくは 60%以上上昇しているモデル動物で める。 In addition, the above characteristics become more prominent as the amount of GST-RANKL administered increases, and the degree of characteristics depends on the dosage. The degree of the above characteristics indicates the severity of osteopenia, and the osteopenia animal model of the present invention can control the severity by changing the amount of GST-RANKL to be administered. . In other words, a small amount of GST-RANKL should be administered when trying to obtain a mild bone loss model animal, and a large amount of GST when trying to obtain a severe bone loss model animal. -RANKL should be administered. Here, a severe bone loss model animal is a model animal in which the above-mentioned characteristics are strongly manifested. For example, bone resorption marker concentration (level) in body fluid force Normal animal of the same type (normal individual) Is a model animal that has risen relatively relatively temporarily compared to normal animals, for example, a model animal that has increased by a factor of 1.2 or more, preferably 1.3 or more times, more preferably 1.4 or more times that of normal animals . In addition, it is a model animal whose bone density is relatively low compared to normal animals. When the bone density of the femur or tibia is measured by pQCT, it varies depending on the distance from the growth plate. %, Preferably 10% or more, more preferably 20% or more. Furthermore, in bone morphometry, animals with normal bone volume / total tissue volume (BV / TV), trabecular number (Tb. N) and trabecular width (Tb. Th; trabecular thickness) In Compared to normal animals, for example, it is 10% or more, preferably 20% or more, more preferably 30% or more, more preferably 40% or more, and particularly preferably 50% or more. Model animal. Furthermore, in bone morphometry, osteoid thickness (0. Th; osteoid thickness), resorption surface (ES / BS; eroded surface / bone surf ace) and osteoclast surface (0c. S / Bs; osteoclast surface / Done surface) is a model animal with a relatively large increase compared to normal animals, for example, 20% or more, preferably 30% or more, more preferably 40% or more, more preferably 50% or more compared to normal animals. Particularly preferred is a model animal that is elevated by 60% or more.
従って、 本発明の骨量減少症モデル動物の典型的な例として、 骨密度及び 又 は単位骨量が正常な動物に比べて減少している動物、 さらに、 破骨細胞数の増加 及び Z又は骨梁数の減少が正常な動物に比べて認められる動物が挙げられる。 さ らに、 骨梁幅の減少が正常な動物に比べて認められる動物、 類骨厚、 吸収面、 破 骨細胞面等の上昇が正常な動物に比べて認められる動物が挙げられる。  Therefore, as a typical example of the osteopenia animal model of the present invention, an animal in which bone density and / or unit bone mass is decreased as compared with a normal animal, and an increase in the number of osteoclasts and Z or Examples include animals in which the number of trabeculae is reduced compared to normal animals. Furthermore, there are animals in which a decrease in trabecular width is observed compared to normal animals, and animals in which increases in osteoid thickness, resorption surface, osteoclast surface, etc. are observed compared to normal animals.
なお、 可溶型 RANKL及び可溶型 RANKLとェピトープタグの融合タンパク質を動 物に投与した後、 上記の特徴が徐々に経時的に出現し、 特徴が最も顕著に出現し た後、 今度は骨形成が進み、 上記の特徴は徐々に失われ、 やがては正常に戻る。 すなわち、 可溶型 RANKL及び可溶型 RANKLとェピトープタグの融合タンパク質を 投与して得られる骨量減少症モデル動物は、 骨量減少という特徴に関して可逆的 である。  After administration of soluble RANKL and fusion protein of soluble RANKL and epotope tag to animals, the above characteristics gradually appeared over time, and after the characteristics appeared most prominently, this time, bone formation The above features are gradually lost and eventually return to normal. That is, the osteopenia animal model obtained by administering soluble RANKL and a fusion protein of soluble RANKL and an epitope tag is reversible with respect to the feature of bone loss.
特に、 上記の特徴のうち、 (1 ) の骨吸収マーカーは、 可溶型 RANKL若しくは可 溶型 RANKLとェピトープタグの融合タンパク質を投与後変動するが、 骨量減少症 モデル動物の作出後徐々に上昇し、 やがて正常値に戻る。  In particular, among the above features, the bone resorption marker (1) varies after administration of soluble RANKL or soluble RANKL and epitope-tagged fusion protein, but gradually increases after the creation of osteopenia model animals Eventually, it will return to the normal value.
後記のように、 本発明の骨量減少症モデル動物を用いて骨代謝に関する薬剤の 評価やスクリーニングを行う場合、 目的に応じて骨量が減少しつつある時期、 骨 量が最も減少した時期、 又は一旦減少した骨量が再び増加しつつある時期の適切 な時期のモデル動物を利用する。 従って、 発現している上記の特徴の強さにかか わらず、 可溶型 RANKL若しくは可溶型 RANKLとェピトープタグの融合タンパク質 を投与した後、 骨量が減少しつつある動物であって、 上記の特徴が発現しつつあ る動物は、 本発明の骨量減少症モデル動物に含まれる。 As will be described later, when evaluating or screening a drug related to bone metabolism using the osteopenia animal model of the present invention, when the bone mass is decreasing according to the purpose, when the bone mass is most reduced, Alternatively, use a model animal at an appropriate time when the bone mass once decreased is increasing again. Therefore, an animal whose bone mass is decreasing after administration of soluble RANKL or a fusion protein of soluble RANKL and an epitope tag, regardless of the strength of the above-described characteristics, The characteristics of Are included in the osteopenia animal model of the present invention.
本発明の骨量減少症モデル動物は、 上記のように他の物質を介在しない単純な メカニズムにより作出される。 従って、 可溶型 RA皿 L又は可溶型 RANKLとェピト ープタグの融合タンパク質を正常な動物に投与後、 1週間以内、 好ましくは 3日 以内 (7 2時間以内)、 さらに好ましくは 2日以内 (5 0時間以内)、 さらに好ま しくは 2 4時間以内に上記の特徴を有するようになり、 骨量減少症モデル動物が 作出される。  The osteopenia animal model of the present invention is produced by a simple mechanism not involving other substances as described above. Therefore, within 1 week, preferably within 3 days (72 hours or less), more preferably within 2 days after administration of soluble RA dish L or soluble RANKL and epitopic tag fusion protein to normal animals ( Within 50 hours), more preferably within 24 hours, it will have the above characteristics and a bone loss model animal will be created.
本発明の骨量減少症モデル動物は、 骨粗鬆症、 高カルシウム血症、 Paget 病、 腎性骨異栄養症、 クル病 ·骨軟化症、 関節リウマチ等の骨量減少を伴う骨代謝異 常疾患の疾患モデル動物として利用することができる。 具体的には、 以下のよう に利用することができる。  Osteoporosis, hypercalcemia, Paget's disease, renal osteodystrophy, kuru disease / osteomalacia, rheumatoid arthritis, etc. It can be used as a disease model animal. Specifically, it can be used as follows.
本発明の骨量減少症モデル動物は、 骨吸収抑制剤の評価又は新たな骨吸収抑制 剤(骨吸収阻害剤)のスクリーユングに用いることができる。本発明においては、 これらを骨吸収抑制剤又は骨吸収抑制剤候補物質の評価と呼ぶことがある。 公知 の骨吸収抑制剤としては、 リセドロネート、 ェチドロネート、 アレンドロネート などのビスフォスホネート、 カノレシトニン、 Cathepsin K 阻害剤、 プロ トンポン プ阻害剤などがある。骨吸収抑制剤は、骨量が減少しているときに効く。従って、 可溶型 RANKL又は可溶型 RANKLとェピトープタグの融合タンパク質を投与後、 骨 量が減少している時期に評価するのが望ましい。 この場合、 骨吸収抑制剤又は骨 吸収抑制剤候補物質を本発明の骨量減少症モデル動物に投与し、 骨量の減少が抑 制されるか否かにより骨吸収抑制剤又は骨吸収抑制剤候補物質の効果を評価する ことができる。 また、 可溶型 RANKL又は可溶型 RANKLとェピトープタグの融合タ ンパク質を投与する前、 例えば 1〜3日、 好ましくは 1日前に候補物質を投与し てもよい。 すなわち、 骨量減少症モデル動物における骨量の減少が低下、 あるい は骨量が増加するか否かを指標にすればよい。 具体的には、 骨量の増加を、 骨量 減少症モデル動物における体内の骨吸収マーカーレベルの低下、 骨密度の上昇、 単位骨量の上昇、 骨梁数、 骨梁幅の上昇、 類骨厚、 吸収面の上昇、 破骨細胞数の 低下、骨芽細胞面の上昇、及び CTにより認められる骨量の増加からなる群から選 択される少なくとも 1つを指標に判断することができる。 本発明のモデル動物を 用いることにより、 数日以内、 例えば 3〜4日程度で薬剤の評価を行うことがで さる。 The bone loss model animal of the present invention can be used for evaluation of a bone resorption inhibitor or screening of a new bone resorption inhibitor (bone resorption inhibitor). In the present invention, these are sometimes referred to as evaluation of a bone resorption inhibitor or a bone resorption inhibitor candidate substance. Known bone resorption inhibitors include risedronate, etidronate, bisphosphonates such as alendronate, canorecitonin, Cathepsin K inhibitor, and proton pump inhibitor. Bone resorption inhibitors work when bone mass is decreasing. Therefore, it is desirable to evaluate at the time when bone mass is decreased after administration of soluble RANKL or fusion protein of soluble RANKL and epotope tag. In this case, the bone resorption inhibitor or the bone resorption inhibitor candidate substance is administered to the osteopenia model animal of the present invention, and the bone resorption inhibitor or the bone resorption inhibitor depends on whether the bone loss is suppressed or not. Can evaluate the effect of candidate substances. In addition, the candidate substance may be administered before administration of soluble RANKL or a fusion protein of soluble RANKL and an epitope tag, for example, 1 to 3 days, preferably 1 day before. In other words, it is only necessary to use an index as to whether the decrease in bone mass or the increase in bone mass in the osteopenia model animal is reduced. Specifically, the increase in bone mass was achieved by reducing the bone resorption marker level in the bone loss model animal, increasing bone density, increasing unit bone mass, increasing trabecular number, trabecular width, osteoid Judgment can be made using at least one selected from the group consisting of thickness, increase in resorption surface, decrease in the number of osteoclasts, increase in osteoblast surface, and increase in bone mass observed by CT. The model animal of the present invention By using it, the drug can be evaluated within a few days, for example, about 3 to 4 days.
さらに、 卵巣を摘出した本発明の骨量減少症モデル動物は、 エス トロゲンゃァ ンドロゲンなどのホルモンあるいはホルモン受容体モジユレータ一の薬剤評価又 は新たなホルモン受容体モジュレーターのスクリ一二ングに用いることができる。 ホルモン受容体モジュレーターである選択的エストロゲン受容体モジュレーター は、 骨形成吸抑制剤の 1つであり、 ホルモンであるエストロゲン様の作用により 骨吸収を抑制するという効果を示す。 内因性のエストロゲンが存在する通常の野 生型動物による評価は困難である。 本発明の骨量減少症モデル動物の卵巣を摘出 (0VX)することにより、 単に卵巣を摘出しただけのモデル動物による評価よりも 極めて迅速に選択的エストロゲン受容体モジュレーターの薬剤評価を行うことが できる。 単に卵巣を摘出しただけのモデル動物では、 薬剤の効果が認められ薬剤 の評価ができるまでに、 数週間以上を要するが、 卵巣を摘出した本発明の骨量減 少症モデル動物を用いた場合、 半分以下の期間、 例えば 2週間以内、 好ましくは 1週間以内、 さらに好ましくは数日以内で評価を行うことができる。 公知の選択 的エストロゲン受容体モジュレーターとしては、ラロキシフェン等がある。また、 作用が未知のホルモン様化合物やホルモン受容体モジユレータ一候捕物質の評価 に用いることもできる。ホルモン又はホルモン受容体モジュレーター等の評価は、 骨量減少症モデル動物にホルモン又はホルモン受容体モジュレーター等を投与し、 骨量減少症モデル動物における減少した骨量が増加するか否かを指標にして評価 することができる。  Furthermore, the osteopenia model animal of the present invention from which the ovaries have been removed can be used for drug evaluation of hormones such as estrogen androgen or hormone receptor modulators or screening of new hormone receptor modulators. Can do. A selective estrogen receptor modulator, which is a hormone receptor modulator, is one of the bone formation and absorption inhibitors, and has the effect of suppressing bone resorption through the action of the hormone estrogen. Evaluation with normal wild animals with endogenous estrogen is difficult. By extracting the ovary (0VX) of the osteopenia animal model of the present invention, it is possible to perform drug evaluation of a selective estrogen receptor modulator much faster than the evaluation using a model animal that simply removes the ovary. . It takes several weeks or more for a model animal that has just had its ovaries removed before the drug effect is recognized and the drug can be evaluated.However, when the bone loss model animal of the present invention with the ovaries removed is used. The evaluation can be performed within a period of less than half, for example, within 2 weeks, preferably within 1 week, more preferably within a few days. Known selective estrogen receptor modulators include raloxifene and the like. It can also be used to evaluate hormone-like compounds of unknown action and hormone receptor modulators. Evaluation of hormones or hormone receptor modulators etc. is based on whether hormones or hormone receptor modulators are administered to osteopenia model animals and whether or not the decreased bone mass increases in osteopenia model animals. Can be evaluated.
また、 本発明の骨量減少症モデル動物は、 骨形成促進剤の評価又は新たな骨形 成促進剤のスクリーニングに用いることができる。 本発明においては、 これらを 骨形成促進剤又は骨形成促進剤候補物質の評価と呼ぶことがある。 骨形成促進剤 は、 骨量が一旦減少し、 元に戻るときに効く。 従って、 可溶型 RANKL又は可溶型 In addition, the osteopenia animal model of the present invention can be used for evaluation of osteogenesis promoters or screening for new osteogenesis promoters. In the present invention, these may be referred to as evaluation of osteogenesis promoter or osteogenesis promoter candidate substance. Bone formation promoters are effective when bone mass is once reduced and restored. Therefore, soluble type RANKL or soluble type
RANKL とェピトープタグの融合タンパク質を投与後、 骨量が減少を続け骨量の減 少が停止した時期から、 一旦減少した骨量が再び上昇する時期に評価するのが望 ましい。 この場合、 骨形成促進剤又は骨形成促進剤候補物質を本発明の骨量減少 症モデル動物に投与し、 骨量の増加が促進されるか否かにより骨形成促進剤又は 骨形成促進剤候補物質の効果を評価することができる。 この場合、 候補物質は、 可溶型 RANKL又は可溶型 RANKLとェピトープタグの融合タンパク質を動物に投与 し骨量の減少が認められた後に、 投与するのが好ましい。 評価は、 骨量減少症モ デル動物における減少した骨量が増加するか否かを指標にすればよい。 具体的に は、 骨量の増加を、 骨量減少症モデル動物における体内の骨形成マーカーレベル の上昇、骨密度の上昇、単位骨量の上昇、骨梁数、骨梁幅の上昇、類骨厚の上昇、 破骨細胞数及び吸収面の低下、骨芽細胞面の上昇、及び CTにより認められる骨量 の増加からなる群から選択される少なくとも 1つを指標に判断することができる。 骨形成促進剤としては、 例えば PTH (副甲状腺ホルモン) 等がある。 After administration of the RANKL and Epitope tag fusion protein, it is desirable to evaluate from the time when the bone mass continues to decrease and the bone loss declines to the time when the bone loss once increases again. In this case, the osteogenesis promoter or osteogenesis promoter candidate substance is administered to the osteopenia animal model of the present invention, and the osteogenesis promoter or The effect of the osteogenesis promoter candidate substance can be evaluated. In this case, the candidate substance is preferably administered after administration of soluble RANKL or a fusion protein of soluble RANKL and an epitope tag to an animal and a decrease in bone mass is observed. The evaluation may be based on whether or not the decreased bone mass increases in the osteopenia model animal. Specifically, the increase in bone mass can be achieved by increasing the bone formation marker level in the body, increasing bone density, increasing unit bone mass, trabecular number, trabecular width, Judgment can be made using at least one selected from the group consisting of an increase in thickness, a decrease in the number of osteoclasts and resorption surface, an increase in the osteoblast surface, and an increase in bone mass observed by CT. Examples of osteogenesis promoters include PTH (parathyroid hormone).
上記の骨吸収抑制剤、 骨形成促進剤は骨粗鬆症や骨量減少症の治療薬として用 いることができる。  The above bone resorption inhibitor and osteogenesis promoter can be used as a therapeutic agent for osteoporosis and osteopenia.
さらに、 本発明の骨量減少症モデル動物は、 骨代謝研究のための実験用動物と して用いることができる。すなわち、本発明の骨量減少症モデル動物においては、 骨吸収に伴う骨形成 (カップリング) が起こるので、 骨再構築調節メカニズムの 解明などの基礎研究に用いることができる。 また、 骨吸収と骨形成をカップリン グしているカップリングファクターの探索に用いることができる。 また、 RANKL シグナルを阻害する薬剤の評価及び破骨細胞分化をはじめとするメ力ニズム研究 に利用することができる。 RANKL シグナルを抑制する薬剤としては、 例えば Tec キナーゼファミリ一の阻害剤である LFM- A13等がある。  Furthermore, the osteopenia animal model of the present invention can be used as an experimental animal for bone metabolism research. That is, in the osteopenia animal model of the present invention, bone formation (coupling) accompanying bone resorption occurs and can be used for basic research such as elucidation of the mechanism for regulating bone remodeling. It can also be used to search for coupling factors that couple bone resorption and bone formation. It can also be used to evaluate drugs that inhibit the RANKL signal and to study mechanism including osteoclast differentiation. Examples of drugs that suppress the RANKL signal include LFM-A13, which is an inhibitor of the Tec kinase family.
さらに、 本発明の骨量減少症モデル動物においては、 可溶型 RANKL又は可溶型 RANKL とェピトープタグの融合タンパク質を投与後、 わずか 1— 2日程度で骨量 の減少が認められるので、 大学などの教育機関において生体内における骨量減少 の実習に用いることができる。 また、 可溶型 RANKL又は可溶型 RANKLとェピトー プタグの融合タンパク質を投与後、 大学や製薬メーカーなどの研究機関に骨量減 少症モデル動物を送付することにより、 研究者に本発明の骨量減少症モデル動物 を提供することができる。  Furthermore, in the osteopenia animal model of the present invention, since bone loss is observed in only about 1 to 2 days after administration of soluble RANKL or a fusion protein of soluble RANKL and an epitope tag, universities, etc. Can be used to practice bone loss in vivo. In addition, after administration of soluble RANKL or a fusion protein of soluble RANKL and an epitope tag, a bone loss model animal is sent to a research institution such as a university or a pharmaceutical manufacturer to provide the boner of the present invention to the researcher. It is possible to provide a model animal for dose reduction.
本発明を以下の実施例によって具体的に説明するが、 本発明はこれらの実施例 によって限定されるものではない。  The present invention will be specifically described by the following examples, but the present invention is not limited to these examples.
実施例 1 骨量減少症モデルマウスの作出 (1 ) GST-RANKLの調製 Example 1 Production of osteopenia model mice (1) Preparation of GST-RANKL
ヒ ト型 RANKL残基 140— 317をコードする cDNAに PCRにて Sal I, Not Iサイ ト を付カ卩 し、 これらのェン ドヌ ク レ アーゼを用いて、 pGEX-4T-2 ( GE healthcare; Genbank Accession Number U13854) の Glutathione S- transferase の下流にクローユングした。 BL21 (DE3) Escherischia coli (invitrogen)におけ る IPTG (終濃度: 0. 5 mM) によるタンパク質発現の誘導後、 菌体を抽出バッファ — (50 mM Tris-HCl, pH8. 0, lOO mM NaCl, 1 mM EDTA, 1 mM DTT, l% (v/v) TritonX-100) にて懸濁し、 4 °Cでソニケ一ターを用いて破砕した。 18000 X g、 15 minで遠心後、 上清を回収し Glutathione Sepharoseカラムにかけた。続いて洗浄バッファー(50 mM Tris-HCl, pH 8. 0, 100 mM NaCl, 1 mM DTT, 0. 1% (v/v) TritonX-100) にて洗 浄した。 その後、 Glutathione溶液 (20 mM還元型グルタチオン, 50 mM Tris- HC1, pH8. 0) で溶出した。 SDS - PAGEにて精製した GST-RANKLの分子量及び純度を確認 し、 フィルターろ過した。 分子量 47. 0 kDa、 純度 95%以上であった。 また、 リム ルス変形細胞溶解物試験 (l imulus amebocyte lysate assay) によりエンドトキ シン濃度を測定し、 lEU/V g未満であることを確認した。  The cDNA encoding human RANKL residues 140-317 was ligated with Sal I and Not I sites by PCR, and pGEX-4T-2 (GE healthcare) was used with these endonucleases. Genclo Accession Number U13854) was cloned downstream of Glutathione S-transferase. After induction of protein expression by IPTG (final concentration: 0.5 mM) in BL21 (DE3) Escherischia coli (invitrogen), the cells are extracted into buffer — (50 mM Tris-HCl, pH 8.0, lOO mM NaCl, The suspension was suspended in 1 mM EDTA, 1 mM DTT, l% (v / v) TritonX-100) and crushed using a sonicator at 4 ° C. After centrifugation at 18000 X g for 15 min, the supernatant was recovered and applied to a Glutathione Sepharose column. Subsequently, it was washed with a washing buffer (50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM DTT, 0.1% (v / v) Triton X-100). Thereafter, elution was performed with a Glutathione solution (20 mM reduced glutathione, 50 mM Tris-HC1, pH 8.0). The molecular weight and purity of GST-RANKL purified by SDS-PAGE were confirmed and filtered. The molecular weight was 47.0 kDa and the purity was 95% or more. In addition, the endotoxin concentration was measured by a limulus amebocyte lysate assay and confirmed to be less than lEU / V g.
GST-RANKL投与試験 GST-RANKL administration study
7週齢の C57BL/6Nマウス雌 10匹に GST- RANKL、 57 nmol (低用量)及び 426 nmol GST-RANKL, 57 nmol (low dose) and 426 nmol in 10 7-week-old female C57BL / 6N mice
(高用量)を 24時間毎 3回腹腔内投与し 3回目投与より 1. 5時間後に全採血を行 つた。 比較対象として PBSを同様に投与した群を用いた。 (High dose) was administered intraperitoneally three times every 24 hours, and whole blood was collected 1.5 hours after the third dose. A group to which PBS was similarly administered was used as a comparison target.
全血採血した血液は血清中の骨吸収パラメーター(カルシウム、 CTx、 TRAP-5b) と骨形成パラメ一ター {ォステオカルシン、アル力リフォスファターゼ(ALP) }の測 定を行った。カルシウムは 0CPC法(丽 0, 272-21801)にて測定を行い、 CTx (Nordic Blood samples collected from whole blood were measured for serum bone resorption parameters (calcium, CTx, TRAP-5b) and bone formation parameters {osteocalcin, al force phosphatase (ALP)}. Calcium was measured by the 0CPC method (丽 0, 272-21801) and CTx (Nordic
Bioscience Diagnostics) , TRAP- 5b (IDS Ltd, SB- TR103)及ぴォステオ力ノレシンBioscience Diagnostics), TRAP-5b (IDS Ltd, SB-TR103)
(Biomedical Technologies Inc. ) It ELISA法こて視 U定を行レヽ、 ALP i Bessey-Lowry 法(WAK0, 274-04401)にて測定を行った。 (Biomedical Technologies Inc.) It ELISA method trowel was measured and measured by ALP i Bessey-Lowry method (WAK0, 274-04401).
全血採血後のマウスは大腿骨、 脛骨、 大脳、 肺、 心臓、 肝臓、 胸腺、 脾臓、 腎 臓、 皮膚を採取し、 大脳、 肺、 心臓、 肝臓、 胸腺、 脾臓、 腎臓、 皮膚は HE染色に より自然発生病変を観察した。  After blood collection, the femur, tibia, cerebrum, lung, heart, liver, thymus, spleen, kidney, and skin were collected, and the cerebrum, lung, heart, liver, thymus, spleen, kidney, and skin were stained with HE. Thus, spontaneous lesions were observed.
大腿骨については、 pQCTを用い遠位端成長板より近位側に 0. 6 職 、 0. 8 賺、 1. 0 mmの海綿骨の位置で骨密度測定を行い、 脛骨については、 切片を作製し、 骨 形態計測を行った。 それぞれの測定値は Dunnett法によりコント口ール群と比較 し検定を行った。 骨吸収パラメ一ターと骨形成パラメーター For the femur, using pQCT, the proximal end of the distal growth plate is 0.6 jobs, 0.8 mm, 1. Bone density was measured at the position of 0 mm cancellous bone, and a section was prepared for the tibia and bone morphology was measured. Each measured value was compared with the control mouth group by Dunnett's method and tested. Bone resorption parameters and bone formation parameters
GST- RANKL投与により、 高用量の投与で血中 Ca濃度は、 約 1. 4倍程度有意 (Pく 0. 01) に上昇した (図 1 )。 コラーゲン代謝産物である CTxは高用量でコント ロール群と比較し約 1. 5倍程度有意(pく 0. 01)に上昇した (図 2 )。 TRAP- 5bについ ては、 GST- RANKL高用量の投与により約 1. 5倍程度有意に (pく 0. 01)上昇した (図 3 )。 血中のォステオカルシン、 ALPについては、 GST- RANKL投与で高用量、 低用 量のどちらの場合においても変化は見られなかった (図 4及び 5 )。 骨密度と骨形態計測  By administration of GST-RANKL, the Ca concentration in the blood increased significantly by approximately 1.4 times (P-0.01) at high doses (Fig. 1). CTx, a collagen metabolite, was approximately 1.5 times more significant (p> 0.01) compared to the control group at high doses (Fig. 2). As for TRAP-5b, the GST-RANKL high dose significantly increased by about 1.5 times (p 0.01) (Fig. 3). Regarding osteocalcin and ALP in blood, there was no change in GST-RANKL administration at both high and low doses (Figures 4 and 5). Bone density and bone morphometry
PQCTによる大腿骨の骨密度測定の結果、 成長板より近位側に 0. 6 mmの位置で は GST- RANKL高用量投与にて 10% 0. 8 では 23% 1. 0 では 20%の減少が 見られた。 Anova ; Dunnett法により有意差を検定したところ GST- RANKL高用量投 与では測定したすべての位置において pく 0. 01であった。また GST RANKLの低用量 投与では有意差は得られなかった (図 6 )。  As a result of measuring bone mineral density of the femur by PQCT, at a position 0.6 mm proximal to the growth plate, GST-RANKL was administered at a high dose of 10%, 0.8 at 23%, and 20 at 20% decrease. It was observed. Anova; Dunnett's method was used to test for significant differences. When GST-RANKL was administered at a high dose, p was 0.01 at all positions measured. In addition, no significant difference was obtained when GST RANKL was administered at a low dose (Fig. 6).
骨形態計測の結果単位骨量及び骨梁数は、 GST- RANKL 高用量の投与により約 50%まで減少し、 破骨細胞数は増加した。 また低用量の投与において減少は見ら れなかった (図 7 8及び 9 )。  As a result of bone morphometry, the unit bone mass and trabecular number decreased to about 50% by the high dose of GST-RANKL, and the number of osteoclasts increased. In addition, no decrease was observed at low doses (Figs. 78 and 9).
大腿骨の骨形態をマイクロ CTにより測定したところ高用量の GST- RANKL投与群 においては顕著な骨の減少が見られた (図 1 0 )。  When the bone morphology of the femur was measured by micro CT, significant bone loss was observed in the high-dose GST-RANKL administration group (Fig. 10).
採取した大脳、 肺、 心臓、 肝臓、 胸腺、 脾臓、 腎臓、 及び皮膚を HE染色し観察 したが、 すべての群で異常所見及び自然発生病変は認められなかった。  The collected cerebrum, lung, heart, liver, thymus, spleen, kidney and skin were stained with HE, and no abnormal findings or spontaneous lesions were observed in all groups.
GST-RANKL高用量の投与により骨吸収パラメーターの上昇、骨密度、単位骨量、 骨梁数の減少、 及び破骨細胞数の増加が見られたことから、 骨量減少症のモデル マウスとして利用が可能であり、 従来の方法に比べ簡便で、 より短期間に骨量減 少症モデルマゥスの作製を行うことができる。 W High dose of GST-RANKL increased bone resorption parameters, decreased bone density, unit bone mass, decreased number of trabeculae, and increased number of osteoclasts. Use as a model mouse for osteopenia. Therefore, it is simpler than the conventional method, and a bone loss model mouse can be produced in a shorter time. W
骨芽細胞面 Osteoblast surface
高用量の GST-RANKL投与により破骨細胞数の増加、 骨量の減少、 骨吸収が見ら- れた。さらに骨芽細胞面を調べたところ、有意に上昇していることがわかった(図 1 1 )。 これは破骨細胞数の増加や破骨細胞の活性化による骨吸収の亢進により、 骨形成が促進されるという現象、 即ち骨吸収と骨形成のカツプリングが認められ るモデルであることを示唆している。 しかしながら、 骨芽細胞のマーカーである 血清中のォステオカルシン濃度やアル力リフォスファターゼ活性には変化がない ので、 骨芽細胞の活性化は始まったばかりであることが示唆される。 実施例 2 骨量減少症モデルマウスの作出 (2 )  High doses of GST-RANKL resulted in increased osteoclast numbers, decreased bone mass, and bone resorption. Further examination of the osteoblast surface revealed that it was significantly elevated (Figure 11). This suggests that this is a model in which bone formation is promoted by an increase in the number of osteoclasts and increased bone resorption due to the activation of osteoclasts, that is, the bone resorption and bone formation coupling are recognized. ing. However, there is no change in the osteocalcin concentration in serum, which is a marker for osteoblasts, or the activity of phosphatase activity, suggesting that osteoblast activation has just begun. Example 2 Production of osteopenia model mice (2)
GST-RANKLは実施例 1と同様の方法で調製した。  GST-RANKL was prepared in the same manner as in Example 1.
RANKL投与試験 RANKL administration study
7週齢の C57BL/6Nマウス雌各 10匹に GST- RANKL213 nmol、 426 nmol、 852 nmol を 24時間毎 3回腹腔内投与し 3回目投与より 1. 5時間後に全採血を行った。比較 対象として PBSを同様に投与した。 GST- RANKLの 213 nmol、 426 nmol及び 852 nmol は、 それぞれ 10 20 g及び 40 gに相当する。  GST-RANKL213 nmol, 426 nmol, and 852 nmol were intraperitoneally administered every 24 hours three times to 10 7-week-old female C57BL / 6N mice, and whole blood was collected 1.5 hours after the third administration. PBS was administered in the same manner as a comparison target. GST-RANKL 213 nmol, 426 nmol and 852 nmol correspond to 10 20 g and 40 g, respectively.
全血採血した血液は血清中の骨吸収パラメータ一(カルシウム、 CTx、 TRAP- 5b) と骨形成パラメーター {ォステオカルシン、 アル力リフォスファターゼ(ALP)の測 定を行った。カルシウムは 0CPC法(WAK0, 272-21801)にて測定を行い、 CTx (Nordic Bioscience Diagnostics) TRAP— 5b (IDS Ltd, SB- TR103)及びォステオカルシン (Biomedical Technologies Inc. ) ίま ELISA法 ίこて lj定を行レヽ、 ALP It Bessey-Lowry 法(WAK0, 274-04401)にて測定を行った。  Blood samples collected from whole blood were measured for serum bone resorption parameters (calcium, CTx, TRAP-5b) and bone formation parameters (osteocalcin, al force phosphatase (ALP). Calcium was measured by the 0CPC method (WAK0, 272-21801), CTx (Nordic Bioscience Diagnostics) TRAP—5b (IDS Ltd, SB-TR103) and osteocalcin (Biomedical Technologies Inc.) ί ELISA method ί The measurement was performed by the ALP It Bessey-Lowry method (WAK0, 274-04401).
全血採血後のマウスは大腿骨、 脛骨を採取し、 大腿骨については、 pQCTを用い 成長板から近位側に 0. 6、 0. 8、 1. 0 mmの海綿骨の骨密度測定を行った。  After collecting the whole blood, the femur and tibia were collected from the mouse, and for the femur, the bone density of the cancellous bone of 0.6, 0.8, and 1.0 mm was measured proximally from the growth plate using pQCT. went.
それぞれの測定値は Dunnett法によりコントロール群と比較し検定を行った。 Each measured value was tested by comparison with the control group by Dunnett method.
GST- RANKL投与により、 血中 Ca、 CTx, TRAP- 5bは用量依存的に上昇した (それ ぞれ、 図 1 2、 1 3及び 1 4 )。 カルシウムの上昇は、 213nmol投与では、 pく 0. 05 と有意な上昇が見られ、 さらに 426 nmol , 852 nmol投与で pく 0. 01とより顕著な 上昇が見られた。 CTx及び TRAP - 5bについては、 213 nmolでは有意な上昇は見ら れなかったが、 426 nmol, 852 nmol投与で pく 0. 01と顕著な上昇が見られた。 GST-RANKL administration increased serum Ca, CTx, and TRAP-5b in a dose-dependent manner (Figs. 12, 13, and 14 respectively). The increase in calcium was significantly increased to p 0.05 at 213 nmol administration, and more pronounced at 0.01 at 426 nmol and 852 nmol administration. An increase was seen. Regarding CTx and TRAP-5b, no significant increase was observed at 213 nmol, but a marked increase was observed at 0.01 and 426 nmol and 852 nmol, respectively.
PQCTを用い骨密度の測定を行ったところ成長板より近位側に 0. 6 腿の位置で は GST- RANKL213 nmol投与では 11%、 426 nmol投与で 19% (Pく 0. 01) 、 852 nmol 投与で 30% (Pく 0. 01)の骨密度の減少が見られた。 0. 8 mmではそれぞれ 23°/。(pく 0. 01) 、 29% (pく 0. 01) 、 42% (pく 0. 01) 、 1. 0 mmでは、 それぞれ 23°/。(pく 0. 01)、 31% (pく 0. 01)、 44% (pく 0. 01)の骨密度の減少が見られた (図 1 5 )。 またこのような用量依存的な 骨密度の減少は、マイクロ CTを用いた画像解析においても確認できた(図 1 6 )。 上記の結果より従来法ではモデルマウスの作製に数週間単位の時間がかかり卵巣 摘出 (0VX) 等の特殊な技術を必要としたが、 本法では、 腹腔内投与という簡便な 方法で、約 50時間でモデルマウスを作製できる。また従来骨粗鬆症及び骨量減少 症の程度を簡単に変えるようなモデルマウスの作製技術はなかったが、 GST-RANKL の用量を変えて投与することで骨吸収パラメーターの上昇および骨量の減少量を 自由に調節し、 骨粗鬆症及び骨量減少症の程度にあわせたモデルマウスを作製す ることができる。 実施例 3 GST-RANKL投与マウスを用いた骨粗鬆症治療薬の評価  When bone density was measured using PQCT, at the position of 0.6 thigh proximal to the growth plate, GST-RANKL213 nmol administration was 11%, 426 nmol administration was 19% (P-0.01), 852 A 30% (P 0.01) decrease in bone density was observed with nmol administration. Each of 0.8 mm is 23 ° /. (P-0.01), 29% (p-0.01), 42% (p-0.01), 1.0 mm, 23 ° / each. (P <0.01), 31% (p <0.01), 44% (p <0.01) decreased bone density (Fig. 15). Such a dose-dependent decrease in bone density was also confirmed by image analysis using micro CT (Fig. 16). Based on the above results, the conventional method required several weeks for preparation of model mice and required special techniques such as ovariectomy (0VX). However, in this method, a simple method of intraperitoneal administration was used. Model mice can be made in time. In addition, there was no technology for creating model mice that could easily change the degree of osteoporosis and bone loss, but by changing the dose of GST-RANKL, it was possible to increase bone resorption parameters and decrease bone mass. A model mouse can be created that can be freely adjusted to match the degree of osteoporosis and osteopenia. Example 3 Evaluation of therapeutic agents for osteoporosis using mice administered with GST-RANKL
GST-RANKLは実施例 1と同様の方法で調製した。  GST-RANKL was prepared in the same manner as in Example 1.
7週齢の C57BL/6Nマウス雌各 5〜6匹に GST- RANKL426 nmolを 24時間ごとに 3 回腹腔内投与し、 骨粗鬆症治療薬 (リセドロネート) は、 GST- RANKL投与 3 日前 より 0. 01 mg/kg にて皮下投与し、 24 時間ごとに実験終了まで投与を続けた。 GST-RANKL426 nmol was administered intraperitoneally three times every 24 hours to 5 to 6 females of 7-week-old C57BL / 6N mice. The osteoporosis drug (risedronate) was administered 0.01 mg from 3 days before GST-RANKL administration. The drug was administered subcutaneously at / kg and continued every 24 hours until the end of the experiment.
GST- RANKL3回目の投与より 1. 5時間後に血清並びに大腿骨及び脛骨の採取を行い、 血清中の骨吸収パラメーター(カルシウム、 CTx、 TRAP_5b)と骨形成パラメーターSerum and femur and tibia were collected 5 hours after the third administration of GST-RANKL. Serum bone resorption parameters (calcium, CTx, TRAP_5b) and bone formation parameters
(ォステオカルシン、 ALP) の測定を行った。 大腿骨は、 pQCT及びマイクロ CTを 用いて骨密度を測定した。 それぞれの測定値は Dunnett法によりコントロール群 と比較し検定を行った。 (Osteocalcin, ALP) was measured. The femur was measured for bone density using pQCT and micro CT. Each measured value was tested by comparison with the control group by Dunnett's method.
骨吸収マーカーである TRAP- 5bは、 GST- RANKL投与群ではコントロール群と比 較し約 1 · 5倍程度の有意な上昇が見られ (Pく 0. 01)、 CTxは、 1. 4倍程度の有意な 上昇が見られた(Pく 0. 05)。 しかしながら GST - RANKL、 リセドロネート併用投与群 で TRAP-5b及び CTxはコント口ール群と比較し 3割程度減少した。(図 1 7及び 1 8 )。 GST_RANKL、 リセドロネート併用投与群での減少は、 マウス生体内にもとも と存在する破骨細胞がリセドロネ一トによって抑制されたためと考えられる。 ま た骨形成マーカーであるアル力リフォスファターゼ及びォステオカルシンは、 GST-RANKL投与群及び GST- RANKL、リセドロネート併用投与群でコント口ール群と 比較し変化がなかった (図 1 9及び 2 0 )。 TRAP-5b, a bone resorption marker, showed a significant increase of approximately 1.5 times in the GST-RANKL-treated group compared to the control group (P 0.01), and CTx was 1.4-fold. A significant increase was observed (P 0. 05). However, GST-RANKL and risedronate combined administration group TRAP-5b and CTx decreased by about 30% compared to the control mouth group. (Figures 17 and 18). The decrease in the GST_RANKL and risedronate combination group is considered to be due to the risedronate suppressing the osteoclasts originally present in the mouse. In addition, Al force phosphatase and osteocalcin, which are bone formation markers, were not changed in the GST-RANKL administration group, GST-RANKL, and risedronate combination administration group compared to the control mouth group (Figures 19 and 20). .
骨密度は、 GST - RANKL 投与群でコントロール群と比較し有意な減少が見られ、 成長板より近位側に 0. 6腿、 0. 8 mm、 1. 0 mmのどの位置においても 2割程度の有 意な減少が見られた (pく 0. Q1)。 GST-RANKL, リセドロネート併用投与群ではコン トロール群と同程度の骨密度の値を示した。 これらの結果は、マイクロ CTを用い た画像解析においても同様に確認できた。 図 2 1は大腿骨の骨密度を示し、 図 2 2はマイクロ CTにより測定した骨形態を示す。 上記の結果より上記の結果より骨粗鬆症及び骨量減少症治療薬をこのモデルマ ウスに投与することで新たな治療薬の評価に利用でき、 従来の 0VX等を利用した 骨量減少症モデルマウスでの薬剤評価と比較し、 数週間の時間の短縮及び利用す る薬剤量を大幅に減少することが可能と考えられる。 実施例 4 可溶型 RANKLを用いた骨量減少症モデルマゥスの作製  The bone density was significantly decreased in the GST-RANKL-treated group compared to the control group, and 20% at any position of 0.6 thigh, 0.8 mm, and 1.0 mm proximal to the growth plate. A significant decrease was observed (p 0. Q1). The GST-RANKL and risedronate combination group showed bone mineral density values similar to those of the control group. These results were also confirmed in the image analysis using micro CT. Fig. 21 shows the bone density of the femur, and Fig. 22 shows the bone morphology measured by micro CT. From the above results, it can be used for the evaluation of new therapeutic agents by administering osteoporosis and osteopenia treatment drug to this model mouse from the above results, and in the osteopenia model mouse using conventional 0VX etc. Compared to drug evaluation, it will be possible to shorten the time of several weeks and significantly reduce the amount of drug used. Example 4 Production of osteopenia model mouse using soluble RANKL
可溶型 RANKL (Peprotech社製) の 57 nmol、426 nmolを 7週令 C57BL/6Nマウス 雌各 10匹に 24時間毎 3回腹腔内投与し、 3回目の投与より 1. 5時間後の血清並 ぴに大腿骨及を採取した。 血清は骨吸収マーカー及ぴ骨形成マーカーを測定し、 大腿骨は PQCTにより成長板より近位側に 0. 6、 0. 8、 1. 0 mmの位置の骨密度を測 定した。 骨吸収マーカーである血中カルシウム、 CTxは 426 nmolの高用量投与に よりそれぞれ 1. 4倍程度、 1. 5倍程度有意に上昇し (図 2 3及び 2 4 )、 TRAP - 5b は有意な差ではないものの 1. 25倍程度の上昇傾向を示した (図 2 5 )。 また骨形 成マーカーであるォステオカルシン、 アル力リフォスファタ一ゼには変化がなか つた (図 2 6及び 2 7 )。大腿骨の骨密度は、 2割程度有意に減少した (図 2 8 )。 上記のことから骨量減少症モデルマゥスは、 GST-RANKL 特異的に作製できるも のではなく可溶型 RANKLすべてに適応し作製できる技術であり、 GST- RANKL同様 に薬剤評価にも利用できると考えられる。 実施例 5 骨量減少症モデルマゥスの評価 57 nmol and 426 nmol of soluble RANKL (manufactured by Peprotech) were intraperitoneally administered to 10 females of 7-week-old C57BL / 6N mice every 24 hours three times, and serum 1.5 hours after the third administration At the same time, the femur was collected. Serum was measured for bone resorption markers and bone formation markers, and femur was measured for bone density at 0.6, 0.8, and 1.0 mm proximal to the growth plate by PQCT. Bone resorption markers, blood calcium and CTx, were significantly increased by about 1.4 and 1.5 times, respectively, with high doses of 426 nmol (Figures 2 and 2), and TRAP-5b was significant. Although it was not the difference, it showed an upward trend of 1.25 times (Figure 25). There was no change in osteocalcin and al force rephosphatase, which are bone formation markers (Figs. 26 and 27). The bone density of the femur decreased significantly by about 20% (Fig. 28). From the above, osteopenia model mouse can be produced specifically for GST-RANKL. This technology can be applied to all soluble RANKL and can be used for drug evaluation as well as GST-RANKL. Example 5 Evaluation of osteopenia model mouse
形態訐測 Morphological measurement
7週齢メス C57BL/6Nマウスに GST-RANKLを 2 mg/kgにて 24時間ごとに 3回腹 腔内投与した後、 解剖し、 脛骨をトルイジンブルー染色後、 形態計測を行った。 コントロール群は溶媒(PBS)を同様に投与した。 GST- RANKL腹腔内投与群の脛骨の .骨形態計測を行つたところコント口ール群と比較し、 単位骨量 (BV/TV)は約 30% (Pく 0. 03)、 骨梁幅(Tb. Th)は約 10% (Pく 0. 03)、 骨梁数(Tb. N)は約 20% (pく 0. 05) 減少した(図 2 9〜 3 1 )。また類骨厚(0. Th)は約 1. 2倍(pく 0. 04)、吸収面(ES/BS) は約 1. 8倍 (pく 0. 001)、 破骨細胞数(N. Oc/B. Pm) は約 1. 9倍 (p<0. 001)、 破骨細 胞面(Oc. S/BS)は約 L 8倍 (pく 0. 001) に上昇した (図 3 2〜3 5 )。 またこの時 の切片を TRAP染色したところ、破骨細胞がコント口ール群と比較し多く観察され た (図 3 6 )。 この結果から血清及び骨密度だけでなく、破骨細胞数、破骨細胞面 等の骨形態計測によっても骨量の減少を評価できることがわかった。 また、 GST-RANKL投与により類骨厚は有意に増加したが、 骨芽細胞面の増加は認められ ず、 吸収面、 破骨細胞数、 破骨細胞面等の吸収系の項目にて有意な上昇が認めら れることから、 GST - RANKL は骨芽細胞には作用することなく、 直接、 破骨細胞を 分化 ·活性化させることにより骨量減少を引き起こしたことが分かった。 即ち、 GST-RANKL投与骨量減少症のメカニズムは、 骨形成の低下ではなく、 骨吸収の亢 進であった。 しかし、 GST- RANKL の投与量、 投与回数、 投与後の時間経過によつ ては、 カップリング現象により骨形成が促進され、 骨芽細胞面の増加が認められ ることもある。 ビスフォスフォネート (リセドロネート) を用いた薬剤評価の検討  Seven-week-old female C57BL / 6N mice were administered GST-RANKL at 2 mg / kg three times every 24 hours, then dissected, and the tibia was stained with toluidine blue, and morphometry was performed. The control group was similarly administered solvent (PBS). GST-RANKL intraperitoneally administered tibia bone morphology was measured and compared to the control mouth group, the unit bone mass (BV / TV) was about 30% (P 0.03), trabecular width (Tb. Th) decreased by about 10% (P-0.03), and the number of trabeculae (Tb. N) decreased by about 20% (p-0.05) (Figs. 29-31). The osteoid thickness (0. Th) is about 1.2 times (p <0.04), the resorption surface (ES / BS) is about 1.8 times (p <0.001), the number of osteoclasts (N Oc / B. Pm) increased approximately 1.9 times (p <0. 001), and osteoclast surface (Oc. S / BS) increased approximately L 8 times (p> 0.001) (Fig. 3 2-3 5). When this section was stained with TRAP, more osteoclasts were observed compared to the control mouth group (Fig. 36). From this result, it was found that not only serum and bone density but also bone loss can be evaluated by measuring bone morphology such as the number of osteoclasts and osteoclast surface. In addition, GST-RANKL administration significantly increased osteoid thickness, but no increase in osteoblast surface was observed. Significant in the resorption system items such as resorption surface, number of osteoclasts, and osteoclast surface. Since the increase was observed, it was found that GST-RANKL did not act on osteoblasts but caused bone loss by directly differentiating and activating osteoclasts. That is, the mechanism of GST-RANKL-administered bone loss was not bone formation, but increased bone resorption. However, depending on the dose of GST-RANKL, the number of doses, and the time course after administration, bone formation may be promoted by the coupling phenomenon, and an increase in the osteoblast surface may be observed. Examination of drug evaluation using bisphosphonate (risedronate)
7週令 C57BL/6メスマウスにリセドロネートを 3、 10、 30 μ g/kgと用量を振り 7-week-old C57BL / 6 female mice were dosed with risedronate at 3, 10, and 30 μg / kg.
GST-RANKL 投与前日より実験終了まで 24 時間ごとに皮下投与した。 3 回目のIt was administered subcutaneously every 24 hours from the day before GST-RANKL administration until the end of the experiment. 3rd time
GST- RANKL投与後 1. 5時間後に大腿骨、血清を採取し、 TRAP- 5b、カルシウム(Ca)、 アル力リフォスファターゼ(ALP)の測定を行い、 大腿骨は pQCTにより骨密度の測 定及びマイクロ CTを用い画像解析を行った。 After 5 hours of GST-RANKL administration, femur and serum were collected, and TRAP-5b, calcium (Ca), Al force phosphatase (ALP) was measured, and the femur was analyzed for bone density by pQCT and image analysis using micro CT.
Caは大きな変化は見られなかったが、 TRAP- 5bは RANKL投与により約 2倍に有 意に上昇した(pく 0. 01)。 この上昇した TRAP- 5bの濃度はリセドロネ一ト投与によ り RANKL単独投与群と比較し、それぞれ約 30% (pく。. 01)、50% (pく 0. 01)、70% (p<0. 01) と用量依存的に減少した。また ALPはリセドロネート 30 w.g/kg投与により、 RANKL 単独投与群と比較し有意な減少 (pく 0. 01 ) が見られた(図 3 7 )。 大腿骨は pQCT により成長板より近位側に 0. 6、 0. 8、 1. 0 mmの位置の骨密度を測定したところ、 PBS投与群と比較して RANKL投与群ではそれぞれ 27% (p<0. 01)、 35% (pく 0. 01)、 35% (p<0. 01) の減少が見られた。 この骨密度の減少は、 それぞれ 0. 6、 0. 8、 1. 0 mmの位置においてリセドロネ一ト投与では 3 μ g/kgの用量で 12% (ρく 0. 05) , 18% (ρく 0. 05)、 24%、 10 g/kgでは 13% (pく 0. 05)、 28%、 30%、 30 μ g/kgでは 10% (pく 0. 05)、 18% (pく 0. 05)、 20% (p<0. 05) まで抑えられた (図 3 8 )。 またこれ らの結果は、マイクロ CTを用いた画像解析においても同様に確認できた(図 3 9 )。 複数のビスフォスフォネートを比較した薬剤評価の検討  Although there was no significant change in Ca, TRAP-5b significantly increased approximately 2-fold by administration of RANKL (p 0.01). The elevated TRAP-5b concentration was about 30% (p. 01), 50% (p. 0.01), 70% (p. <0. 01) and decreased in a dose-dependent manner. In addition, ALP was significantly decreased (p <0.01) compared to the RANKL single administration group by risedronate 30 w.g / kg administration (Fig. 37). The femoral bone was measured by pQCT at a position of 0.6, 0.8, 1.0 mm proximal to the growth plate, and compared with the PBS-administered group, the RANKL-administered group showed 27% (p. <0. 01), 35% (p <0. 01), 35% (p <0. 01). This decrease in bone density is 12% (ρ 0. 05) and 18% (ρ at doses of 3 μg / kg with risedronate at 0.6, 0.8, and 1.0 mm, respectively. 0.05), 24%, 10 g / kg at 13% (p 0.05), 28%, 30%, 30 μg / kg at 10% (p 0.05), 18% (p 0. 05) and 20% (p <0. 05) (Fig. 3 8). These results were also confirmed in image analysis using micro CT (Fig. 39). Examination of drug evaluation comparing multiple bisphosphonates
7週令メス C57BL/6Nマウスにェチドロネートを 3、 30 mg/kg、 アレンドロネ一 トを 3、 30、 300 μ g/kg, リセドロネートを 1、 10、 100 μ g/kg と用量を振り、 GST-RANKL投与前日より実験終了まで 24時間ごとに皮下投与した。 GST- RANKLは 1 mg/kgにて 24時間ごとに 3回腹腔内投与した。 3回目の GST- RANKL投与後 1. 5 時間後に大腿骨、 脛骨、 血清を採取し、 血清中の TRAP_5b、 カルシウム(Ca)、 ァ ルカリフォスファターゼ(ALP)の測定を行い、 大腿骨は pQCTにより骨密度の測定 及びマイクロ CTを用い画像解析を行った。  7-week-old female C57BL / 6N mice were dosed with etidronate at 3, 30 mg / kg, alendronate at 3, 30, 300 μg / kg, risedronate at 1, 10, 100 μg / kg. It was administered subcutaneously every 24 hours from the day before RANKL administration until the end of the experiment. GST-RANKL was administered intraperitoneally 3 times every 24 hours at 1 mg / kg. After the third GST-RANKL administration, the femur, tibia, and serum were collected 5 hours later, and TRAP_5b, calcium (Ca), and alkaliphosphatase (ALP) in the serum were measured. The femur was examined by pQCT. Density measurement and image analysis were performed using micro CT.
Caはアレンドロネートを 300 IX g/kg, リセドロネ一トを 1又は 100 g/kg投 与によりそれぞれ RANKL投与と比較し有意に減少が (pく 0. 05, pく 0. 01, p<0. 01) 見られた (図 4 0 )。  Ca significantly decreased compared to RANKL administration when alendronate was administered at 300 IX g / kg and risedronate at 1 or 100 g / kg, respectively (p 0.05, p 0.01, p < (O. 01) was seen (Fig. 40).
TRAP- 5bは RANKL投与により約 4 0 %上昇したが、 有意差は得られなかった。 ァ レンドロネ一ト投与においては 300 g/kgの用量において TRAP- 5bの増加が有意 に (pく 0. 01) 抑制された。 またリセドロネート投与ではそれぞれ 1、 10、 100 β W 200 g/kg の用量において有意に (pく 0. 05, pく 0. 01, p<0. 01) 抑制された (図 4 0 )。 ALPはアレンドロネート及ぴリセドロネート投与により RANKL投与群に比べ、 約 20から 30% (pく 0. 01)の減少が見られ、この減少は用量依存的であった(図 4 0 )。 大腿骨は PQCTにより成長板より近位側に 0. 6、 0. 8、 1. 0 讓の位置の骨密度を測 定したところ、 PBS投与群と比較して RANKL投与群ではそれぞれ 7 % (pく 0. 01)、 13 % (pく 0. 01 )、 18 % (pく 0. 01) の減少が見られた。 この骨密度の減少は、 ェチド 口ネート投与では 30 mg/kg投与により全ての位置で 2から 4% (pく 0. 05) まで減 少が抑えられた。 同様に、アレンドロネート投与においては 300 μ g/kgの用量に おいて 0. 6、 0. 8 mmでそれぞれ 1% (p<0. 01)、 5% (pく 0. 05)まで減少が抑えられた。 またリセドロネ一ト投与では 100 μ g/kgの用量において 0. 6 mmで 1%まで減少が 抑えられた(Pく 0. 01 ) (図 4 1 )。 またこれらの結果は、 マイクロ CTを用いた画像 解析においても同様に確認できた (図 4 2 )。 TRAP-5b increased by about 40% with RANKL administration, but no significant difference was obtained. Alendronate administration significantly suppressed the increase in TRAP-5b at a dose of 300 g / kg (p 0.01). In addition, risedronate administration was 1, 10, and 100 β, respectively. W was significantly suppressed at a dose of 200 g / kg (p 0.05, p 0.01, p <0.01) (Figure 40). In ALP, alendronate and risedronate decreased about 20 to 30% (p 0.01) compared to the RANKL group, and this decrease was dose-dependent (Figure 40). The femur was measured by PQCT at a bone density of 0.6, 0.8 and 1.0 mm proximal to the growth plate. There was a decrease of p (0.01), 13% (p 0.01), and 18% (p 0.01). This decrease in bone density was reduced by 2 mg to 4% (p 0.05) at all positions at 30 mg / kg after administration of etido mouthnate. Similarly, alendronate decreased to 1% (p <0.01) and 5% (p0.05) at 0.6 and 0.8 mm, respectively, at a dose of 300 μg / kg. Was suppressed. With risedronate administration, the decrease was suppressed to 1% at 0.6 mm at a dose of 100 μg / kg (P 0.01) (Fig. 41). These results were also confirmed in image analysis using micro CT (Fig. 42).
上記の結果より第 1世代から第 3世代までのビスフォスフォネートを RANKL投 与 1 日前に事前投与することで、 その薬理効果を評価することができた。 また、 その効果を示した用量は、ェチドロネ一トは 30 mg/kg、アレンドロネ一トは 300 μ g/kg, リセドロネートは 100 w g/kgであり、それぞれの薬理効果の強さを反映し ていた。 これらの結果から、 RANKL投与骨量減少モデルが、 より薬理効果の強い 新規の薬剤のスクリーニング、 評価に応用可能であることが分かった。 また、 ビ スフォスフォネート事前投与からマウスの解剖までの時間はわずか 73. 5 時間で あり、 骨代謝マーカーや骨密度の測定も含めて、 わずか 4日間で薬理効果の評価 ができたことから、 迅速な骨吸収抑制剤の評価系としても応用可能であることが 分かった。 短期 0VXマウス作製法  Based on the above results, it was possible to evaluate the pharmacological effects of pre-administration of bisphosphonates from the 1st generation to the 3rd generation one day before RANKL administration. The doses that showed this effect were 30 mg / kg for etidronate, 300 μg / kg for alendronate, and 100 wg / kg for risedronate, reflecting the strength of their respective pharmacological effects. . From these results, it was found that the bone loss model with RANKL administration can be applied to screening and evaluation of new drugs with stronger pharmacological effects. In addition, the time from bisphosphonate pre-administration to mouse dissection was only 73.5 hours, and pharmacological effects could be evaluated in just 4 days, including measurement of bone metabolism markers and bone density. It was also found that it can be applied as a rapid bone resorption inhibitor evaluation system. Short-term 0VX mouse production method
7週令メスの C57BL/6Nマウスを 25日間飼育後、 GST- RANKLを 1 mg/kgにて 24 時間ごとに 2回腹腔内投与した。 2回目の投与より 24時間後に卵巣摘出を行い、 さらに卵巣摘出より 24時間後、 大腿骨、 脛骨、 血清を採取した。 これらのサンプ ルを、卵巣摘出後 4週間飼育した群から得たサンプルと比較した。また GST - RANKL 投与の比較対照として PBS 投与を行い、 卵巣摘出の比較対照として擬似手術 (Sham) を行った。 Seven-week-old female C57BL / 6N mice were bred for 25 days, and GST-RANKL was intraperitoneally administered twice every 24 hours at 1 mg / kg. Ovariectomy was performed 24 hours after the second administration, and femur, tibia, and serum were collected 24 hours after ovariectomy. These samples were compared to samples from a group that was raised 4 weeks after ovariectomy. PBS was administered as a comparative control for GST-RANKL, and sham surgery was performed as a comparative control for ovariectomy. (Sham) was done.
骨代謝マーカーは、 血中の TRAP- 5b、 カルシウム(Ca)、 アルカリフォスファタ ーゼ(ALP)の測定を行い、 大腿骨はそれぞれ pQCTにより骨密度の測定、 マイクロ CTにより画像解析を行った。飼育開始後、 0VXあるいは Shamの手術を行った日を (day X )で表した。  Bone metabolism markers were TRAP-5b, calcium (Ca), and alkaline phosphatase (ALP) in blood. Femur was measured for bone density by pQCT and image analysis by micro CT. The day when 0VX or Sham operation was performed after the start of breeding was expressed as (day X).
TRAP- 5bは PBS投与 +Sham (day27)群と比較し全ての GST- RANKL投与群で約 1. 8 倍に上昇したが有意な差は見られなかった。 Caは OVX (dayO)群で Sham (dayO)に比 較して約 11°/。の上昇は見られたものの、 全ての 0VX処理群に変化はなかった。 ま た ALP に関しては Sham (dayO)群と OVX (dayO)群では変化がなく、 PBS 投与 Sham (day27)群と比較し、 GST- RANKL投与 OVX (day27)群では約 40% (p<0. 01) の上 昇が見られた(図 4 3 )。  TRAP-5b increased about 1.8 times in all GST-RANKL administration groups compared with PBS administration + Sham (day 27) group, but no significant difference was observed. Ca is about 11 ° / in the OVX (dayO) group compared to Sham (dayO). However, there was no change in all the 0VX treatment groups. As for ALP, there was no change in the Sham (dayO) group and the OVX (dayO) group, compared with the PBS-treated Sham (day27) group, about 40% (p <0.p.) In the GST-RANKL-treated OVX (day27) group. 01) was observed (Fig. 4 3).
大腿骨の骨密度は成長板より近位側に 0. 6、 0. 8、 1. 0 mmの位置で測定したとこ ろ、 GST- RANKL投与 Sham (day27)群及び OVX (dayO)群において、 それぞれの対照群 である PBS投与 Sham (day27)群及び Sham (dayO)群と比べ 0. 6 mmでは約 7%、約 4%、 0. 8 mmでは約 14% (pく 0. 01)、約 9%、1. 0 mmでは約 16% (p<0. 01)、約 12% (p<0. 05) の減少が見られた。 GST- RAML投与 0VX (day27)群では約 4%、 約 13%、 約 15% (pく 0. 01) と対照群である PBS投与 Sham (day27)群と比べて有意に減少していた が、 GST- RANKL投与 Sham (day27)群とは差がなかった (図 4 4 )。 またこれらの結 果はマイクロ CTによる画像解析においても確認できた (図 4 5 )。  The bone density of the femur was measured at 0.6, 0.8, and 1.0 mm proximal to the growth plate.In the GST-RANKL-treated Sham (day 27) and OVX (day O) groups, Compared to PBS control Sham (day 27) group and Sham (day O) group of each control group, approximately 0.6% at 0.6 mm, approximately 4%, approximately 14% at 0.8 mm (p 0.01), At about 9% and 1.0 mm, the decrease was about 16% (p <0. 01) and about 12% (p <0. 05). The GST-RAML-administered 0VX (day 27) group had a significant decrease of about 4%, about 13%, and about 15% (p 0.01), compared with the PBS-treated Sham (day 27) group. There was no difference from the Sham (day 27) group administered with GST-RANKL (Fig. 44). These results were also confirmed by image analysis using micro CT (Fig. 45).
上記の結果より GST- RANKL投与により作製した骨量減少症モデルマウスは、 従 来の卵巣摘出マウスと同様の症状を示した。 通常、 卵巣摘出による骨量減少症モ デルマウス作製には 4週間以上の期間が必要であるが、 GST- RANKL投与後に卵巣 摘出を行うことで、その作製期間をわずか 72時間に短縮することができた。 これ ら GST- RANKL投与後に卵巣摘出を行ったマウスは、 摘出の 1日後にはエストロゲ ンがほぼ消失し、 ホルモンバランスも通常の卵巣摘出による骨量減少症モデルマ ウスと類似した状態になる。 従って、 卵巣摘出による骨量減少症モデルマウスと ほぼ同じ状態のマウスを、 簡易的にしかも短期間で作製することができた。 この Based on the above results, the osteopenia model mouse produced by GST-RANKL administration showed the same symptoms as the conventional ovariectomized mouse. Usually, it takes more than 4 weeks to produce a model mouse with osteopenia by ovariectomy, but ovariectomy after GST-RANKL administration can shorten the production period to only 72 hours. It was. Mice that have been ovariectomized after GST-RANKL administration have almost lost their estrogen one day after excision, and their hormone balance is similar to that of a model mouse model for osteopenia due to normal ovariectomy. Therefore, it was possible to easily and quickly produce a mouse having almost the same state as the model for osteopenia due to ovariectomy. this
GST-RANKL/0VX モデルは生理的に閉経後の女性の状態に近い骨量減少モデルであ り、 72時間という短期間で作製できることから、 ホルモンバランスを考慮した上 での迅速な薬剤評価に応用できる 骨治癒 The GST-RANKL / 0VX model is a bone loss model that is physiologically similar to that of postmenopausal women and can be created in a short period of 72 hours. Bone healing that can be applied to rapid drug evaluation
7週齢メス C57BL/6Nマウスに GST- RANKLを 1 mg/kgにて 24時間毎に 2回腹腔 内投与し、 2回目の投与より 24時間後を 0週とし 0、 1、 4、 6、 8週の血清及び大 腿骨を採取し、 同様に PBS投与したマウスと比較した。 骨代謝マーカーは血中の TRAP- 5b、 カルシウム(Ca)、 アルカリフォスファターゼ(ALP)の測定を行い、 大腿 骨はそれぞれ pQCTにより骨密度の測定及びマイク口 CTを用い画像解析を行った。 血清中の Caに大きな差はなかったが、 TRAP- 5bは RANKL投与 24時間後 (0週) にて PBS投与群と比較し、 約 3倍に上昇しており、 その後 PBS投与群と同様な挙 動を示した。 ALPに関しては 0及ぴ 1週にて約 1. 4倍の上昇が見られ、その後 PBS 投与群と同様な挙動を示した (図 4 6 )。  GST-RANKL was intraperitoneally administered at a dose of 1 mg / kg twice every 24 hours to 7-week-old female C57BL / 6N mice, and 24 hours after the second administration was defined as 0 week 0, 1, 4, 6, Eight-week serum and thigh bones were collected and compared with mice that received PBS in the same manner. Bone metabolism markers were measured for TRAP-5b, calcium (Ca), and alkaline phosphatase (ALP) in the blood, and the femur was analyzed for bone density by pQCT and image analysis using microphone-mouth CT. There was no significant difference in Ca in the serum, but TRAP-5b increased approximately 3 times compared to the PBS-administered group 24 hours after RANKL administration (week 0). Showed behavior. As for ALP, an increase of about 1.4-fold was observed at 0 and 1 week, and after that, behavior similar to that of the PBS-administered group was observed (Fig. 46).
大腿骨は、 PQCTにより成長板から近位側に 0. 6 mm、 0. 8 mm、 1. 0 mmの位置で 骨密度測定を行った。  The bone density of the femur was measured at 0.6 mm, 0.8 mm, and 1.0 mm proximal from the growth plate by PQCT.
pQCTによる骨密度測定の結果、 PBS群と比較し、 0、 1、 4週において 0. 6 mm ではそれぞれ 5、 7、 9%、 0. 8 mmでは 10、 11、 15%、 1. 0 mmでは 16、 13、 11 %の 骨密度の減少が見られた。 0. 6 mm、 0. 8 ram, 1. 0 mmの全ての位置において、 RANKL 投与後 4週目まで PBS投与群と比較して骨密度の減少が認められ、 その後、 6週 にて PBS 投与群と同程度まで回復した (図 4 7 )。 またこれらの結果はマイクロ CTによる画像解析においても確認できた (図 4 8 )。  As a result of bone density measurement by pQCT, compared with PBS group, it was 5, 7, 9% at 0.6 mm at 0, 1, 4 weeks, 10, 11, 15%, 1.0 mm at 0.8 mm, respectively. Showed a decrease in bone density of 16, 13, and 11%. At all positions of 0.6 mm, 0.8 ram, and 1.0 mm, bone density decreased as compared to the PBS group until 4 weeks after RANKL administration, and then PBS administration at 6 weeks. It recovered to the same level as the group (Fig. 47). These results were also confirmed by image analysis using micro CT (Fig. 48).
上記の結果より RANKL投与による骨量減少症モデルマウスは、 骨量の回復を比 較する上でも有用であることがわかった。 即ち、 2回の RANKL投与後、 6週までの 期間に骨量増加を促進する薬剤の評価が可能であることが分かった。  From the above results, it was found that the osteopenia model mouse by RANKL administration is useful for comparing the recovery of bone mass. That is, it was found that it is possible to evaluate a drug that promotes bone mass increase in the period up to 6 weeks after two administrations of RANKL.
PTHによる骨量増加評価 Evaluation of bone mass increase by PTH
7週令メスの C57BL/6Nマウスに GST- RANKLを 1 mg/kgにて 24時間毎に 2回投 与し、 2回目の投与より 24時間後に卵巣摘出を行った。 また卵巣摘出の 24時間 後から副甲状腺ホルモン(PTH) を皮下投与にて 160 ^u g/kgで 10日間連続投与し た。 また比較対照として PBS投与及び擬似手術 (Sham) を行い、 血清マ一カー及 び大腿骨の骨密度を測定した。 GST-RANKL was administered to 7-week-old female C57BL / 6N mice at 1 mg / kg twice every 24 hours, and ovariectomy was performed 24 hours after the second administration. From 24 hours after ovariectomy, parathyroid hormone (PTH) was administered subcutaneously at 160 ^ ug / kg for 10 consecutive days. In addition, PBS administration and sham surgery (Sham) were performed as comparative controls, and serum markers and The bone density of the femur was measured.
血清中の ALPは全ての GST- RANKL投与群にて約 24%の減少が見られ、 Caに変化 は見られなかった。また TRAP- 5bではすベての PTH投与群においてそれぞれの PTH 非投与群と比較し、 約 1. 5倍 (pく 0. 05) の有意な上昇が見られた (図 4 9 )。 また PBS投与 + Sham群と比較し、 PBS投与 0VX群と RANKL投与 Sham群は差が見られな かった。  Serum ALP decreased about 24% in all GST-RANKL administration groups, and Ca was not changed. In TRAP-5b, all PTH-treated groups showed a significant increase of about 1.5 times (p 0.05) compared to the non-PTH-treated groups (Fig. 49). Compared with the PBS-administered + Sham group, there was no difference between the PBS-administered 0VX group and the RANKL-administered Sham group.
骨密度は、 成長板から近位側に 0. 6 mm, 0. 8 腿、 1. 0 mmの位置で測定したとこ ろ GST- RANKL + Sham群では PBS+Sham群と比較しそれぞれ約 17% (p<0. 05) 、 15% (pく 0. 05) 、 18% (pく 0. 05)の減少が見られた。 また 0VX群ではそれぞれ約 5%、 4%、 8%の減少が見られたが、 0VX後 10日間では十分に骨密度の減少が見られなかった。 GST-RANKL + 0VX群では PBS+Sham群と比較し、 骨密度の減少は見られなかった。 PBS+Sham 群に PTH を投与した場合、 1. 0 mm の位置でのみ有意な骨密度の上昇 (Pく 0. 05)が見られた。 0VX群に PTHを投与しても、 骨密度の上昇は見られるが、 有意ではなかった。 一方、 GST- RANKL + Sham群に PTHを投与した場合は、 骨密度 の減少は有意に抑制され(Pく 0. 05)、 PBS+Sham群の骨密度よりも高かった(図 5 0 )。 またこれらの結果はマイクロ CTによる画像解析においても確認できた(図 5 1 )。 上記の結果より GST- RANKL投与による骨量減少症モデルマウスは、 評価時期及 び期間を変えることにより、 ビスフォスフォネートのような骨吸収抑制剤のみな らず、 PTH のような骨形成促進剤の評価にも利用できることが分かった。 また、 GST-RANKL投与により骨形成が活性化され、 PTHの評価をより短期間かつ高感度に 行えることが分かった。 ォスでの評価  Bone density was measured at 0.6 mm, 0.8 thigh, and 1.0 mm proximal to the growth plate. The GST-RANKL + Sham group was approximately 17% of the PBS + Sham group, respectively. There was a decrease of (p <0. 05), 15% (p <0. 05), 18% (p <0.05). In the 0VX group, decreases of about 5%, 4%, and 8% were observed, respectively. However, the bone density was not sufficiently decreased 10 days after 0VX. In the GST-RANKL + 0VX group, there was no decrease in bone density compared to the PBS + Sham group. When PTH was administered to the PBS + Sham group, a significant increase in bone density was observed only at the 1.0 mm position (P 0.05). Even when PTH was administered to the 0VX group, an increase in bone density was observed but not significant. On the other hand, when PTH was administered to the GST-RANKL + Sham group, the decrease in bone density was significantly suppressed (P 0.05), which was higher than that in the PBS + Sham group (Fig. 50). These results were also confirmed by image analysis using micro CT (Fig. 51). Based on the above results, model mice with osteopenia due to GST-RANKL administration can promote not only bone resorption inhibitors such as bisphosphonate but also bone formation like PTH by changing the evaluation period and period. It was found that it can also be used for evaluation of agents. In addition, it was found that administration of GST-RANKL activated bone formation, enabling PTH to be evaluated in a shorter period of time and with higher sensitivity. Evaluation in Oss
C57BL/6Nマウス 7週令ォスに GST-RANKLを 1 mg/kgにて 24時間毎に 3回腹腔 内投与し、 3回目の投与より 1. 5時間後に大腿骨、 血清を採取し PBS投与群と比 較した。 骨代謝マーカーは、 血中の TRAP- 5b、 カルシウム(Ca)、 アルカリフォス ファターゼ(ALP)の測定を行い、 大腿骨は pQCTにより骨密度の測定及びマイク口 C57BL / 6N mice GST-RANKL was intraperitoneally administered 3 times every 24 hours at 1 mg / kg in 7-week-old males, and femur and serum were collected 1.5 hours after the third administration and administered PBS Compared to the group. Bone metabolism markers are TRAP-5b, calcium (Ca), and alkaline phosphatase (ALP) in blood. Femur is measured by bone density using pQCT and microphone mouth.
CTを用い画像解析を行った。 Image analysis was performed using CT.
Caは PBS投与群と比較し 7%上昇が見られたが有意な差は得られず、 TRAP-5b は約 65% (pく 0. 003) の有意な上昇が見られた。 また ALPは変化が無かった (図 5 2 )。 大腿骨の骨密度は成長板より近位側に 0. 6、 0. 8、 1. 0 mmの位置で測定し たところ、 0. 6 mraでは約 6%、 0. 8 mmでは約 10%、 1. 0 mmでは約 15% (pく 0. 03) の減少が見られた (図 5 3 )。 またこれらの結果はマイクロ CTによる画像解析に おいても確認できた (図 5 4 )。 Ca increased by 7% compared to the PBS-administered group, but there was no significant difference, and TRAP-5b There was a significant increase of about 65% (p <0.003). There was no change in ALP (Fig. 52). The femur bone density was measured at 0.6, 0.8, and 1.0 mm proximal to the growth plate.It was about 6% at 0.6 mra and about 10% at 0.8 mm. At 1.0 mm, a decrease of about 15% (p 0.03) was observed (Fig. 53). These results were also confirmed by image analysis using micro CT (Fig. 54).
この結果から GST- RANKL投与による骨量減少症モデルマウスは、 従来の卵巣摘 出によるモデルマウスとは異なり、 雌雄を選ばず利用することができることがわ かった。 またォスでも利用できるモデルとして後肢懸垂、 低カルシウム食、 神経 切除等が知られているが、 GST-RANKL投与骨量減少モデルはより短期間に作製で きる点で、 これらより優れている。 他系統のマウスでの評価  From these results, it was found that the osteopenia model mouse by GST-RANKL administration can be used regardless of sex, unlike the conventional ovariectomized model mouse. In addition, hind limb suspension, low calcium diet, nerve resection, etc. are known as models that can be used in males, but the GST-RANKL administered bone loss model is superior in that it can be created in a shorter time. Evaluation with other strains of mice
ICRマウス 7週令メスに GST- RANKLを 1 mg/kgにて 24時間毎に 3回腹腔内投与 し、 3回目の投与より 1. 5時間後に大腿骨、血清を採取し PBS投与群と比較した。 骨代謝マーカーは、 血中の TRAP- 5b、 カルシウム(Ca)、 アルカリフォスファタ一 ゼ(ALP)の測定を行い、大腿骨は pQCTにより骨密度の測定及ぴマイクロ CTを用い 画像解析を行った。  GCR-RANKL was intraperitoneally administered 3 times every 24 hours at 1 mg / kg to 7-week-old female ICR mice. Femur and serum were collected 1.5 hours after the third administration and compared with the PBS group. did. Bone metabolism markers were TRAP-5b, calcium (Ca), and alkaline phosphatase (ALP) in blood. Femur was measured by bone density using pQCT and image analysis using micro CT. .
コントロール群と比較し血中 Caに変化はなかったものの、 TRAP- 5bは PBS投与 群と比較し 1. 8倍に上昇した (pく 0. 01)。 また ALPは変化が無かった (図 5 5 )。 大腿骨の骨密度は成長板より近位側に 1. 0、 1. 2、 1. 4蘭の位置で測定したところ、 対照群と比べ 1. 0 mmでは、 約 20%、 1. 2 mmでは、 約 20%、 1. 4 mmでは、 約 22% (pく 0. 0 5 ) の減少が見られた (図 5 6 )。 またこれらの結果はマイクロ CTによる 画像解析においても確認できた(図 5 7 )。 この結果から RANKL投与による骨量減 少症モデルマウスは、 C57BL/6 マウスだけでなく他系統のマウスにおいても作製 することができることがわかった。 フィ ッシャーラットを用いた検討。  Although there was no change in Ca in the blood compared with the control group, TRAP-5b increased 1.8 times compared with the PBS-treated group (p 0.01). There was no change in ALP (Figure 5 5). The bone density of the femur was measured at 1.0, 1.2, 1.4 orchid position proximal to the growth plate. About 1.0% at 1.0 mm compared to the control group, 1.2 mm Then, about 20% and 1.4 mm, a decrease of about 22% (p 0.05) was observed (Fig. 56). These results were also confirmed by image analysis using micro CT (Fig. 57). From these results, it was found that bone loss model mice by RANKL administration can be produced not only in C57BL / 6 mice but also in other strains of mice. Study using Fisher rats.
フィ ッシャーラット 7週令メスに GST- RANKLを 1 mg/kgにて 24時間毎に 3回腹 腔内投与し、 3回目の投与より 1. 5時間後に血清および大腿骨を採取し PBS投与 群と比較した。 血清を用いて骨吸収マーカーである Ca、 TRAP-5b (IDS Ltd, SB-TR102キット使用)、 骨形成マーカーである ALPを測定し、 大腿骨は pQCTによ り骨密度の測定及びマイクロ CTを用い画像解析を行った。 Fischer rats 7 week old females received GST-RANKL at 1 mg / kg three times by intraperitoneal route every 24 hours. Serum and femur were collected 1.5 hours after the third administration and PBS was administered. Compared to the group. Serum is used to measure bone resorption markers Ca, TRAP-5b (using IDS Ltd, SB-TR102 kit) and bone formation marker ALP. Femur is measured by bone density and micro CT using pQCT. Image analysis was performed.
血清中の TRAP - 5b、 Ca、 ALPはコントロール群と比較し変化がなかったが (図 5 8 )、 大腿骨の骨密度は成長板より近位側に 3匪の距離を測定したところ約 20% (pく 0. 02) の減少が見られた (図 5 9 )。 またこれらの結果はマイクロ CTによる 画像解析においても確認できた(図 6 0 )。 この結果から RANKL投与による骨量減 少症モデルは、 マウスのみならず、 ラットなどの他動物にも利用できることが分 カ つた。  Serum TRAP-5b, Ca, and ALP did not change compared to the control group (Fig. 58), but the bone density of the femur was measured at a distance of 3 mm proximal to the growth plate. There was a decrease in% (p く 0.02) (Fig. 59). These results were also confirmed by image analysis using micro CT (Fig. 60). From this result, it was found that the bone loss model by RANKL administration can be used not only for mice but also for other animals such as rats.
GST-RANKLの単回投与 Single dose of GST-RANKL
7週令メスの C57BL/6Nマウスに GST-RANKLを 1 mg/kgにて腹腔内投与し 12、 24、 48 時間後の血清中の骨吸収マーカー、 骨形成マーカーを測定した。 血清中ヒ ト RANKL濃度は GST- RANKL投与前と投与後、 2、 4、 8、 1 2、 2 4、 4 8、 7 2 時間後に採血し、 ELISAを用いて測定した。 また、 投与後 24、 48時間後の大腿骨 の骨密度も pQCTにて測定した。  GST-RANKL was intraperitoneally administered to 7-week-old female C57BL / 6N mice at 1 mg / kg, and serum bone resorption and bone formation markers were measured 12, 24, and 48 hours later. Serum human RANKL concentrations were collected before and after GST-RANKL administration, 2, 4, 8, 12 2, 24, 48, 72 hours, and measured using ELISA. The bone density of the femur 24 and 48 hours after administration was also measured by pQCT.
血清中ヒ ト RANKL濃度は投与後速やかに上昇し、 4時間後にピークに達した。 その後、 急速に減少し、 2 4時間後には検出できなくなった (図 6 1 )。 血清中の Caに変化は見られず、 TRAP-5bにおいては投与後 12時間で約 1. 7倍(pく 0. 01) に 有意に上昇した。また ALPにおいては GST- RANKL投与群において約 30% (p<0. 01) の有意な減少が見られた (図 6 2 )。 大腿骨の骨密度は成長板より近位側に 0. 6、 0. 8、 1. 0 mmの位置で測定したところ 24時間後、 48時間後の骨密度は対照群と比 ベ 0. 6 mmではそれぞれ約 4%、 約 5%、 0. 8 mmでは約 9%、 約 9%、 1. 0 mmでは 約 12% (pく 0. 05)、 約 15% (pく 0. 01) の減少が見られた(図 6 3 )。 またこれらの 結果はマイクロ CTによる画像解析においても確認できた (図 6 4 )。  Serum human RANKL concentration rose rapidly after administration and peaked after 4 hours. After that, it decreased rapidly and became undetectable after 24 hours (Fig. 61). There was no change in Ca in serum, and TRAP-5b significantly increased about 1.7 times (p 0.01) 12 hours after administration. In addition, ALP showed a significant decrease of about 30% (p <0.01) in the GST-RANKL administration group (Fig. 62). The bone density of the femur was measured at a position of 0.6, 0.8, 1.0 mm proximal to the growth plate. After 24 hours, the bone density after 48 hours was 0.6. About 4%, about 5% for mm, about 9% for about 0.8 mm, about 9%, about 12% for 1.0 mm (p <0.05), about 15% (p <0.01) Decrease was observed (Fig. 63). These results were also confirmed by image analysis using micro CT (Fig. 64).
この結果は、 GST- RANKLを 1 mg/kgにて単回投与で骨量を有意に減少させるこ とを示している。 しかしながら、 1回の投与と 2回の投与を比較すると 2回の投 与の方が、 成長板より近位側に 0. 6 mm、 0. 8 mm, 1. 0 mmの 3点全てで、 有意な骨 密度の減少が見られることから望ましいと考えられるが、 単回投与でも十分に骨 密度を減少させることが可能であることを示している。 GST- RANKLを 2回投与す る場合、 投与量を 2 mg/kgにすることで投与量 0. 5 rag/kg及び 1 mg/kgに比べて 骨量減少効果が増加したので、 単回投与でも投与量を増加させることにより自由 に骨量減少の程度を調節することができる。 即ち、 単回投与でも例えば投与量を 2 mg/kgにすることで、 成長板より近位側に 0· 6 mm, 0. 8 ram, 1. 0 mmの 3点全て で、 有意な骨密度の減少が見られることが期待できる。 This result shows that GST-RANKL can significantly reduce bone mass with a single dose of 1 mg / kg . However, comparing the single dose and the double dose, the two doses are 0.6 mm, 0.8 mm, and 1.0 mm proximal to the growth plate. Although a significant decrease in bone density is observed, this is desirable. It shows that the density can be reduced. When GST-RANKL was administered twice, the bone loss reduction effect increased compared to the dose of 0.5 rag / kg and 1 mg / kg when the dose was 2 mg / kg. However, the degree of bone loss can be freely adjusted by increasing the dose. That is, even with a single dose, for example, by setting the dose to 2 mg / kg, a significant bone density can be achieved at all three points: 0.6 mm, 0.8 ram, and 1.0 mm on the proximal side of the growth plate. It can be expected that there will be a decrease.
GST-RANKLの 7日間連日投与 Daily administration of GST-RANKL for 7 days
7週令メス C57BL/6マウスに GST- RANKLを 2 rag/kg/dayにて 7 日間連続腹腔内 投与し、 7回目の投与後 1. 5時間後に血清及び大腿骨の採取を行なった。 得られ た血清及び大腿骨は血清マーカーの測定及び骨密度を pQCTにて測定した。  GST-RANKL was administered intraperitoneally for 7 days to 7-week-old female C57BL / 6 mice at 2 rag / kg / day, and serum and femur were collected 1.5 hours after the seventh administration. Serum and femur obtained were measured for serum markers and bone density by pQCT.
骨吸収マーカーである Ca は約 20%上昇が見られたが有意な差は得られず、 TRAP - 5bにおいても約 30%の上昇傾向は見られるものの有意な差は見られなかつ た。 また ALPは約 30%の有意な上昇が見られた(pく 0. 02) (図 6 5 )。 大腿骨の骨密 度は成長板より近位側に 0. 6、 0. 8、 1. 0難の距離を測定したところ、 対照群と比 ベ 0. 6 mmでは、 約 21 % (pく 0. 05)、 0. 8 mmでは、 約 32% (pく 0. 05)、 1. 0讓では、 約 47% (pく 0. 01) の減少が見られた。 (図 6 6 )。 またこれらの結果はマイクロ CT による画像解析においても確認できた (図 6 7 )。  Ca, a bone resorption marker, increased by about 20%, but no significant difference was obtained. TRAP-5b also showed an upward trend of about 30%, but no significant difference. ALP was also significantly increased by about 30% (p 0.02) (Fig. 6 5). The bone density of the femur was measured at a distance of 0.6, 0.8, 1.0 difficult to the proximal side of the growth plate. At 0. 05) and 0.8 mm, there was a decrease of about 32% (p <0. 05), and at 1.0 mm, a decrease of about 47% (p <0.01). (Figure 6 6). These results were also confirmed by image analysis using micro CT (Fig. 67).
上記の結果より 7日間の連続投与により骨吸収マーカ一だけでなく骨形成マー カーの上昇が見られたことから骨吸収と骨形成の力ップリング現象が起こってい ると推測される。 よってこのモデルマウスは骨量減少症、 骨粗鬆症研究だけでな くカツプリング現象の解明にも利用できることがわかった。  Based on the above results, it was speculated that a bone pulling phenomenon between bone resorption and bone formation occurred due to an increase in the bone formation marker as well as the bone resorption marker after continuous administration for 7 days. Therefore, it was found that this model mouse can be used not only for bone loss and osteoporosis research but also for elucidating the coupling phenomenon.
GST-RANKLのマウス頭蓋冠投与 GST-RANKL administered to mouse calvaria
8週令メス C57BL/6Nマウスに GST- RANKLを頭蓋冠へ 3日間投与した。実験開始 GST-RANKL was administered to the calvaria for 3 days in 8-week old female C57BL / 6N mice. Experiment started
5日目に大腿骨を採取し、 その骨密度を pQCTにより評価した。 実験群としては、 GST-RANKL を 0. 5 mg/kgで 1 日 2回投与する実験群 1 、 GST-RANKLを 1 mg/kgでOn day 5, femurs were collected and their bone density was evaluated by pQCT. As experimental groups, GST-RANKL was administered at 0.5 mg / kg twice a day, experimental group 1, GST-RANKL was administered at 1 mg / kg.
1 日 1回投与する実験群 2、 比較対照として PBSを投与する PBS群の計 3群で実 験を行った。採取した大腿骨は、 pQCTにより成長板から近位側に 0. 6讓、 0. 8謹、 1. 0 mmの位置で海綿骨の骨密度測定を行った。 The experiment was conducted in a total of 3 groups: 2 experimental groups administered once a day and PBS groups administered with PBS as a comparative control. The collected femurs were 0.6 mm, 0.8 mm proximal to the growth plate by pQCT, 1. Bone mineral density of cancellous bone was measured at 0 mm.
PQCTによる骨密度測定の結果、 PBS群と比較して、 実験群 1では計測したすベ ての位置で骨密度の減少が見られた。実験群 2では、成長板より近位側に 0. 8 mm、 1. 0 mmの位置で骨密度の減少が見られた (図 6 8 )。  As a result of bone density measurement by PQCT, bone density decreased at all measured positions in experimental group 1 compared to PBS group. In experimental group 2, bone density decreased at 0.8 mm and 1.0 mm proximal to the growth plate (Figure 6 8).
また、 実験群 1と実験群 2を比較すると、 実験群 1の方でより骨密度が減少し ていたことから、 1日当たりの GST - RANKL投与量が同量の場合、 単回投与より複 数回投与する方がより骨密度減少が顕著であることが分かった。 実施例 6 骨量減少症モデルマウスを用いての RANKLシグナル阻害化合物の評価 In addition, when comparing experimental group 1 and experimental group 2, the bone density decreased more in experimental group 1, so that the same dose of GST-RANKL per day was more than a single dose. It was found that the decrease in bone density was more remarkable with multiple administrations. Example 6 Evaluation of RANKL signal inhibitory compounds using osteopenia model mice
7週令の C57BL/6N雌マウスに 20 μ gの GSTあるレ、は GST - RANKLを 24時間ごと に 3回投与した。 LFM-A13 (20 mg/kg body weigh) あるいは生理食塩水を GST- RANKL 投与 1時間前に投与した。 3回目の GST-RANKL投与より 1. 5時間後に血中 Caの測 定及び骨形態計測を行なった。 またマイクロ CTにより 3 D画像解析を行なつた。 Seven-week-old C57BL / 6N female mice were administered GST-RANKL three times every 24 hours with 20 μg GST. LFM-A13 (20 mg / kg body weigh) or physiological saline was administered 1 hour before GST-RANKL administration. Blood Ca and bone morphology were measured 1.5 hours after the third GST-RANKL administration. In addition, 3D image analysis was performed by micro CT.
Tecファミリ一キナーゼである Tec、 Btkは K0マウスを用いた解析等から破骨 細胞分化に重要な役割を担っていることが示唆されている。 LFM-A13は Tecファ ミリーキナーゼに属する Btk の ATP 結合領域に特異的に結合することによって Tec キナーゼの活性を阻害する薬剤である (Mahajan ら、 J. Biol. Chem. , 274, 9587 - 9599, 1999; Fer匪 desら、 J. Leukoc. Biol. , 78, 524 - 532, 2005)。  Tec and Btk, one of the Tec family kinases, have been suggested to play an important role in osteoclast differentiation from analyzes using K0 mice. LFM-A13 is a drug that inhibits the activity of Tec kinase by binding specifically to the ATP binding region of Btk belonging to Tec family kinase (Mahajan et al., J. Biol. Chem., 274, 9587-9599, 1999; Fer 匪 des et al., J. Leukoc. Biol., 78, 524-532, 2005).
マイクロ による画像解析の結果より、 LFM- A13を投与することで GST- RANKL 投与による骨量減少が抑えられた(図 6 9 )。また、骨形態計測において GST- RANKL 投与による単位骨量(BV/TV)の減少が LFM- A13投与によって有意に (pく 0. 01)抑制 された (図 7 0 )。 骨粱幅 (Tb. Th) および骨梁数 (Tb. N) は GST- RANKL投与によ り減少するが、 LFM-A13投与によってそれぞれ有意に(pく 0. 05および pく 0. 01)減少 が抑えられた (図 7 1及び 7 2 )。 破骨細胞数(N. 0c/B. Pm)および吸収面(ES/BS) については GST- RANKL投与により増加するが、 LFM-A13投与によってそれぞれ有 意に (pく 0. 01) 増加が抑えられた (図 7 3及び 7 4 )。 血中 Ca濃度は GST- RANKL 投与により増加するが LFM- A13投与により有意に(pく 0. 05)抑制された(図 7 5 )。 上記の結果より GST- RANKL投与骨量減少症モデルが RANKLシグナルを阻害する 薬剤の評価及び破骨細胞分化をはじめとするメ力-ズム研究にも応用できること が分かった 実施例 7 選択的エストロゲン受容体モジュレーター (ラロキシフェン) を用い た薬剤評価の検討 From the results of microscopic image analysis, administration of LFM-A13 suppressed bone loss due to GST-RANKL administration (Fig. 69). In bone morphometry, the decrease in unit bone mass (BV / TV) by GST-RANKL administration was significantly (p 0.01) suppressed by LFM-A13 administration (Fig. 70). Bone width (Tb. Th) and trabecular number (Tb. N) decrease with GST-RANKL administration, but significantly with LFM-A13 administration (p 0. 05 and p 0. 01), respectively. The decrease was suppressed (Figures 7 1 and 7 2). The number of osteoclasts (N. 0c / B. Pm) and resorption surface (ES / BS) are increased by GST-RANKL administration, but each LFM-A13 administration has a significant increase (p> 0.01). (Figures 7 3 and 7 4). The blood Ca concentration increased with GST-RANKL administration but was significantly (p 0.05) suppressed by LFM-A13 administration (Fig. 75). Based on the above results, GST-RANKL-administered osteopenia model can be applied to evaluation of drugs that inhibit RANKL signaling and mechanism research including osteoclast differentiation Example 7 Examination of drug evaluation using selective estrogen receptor modulator (raloxifene)
7週齢の C57BL/6N雌マウスに GST-RANKLを 1 mg/kgにて 24時間毎に 2回腹腔 内投与し、 2回目の投与より 24時間後に卵巣摘出(0VX)あるいは擬似手術(Sham) を行い、 その後 24時間後からラロキシフェン 1 mg/kg、 10 mg/kgをそれぞれ 24 時間おきに 14日間経口投与し続けた。また GST-RANKLおよびラロキシフェン投与 の比較対象としてそれぞれ PBS (i. p. )、 超純水 (P. O. )を用いた。 ラロキシフェン の 14日目の投与より 24時間後に血清おょぴ大腿骨の採取を行った。  GST-RANKL was intraperitoneally administered at a dose of 1 mg / kg every 7 hours to 7-week-old C57BL / 6N female mice, and ovariectomy (0VX) or sham surgery (Sham) 24 hours after the second administration After 24 hours, raloxifene 1 mg / kg and 10 mg / kg were orally administered every 24 hours for 14 days. PBS (i. P.) And ultrapure water (P. O.) were used as comparison targets for GST-RANKL and raloxifene, respectively. Serum opal femurs were collected 24 hours after the administration of raloxifene on day 14.
採取した血清は、 血中の骨吸収マーカー (Ca、 TRAP-5b) および骨形成マーカー (ALP)の測定を行い、大腿骨は、 pQCTにより成長板より近位側に 0· 6、 0. 8、 1. 0 賺 の距離にて骨密度、骨塩量、皮質骨厚の測定を行った。 またマイクロ CTにより画 像解析を行った。  The collected serum was measured for bone resorption markers (Ca, TRAP-5b) and osteogenesis markers (ALP) in the blood. The femur was measured proximal to the growth plate by pQCT. The bone density, bone mineral content, and cortical bone thickness were measured at a distance of 1.0 mm. Image analysis was performed by micro CT.
血中の Ca、 TRAP-5bは、 大きな変化は見られず、 PBS 投与 0VX群において PBS 投与 Sham群よりも有意な Caの上昇が見られたのみであった(図 7 6 )。 ALPは、 The Ca and TRAP-5b levels in blood did not change significantly, and only a significant increase in Ca was observed in the PBS-treated 0VX group compared to the PBS-treated Sham group (Fig. 76). ALP
GST- RANKL投与 0VX群において PBS 投与 Sham群よりも上昇傾向がみられたが、ラ ロキシフェン l mg/kg、 10 mg/kg投与により、 それぞれ有意に減少した (pく 0. 05、 pく 0. 01) (図 7 6 )。 pQCTを用い骨密度の測定では、 各群間で海綿骨密度に大きな 変化は見られなかった。一方、全骨密度では PBS 投与 0VX群において PBS投与 Sham 群よりも有意な減少が見られたが、 GST- RANKL投与 0VX群においては、 減少傾向 はあるものの有意な差は見られなかった。 GST-RANKL投与 0VX群においてはラ口 キシフェン l mg/kg、 10 mg/kg投与により、 成長板より近位側に 1. 0 mmの位置で それぞれ 10% (pく 0. 05)、 11% (pく 0. 05) 増加した (図 7 7 )。 また、 GST- RANKL投 与 0VX群においてラロキシフェン 10 mg/kg投与により、全骨密度は成長板より近 位側に 0. 6, 0. 8 mmの位置でそれぞれ 10% (pく 0. 05) 、 11% (p<0. 05) 増加した (図The GST-RANKL-treated 0VX group showed an increasing trend compared to the PBS-treated Sham group, but decreased significantly with raloxifene l mg / kg and 10 mg / kg respectively (p 0. 05, p 0 01) (Fig. 7 6). In bone density measurements using pQCT, there was no significant change in cancellous bone density between groups. On the other hand, the total bone density was significantly decreased in the PBS-administered 0VX group compared to the PBS-administered Sham group, but the GST-RANKL-administered 0VX group showed a decrease but no significant difference. GST-RANKL administration In the 0VX group, 10% (p-0.05) and 11% at a position of 1.0 mm proximal to the growth plate, respectively, by administration of laguchi xifene l mg / kg and 10 mg / kg (p 0. 05) increased (Fig. 7 7). In addition, raloxifene 10 mg / kg in the GST-RANKL-administered 0VX group resulted in a total bone density of 10% (p-0.05) at 0.6 and 0.8 mm, respectively, closer to the growth plate. 11% (p <0. 05) increased (figure
7 7 )。 pQCT測定による皮質骨塩量では、 PBS投与 0VX群および GST- RANKL投与7 7). For cortical bone mineral density by pQCT measurement, PBS administration 0VX group and GST-RANKL administration
0VX群において PBS投与 Sham群よりも、 成長板より近位側に 1· 0 mmの位置でそ れぞれ 34% (p〈0. 05)、 49% (p<0. 01) 減少が見られた (図 7 8 )。 GST- RANKL投与 0V) [群においてはラロキシフヱン 10 mg/kg投与により、 皮質骨塩量は成長板より 近位側に 0. 6、 0. 8ヽ 1. 0 讓の位置でそれぞれ 87% (p<0. 05)、 118% (p<0. 01) 、 137%In the 0VX group, 3 4% (p <0. 05) and 49% (p <0. 01) decrease at a position of 1.0 mm proximal to the growth plate, respectively, compared to the PBS-treated Sham group. It was seen (Figure 7 8). GST-RANKL administration (In the group, raloxifone was administered at 10 mg / kg , and the cortical bone mineral content was 87% (p <0. 05), 118% (p <0. 01), 137%
(pく 0. 01) 増加した (図 7 8 )。 また、 GST- RANKL投与 0VX群においてラロキシフ ェン 1 mg/kg投与により、 皮質骨塩量は成長板より近位側に 0. 8、 1. 0 mmの位置 でそれぞれ 93% (pく 0. 05)、 136% (pく 0. 01) 増加した (図 7 8 )。 同様に、 pQCT測 定による皮質骨厚では、 PBS投与 0VX群および GST-RANKL投与 0VX群において PBS 投与 Sham群よりも、成長板より近位側に 1. 0 瞧の位釁でそれぞれ 35% (pく 0. 05) 、 49% (pく 0. 01) 有意な減少が見られた (図 7 9 )。 GST- RANKL投与 0VX群において はラロキシフェン 10 mg/kg投与により、皮質骨厚は成長板より近位側に 0. 6、 0. 8、 1. 0 mmの位置でそれぞれ 92% (pく 0. 01) 、 123% (pく 0. 01) 、 133% (pく 0. 01) 増加し た (図 7 9 )。 また、 GST-RANKL投与 0VX群においてラロキシフェン l mg/kg投与 により、 皮質骨厚は成長板より近位側に 0. 8、 1. 0 mm の位置でそれぞれ 101%(p く 0.01) increased (Fig. 7 8). In the GST-RANKL-administered 0VX group, raloxifene 1 mg / kg was administered, and cortical bone mineral density was 93% at a position of 0.8 mm and 1.0 mm proximal to the growth plate. 05), increased by 136% (p 0.01) (Fig. 7 8). Similarly, the cortical bone thickness measured by pQCT was 35 % at a position of 1.0 mm proximal to the growth plate in the PBS-treated 0VX group and GST-RANKL-treated 0VX group compared to the PBS-treated Sham group. p (0.05), 49% (p 0.01) showed a significant decrease (Fig. 7 9). In the 0VX group treated with GST-RANKL, raloxifene was administered at 10 mg / kg, and the cortical bone thickness was 92% (p.0. 01), 123% (p <0.01), 133% (p <0.01) increased (Fig. 7 9). In addition, when raloxifene l mg / kg was administered in the 0VX group treated with GST-RANKL, cortical bone thickness was 101% at a position of 0.8 and 1.0 mm proximal to the growth plate, respectively.
(pく 0. 05)、 137% (pく 0. 01) 増加した (図 7 9 )。 これらの結果は、 マイクロ CT を用いた画像解析においても同様に確認できた (図 8 0 ) 。 この結果より RANKL 投与による骨量減少症モデルマウスは、 ラロキシフェン等の選択的エストロゲン 受容体モジュレーターの薬剤評価に利用できることが分かった。 実施例 8 低用量の PTHを用いた骨量增加評価 (p 0.05) and 137% (p 0.01) increased (Fig. 79). These results were also confirmed in image analysis using micro CT (Fig. 80). From these results, it was found that osteopenia model mice with RANKL administration can be used for drug evaluation of selective estrogen receptor modulators such as raloxifene. Example 8 Evaluation of bone mass increase using low dose PTH
7週齢メスの C57BL/6Nマウスに GST- RANKLを 1 mg/kgにて 24時間毎に 2回腹腔内 投与し、 2回目の投与より 24時間後から 24時間おきに 10日間連続で ΡΊΉを 40、 80 μ g/kgにてそれぞれ皮下投与を行った。 また GST-RANKL及ぴ PTH投与の比較対照とし てそれぞれ PBSを投与した。投下間投与後 24時間のマウスから血清および大腿骨の 採取を行った。  GST-RANKL was intraperitoneally administered at a dose of 1 mg / kg twice every 24 hours to 7-week-old female C57BL / 6N mice. After 24 hours from the second administration, wrinkles were continued for 10 days every 24 hours. Subcutaneous administration was performed at 40 and 80 μg / kg, respectively. PBS was administered as a comparative control of GST-RANKL and PTH administration. Serum and femur were collected from the mice 24 hours after the administration.
採取した血清は、 血中の骨吸収マーカー (Ca、 TRAP- 5b) および骨形成マーカー (ALP)の測定を行い、大腿骨は、 pQCTにより成長板より近位側に 0. 6、 0. 8、 1. 0 匪 の位置にて全骨密度、 皮質骨密度、 皮質骨厚、 皮質骨塩量、 及び骨幹の皮質骨密 度の測定を行った。 またマイクロ CTにより画像解析を行った。  The collected serum was measured for bone resorption markers (Ca, TRAP-5b) and osteogenesis markers (ALP) in the blood, and femur was measured at 0.6, 0.8 on the proximal side of the growth plate by pQCT. The total bone density, cortical bone density, cortical bone thickness, cortical bone mineral density, and cortical bone density of the diaphysis were measured at 1.0 mm. Image analysis was performed by micro CT.
血中の Ca、 TRAP- 5bは、 大きな変化は見られず、 GST- RANKL投与群において 80 g/kgの PTH投与により、 Caはわずかであるが有意に減少した (pく 0. 05) (図 8 Do—方、 ALPは、 GST- RANKL投与群において 80;U g/kgの PTH投与により、 有意 に減少し(pく 0.01)、 40 g/kgの PTH投与によっても減少傾向を示した(図 8 1 )。 GST - RANKL投与群においては 40// g/kgの PTH投与により PBS S与と比べて、海綿 骨密度は成長板より近位側に 0.6、 0.8 mmの位置でそれぞれ 25% (pく 0.01)、 28%There was no significant change in Ca and TRAP-5b in the blood, and in the GST-RANKL-administered group, administration of 80 g / kg PTH resulted in a slight but significant decrease in Ca (p 0. 05) ( Fig 8 In the GST-RANKL-treated group, Do-method and ALP were significantly reduced by administration of 80; U g / kg of PTH (p 0.01), and also decreased by administration of 40 g / kg of PTH (Fig. 8 1). In the GST-RANKL administration group, the cancellous bone density was 25% (p 0.01) at the position of 0.6 and 0.8 mm proximal to the growth plate compared to PBS S administration with PTH administration of 40 // g / kg. , 28%
(pく 0.05) 増加した (図 8 2)。 また、 GST- RANKL投与群において 80; g/kgの PTH 投与により、 海綿骨密度は成長板より近位側に 0.6 mmの位置で 20% (p<0.01) 増 加した(図 8 2)。一方、全骨密度では GST- RANKL投与群において 4() g/kgの PTH 投与により PBS投与と比べて、 成長板より近位側に 0.6、 0.8、 1.0 mmの位置でそ れぞれ 14% (pく 0.01) 、 17% (pく 0.01)、 19% (p<0.01) 増加した (図 8 3)。 また、 GST- RANKL投与群において 80/^g/kgの PTH投与により同様に 10% (pく 0.01)、 13%(p 0.05) increased (Fig. 82). In the GST-RANKL administration group, administration of 80 g / kg PTH increased the cancellous bone density by 20% (p <0.01) at a position 0.6 mm proximal to the growth plate (Fig. 82). On the other hand, the total bone density in the GST-RANKL administration group was 14 (%) at a position of 0.6, 0.8, and 1.0 mm proximal to the growth plate compared to PBS administration with 4 () g / kg PTH administration, respectively. (p 0.01), 17% (p 0.01), 19% (p <0.01) (Fig. 83). In addition, in the GST-RANKL administration group, 10% (p 0.01) and 13% were similarly administered by 80 / ^ g / kg PTH administration.
(pく 0.01)、 13% (p<0.01) 増加した (図 8 3)。 GST-RANKL投与群においては 40(p <0.01), increased by 13% (p <0.01) (Fig. 83). 40 in the GST-RANKL group
;zg/kgの ΡΊΉ投与により PBS投与と比べて、皮質骨密度は成長板より近位側に 0.8、; zg / kg sputum administration compared to PBS administration, cortical bone density is 0.8 on the proximal side of the growth plate,
1.0 mmの位置でそれぞれ 4°/。 (pく 0.01)、 5% (pく 0· 01) 増加した ((図 8 4)。 また、4 ° / at 1.0 mm position. (P <0.01), increased by 5% (p <0 01) ((Fig. 8 4).
GST- RANKL投与 0VX.群において 80 g/kgの PTH投与により、皮質骨密度は成長板 より近位側に 1.0脑の位置で 3% (pく 0.05) 増加した (図 8 4 )。 皮質骨塩量ではIn the 0VX. Group treated with GST-RANKL, administration of 80 g / kg PTH increased cortical bone density by 3% (p 0.05) at a position of 1.0 mm proximal to the growth plate (Fig. 84). In cortical bone mineral content
GST - RANKL投与群において 40 g/kgの PTH投与により PBS投与と比べて、成長板 より近位側に 0.6、 0.8、 1.0 mmの位置でそれぞれ 80% (pく 0.01)、 123% (pく 0.01)、In the GST-RANKL administration group, 80% (p 0.01) and 123% (p 0.01),
100% (p<0.01) 増加し、 80μ g/kgの PTH投与によってもそれぞれ46% (pく 0· 05)、Increased by 100% (p <0.01), and PTH of 80 μg / kg was 46 % (p + 0 05),
83% (pく 0.01) 、 77% (pく 0.01) 増加した (図 8 5)。 同様に、 皮質骨厚においてもIt increased by 83% (p 0.01) and 77% (p 0.01) (Fig. 85). Similarly, in terms of cortical bone thickness
GST-RANKL投与群において 40 g/kgの PTH投与により PBS投与と比べて、成長板 より近位側に 0.6、 0.8、 1.0 mmの位置でそれぞれ 86% (pく 0.01)、 127% (pく 0.01)、In the GST-RANKL administration group, compared to PBS administration with PTH of 40 g / kg, 86% (p 0.01) and 127% (p 0.01),
98% (pく 0.01) ±曽カ卩し、 80// g/kgの PTH投与によってもそれぞれ 50% (pく 0.05)、98% (p 0.01) ± 50%, 50% (p 0.05) by 80 // g / kg PTH administration,
89% (pく 0.01) 、 79% (pく 0.01) 増加した (図 8 6)。 一方、 骨幹における皮質骨密 度は GST- RANKL投与により PBS投与のコント口ール群と比べ、 3% (p<0.01) 減少 した (図 8 7)。 GST- RANKL投与群において 40、 80 g/kgの ΡΊΉ投与により PBS 投与と比べて、 それぞれ 3% (pく 0.01)、 3% (pく 0.01) 増加した (図 8 7)。 これら の結果は、マイクロ CTを用いた画像解析においても同様に確認できた(図 8 8)。 この結果より RANKL投与による骨量減少症モデルマウスは、 低用量の PTHによ る骨量増加作用を短期間に検出することができることがわかった。 実施例 9 可溶型 RANKLと GSTの融合タンパク質を 12週令のマウスに投与した骨量 減少症モデルマゥスの作製 They increased by 89% (p 0.01) and 79% (p 0.01) (Fig. 86). On the other hand, cortical bone density in the diaphysis was reduced by 3% (p <0.01) by GST-RANKL compared to the control group treated with PBS (Fig. 87). In the GST-RANKL-administered group, the 40 and 80 g / kg sputum doses increased by 3% (p 0.01) and 3% (p 0.01), respectively, compared to PBS (Fig. 87). These results were also confirmed in image analysis using micro CT (Fig. 88). From these results, it was found that osteopenia model mice with RANKL administration can detect the bone mass-increasing effect of low dose PTH in a short period of time. Example 9 Production of a model mouse with bone loss by administering a soluble protein of RANKL and GST to a 12-week-old mouse
GST- RANKLを 1 mg/kgにて 24時間毎に 12週齢 C57BL/6Nマウス雌雄に 24 時間毎 3 回腹腔内投与し、 3 回目の投与より 1. 5 時間後の血清並びに大腿骨及を採取した。 採取した血清は、血中の骨吸収マーカー(Ca、TRAP- 5b)およぴ骨形成マーカー(ALP) の測定を行い、 大腿骨は、 dual energy X-ray absorptiometry (DEXA)により骨密 度を測定し、 マイクロ CTにより画像解析を行った。  GST-RANKL was administered intraperitoneally at 12 mg / kg every 12 hours to male and female 12-week-old C57BL / 6N mice three times every 24 hours, and the serum and femur were evaluated 1.5 hours after the third dose. Collected. The collected serum is measured for bone resorption markers (Ca, TRAP-5b) and bone formation markers (ALP) in the blood, and the femur is checked for bone density by dual energy X-ray absorptiometry (DEXA). Measurement was performed and image analysis was performed by micro CT.
血中の TRAP-5bは雄では GST- RANKL投与により PBS投与と比べて、 有意な上昇 がみられた (pく 0. 05)。 Caおよびに ALPは上昇傾向が認められるものの、 有意な 変化は見られなかった (図 8 9 )。 一方、 血中の Caおよび TRAP-5bは雌において GST - RANKL投与により PBS投与と比べて、それぞれ有意な上昇がみられた(pく 0· 05、 pく 0. 01)。 しかしながら、 ALPには上昇傾向が認められるものの、 有意な変化は見 られなかった (図 8 9 )。 DEXAによる骨密度測定の結果、 GST - RANKL投与群で雄雌 共にコントロール群と比較しそれぞれ 8% (pく 0. 05)、 6% (p<0. 05) の全骨密度減 少が見られた (図 9 0 ) 。 これらの結果は、 マイクロ CT を用いた画像解析にお いても同様に確認できた (図 9 1 ) 0 12週齢の雌雄マウスの結果より RANKL投与 による骨量減少症モデルマウスは週齢を選ばず、 比較的高週齢のマウスにも利用 できることがわかった。 また、 RANKL投与による骨量減少症モデルマウスは 12週 齢においても雌雄に関係なく、 作製できることがわかった。 産業上の利用可能性 Serum TRAP-5b was significantly increased in males compared to PBS following GST-RANKL administration (p 0. 05). Although Ca and ALP showed an upward trend, no significant changes were observed (Fig. 89). On the other hand, Ca and TRAP-5b in blood were significantly increased in females by GST-RANKL administration compared to PBS administration (p 0. 05, p 0. 01). However, although ALP showed an upward trend, there was no significant change (Figure 89). As a result of bone density measurement by DEXA, the total bone density decreased by 8% (p <0.05) and 6% (p <0. 05) in both males and females in the GST-RANKL administration group compared to the control group. (Fig. 90). These results were also confirmed in the image analysis using micro CT (Fig. 9 1) 0 From the results of male and female mice at 12 weeks of age, the model for osteopenia due to RANKL administration was selected at the age of weeks. It was also found that it can be used for relatively older mice. It was also found that model mice with osteopenia due to RANKL administration can be produced at 12 weeks of age regardless of sex. Industrial applicability
本発明により、 可溶型 RANKL又は可溶型 RANKLとェピトープタグの融合タンパ ク質の投与による破骨細胞の直接的な分化 ·活性化促進という単純なメカニズム により、 迅速に骨量減少症のモデル動物を作出することができる。 このようにし て得られた骨量減少症モデル動物を用いることにより、 薬剤の評価も迅速に行え るようになる。 また、 本発明の骨量減少症モデル動物においては、 RANKL により 直接破骨細胞の分化 ·活性化が起こるので、 純粋に破骨細胞の作用による骨破壊 に対する骨吸収抑制剤の効果を評価できる。 さらに、 骨量減少症のモデル動物を 作製した後、骨量を元に戻す早さに着目すれば、骨量増加薬の評価も可能である。 さらに、 卵巣摘出と可溶型 RANKL又は可溶型 RANKLとェピトープタグの融合タ ンパク質の投与を組合せることにより、 生理的にホルモンバランスが閉経に類似 した状態で、 通常作製に数週間程度要する卵巣摘出モデルよりも、 さらに迅速に 骨量減少症モデル動物を作出することができる。 According to the present invention, a model animal for osteopenia can be rapidly produced by a simple mechanism of direct differentiation / activation promotion of osteoclasts by administration of soluble RANKL or a fusion protein of soluble RANKL and an epitope tag. Can be created. By using the osteopenia animal model obtained in this way, drug evaluation can be performed quickly. Further, in the osteopenia animal model of the present invention, since osteoclast differentiation / activation occurs directly by RANKL, the effect of the bone resorption inhibitor on bone destruction caused by pure osteoclast action can be evaluated. In addition, a model animal for bone loss If attention is paid to the speed with which the bone mass is restored after the production, it is possible to evaluate a bone mass increasing drug. Furthermore, by combining ovariectomy and administration of soluble RANKL or soluble RANKL and epitopic tag fusion protein, the ovary, which normally takes several weeks to produce, with a physiologically similar hormone balance to menopause A bone loss model animal can be created more rapidly than an excised model.
本発明の骨量減少症モデル動物は、 骨代謝疾患の治療等に用いる薬剤のスクリ 一ユングに用いることができ、 さらに骨代謝疾患の研究用動物として用いること ができる。  The osteopenia model animal of the present invention can be used for screening drugs used for the treatment of bone metabolic diseases and the like, and can also be used as a research animal for bone metabolic diseases.
本明細書で引用した全ての刊行物、 特許おょぴ特許出願をそのまま参考として 本明細書にとり入れるものとする。 配列表フリーテキスト  All publications and patent applications cited in this specification are incorporated herein by reference in their entirety. Sequence listing free text
配列番号 3〜 1 8 合 SEQ ID NOs: 3 to 1 8

Claims

請求の範囲 The scope of the claims
1 . 可溶型 RANKL又は可溶型 RANKLとェピトープタグの融合タンパク質を非 ヒ ト動物に投与し、 該非ヒ ト動物体内における破骨細胞の分化及び活性化を促進 することを含む、 骨量減少症モデル動物の作出方法。 1. Osteopenia, comprising administering soluble RANKL or a fusion protein of soluble RANKL and an epitope tag to a non-human animal, and promoting differentiation and activation of osteoclasts in the non-human animal. How to create a model animal.
2 . ェピトープタグがグルタチオン- S-トランスフェラーゼである請求項 1記 载の骨量減少症モデル動物の作出方法。  2. The method for producing an osteopenia model animal according to claim 1, wherein the epitope tag is glutathione-S-transferase.
3 . 可溶型 RANKL又は可溶型 RANKLとェピトープタグの融合タンパク質を非 ヒ ト動物に投与後、 1週間以内に骨量減少症モデル動物を作出し得る請求項 1又 は 2に記載の骨量減少症モデル動物の作出方法。  3. The bone mass according to claim 1 or 2, wherein a model animal for osteopenia can be produced within one week after administration of soluble RANKL or a fusion protein of soluble RANKL and an epitope tag to a non-human animal. A method for producing a reduction model animal.
4 . 5 0時間以内に骨量減少症モデル動物を作出し得る請求項 3記載の骨量 減少症モデル動物の作出方法。  4. The method for producing an osteopenia model animal according to claim 3, wherein the osteopenia animal model can be produced within 50 hours.
5 . 2 4時間以内に骨量減少症モデル動物を作出し得る請求項 3記載の骨量 減少症モデル動物の作出方法。  5. The method for producing an osteopenia model animal according to claim 3, wherein the osteopenia animal model can be produced within 4 hours.
6 . 非ヒ ト動物がげつ歯類に属する動物である請求項 1〜 5のいずれか 1項 に記載の骨量減少症モデル動物。  6. The osteopenia animal model according to any one of claims 1 to 5, wherein the non-human animal is an animal belonging to rodents.
7 . 非ヒ ト動物がマウス又はラットである請求項 6記載の骨量減少症モデル 動物の作出方法。  7. The method for producing an osteopenia animal model according to claim 6, wherein the non-human animal is a mouse or a rat.
8 . 請求項 1〜 7のいずれか 1項に記載の骨量減少症モデル動物の作出方法 であって、 可溶型 RANKL又は可溶型 RANKLとェピトープタグの融合タンパク質の 投与量を変えることにより、 重症度の異なる骨量減少症モデル動物を作出する、 骨量減少症モデル動物の作出方法。  8. A method for producing an osteopenia animal model according to any one of claims 1 to 7, wherein the dosage of the soluble RANKL or the fusion protein of soluble RANKL and an epitope tag is changed, A method for producing an osteopenia model animal, which produces an osteopenia model animal of different severity.
9 . さらに、 可溶型 RANKL又は可溶型 RANKLとェピトープタグの融合タンパ ク質を投与する動物から卵巣を摘出する、 請求項 1〜8のいずれか 1項に記載の 骨量減少症モデル動物の作出方法。  9. Furthermore, the ovary is removed from an animal to which soluble RANKL or a fusion protein of soluble RANKL and an epitope tag is administered, and the osteopenia animal model according to any one of claims 1 to 8, Production method.
1 0 . 可溶型 RANKL又は可溶型 RANKLとェピトープタグの融合タンパク質を 非ヒ ト動物に投与後、 7 2時間以内に骨量減少症モデル動物を作出し得る請求項 10. A model animal for osteopenia can be produced within 72 hours after administration of soluble RANKL or a fusion protein of soluble RANKL and an epitope tag to a non-human animal.
9記載の骨量減少症モデル動物の作出方法。 9. A method for producing an osteopenia animal model according to 9.
1 1 . 請求項 1〜1 0のいずれか 1項に記載の方法により作出された骨量減 少症モデル動物。 1 1. Bone loss produced by the method according to any one of claims 1 to 10. A hypoxic model animal.
1 2 . 体内の骨吸収マーカーレベルが正常個体に比べ上昇した請求項 1 1記 載の骨量減少症モデル動物。  1 2. The bone loss model animal according to claim 1, wherein the bone resorption marker level in the body is increased as compared with a normal individual.
1 3 . 骨密度及び Z又は単位骨量が正常個体に比べ低下した請求項 1 1記載 の骨量減少症モデル動物。 '  1 3. The osteopenia animal model according to claim 11, wherein bone density and Z or unit bone mass are reduced as compared to normal individuals. '
1 4 . さらに、 破骨細胞数及び/又は骨梁数が正常個体に比べ低下した請求 項 1 3記載の骨量減少症モデル動物。  14. Furthermore, the osteopenia animal model according to claim 13, wherein the number of osteoclasts and / or the number of trabeculae has decreased compared to a normal individual.
1 5 . 血中エス トロゲン濃度、 血中 PTH濃度及び血中 0PG濃度の少なくとも 1つが正常個体に比べ変動していない請求項 1 1〜1 4のいずれか 1項に記載の 骨量減少症モデル動物。  15. The osteopenia model according to any one of claims 11 to 14, wherein at least one of blood estrogen concentration, blood PTH concentration, and blood 0PG concentration is not changed compared to a normal individual. animal.
1 6 . 請求項 1 1〜 1 5のいずれか 1項に記載の骨量減少症モデル動物に、 骨吸収抑制剤又は骨吸収抑制剤候補物質を投与し、 骨量減少症モデル動物におけ る減少した骨量が増加するか否かを指標にして、 前記骨吸収抑制剤又は骨吸収抑 制剤候補物質の効果を評価する方法であって、 骨量が増加した場合に骨吸収抑制 に効果があると判定する、 骨吸収抑制剤又は骨吸収抑制剤候補物質を評価する方 法。  1 6. A bone resorption inhibitor or a bone resorption inhibitor candidate substance is administered to the osteopenia animal model according to any one of claims 1 1 to 15 and the osteopenia animal model is used. This is a method for evaluating the effect of the bone resorption inhibitor or the bone resorption inhibitor candidate substance by using whether or not the decreased bone mass increases as an index, and is effective in suppressing bone resorption when the bone mass increases. A method for evaluating a bone resorption inhibitor or a bone resorption inhibitor candidate substance that is judged to be present.
1 7 . 骨量の増加を、 骨量減少症モデル動物における体内の骨吸収マーカー レベルの上昇、 骨密度の上昇、 単位骨量の上昇、 骨梁数の上昇、 破骨細胞数の低 下、骨芽細胞面の上昇、及ぴ CTにより認められる骨量の増加からなる群から選択 される少なくとも 1つを指標に判断する請求項 1 6記載の骨吸収抑制剤又は骨吸 収抑制剤候補物質を評価する方法。  1 7. Increased bone mass, increased bone resorption marker level in bone loss model animals, increased bone density, increased unit bone mass, increased trabecular number, decreased osteoclast number, The bone resorption inhibitor or the bone absorption inhibitor candidate substance according to claim 16, which is determined using as an index at least one selected from the group consisting of an increase in osteoblastic surface and an increase in bone mass recognized by CT. How to evaluate.
1 8 . 請求項 1 1〜 1 5のいずれか 1項に記載の骨量減少症モデル動物に、 骨形成促進剤又は骨形成促進剤候補物質を投与し、 骨量減少症モデル動物におけ る減少した骨量が増加するか否かを指標にして、 前記骨形成促進剤又は骨形成促 進剤候補物質の効果を評価する方法であって、 骨量が増加した場合に骨形成促進 に効果があると判定する、 骨形成促進剤又は骨形成促進剤候補物質を評価する方 法。  1 8. A bone hypoplasia or candidate osteogenesis agent is administered to the osteopenia animal model according to any one of claims 1 1 to 15 in the osteopenia model animal. This is a method for evaluating the effect of the osteogenesis promoting agent or the osteogenesis promoting agent candidate substance by using whether or not the decreased bone mass increases as an index, and is effective in promoting osteogenesis when the bone mass increases. A method of evaluating a bone formation promoter or a bone formation promoter candidate substance that is judged to be present.
1 9 . 骨量の増加を、 骨量減少症モデル動物における体内の骨形成マーカー レベルの上昇、 骨密度の上昇、 単位骨量の上昇、 骨梁数の上昇、 破骨細胞数の低 下、骨芽細胞面の上昇、及び CTにより認められる骨量の増加からなる群から選択 される少なくとも 1つを指標に判断する請求項 1 8記載の骨形成促進剤又は骨形 成促進剤候捕物質を評価する方法。 1 9. Increased bone mass, increased bone formation marker level in the animal model of osteopenia, increased bone density, increased unit bone mass, increased trabecular number, decreased osteoclast number 19. The osteogenesis promoter or osteogenesis promoter according to claim 18, which is judged using at least one selected from the group consisting of: an increase in osteoblastic cell surface, and an increase in bone mass as detected by CT. A method for evaluating trapped substances.
2 0 . 請求項 8記載の方法により可溶型 RANKL又は可溶型 RANKLとェピトー プタグの融合タンパク質を投与しさらに卵巣を摘出して作出された骨量減少症モ デル動物にホルモン又はホルモン受容体モジュレーターを投与し、 骨量減少症モ デル動物における減少した骨量が増加するか否かを指標にして、 前記ホルモン又 はホルモン受容体モジユレータ一の効果を評価する方法であって、 骨量が増加し た場合に骨吸収抑制に効果があると判定する、 ホルモン又はホルモン受容体モジ ュレーターを評価する方法。  20. A hormone or hormone receptor in a bone loss model animal produced by administering soluble RANKL or a fusion protein of soluble RANKL and an epitope tag by the method according to claim 8 and extracting the ovary. A method for evaluating the effect of the hormone or hormone receptor modulator using a modulator as an index as to whether or not the decreased bone mass in a bone loss model animal is increased. A method of evaluating a hormone or hormone receptor modulator that determines that bone resorption is effective when increased.
2 1 . ホルモン又はホルモン受容体モジュレーターが選択的エストロゲン受 容体モジュレーターである、 請求項 2 0記載のホルモン又はホルモン受容体モジ ュレ—ターを評価する方法。 21. The method for evaluating a hormone or hormone receptor modulator according to claim 20, wherein the hormone or hormone receptor modulator is a selective estrogen receptor modulator.
2 2 . 骨量の増加を、 骨量減少症モデル動物における体内の骨形成マーカー レベルの上昇、 骨密度の上昇、 単位骨量の上昇、 骨梁数の上昇、 破骨細胞数の低 下、骨芽細胞面の上昇、及ぴ CTにより認められる骨量の増加からなる群から選択 される少なくとも 1つを指標に判断する請求項 2 0又は 2 1に記載のホルモン又 はホルモン受容体モジュレーターを評価する方法。 2 2. Increased bone mass with increased bone formation marker level in bone loss model animals, increased bone density, increased unit bone mass, increased trabecular number, decreased osteoclast number, The hormone or hormone receptor modulator according to claim 20 or 21, wherein the hormone or hormone receptor modulator is determined using at least one selected from the group consisting of an increase in osteoblastic surface and an increase in bone mass recognized by CT. How to evaluate.
PCT/JP2007/070309 2006-10-11 2007-10-11 Osteopenia model animal WO2008044797A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP07830043A EP2084961A4 (en) 2006-10-11 2007-10-11 Osteopenia model animal
EP11169483.2A EP2389803B1 (en) 2006-10-11 2007-10-11 Methods using an osteopenia animal model
US12/445,050 US8334261B2 (en) 2006-10-11 2007-10-11 Osteopenia animal model
JP2008538785A JP5219823B2 (en) 2006-10-11 2007-10-11 Osteopenia animal model
CA2666443A CA2666443C (en) 2006-10-11 2007-10-11 Osteopenia animal model
AU2007307504A AU2007307504B2 (en) 2006-10-11 2007-10-11 Osteopenia animal model

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006278029 2006-10-11
JP2006-278029 2006-10-11
JP2007095017 2007-03-30
JP2007-095017 2007-03-30
PCT/JP2007/063871 WO2008044379A1 (en) 2006-10-11 2007-07-05 Bone loss model animal
JPPCT/JP2007/063871 2007-07-05

Publications (1)

Publication Number Publication Date
WO2008044797A1 true WO2008044797A1 (en) 2008-04-17

Family

ID=39282981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070309 WO2008044797A1 (en) 2006-10-11 2007-10-11 Osteopenia model animal

Country Status (1)

Country Link
WO (1) WO2008044797A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046644A1 (en) 1997-04-15 1998-10-22 Snow Brand Milk Products Co., Ltd. Novel protein and process for producing the same
JP2002509430A (en) 1996-12-23 2002-03-26 イミュネックス・コーポレーション Ligands for receptor activators of NF-KAPPA B, a member of the TNF superfamily
JP2004526748A (en) * 2001-03-22 2004-09-02 バーンズ − ジューウィッシュ・ホスピタル Stimulation of bone formation using RANK ligand fusion proteins

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509430A (en) 1996-12-23 2002-03-26 イミュネックス・コーポレーション Ligands for receptor activators of NF-KAPPA B, a member of the TNF superfamily
WO1998046644A1 (en) 1997-04-15 1998-10-22 Snow Brand Milk Products Co., Ltd. Novel protein and process for producing the same
JP3523650B2 (en) 1997-04-15 2004-04-26 三共株式会社 Novel protein and method for producing the same
JP2004526748A (en) * 2001-03-22 2004-09-02 バーンズ − ジューウィッシュ・ホスピタル Stimulation of bone formation using RANK ligand fusion proteins

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
DE WINTER ET AL., CALCIF TISSUE RES, vol. 17, 1975, pages 303
FERNANDES ET AL., J. LEUKOC. BIOL., vol. 78, 2005, pages 524 - 532
GEUSENS ET AL., J BONE MINER RES, vol. 6, 1991, pages 791
GLOBUS ET AL., J BONE MINER RES, vol. 1, 1986, pages 191
JUJI T. AND TANAKA S.: "RANKL no Vaccine Chiryo", THE BONE, vol. 17, no. 5, 1 September 2003 (2003-09-01), pages 81 - 83, XP008115667 *
KISHIMOTO Y. ET AL.: "GST ga Yugo suru Koto ni Yori RANKL no Kassei wa Zokyo Sareru", DAI 24 KAI THE JAPANESE SOCIETY FOR BONE AND MINERAL RESEARCH GAKUJUTSU SHUKAI PROGRAM SHOROKUSHU, 6 July 2006 (2006-07-06), pages 252, XP003018737 *
LACEY ET AL., CELL, vol. 93, 1998, pages 165
MAHAJAN ET AL., J. BIOL. CHEM., vol. 274, 1999, pages 9587 - 9599
MITLAK B.H. AND COHEN F.J.: "SELECTIVE ESTROGEN RECEPTORS MODULATORS A LOOK AHEAD", DRUGS, vol. 57, no. 5, May 1999 (1999-05-01), pages 653 - 663, XP002948164 *
MIZUNO A. ET AL.: "Transgenic mice overexpressing soluble osteoclast differentiation soluble osteoclast differentiation factor (s-ODF) exhibit severe osteoporosis", J. BONE MINER. METAB., vol. 20, 2002, pages 337 - 344, XP009065128 *
SATO K.: "Hakotsu Saibo Shigeki Inshi -Kayosei RANKL o Chushin ni-", JAPANESE JOURNAL OF CLINICAL MEDICINE, vol. 62, no. 860, 28 December 2004 (2004-12-28), pages 228 - 231, XP008110300 *
See also references of EP2084961A4 *
THOMPSON D.D. ET AL.: "FDA guidelines and animal models for osteoporosis", BONE, vol. 17, no. 4, October 1995 (1995-10-01), pages 125S - 133S, XP008109752 *
THOMPSON ET AL., BONE, vol. 17, 1995, pages 125
TOMIMORI Y. ET AL.: "GST-RANKL Toyo ni yoru Kotsugensho-sho Model no Sakusei", THE 8TH ANNUAL MEETING OF JAPAN OSTEOPOROSIS SOCIETY PROGRAM SHOROKUGO, vol. 14, no. 57, 18 September 2006 (2006-09-18), pages 139, XP003018740 *
WADA T. ET AL.: "The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis", NATURE MED., vol. 11, no. 4, April 2005 (2005-04-01), pages 394 - 399, XP008109754 *
WAKLEY ET AL., CALCIF TISSUE INT, vol. 43, 1988, pages 383
WITTRANT Y. ET AL.: "RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis", BIOCHIM. BIOPHYS. ACTA, vol. 1704, 2004, pages 49 - 57, XP004567005 *
WRONSKI ET AL., CALCIF TISSUE INT, vol. 42, 1988, pages 179
WRONSKI ET AL., CALCIF TISSUE INT, vol. 45, 1989, pages 360
WRONSKI ET AL., ENDOCRINOLOGY, vol. 123, 1988, pages 681
YASUDA ET AL., PROC NATL ACAD SCI USA, vol. 95, 1998, pages 3597
YASUDA H.: "'RANKL-RANK-OPG' Kotsu Soshosho Chiryo", vol. 3, no. 4, 1 October 2004 (2004-10-01), pages 16 - 21, XP003025835 *

Similar Documents

Publication Publication Date Title
Siddiqui et al. Physiological bone remodeling: systemic regulation and growth factor involvement
Kostenuik Osteoprotegerin A Physiological and Pharmacological Inhibitor of Bone Resorption.
Redlich et al. Repair of local bone erosions and reversal of systemic bone loss upon therapy with anti-tumor necrosis factor in combination with osteoprotegerin or parathyroid hormone in tumor necrosis factor-mediated arthritis
Kondo et al. Cyclic adenosine monophosphate/protein kinase A mediates parathyroid hormone/parathyroid hormone‐related protein receptor regulation of osteoclastogenesis and expression of RANKL and osteoprotegerin mRNAs by marrow stromal cells
Karaplis et al. PTH and PTHrP effects on the skeleton
CA2681317C (en) A synthetic peptide containing bone forming peptide 1(bfp 1) for stimulating osteoblast differentiation, and pharmaceutical composition comprising the synthetic peptide
JP5749659B2 (en) Bone morphogenetic protein 2 (BMP2) variant with reduced BMP antagonist sensitivity
WO2008150025A1 (en) Novel bone mass increasing agent
Hollnagel et al. Parathyroid Hormone Enhances Early and Suppresses Late Stages of Osteogenic and Chondrogenic Development in a BMP‐Dependent Mesenchymal Differentiation System (C3H10T½)
JP5219823B2 (en) Osteopenia animal model
Ruchon et al. Cellular localization of neprilysin in mouse bone tissue and putative role in hydrolysis of osteogenic peptides
Mukherjee et al. Insulin-like growth factor binding protein-5 in osteogenesis: facilitator or inhibitor?
WO2008044797A1 (en) Osteopenia model animal
NZ310391A (en) Polypeptides that stimulate bone growth
EP2083073B1 (en) Reagent containing fused protein of soluble rankl with epitope tag
US20110195906A1 (en) Osteogenic synthetic peptides, pharmaceutical compositions comprising the same, and medium containing the same
Wu et al. Equine adipose-derived stem cell (ASC) expresses BAFF and its receptors, which may be associated with the differentiation process of ASC towards adipocyte
KR102358345B1 (en) improved bone morphogenetic protein
JP6105623B2 (en) Peptides targeting nuclear factor κB activating receptor (RANK) and their applications
JP2008538111A (en) Mechanism of bone induction by LIM mineralized protein-1 (LMP-1)
Le Henaff et al. Parathyroid Hormones
López-Herradón et al. Comparison of the osteogenic actions of parathyroid hormone-related protein (PTHrP) in diabetic and insulin-like growth factor-I (IGF-I) deficient mouse models.
Ueland et al. Bone metabolism and growth hormone deficiency
EP2311482A1 (en) Osteogenic synthetic BMP-7 peptides, pharmaceutical compositions cell culture medium containing same
Ferrari et al. Clinical and basic research papers-May 2010

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830043

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008538785

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2666443

Country of ref document: CA

Ref document number: 12445050

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007307504

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007830043

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097009575

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2007307504

Country of ref document: AU

Date of ref document: 20071011

Kind code of ref document: A