WO2008043928A1 - Procede de controle en boucle fermee de quantite d'uree pour systeme de traitement d'oxydes d'azote - Google Patents

Procede de controle en boucle fermee de quantite d'uree pour systeme de traitement d'oxydes d'azote Download PDF

Info

Publication number
WO2008043928A1
WO2008043928A1 PCT/FR2007/052011 FR2007052011W WO2008043928A1 WO 2008043928 A1 WO2008043928 A1 WO 2008043928A1 FR 2007052011 W FR2007052011 W FR 2007052011W WO 2008043928 A1 WO2008043928 A1 WO 2008043928A1
Authority
WO
WIPO (PCT)
Prior art keywords
urea
amount
ammonia
injection
coefficient
Prior art date
Application number
PCT/FR2007/052011
Other languages
English (en)
Inventor
Arnaud Audouin
Jean Nicolas Lesueur
Original Assignee
Peugeot Citroën Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroën Automobiles SA filed Critical Peugeot Citroën Automobiles SA
Priority to DE602007012457T priority Critical patent/DE602007012457D1/de
Priority to AT07823856T priority patent/ATE498066T1/de
Priority to EP07823856A priority patent/EP2078149B1/fr
Publication of WO2008043928A1 publication Critical patent/WO2008043928A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0402Methods of control or diagnosing using adaptive learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0408Methods of control or diagnosing using a feed-back loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/005Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a method for controlling urea injection for a selective catalytic reduction (SCR) treatment system of nitrogen oxides at the outlet of a vehicle engine. More particularly, the invention relates to a method for controlling the amount of urea injected for a nitrogen oxide treatment system.
  • SCR selective catalytic reduction
  • ammonia it is known in the industry to use ammonia to effect a reduction of nitrogen oxides according to the SCR type reactions. Such a process is particularly interesting in the case of stationary industries for which the problem of storage of ammonia in large quantities does not arise.
  • ammonia in particular contained in urea, to achieve the reduction of nitrogen oxides at the engine outlet. This reduction is carried out by reacting the nitrogen oxides with ammonia and / or urea in a specific catalyst, called SCR catalyst.
  • SCR catalyst a specific catalyst
  • the invention therefore relates to a method for determining the amount of ammonia intended to be integrated into a global strategy for controlling the injection of ammonia and / or urea into a vehicle engine.
  • the main objective of any SCR-type abatement system is to optimize the trade-off between high nitrogen oxides conversion and limited unconverted ammonia emission.
  • the invention therefore aims to remedy this disadvantage by proposing a closed-loop control method of the injection.
  • the invention relates to a method for controlling the amount of urea injected into a selective catalytic reduction nitrogen oxide treatment system, called SCR, intended to be installed in the exhaust line of the combustion engine.
  • a vehicle the treatment consisting in chemically reducing, in a catalyst, said SCR catalyst, the nitrogen oxides by adding ammonia contained in urea, the process comprising the following steps: injection into the system amount of predetermined urea, at the end of this injection, the quantities of nitrogen oxides and of predetermined ammonia at the outlet of the SCR catalyst are measured, a new quantity corresponding to the previously injected quantity multiplied by an initial injection coefficient is injected, the quantities of oxides of nitrogen and of ammonia at the outlet of the SCR catalyst are measured and compared with the values previously measured, and - as a function of the evolution of the quantities measured, a new injection coefficient is calculated, the last three steps being repeated until an optimum amount of urea is reached.
  • One of the advantages of this method is that it makes it possible to take into account any drifts of the system, which can have an influence on the efficiency of the system or the quantity of ammonia consumed.
  • a first type of drift is the drift of emissions of nitrogen oxides from the engine. Indeed, when the diesel injectors or the air intake flowmeter are fouled, the amount of nitrogen oxides actually emitted by the engine is higher than that predicted by a possible calculation model. Indeed, a model calculates the quantities of theoretical nitrogen oxides as a function of parameters measured in the engine; however, if certain elements of the engine are fouled, the measured parameters are not always representative of reality. As a result, the amount of urea calculated by this model, and thus injected into the catalyst, is too small compared to the actual need. The conversion of nitrogen oxides is therefore lower than the optimum.
  • the SCR catalyst in which the reduction reactions take place can be degraded, in particular because of the high exhaust temperatures generated during regenerations of the particle filter of the vehicle.
  • the amount of ammonia determination described above also takes into account the parameters of the catalyst. If the catalyst is degraded, the amount of ammonia determined by the calculation model is no longer valid, which results in poor performance of the system, particularly as regards the conversion of nitrogen oxides at low temperatures.
  • the ammonia used is contained in a solution of urea
  • this solution is slowly degraded in the storage tank present in the vehicle. Indeed, when stored for a long time and / or at high temperatures, the urea hydrolyzes to ammonia.
  • the injected solution no longer contains the same amounts of urea and ammonia as those initially present, quantities from which the calculation is generally carried out.
  • a selective catalytic reduction of nitrogen oxides by ammonia is carried out according to several chemical reactions, the three main ones being:
  • the amount of initial urea is calculated using a predetermined model taking into account parameters of the engine and the environment.
  • the step of extracting from a memory data making it possible to determine an optimal ratio between the quantity of ammonia introduced into the catalyst and the quantity of nitrogen oxides to be reduced, this ratio being such that the better conversion of nitrogen oxides possible while respecting a limit quantity of unconverted ammonia, these data being chosen according to the residence time WH,
  • the initial injection coefficient is greater than 1, and it is called the On Injection coefficient.
  • the method according to the invention could, however, be implemented by injecting, during the first step, a quantity of urea less than a calculated amount.
  • the injection coefficient is greater than 1, and it is then called the over injection coefficient.
  • the injection coefficient is less than 1, and it is called the under injection coefficient.
  • One of the objectives of the process described here is to determine the optimum amount of urea to be injected upstream of the catalyst in which the reaction takes place. For this, it is necessary to proceed in stages, that is to say to try several quantities and adjust the injection coefficient at each step depending on the results obtained.
  • the amounts of nitrogen oxides and ammonia increase after decreasing. This means that previously there was less than the optimal amount of urea, and therefore this amount was increased. From the moment when the amounts of nitrogen oxides and ammonia increase, it is a sign that the optimal amount of urea has been exceeded. It is therefore necessary to re-reduce the amount of urea injected, without however lowering down the amount injected in the previous step.
  • the new under-injection coefficient applied is greater than the inverse of the previously applied injection coefficient.
  • a lower injection coefficient is applied to the inverse of the under-injection coefficient previously applied, and the new amount of urea calculated from this coefficient of over injection is the optimal amount of urea to be injected.
  • a final correction factor is determined corresponding to the amount of optimal urea divided by the initial amount of urea.
  • SCR type catalyst such as that used for the implementation of the method described here, is highly dependent on the gas conditions, such as their composition, the temperature, or the flow rate. Thus, for the process to be effective, it must be implemented when the vehicle is in stable conditions.
  • the amount of urea injected is modified only in the case where stable rolling conditions are present.
  • Stable conditions are defined, for example, by the fact that the pedal position, defining the engine speed, as well as the exhaust temperature remain within a certain interval for a predetermined period.
  • An example of stable conditions is a vehicle whose speed remains between 1500 and 1700 revolutions / min for a duration greater than 5 seconds.
  • the urea is in the form of pure liquid urea or urea solution.
  • FIG. 1 is a diagram of an SCR system, installed in a Diesel type engine, and implementing a method according to the invention
  • FIGS. 2 and 3 are examples of measurements carried out by an oxide sensor.
  • FIG. 4 is a graph of states showing the progress of a process according to the invention
  • FIG. 5 is a graph showing an optimization of urea flow
  • FIGS. 6a and 6b show the functional architecture. of a urea injection control module installed on a vehicle and implementing a method according to the invention.
  • the system shown in Figure 1 is a nitrogen oxide treatment system for converting nitrogen oxides by reacting them with ammonia contained in urea, according to a selective catalytic reduction method SCR. .
  • SCR selective catalytic reduction method
  • this catalyst 10 At the inlet of this catalyst 10 are the gases present in the exhaust line 12 of the engine, in particular containing oxides of nitrogen.
  • a reducing agent such as ammonia contained in urea 14
  • This urea 14 is stored in a reservoir It is sent via a feed system 17 to a specific injector 18. This injector 18 then injects the urea 14 into the exhaust line 12, downstream of the catalyst SCR 10.
  • the reservoir 16 may contain ammonia in various forms, in particular in the form of pure liquid urea or as an additive such as AdBlue, which is a 32.5% urea solution.
  • Exiting the catalyst 10 is a nitrogen oxide sensor 19. This nitrogen oxide sensor can also be used to measure the amounts of ammonia released.
  • This sensor is, for example, a sensor having a non-selectivity ammonia / nitrogen oxides.
  • the detection of ammonia is based on the oxidation of this ammonia to nitric oxide, according to the reaction 4NH 3 + 5O 2 -> 4NO + 6H 2 O.
  • Figures 2 and 3 show different sensor response of nitrogen oxides at respective temperatures of 200 0 C and 450 0 C. These graphs represent the evolution of ammonia NH3 quantities measured by the sensor, in parts per million (ppm), based on actual ammonia quantities, in ppm. It appears on these two graphs that the saturation phenomenon occurs very early since 50 ppm of ammonia, we see a significant difference between the measured quantity and the actual quantity.
  • the measurements made by this sensor are used by a method according to the invention to determine the optimum amount of urea to be injected into the exhaust line of the engine.
  • the different steps of such a process are illustrated in FIG. 4.
  • the closed-loop control method of urea injection is useful only in the case where the vehicle is in stable operating conditions.
  • the first step 40 of the method therefore consists in verifying that stable rolling conditions are actually present. This check may, for example, be performed by measuring the engine speed, and / or the exhaust temperature of the engine for a certain period of time.
  • an injection of urea is made greater than the initial quantity injected (step 41).
  • an injection coefficient greater than 1, for example 1.2 is used.
  • a step 42 we then look at the evolution of the amounts of nitrogen oxides and ammonia at the outlet of the reduction catalyst SCR. If the ammonia response does not increase (event 43), this means that one is always below the optimum amount of urea, since a large part of the nitrogen oxide is consumed, and the release Ammonia is not excessive. In this case, it returns to step 41, in which the amount of urea is increased again.
  • a step 44 a lower quantity of urea than that injected during step 41 is injected.
  • the amount of urea is again increased during step 46, while taking care not to exceed the amount of urea injected during the last step 42.
  • a coefficient is chosen. injection which is less than the inverse of the injection coefficient used in step 44, for example 1.05.
  • step 50 the final correction factor, corresponding to the ratio between the amount of urea optimal and the amount of urea initially injected.
  • the quantity is increased of injected urea, up to a value of 125 g / h.
  • the amount of nitrogen oxides is measured, which is about 140 ppm (point 52 on the curve).
  • a method such as that described here is intended to be integrated into a global SCR steering injection strategy 60.
  • Such a strategy described with the help of FIGS. 6a and 6b, is implemented by means of several modules, among which a module 61 for estimating physical quantities, a module 62 for urea injection control, strictly speaking, and a module 63 for controlling urea embedded in the vehicle on which the strategy is implemented.
  • a method according to the invention is implemented in a closed loop control submodule 66 of the quantity of urea to be injected, this submodule 66 being integrated in the control module 62. 'injection.
  • This module 62 also comprises a submodule 65 for calculating the quantity of urea to be injected and a submodule 64 for controlling the consumption of urea.
  • the amount of urea calculated by the submodule 65, using the physical quantities calculated by physical quantity estimation module 61, can be used as the initial amount for a process as described herein.

Abstract

L'invention se rapporte à un procédé de contrôle de la quantité d'urée (14) injectée dans un système de traitement d'oxydes d'azote à réduction catalytique sélective, dite SCR, destiné à être installé dans la ligne d'échappement (12) du moteur d'un véhicule, le traitement consistant à réduire chimiquement, dans un catalyseur (19), dit catalyseur SCR, les oxydes d'azote en ajoutant de l'ammoniac contenu dans de l'urée (14), le procédé comprenant les étapes suivantes : on injecte (18) dans le système une quantité d'urée prédéterminée; on mesure (19), à l'issue de cette injection, les quantités d'oxydes d'azote et d'ammoniac en sortie du catalyseur SCR (10); on injecte une nouvelle quantité correspondant à la quantité précédemment injectée multipliée par un coefficient d'injection initial; on mesure les quantités d'oxydes d'azote et d'ammoniac en sortie du catalyseur SCR (10) et on les compare aux valeurs précédemment mesurées; et en fonction de l'évolution des quantités mesurées, on calcule un nouveau coefficient d' injection, les trois dernières étapes étant répétées jusqu' à atteindre une quantité optimale d'urée.

Description

PROCEDE DE CONTROLE EN BOUCLE FERMEE DE QUANTITE D'UREE POUR SYSTEME DE TRAITEMENT D'OXYDES D'AZOTE
La présente invention concerne un procédé de pilotage de l'injection d'urée pour un système de traitement à réduction catalytique sélective (SCR) d'oxydes d'azote en sortie d'un moteur de véhicule. Plus particulièrement, l'invention concerne un procédé de contrôle de la quantité d'urée injectée pour un système de traitement d'oxydes d'azote.
Il est connu, dans l'industrie, d'utiliser l'ammoniac pour effectuer une réduction d'oxydes d'azote selon les réactions de type SCR. Un tel processus est particulièrement intéressant dans le cas des industries stationnaires pour lesquelles le problème de stockage de l'ammoniac en grande quantité ne se pose pas. Dans le cas de l'automobile, il est connu d'utiliser, de la même façon, de l'ammoniac, notamment contenu dans de l'urée, pour réaliser la réduction des oxydes d'azote en sortie de moteur. Cette réduction est effectuée en faisant réagir les oxydes d'azote avec de l'ammoniac et/ou de l'urée, dans un catalyseur spécifique, appelé catalyseur SCR. Le problème qui apparaît dans le cas de l'automobile est celui du stockage de l'ammoniac. Il est donc utile, de déterminer de façon précise la quantité d'ammoniac à injecter dans le moteur à chaque instant, afin d'optimiser la réduction des oxydes d'azote tout en limitant les émissions d'ammoniac. L'invention concerne donc un procédé de détermination de la quantité d'ammoniac destiné à être intégré dans une stratégie globale de pilotage de l'injection d'ammoniac et/ou d'urée dans un moteur de véhicule.
L'objectif principal de tout système de dépollution de type SCR est d'optimiser le compromis entre une conversion d'oxydes d'azote élevée et une émission limitée d'ammoniac non converti .
Il est connu de déterminer, à partir de paramètres du moteur ou extérieurs, une quantité d'urée prédéterminée, à injecter dans le catalyseur SCR pour effectuer la réduction des oxydes d'azote. Mais ces systèmes présentent généralement l'inconvénient d'être en boucle ouverte, c'est à dire qu'il n' existe pas de moyens de contrôler le caractère optimum de cette quantité d'urée.
L'invention vise donc à remédier à cet inconvénient, en proposant un procédé de contrôle en boucle fermée de 1' injection.
Plus particulièrement, l'invention concerne un procédé de contrôle de la quantité d'urée injectée dans un système de traitement d'oxydes d'azote à réduction catalytique sélective, dite SCR, destiné à être installé dans la ligne d'échappement du moteur d'un véhicule, le traitement consistant à réduire chimiquement, dans un catalyseur, dit catalyseur SCR, les oxydes d'azote en ajoutant de l'ammoniac contenu dans de l'urée, le procédé comprenant les étapes suivantes : on injecte dans le système une quantité d'urée prédéterminée, on mesure, à l'issue de cette injection, les quantités d' oxydes d' azote et d' ammoniac prédéterminées en sortie du catalyseur SCR, on injecte une nouvelle quantité correspondant à la quantité précédemment injectée multipliée par un coefficient d'injection initial, on mesure les quantités d'oxydes d'azote et d'ammoniac en sortie du catalyseur SCR et on les compare aux valeurs précédemment mesurées, et - en fonction de l'évolution des quantités mesurées, on calcule un nouveau coefficient d' injection, les trois dernières étapes étant répétées jusqu' à atteindre une quantité optimale d'urée.
Un des avantages de ce procédé est qu' il permet de prendre en compte les éventuelles dérives du système, qui peuvent avoir une influence sur l'efficacité du système ou la quantité d'ammoniac consommée.
Dans un véhicule, notamment équipé d'un moteur de type
Diesel, il existe plusieurs sources de dérive, pouvant entraîner une diminution de l'efficacité du système.
Un premier type de dérive est la dérive des émissions en oxydes d'azote du moteur. En effet, lorsque les injecteurs gazole ou le débitmètre d'admission d'air sont encrassés, la quantité d'oxydes d'azote réellement émise par le moteur est plus élevée que celle prédite par un éventuel modèle de calcul. En effet, un modèle calcule les quantités d'oxydes d'azote théoriques en fonction de paramètres mesurés dans le moteur ; or, si certains éléments du moteur sont encrassés, les paramètres mesurés ne sont pas toujours représentatifs de la réalité. En conséquence, la quantité d'urée calculée grâce à ce modèle, et donc injectée dans le catalyseur, est trop faible par rapport au besoin réel. La conversion des oxydes d'azote est donc plus faible que l'optimum. Par ailleurs, le catalyseur SCR dans lequel ont lieu les réactions de réduction peut se dégrader, notamment du fait des fortes températures d'échappement générées lors des régénérations du filtre à particules du véhicule. Or, la détermination de quantité d'ammoniac décrite précédemment tient également compte des paramètres du catalyseur. Si le catalyseur se dégrade, la quantité d'ammoniac déterminée par le modèle de calcul n'est plus valable, ce qui se traduit par des mauvaises performances du système, notamment en ce qui concerne la conversion des oxydes d'azote à basse température.
Dans le cas où l'ammoniac utilisé est contenu dans une solution d'urée, il est possible que cette solution se dégrade lentement dans le réservoir de stockage présent dans le véhicule. En effet, lorsqu'elle est stockée longtemps et/ou à fortes températures, l'urée s' hydrolyse en ammoniac. Ainsi, lors de l'injection dans le catalyseur, la solution injectée ne contient plus les mêmes quantités d'urée et d'ammoniac que celles présentes initialement, quantités à partir desquelles le calcul est généralement effectué.
Une réduction catalytique sélective d'oxydes d'azote par l'ammoniac est effectuée selon plusieurs réactions chimiques, dont les trois principales sont :
4NO + 4NH3 + O2 -> 4N2 + 6H2O 3NO2 + 4NH3 -> 3.5N2 + 6H2O
4NH3 + 2N0 + 2NO2 -> 4N2 + 6H2O
Dans ce type de réduction, il est théoriquement possible d'atteindre des conversions supérieures à 90%.
Au vu des réactions principales, on peut constater que l'évolution des quantités d'oxydes d'azote et d'ammoniac en sortie du catalyseur est la même. En effet, une réduction des oxydes d'azote est obligatoirement liée à une consommation d'ammoniac NH,. Pour effectuer les mesures de quantité de gaz en sortie du catalyseur, on place un capteur d'oxydes d'azote dans la ligne d'échappement du moteur. Ce capteur d'oxydes d'azote permet également, dans une certaine mesure, de mesurer l'ammoniac NH3 présent dans l'échappement en aval du catalyseur. Un exemple de capteur sera décrit plus loin dans le texte.
Dans une réalisation, la quantité d'urée initiale est calculée à l'aide d'un modèle prédéterminé prenant en compte des paramètres du moteur et de l'environnement.
Par exemple, pour déterminer cette quantité d'urée initiale, on peut utiliser un procédé comprenant les étapes suivantes :
- l'étape de déterminer le temps de séjour des gaz sur le catalyseur SCR, ce temps de séjour étant appelé WH
- l'étape d'extraire d'une mémoire des données permettant de déterminer un rapport optimal entre la quantité d'ammoniac introduit dans le catalyseur et la quantité d'oxydes d'azote à réduire, ce rapport étant tel qu'on obtient la meilleure conversion d'oxydes d'azote possible tout en respectant une quantité limite d'ammoniac non converti, ces données étant choisies en fonction du temps de séjour WH,
- l'étape de calculer, à partir de ce rapport optimal et du débit d'oxydes d'azote dans la ligne d'échappement du moteur, la quantité d'ammoniac à injecter dans le catalyseur l'étape de déduire, à partir de la quantité d'ammoniac déterminée, la quantité d'urée à injecter, On peut également, au cours des différentes étapes, tenir compte d'autres paramètres tels que la température extérieure, la température d'eau du moteur, la pression atmosphérique, ou encore la température à l'intérieur du catalyseur d'oxydation. Ainsi que décrit précédemment on injecte, au cours d'une étape du procédé, une nouvelle quantité d'urée correspondant à la quantité d'urée initiale multipliée par un coefficient d'injection initial. Au vu des dérives pouvant avoir lieu dans le moteur, on constate que généralement il est nécessaire d'injecter une quantité d'urée supérieure à une quantité d'urée théorique qui serait déterminée par un modèle.
Ainsi, on choisit d'injecter plus d'urée ; dans ce cas, le coefficient d'injection initial est supérieur à 1, et il est appelé coefficient de Sur Injection.
Le procédé selon l'invention pourrait toutefois être mis en place en injectant, au cours de la première étape, une quantité d'urée inférieure à une quantité calculée.
A l'issue de cette modification de quantité d'urée, il est possible de mesurer les nouvelles quantités d'oxydes d'azote et d'ammoniac présents dans la ligne d'échappement en sortie du catalyseur.
Pour une condition de gaz donnée, lorsqu'on augmente la quantité d'urée injectée vers le catalyseur SCR, deux cas peuvent se présenter : si la mesure du capteur diminue, cela signifie que la quantité d'urée a été consommée pour réduire une plus grande quantité d'oxydes d'azote. - A l'inverse, si la mesure du capteur augmente, cela signifie qu'une quantité similaire d'oxydes d'azote a été réduite, et que la quantité d'ammoniac non converti dans le catalyseur augmente.
Ainsi, selon l'évolution constatée, à l'issue de la comparaison avec les mesures initiales, on détermine s'il est nécessaire de diminuer ou d'augmenter la quantité d'urée.
Pour cela, il est possible de jouer sur la valeur du coefficient d'injection appliqué au cours d'une des étapes du procédé . Ainsi, lorsque les quantités mesurées d'oxydes d'azote et d'ammoniac sont en diminution, cela signifie qu'il est nécessaire d'injecter davantage d'urée par rapport à la quantité injectée précédemment. Dans ce cas, le coefficient d'injection est supérieur à 1, et il est alors appelé coefficient de sur injection.
Au contraire, lorsque les quantités mesurées d'oxydes d'azote et d'ammoniac sont en augmentation, cela signifie que la quantité d'ammoniac dégagée risque de devenir trop importante, et dans ce cas il est nécessaire de diminuer la quantité d'urée injectée. Dans ce cas, le coefficient d'injection est inférieur à 1, et il est appelé coefficient de sous injection.
Un des objectifs du procédé décrit ici est de déterminer la quantité optimale d'urée à injecter en amont du catalyseur dans lequel à lieu la réaction. Pour cela, il est nécessaire de procéder par paliers, c'est à dire d'essayer plusieurs quantités et d'ajuster le coefficient d'injection à chaque étape en fonction des résultats obtenus . Ainsi, par exemple, il est possible que, dans une réalisation, les quantités d'oxydes d'azote et d'ammoniac augmentent après avoir diminué. Cela signifie que l'on se trouvait, au préalable, à une quantité inférieure à la quantité optimale d'urée, et donc que l'on a augmenté cette quantité. A partir du moment où les quantités d'oxydes d'azote et d'ammoniac augmentent, c'est le signe que la quantité d'urée optimale a été dépassée. Il est donc nécessaire de re-diminuer la quantité d'urée injectée, sans toutefois redescendre plus bas que la quantité injectée à l'étape précédente. A cet effet, le nouveau coefficient de sous injection appliqué est supérieur à l'inverse du coefficient de sur injection précédemment appliqué.
Au contraire, dans une réalisation où les quantités d'oxydes d'azote et d'ammoniac diminuent après avoir augmenté, on applique un coefficient de sur injection inférieur à l'inverse du coefficient de sous injection précédemment appliqué, et la nouvelle quantité d'urée calculée à partir de ce coefficient de sur injection est la quantité optimale d'urée à injecter.
Dans une réalisation, on détermine un facteur de correction finale, correspondant à la quantité d'urée optimale divisée par la quantité initiale d'urée.
Le fonctionnement d'un catalyseur de type SCR, tel que celui utilisé pour la mise en œuvre du procédé décrit ici, est fortement dépendant des conditions de gaz, telles que leur composition, la température, ou encore le débit. Ainsi, pour que le procédé soit efficace, il est nécessaire qu'il soit mis en œuvre lorsque le véhicule est dans des conditions stables.
A cet effet, dans une réalisation on modifie la quantité d'urée injectée uniquement dans le cas où des conditions de roulage stables se présentent.
Des conditions stables sont définies, par exemple, par le fait que la position pédale, définissant le régime moteur, ainsi que la température échappement restent dans un certain intervalle pendant une durée déterminée. Un exemple de conditions stables est un véhicule dont le régime reste entre 1500 et 1700 tours/min pendant une durée supérieure à 5 secondes .
Dans une réalisation l'urée est sous forme d'urée liquide pure ou de solution d'urée.
D'autres caractéristiques et avantages de l'invention apparaîtront avec la description de certains de ses modes de réalisation, cette description étant réalisée à titre non limitatif à l'aide des figures sur lesquelles : la figure 1 est un schéma d'un système SCR, installé dans un moteur de type Diesel, et mettant en œuvre un procédé selon l'invention, les figures 2 et 3 sont des exemples de mesures effectuées par un capteur d'oxydes d'azote, la figure 4 est un graphe d'états montrant le déroulement d'un procédé selon l'invention, la figure 5 est un graphique montrant une optimisation de débit d'urée, et - les figures 6a et 6b représentent l'architecture fonctionnelle d'un module de pilotage d'injection d'urée installé sur un véhicule et mettant en oeuvre un procédé conforme à l'invention.
Le système représenté sur la figure 1 est un système de traitement d' oxydes d' azote destiné à transformer les oxydes d'azote en les faisant réagir avec de l'ammoniac contenu dans de l'urée, selon un procédé de réduction catalytique sélective SCR. Les réactions chimiques de ce procédé ont lieu dans un catalyseur SCR 10.
En entrée de ce catalyseur 10 se trouvent les gaz présents dans la ligne d'échappement 12 du moteur, contenant notamment des oxydes d'azote. Pour que la réaction de réduction ait lieu dans le catalyseur SCR 10, il est nécessaire d'introduire un réducteur, tel que de l'ammoniac contenu dans de l'urée 14, dans le catalyseur 10. Cette urée 14 est stockée dans un réservoir spécifique 16. Elle est envoyée, via un système d'alimentation 17, vers un injecteur spécifique 18. Cet injecteur 18 injecte alors l'urée 14 dans la ligne d'échappement 12, en aval du catalyseur SCR 10.
Selon les réalisations, le réservoir 16 peut contenir de l'ammoniac sous différentes formes, notamment sous forme d'urée liquide pure ou sous forme d'un additif tel que l'AdBlue, qui est une solution d'urée à 32,5%.
En sortie du catalyseur 10 se trouve un capteur d'oxydes d'azote 19. Ce capteur d'oxydes d'azote peut également être utilisé pour mesurer les quantités d'ammoniac dégagées.
Ce capteur est, par exemple, un capteur présentant une non-sélectivité ammoniac/oxydes d'azote. Dans ce cas, la détection de l'ammoniac est basée sur l'oxydation de cet ammoniac en monoxyde d'azote, selon la réaction 4NH3 + 5O2 -> 4NO + 6H2O.
Il est à noter qu'un tel capteur n'a pas une sensibilité à l'ammoniac de 100%. En effet, ainsi qu'on peut le voir sur les figures 2 et 3, il existe un phénomène de saturation du signal issu de ce capteur, pour des fortes teneurs en ammoniac.
Sur les figures 2 et 3, on voit les réponses de différents capteurs d'oxydes d'azote à des températures respectives de 2000C et 450 0C. Ces graphiques représentent l'évolution des quantités d'ammoniac NH3 mesurées par le capteur, en parties par millions (ppm) , en fonction des quantités d'ammoniac réelles, en ppm. Il apparaît sur ces deux graphiques que le phénomène de saturation intervient très tôt puisque dès 50 ppm d'ammoniac, on voit un écart significatif entre la quantité mesurée et la quantité réelle.
Néanmoins, pour l'utilisation qui nous intéresse, de tels capteurs sont largement suffisants, puisqu'ils permettent de détecter, au moins de manière grossière, la présence d'ammoniac, ainsi que l'évolution des quantités, en sortie du catalyseur SCR.
Les mesures effectuées par ce capteur sont utilisées par un procédé conforme à l'invention, pour déterminer la quantité optimale d'urée à injecter dans la ligne d'échappement du moteur. Les différentes étapes d'un tel procédé sont illustrées sur la figure 4. Ainsi qu'expliqué précédemment, le procédé de contrôle en boucle fermée de l'injection d'urée n'est utile que dans le cas où le véhicule se trouve dans des conditions de fonctionnement stables .
La première étape 40 du procédé consiste donc à vérifier que l'on a effectivement des conditions stables de roulage. Cette vérification peut, par exemple, être effectuée en mesurant le régime moteur, et/ou la température d'échappement du moteur pendant une certaine durée.
Une fois ces conditions stables détectées, on procède à une injection d'urée supérieure à la quantité initiale injectée (étape 41) . Pour cela, on utilise un coefficient d'injection supérieur à 1, par exemple 1.2. Dans une étape 42, on regarde alors l'évolution des quantités d'oxydes d'azote et d'ammoniac en sortie du catalyseur de réduction SCR. Si la réponse en ammoniac n'augmente pas (événement 43), cela signifie que l'on est toujours en dessous de la quantité d'urée optimale, puisqu'une grande partie de l'oxyde d'azote est consommée, et le dégagement d'ammoniac n'est pas excessif. Dans ce cas, on retourne à l'étape 41, dans laquelle la quantité d'urée est augmentée une nouvelle fois.
En revanche, si la quantité d'oxydes d'azote augmente, cela signifie que l'on a dépassé la quantité optimale d'urée, et que l'on risque de dépasser, dans le même temps, la quantité tolérée d'ammoniac en sortie du moteur. Dans ce cas, on injecte, dans une étape 44, une quantité d'urée plus faible que celle injectée au cours de l'étape 41. Pour cela, on utilise un coefficient d'injection inférieur à 1, par exemple 1/1.1. Si les quantités mesurées en sortie du catalyseur, au cours de l'étape 39, ne diminuent pas (événement 45), cela signifie qu'il y a toujours trop d'urée. Dans ce cas, on diminue de nouveau la quantité (retour à l'étape 44) .
Dans le cas contraire, cela signifie que l'on a trop diminué la quantité d'urée, et que l'on est repassé en dessous de la quantité optimale. Dans ce cas, on augmente de nouveau la quantité d'urée, au cours de l'étape 46, en veillant toutefois à ne pas dépasser la quantité d'urée injectée au cours de la dernière étape 42. Pour cela, on choisit un coefficient d'injection qui est inférieur à l'inverse du coefficient d'injection utilisé au cours de l'étape 44, par exemple 1.05.
On regarde alors, une fois de plus, l'évolution des quantités mesurées en sortie du catalyseur. Si les quantités n'augmentent pas (événement 48), cela signifie que l'on est toujours en dessous de la quantité optimale d'urée, et il est donc nécessaire d'augmenter de nouveau la quantité injectée. En revanche, si les quantités mesurées augmentent, on estime dans ce cas que l'on a atteint la quantité d'urée optimale.
On vérifie alors, au cours d'une étape 49, que le véhicule est toujours dans des conditions stables de roulage, et, si tel est le cas, on calcule alors (étape 50) , le facteur de correction finale, correspondant au rapport entre la quantité d'urée optimale et la quantité d'urée initialement injectée.
On constate, au vu de cette description du procédé, que la recherche de la quantité optimale d'urée est en fait réalisée par itération, et en se rapprochant à chaque fois de l'optimum. Un tel procédé est possible parce que la quantité optimale correspondant à une position stable du système, tel qu'on peut le constater sur la figure 5, qui montre l'évolution du débit d'urée et du dégagement d'oxydes d'azote, lorsqu'un procédé, tel que décrit à l'aide de la figure 4, est mis en œuvre .
En effet, supposons que la quantité initiale injectée soit de 50 grammes par heure (g/h) . Dans ce cas, on mesure une quantité d'oxydes d'azote égale à environ 220 parties par millions (ppm) . Ces valeurs correspondent au point 51 sur la courbe de la figure 5.
En supposant que le véhicule se trouve dans des conditions stables de roulement, on augmente alors la quantité d'urée injectée, jusqu'à une valeur de 125 g/h. On mesure la quantité d'oxydes d'azote, qui est égale à environ 140 ppm (point 52 sur la courbe) .
La mesure ayant diminué, d'après le déroulement logique du procédé décrit à l'aide de la figure 4, on procède à une nouvelle augmentation de la quantité d'urée, jusqu'à atteindre 200 g/h, qui correspond à une quantité d'oxydes d'azote de 175 ppm (point 53). On constate que la quantité de Nox a augmenté, et on va donc diminuer la quantité d'urée. Au vu du graphe, on comprend que deux situations peuvent se présenter dans ce cas : soit on diminue trop la quantité d'urée, et dans ce cas on va se retrouver en amont du point 52, qui correspond au point optimal, - soit on ne diminue pas assez la quantité d'urée.
Dans les deux cas, les mesures de quantités d'azote permettent de connaître l'action à effectuer pour se rapprocher de la quantité optimale. On constate ainsi que le point 52 correspond à une position stable de la courbe, et que le procédé est tel que cet optimum est obligatoirement atteint après un certain nombre d'étapes.
Un procédé tel que celui décrit ici, est destiné à être intégré dans une stratégie globale 60 d' injection de pilotage SCR. Une telle stratégie, décrite à l'aide des figures 6a et 6b, est mise en œuvre par le biais de plusieurs modules, parmi lesquels un module 61 d'estimation de grandeurs physiques, un module 62 de pilotage d'injection d'urée, à proprement parler, et un module 63 de contrôle de l'urée embarquée dans le véhicule sur lequel la stratégie est mise en œuvre.
De manière plus précise, un procédé selon l'invention est mis en place dans un sous-module 66 de contrôle en boucle fermée de la quantité d'urée à injecter, ce sous-module 66 étant intégré dans le module 62 de pilotage de l'injection. Ce module 62 comprend également un sous-module 65 de calcul de la quantité d'urée à injecter et un sous-module 64 de contrôle de la consommation d'urée.
La quantité d'urée calculée par le sous-module 65, à l'aide des grandeurs physiques calculées par module 61 d'estimation de grandeurs physiques, peut être utilisée en tant que quantité initiale pour un procédé tel que décrit ici.

Claims

REVENDICATIONS
1. Procédé de contrôle de la quantité d'urée injectée dans un système de traitement d'oxydes d'azote à réduction catalytique sélective, dite SCR, destiné à être installé dans la ligne d'échappement du moteur d'un véhicule, le traitement consistant à réduire chimiquement, dans un catalyseur, dit catalyseur SCR, les oxydes d'azote en ajoutant de l'ammoniac contenu dans de l'urée, le procédé comprenant les étapes suivantes : on injecte dans le système une quantité d'urée prédéterminée, on mesure, à l'issue de cette injection, les quantités d'oxydes d'azote et d'ammoniac en sortie du catalyseur
SCR, on injecte une nouvelle quantité correspondant à la quantité précédemment injectée multipliée par un coefficient d'injection initial, on mesure les quantités d'oxydes d'azote et d'ammoniac en sortie du catalyseur SCR et on les compare aux valeurs précédemment mesurées, et en fonction de l'évolution des quantités mesurées, on calcule un nouveau coefficient d' injection, les trois dernières étapes étant répétées jusqu' à atteindre une quantité optimale d'urée.
2. Procédé selon la revendication 1 dans lequel la quantité d'urée prédéterminée est calculée à l'aide d'un modèle prédéterminé prenant en compte des paramètres du moteur et de l'environnement.
3. Procédé selon la revendication 1 ou 2 dans lequel le coefficient d'injection initial est supérieur à 1.
4. Procédé selon l'une des revendications 1 à 3 dans lequel, lorsque les quantités mesurées d'oxydes d'azote et d'ammoniac sont en diminution, le coefficient d'injection est supérieur à 1, ce coefficient étant alors appelé coefficient de sur injection.
5. Procédé selon l'une des revendications précédentes dans lequel, lorsque les quantités d'oxydes d'azote et d'ammoniac sont en diminution, le coefficient d'injection est inférieur à 1, ce coefficient étant appelé coefficient de sous injection.
6. Procédé selon les revendications 4 et 5 dans lequel, lorsque les quantités d'oxydes d'azote et d'ammoniac diminuent après avoir augmenté, on applique un coefficient de sur injection inférieur à l'inverse du coefficient de sous injection précédemment appliqué, et la nouvelle quantité d'urée calculée à partir de ce coefficient de sur injection est la quantité optimale d'urée à injecter.
7. Procédé selon la revendication 6 dans lequel, on détermine un facteur de correction finale, correspondant à la quantité d'urée optimale divisée par la quantité initiale d'urée.
8. Procédé selon les revendications 4 et 5 dans lequel, lorsque les quantités d'oxydes d'azote et d'ammoniac augmentent après avoir diminué, le nouveau coefficient de sous injection appliqué est supérieur à l'inverse du coefficient de sur injection précédemment appliqué.
9. Procédé selon l'une des revendications précédentes dans lequel on modifie la quantité d'urée injectée uniquement dans le cas où des conditions de roulage stables se présentent .
10. Procédé selon l'une des revendications précédentes dans lequel l'urée est sous forme d'urée liquide pure ou de solution d'urée.
PCT/FR2007/052011 2006-10-13 2007-09-26 Procede de controle en boucle fermee de quantite d'uree pour systeme de traitement d'oxydes d'azote WO2008043928A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602007012457T DE602007012457D1 (de) 2006-10-13 2007-09-26 Verfahren zur regelung einer harnstoffmenge für ein stickoxidverarbeitungssystem
AT07823856T ATE498066T1 (de) 2006-10-13 2007-09-26 Verfahren zur regelung einer harnstoffmenge für ein stickoxidverarbeitungssystem
EP07823856A EP2078149B1 (fr) 2006-10-13 2007-09-26 Procede de controle en boucle fermee de quantite d'uree pour systeme de traitement d'oxydes d'azote

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0654252 2006-10-13
FR0654252A FR2907160B1 (fr) 2006-10-13 2006-10-13 Procede de controle en boucle fermee de quantite d'uree pour systeme de traitement d'oxydes d'azote

Publications (1)

Publication Number Publication Date
WO2008043928A1 true WO2008043928A1 (fr) 2008-04-17

Family

ID=37891952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/052011 WO2008043928A1 (fr) 2006-10-13 2007-09-26 Procede de controle en boucle fermee de quantite d'uree pour systeme de traitement d'oxydes d'azote

Country Status (6)

Country Link
EP (1) EP2078149B1 (fr)
AT (1) ATE498066T1 (fr)
DE (1) DE602007012457D1 (fr)
ES (1) ES2357577T3 (fr)
FR (1) FR2907160B1 (fr)
WO (1) WO2008043928A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011075015A1 (fr) 2009-12-18 2011-06-23 Volvo Lastvagnar Ab Procédé pour commander le niveau de tampon de réducteur dans un dispositif de post-traitement de gaz d'échappement
WO2012001222A1 (fr) 2010-06-29 2012-01-05 Wärtsilä Finland Oy Procédé et agencement de réglage pour une réduction catalytique sélective
WO2014162049A1 (fr) 2013-04-03 2014-10-09 Wärtsilä Finland Oy Système et procédé de mesure de nox
EP2808510A1 (fr) * 2013-05-28 2014-12-03 Renault S.A.S. Procédé et système de contrôle de la qualité d'un agent de réduction catalytique sélective d'oxydes d'azote, injecté dans une ligne d'échappement d'un véhicule automobile
RU2540343C2 (ru) * 2010-01-13 2015-02-10 Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх Устройство бака и дозирующая система восстановителя
RU2547045C2 (ru) * 2010-04-09 2015-04-10 Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх Устройство для обеспечения жидкого восстановителя для устройства очистки отработавших газов
JP2015135117A (ja) * 2015-03-06 2015-07-27 ボルボ ラストバグナー アーベー 排気ガス後処理デバイス内の還元剤貯蔵・レベルをコントロールするための方法
RU2565122C2 (ru) * 2011-08-05 2015-10-20 Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх Устройство для подачи жидкого восстановителя
FR3036438A1 (fr) * 2015-05-18 2016-11-25 Peugeot Citroen Automobiles Sa Procede de verification de la quantite de nox en sortie d’un moteur
GB2549716A (en) * 2016-04-25 2017-11-01 Gm Global Tech Operations Llc A method for controlling an injector for injecting a reductant into an exhaust system of an internal combustion engine
CN113607398A (zh) * 2021-08-03 2021-11-05 安徽江淮汽车集团股份有限公司 一种精确测定scr氨喷射比例的方法
CN114991915A (zh) * 2022-06-30 2022-09-02 东风商用车有限公司 基于尿素与燃油价格变化改善整车经济性的控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3704030A1 (de) * 1987-02-10 1988-08-18 Ruhrgas Ag Verfahren zum abscheiden von stickstoffoxiden aus abgasen durch selektive katalytische reduktion
US6427439B1 (en) * 2000-07-13 2002-08-06 Ford Global Technologies, Inc. Method and system for NOx reduction
US20050282285A1 (en) * 2004-06-21 2005-12-22 Eaton Corporation Strategy for controlling NOx emissions and ammonia slip in an SCR system using a nonselective NOx/NH3

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3704030A1 (de) * 1987-02-10 1988-08-18 Ruhrgas Ag Verfahren zum abscheiden von stickstoffoxiden aus abgasen durch selektive katalytische reduktion
US6427439B1 (en) * 2000-07-13 2002-08-06 Ford Global Technologies, Inc. Method and system for NOx reduction
US20050282285A1 (en) * 2004-06-21 2005-12-22 Eaton Corporation Strategy for controlling NOx emissions and ammonia slip in an SCR system using a nonselective NOx/NH3

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2532463C2 (ru) * 2009-12-18 2014-11-10 Вольво Ластвагнар Аб Способ управления резервным уровнем восстановителя в устройстве нейтрализации отработавших газов
US9243535B2 (en) 2009-12-18 2016-01-26 Volvo Lastvagnar Ab Method for controlling the reductant buffer level in an exhaust gas aftertreatment device
CN102713180A (zh) * 2009-12-18 2012-10-03 沃尔沃拉斯特瓦格纳公司 用于对排气后处理装置中的还原剂缓冲器水平进行控制的方法
JP2013514490A (ja) * 2009-12-18 2013-04-25 ボルボ ラストバグナー アーベー 排気ガス後処理デバイス内の還元剤バッファ・レベルをコントロールするための方法
US20130186067A1 (en) * 2009-12-18 2013-07-25 Johan Dahl Method for controlling the reductant buffer level in an exhaust gas aftertreatment device
WO2011075015A1 (fr) 2009-12-18 2011-06-23 Volvo Lastvagnar Ab Procédé pour commander le niveau de tampon de réducteur dans un dispositif de post-traitement de gaz d'échappement
RU2540343C2 (ru) * 2010-01-13 2015-02-10 Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх Устройство бака и дозирующая система восстановителя
US9127583B2 (en) 2010-01-13 2015-09-08 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Device for providing a liquid reducing agent and motor vehicle having the device
RU2547045C2 (ru) * 2010-04-09 2015-04-10 Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх Устройство для обеспечения жидкого восстановителя для устройства очистки отработавших газов
WO2012001222A1 (fr) 2010-06-29 2012-01-05 Wärtsilä Finland Oy Procédé et agencement de réglage pour une réduction catalytique sélective
US8652410B2 (en) 2010-06-29 2014-02-18 Wartsila Finland Oy Control method and arrangement for selective catalytic reduction
RU2565122C2 (ru) * 2011-08-05 2015-10-20 Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх Устройство для подачи жидкого восстановителя
WO2014162049A1 (fr) 2013-04-03 2014-10-09 Wärtsilä Finland Oy Système et procédé de mesure de nox
FR3006371A1 (fr) * 2013-05-28 2014-12-05 Renault Sa Procede et systeme de controle de la qualite d'un agent de reduction catalytique selective d'oxydes d'azote, injecte dans une ligne d'echappement d'un vehicule automobile
EP2808510A1 (fr) * 2013-05-28 2014-12-03 Renault S.A.S. Procédé et système de contrôle de la qualité d'un agent de réduction catalytique sélective d'oxydes d'azote, injecté dans une ligne d'échappement d'un véhicule automobile
JP2015135117A (ja) * 2015-03-06 2015-07-27 ボルボ ラストバグナー アーベー 排気ガス後処理デバイス内の還元剤貯蔵・レベルをコントロールするための方法
FR3036438A1 (fr) * 2015-05-18 2016-11-25 Peugeot Citroen Automobiles Sa Procede de verification de la quantite de nox en sortie d’un moteur
GB2549716A (en) * 2016-04-25 2017-11-01 Gm Global Tech Operations Llc A method for controlling an injector for injecting a reductant into an exhaust system of an internal combustion engine
US10196956B2 (en) 2016-04-25 2019-02-05 GM Global Technology Operations LLC Method for controlling an injector for injecting a reductant into an exhaust system of an internal combustion engine
CN113607398A (zh) * 2021-08-03 2021-11-05 安徽江淮汽车集团股份有限公司 一种精确测定scr氨喷射比例的方法
CN113607398B (zh) * 2021-08-03 2022-05-03 安徽江淮汽车集团股份有限公司 一种精确测定scr氨喷射比例的方法
CN114991915A (zh) * 2022-06-30 2022-09-02 东风商用车有限公司 基于尿素与燃油价格变化改善整车经济性的控制方法
CN114991915B (zh) * 2022-06-30 2023-04-21 东风商用车有限公司 基于尿素与燃油价格变化改善整车经济性的控制方法

Also Published As

Publication number Publication date
EP2078149A1 (fr) 2009-07-15
ATE498066T1 (de) 2011-02-15
FR2907160B1 (fr) 2008-12-26
EP2078149B1 (fr) 2011-02-09
ES2357577T3 (es) 2011-04-27
DE602007012457D1 (de) 2011-03-24
FR2907160A1 (fr) 2008-04-18

Similar Documents

Publication Publication Date Title
EP2078149B1 (fr) Procede de controle en boucle fermee de quantite d'uree pour systeme de traitement d'oxydes d'azote
EP2274506B1 (fr) Procede de correction de modeles d'emission d'oxydes d'azote
EP3014082B1 (fr) Système et procédé de diagnostic de la réduction catalytique sélective d'un véhicule automobile
WO2008129184A1 (fr) Procede d'injection d'uree a basse temperature
EP2802760B1 (fr) Gestion optimisée d'un catalyseur scr par régénérations périodiques d'un filtre à particules
FR3048720A1 (fr) Procede d'optimisation de la consommation d'agent reducteur dans une ligne d'echappement d'un vehicule automobile
FR2923533A1 (fr) Appareil de purification de gaz d'echappement pour moteur a combustion interne
FR3040075A1 (fr) Procede et dispositif pour determiner l'efficacite de la conversion par un catalyseur de gaz d'echappement
EP2080873B1 (fr) Procédé d'injection d'agent réducteur dans une ligne d'échappement
EP3819483A1 (fr) Procédé d'estimation de la quantité d'oxydes d'azote (nox) et/ou de la quantité d'ammoniac (nh3) en aval d'un piège à oxydes d'azote
EP2466087B1 (fr) Procédé de diagnostic d'un système de réduction catalytique sélective pour un véhicule et véhicule correspondant
FR2956696A1 (fr) Procede de controle d'un systeme de traitement des gaz d'echappement d'un moteur a combustion interne
FR2838160A1 (fr) Systeme de commande des emissions d'echappement pour moteur a combustion interne et procede de commande des emissions d'echappement
EP2539558B1 (fr) Procede de controle des emissions polluantes d'un moteur a combustion
EP3056703B1 (fr) Procédé et système de réduction des oxydes d'azotes issus d'un moteur à combustion interne
FR2978984A3 (fr) Gestion optimisee d'un catalyseur scr de vehicule automobile
FR2919667A3 (fr) Systeme et procede de diagnostic de changement de filtre a particules
FR2925935A1 (fr) Procede et systeme de gestion de l'injection d'agent reducteur dans un systeme scr.
EP3043041B1 (fr) Procédé de traitement des oxydes d'azote issus d'un moteur à combustion interne
EP2961955B1 (fr) Procede de detection d'un dysfonctionnement d'un systeme de reduction catalytique selective
FR2933135A3 (fr) Dispositif de post-traitement des gaz d'echappement et procede associe
FR2933737A1 (fr) Procede de detection de soufre dans un carburant et moteur a combustion interne utilisant ce procede
FR3084458A1 (fr) Procede d'apprentissage et de correction d'un temps de reponse d'une sonde de mesure
FR3081508A1 (fr) Procédé de gestion d’un catalyseur-accumulateur NOx
FR2846708A1 (fr) Procede pour la determination d'une charge d'un filtre a particules dans le trajet d'echappement d'un moteur a combustion interne

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07823856

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007823856

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE