WO2008042645A1 - High styrene sbs hot melt adhesive - Google Patents
High styrene sbs hot melt adhesive Download PDFInfo
- Publication number
- WO2008042645A1 WO2008042645A1 PCT/US2007/079378 US2007079378W WO2008042645A1 WO 2008042645 A1 WO2008042645 A1 WO 2008042645A1 US 2007079378 W US2007079378 W US 2007079378W WO 2008042645 A1 WO2008042645 A1 WO 2008042645A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- weight
- styrene
- adhesive
- block copolymer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J153/00—Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
- C09J153/02—Vinyl aromatic monomers and conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/02—Organic macromolecular compounds, natural resins, waxes or and bituminous materials
Definitions
- the present invention relates to multipurpose hot melt adhesives and more particularly, it relates to new multipurpose SBS based hot melt adhesives which find utility in the manufacture of disposable soft goods such as diapers, feminine napkins and the like.
- the first copolymers to be employed were the ethylene vinyl acetate copolymers (EVA) and amorphous polypropylene (APP). While these polymers, when properly blended, provided acceptable adhesion to most substrates, they had several shortcomings which detracted from their usefulness.
- One of the first shortcomings of these polymers was that they lacked the desired elevated temperature resistance. For example, it is very important that a construction adhesive, for disposable soft goods, maintain its bond, not only at room temperature, but also at elevated temperatures, that is, 100 0 F (38°C).
- multi-purpose adhesive compositions are those adhesives which can be used for more than one application.
- adhesive applications include the use of adhesives in construction, that is, bonding the polyethylene to the nonwoven and absorbent pad; the use of adhesives for elastic attachment, that is, bonding the elastic material to the polyethylene in either the leg and/or waist area; the use of adhesives for landing strips, that is, bonding a reinforcing layer of polyolefin film to the polyethylene in the area opposite the tape tabs; and the use of core adhesives, that is, applying an adhesive to the absorbent core to increase the strength of the core.
- Construction adhesives are soft (tacky), have high peel strength, long open time and low cohesive strength.
- Elastic attachment adhesives are stiffer (not as tacky), high in cohesive strength, and shorter in open time, than construction adhesives. For multipurpose applications, in particular, elastic attachment, the balance of stiffness, cohesive strength, and open time is required for good performance.
- SIS is chosen because, when compared to other block copolymers, for the same melt index and rubber content, SIS polymers provide a higher molecular weight and softer adhesive products.
- Adhesives used for elastic attachment need to contain high amounts of rubber and endblock resin to obtain adequate cohesion.
- U.S. Patent No. 5,149,741 to Alper discloses elastic attachment adhesives comprising 35 parts of SIS copolymer, in combination with 10 parts endblock resin. While these adhesive compositions have been used, they also have had several noteworthy deficiencies which have detracted from their usefulness. For example, adhesive compositions employing previously commercially available SIS copolymers displayed a low modulus and poor elevated temperature resistance even when formulated with various tackifying resins.
- endblock reinforcing resins were blended therewith.
- these resins appeared to decrease the specific adhesion of the adhesive compositions to polyolefin substrates and also raised the raw material cost of the final adhesive composition inasmuch as these reinforcing resins are generally quite expensive.
- adhesive compositions containing SIS copolymers require relatively non-polar tackifying resins, that is, partially or totally hydrogenated resins or aliphatic C-5 resins.
- 6.391,960 describes the use of an endblock resin in combination with a relatively high molecular weight radial or linear SBS copolymer as a multipurpose hot melt adhesive. It is stated therein that the presence of the endblock resin provides for a higher cohesion at lower viscosity, when compared to adding more copolymer to the composition to obtain the same increased level of cohesion. It is also stated that the presence of the high molecular weight SBS copolymer allows use of a lower amount of the copolymer which provides a softer, more pressure sensitive adhesive, with longer open time, when compared to use of a low molecular weight SBS copolymer.
- Low viscosity hot melts can be made by using relatively low molecular weight linear SBS polymers, as described herein.
- Suitable endblock molecular weights can also be achieved when using linear block copolymers instead of radial.
- linear block copolymers have a higher relative endblock molecular weight than a corresponding radial polymer.
- the general structure of a linear block copolymer made via a coupling reaction would be A-B-X-B-A, where A is styrene, B is butadiene and X is a di-functional coupling agent. If a similar radial polymer was made using a tetra- functional coupling agent, the structure would be (A-B) 4 -X.
- the molecular weight of the linear polymer would be twice that of the radial polymer.
- the beneficial effect of aromatic endblock reinforcing resins would therefore be more pronounced in linear versus radial SBS polymers.
- the unique combination of low polymer molecular weight combined with high styrene content and linear polymer architecture results in a low viscosity hot melt adhesive with excellent elastic attachment performance.
- the "midblock" of the polymer refers to polymeric blocks which are substantially aliphatic.
- midblock resin refers to a tackifier which is compatible with the midblock of the polymer.
- Endblock of the polymer refers to polymeric blocks which are substantially aromatic.
- Endblock resins are substantially aromatic and compatible with the endblock of the polymer.
- endblock resins are commonly used with SIS to improve cohesive strength in pressure sensitive adhesives.
- Endblock resins are not commonly used with SBS because it is difficult to ensure that the resin actually incorporates in the endblock due to the higher polarity of the butadiene midblock compared to isoprene midblock, which therefore tends to solubilize the endblock resin in the midblock to a large extent.
- endblock resins are not commonly used in SBS-based elastic attachment adhesives.
- Raykovitz U.S. Patent No. 4,944,993 discloses low molecular weight, radial SBS polymers comprising a styrene content greater than 35% with an endblock resin, and their use in construction and elastic attachment adhesives.
- the present invention is directed to multipurpose hot melt adhesive compositions which are suitable for use as both a construction and elastic attachment adhesive for disposable soft goods, such as disposable diapers, feminine sanitary napkins, surgical drapes, hospital pads, and adult incontinent products.
- the multipurpose hot melt adhesive compositions have a high level of creep resistance, high bond strength, and relatively low viscosity, and are composed of endblock resin in combination with a linear styrene-butadiene-styrene (SBS) copolymer wherein the copolymer has a styrene content greater than about 35% by weight, and preferably about 38% to about 50% by weight.
- SBS linear styrene-butadiene-styrene
- the adhesive compositions of the present invention have a relatively long open time, low stiffness and good cohesive strength which properties are advantageous for an effective multipurpose adhesive.
- the adhesive compositions are very suitable for bonding of elastic to polyethylene and/or polypropylene films, tissue and/or non-woven substrates to form gathered waist, leg, or sleeve bands in a disposable soft goods article. Additionally, the combination of relatively high cohesive strength of the adhesive coupled with relatively low viscosity provides a superior adhesive for application to such substrates using conventional spray fiberization techniques wherein it is desirable to be able to spray the molten adhesive in various patterns without disruption of the continuous adhesive filament.
- the use of at least 35%, and generally up to about 50%, by weight of styrene in a linear SBS block copolymer provides a much lower viscosity at an equivalent temperature to an SBS block copolymer that contains lower amounts of the styrene moiety.
- This allows for a lower application temperature, which in turn, avoids burn through when the adhesive is applied to polyethylene, polypropylene and/or the elastic strands.
- the lower application temperatures of the present adhesives avoid problems relating to heat degradation of the adhesive since the application temperatures are lower than previously required with other SBS block copolymers.
- the adhesives of the present invention include:
- the tackifier is preferably present in an amount greater than the block copolymer, and the adhesive has a viscosity less than 10,000 cP, preferably
- the present invention is directed to a multipurpose hot melt adhesive based on a linear SBS polymer with a styrene content greater than about 35% by weight and an endblock resin.
- the linear SBS polymer may be present in amounts ranging from 5% to 40% by weight, preferably 10% to 30% by weight, and most preferably 15% to 25% by weight.
- the polymers useful in the hot melt adhesive of the present invention are block or multi-block copolymers having one of the following general configurations:
- Variable "n” is an integer equal to, or greater than, one.
- Copolymers useful in the present invention are substantially linear. Some level of diblock copolymer, AB, may be present by design or due to incomplete coupling of the AB arms. Diblock can be beneficial for increasing tack, peel and open time, but this must be counterbalanced with its effect of lowering cohesive strength and elevated temperature resistance. Diblock level will in general be below 30%, preferably less than 15%.
- An example of a multivalent coupling agent, "X”, with a functionality of 2 is dibromoethane
- the polymer can be made using a sequential polymerization process, which does not use a coupling agent. This process can result in a polymer that has essentially no diblock.
- the non-elastomeric blocks A may comprise homopolymers or copolymers of vinyl monomers such as vinyl arenes, vinyl pyridines, vinyl halides and vinyl carboxylates, as well as acrylic monomers such as acrylonitrile, methacrylonitrile, esters of acrylic acids, etc.
- Monovinyl aromatic hydrocarbons include styrene, vinyl toluene, vinyl xylene, ethyl vinyl benzene as well as dicyclic monovinyl compounds such as vinyl naphthalene and the like.
- Other non- elastomeric polymer blocks may be derived from alpha olefins, alkylene oxides, acetals, urethanes, etc. Styrene is preferred, in an amount comprising more than 35 weight percent of the total copolymer composition, and more preferably 38 to 50 weight percent.
- the elastomeric block component, B, making up the remainder of the copolymer is butadiene, which has not been hydrogenated.
- Most preferred for use herein are the linear A-B-A triblock copolymers where the elastomeric block is butadiene and the non-elastomeric block is styrene, and wherein the copolymer has a molecular weight such that the solution viscosity (25 weight percent of polymer in toluene) is less than 1000 centipoise and a diblock content of essentially zero.
- Typical of the rubbery block copolymers useful herein are the polystyrene-polybutadiene-polystyrene.
- the polybutadiene midblock will contain different ratios of cis-1,4; trans- 1,4; and 1,2 addition. Higher levels of 1,2 addition may be desirable to lower the viscosity for a given molecular weight.
- These copolymers may be prepared using methods familiar to one of ordinary skill in the art.
- these polymers may be obtained from TSRC Corporation of Taiwanunder the tradename Taipol 4202, with a styrene content of 40%, a solution viscosity of 620 centipoise, a Melt Flow of 7.5 grams per 10 minutes at 190 0 C using a 5 kilogram weight and a diblock content of essentially zero
- Blends of these styrene containing copolymers with up to about 25%, preferably less than 10%, of other compatible non-functionalized block copolymers may also be employed.
- non-functionalized block copolymers which are not chemically modified so as to contain functional groups such as epoxy, anhydride, silane, sulfonate, amide or the like on the copolymer backbone.
- Useful compatible copolymers include those prepared using isoprene or butadiene elastomeric midblocks, whether hydrogenated or not, such as those available from Kraton Polymers LLC under the Kraton trademark. Particularly useful is that designated Kraton 1 165.
- the copolymer used in the adhesive will generally be present in the adhesive formulation at a level less than 40%, but generally greater than 5%, more often greater than 10%, and up to about 30% by weight, and most preferably about 15 to 25% by weight. Since the copolymer used in the hot melt adhesive of the present invention is of relatively high molecular weight, only a small amount needs to be used, resulting in a long open time and soft product.
- the hot melt adhesive compositions of the present invention also comprises a solid tackifier which is compatible with the midblock of the SBS copolymer.
- Representative resins include the C 5 /C 9 hydrocarbon resins, synthetic polyterpenes, rosin, rosin esters, natural terpenes, and the like. More particularly, the useful tackifying resins include any compatible resins or mixtures thereof such as (1) natural and modified rosins including gum rosin, wood rosin, tall oil rosin, distilled rosin, hydro genated rosin, dimerized rosin, and polymerized rosin; (2) glycerol and pentaerythritol esters of natural and modified rosins, including the glycerol ester of pale, wood rosin, the glycerol ester of hydrogenated rosin, the glycerol ester of polymerized rosin, the pentaerythritol ester of hydrogenated rosin, and the phenolic-modified pentaerythritol ester of rosin; (3) copolymers and terpolymers of natural terpen
- tackifying resins may be required for some formulations.
- cyclic or acylic C 5 resins and aromatic modified acyclic or cyclic resins.
- Preferred is an aromatic modified cyclic or an acyclic C 5 resin.
- the tackifying resin should have a Ring and Ball softening point of between 85°C and 125°C. More preferably the softening point is between about 95 0 C and 115°C.
- a preferred tackifier is a hydrogenated aromatic modified dicyclopentadiene resin with a Ring and Ball softening point between about 100 0 C to 115°C. These resins are available from ExxonMobil Chemical Company under the tradenames Escorez 5600 and 5615, with softening points of 100 0 C and 115°C, respectively.
- the tackifiers also referred to as “midblock resins" are generally present in the adhesive compositions in an amount greater than the amount of the block copolymer. Within this range, amounts of 20 to 70% by weight of the composition, preferably 40 to 65 weight percent are utilized, and most preferably 50 to 62 weight percent.
- the present invention also includes 2 to 30 weight percent of an endblock resin which is substantially aromatic.
- endblock resins can be prepared from any substantially aromatic monomers having a polymerizable unsaturated group.
- aromatic monomers include the styrenic monomers, styrene, alphamethyl styrene, vinyl toluene, methoxy styrene, tertiary butyl styrene, chlorostyrene, etc., coumarone, indene monomers including indene, and methyl indene.
- the aromatic endblock resin is preferably present in amounts of 5 to 20 weight percent.
- the Ring and Ball Softening Points of the aromatic endlbock resin is preferably between 100° and 160 0 C. More preferably, the softening point is between about 100° and 140 0 C and most preferably between about 120 0 C and 140 0 C.
- Two preferred examples are Plastolyn 240 and Plastolyn 290 available from Eastman Chemical. They have Ring and Ball Softening Points of 120 0 C and 140 0 C, respectively.
- the hot melt adhesive of the present invention also comprises 0 to 30, preferably 5 to 20, weight percent of an oil diluent.
- Suitable plasticizing or extending oils or liquid tackifiers include olefin oligomers and low molecular weight polymers as well as vegetable and animal oil and their derivatives.
- the petroleum derived oils which may be employed are relatively high boiling materials containing only a minor proportion of aromatic hydrocarbons (preferably less than 30%, more particularly, less than 15% by weight of the oil). Alternatively, the oil may be totally non-aromatic.
- Suitable oligomers include polypropylenes, polybutenes, hydrogenated polyisoprene, hydrogenated polybutadiene, or the like having average molecular weights between about 350 and about 10,000.
- a preferred example is a USP grade of mineral oil available from Sonneborn, Inc. under the tradename Kaydol
- the hot melt adhesive of the present invention also comprises 0 to 4 weight percent, preferably, 0.3 to 3.0 weight percent, of an antioxidant.
- an antioxidant preferably, 0.3 to 3.0 weight percent
- the applicable stabilizers or antioxidants included herein are the hindered phenols or hindered phenols in combination with a secondary antioxidant such as distearyl thiodipropionate (“DSTDP”) or dilauryl thiodipropionate (“DLTDP").
- DSTDP distearyl thiodipropionate
- DLTDP dilauryl thiodipropionate
- Hindered phenols as used herein are as phenolic compounds containing sterically bulky radicals in close proximity to the phenolic hydroxyl group thereof.
- hindered phenols include: 1,3,5-trimethyl 2,4,6-tris (3,5-di-tert- butyl-4-hydroxybenzyl)benzene; pentaerythrityl tetrakis-3(3,5-di-tert-butyl-4- hydroxyphenyl)propionate; pentaerythritol tetrakis (3-lauryl thiodipropionate); n- octadecyl-3,5-di-tert-butyl-4-hydroxyphenol)-propionate; 4,4'-methylenebis (2,6- tert-butylphenol); 4,4'-thiobis (6-tert-butyl-o-cresol); 2,6-di-ter
- Preferred antioxidants are SUMILIZER TDP, a secondary antioxidant available from Sumitomo Chemical Company and IRGANOX 1010 a hindered phenol primary antioxidant available from Ciba-Geigy.
- the stabilizer is preferably present in amounts of 0.3 to 3% by weight, more preferably 0.3 to 1.5%, and most preferably 0.5%.
- Optional additives may be incorporated into the hot melt compositions depending on the end use of the composition.
- colorants such as titanium dioxide; fluorescent agents; and fillers such as talc, clay, calcium carbonate, silica, mica, wollastonite, feldspar, aluminum silicate, alumina, hydrated alumina, glass microspheres, ceramic microspheres, thermoplastic micropheres, baryte and wood flour, as well as minor amounts (e.g., less than about 5%) of a wax such as a petroleum derived wax, a synthetic wax or a polyolefin wax.
- colorants such as titanium dioxide; fluorescent agents; and fillers such as talc, clay, calcium carbonate, silica, mica, wollastonite, feldspar, aluminum silicate, alumina, hydrated alumina, glass microspheres, ceramic microspheres, thermoplastic micropheres, baryte and wood flour, as well as minor amounts (e.g., less than about 5%) of
- One embodiment of the present invention is a multipurpose hot melt adhesive comprising:
- the adhesive comprises:
- the adhesive comprises:
- the present invention is directed to a multipurpose hot melt adhesive comprising:
- the resultant adhesives may be used in the assembly or construction of various disposable articles including, but not limited to, disposable diapers, disposable feminine products, adult incontinent products, hospital gowns, bed pads and the like.
- adhesives are useful for the assembly of disposable articles wherein at least one polyethylene or polypropylene substrate is bonded to at least one tissue, nonwoven, polyethylene or polypropylene substrate.
- the adhesives are useful in the bonding of elastic to polyethylene, polypropylene or nonwoven substrate so as, for example, to impart elongation resistant gathers thereto.
- the adhesive may also be utilized in less demanding disposable construction applications such as for end or perimeter sealing.
- the viscosity of the adhesive formulation of the present invention will be less than 8,000 cP, providing the adhesive with excellent sprayability and processability.
- a preferred composition for a hot melt adhesive in accordance with the present invention which is sprayable and suitable for elastic attachment, will have a viscosity less than 10,000 cP at 325°F and preferably the substantially linear
- SBS block copolymer comprises greater than 35% styrene.
- a more preferred composition for an elastic attachment adhesive in accordance with the present invention will have a viscosity less than 8,000 cP at
- the substantially linear SBS block copolymer comprises greater than 38% styrene and essentially zero percent diblock.
- the adhesive formulations of the present invention in addition to being suitable for elastic attachment, may have a long open time and high pressure sensitivity allowing them to be very good as a construction adhesive.
- the following examples are merely illustrative and not intended to limit the scope of the present claims in any manner.
- the adhesive composition useful in the method of the present invention may be produced using any of the techniques known in the art.
- a representative example of the procedure involves placing all of the liquid substances in a jacketed mixing kettle and preferably in a jacketed heavy duty mixer of the Baker-Perkins or Day type, and which is equipped with rotors, and thereafter raising the temperature of this mixture to a range of 120 0 C to 177°C.
- the solid tackifying resins and other additives are then added and melted to form a homogeneious mixture. Finally, the polymer is added and mixed until completely blended in. It should be understood that the precise temperature to be used in this step would depend on the melting point of the particular ingredients and the viscosity of the finished adhesive. The resulting adhesive composition is agitated until the polymers completely dissolve. A vacuum is then applied to remove any entrapped air.
- Escorez 5600 is a hydrogenated aromatic modified cycloaliphatic hydrocarbon resin with a 100 0 C softening point. It is available from ExxonMobil
- Plastolyn 290 is a pure aromatic monomer resin with a 14O 0 C softening point available from Eastman Chemical Co.
- Taipol 4202 is a linear block copolymer with 40% styrene and 60% butadiene available from TSRC Corp. It has essentially zero percent diblock content. The solution viscosity in toluene at 25 weight percent is 620 centipoise. The melt flow (ASTM 1238) is 7.5 grams/10 minutes at 19O 0 C using a 5 kg. weight.
- Kaydol is a white mineral oil available from Sonneborn, Inc.
- Irganox 1010 is a hindered phenolic antioxidant. It is available from
- H2598 is a high styrene SIS based elastic attachment adhesive. It is available commercially from Bostik, Inc. located in Wauwatosa, WI. [0087] The following tests were performed on the adhesives to determine the viscosity, softening point and creep resistance for elastic attachment. [0088] Viscosity
- the resulting hot melt adhesives may be then applied to substrates using a variety of application techniques. Examples includes hot melt glue gun, hot melt slot-die coating, hot melt wheel coating, hot melt roller coating, melt blown coating, spiral spray and the like.
- the hot melt adhesive is sprayed onto a substrate using spiral spray, which is a preferred technique to produce a filamentary spiral pattern for elastic attachment and construction in diaper manufacturing.
- a hot melt coater is equipped with a disc like coating die which has a nozzle tip in the center. The tip is surrounded with a series of inclined orifices for hot air jets to pass through.
- the hot melt adhesive is pumped out of the nozzle in the form of a fine filament.
- the filament is then rotated by high-velocity hot air jets coming out of the orifices, thereby producing a helical pattern from a single strand of adhesive which is transported to the substrate.
- preferred methods of applying the adhesive would be by spray application, most preferably assisted by air.
- the most common are spiral spray (Controlled FiberizationTM by Nordson), SummitTM by Nordson, SurewrapTM by Nordson, OmegaTM by ITW and various melt blown processes.
- the temperature at which the hot melt adhesive is applied should be below 170°C, so that the heat sensitive substrates will not be damaged.
- this temperature should be equal to or lower than 16O 0 C, most preferably lower than 150°C.
- the adhesive composition of the present invention may be used in a number of applications such as, for example, in disposable nonwoven hygienic articles, paper converting, flexible packaging, wood working, carton and case sealing, labeling and other assembly applications. Particularly preferred applications include disposable diaper and feminine sanitary napkin construction, diaper and adult incontinent brief elastic attachment, diaper and napkin core stabilization, diaper backsheet lamination, industrial filter material conversion, surgical gown and surgical drape assembly, etc.
- the adhesives of the present invention are particularly suited.as elastic attachment adhesives for use on disposable diapers, training pants and adult incontinent products.
- the specimen cut to about 350 mm in length, was stretched out completely and its ends were securely attached to a piece of rigid corrugated paperboard. A length of 300 mm was marked and the elastic strands were cut at the marks. The specimen was then placed in an air-circulating oven at 100 0 F. Under these conditions, the elastic strands under stretch can retract to a certain distance. The distance between the ends was measured after four hours. The ratio of the final length to the initial length, defined as Creep Retention and expressed in percentage (%), is a measure of the ability of the adhesive to hold the elastic strands. [0094] Specimens for Creep Retention test were formed by using spiral spray technique on Meltex CT225 hot melt coater which was fitted with a 0.018" spiral spray nozzle.
- Example 1 To prepare the specimens, three elastic strands (Lycra 740), which were stretched to 300% elongation, were laminated between a layer of 1.0 mil thick polyethylene film and a layer of polypropylene spunbond nonwoven fabric. Spray ability was evaluated during the coating process by observing the shape of the spiral pattern. Adhesives were spiral sprayed at 12 and 18 grams per square meter (g/m 2 ) coating weight with 0.25 seconds open time and 1 bar compression at the nip rolls and the application temperature was set at 16O 0 C. [0095] Example 1
- Examples 1, 2 and 3 are formulations made according to the present invention. These three formulations based on a linear SBS block copolymer with high styrene content are compared to H2598 which is a commercially available high styrene SIS based elastic attachment adhesive. Table 1 illustrates that the viscosity at 16O 0 C of Examples 1, 2 and 3 is advantageously less than H2598.
- the adhesives of Examples of 1 - 3 were found to have low melt viscosity, good sprayability and excellent creep retention properties. They also have lower softening points than the control, which may allow for lower application temperatures. This is important where heat sensitive substrates are involved.
- Examples 4 and 5 are formulations made in accordance with the current invention.
- Examples 6 and 7 are the same formulation, except they use the SBS polymer described in U.S. Patent 6,391,960 which is an SBS based polymer containing 30% styrene content by weight. Also, it should be noted that Example 7 is similar to formulation 1-2 in Table I and Example II-2 in Table II in U.S. Patent 6,391,960.
- Examples 4 and 5 are significantly lower (approximately 4-6 times lower) than the prior art formulations of Examples 6 and 7 described in U.S. Patent 6,391,960.
- the lower viscosity of the formulations of the current invention (Examples 4 and 5) allow them to be sprayed onto elastic strands at significantly lower temperatures (about 130 0 C to about 150 0 C) than Examples 6 and 7 of the prior art U.S. Patent 6,391,960 (Examples 6 and 7) which had to be applied at 170 0 C to 180 0 C to achieve an acceptable spray pattern.
- Two different add-on levels, 15 and 18 grams per square meter were evaluated in Table Two. The other processing variables were the same as in Table One.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007800367964A CN101622323B (en) | 2006-10-02 | 2007-09-25 | High styrene sbs hot melt adhesive |
AU2007305022A AU2007305022B2 (en) | 2006-10-02 | 2007-09-25 | High styrene SBS hot melt adhesive |
JP2009531526A JP5497441B2 (en) | 2006-10-02 | 2007-09-25 | High styrene SBS hot melt adhesive |
ES07843114.5T ES2553648T3 (en) | 2006-10-02 | 2007-09-25 | SBS hot melt hot melt adhesive |
MX2009003243A MX2009003243A (en) | 2006-10-02 | 2007-09-25 | High styrene sbs hot melt adhesive. |
BRPI0717128-5A BRPI0717128B1 (en) | 2006-10-02 | 2007-09-25 | HOT MEL ADHESIVE COMPOSITION |
CA2663671A CA2663671C (en) | 2006-10-02 | 2007-09-25 | High styrene sbs hot melt adhesive |
EP07843114.5A EP2069447B1 (en) | 2006-10-02 | 2007-09-25 | High styrene sbs hot melt adhesive |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/541,598 | 2006-10-02 | ||
US11/541,598 US20080081858A1 (en) | 2006-10-02 | 2006-10-02 | High styrene SBS hot melt adhesive |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008042645A1 true WO2008042645A1 (en) | 2008-04-10 |
Family
ID=38924806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/079378 WO2008042645A1 (en) | 2006-10-02 | 2007-09-25 | High styrene sbs hot melt adhesive |
Country Status (9)
Country | Link |
---|---|
US (1) | US20080081858A1 (en) |
EP (1) | EP2069447B1 (en) |
JP (1) | JP5497441B2 (en) |
CN (1) | CN101622323B (en) |
AU (1) | AU2007305022B2 (en) |
CA (1) | CA2663671C (en) |
ES (1) | ES2553648T3 (en) |
MX (1) | MX2009003243A (en) |
WO (1) | WO2008042645A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013500359A (en) * | 2009-07-24 | 2013-01-07 | ボスティック,インコーポレイテッド | Hot melt adhesives based on olefin block copolymers |
WO2013060806A1 (en) | 2011-10-27 | 2013-05-02 | Tesa Se | Adhesive paste with increased temperature stability and use thereof for an adhesive tape |
CN104031585A (en) * | 2014-06-26 | 2014-09-10 | 无锡市万力粘合材料股份有限公司 | Hot melt glue for closestool cushion |
WO2016149385A1 (en) * | 2015-03-16 | 2016-09-22 | H.B. Fuller Company | An elastic adhesive composition and an elastic composite made with the same |
JP2016204665A (en) * | 2015-04-23 | 2016-12-08 | 積水フーラー株式会社 | Hot-melt adhesive and disposable product using the same |
EP2966140B1 (en) | 2014-07-08 | 2017-05-10 | Bostik Sa | Extrudable hot-melt pressure-sensitive adhesives for resealable packaging having improved organoleptic properties |
DE102017206083A1 (en) | 2017-04-10 | 2018-10-11 | Tesa Se | Bonding in electrochemical cells and stacking of electrochemical cells |
RU2695175C2 (en) * | 2014-08-26 | 2019-07-22 | Хенкель Аг Унд Ко. Кгаа | Hot-melt binder |
KR20210092402A (en) * | 2020-01-16 | 2021-07-26 | 주식회사 이레A.T (에이티) | Hot melt adhesive with excellent durability and adhesion |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010042668A1 (en) | 2008-10-07 | 2010-04-15 | Ross Technology Corporation | Spill resistant surfaces having hydrophobic and oleophobic borders |
BR112012023312A2 (en) | 2010-03-15 | 2019-09-24 | Ross Tech Corporation | plunger and hydrophobic surface production methods |
US8324309B2 (en) | 2010-04-27 | 2012-12-04 | Kraton Polymers Us Llc | High melt flow block copolymers for non-woven adhesives |
JP2014512417A (en) | 2011-02-21 | 2014-05-22 | ロス テクノロジー コーポレーション. | Superhydrophobic and oleophobic coatings containing low VOC binder systems |
CN102277112B (en) * | 2011-05-23 | 2014-11-05 | 波士胶芬得利(中国)粘合剂有限公司 | Wax-containing hot melt adhesive and disposable absorbent product |
EP2768914B1 (en) * | 2011-10-19 | 2018-11-21 | 3M Innovative Properties Company | Articles with thin melt coatings and methods for making same |
EP2791255B1 (en) | 2011-12-15 | 2017-11-01 | Ross Technology Corporation | Composition and coating for superhydrophobic performance |
WO2013148041A1 (en) | 2012-03-30 | 2013-10-03 | Dow Global Technologies Llc | Polyolefin adhesive composition |
BR112014032676A2 (en) * | 2012-06-25 | 2017-06-27 | Ross Tech Corporation | elastomeric coatings that have hydrophobic and / or oleophobic properties |
JP5474154B1 (en) * | 2012-10-10 | 2014-04-16 | ニチバン株式会社 | Hot-melt adhesive composition and transdermal patch |
JP6001483B2 (en) | 2013-03-26 | 2016-10-05 | ヘンケルジャパン株式会社 | Hot melt adhesive |
JP6001493B2 (en) | 2013-04-23 | 2016-10-05 | ヘンケルジャパン株式会社 | Hot melt adhesive |
JP6023001B2 (en) | 2013-05-22 | 2016-11-09 | ヘンケルジャパン株式会社 | Hot melt adhesive |
US11643578B2 (en) | 2014-01-17 | 2023-05-09 | Bostik, Inc. | Hot melt positioning adhesive |
MX2017002982A (en) | 2014-09-09 | 2017-05-30 | Fuller H B Co | A disposable garment. |
CN104479592A (en) * | 2014-12-15 | 2015-04-01 | 江苏达胜热缩材料有限公司 | Low-temperature 2PE hot melt adhesive and preparation method thereof |
ES2844498T3 (en) | 2014-12-17 | 2021-07-22 | Fuller H B Co | Hot melt adhesive composition for joining packaged assemblies of plastic containers |
US10351298B2 (en) | 2014-12-17 | 2019-07-16 | H.B. Fuller Company | Hot melt adhesive composition for bonding packs of metal containers |
JP6544942B2 (en) | 2015-02-20 | 2019-07-17 | ヘンケルジャパン株式会社 | Hot melt adhesive and disposable products |
US10414957B2 (en) * | 2015-03-16 | 2019-09-17 | H.B. Fuller Company | Low application temperature hot melt adhesive composition |
US10633567B2 (en) * | 2015-10-29 | 2020-04-28 | Kraton Polymers U.S. Llc | Hot melt elastic attachment adhesive for low temperature applications |
CN106497445B (en) * | 2016-11-09 | 2022-06-14 | 宁波启合新材料科技有限公司 | Adhesive tape |
CA3044523A1 (en) * | 2016-11-28 | 2018-05-31 | Bostik, Inc. | Hot melt adhesives for bonding elastomeric components, nonwoven materials, and thermoplastic films |
JP6294978B1 (en) * | 2017-01-16 | 2018-03-14 | 日本シーマ株式会社 | Porous granular deodorant-containing adhesive composition |
WO2018151190A1 (en) * | 2017-02-17 | 2018-08-23 | 積水フーラー株式会社 | Hot melt adhesive and stretchable laminate |
RU2747676C1 (en) | 2017-07-31 | 2021-05-12 | Кимберли-Кларк Ворлдвайд, Инк. | Elastified absorbing products and methods for formation of elastified absorbing products |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000075257A1 (en) * | 1999-06-07 | 2000-12-14 | National Starch And Chemical Investment Holding Corporation | Hot melt pressure sensitive adhesives based on compatibilized blends of elastomers |
WO2000078886A1 (en) * | 1999-06-24 | 2000-12-28 | National Starch And Chemical Investment Holding Corporation | Rubber based hot melt adhesives with improved wicking properties with low levels of surfactant |
US6391960B1 (en) * | 1998-12-23 | 2002-05-21 | National Starch And Chemical Investment Holding Corporation | Multipurpose hot melt adhesive |
EP1342765A2 (en) * | 2002-03-08 | 2003-09-10 | Henkel Kommanditgesellschaft auf Aktien | Hot melt pressure sensitive adhesives for disposable articles |
WO2007047232A1 (en) * | 2005-10-14 | 2007-04-26 | Bostik, Inc. | Low application temperature hot melt adhesive |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4526577A (en) * | 1984-01-09 | 1985-07-02 | National Starch And Chemical Corporation | Disposable article constructions |
US4944993A (en) * | 1988-08-17 | 1990-07-31 | National Starch And Investment Holding Corporation | Toughened rubber based hot melt adhesive compositions for disposable applications |
US5057571A (en) * | 1988-11-07 | 1991-10-15 | H. B. Fuller Licensing & Financing Inc. | Disposable article construction adhesive |
US5149741A (en) * | 1989-07-21 | 1992-09-22 | Findley Adhesives, Inc. | Hot melt construction adhesives for disposable soft goods |
JPH0681830B2 (en) * | 1990-10-16 | 1994-10-19 | 新田ゼラチン株式会社 | Adhesive composition for sanitary products and sanitary napkin |
US6858695B2 (en) * | 2001-04-27 | 2005-02-22 | National Starch And Chemical Investment Holding Corporation | Curable hot melt adhesive for casemaking |
JP2003064337A (en) * | 2001-06-12 | 2003-03-05 | Kuraray Co Ltd | Composition for adhesive |
US20060229411A1 (en) * | 2005-04-06 | 2006-10-12 | Stephen Hatfield | Hot melt pressure sensitive adhesives based on blends of styrene/butadiene copolymers |
US8163824B2 (en) * | 2006-10-02 | 2012-04-24 | Bostik, Inc. | High styrene SBS hot melt adhesive |
-
2006
- 2006-10-02 US US11/541,598 patent/US20080081858A1/en not_active Abandoned
-
2007
- 2007-09-25 WO PCT/US2007/079378 patent/WO2008042645A1/en active Application Filing
- 2007-09-25 EP EP07843114.5A patent/EP2069447B1/en active Active
- 2007-09-25 MX MX2009003243A patent/MX2009003243A/en active IP Right Grant
- 2007-09-25 CN CN2007800367964A patent/CN101622323B/en active Active
- 2007-09-25 CA CA2663671A patent/CA2663671C/en active Active
- 2007-09-25 AU AU2007305022A patent/AU2007305022B2/en active Active
- 2007-09-25 JP JP2009531526A patent/JP5497441B2/en active Active
- 2007-09-25 ES ES07843114.5T patent/ES2553648T3/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6391960B1 (en) * | 1998-12-23 | 2002-05-21 | National Starch And Chemical Investment Holding Corporation | Multipurpose hot melt adhesive |
WO2000075257A1 (en) * | 1999-06-07 | 2000-12-14 | National Starch And Chemical Investment Holding Corporation | Hot melt pressure sensitive adhesives based on compatibilized blends of elastomers |
WO2000078886A1 (en) * | 1999-06-24 | 2000-12-28 | National Starch And Chemical Investment Holding Corporation | Rubber based hot melt adhesives with improved wicking properties with low levels of surfactant |
EP1342765A2 (en) * | 2002-03-08 | 2003-09-10 | Henkel Kommanditgesellschaft auf Aktien | Hot melt pressure sensitive adhesives for disposable articles |
WO2007047232A1 (en) * | 2005-10-14 | 2007-04-26 | Bostik, Inc. | Low application temperature hot melt adhesive |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013500359A (en) * | 2009-07-24 | 2013-01-07 | ボスティック,インコーポレイテッド | Hot melt adhesives based on olefin block copolymers |
WO2013060806A1 (en) | 2011-10-27 | 2013-05-02 | Tesa Se | Adhesive paste with increased temperature stability and use thereof for an adhesive tape |
DE102011085354A1 (en) | 2011-10-27 | 2013-05-02 | Tesa Se | Adhesive adhesive with increased temperature stability and use of the same for an adhesive tape |
CN104031585A (en) * | 2014-06-26 | 2014-09-10 | 无锡市万力粘合材料股份有限公司 | Hot melt glue for closestool cushion |
EP2966140B1 (en) | 2014-07-08 | 2017-05-10 | Bostik Sa | Extrudable hot-melt pressure-sensitive adhesives for resealable packaging having improved organoleptic properties |
RU2695175C2 (en) * | 2014-08-26 | 2019-07-22 | Хенкель Аг Унд Ко. Кгаа | Hot-melt binder |
WO2016149385A1 (en) * | 2015-03-16 | 2016-09-22 | H.B. Fuller Company | An elastic adhesive composition and an elastic composite made with the same |
JP2016204665A (en) * | 2015-04-23 | 2016-12-08 | 積水フーラー株式会社 | Hot-melt adhesive and disposable product using the same |
DE102017206083A1 (en) | 2017-04-10 | 2018-10-11 | Tesa Se | Bonding in electrochemical cells and stacking of electrochemical cells |
WO2018188969A1 (en) | 2017-04-10 | 2018-10-18 | Tesa Se | Bonding in electrochemical cells, and stacking of electrochemical cells |
KR20210092402A (en) * | 2020-01-16 | 2021-07-26 | 주식회사 이레A.T (에이티) | Hot melt adhesive with excellent durability and adhesion |
KR102309698B1 (en) | 2020-01-16 | 2021-10-07 | 주식회사 이레A.T (에이티) | Hot melt adhesive with excellent durability and adhesion |
Also Published As
Publication number | Publication date |
---|---|
JP2010506005A (en) | 2010-02-25 |
BRPI0717128A2 (en) | 2013-10-29 |
CA2663671A1 (en) | 2008-04-10 |
MX2009003243A (en) | 2009-04-08 |
CA2663671C (en) | 2015-12-22 |
AU2007305022B2 (en) | 2014-01-23 |
ES2553648T3 (en) | 2015-12-10 |
AU2007305022A1 (en) | 2008-04-10 |
EP2069447A1 (en) | 2009-06-17 |
JP5497441B2 (en) | 2014-05-21 |
CN101622323A (en) | 2010-01-06 |
US20080081858A1 (en) | 2008-04-03 |
EP2069447B1 (en) | 2015-08-19 |
CN101622323B (en) | 2012-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2663671C (en) | High styrene sbs hot melt adhesive | |
US8163824B2 (en) | High styrene SBS hot melt adhesive | |
JP5254542B2 (en) | Article comprising an elastic attachment and method for forming an elastic attachment on an article | |
EP1564274B1 (en) | Adhesive containing radial block copolymer | |
EP1013733B1 (en) | Multipurpose hot melt adhesive | |
US7799863B2 (en) | Low application temperature elastic attachment adhesive | |
JP4991113B2 (en) | Adhesive for elastic attachment containing radial block copolymer | |
EP1564273A1 (en) | Adhesive containing radial block copolymer | |
KR20140012643A (en) | Low temperature hot melt adhesives for disposable articles with high creep resistance | |
WO2005078037A1 (en) | Ionomer-containing hot melt adhesive | |
BRPI0717128B1 (en) | HOT MEL ADHESIVE COMPOSITION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780036796.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07843114 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007305022 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2663671 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2009/003243 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2009531526 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007843114 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2007305022 Country of ref document: AU Date of ref document: 20070925 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: PI0717128 Country of ref document: BR Kind code of ref document: A2 Effective date: 20090330 |