WO2008042220A2 - User interface and identification in a medical device systems and methods - Google Patents

User interface and identification in a medical device systems and methods Download PDF

Info

Publication number
WO2008042220A2
WO2008042220A2 PCT/US2007/020848 US2007020848W WO2008042220A2 WO 2008042220 A2 WO2008042220 A2 WO 2008042220A2 US 2007020848 W US2007020848 W US 2007020848W WO 2008042220 A2 WO2008042220 A2 WO 2008042220A2
Authority
WO
WIPO (PCT)
Prior art keywords
medical device
set forth
caregiver
patient
access
Prior art date
Application number
PCT/US2007/020848
Other languages
French (fr)
Other versions
WO2008042220A3 (en
Inventor
Doug Music
Darius Eghbal
Steve Vargas
Original Assignee
Nellcor Puritan Bennett Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/540,385 external-priority patent/US7706896B2/en
Priority claimed from US11/540,895 external-priority patent/US20080097176A1/en
Priority claimed from US11/540,016 external-priority patent/US7698002B2/en
Priority claimed from US11/541,069 external-priority patent/US20080097177A1/en
Application filed by Nellcor Puritan Bennett Llc filed Critical Nellcor Puritan Bennett Llc
Publication of WO2008042220A2 publication Critical patent/WO2008042220A2/en
Publication of WO2008042220A3 publication Critical patent/WO2008042220A3/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/014Hand-worn input/output arrangements, e.g. data gloves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03542Light pens for emitting or receiving light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • G06F3/0386Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry for light pen
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00207Electrical control of surgical instruments with hand gesture control or hand gesture recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0266Operational features for monitoring or limiting apparatus function
    • A61B2560/0276Determining malfunction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Definitions

  • the present invention relates generally to medical devices and, more particularly, to user interfaces and identification systems integrated with medical devices.
  • pulse oximetry For example, one technique for monitoring certain physiological characteristics of a patient is commonly referred to as pulse oximetry, and the devices built based upon pulse oximetry techniques are commonly referred to as pulse oximeters.
  • Pulse oximetry may be used to measure various blood flow characteristics, such as the blood-oxygen saturation of hemoglobin in arterial blood, the volume of individual blood pulsations supplying the tissue, and/or the rate of blood pulsations corresponding to each heartbeat of a patient.
  • Pulse oximeters and other medical devices are typically mounted on stands that are positioned around a patient's bed or around an operating room table.
  • a caregiver desires to command the medical device (e.g., program, configure, and so-forth) they manipulate controls or push buttons on the monitoring device itself.
  • the monitoring device typically provides results or responses to commands on a Liquid Crystal Diode (“LCD”) screen mounted in an externally visible position within the medical device.
  • LCD Liquid Crystal Diode
  • this conventional configuration has several disadvantages.
  • this conventional configuration relies upon physical contact with the monitoring device to input commands (e.g., pushing a button, turning a knob, and the like).
  • Such physical contact raises several concerns. Among these concerns are that in making contact with the medical device, the caregiver may spread illness or disease from room to room. More specifically, a caregiver may accidentally deposit germs (e.g., bacteria, viruses, and so forth) on the medical device while manipulating the device's controls. These germs may then be spread to the patient when a subsequent caregiver touches the medical device and then touches the patient. Moreover, if medical devices are moved from one patient room to another, germs transferred to the medical device via touch may be carried from one patient room to another. Even in operating rooms where medical devices are typically static, germs may be transferred onto a monitoring device during one surgery and subsequently transferred off the medical device during a later performed surgery.
  • germs e.g., bacteria, viruses, and so forth
  • medical devices that rely on physical contact for command input may create clutter the caregiver's workspace. For example, because the medical device must be within an arm's length of the caregiver, the medical device may crowd the caregiver — potentially even restricting free movement of the caregiver.
  • caregivers may have difficulty manipulating controls with gloved hands. For example, it may be difficult to grasp a knob or press a small button due to the added encumbrance of a latex glove.
  • HIPPA Health Insurance Portability and Accountability Act
  • conventional techniques for outputting medical data also have several potential drawbacks.
  • conventional techniques for displaying outputs rely on LCD screens mounted on the medical device itself. Besides constantly consuming power, these LCD screens must be large enough to be visually accessed by a caregiver. As such, the conventional LCD screens employed in typical medical devices also may be a barrier towards miniaturization of the medical device. Further, conventional screen-based output techniques may be impersonal to the patient and may lack configurability by the caregiver.
  • Fig. 1 is a diagrammatical representation of a medical device including a gesture interface in accordance with one embodiment of the present invention
  • Fig. 2 is a flowchart illustrating an exemplary technique for processing a gesture command in accordance with one embodiment of the present invention
  • Fig. 3 is a diagrammatical representation of a medical device including another gesture interface in accordance with one embodiment of the present invention.
  • Fig. 4 is a diagrammatical representation of a pulse oximeter configured with a pen-based interface in accordance with one embodiment of the present invention
  • Fig. 5 is a diagram of an operating room and a medical device including a laser- based interface in accordance with one embodiment of the present invention
  • Fig. 6 is a diagrammatical representation of a remote control for interfacing with a medical device, in accordance with one embodiment of the present invention
  • Fig. 7 is a diagrammatical representation of a remote control for interfacing with a medical device incorporated into a badge holder in accordance with one embodiment of the present invention
  • Fig. 8 is a bottom view of the badge holder of Fig. 7 in accordance with one embodiment of the present invention.
  • Fig. 9 illustrates a patient room and a medical device configured to interface with a personal digital assistant in accordance with one embodiment of the present invention
  • Fig. 10 is a diagram of a patient, a caregiver, and a medical device configured to output to a personal caregiver display in accordance with one embodiment of the present invention
  • Fig. 11 is an enlarged view of the caregiver of Fig. 10 further including a microphone to interface with the medical device of Fig. 10 in accordance with one embodiment of the present invention
  • Fig. 12A is a diagram of an exemplary hospital room configured to identify caregivers or patients in accordance with one embodiment of the present invention
  • Fig. 12B is an enlarged view of a doorway in a hospital room configured to identify caregivers or patients in accordance with one embodiment of the present invention
  • Fig. 13 is a diagram of a caregiver identifier configured to enable caregiver or patient identification in accordance with one embodiment of the present invention
  • Fig. 14 is a flow chart illustrating an exemplary technique for identifying caregivers or patients in accordance with one embodiment of the present invention.
  • Fig. 15 is a block diagram of an exemplary system for identifying caregivers or patients in accordance with one embodiment of the present invention.
  • the medical device 10 comprises a pulse oximeter.
  • the medial device 10 may include a main unit 12 that houses hardware and/or software configured to calculate various physiological parameters or produce various medical outputs.
  • the main unit 12 may include a display 14 for displaying the calculated physiological parameters, such as oxygen saturation or pulse rate, to a caregiver or patient.
  • the display 14 may be omitted from the main unit 12.
  • the medical device 10 may also include a sensor 16 that may be connected to a body part (e.g., finger, forehead, toe, or earlobe) of a patient or a user.
  • the sensor 16 may be configured to emit signals or waves into the patient's or user's tissue and detect these signals or waves after dispersion and/or reflection by the tissue.
  • the sensor 16 may be configured to emit light from two or more light emitting diodes ("LEDs") into pulsatile tissue (e.g., finger, forehead, toe, or earlobe) and then detect the transmitted light with a light detector (e.g., a photodiode or photo-detector) after the light has passed through the pulsatile tissue.
  • LEDs light emitting diodes
  • the amount of transmitted light that passes through the tissue generally varies in accordance with a changing amount of blood constituent in the tissue and the related light absorption.
  • the heart pumps an incremental amount of arterial blood into the pulsatile tissue, which then drains back through the venous system.
  • the amount of light that passes through the blood-perfused tissue varies with the cardiac-induced cycling arterial blood volume. For example, when the cardiac cycle causes more light-absorbing blood to be present in the tissue, less light travels through the tissue to strike the sensor's photo-detector.
  • These pulsatile signals allow the medical device 10 to measure signal continuation caused by the tissue's arterial blood, because light absorption from other tissues remains generally unchanged in the relevant time span.
  • the senor 16 may take other suitable forms beside the form illustrated in Fig. 1.
  • the sensor 16 may be configured to be clipped onto a finger or earlobe or may be configured to be secured with tape or another static mounting technique.
  • the sensor 16 may be connected to the main unit 12 via a cable 18 and a connector 20.
  • the medical device 10 may also include a speaker 22 to broadcast alarms or alerts.
  • the pulse oximeter main unit 12 may also include an integral camera 24.
  • the integral camera 24 may be configured to receive gesture commands from a caregiver or user that can be processed into commands for the medical device 10.
  • Fig. 1 illustrates the integral camera 24 as being located on a top surface of the main unit 12, it will be appreciated that in alternate embodiments, the integral camera 24 may be located at another suitable location on or within the main unit 12, such as the front or side facades.
  • an external camera such as a universal serial bus (“USB”) web camera
  • USB universal serial bus
  • the external camera may also be wirelessly connected to the main unit 12 via radio, infrared, or optical signals.
  • WLAN wireless local area networking
  • multiple cameras may be used to reduce the effects of parallax and occlusions.
  • the cameras may be all external cameras, all integral cameras, or a combination of external and integral cameras.
  • Fig. 2 illustrates a flowchart of technique 30 for processing a gesture command in accordance with one embodiment.
  • the technique 30 may be executed by the medical device 10.
  • other medical devices such as a respirator, cardiac monitor, or multi-parameter monitoring system, may execute the technique 30.
  • the technique 30 may begin by receiving a gesture.
  • the camera 24 of medical device 10 may be configured to detect hand gestures.
  • the medical device 10 first receives one or more images of the gesture (block 32) via the camera 24 and then processes the gesture (block 34).
  • the camera 24 may be an analog camera that converts the gesture into an analog signal and feeds it into a digitizer board, or the camera 24 may be a digital camera that records the gesture as a digital signal.
  • the camera 24 may be configured to detect other gestures originating from another bodily motion or state, such as arm gestures, finger pointing, hand poses, or facial expressions.
  • the gesture processing may be performed by a gesture processing system integrated into the medical device 10. For example, during processing, images captured from the gesture may be normalized, enhanced, or transformed, and then features may be extracted from the images. Next, the processed gesture may be compared to a gesture database, as indicated by block 36.
  • the gesture database may be pre-populated or programmed with a plurality of feature combinations that are associated with commands for the medical device 10. For example, feature combinations associated with the gesture command "turn alarm off may be associated with a command for the medical device 10 to silence an alarm. However, in alternate embodiments the feature combinations may be programmed into the gesture database using a gesture training program.
  • the gesture processing may be located in an external central processing unit connected to the medical device 10 via a cable or by wireless technology such as radio, infrared, or optical signals.
  • a command associated with the gesture may be identified, as indicated by block 38.
  • a hand gesture consisting of passing a hand over the camera from right to left with the palm facing the camera may be programmed into the gesture database to correspond with the command "turn alarm off.”
  • the command may be executed, as indicated by block 40.
  • the command to turn off the alarm may be transmitted to a medical device control system which would turn off the alarm.
  • the medical device 50 which may be a pulse oximeter, may include a tracking glove 52.
  • the tracking glove 52 may be configured to receive gesture commands from a caregiver 62 or user. As with the gesture command described in regard to Fig. 2, these gesture commands can be processed into commands for the medical device 50.
  • the tracking glove 52 may include a battery pack 56 connected to the tracking glove 52 via a cable. Although the battery pack is worn on the forearm in this embodiment, in alternative embodiments the battery pack may be located in other locations such as around the waist of the caregiver 62. Additionally, in other embodiments, the tracking glove 52 may be replaced by another tracking device such as a finger sensor. In yet another embodiment, the tracking glove 52 may have a light emitting diode ("LED") located on the glove and a software programmable switch to permit other functions to be directly programmed into the glove. For example, a button may be included on the glove that can be programmed so that when a caregiver presses the button an alarm on the medical device 50 is silenced.
  • LED light emitting diode
  • the caregiver 62 may make hand gestures while wearing the tracking glove 52.
  • the tracking glove 52 may then record the movement (i.e., the gesture) and transmit the gesture to the medical device 50 via a wireless receiver 60 connected to the medical device 50.
  • the tracking glove 52 may communicate with a wireless receiver integrated into the main unit 12 or may be connected to the medical device 50 via a cable such as a fiber optic cable or a serial cable.
  • the medical device 50 may be configured to interpret the tracking glove 52 movement and execute a command associated with the movement. For example, a hand movement, such as making a fist, may be associated with the command "turn alarm off.” As such, when the caregiver 62 makes a fist while wearing the tracking glove 52, the medical device 50 may interpret the movement and sends a signal to the medical device 50 to silence an alarm.
  • a hand movement such as making a fist
  • the medical device 50 may interpret the movement and sends a signal to the medical device 50 to silence an alarm.
  • the medical device 50 may include calibration software which may allow a caregiver 62 to program movement combinations into the gesture database within the medical device.
  • the gesture database may be located in an external central processing unit connected to the medical device 50 via a cable or by wireless technology such as radio, infrared, or optical signals.
  • an exemplary medical device configured with a pen- based interface is illustrated and generally designated by the reference numeral 70.
  • the medical device 70 may include a stylus 72.
  • the caregiver 62 may use the stylus 72 to control the medical device 70.
  • the medical device 70 may have a separate display screen 74 connected to the main unit 12 via a cable or wireless means such as radio, infrared, or optic signals.
  • the display screen 74 may be a touch screen with selection boxes corresponding to medical device commands. For example, when the caregiver 62 touches the stylus 72 to the selection box corresponding to "turn alarm off," the display screen 74 may transmit a signal to the main unit 12 which silences the alarm. In an alternate embodiment, the caregiver 62 may touch the screen directly without using the stylus. In still other embodiments, the stylus 72 may be used to touch selection boxes directly on the medical device 70, and the separate display 74 may be omitted.
  • the stylus 72 may be used to draw symbols or characters representative of medical device commands on the display screen 74.
  • the medical device 70 main unit 12 may include symbol recognition software which recognizes the symbols drawn on the display 74 and executes commands corresponding to the recognized symbols. For example, the letter
  • the symbol recognition software may interpret the symbol, and the medical device 70 may lower the alarm limit by a predetermined amount.
  • the symbol recognition software may be pre-populated or programmed with a plurality of symbols associated with medical device commands. In alternate embodiments, the symbol recognition software may include a calibration program to allow the caregiver 62 to associate symbols with medical device commands.
  • the stylus 72 may include an ultrasound transmitter.
  • the ultrasound transmitter may be configured to transmit movements of the stylus 72 back to the medical device 70 or another suitable receiver.
  • the movements of the stylus 72 may be tracked by one or more sensors positioned around an operating room and coupled to the medical device 70.
  • the medical device 80 may include a laser wand 84 and/or the display 64.
  • the caregiver 62 may use the laser wand 84 to control the medical device 80.
  • the operating room shown in Fig. 5 is merely one possible application of the medical device 80.
  • the medical device 80 may be employed in patients' rooms, doctors' offices, or other suitable locations.
  • the medical devices described in regard to Figs. 1, 3, and 4, as well as those described below may be employed in each of these locations as well.
  • the caregiver 62 may be able to use the laser wand 84 to position a cursor on the display 64.
  • the caregiver 62 may focus a laser pointer dot on the display 64.
  • a location of a laser pointer dot can be translated to the cursor position on a display 64.
  • the laser pointer dot may alternatively be focused on the display 14.
  • the display 64 (or the display 14) may employ a camera, such as the camera 24 discussed above, to detect the laser pointer dot.
  • the camera may be internal to the display 64 or may be externally connected to it via a cable or wirelessly.
  • other suitable laser pointer detection techniques may be employed.
  • the display 64 may contain a plurality of selection boxes or regions corresponding to commands for medical device 80.
  • the display 64 may contain a selection box for the command "turn alarm off.”
  • the software within the medical device 80 may first position the cursor at the selection box location.
  • the software within the medical device 80 may then select the box and execute the command associated with the selection box. In this example, the software may then silence the alarm.
  • the laser wand 84 may have an integrated selection button. Once the caregiver 62 has positioned the cursor on the selection box, the caregiver 62 may then push the button to select the box and execute the pulse oximeter command associated with the box.
  • the integrated selection button may employ standard remote control technology, such as transmitting an infrared signal to an infrared receiver integrated into the medical device 80. In alternate embodiments, an external receiver connected to the medical device 80 via a cable may be used.
  • the laser wand 84 may allow the medical device 80 to be controlled from a distance by the caregiver 62. Consequently, the medical device 80 may be placed at a location away from the patient 82 allowing the caregivers 62 more room to maneuver.
  • each of the caregivers 62 may have their own laser wand 84 to further reduce the risks of cross-contamination.
  • the medical device 80 may be controlled using a remote control style wand 90, as illustrated in Fig. 6.
  • the wand 90 may contain a plurality of buttons each programmed to correspond to one or more medical device commands.
  • the buttons may be programmed as follows: the button labeled "1" 96 may be programmed to correspond to the command “Raise Alarm Limit;” the button “2" 98 may be programmed to correspond to the command “Lower Alarm Limit;” the button “3” 100 may be programmed to correspond to the command “Reset Alarm Limits;” and the button “4" 102 may be programmed to correspond to the command "Turn Alarm Off.” It will be appreciated that these commands are exemplary. Although the buttons 96-102 are shown in Fig.
  • buttons 6 may be customized with different shapes, sizes, and labels. Additionally, the number of buttons present on the wand 90 may vary.
  • the wand 90 also may contain a pen-style clip for attaching the wand 90 to the caregiver 62.
  • the wand 90 may contain a light emitting diode ("LED") 92 that transmits light pulses or infrared signals corresponding to a medical device command.
  • LED light emitting diode
  • an integrated circuit within the wand 90 may send a command to the LED 92.
  • the LED 92 may then send out a signal corresponding to this command.
  • a receiver integrated into the medical device may receive the signal and respond by raising the alarm limit by a predetermined unit.
  • the LED transmitter 92 may alternatively be replaced by a radio frequency ("rf ') transmitter.
  • the medical device 80 may include an integrated rf receiver.
  • the rf transmitter may employ the Bluetooth radio frequency standard or other suitable standard.
  • the technology of the wand 90 may also be incorporated in other packages.
  • it may be incorporated into a badge holder, as illustrated in Fig. 7.
  • the badge holder 110 in addition to holding a caregiver's badge 1 12, may also contain the several command buttons 96-102.
  • the badge holder 110 may also contain the transmitter 92 on the bottom of the badge holder 110.
  • the transmitter 92 may be located on another facade such as the top, front, or sides of the badge holder 110.
  • the control buttons 96-102 may be of various shapes and sizes and be located on other facades of the badge holder 110.
  • the medical device 130 may include a PDA 134.
  • the caregiver 62 may use the PDA 134 to control the medical device 130.
  • the PDA 134 may be configured to present the caregiver 62 with one or more buttons or selectable locations on its screen that correspond to medical device controls or commands. Accordingly, when the caregiver 62 selects one of these controls or commands, the PDA 134 may be configured to transmit this control or command back to the medical device 130, which may subsequent execute the control or command.
  • the PDA 134 may be configured to generate a volume control display for the medical device 130. Upon accessing this volume display on the PDA 134, the caregiver may adjust the volume of the medical device 130 up or down.
  • the PDA 134 enables the caregiver 62 to control medical device 130 without physically touching or manipulating it.
  • the PDA 134 may also supplement a display on the medical device 130.
  • the PDA 134 may be configured to mirror or reproduce some or all of the contents displayed on the medical device's 130 internal display. In this way, the medical device 130 could advantageously be located away from the patient bed 132 or the caregiver 62, possibly even out of sight, as the inputs and outputs to the medical device 130 can be supported by the PDA 134.
  • the PDA 134 may be configured to interface with a plurality of medical devices 130 in a plurality of patient rooms 131.
  • a hospital may issue each of each caregivers 62 their own PDA 134, which they may use to access and/or control medical devices within a plurality of patient rooms.
  • the caregiver 62 may use their PDA 134 to access one or more medical devices within a first patient's room and then use the same PDA 134 to access medical devices within a subsequent patient's room. In this way, the caregiver 62 may access and/or control medical devices within a plurality of patient rooms without ever touching the actual medical devices - substantially decreasing the chances of cross-contamination.
  • the PDA 134 may supplement or replace the internal screen on the medical device 130.
  • Fig. 10 is a diagram of a patient 141 , the caregiver 62, and a medical device 140 configured to output to a personal caregiver display 142 in accordance with one embodiment.
  • the caregiver personal display 142 may include a pair of glasses or other suitable wearable optics or eyewear (e.g., a monocular) which may be configured to display outputs from the medical device 140.
  • the caregiver personal display 142 may be configured to create a transparent or semi-transparent image that the caregiver 62 may be able to view while still being able to see the patient 141.
  • the caregiver personal display may include a pair of glasses with an integral liquid crystal display (“LCD”) that may be configured to display a pleth signal
  • the caregiver personal display 142 effectively creates a "heads-up" display for the caregiver 62, allowing them to see the pleth signal 144 or other suitable medical information as if it were floating in front of them.
  • caregiver personal display 142 is merely one potential embodiment of a suitable caregiver personal display.
  • the caregiver personal display may be a video display mounted on a pair of glasses or other mount, which the caregiver 62 may view by shifting his or her focus towards the display.
  • medical information in this embodiment may not appear transparent to the caregiver 62, the caregiver 62 may still able to readily access information from the medical device 140 without having the medical device 140 within visual range of the caregiver 62.
  • the caregiver personal display may also include a speaker 146 to enable the caregiver 62 to hear alarms or alerts from the medical device 140.
  • the speaker 146 enables the caregiver 62, who is monitoring medical device 140, to hear alerts or alarms without the alarms or alerts bothering other caregiver 62, who may be focused on other activities.
  • the caregiver personal display 142 may also include a microphone 148 to enable voice control of the medical device 140, as further described in commonly assigned U.S. Patent Application Serial No. 1 1/540,457 entitled SYSTEM AND METHOD FOR INTEGRATING VOICE WITH A MEDICAL DEVICE and filed on September 29, 2006, which is hereby incorporated by reference.
  • Fig. 12A is a diagram of an exemplary patient room 160 configured to identify caregivers or patients in accordance with one embodiment.
  • the hospital room 160 may include a patient bed 162, a medical device 164, and a doorway 166.
  • the hospital room 160 may also include the patient 141 and the caregiver 62.
  • the patient 141 may be located in the bed 162 with the caregiver 62 positioned over the patient 141 and in general proximity with the medical device 164.
  • the medical device 164 may include the main unit 12, the display 14, and/or the display 64. Moreover, the medical device 164 may be configured to work in conjunction with an identification ("ID") tag, such as a caregiver ID 168 and/or a patient ID 170 to identify caregivers and/or patients within the hospital room 160. More specifically, in one embodiment, the medical device 164 may be coupled to door sensors 172A and 172B, which are located in close proximity to the door 166 and configured to detect when the caregiver ID 168 and/or the patient ID 170 pass through the doorway 166.
  • ID identification
  • the medical device 164 may be coupled to door sensors 172A and 172B, which are located in close proximity to the door 166 and configured to detect when the caregiver ID 168 and/or the patient ID 170 pass through the doorway 166.
  • the door sensors 172a and 172b may be configured to detect when the caregiver ID passes through the doorway 166 (e.g., when a caregiver enters or exits the patient room 160).
  • the door sensors 172a and 172b may be configured to detect when the patient ID 170 passes through the doorway 166 (e.g., the patient 141 walks or is pushed through the doorway 166).
  • the door sensors 172a and 172b may include radio frequency ("rf ') sensors configured to detect an rf transmitter within the caregiver ID 168 and/or the patient ID 170.
  • rf ' radio frequency
  • the caregiver ID 168 including an rf ID tag 174.
  • the rf ID tag 174 may be a passive rf ID configured to receive transmissions from the door sensors 172a or 172b and to broadcast an identifying signal in response.
  • the door sensors 172a or 172b may detect this identifying signal, and, thus, identify/detect the entry or exit of the caregiver 62 and/or the patient 141.
  • the caregiver ID may be an active ID (e.g., a Bluetooth enabled cell phone).
  • the door sensors 172a and 172b may be located elsewhere besides the doors.
  • the sensors 172a and 172b may be located in the ceiling of the patient room 160 and configured to detect when the sensors 168 and/or 170 enter are located in the patient room 160
  • Fig. 14 is a flow chart illustrating an exemplary technique 210 for identifying caregivers or patients in accordance with one embodiment.
  • the technique 210 will be described in conjunction with Fig. 15 which illustrates a block diagram o the medical device 164 in accordance with one embodiment.
  • the technique 210 may begin by detecting an ID tag.
  • the door sensors 172 may detect the caregiver ID 168 or the patient ID 170.
  • the medical device 164 may alternatively or additionally include a bed sensor 250 to detect the ID tag. More specifically, the bed sensor 250 may be mounted on the patient bed 162 and configured to detect the patient ID 170. The bed sensor 250 may be particularly advantageous in hospital rooms including multiple patient beds 162, as the door sensors 172 may not be able to determine which of the plurality of patient beds 162 a particular patient is occupying. Moreover, the bed sensor 250 may also be configured to detect the patient ID 170 and to communicate patient identification information to the medical device 164, as set forth in further detail below.
  • the technique 210 may include reading the detected ID tag, as indicated in block 214.
  • an ID reader 252 may be configured to read the identity information from the caregiver ID 168 and/or the patient ID 170.
  • the technique 210 may include sending the identity information from the ID tag to an ID recognition system, as indicated in block 216.
  • the ID reader 252 may transmit the identity information to an ID recognition system 254.
  • the technique 210 may include determining an individual type of the detected ID tag, as indicated by block 218.
  • the technique may include determining whether the detected ID tag corresponds to the caregiver 62 or the patient 141.
  • the ID recognition system 254 may make this determination based on an ID database 256, which includes information regarding a plurality of ID tags and the individual type corresponding to each of the plurality of ID tags.
  • the individual type may be encoded on the caregiver ID 168 or the patient ID 170 and communicated to the ID recognition system 254 via the door sensor 172 and/or the bed sensor 250.
  • the technique 210 may include multiple branches for various suitable individual types.
  • the technique 210 may respond differently to different types of caregivers, such as doctors, nurses, orderlies, and so-forth.
  • the technique 210 may next include unlocking access to the medical device at an appropriate permissions level.
  • an access control system in the medical device 164 may be configured to unlock the medical device 164 and allow the medical device control system 226 to execute instructions and/or commands commensurate with the permission level of the caregiver 62.
  • the technique 210 may then continue to allow the caregiver 62 to execute commands until the same ID tag is again detected by the door sensor 172 or the bed sensor 250, as indicated by block 228 (i.e., the caregiver leaves the patient room 160).
  • the door sensors 172a and 172b may be configured to detect when the caregiver ID 168 leaves the proximity of the sensor.
  • the door sensors 172a and 172b may be configured to detect when the caregiver ID 168 is located within a certain distance of the door sensors 172a and 172b (i.e., the caregiver is located in the patient room 160).
  • the technique 210 may include locking further access to the medical device 164 to prevent the patient 141 or other unauthorized individuals from adjusting the medical device 164 in the absence of the caregiver 162 (block 230).
  • the technique 210 enables the medical device 164 or other suitable medical device automatically unlock when the caregiver 62 enters the patient room 160, to accept commands freely from the caregiver 62 while they are in the room, and then to relock automatically when the caregiver 62 leaves the patient room.
  • the medical device 164 may be configured to record which caregiver 62 gave which commands to the medical device 164, because each caregiver in a hospital may be assigned a unique caregiver ID 168. In this way, it may be possible for a hospital to reconstruct patient treatment history, if desired.
  • the technique 210 may include displaying a patient ID on a display of the medical device 164, as indicated by block 220.
  • a patient identification system 258 within the medical device 164 may be configured to display the patient ID on the display 14.
  • the medical device 164 may also be configured to annotate any patient medical data subsequently stored by the medical device 164 with the patient information.
  • the technique 210 may include clearing the patient information from the medical device 164, as indicated by blocks 222 and 224. Accordingly, the medical device 164 may be able to automatically identify the identity of patients being monitored or treated without the need for caregivers to manually enter this information into the medical device 164. Advantageously, this reduces the chances of cross- contamination and automates one additional caregiver function.

Abstract

There are provided systems and methods for user interface and identification in a medical device. More specifically, in one embodiment, there is provided a method for accessing a medical device, the method comprising detecting an identification tag, reading identification information from the identification tag, determining if a person corresponding to the identification information has been approved to access the medical device, and if the person has been approved, granting access to the medical device.

Description

USER INTERFACE AND IDENTIFICATION IN A MEDICAL DEVICE SYSTEMS AND METHODS
1. Technical Field The present invention relates generally to medical devices and, more particularly, to user interfaces and identification systems integrated with medical devices.
2. Background Art This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present invention, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
In the field of medicine, doctors often desire to monitor certain physiological characteristics of their patients. Accordingly, a wide variety of devices have been developed for monitoring physiological characteristics. Such devices provide caregivers, such as doctors, nurses, and/or other healthcare personnel, with the information they need to provide the best possible healthcare for their patients. As a result, such monitoring devices have become an indispensable part of modern medicine.
For example, one technique for monitoring certain physiological characteristics of a patient is commonly referred to as pulse oximetry, and the devices built based upon pulse oximetry techniques are commonly referred to as pulse oximeters. Pulse oximetry may be used to measure various blood flow characteristics, such as the blood-oxygen saturation of hemoglobin in arterial blood, the volume of individual blood pulsations supplying the tissue, and/or the rate of blood pulsations corresponding to each heartbeat of a patient.
Pulse oximeters and other medical devices are typically mounted on stands that are positioned around a patient's bed or around an operating room table. When a caregiver desires to command the medical device (e.g., program, configure, and so-forth) they manipulate controls or push buttons on the monitoring device itself. The monitoring device typically provides results or responses to commands on a Liquid Crystal Diode ("LCD") screen mounted in an externally visible position within the medical device.
This conventional configuration, however, has several disadvantages. First, as described above, this conventional configuration relies upon physical contact with the monitoring device to input commands (e.g., pushing a button, turning a knob, and the like). Such physical contact, however, raises several concerns. Among these concerns are that in making contact with the medical device, the caregiver may spread illness or disease from room to room. More specifically, a caregiver may accidentally deposit germs (e.g., bacteria, viruses, and so forth) on the medical device while manipulating the device's controls. These germs may then be spread to the patient when a subsequent caregiver touches the medical device and then touches the patient. Moreover, if medical devices are moved from one patient room to another, germs transferred to the medical device via touch may be carried from one patient room to another. Even in operating rooms where medical devices are typically static, germs may be transferred onto a monitoring device during one surgery and subsequently transferred off the medical device during a later performed surgery.
Second, beyond contamination, medical devices that rely on physical contact for command input may create clutter the caregiver's workspace. For example, because the medical device must be within an arm's length of the caregiver, the medical device may crowd the caregiver — potentially even restricting free movement of the caregiver. In addition, caregivers may have difficulty manipulating controls with gloved hands. For example, it may be difficult to grasp a knob or press a small button due to the added encumbrance of a latex glove.
Third, current trends in general medical device design focus on miniaturizing overall medical device size. However, as controls which rely on physical contact must be large enough for most, if not all, caregivers to manipulate with their hands, monitoring devices that employ these types of controls are limited in their possible miniaturization. For example, even if it were possible to produce a conventional oximeter that was the size of a postage stamp, it would be difficult to control this theoretical postage stamp-sized pulse oximeter with currently available techniques.
Additionally, even as medical devices become smaller, the need for secured access remains prevalent. First, medical device alerts and alarms often require the attention of a caregiver to ensure patient health. Access to medical devices by non-caregivers could result in ineffective patient care. Second, the recently passed Health Insurance Portability and Accountability Act ("HIPPA") regulates patient privacy and security. HIPPA privacy standards require the protection of patient data from inappropriate and unauthorized disclosure or use, and HIPPA security standards require physical safeguards to protect access to equipment containing patient data. As user interfaces evolve, new methods of providing secured access will be desirable. For example, traditional entry screens can be secured using passwords. However, as device interfaces evolve to eliminate entry screens, the traditional password protection process may no longer by feasible.
In addition, conventional techniques for outputting medical data also have several potential drawbacks. For example, as described above, conventional techniques for displaying outputs rely on LCD screens mounted on the medical device itself. Besides constantly consuming power, these LCD screens must be large enough to be visually accessed by a caregiver. As such, the conventional LCD screens employed in typical medical devices also may be a barrier towards miniaturization of the medical device. Further, conventional screen-based output techniques may be impersonal to the patient and may lack configurability by the caregiver.
For at least the reasons set forth above, improved systems and methods for interfacing with and being identified by a medical device would be desirable. BRIEF DESCRIPTION OF DRAWINGS
Advantages of the invention may become apparent upon reading the following detailed description and upon reference to the drawings in which:
Fig. 1 is a diagrammatical representation of a medical device including a gesture interface in accordance with one embodiment of the present invention;
Fig. 2 is a flowchart illustrating an exemplary technique for processing a gesture command in accordance with one embodiment of the present invention;
Fig. 3 is a diagrammatical representation of a medical device including another gesture interface in accordance with one embodiment of the present invention;
Fig. 4 is a diagrammatical representation of a pulse oximeter configured with a pen-based interface in accordance with one embodiment of the present invention;
Fig. 5 is a diagram of an operating room and a medical device including a laser- based interface in accordance with one embodiment of the present invention;
Fig. 6 is a diagrammatical representation of a remote control for interfacing with a medical device, in accordance with one embodiment of the present invention; Fig. 7 is a diagrammatical representation of a remote control for interfacing with a medical device incorporated into a badge holder in accordance with one embodiment of the present invention;
Fig. 8 is a bottom view of the badge holder of Fig. 7 in accordance with one embodiment of the present invention;
Fig. 9 illustrates a patient room and a medical device configured to interface with a personal digital assistant in accordance with one embodiment of the present invention;
Fig. 10 is a diagram of a patient, a caregiver, and a medical device configured to output to a personal caregiver display in accordance with one embodiment of the present invention;
Fig. 11 is an enlarged view of the caregiver of Fig. 10 further including a microphone to interface with the medical device of Fig. 10 in accordance with one embodiment of the present invention;
Fig. 12A is a diagram of an exemplary hospital room configured to identify caregivers or patients in accordance with one embodiment of the present invention; Fig. 12B is an enlarged view of a doorway in a hospital room configured to identify caregivers or patients in accordance with one embodiment of the present invention;
Fig. 13 is a diagram of a caregiver identifier configured to enable caregiver or patient identification in accordance with one embodiment of the present invention;
Fig. 14 is a flow chart illustrating an exemplary technique for identifying caregivers or patients in accordance with one embodiment of the present invention; and
Fig. 15 is a block diagram of an exemplary system for identifying caregivers or patients in accordance with one embodiment of the present invention.
MODES FOR CARRYING OUT THE INVENTION One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system -related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
Turning initially to Fig. 1, an exemplary medical device including a gesture interface is illustrated and generally designated by a reference numeral 10. For example, in the illustrated embodiment, the medical device 10 comprises a pulse oximeter. The medial device 10 may include a main unit 12 that houses hardware and/or software configured to calculate various physiological parameters or produce various medical outputs. As illustrated, the main unit 12 may include a display 14 for displaying the calculated physiological parameters, such as oxygen saturation or pulse rate, to a caregiver or patient. In alternate embodiments, as described in further detail below, the display 14 may be omitted from the main unit 12.
The medical device 10 may also include a sensor 16 that may be connected to a body part (e.g., finger, forehead, toe, or earlobe) of a patient or a user. The sensor 16 may be configured to emit signals or waves into the patient's or user's tissue and detect these signals or waves after dispersion and/or reflection by the tissue. For example, the sensor 16 may be configured to emit light from two or more light emitting diodes ("LEDs") into pulsatile tissue (e.g., finger, forehead, toe, or earlobe) and then detect the transmitted light with a light detector (e.g., a photodiode or photo-detector) after the light has passed through the pulsatile tissue. As those of ordinary skill in the art will appreciate, the amount of transmitted light that passes through the tissue generally varies in accordance with a changing amount of blood constituent in the tissue and the related light absorption. On a beat-by- beat basis, the heart pumps an incremental amount of arterial blood into the pulsatile tissue, which then drains back through the venous system. The amount of light that passes through the blood-perfused tissue varies with the cardiac-induced cycling arterial blood volume. For example, when the cardiac cycle causes more light-absorbing blood to be present in the tissue, less light travels through the tissue to strike the sensor's photo-detector. These pulsatile signals allow the medical device 10 to measure signal continuation caused by the tissue's arterial blood, because light absorption from other tissues remains generally unchanged in the relevant time span.
In alternate embodiments, the sensor 16 may take other suitable forms beside the form illustrated in Fig. 1. For example, the sensor 16 may be configured to be clipped onto a finger or earlobe or may be configured to be secured with tape or another static mounting technique. The sensor 16 may be connected to the main unit 12 via a cable 18 and a connector 20. Additionally, the medical device 10 may also include a speaker 22 to broadcast alarms or alerts.
The pulse oximeter main unit 12 may also include an integral camera 24. As will be described further below, the integral camera 24 may be configured to receive gesture commands from a caregiver or user that can be processed into commands for the medical device 10. Although Fig. 1 illustrates the integral camera 24 as being located on a top surface of the main unit 12, it will be appreciated that in alternate embodiments, the integral camera 24 may be located at another suitable location on or within the main unit 12, such as the front or side facades.
In alternate embodiments, instead of an integral camera, an external camera, such as a universal serial bus ("USB") web camera, may be connected to the main unit 12 via a cable and connector. The external camera may also be wirelessly connected to the main unit 12 via radio, infrared, or optical signals. For example, wireless local area networking ("WLAN") standards, such as Wi-Fi or Bluetooth may be used. Additionally, multiple cameras may be used to reduce the effects of parallax and occlusions. The cameras may be all external cameras, all integral cameras, or a combination of external and integral cameras.
Fig. 2 illustrates a flowchart of technique 30 for processing a gesture command in accordance with one embodiment. In one embodiment, the technique 30 may be executed by the medical device 10. In other embodiments, other medical devices, such as a respirator, cardiac monitor, or multi-parameter monitoring system, may execute the technique 30.
As indicated by block 32 of Fig. 2, the technique 30 may begin by receiving a gesture. For example, the camera 24 of medical device 10 may be configured to detect hand gestures. When a caregiver performs a hand gesture in front of the camera 24 the medical device 10 first receives one or more images of the gesture (block 32) via the camera 24 and then processes the gesture (block 34). As those of ordinary skill in the art will appreciate, the camera 24 may be an analog camera that converts the gesture into an analog signal and feeds it into a digitizer board, or the camera 24 may be a digital camera that records the gesture as a digital signal. In alternate embodiments, the camera 24 may be configured to detect other gestures originating from another bodily motion or state, such as arm gestures, finger pointing, hand poses, or facial expressions.
Returning to flowchart 30, the gesture processing, as indicated by block 34, may be performed by a gesture processing system integrated into the medical device 10. For example, during processing, images captured from the gesture may be normalized, enhanced, or transformed, and then features may be extracted from the images. Next, the processed gesture may be compared to a gesture database, as indicated by block 36. The gesture database may be pre-populated or programmed with a plurality of feature combinations that are associated with commands for the medical device 10. For example, feature combinations associated with the gesture command "turn alarm off may be associated with a command for the medical device 10 to silence an alarm. However, in alternate embodiments the feature combinations may be programmed into the gesture database using a gesture training program. Additionally, in still other embodiments, the gesture processing may be located in an external central processing unit connected to the medical device 10 via a cable or by wireless technology such as radio, infrared, or optical signals. After the gesture is compared to a gesture database, a command associated with the gesture may be identified, as indicated by block 38. For example, a hand gesture consisting of passing a hand over the camera from right to left with the palm facing the camera may be programmed into the gesture database to correspond with the command "turn alarm off." Once the gesture is identified in the gesture database, the command may be executed, as indicated by block 40. For example, the command to turn off the alarm may be transmitted to a medical device control system which would turn off the alarm.
Turning next to Fig. 3, an exemplary medical device including another gesture interface is illustrated and generally designated by a reference numeral 50. In addition to the main unit 12, the display 14, and the cable 18 for connection to the sensor 16(not shown), the medical device 50, which may be a pulse oximeter, may include a tracking glove 52. As will be described further below, the tracking glove 52 may be configured to receive gesture commands from a caregiver 62 or user. As with the gesture command described in regard to Fig. 2, these gesture commands can be processed into commands for the medical device 50.
The tracking glove 52 may include a battery pack 56 connected to the tracking glove 52 via a cable. Although the battery pack is worn on the forearm in this embodiment, in alternative embodiments the battery pack may be located in other locations such as around the waist of the caregiver 62. Additionally, in other embodiments, the tracking glove 52 may be replaced by another tracking device such as a finger sensor. In yet another embodiment, the tracking glove 52 may have a light emitting diode ("LED") located on the glove and a software programmable switch to permit other functions to be directly programmed into the glove. For example, a button may be included on the glove that can be programmed so that when a caregiver presses the button an alarm on the medical device 50 is silenced.
In one embodiment, the caregiver 62 may make hand gestures while wearing the tracking glove 52. The tracking glove 52 may then record the movement (i.e., the gesture) and transmit the gesture to the medical device 50 via a wireless receiver 60 connected to the medical device 50. In alternate embodiments, the tracking glove 52 may communicate with a wireless receiver integrated into the main unit 12 or may be connected to the medical device 50 via a cable such as a fiber optic cable or a serial cable.
Similar to the medical device 10, the medical device 50 may be configured to interpret the tracking glove 52 movement and execute a command associated with the movement. For example, a hand movement, such as making a fist, may be associated with the command "turn alarm off." As such, when the caregiver 62 makes a fist while wearing the tracking glove 52, the medical device 50 may interpret the movement and sends a signal to the medical device 50 to silence an alarm.
In addition, in some embodiments, the medical device 50 may include calibration software which may allow a caregiver 62 to program movement combinations into the gesture database within the medical device. Additionally, in other embodiments, the gesture database may be located in an external central processing unit connected to the medical device 50 via a cable or by wireless technology such as radio, infrared, or optical signals.
Turning next to Fig. 4, an exemplary medical device configured with a pen- based interface is illustrated and generally designated by the reference numeral 70. In addition to the main unit 12, the display 14, and the cable 18 for connection to the sensor 16 (not shown), the medical device 70 may include a stylus 72. As will be described further below, the caregiver 62 may use the stylus 72 to control the medical device 70.
In one embodiment, the medical device 70 may have a separate display screen 74 connected to the main unit 12 via a cable or wireless means such as radio, infrared, or optic signals. The display screen 74 may be a touch screen with selection boxes corresponding to medical device commands. For example, when the caregiver 62 touches the stylus 72 to the selection box corresponding to "turn alarm off," the display screen 74 may transmit a signal to the main unit 12 which silences the alarm. In an alternate embodiment, the caregiver 62 may touch the screen directly without using the stylus. In still other embodiments, the stylus 72 may be used to touch selection boxes directly on the medical device 70, and the separate display 74 may be omitted. In yet another embodiment, the stylus 72 may be used to draw symbols or characters representative of medical device commands on the display screen 74. In the embodiment illustrated in Fig. 4, the medical device 70 main unit 12 may include symbol recognition software which recognizes the symbols drawn on the display 74 and executes commands corresponding to the recognized symbols. For example, the letter
"L" may be associated with the command "lower alarm limit." When a caregiver 62 draws an "L" on the display 74 the symbol recognition software may interpret the symbol, and the medical device 70 may lower the alarm limit by a predetermined amount. The symbol recognition software may be pre-populated or programmed with a plurality of symbols associated with medical device commands. In alternate embodiments, the symbol recognition software may include a calibration program to allow the caregiver 62 to associate symbols with medical device commands.
In still other embodiments, the stylus 72 may include an ultrasound transmitter. In this embodiment, the ultrasound transmitter may be configured to transmit movements of the stylus 72 back to the medical device 70 or another suitable receiver. For example, in one embodiment, the movements of the stylus 72 may be tracked by one or more sensors positioned around an operating room and coupled to the medical device 70.
Turning now to Fig. 5, an exemplary operating room and a medical device 80 including a laser-based interface in accordance with on embodiment is illustrated. In addition to the main unit 12, the display 14, and the cable 18 for connection to the sensor 16 (not shown), the medical device 80 may include a laser wand 84 and/or the display 64. As will be described further below, the caregiver 62 may use the laser wand 84 to control the medical device 80. It will be appreciated, however, that the operating room shown in Fig. 5 is merely one possible application of the medical device 80. Accordingly, the medical device 80 may be employed in patients' rooms, doctors' offices, or other suitable locations. Moreover, it will also be appreciated that the medical devices described in regard to Figs. 1, 3, and 4, as well as those described below, may be employed in each of these locations as well.
In one embodiment, the caregiver 62 may be able to use the laser wand 84 to position a cursor on the display 64. For example, the caregiver 62 may focus a laser pointer dot on the display 64. As one skilled in the art will appreciate, a location of a laser pointer dot can be translated to the cursor position on a display 64. In alternate embodiments, the laser pointer dot may alternatively be focused on the display 14. In one embodiment, the display 64 (or the display 14) may employ a camera, such as the camera 24 discussed above, to detect the laser pointer dot. In various embodiments, the camera may be internal to the display 64 or may be externally connected to it via a cable or wirelessly. However, it will be appreciated that in still other embodiments, other suitable laser pointer detection techniques may be employed.
In one embodiment, the display 64 may contain a plurality of selection boxes or regions corresponding to commands for medical device 80. For example, the display 64 may contain a selection box for the command "turn alarm off." When the caregiver 62 focuses the laser pointer dot on one of the selection boxes for a minimum period of time, the software within the medical device 80 may first position the cursor at the selection box location. As the caregiver 62 continues to focus the laser pointer dot on the same selection box, the software within the medical device 80 may then select the box and execute the command associated with the selection box. In this example, the software may then silence the alarm.
In other embodiments, the laser wand 84 may have an integrated selection button. Once the caregiver 62 has positioned the cursor on the selection box, the caregiver 62 may then push the button to select the box and execute the pulse oximeter command associated with the box. The integrated selection button may employ standard remote control technology, such as transmitting an infrared signal to an infrared receiver integrated into the medical device 80. In alternate embodiments, an external receiver connected to the medical device 80 via a cable may be used.
As shown in Fig. 5, the laser wand 84 may allow the medical device 80 to be controlled from a distance by the caregiver 62. Consequently, the medical device 80 may be placed at a location away from the patient 82 allowing the caregivers 62 more room to maneuver. In some embodiments, each of the caregivers 62 may have their own laser wand 84 to further reduce the risks of cross-contamination.
In another embodiment, the medical device 80 may be controlled using a remote control style wand 90, as illustrated in Fig. 6. The wand 90 may contain a plurality of buttons each programmed to correspond to one or more medical device commands. For example, the buttons may be programmed as follows: the button labeled "1" 96 may be programmed to correspond to the command "Raise Alarm Limit;" the button "2" 98 may be programmed to correspond to the command "Lower Alarm Limit;" the button "3" 100 may be programmed to correspond to the command "Reset Alarm Limits;" and the button "4" 102 may be programmed to correspond to the command "Turn Alarm Off." It will be appreciated that these commands are exemplary. Although the buttons 96-102 are shown in Fig. 6 as being labeled with numbers and of certain shapes and sizes, in other embodiments, the buttons may be customized with different shapes, sizes, and labels. Additionally, the number of buttons present on the wand 90 may vary. The wand 90 also may contain a pen-style clip for attaching the wand 90 to the caregiver 62.
In the above-described embodiment, the wand 90 may contain a light emitting diode ("LED") 92 that transmits light pulses or infrared signals corresponding to a medical device command. For example, when a caregiver 62 presses button "1" 96, an integrated circuit within the wand 90 may send a command to the LED 92. The LED 92 may then send out a signal corresponding to this command. A receiver integrated into the medical device may receive the signal and respond by raising the alarm limit by a predetermined unit.
In other embodiments, the LED transmitter 92 may alternatively be replaced by a radio frequency ("rf ') transmitter. In such an embodiment, the medical device 80 may include an integrated rf receiver. Additionally, in alternate embodiments, the rf transmitter may employ the Bluetooth radio frequency standard or other suitable standard.
The technology of the wand 90 may also be incorporated in other packages. For example, in one alternate embodiment, it may be incorporated into a badge holder, as illustrated in Fig. 7. The badge holder 110, in addition to holding a caregiver's badge 1 12, may also contain the several command buttons 96-102. As shown in the bottom view of Fig. 8, the badge holder 110 may also contain the transmitter 92 on the bottom of the badge holder 110. In alternate embodiments the transmitter 92 may be located on another facade such as the top, front, or sides of the badge holder 110. Additionally, in still other alternate embodiments, the control buttons 96-102 may be of various shapes and sizes and be located on other facades of the badge holder 110.
Turning now to Fig. 9, an exemplary patient's room 131 and medical device 130 configured to interface with a personal data assistant ("PDA") 134 is illustrated. In addition to the main unit 12, the display 14, and the cable 18 for connection to the sensor 16 (not shown), the medical device 130 may include a PDA 134. As will be described further below, the caregiver 62 may use the PDA 134 to control the medical device 130. For example, the PDA 134 may be configured to present the caregiver 62 with one or more buttons or selectable locations on its screen that correspond to medical device controls or commands. Accordingly, when the caregiver 62 selects one of these controls or commands, the PDA 134 may be configured to transmit this control or command back to the medical device 130, which may subsequent execute the control or command. For example, the PDA 134 may be configured to generate a volume control display for the medical device 130. Upon accessing this volume display on the PDA 134, the caregiver may adjust the volume of the medical device 130 up or down.
Advantageously, the PDA 134 enables the caregiver 62 to control medical device 130 without physically touching or manipulating it. In addition, the PDA 134 may also supplement a display on the medical device 130. In particular, the PDA 134 may be configured to mirror or reproduce some or all of the contents displayed on the medical device's 130 internal display. In this way, the medical device 130 could advantageously be located away from the patient bed 132 or the caregiver 62, possibly even out of sight, as the inputs and outputs to the medical device 130 can be supported by the PDA 134.
Furthermore, the PDA 134 may be configured to interface with a plurality of medical devices 130 in a plurality of patient rooms 131. For example, a hospital may issue each of each caregivers 62 their own PDA 134, which they may use to access and/or control medical devices within a plurality of patient rooms. More specifically, the caregiver 62 may use their PDA 134 to access one or more medical devices within a first patient's room and then use the same PDA 134 to access medical devices within a subsequent patient's room. In this way, the caregiver 62 may access and/or control medical devices within a plurality of patient rooms without ever touching the actual medical devices - substantially decreasing the chances of cross-contamination. As described above, the PDA 134 may supplement or replace the internal screen on the medical device 130. In other words, the information that would otherwise be displayed on the medical device's 130 internal screen would be alternatively displayed on the PDA 134. Although this embodiment has several advantages (as described above) the caregiver 62 would have to periodically hold the PDA 134 in one or both of their hands. As will be appreciated, however, there may be a variety of situations where the caregiver 62 may desire free use of both of their hands while still being able to access and/or control medical devices. Accordingly, Fig. 10 is a diagram of a patient 141 , the caregiver 62, and a medical device 140 configured to output to a personal caregiver display 142 in accordance with one embodiment.
As illustrated in Fig. 10 and highlighted in an enlarged view in Fig. 11 , the caregiver personal display 142 may include a pair of glasses or other suitable wearable optics or eyewear (e.g., a monocular) which may be configured to display outputs from the medical device 140. In one embodiment, the caregiver personal display 142 may be configured to create a transparent or semi-transparent image that the caregiver 62 may be able to view while still being able to see the patient 141. For example, as illustrated in Figs. 10 and 1 1, the caregiver personal display may include a pair of glasses with an integral liquid crystal display ("LCD") that may be configured to display a pleth signal
144 while still enabling the caregiver 62 to see the patient 141. In this case, the caregiver personal display 142 effectively creates a "heads-up" display for the caregiver 62, allowing them to see the pleth signal 144 or other suitable medical information as if it were floating in front of them.
It will be appreciated, however, that the illustrated caregiver personal display 142 is merely one potential embodiment of a suitable caregiver personal display.
Accordingly, in other embodiments, other types of displays may be employed. For example, in one embodiment, the caregiver personal display may be a video display mounted on a pair of glasses or other mount, which the caregiver 62 may view by shifting his or her focus towards the display. Although medical information in this embodiment may not appear transparent to the caregiver 62, the caregiver 62 may still able to readily access information from the medical device 140 without having the medical device 140 within visual range of the caregiver 62.
As further illustrated in Figs. 10 and 1 1, the caregiver personal display may also include a speaker 146 to enable the caregiver 62 to hear alarms or alerts from the medical device 140. Advantageously, the speaker 146 enables the caregiver 62, who is monitoring medical device 140, to hear alerts or alarms without the alarms or alerts bothering other caregiver 62, who may be focused on other activities. In addition, as illustrated in Fig. 1 1, the caregiver personal display 142 may also include a microphone 148 to enable voice control of the medical device 140, as further described in commonly assigned U.S. Patent Application Serial No. 1 1/540,457 entitled SYSTEM AND METHOD FOR INTEGRATING VOICE WITH A MEDICAL DEVICE and filed on September 29, 2006, which is hereby incorporated by reference. As described above, secured access and/or patient privacy are both concerns in medical device design. In particular, as medical devices become an increasing vital component of medical treatment, it is important to ensure that only authorized caregivers are able to control these devices. For example, it could be potentially dangerous to a patient if the patient or a patient's guest were able to turn off or adjust a medical device, such as a respirator, a pulse oximeter, a heart/lung machine, and so- forth. Moreover, beyond safety concerns, modern medical devices also typically store a plurality of private personal information regarding the patient, such as social security numbers, addresses, and so-forth. In an age of increasing identity-based crimes, it is advantageous for medical devices to be able to restrict access to this information to approved individuals.
Accordingly, Fig. 12A is a diagram of an exemplary patient room 160 configured to identify caregivers or patients in accordance with one embodiment. As illustrated in Fig. 12A, the hospital room 160 may include a patient bed 162, a medical device 164, and a doorway 166. Moreover, as also illustrated in Fig. 12A, the hospital room 160 may also include the patient 141 and the caregiver 62. As illustrated, the patient 141 may be located in the bed 162 with the caregiver 62 positioned over the patient 141 and in general proximity with the medical device 164.
As illustrated in Fig. 12A, in an embodiment where the medical device 164 is a pulse oximeter, the medical device 164 may include the main unit 12, the display 14, and/or the display 64. Moreover, the medical device 164 may be configured to work in conjunction with an identification ("ID") tag, such as a caregiver ID 168 and/or a patient ID 170 to identify caregivers and/or patients within the hospital room 160. More specifically, in one embodiment, the medical device 164 may be coupled to door sensors 172A and 172B, which are located in close proximity to the door 166 and configured to detect when the caregiver ID 168 and/or the patient ID 170 pass through the doorway 166.
For example, as illustrated in Fig. 12B, which illustrates an enlarged view of the doorway 166 in accordance with one embodiment, the door sensors 172a and 172b may be configured to detect when the caregiver ID passes through the doorway 166 (e.g., when a caregiver enters or exits the patient room 160). Similarly, the door sensors 172a and 172b may be configured to detect when the patient ID 170 passes through the doorway 166 (e.g., the patient 141 walks or is pushed through the doorway 166). In one embodiment, the door sensors 172a and 172b may include radio frequency ("rf ') sensors configured to detect an rf transmitter within the caregiver ID 168 and/or the patient ID 170. For example, Fig. 13 illustrates one embodiment of the caregiver ID 168 including an rf ID tag 174. As will be appreciated the rf ID tag 174 may be a passive rf ID configured to receive transmissions from the door sensors 172a or 172b and to broadcast an identifying signal in response. The door sensors 172a or 172b may detect this identifying signal, and, thus, identify/detect the entry or exit of the caregiver 62 and/or the patient 141. It will be appreciated, however, that other suitable identification technologies may be employed. For example, in one embodiment, the caregiver ID may be an active ID (e.g., a Bluetooth enabled cell phone). Furthermore, in still other embodiments, the door sensors 172a and 172b may be located elsewhere besides the doors. For example, the sensors 172a and 172b may be located in the ceiling of the patient room 160 and configured to detect when the sensors 168 and/or 170 enter are located in the patient room 160
Advantageously, medical device 164 may be configured to utilize this detection information to manage access to its controls and/or to identify the patient 141 for administrative or record keeping purposes. For example, Fig. 14 is a flow chart illustrating an exemplary technique 210 for identifying caregivers or patients in accordance with one embodiment. For ease of description, the technique 210 will be described in conjunction with Fig. 15 which illustrates a block diagram o the medical device 164 in accordance with one embodiment.
As illustrated by block 212 of Fig. 14, the technique 210 may begin by detecting an ID tag. For example, in one embodiment, the door sensors 172 may detect the caregiver ID 168 or the patient ID 170. In another embodiment, the medical device 164 may alternatively or additionally include a bed sensor 250 to detect the ID tag. More specifically, the bed sensor 250 may be mounted on the patient bed 162 and configured to detect the patient ID 170. The bed sensor 250 may be particularly advantageous in hospital rooms including multiple patient beds 162, as the door sensors 172 may not be able to determine which of the plurality of patient beds 162 a particular patient is occupying. Moreover, the bed sensor 250 may also be configured to detect the patient ID 170 and to communicate patient identification information to the medical device 164, as set forth in further detail below.
Next, the technique 210 may include reading the detected ID tag, as indicated in block 214. For example, in one embodiment, an ID reader 252 may be configured to read the identity information from the caregiver ID 168 and/or the patient ID 170. Next, the technique 210 may include sending the identity information from the ID tag to an ID recognition system, as indicated in block 216. For example, in one embodiment, the ID reader 252 may transmit the identity information to an ID recognition system 254.
Next, the technique 210 may include determining an individual type of the detected ID tag, as indicated by block 218. For example, in the illustrated embodiment of the technique 210, the technique may include determining whether the detected ID tag corresponds to the caregiver 62 or the patient 141. In one embodiment, the ID recognition system 254 may make this determination based on an ID database 256, which includes information regarding a plurality of ID tags and the individual type corresponding to each of the plurality of ID tags. Alternatively, the individual type may be encoded on the caregiver ID 168 or the patient ID 170 and communicated to the ID recognition system 254 via the door sensor 172 and/or the bed sensor 250. Although the technique 210 is illustrated in Fig. 14 as including two branches, one for caregivers and one for patients, it will be appreciated that this is merely exemplary. As such, in alternate embodiments, the technique 210 may include multiple branches for various suitable individual types. For example, the technique 210 may respond differently to different types of caregivers, such as doctors, nurses, orderlies, and so-forth.
Returning now to Fig. 14, if the ID tag corresponds to a caregiver, the technique 210 may next include unlocking access to the medical device at an appropriate permissions level. For example, in one embodiment, an access control system in the medical device 164 may be configured to unlock the medical device 164 and allow the medical device control system 226 to execute instructions and/or commands commensurate with the permission level of the caregiver 62.
The technique 210 may then continue to allow the caregiver 62 to execute commands until the same ID tag is again detected by the door sensor 172 or the bed sensor 250, as indicated by block 228 (i.e., the caregiver leaves the patient room 160).
Alternatively, the door sensors 172a and 172b may be configured to detect when the caregiver ID 168 leaves the proximity of the sensor. In this embodiment, rather than detecting when the caregiver ID 168 crosses their threshold, the door sensors 172a and 172b may be configured to detect when the caregiver ID 168 is located within a certain distance of the door sensors 172a and 172b (i.e., the caregiver is located in the patient room 160). Upon detecting the exit of the caregiver 62, the technique 210 may include locking further access to the medical device 164 to prevent the patient 141 or other unauthorized individuals from adjusting the medical device 164 in the absence of the caregiver 162 (block 230). In this way, the technique 210 enables the medical device 164 or other suitable medical device automatically unlock when the caregiver 62 enters the patient room 160, to accept commands freely from the caregiver 62 while they are in the room, and then to relock automatically when the caregiver 62 leaves the patient room. Moreover, in one embodiment, the medical device 164 may be configured to record which caregiver 62 gave which commands to the medical device 164, because each caregiver in a hospital may be assigned a unique caregiver ID 168. In this way, it may be possible for a hospital to reconstruct patient treatment history, if desired.
Returning again to block 218 of Fig. 14, if the individual type is determined to be a patient, the technique 210 may include displaying a patient ID on a display of the medical device 164, as indicated by block 220. In one embodiment, a patient identification system 258 within the medical device 164 may be configured to display the patient ID on the display 14. Furthermore, the medical device 164 may also be configured to annotate any patient medical data subsequently stored by the medical device 164 with the patient information.
Next, if the same ID tag is detected again (or contact with the ID tag is lost, as described above), the technique 210 may include clearing the patient information from the medical device 164, as indicated by blocks 222 and 224. Accordingly, the medical device 164 may be able to automatically identify the identity of patients being monitored or treated without the need for caregivers to manually enter this information into the medical device 164. Advantageously, this reduces the chances of cross- contamination and automates one additional caregiver function.
While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims. Indeed, the present techniques may not only be applied to pulse oximeters, but also to other suitable medical devices, such as respirators, ventilators, EEGs, EKGs, and so-forth.

Claims

CLAIMSWhat is claimed is:
1. A method for accessing a medical device, the method comprising: reading identification information from an identification tag; determining if a person corresponding to the identification information has been approved to access the medical device; and if the person has been approved, granting access to the medical device.
2. The method, as set forth in claim 1, comprising determining a permission level associated with the person.
3. The method, as set forth in claim 2, wherein granting the access comprises granting access at the determined permission level.
4. The method, as set forth in claim 1 , wherein the detecting comprises detecting a radio frequency signal.
5. The method, as set forth in claim 1 , wherein the detecting comprises detecting a Bluetooth signal.
6. The method, as set forth in claim 1 , wherein the detecting comprises detecting the identification tag with a door sensor.
7. The method, as set forth in claim 1, comprising determining whether the identification tag corresponds to a caregiver or corresponds to a patient.
8. The method, as set forth in claim 7, comprising reading patient data from the identification tag if the identification tag corresponds to a patient.
9. The method, as set forth in claim 7, comprising; reading caregiver identification information from the identification tag if the identification tag corresponds to a caregiver; and storing the caregiver identification information and a time in the medical device.
10. The method, as set forth in claim 1 , wherein granting access to the medical device comprises granting access to a pulse oximeter.
1 1. A medical device comprising: a reader configured to read identification information from an identification tag; a recognition system configured to determine if a person corresponding to the identification information has been approved to access the medical device; and an access control system configured to grant access to the medical device if the person has been approved to access the medical device.
12. The medical device, as set forth in claim 11, wherein the sensor comprises a door sensor.
13. The medical device, as set forth in claim 12, wherein the door sensor is configured to be mounted in a doorway of a hospital room.
14. The medical device, as set forth in claim 11, wherein the sensor comprises a proximity sensor.
15. The medical device, as set forth in claim 11 , wherein the reader is configured to read the identification information over a Bluetooth signal.
16. The medical device, as set forth in claim 11 comprising the identification tag.
17. The medical device, as set forth in claim 11 , comprising a pulse oximetry sensor.
18. The medical device, as set forth in claim 1 1 wherein the access control system is configured to grant access to the medical device based on a permission level associated with the identification information.
19. The medical device, as set forth in claim 11, comprising a sensor configured to detect the identification tag;
20. A medical device comprising: a reader configured to read identification information from an identification tag; a patient identification system configured to store the identification information in the medical device as patient information.
21. The medical device, as set forth in claim 20 comprising a sensor configured to detect an identification tag;
22. The medical device, as set forth in claim 21, wherein the sensor comprises a bed sensor configured to be mounted in proximity to a patient bed.
23. The medical device, as set forth in claim 20, wherein the patient identification system is configured to associate the patient information with medical data produced by the medical device.
PCT/US2007/020848 2006-09-29 2007-09-26 User interface and identification in a medical device systems and methods WO2008042220A2 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US11/540,385 2006-09-29
US11/540,385 US7706896B2 (en) 2006-09-29 2006-09-29 User interface and identification in a medical device system and method
US11/540,895 US20080097176A1 (en) 2006-09-29 2006-09-29 User interface and identification in a medical device systems and methods
US11/540,016 2006-09-29
US11/540,016 US7698002B2 (en) 2006-09-29 2006-09-29 Systems and methods for user interface and identification in a medical device
US11/541,069 2006-09-29
US11/541,069 US20080097177A1 (en) 2006-09-29 2006-09-29 System and method for user interface and identification in a medical device
US11/540,895 2006-09-29

Publications (2)

Publication Number Publication Date
WO2008042220A2 true WO2008042220A2 (en) 2008-04-10
WO2008042220A3 WO2008042220A3 (en) 2009-11-26

Family

ID=38961132

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2007/020847 WO2008042219A2 (en) 2006-09-29 2007-09-26 User interface and identification in a medical device systems and methods
PCT/US2007/020848 WO2008042220A2 (en) 2006-09-29 2007-09-26 User interface and identification in a medical device systems and methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2007/020847 WO2008042219A2 (en) 2006-09-29 2007-09-26 User interface and identification in a medical device systems and methods

Country Status (1)

Country Link
WO (2) WO2008042219A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4071586A1 (en) * 2021-04-09 2022-10-12 Fresenius Medical Care Deutschland GmbH Contactless operation of medical appliances

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009037316A1 (en) * 2009-08-14 2011-02-17 Karl Storz Gmbh & Co. Kg Control and method for operating a surgical light
US8935003B2 (en) 2010-09-21 2015-01-13 Intuitive Surgical Operations Method and system for hand presence detection in a minimally invasive surgical system
KR101900922B1 (en) 2009-11-13 2018-09-21 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Method and system for hand presence detection in a minimally invasive surgical system
US8996173B2 (en) 2010-09-21 2015-03-31 Intuitive Surgical Operations, Inc. Method and apparatus for hand gesture control in a minimally invasive surgical system
WO2012044334A2 (en) * 2009-11-13 2012-04-05 Intuitive Surgical Operations, Inc. Method and apparatus for hand gesture control in a minimally invasive surgical system
US8682489B2 (en) * 2009-11-13 2014-03-25 Intuitive Sugical Operations, Inc. Method and system for hand control of a teleoperated minimally invasive slave surgical instrument
HUP1100316A2 (en) * 2011-06-15 2012-12-28 Debreceni Egyetem Automatic positioning system for surgical lamp
DE102011107795A1 (en) 2011-07-15 2013-01-17 Fresenius Medical Care Deutschland Gmbh Method and device for remote monitoring and control of medical fluid management devices
MX2011013833A (en) * 2011-12-16 2013-06-17 Roberto Alarcon Alfaro Electronic body-controlled interface.
CN103258107A (en) * 2012-02-17 2013-08-21 普天信息技术研究院有限公司 Monitoring method and assistant monitoring system
EP2847651A1 (en) * 2012-05-10 2015-03-18 Koninklijke Philips N.V. Gesture control
US10288881B2 (en) 2013-03-14 2019-05-14 Fresenius Medical Care Holdings, Inc. Wearable interface for remote monitoring and control of a medical device
FR3006034B1 (en) * 2013-05-24 2017-09-01 Surgiris MEDICAL LIGHTING SYSTEM, IN PARTICULAR OPERATIVE LIGHTING, AND METHOD FOR CONTROLLING SUCH A LIGHTING SYSTEM
US10067569B2 (en) 2015-08-14 2018-09-04 Fresenius Medical Care Holdings, Inc. Touchless interface for a medical treatment system
CN106361349A (en) * 2015-11-19 2017-02-01 北京智谷睿拓技术服务有限公司 Body left and right side determining method and equipment
DE102015016271A1 (en) 2015-12-15 2017-06-22 Fresenius Medical Care Deutschland Gmbh System and method for detecting an operating condition or a course of treatment in a blood treatment
US10623188B2 (en) 2017-04-26 2020-04-14 Fresenius Medical Care Holdings, Inc. Securely distributing medical prescriptions
DE102018130640A1 (en) 2017-12-18 2019-06-19 Löwenstein Medical Technology S.A. Luxembourg Virtual operation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19932147A1 (en) * 1999-07-12 2001-01-25 Insys Ges Fuer Microcontroller Electronic system for detecting, monitoring patient data has transponders with stored identification codes, polling device for connection to central or non-central hospital computer
US20050052275A1 (en) * 2003-09-04 2005-03-10 Houle Vernon George Method of controlling movement on the inside and around the outside of a facility
US20050062603A1 (en) * 2003-08-06 2005-03-24 Oren Fuerst Secure, networked and wireless access, storage and retrival system and method utilizing tags and modular nodes
US20050234381A1 (en) * 2004-03-20 2005-10-20 Guenter Niemetz Method for allowing operator entries at a medical instrument
US20060132283A1 (en) * 2003-06-03 2006-06-22 Andreas Eberhart Device and method for identifying a user of a medical device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988981B1 (en) * 1987-03-17 1999-05-18 Vpl Newco Inc Computer data entry and manipulation apparatus and method
DE19845030A1 (en) * 1998-09-30 2000-04-20 Siemens Ag Imaging system for reproduction of medical image information
AU2002230814A1 (en) * 2000-11-02 2002-05-15 Essential Reality, Llc Electronic user worn interface device
US7331929B2 (en) * 2004-10-01 2008-02-19 General Electric Company Method and apparatus for surgical operating room information display gaze detection and user prioritization for control
WO2006087689A2 (en) * 2005-02-18 2006-08-24 Koninklijke Philips Electronics N. V. Automatic control of a medical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19932147A1 (en) * 1999-07-12 2001-01-25 Insys Ges Fuer Microcontroller Electronic system for detecting, monitoring patient data has transponders with stored identification codes, polling device for connection to central or non-central hospital computer
US20060132283A1 (en) * 2003-06-03 2006-06-22 Andreas Eberhart Device and method for identifying a user of a medical device
US20050062603A1 (en) * 2003-08-06 2005-03-24 Oren Fuerst Secure, networked and wireless access, storage and retrival system and method utilizing tags and modular nodes
US20050052275A1 (en) * 2003-09-04 2005-03-10 Houle Vernon George Method of controlling movement on the inside and around the outside of a facility
US20050234381A1 (en) * 2004-03-20 2005-10-20 Guenter Niemetz Method for allowing operator entries at a medical instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4071586A1 (en) * 2021-04-09 2022-10-12 Fresenius Medical Care Deutschland GmbH Contactless operation of medical appliances
WO2022214673A3 (en) * 2021-04-09 2022-11-24 Fresenius Medical Care Deutschland Gmbh Contactless operation of medical devices
US11693489B2 (en) 2021-04-09 2023-07-04 Fresenius Medical Care Deutschland Gmbh Contactless operation of medical devices using a pointing apparatus

Also Published As

Publication number Publication date
WO2008042219A2 (en) 2008-04-10
WO2008042220A3 (en) 2009-11-26
WO2008042219A3 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
US8160726B2 (en) User interface and identification in a medical device system and method
US7698002B2 (en) Systems and methods for user interface and identification in a medical device
US20080097176A1 (en) User interface and identification in a medical device systems and methods
US20080097177A1 (en) System and method for user interface and identification in a medical device
WO2008042220A2 (en) User interface and identification in a medical device systems and methods
US20210145300A1 (en) Spot check measurement system
US9801542B2 (en) Health monitoring appliance
US20190295096A1 (en) Smart watch and operating method using the same
US10152150B2 (en) Facilitating user input via arm-mounted peripheral device interfacing with head-mounted display device
US20080082338A1 (en) Systems and methods for secure voice identification and medical device interface
US20150190208A1 (en) System and method for user interaction with medical equipment
KR20190105788A (en) System for providing experience of medical treatment based on virtual reality or augmented reality in hospital
KR101793587B1 (en) A mobile device having an oxygen saturation measurements available user authentication for identity verification of remote diagnosis patient, and method for measuring oxygen saturation using the same
Kalpana et al. Smart Glove with Gesture Based Communication and Monitoring of Paralyzed Patient
CN115362508A (en) Method, device and system for remote monitoring of medical devices
Alhamamy et al. Tabletop and Portable SPO2 Sensor to Diagnostic Cov19 Effect by Mobile Application
Mishra Internet of Things for Health Care and Health Monitoring
Rishabh et al. Implanted in the Body, Tattooed on the Skin
Baig et al. Remote Patient Monitoring System: Evaluation of Medical Devices from Patients’ Perspective

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/07/2009)

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07852449

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 07852449

Country of ref document: EP

Kind code of ref document: A2