WO2008039688A1 - Tear resistant solar control multilayer film - Google Patents
Tear resistant solar control multilayer film Download PDFInfo
- Publication number
- WO2008039688A1 WO2008039688A1 PCT/US2007/079029 US2007079029W WO2008039688A1 WO 2008039688 A1 WO2008039688 A1 WO 2008039688A1 US 2007079029 W US2007079029 W US 2007079029W WO 2008039688 A1 WO2008039688 A1 WO 2008039688A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- multilayer film
- infrared light
- tear resistant
- film
- article according
- Prior art date
Links
- 239000002105 nanoparticle Substances 0.000 claims abstract description 55
- 229920000642 polymer Polymers 0.000 claims abstract description 55
- 239000011230 binding agent Substances 0.000 claims abstract description 18
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 17
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 17
- 239000010410 layer Substances 0.000 claims description 150
- 230000005540 biological transmission Effects 0.000 claims description 42
- 239000004820 Pressure-sensitive adhesive Substances 0.000 claims description 29
- 239000011521 glass Substances 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 claims description 10
- 229910001887 tin oxide Inorganic materials 0.000 claims description 9
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 8
- 229910052787 antimony Inorganic materials 0.000 claims description 7
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 7
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 5
- 229920000058 polyacrylate Polymers 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 claims description 2
- 239000010408 film Substances 0.000 description 189
- 239000000463 material Substances 0.000 description 29
- -1 stainless steel Chemical class 0.000 description 27
- 230000003287 optical effect Effects 0.000 description 20
- 238000000576 coating method Methods 0.000 description 19
- 239000011248 coating agent Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 16
- 238000001228 spectrum Methods 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- 229920000139 polyethylene terephthalate Polymers 0.000 description 13
- 239000005020 polyethylene terephthalate Substances 0.000 description 13
- 239000012788 optical film Substances 0.000 description 12
- 229920001634 Copolyester Polymers 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000000178 monomer Substances 0.000 description 11
- 229920001577 copolymer Polymers 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 10
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 10
- 239000000853 adhesive Substances 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 9
- 229920000728 polyester Polymers 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 6
- 229940048053 acrylate Drugs 0.000 description 6
- 239000012790 adhesive layer Substances 0.000 description 6
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 6
- 238000002310 reflectometry Methods 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000011112 polyethylene naphthalate Substances 0.000 description 5
- 229920005644 polyethylene terephthalate glycol copolymer Polymers 0.000 description 5
- 239000004926 polymethyl methacrylate Substances 0.000 description 5
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000007607 die coating method Methods 0.000 description 3
- 239000004811 fluoropolymer Substances 0.000 description 3
- 229920002313 fluoropolymer Polymers 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 239000012939 laminating adhesive Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- VSKJLJHPAFKHBX-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 VSKJLJHPAFKHBX-UHFFFAOYSA-N 0.000 description 2
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 description 2
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 108091092920 SmY RNA Proteins 0.000 description 2
- 241001237710 Smyrna Species 0.000 description 2
- 244000028419 Styrax benzoin Species 0.000 description 2
- 235000000126 Styrax benzoin Nutrition 0.000 description 2
- 235000008411 Sumatra benzointree Nutrition 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 229910000410 antimony oxide Inorganic materials 0.000 description 2
- 229960002130 benzoin Drugs 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 235000019382 gum benzoic Nutrition 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 229920000092 linear low density polyethylene Polymers 0.000 description 2
- 239000004707 linear low-density polyethylene Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 2
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 239000013047 polymeric layer Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000002195 soluble material Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 238000000411 transmission spectrum Methods 0.000 description 2
- 238000009966 trimming Methods 0.000 description 2
- 235000014692 zinc oxide Nutrition 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- VAPKHDZBJXRVNG-UHFFFAOYSA-N 1-ethenyl-3-methylbenzene;1-ethenyl-4-methylbenzene Chemical group CC1=CC=C(C=C)C=C1.CC1=CC=CC(C=C)=C1 VAPKHDZBJXRVNG-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- FTALTLPZDVFJSS-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl prop-2-enoate Chemical compound CCOCCOCCOC(=O)C=C FTALTLPZDVFJSS-UHFFFAOYSA-N 0.000 description 1
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 1
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 1
- RTNUTCOTGVKVBR-UHFFFAOYSA-N 4-chlorotriazine Chemical class ClC1=CC=NN=N1 RTNUTCOTGVKVBR-UHFFFAOYSA-N 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000157855 Cinchona Species 0.000 description 1
- 235000001258 Cinchona calisaya Nutrition 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- YFPJFKYCVYXDJK-UHFFFAOYSA-N Diphenylphosphine oxide Chemical compound C=1C=CC=CC=1[P+](=O)C1=CC=CC=C1 YFPJFKYCVYXDJK-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229920003091 Methocel™ Polymers 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229910000792 Monel Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- PSGCQDPCAWOCSH-BREBYQMCSA-N [(1r,3r,4r)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] prop-2-enoate Chemical compound C1C[C@@]2(C)[C@H](OC(=O)C=C)C[C@@H]1C2(C)C PSGCQDPCAWOCSH-BREBYQMCSA-N 0.000 description 1
- LFOXEOLGJPJZAA-UHFFFAOYSA-N [(2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl)phosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC1=CC=CC(OC)=C1C(=O)P(=O)(CC(C)CC(C)(C)C)C(=O)C1=C(OC)C=CC=C1OC LFOXEOLGJPJZAA-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 1
- VSVDQVJQWXJJSS-UHFFFAOYSA-N [2,6-dibromo-4-[2-(3,5-dibromo-4-prop-2-enoyloxyphenyl)propan-2-yl]phenyl] prop-2-enoate Chemical compound C=1C(Br)=C(OC(=O)C=C)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(OC(=O)C=C)C(Br)=C1 VSVDQVJQWXJJSS-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001266 acyl halides Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000005328 architectural glass Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000003670 easy-to-clean Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- ZYMKZMDQUPCXRP-UHFFFAOYSA-N fluoro prop-2-enoate Chemical compound FOC(=O)C=C ZYMKZMDQUPCXRP-UHFFFAOYSA-N 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- PQTCMBYFWMFIGM-UHFFFAOYSA-N gold silver Chemical compound [Ag].[Au] PQTCMBYFWMFIGM-UHFFFAOYSA-N 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000007760 metering rod coating Methods 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 150000002828 nitro derivatives Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- WRAQQYDMVSCOTE-UHFFFAOYSA-N phenyl prop-2-enoate Chemical class C=CC(=O)OC1=CC=CC=C1 WRAQQYDMVSCOTE-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical class C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 125000003410 quininyl group Chemical group 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910019655 synthetic inorganic crystalline material Inorganic materials 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- RNWHGQJWIACOKP-UHFFFAOYSA-N zinc;oxygen(2-) Chemical class [O-2].[Zn+2] RNWHGQJWIACOKP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/281—Interference filters designed for the infrared light
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/285—Interference filters comprising deposited thin solid films
- G02B5/287—Interference filters comprising deposited thin solid films comprising at least one layer of organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2367/00—Polyesters, e.g. PET, i.e. polyethylene terephthalate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/256—Heavy metal or aluminum or compound thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
Definitions
- the present disclosure generally relates to tear resistant solar control multilayer film.
- the present disclosure more particularly relates to tear resistant solar control multilayer film that includes infrared absorbing nanoparticles.
- Dyed and vacuum-coated plastic films have been applied to windows to reduce heat load due to sunlight.
- solar transmission is blocked in either the visible or the infrared portions of the solar spectrum (i.e., at wavelengths ranging from 400 nm to 2500 nm or greater.)
- dyed films can control the transmission of visible light and consequently provides glare reduction.
- dyed films generally do not block near-infrared solar energy and consequently are not completely effective as solar control films. Dyed films also often fade with solar exposure.
- the dyes often fade at different rates, causing an unwanted color changes over the life of the film.
- window films are fabricated using vacuum-deposited grey metals, such as stainless steel, inconel, monel, chrome, or nichrome alloys.
- the deposited grey metal films offer about the same degrees of transmission in the visible and infrared portions of the solar spectrum.
- the grey metal films are an improvement over dyed films with regard to solar control.
- the grey metal films are relatively stable when exposed to light, oxygen, and/or moisture, and in those cases in which the transmission of the coatings increases due to oxidation, color changes are generally not detectable. After application to clear glass, grey metals block light transmission by approximately equal amounts of solar reflection and absorption.
- Vacuum-deposited layers such as silver, aluminum, and copper control solar radiation primarily by reflection and are useful only in a limited number of applications due to the high level of visible reflectance.
- a modest degree of selectivity i.e., higher visible transmission than infrared transmission
- certain reflective materials such as copper and silver.
- Some vacuum deposited metal films can be adversely affected by weathering, and defects in the film can form, including corrosion of the metal layers.
- Solar control films having high transparency and high heat rejection contain a significant amount of silver or silver gold alloys and are very conductive. As a result, the films block RF or microwave signals from being received in certain instances such as car radio, car navigation systems and such. In many applications, solar control window films that do not block RF signals is desirable.
- Solar control films are applied to a glazing structured by spraying the glazing with water, positioning the film, trimming the film (if necessary) and squeegeeing the excess water trapped between glazing (typically glass) and the film. Some amount of water is typically trapped between the glazing and film. Vacuum deposited metal layers trap water between the film and the glazing. The trapped water collects and forms discrete bubbles which may take several months to be dissipate, if at all.
- Tear resistant films are tough films that can be used in either free-standing configurations, such as might be used in temporary structures such as wind breaks for construction and agriculture, or may be laminated to a rigid glass or plastic substrates to provide protection from impacts, such as may occur during strong winds, vehicle accidents or criminal activity.
- tear resistant films When used in a laminated structure, tear resistant films serve to absorb and distribute impact energy, as well as providing resistance to shattered fragments being ejected from the substrate.
- the present disclosure relates to tear resistant solar control multilayer film article.
- the present disclosure more particularly relates to a tear resistant solar control multilayer film article that includes infrared absorbing nanoparticles.
- a tear resistant solar control multilayer film article includes an infrared light reflecting multilayer film having alternating polymeric layers of a first polymer type and a second polymer type and the alternating polymeric layers cooperate to reflect infrared light; an infrared light absorbing nanoparticle layer including a plurality of metal oxide nanoparticles dispersed in a cured polymeric binder, the infrared light absorbing nanoparticle layer being adjacent the infrared light reflecting multilayer film, and a tear resistant polymeric film disposed adjacent to the infrared light reflecting multilayer film.
- a shatterproof light control article for blocking infrared light from an infrared light source is disclosed.
- the shatterproof light control article includes an infrared light reflecting multilayer film having alternating polymeric layers of a first polymer type and a second polymer type and the alternating polymeric layers cooperate to reflect infrared light, an infrared light absorbing nanoparticle layer including a plurality of metal oxide nanoparticles dispersed in a cured polymeric binder, the infrared light absorbing nanoparticle layer being adjacent the infrared light reflecting multilayer film; a glass substrate disposed adjacent the infrared light reflecting multilayer film, and a tear resistant polymeric film disposed between the infrared light reflecting multilayer film and the glass substrate.
- a tear resistant multilayer film article in another embodiment, includes an infrared light reflecting multilayer film having alternating polymeric layers of a first polymer type and a second polymer type and the alternating polymeric layers cooperate to reflect infrared light, an infrared light absorbing nanoparticle layer comprising a plurality of metal oxide nanoparticles dispersed in a cured polymeric binder, the infrared light absorbing nanoparticle layer being adjacent the infrared light reflecting multilayer film, and a tear resistant polymeric film disposed adjacent to the infrared light reflecting multilayer film.
- the tear resistant multilayer film article has an average visible light transmission of at least 40% and an infrared light transmission of 20% or less for substantially all wavelengths between 950 nm and 2500 nm.
- FIG. IA is an optical transmission and reflection spectra of film prepared according to Example 1 with the adhesive side towards the light source;
- FIG. IB is an optical transmission and reflection spectra of film prepared according to Example 1 laminated to a 3 mm clear glass with the adhesive side towards the sun
- FIG. 1C is an optical transmission and reflection spectra of film prepared according to Example 1 laminated to a 3 mm clear glass with the adhesive side away from the sun;
- FIG. 2 is an optical transmission and reflection spectra of film prepared according to Example 2
- FIG. 3 is an optical transmission and reflection spectra of film prepared according to Example 3;
- FIG. 4 is a perspective view of a multilayer film
- FIG. 5 schematically illustrates an embodiment of a tear resistant solar control multilayer film article
- FIG. 6 schematically illustrates an embodiment of a tear resistant solar control multilayer film article.
- the tear resistant solar control multilayer film of the present disclosure is believed to be applicable to a variety of applications needing solar control including, for example, architectural and transportation applications.
- the tear resistant solar control multilayer film article includes an infrared absorbing nanoparticle layer disposed on an infrared reflecting multilayer film and a tear resistant film.
- the tear resistant solar control multilayer film article further includes an adhesive layer.
- the tear resistant solar control film can be adhered to an optical substrate such as, for example, a glass substrate.
- polymer or “polymeric” will be understood to include polymers, copolymers (e.g., polymers formed using two or more different monomers), oligomers and combinations thereof, as well as polymers, oligomers, or copolymers. Both block and random copolymers are included, unless indicated otherwise.
- Weight percent, wt%, percent by weight, % by weight, and the like are synonyms that refer to the concentration of a substance as the weight of that substance divided by the weight of the composition and multiplied by 100.
- adjacent refers to one element being in close proximity to another element and includes the elements touching one another and further includes the elements being separated by one or more layers disposed between the elements.
- the recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range.
- This disclosure generally describes tear resistant multilayer film that includes an infrared absorbing nanoparticle layer disposed on polymeric multilayer film.
- an infrared light reflecting multilayer film has alternating layers of a first polymer type and a second polymer type, and an infrared light absorbing nanoparticle layer is adjacent the multilayer film.
- the nanoparticle layer includes a plurality of metal oxide nanoparticles.
- the multilayer film is disposed adjacent to an optical substrate such as glass to form a solar control article.
- FIGs. 1A-1C, 2 and 3 are optical transmission and reflection spectra of films prepared according to Examples 1-3.
- FIG. 4 illustrates multilayer optical film 20.
- the film includes individual layers 22, 24.
- the layers have different refractive index characteristics so that some light is reflected at interfaces between adjacent layers.
- the layers are sufficiently thin so that light reflected at a plurality of the interfaces undergoes constructive or destructive interference in order to give the film the desired reflective or transmissive properties.
- each layer generally has an optical thickness (i.e., a physical thickness multiplied by refractive index) of less than about 1 micrometer.
- Thicker layers can, however, also be included, such as skin layers at the outer surfaces of the film, or protective boundary layers disposed within the film that separate packets of layers.
- the reflective and transmissive properties of multilayer optical film 20 are a function of the refractive indices of the respective layers (i.e., microlayers).
- Each layer can be characterized at least in localized positions in the film by in-plane refractive indices n x , n y , and a refractive index n z associated with a thickness axis of the film.
- These indices represent the refractive index of the subject material for light polarized along mutually orthogonal x-, y- and z-axes, respectively (see FIG. 4).
- the refractive indices are controlled by judicious materials selection and processing conditions.
- Film 20 can be made by co-extrusion of typically tens or hundreds of layers of two alternating polymers A, B, followed by optionally passing the multilayer extrudate through one or more multiplication dies, and then stretching or otherwise orienting the extrudate to form a final film.
- the resulting film is composed of typically tens or hundreds of individual layers whose thicknesses and refractive indices are tailored to provide one or more reflection bands in desired region(s) of the spectrum, such as in the visible, near infrared, and/or infrared.
- adjacent layers preferably exhibit a difference in refractive index ( ⁇ n x ) for light polarized along the x-axis of at least 0.05.
- the adjacent layers also exhibit a difference in refractive index ( ⁇ n y ) for light polarized along the y-axis of at least 0.05.
- the refractive index difference ⁇ n y can be less than 0.05 or 0 to produce a multilayer stack that reflects normally incident light of one polarization state and transmits normally incident light of an orthogonal polarization state.
- the refractive index difference ( ⁇ n z ) between adjacent layers for light polarized along the z-axis can also be tailored to achieve desirable reflectivity properties for the p-polarization component of obliquely incident light.
- the x-axis will be considered to be oriented within the plane of the film such that the magnitude of ⁇ n x is a maximum.
- the magnitude of ⁇ n y can be equal to or less than (but not greater than) the magnitude of ⁇ n x .
- the selection of which material layer to begin with in calculating the differences ⁇ n x , ⁇ n y , ⁇ n z is dictated by requiring that ⁇ n x be non-negative.
- the z-index mismatch ⁇ n z between layers can be controlled to be substantially less than the maximum in-plane refractive index difference ⁇ n x , such that ⁇ n z ⁇ 0.5* ⁇ n x . More preferably, ⁇ n z ⁇ 0.25 * ⁇ n x .
- a zero or near zero magnitude z-index mismatch yields interfaces between layers whose reflectivity for p-polarized light is constant or near constant as a function of incidence angle.
- the z-index mismatch ⁇ n z can be controlled to have the opposite polarity compared to the in-plane index difference ⁇ n x , i.e. ⁇ n z ⁇ 0. This condition yields interfaces whose reflectivity for p-polarized light increases with increasing angles of incidence, as is the case for s-polarized light.
- Multilayer optical films have been described in, for example, US Patent 3,610,724 (Rogers); US Patent 3,711,176 (Alfrey, Jr. et al), "Highly Reflective Thermoplastic Optical Bodies For Infrared, Visible or Ultraviolet Light”; US Patent 4,446,305 (Rogers et al.); US Patent 4,540,623 (Im et al.); US Patent 5,448,404 (Schrenk et al.); US Patent 5,882,774 (Jonza et al.) “Optical Film”; US Patent 6,045,894 (Jonza et al.) “Clear to Colored Security Film”; US Patent 6,531,230 (Weber et al.) “Color Shifting Film”; PCT Publication WO 99/39224 (Ouderkirk et al.) "Infrared Interference Filter”; and US Patent Publication 2001/0022982 Al (Neavin e
- polymer materials are used predominantly or exclusively in the makeup of the individual layers.
- Such films can be compatible with high volume manufacturing processes, and may be made in large sheets and roll goods.
- the multilayer film can be formed by any useful combination of alternating polymer type layers.
- at least one of the alternating polymer layers is birefringent and oriented.
- one of the alternating polymer layer is birefringent and orientated and the other alternating polymer layer is isotropic.
- the multilayer optical film is formed by alternating layers of a first polymer type including polyethylene terephthalate (PET) or copolymer of polyethylene terephthalate (coPET) and a second polymer type including poly(methyl methacrylate) (PMMA) or a copolymer of poly(methyl methacrylate) (coPMMA).
- the multilayer optical film is formed by alternating layers of a first polymer type including polyethylene terephthalate and a second polymer type including a copolymer of poly(methyl methacrylate and ethyl acrylate).
- the multilayer optical film is formed by alternating layers of a first polymer type including a glycolated polyethylene terephthalate (PETG - a copolymer ethylene terephthalate and a second glycol moiety such as, for example, cyclohexanedimethanol) or a copolymer of a glycolated polyethylene terephthalate (coPETG) and second polymer type including polyethylene naphthalate (PEN) or a copolymer of polyethylene naphthalate (coPEN).
- PETG glycolated polyethylene terephthalate
- PEN polyethylene naphthalate
- coPEN copolymer of polyethylene naphthalate
- the multilayer optical film is formed by alternating layers of a first polymer type including polyethylene naphthalate or a copolymer of polyethylene naphthalate and a second polymer type including poly(methyl methacrylate) or a copolymer of poly(methyl methacrylate).
- a first polymer type including polyethylene naphthalate or a copolymer of polyethylene naphthalate
- a second polymer type including poly(methyl methacrylate) or a copolymer of poly(methyl methacrylate).
- FIG. 5 and FIG. 6 schematically illustrate embodiments of a tear resistant solar control multilayer film article 100.
- the film 100 includes an infrared light reflecting multilayer film 110 having alternating layers of a first polymer type and a second polymer type, as described above.
- the alternating polymeric layers cooperate to reflect infrared light.
- the infrared light reflecting multilayer film 110 is substantially free of metal and is an all-polymeric film.
- tear resistant solar control films have a high transparency and high heat rejection and are non-conductive since they do not include traditional heat rejecting metal layers. As a result, these tear resistant solar films do not block RF or microwave signals from being received in certain instances such as car radio, car navigation systems and such.
- An infrared light absorbing nanoparticle layer 120 (described below) is disposed adjacent the multilayer IR reflecting film 110.
- An optional intermediate adhesive layer (not shown) can be disposed between the nanoparticle layer 120 and the multilayer IR reflecting film 110.
- One or more monolithic or multilayer tear resistant films 160 (described below) are disposed adjacent to the infrared light reflecting multilayer film 110.
- Optional intermediate or laminating adhesive layer(s) 165 are disposed between the one or more tear resistant films 160 and between the one or more tear resistant films 160 and the infrared light reflecting multilayer film 110.
- Two tear resistant films 160 are shown in the illustrated embodiment.
- a pressure sensitive adhesive layer 130 is disposed adjacent to the one or more tear resistant films 160.
- a release layer 170 or optical substrate 140 is disposed adjacent the pressure sensitive adhesive layer 130.
- an overcoat layer 133 is disposed on the pressure sensitive adhesive layer 130.
- the overcoat layer 133 can be a water soluble material that protects the pressure sensitive adhesive layer 130 from damage during manufacture and handling.
- a variety of water soluble materials such as methyl cellulose or polyvinyl alcohol are suitable as the overcoat material.
- the tear resistant solar control multilayer film article 100 can be temporarily disposed on a removable release liner 170 which is discarded prior to installation of the article on the glazing member 140.
- the tear resistant solar control multilayer film article 100 can be prepared for application by removing the release liner 170 and rinsing the tear resistant solar control multilayer film article 100 with water to remove overcoat 133, thereby exposing and/or activating adhesive layer 130.
- the tear resistant solar control multilayer film article 100 is then applied to the glazing member 140 using conventional installation techniques known in the art. It has been found that the tear resistant solar control multilayer film article described herein provides a solar control film that allows the residual installation moisture to more readily transmit through the solar control film described herein, than through solar control films having deposited metal layers.
- the film 100 includes an infrared light reflecting multilayer film 110 having alternating layers of a first polymer type and a second polymer type, as described above and an infrared light absorbing nanoparticle layer 120 is disposed adjacent the multilayer film 110.
- the infrared light absorbing nanoparticle layer 120 includes a metal oxide dispersed within a cured polymeric binder.
- this infrared light absorbing nanoparticle layer 120 has a thickness in a range from 1 to 20 micrometers, or from 1 to 10 micrometers, or from 1 to 5 micrometers.
- the infrared light absorbing nanoparticle layer 120 also functions as a hardcoat layer and comprises cured multifunctional polymeric material.
- the nanoparticle layer described above can include a plurality of metal oxide nanoparticles.
- a partial listing of metal oxide nanoparticles includes tin, antimony, indium and zinc oxides and doped oxides.
- the metal oxide nanoparticles include, tin oxide, antimony oxide, indium oxide, indium doped tin oxide, antimony doped indium tin oxide, antinomy tin oxide, antimony doped tin oxide or mixtures thereof.
- the metal oxide nanoparticles include tin oxide or doped tin oxide and optionally further includes antimony oxide and/or indium oxide.
- the nanoparticles can have any useful size such as, for example, 1 to 100, or 1 to 75, or 5 to 50 nanometers.
- the metal oxide nanoparticles include antimony tin oxide or doped antimony tin oxide dispersed in a polymeric material.
- the polymeric material can be any useful binder material such as, for example, polyolefm, polyacrylate, polyester, polycarbonate, fluoropolymer, and the like.
- the binder is a cured polymeric material that can function as a hardcoat.
- Suitable polymeric binders to form the infrared light absorbing nanoparticle layer include the thermal and/or U. V. -polymerized (i.e., cured) products of acrylate and/or methacrylate monomers.
- a suitable cured binder is the thermal and/or U.V.
- the curable binder composition should be of flowable viscosity that is low enough that air bubbles do not become entrapped in the composition.
- Reactive diluents can be mono- or di- functional monomers such as, for example, SR-339, SR-256, SR-379, SR-395, SR-440, SR-506, CD-611, SR-212, SR-230, SR-238, and SR-247 available from Sartomer Co., Exton, PA.
- Typical useful oligomers and oligomeric blends include CN- 120, CN-104, CN-115, CN-116, CN-117, CN-118, CN-119, CN-970A60, CN-972, CN- 973A80, CN-975 available from Sartomer Co., Exton, PA and Ebecryl 1608, 3200, 3201, 3302, 3605, 3700, 3701, 608, RDX-51027, 220, 9220, 4827, 4849, 6602, 6700-20T available from Surface Specialties, Smyrna, GA.
- a multi-functional crosslinker can assist in providing a durable, high crosslink density composite matrix. Examples of multi-functional monomers include SR-295, SR-444, SR-351, SR-399, SR- 355, and SR-368 available from Sartomer Co., Exton, PA and PETA-K, PETIA and
- Multi-functional monomers can be used as crosslinking agents to increase the glass transition temperature of the binder polymer that results from the polymerizing of the polymerizable composition.
- monomer compositions useful for forming the polymeric binder can have a melting point that is below about 50° C.
- the monomer composition can be a liquid at room temperature.
- Monomer compositions useful for forming the polymeric binder can be polymerized by conventional free radical polymerization methods. Examples of initiators include, organic peroxides, azo compounds, quinines, nitro compounds, acyl halides, hydrazones, mercapto compounds, pyrylium compounds, imidazoles, chlorotriazines, benzoin, benzoin alkyl ethers, di-ketones, phenones, and the like.
- photoinitiators include, but not limited to, those available commercially from Ciba Geigy under the trade designations DARACUR 1173, DAROCUR 4265, IRGACURE 651, IRGACURE 1800, IRGACURE 369, IRGACURE 1700, and IRGACURE 907, IRGACURE 819.
- Phosphine oxide derivatives are preferred, such as LUCIRIN TPO, which is 2,4,6-trimethylbenzoy diphenyl phosphine oxide, available from BASF, Charlotte, N. C.
- a photoinitiator can be used at a concentration of about 0.1 to 10 weight percent or about 0.1 to 5 weight percent.
- the polymerizable composition can form a hard resin or hardcoat.
- hard resin or “hardcoat” means that the resulting cured polymer exhibits an elongation at break of less than 50 or 40 or 30 or 20 or 10 or 5 percent when evaluated according to the ASTM D-882-91 procedure.
- the hard resin polymer can exhibit a tensile modulus of greater than 100 kpsi (6.89xlO 8 pascals) when evaluated according to the ASTM D-882-91 procedure.
- the hard resin polymer can exhibit a haze value of less than 10 % or less than 5% when tested in a Taber abrader according to ASTM D 1044-99 under a load of 50Og and 50 cycles (haze can be measured with Haze- Gard Plus, BYK- Gardner, MD, haze meter.)
- the hardcoat can be a fluorine -based polymeric hardcoat that also can result in an easy to clean surface which has water contact angles in excess of 70 degrees.
- fluorine -based polymeric hardcoats include those described in co-pending patent application entitled FLUORO ACRYL ATE S AND HARDCOAT COMPOSITIONS INCLUDING THE SAME (Attorney Docket number
- the metal oxide nanoparticles include indium tin oxide or doped indium tin oxide dispersed in a polymeric material.
- the nanoparticle layer can have any useful thickness such as, for example, from 1 to 10 or 2 to 8 micrometers.
- the nanoparticle layer can include nanoparticles at any useful loading or wt% such as, for example, 30 to 90 wt%, 40 to 80 wt%, or 50 to 80 wt%.
- the nanoparticle layer is nonconducting. The conductivity of the nanoparticle layer is often dependent on the concentration of the particles in the polymeric matrix.
- the nanparticle layer has static disspative properties. Nanoparticle compositions are commercially available from, for example, Advanced Nano Products Co., LTD., South Korea, under the tradenames TRB-PASTETM SM6080(B), SH7080,
- the metal oxide nanoparticles include zinc oxide and/or aluminum oxide, such oxides are available from GfE Metalle und Anlagen GmbH, Germany.
- the pressure sensitive adhesive (PSA) layer described above can be any type of adhesive that enables the tear resistant solar control multilayer article to be affixed to the glass.
- PSA pressure-sensitive adhesive
- one surface of the tear resistant solar control multilayer article is coated with the pressure- sensitive adhesive (PSA) and a release sheet is removed from the PSA before application of the film to the glass.
- Ultra-violet absorption additives can be incorporated into the PSA.
- the PSA is an optically clear PSA such as a polyacrylate pressure sensitive adhesive.
- the Pressure-Sensitive Tape Council has defined pressure sensitive adhesives as material with the following properties: (1) aggressive and permanent tack, (2) adherence with no more than finger pressure, (3) sufficient ability to hold onto an adherand, (4) sufficient cohesive strength, and (5) requires no activation by an energy source.
- PSAs are normally tacky at assembly temperatures, which is typically room temperature or greater (i.e., about 20 0 C to about 30 0 C or greater). Materials that have been found to function well as PSAs are polymers designed and formulated to exhibit the requisite viscoelastic properties resulting in a desired balance of tack, peel adhesion, and shear holding power at the assembly temperature.
- the most commonly used polymers for preparing PSAs are natural rubber-, synthetic rubber- (e.g., styrene/butadiene copolymers (SBR) and styrene/isoprene/styrene (SIS) block copolymers), silicone elastomer-, poly alpha-olefm-, and various (meth) acrylate- (e.g., acrylate and methacrylate) based polymers.
- SBR styrene/butadiene copolymers
- SIS styrene/isoprene/styrene
- silicone elastomer- silicone elastomer-
- poly alpha-olefm- poly alpha-olefm-
- various (meth) acrylate- (e.g., acrylate and methacrylate) based polymers e.g., acrylate and methacrylate
- the release liner described above can be formed of any useful material such as, for example, polymers or paper and may include a release coat. Suitable materials for use in release coats include, but are not limited to, fluoropolymers, acrylics and silicones designed to facilitate the release of the release liner from the adhesive.
- the optical substrate described above can be formed of any useful material.
- the substrate is formed of a polymeric material such as, for example, cellulose triacetate, polycarbonate, polyacrylate, polypropylene, or polyethylene terephthalate.
- the substrate is formed of an inorganic material such as, for example, quartz, glass, sapphire, YAG, or mica.
- the substrate can have any useful thickness.
- the substrate is automotive or architectural glass. In some embodiments including clear glass substrates as a glazing system, the glazing system has a shading coefficient of 0.68 or less, or 0.6 or less, or 0.55 or less, or 0.50 or less, at a T V is of 70% or greater.
- the exposed surface of the multilayer film can optionally be coated with a scratch and wear resistant hardcoat.
- the hardcoat layer can improve the durability of the flexible substrate during processing and during use of the end product.
- the hardcoat layer can include any useful material, such as silica-based hardcoats, siloxane hardcoats, melamine hardcoats, acrylic hardcoats, and the like.
- the hardcoat can be any useful thickness such as, for example, from 1 to 20 micrometers, or 1 to 10 micrometers, or 1 to 5 micrometers.
- the infrared light absorbing layer can also function as a hardcoat layer, or an additional hardcoat layer can be disposed on the infrared light absorbing layer, as desired.
- the intermediate adhesive described above can be formed of any useful material.
- the intermediate adhesive layer includes a pressure sensitive adhesive material, as described above.
- the intermediate adhesive layer includes a curable adhesive such as, for example a thermal or U.V. curable adhesive, as described above.
- the intermediate adhesive layer can have any useful thickness such as, for example, 1 to 100 micrometers, or 5 to 50 micrometers, or 10 to 50 micrometers, or 10 to 30 micrometers.
- the intermediate polymeric layer described above can be formed of any useful material.
- the intermediate layer includes a polyolefm, polyacrylate, polyester, polycarbonate, fluoropolymer, and the like.
- the intermediate layer includes a polyethylene terephthalate.
- the intermediate polymeric layer can have any useful thickness such as, for example, 5 to 500 micrometers, or 10 to 100 micrometers, or 25 to 75 micrometers, or 25 to 50 micrometers.
- Tear resistant solar control multilayer articles are applied to a glazing structured by spraying the glazing with water, positioning the film, trimming the film (if necessary) and squeegeeing the excess water trapped between glazing (typically glass) and the film. Some amount of water is typically trapped between the glazing and film which slowly diffuses through the film. In order to enable fast removal of the excess trapped water, the water vapor transmission rate (also known as MVTR) should be as high as possible.
- multilayer tear resistant film 160 includes alternating layers of stiff polymer and a ductile polymer.
- the tear resistant film 160 includes alternating layers of stiff polyester or copolyester and a ductile sebacic acid based copolyester.
- the stiff polyester or copolyester layers are oriented in at least one direction and, or are biaxially oriented. Examples of these tear resistant films are described in US 6,040,061; US 5,427,842; and US 5,604,019 which are incorporated by reference herein to the extent they do not conflict with the present disclosure.
- the tear resistant film is a single monolithic polymeric film that provides a desired level of tear resistance.
- Such films are known in the art as "tough" polymeric film. Toughness can be described as a measure of the energy a polymer can absorb before it breaks, and examples of tough polymers include ABS (poly (acrylonitrile butadiene styrene)), LDPE (linear low density polyethylene), HIPS (high impact polystryrene), polyurethanes and the like.
- increasing the thickness of the monolithic polymeric film may permit the usage of some polymers, such as PET and nylon, to be utilized as a tear resistant film.
- these tear resistant monolithic polymeric films have a nominal thickness of at least 175 micrometers up to 1 centimeter, or from 250 micrometers to 5 millimeters or from 250 micrometers to 2 millimeters.
- Many multilayer or monolithic tear resistant films according to this disclosure demonstrate a tensile modulus (as measured in a conventional tensile test) of at least 175 kpsi (1,208 MPa), or at least 240 kpsi (1,656 MPa), or at least 450 kpsi (3,105 MPa) in at least one direction of the film.
- tear resistant it is broadly meant that a multilayer film according to this disclosure demonstrates a tensile modulus (described above) and/or a Graves area in one direction of the film which exceeds the Graves area in the same direction for a single layer film comprising only the stiff polymer of the multilayer film, the single layer film being processed in the same manner as and to substantially the same thickness as the multilayer film.
- the tear resistant solar control films demonstrate a Graves area in one direction of the film equal to at least about 40+0.4(x) kpsi % wherein x is the nominal thickness of the film in micrometers.
- Graves area is obtained by mathematically integrating the area beneath the curve in a graphical plot of the stress (as measured in kpsi) experienced by the film versus the strain (as measured by Graves elongation in % which is defined more fully below) that the film undergoes during a test in which a film sample specifically shaped for the Graves area test is clamped between opposed jaws that are moved apart at a constant rate to concentrate the tearing stresses in a small area.
- Graves area is a combined measure of the film's tensile modulus (i.e., the film's stiffness and dimensional stability) and the ability of the film to resist advancing a tear.
- Graves area may be regarded as a measure of the total energy required to cause the film to fail; that is, the ability of the film to absorb energy.
- the tear resistant solar control films desirably exhibit a Graves elongation at break of at least 20%, or at least 40% during the Graves area test.
- the tear resistance solar control films may be measured by ASTM Test Method D 1004 (also known as a Graves tear test).
- Both the thickness of the tear resistant multilayer film and the individual layers which comprise the tear resistant multilayer film may vary over wide limits. These films can have a nominal thickness of from about 7 to 500 micrometers, or from about 15 to 185 micrometers.
- the individual layers of stiff polyester or copolyester can have an average nominal thickness of at least about 0.5 micrometers, or from greater than 0.5 to 75 micrometers, or from about 1 to 25 micrometers.
- the ductile sebacic acid based copolyester layers are thinner than the stiff polyester/copolyester layers.
- the ductile material layers may range in average nominal thickness from greater than about 0.01 micrometer to less than about 5 micrometers, or from about 0.2 to 3 micrometer.
- the tear resistant multilayer film includes at least 3 layers, or from 5 to 35 layers, or from 10 to 15 layers.
- Stiff polyesters and copolyesters according to this disclosure are typically high tensile modulus materials, preferably materials having a tensile modulus, at the temperature of interest, greater than 200 kpsi (1,380 MPa), and most preferably greater than 400 kpsi (2,760 MPa).
- Particularly preferred stiff polyesters and copolyesters comprise the reaction product of a dicarboxylic acid component selected from the group consisting of terephthalic acid, naphthalene dicarboxylic acid and ester derivatives thereof, and a diol component selected from the group consisting of ethylene gylcol and 1 ,A- butanediol. Additional stiff copolyesters based on these materials may also be provided by copolymerizing these ingredients with one or more other diacids and/or one or more other diols.
- Ductile sebacic acid based copolyesters generally have a tensile modulus of less than 200 kpsi (1,380 MPa) and a tensile elongation (as defined below), at the temperature of interest, of greater than 50%, preferably greater than 150%.
- a preferred ductile copolyester comprises the reaction product of 20 to 80 (more preferably 70 to 50, and most preferably 60) mole equivalents terephthalic acid (or an ester derivative thereof), correspondingly, 80 to 20 (more preferably 30 to 50, and most preferably 40) mole equivalents sebacic acid (or an ester derivative thereof), and 100 mole equivalents ethylene glycol.
- the terephthalic acid may be replaced in whole or in part by naphthalene dicarboxylic acid such as dimethyl 2,6-napthalene dicarboxylic acid (or an ester derivative thereof).
- naphthalene dicarboxylic acid such as dimethyl 2,6-napthalene dicarboxylic acid (or an ester derivative thereof).
- a portion of the sebacic acid is replaced by an equivalent amount of cyclohexane dicarboxylic acid (or an ester derivative thereof).
- the tear resistant multilayer film article has an average visible light transmission of at least 40% and an infrared light transmission of 20% or less for substantially all wavelengths between 950 nm and 2500 nm.
- the tear resistant multilayer film article can have a visible light transmission of at least 40%, a shading coefficient value of at least 0.68, and a moisture vapor transmission rate of at least 1 g/m 2» day, measured at 38 degrees centigrade and 100% relative humidity.
- the tear resistant multilayer solar control articles have an average visible light transmission (400 to 780 nm) of at least 40% and an average infrared light transmission for 780 nm to 2500 nm light of less than 10% or less than 15%.
- the tear resistant multilayer solar control article has an average visible light transmission of at least 60% and an infrared light transmission of 20% or less for substantially all wavelengths between 950 nm and 2500 nm.
- the tear resistant solar control multilayer article has an average light reflection between 780 and 1200 nm of 50% or greater and an average light transmission between 1400 and 2500 nm of 50% or less.
- the tear resistant solar control multilayer article has an average light reflection between 780 and 1200 nm of 80% or greater and an average light transmission between 1400 and 2500 nm of 20% or less. In still further embodiments, the tear resistant solar control multilayer article has an average light reflection between 780 and 1200 nm of 90% or greater and an average light transmission between 1400 and 2500 nm of 5% or less.
- a multilayer film containing about 446 layers was made on a sequential flat-film making line via a coextrusion process.
- This multilayer polymer film was made from coPEN and PETG (available from Eastman Chemicals).
- the coPEN was polymerized with 90% PEN and 10% PET starting monomers.
- a feedblock method (such as that described by U.S. patent 3,801,429) was used to generate about 223 optical layers with an approximately linear layer thickness gradient from layer to layer through the extrudate.
- the coPEN was delivered to the feedblock by an extruder at a rate of about 132 lb/hr and the PETG at about 160 lb/hr.
- a portion of the PETG is used as protective boundary layers (PBL's) on each side of the extrudate with about 32 lb/hr flow total.
- the material stream then passed though an asymmetric two times multiplier with a multiplier design ratio of about 1.25.
- the multiplier ratio is defined as the average layer thickness of layers produced in the major conduit divided by the average layer thickness of layers in the minor conduit. This multiplier ratio was chosen so as to provide a small overlap of the two reflectance bands created by the two sets of 223 layers. Each set of 223 layers has the approximate layer thickness profile created by the feedblock, with overall thickness scale factors determined by the multiplier and film extrusion rates.
- skin layers were added at about 72 lbs/hour (total) that was fed from a third extruder. Then the material stream passed through a film die and onto a water cooled casting wheel.
- the PETG melt process equipment was maintained at about 500° F
- the coPEN (both optics and skin layers) melt process equipment was maintained at about 525° F
- the feedblock, multiplier, skin-layer meltstream, and die were maintained at about 525° F.
- the feedblock used to make the film for this example was designed to give a linear layer thickness distribution with a 1.3:1 ratio of thickest to thinnest layers under isothermal conditions. Errors in this layer profile are corrected with the axial rod heater profile, as described in US 6,827,886, which is incorporated by reference herein.
- the casting wheel speed was adjusted for precise control of final film thickness, and therefore, final bandedge position.
- the inlet water temperature on the casting wheel was about 7 °Celsius.
- a high voltage pinning system was used to pin the extrudate to the casting wheel.
- the pinning wire was about 0.17 mm thick and a voltage of about 6.5 kV was applied.
- the pinning wire was positioned manually by an operator about 3 to 5 mm from the web at the point of contact to the casting wheel to obtain a smooth appearance to the cast web.
- the cast web was continuously oriented by conventional sequential length orienter (LO) and tenter equipment.
- the web was length oriented to a draw ratio of about 3.8 at about 270 0 F.
- the film was preheated to about 255 0 F in about 15 seconds in the tenter and drawn in the transverse direction to a draw ratio of about 3.5 at 270 0 F.
- the film was heat set in the tenter oven at a temperature of about 460 0 F for about 30 seconds.
- the finished film had a final thickness of about 0.0035 inches.
- Moisture (water) vapor transmission rates may be measured using ASTM F- 1249.
- MVTR measurement devices marketed under trademark Permatran by Mocon, Inc.,
- the coating was dried to remove solvent from the dispersion at 93 degrees Celsius and cured using a Fusion UV lamp system fitted with type D lamp operating at 80% power setting. This process resulted in the cured coating having a coating weight of approx. 0.7 g/ft 2 .
- the dried and cured A-ITO was further coated with a pressure sensitive adhesive on the surface opposite to the A-ITO and a silicone coated release liner (available from CP Films, Martinsville, VA, USA) laminated to it.
- the release liner was removed and the optical transmission and reflection spectra measured using a Lambda 19 spectrophotometer (Perkin Elmer, Boston, MA).
- the spectra were imported into Optics5 and Window 5.2 programs available from Lawrence Berkeley National Laboratories for analyzing thermal and optical properties of glazing systems. Performance characteristics such as visible light transmission (VLT), visible light reflection (VLR), shading coefficient (SC), interior reflection (R m t), exterior reflection (R eXt ), U-value, etc. are determined using the Window 5.2 program.
- the programs can be downloaded from http://wmdows.lbl.gov/softwarc/.
- the reflection and transmission spectra of the coated film are shown in Fig. Ia.
- thermostyrene resin The characteristics of a glazing system prepared by laminating the above described film to a 3 mm clear glass (PPG clear glass, NFRC ID: 5009) with the adhesive side towards the light source (sun) is shown in Table 1.
- the transmission and reflection spectra after lamination to the 3 mm glass substrate are shown in Figures Ib and Ic.
- the same film was laminated with the A- ITO surface towards the sun and the glazing system recalculated using the same software.
- An ultrafme dispersion of Antimony doped Indium Tin Oxide(A-ITO) particles in Methyl Cellosolve available from under the designation TRB Paste SM6080 was obtained from Advanced Nano Products Ltd., South Korea.
- This solution was coated onto a 0.05 mm PET substrate available from Teijin Corp., Japan, under the trade designation HPE50 with a Yasui Seiki Lab Coater, Model CAG-150 (Yasui Seiki Co., Bloomington, Ind.) using a microgravure roll of 381 helical cells per lineal cm (150 helical cells per lineal inch).
- the coating was in-line dried at 95°C and UV-cured at 6.1 m/min using a Fusion
- Example 3 Materials Model 1600 (400 W/in) W curing system fitted with D-bulb. The dried coating had a thickness of approximately 3.6 micrometer. The optical transmission and reflection spectra of this film measured as done in example 1 are shown in Figure 2. The glazing system prepared by laminating this film to a 6 mm PPG clear glass is shown in Table 1. Example 3
- An ultrafine dispersion of Antimony doped Tin Oxide(ATO) particles in Methyl Cellosolve available from under the designation TRB Paste SL6060 was obtained from Advanced Nano Products Ltd., South Korea. This solution was coated onto a 0.05 mm PET substrate available from Teijin Corp., Japan, under the trade designation HPE50 with a Yasui Seiki Lab Coater, Model CAG-150 (Yasui Seiki Co., Bloomington, Ind.) using a microgravure roll of 381 helical cells per lineal cm (150 helical cells per lineal inch).
- the coating was in-line dried at 95°C and UV-cured at 6.1 m/min using a Fusion Systems 6000 (600 W/in) W curing system fitted with D-bulb.
- the dried coating had a thickness of approximately 3.6 micrometer.
- the optical transmission and reflection spectra of this film measured as in example 1 are shown in Figure 3.
- the glazing system prepared by laminating this film to a 6 mm PPG clear glass is shown in Table 1.
- the TRB paste SL6060 was coated on multilayer film, described above, using a meyer bar coating technique using Meyer bar #5(example 4a), #8 (example 4b) and #14 (example 4c.) The coatings were dried in an oven at 93 0 C for 10 min and cured under Fusion UV lamps (300 W/in at 20 fpm) and optical transmission spectra of the samples measured. The spectra were imported into Optics5 and Window 5.2. The optical and thermal characteristics of glazing systems prepared with 3 mm clear glass are shown in Table 1.
- a dispersion of Antimony Tin Oxide (Inframat Advanced Materials LLC, CT product desgination 50N-5190-2) in a multi-functional acrylate monomer mixture was prepared by milling together 30 g. of ATO, 7.5 g. of pentaerithritol tetra acrylate (Sartomer Company, PA, product designation SR295) and 7.5 g. of 1,6- hexanedioldiacrylate (Sartomer Company, PA, product designation SR238) and 1- methoxy-2-propanol.
- a tear resistant laminate made up of two layers of tear resistant multilayer film (made according to the procedure described in US Patent 6,040,061, for example, see Example 6) was made by coating a non-corona treated side of one tear resistant multilayer film with Vitel 3300 laminating adhesive at a weight of approx. 0.2 g/ft 2 and dried. Vitel 3300 Polyester Resin is commercially available from Bostik, Inc. Massachusetts, USA. This dried film was then laminated to the second tear resistant multilayer film at a temperature of 90 degrees Celsius. The laminate is then further processed with a corona treatment and an acrylic pressure sensitive adhesive (PSA) is coated at an approx coating weight of 2.1 g/ft 2 and dried. The PSA layer is then coated with a water based dispersion of Dow Methocel Al 5LV (i.e., overcoat) and dried. The coated PSA layer is then laminated to a polyester release liner.
- PSA acrylic pressure sensitive adhesive
- a multilayer IR reflecting film was prepared using alternating PET and CoPMMA layers made according to the procedure described in US 6,797,396 (for example, see Example 5).
- An ultrafme dispersion of Antimony Tin Oxide (ATO) particles in 1- methoxy-2-propanol available from Advanced Nano Products Ltd., South Korea under the designation TRB Paste SR 6070 was coated on this multilayer IR reflecting film using an extrusion die coating process.
- the coating was dried to remove solvent from the dispersion at 93 degrees Celsius and cured using a Fusion UV lamp system fitted with type D lamp operating at 60% power setting. This process resulted in the cured IR absorbing coating having a coating weight of approx. 0.7 g/ft 2 .
- the tear resistant film laminate was then laminated to the ATO coated, IR reflecting film using Vitel 3300 Polyester resin laminating adhesive, at a coating weight of approx. 0.2 g/ft 2 .
- the final tear resistant solar control article construction is illustrated by FIG. 5, described above.
- the release liner was removed and moisture vapor transmission rate was measured according to ASTM F- 1249 test method using Permatran® model W-700 device available from Mocon, Inc. at 38 degrees centigrade and 100% RH.
- MVTR of a commercially available tear resistant film from Glasslock, inc. under the designation SDlOlO http://www.glassJock.com/documents/GlassLock%20Brochure%20060503.pdf was also tested under the same conditions. The results are shown in the Table below.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES07842883.6T ES2672144T3 (en) | 2006-09-27 | 2007-09-20 | Multi-layer tear-resistant solar control film |
EP07842883.6A EP2073981B1 (en) | 2006-09-27 | 2007-09-20 | Tear resistant solar control multilayer film |
JP2009530531A JP5313907B2 (en) | 2006-09-27 | 2007-09-20 | Tear-resistant solar control multilayer film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/528,158 US7906202B2 (en) | 2006-09-27 | 2006-09-27 | Tear resistant solar control multilayer film |
US11/528,158 | 2006-09-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008039688A1 true WO2008039688A1 (en) | 2008-04-03 |
Family
ID=39225352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/079029 WO2008039688A1 (en) | 2006-09-27 | 2007-09-20 | Tear resistant solar control multilayer film |
Country Status (8)
Country | Link |
---|---|
US (1) | US7906202B2 (en) |
EP (1) | EP2073981B1 (en) |
JP (1) | JP5313907B2 (en) |
KR (1) | KR101391575B1 (en) |
CN (2) | CN104108219A (en) |
ES (1) | ES2672144T3 (en) |
TW (1) | TWI428240B (en) |
WO (1) | WO2008039688A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2394971A4 (en) * | 2009-02-05 | 2012-12-12 | Central Glass Co Ltd | Laminated glass with plastic film insert |
EP3396423A1 (en) * | 2017-04-27 | 2018-10-31 | Essilor International | A nir-absorbing hard coat formulation and its method of preparation |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE45978E1 (en) * | 2007-02-26 | 2016-04-19 | 3Form, Llc | Formable fused polymer panels containing light refracting films |
WO2010059579A1 (en) * | 2008-11-19 | 2010-05-27 | 3M Innovative Properties Company | High transmission flux leveling multilayer optical film and related constructions |
KR101703363B1 (en) * | 2008-11-19 | 2017-02-06 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Brewster Angle Film for Light Management in Luminaires and Other Lighting Systems |
EP2365906B1 (en) | 2008-11-19 | 2016-12-21 | 3M Innovative Properties Company | Reflective film combinations with output confinement in both polar and azimuthal directions and related constructions |
EP2366122B1 (en) | 2008-11-19 | 2018-09-26 | 3M Innovative Properties Company | Multilayer optical film with output confinement in both polar and azimuthal directions and related constructions |
US9091812B2 (en) | 2009-11-06 | 2015-07-28 | Sharp Laboratories Of America, Inc. | Energy-efficient transparent solar film |
KR102013045B1 (en) | 2009-11-18 | 2019-08-21 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Multi-layer optical films |
ES2498928T3 (en) | 2010-10-25 | 2014-09-26 | Bayer Intellectual Property Gmbh | Multilayer plastic structure with low power transmission |
EP2649478B1 (en) | 2010-12-10 | 2020-05-27 | 3M Innovative Properties Company | Glare reducing glazing articles |
JP2012173374A (en) * | 2011-02-18 | 2012-09-10 | Toray Ind Inc | Heat ray reflecting member |
US9790406B2 (en) * | 2011-10-17 | 2017-10-17 | Berry Plastics Corporation | Impact-resistant film |
US20150177433A1 (en) * | 2012-07-13 | 2015-06-25 | Konica Minolta, Inc. | Infrared shielding film |
WO2014209644A1 (en) | 2013-06-24 | 2014-12-31 | 3M Innovative Properties Company | Self-wetting adhesive composition |
CN105377553B (en) | 2013-06-24 | 2018-05-04 | 3M创新有限公司 | From wet adhesive composition |
JP6443341B2 (en) * | 2013-12-18 | 2018-12-26 | コニカミノルタ株式会社 | Light reflecting film and light reflector using the same |
EP3094657A2 (en) | 2014-01-17 | 2016-11-23 | 3M Innovative Properties Company | Self-wetting adhesive emulsion composition |
US9823395B2 (en) * | 2014-10-17 | 2017-11-21 | 3M Innovative Properties Company | Multilayer optical film having overlapping harmonics |
US9776381B2 (en) * | 2014-12-18 | 2017-10-03 | 3M Innovative Properties Company | Tear resistant multilayer film |
JP2018507429A (en) * | 2014-12-23 | 2018-03-15 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | IR reflective film |
US20180016405A1 (en) * | 2015-01-25 | 2018-01-18 | Nippon Paper Industries Co. ,Ltd. | Hard coat film |
KR102211058B1 (en) * | 2018-07-27 | 2021-02-02 | 주식회사 엘지화학 | Infrared ray-reflecting film |
CN114902087A (en) * | 2020-01-16 | 2022-08-12 | 3M创新有限公司 | Composite cooling film comprising a reflective non-porous organic polymer layer and a UV protective layer |
CN111707486B (en) * | 2020-06-29 | 2022-06-28 | 江苏政泰建筑设计集团有限公司 | Method for rapidly detecting building external window shading coefficient |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5233465A (en) * | 1992-05-27 | 1993-08-03 | The Dow Chemical Company | Visibly transparent infrared reflecting film with color masking |
US6249085B1 (en) * | 1999-03-17 | 2001-06-19 | Tdk Corporation | Organic electroluminescent device with a high-resistance inorganic hole injecting and transporting layer |
US6767633B2 (en) * | 2000-04-11 | 2004-07-27 | Merck Patent Gmbh | Transparent medium having angle-selective transmission or reflection properties and/or absorption properties |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63252945A (en) * | 1987-04-07 | 1988-10-20 | Asahi Glass Co Ltd | Heat radiation reflecting safety glass |
CA2106262C (en) * | 1992-10-01 | 2003-11-18 | Ralph H. Bland | Tear resistant multilayer films and articles incorporating such films |
US6040061A (en) * | 1992-10-01 | 2000-03-21 | 3M Innovative Properties Company | Tear resistant multilayer films based on sebacic acid copolyesters and articles incorporating such films |
US5360659A (en) * | 1993-05-24 | 1994-11-01 | The Dow Chemical Company | Two component infrared reflecting film |
IL122244A0 (en) * | 1995-06-26 | 1998-04-05 | Minnesota Mining & Mfg | Multilayer polymer film with additional coatings or layers |
US6737154B2 (en) * | 1995-06-26 | 2004-05-18 | 3M Innovative Properties Company | Multilayer polymer film with additional coatings or layers |
US6124417A (en) * | 1995-08-25 | 2000-09-26 | Avery Dennison Corporation | Water-activatable polymers for ink-jet imprintable constructions |
US6087010A (en) * | 1996-06-10 | 2000-07-11 | Nof Corporation | Fluorine-containing polyfunctional (meth) acrylate composition low refractivity material and reflection reducing film |
US6355754B1 (en) * | 1997-05-09 | 2002-03-12 | 3M Innovative Properties Company | High refractive index chemical composition and polymers and polymeric material derived therefrom |
DE69924354T2 (en) * | 1998-01-13 | 2006-03-09 | Minnesota Mining & Manufacturing Company, St. Paul | MODIFIED COPOLYESTER AND IMPROVED MULTILAYER REFLECTIVE FILM |
US6808658B2 (en) * | 1998-01-13 | 2004-10-26 | 3M Innovative Properties Company | Method for making texture multilayer optical films |
US6797396B1 (en) * | 2000-06-09 | 2004-09-28 | 3M Innovative Properties Company | Wrinkle resistant infrared reflecting film and non-planar laminate articles made therefrom |
EP1334381B1 (en) * | 2000-11-14 | 2007-01-03 | CPFilms Inc. | Optically active film composite |
US7241485B2 (en) * | 2001-11-09 | 2007-07-10 | Toray Industries, Inc. | Protective film for glass |
DE10225555B3 (en) * | 2002-06-10 | 2004-02-12 | Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg | Composite pane with predetermined breaking point |
JP2004026547A (en) * | 2002-06-24 | 2004-01-29 | Nippon Sheet Glass Co Ltd | Heat-insulating laminated glass |
JP2004155188A (en) * | 2002-10-15 | 2004-06-03 | Toray Ind Inc | Laminated film |
US7632568B2 (en) * | 2005-01-07 | 2009-12-15 | 3M Innovative Properties Company | Solar control multilayer film |
-
2006
- 2006-09-27 US US11/528,158 patent/US7906202B2/en not_active Expired - Fee Related
-
2007
- 2007-09-20 ES ES07842883.6T patent/ES2672144T3/en active Active
- 2007-09-20 CN CN201410305806.1A patent/CN104108219A/en active Pending
- 2007-09-20 JP JP2009530531A patent/JP5313907B2/en not_active Expired - Fee Related
- 2007-09-20 WO PCT/US2007/079029 patent/WO2008039688A1/en active Application Filing
- 2007-09-20 CN CNA200780036273XA patent/CN101522412A/en active Pending
- 2007-09-20 EP EP07842883.6A patent/EP2073981B1/en active Active
- 2007-09-20 KR KR1020097006175A patent/KR101391575B1/en not_active IP Right Cessation
- 2007-09-26 TW TW96135839A patent/TWI428240B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5233465A (en) * | 1992-05-27 | 1993-08-03 | The Dow Chemical Company | Visibly transparent infrared reflecting film with color masking |
US6249085B1 (en) * | 1999-03-17 | 2001-06-19 | Tdk Corporation | Organic electroluminescent device with a high-resistance inorganic hole injecting and transporting layer |
US6767633B2 (en) * | 2000-04-11 | 2004-07-27 | Merck Patent Gmbh | Transparent medium having angle-selective transmission or reflection properties and/or absorption properties |
Non-Patent Citations (1)
Title |
---|
See also references of EP2073981A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2394971A4 (en) * | 2009-02-05 | 2012-12-12 | Central Glass Co Ltd | Laminated glass with plastic film insert |
US9012015B2 (en) | 2009-02-05 | 2015-04-21 | Central Glass Company, Limited | Laminated glass with plastic film insert |
EP3396423A1 (en) * | 2017-04-27 | 2018-10-31 | Essilor International | A nir-absorbing hard coat formulation and its method of preparation |
Also Published As
Publication number | Publication date |
---|---|
CN101522412A (en) | 2009-09-02 |
TW200829432A (en) | 2008-07-16 |
US20080075948A1 (en) | 2008-03-27 |
JP2010504873A (en) | 2010-02-18 |
KR20090055020A (en) | 2009-06-01 |
TWI428240B (en) | 2014-03-01 |
EP2073981A1 (en) | 2009-07-01 |
KR101391575B1 (en) | 2014-05-02 |
ES2672144T3 (en) | 2018-06-12 |
CN104108219A (en) | 2014-10-22 |
EP2073981B1 (en) | 2018-03-28 |
US7906202B2 (en) | 2011-03-15 |
EP2073981A4 (en) | 2013-08-21 |
JP5313907B2 (en) | 2013-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7906202B2 (en) | Tear resistant solar control multilayer film | |
US7632568B2 (en) | Solar control multilayer film | |
EP2153256B1 (en) | Light diffusing solar control film | |
DK2153255T3 (en) | Light Redirecting SOLREGULERINGSFILM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780036273.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07842883 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020097006175 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2009530531 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1745/CHENP/2009 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007842883 Country of ref document: EP |