WO2008038419A1 - Image display device and method, and image processing device and method - Google Patents

Image display device and method, and image processing device and method Download PDF

Info

Publication number
WO2008038419A1
WO2008038419A1 PCT/JP2007/051914 JP2007051914W WO2008038419A1 WO 2008038419 A1 WO2008038419 A1 WO 2008038419A1 JP 2007051914 W JP2007051914 W JP 2007051914W WO 2008038419 A1 WO2008038419 A1 WO 2008038419A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
telop
detected
motion
display device
Prior art date
Application number
PCT/JP2007/051914
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichiroh Yamamoto
Hiroyuki Furukawa
Masafumi Ueno
Yasuhiro Yoshida
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to EP07708032A priority Critical patent/EP2077663A4/en
Priority to US12/443,400 priority patent/US20100085478A1/en
Publication of WO2008038419A1 publication Critical patent/WO2008038419A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/144Movement detection
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream, rendering scenes according to MPEG-4 scene graphs
    • H04N21/4402Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream, rendering scenes according to MPEG-4 scene graphs involving reformatting operations of video signals for household redistribution, storage or real-time display
    • H04N21/440281Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream, rendering scenes according to MPEG-4 scene graphs involving reformatting operations of video signals for household redistribution, storage or real-time display by altering the temporal resolution, e.g. by frame skipping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0135Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0261Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/10Special adaptations of display systems for operation with variable images
    • G09G2320/106Determination of movement vectors or equivalent parameters within the image
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • G09G2340/0435Change or adaptation of the frame rate of the video stream
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices

Definitions

  • Image display apparatus and method image processing apparatus and method
  • the present invention relates to an image display apparatus and method, an image processing apparatus and method having a function of converting a frame rate or a field rate, and in particular, an image display apparatus for preventing image quality deterioration of a telop portion and an image by the apparatus.
  • the present invention relates to a display method, an image processing apparatus, and an image processing method using the apparatus.
  • the impulse response of the image display light has a time spread, so that the time-frequency characteristic deteriorates and the spatial frequency characteristic also decreases accordingly, resulting in motion blur. Occurs. In other words, a person's line of sight is smoothly added to moving objects. Therefore, if the light emission time is long as in the hold type, the motion of the image becomes jerky due to the time integration effect, and it looks unnatural.
  • motion compensation processing using a motion beta has been proposed. According to this motion compensation process, since the motion image is captured and compensated for motion, it is possible to obtain a very natural moving image with no deterioration in resolution and without occurrence of jerkiness. Furthermore, since the interpolated image signal is formed by motion compensation, it is possible to sufficiently improve the motion blur obstruction caused by the hold type display method described above.
  • an interpolated frame is generated adaptively by motion, thereby increasing the frame frequency of the display image and improving the reduction in spatial frequency characteristics that cause motion blur.
  • Techniques for disclosing are disclosed. This is because at least one interpolated image signal to be interpolated between frames of the display image is formed adaptively to the front and rear frame force motion, and the formed interpolated image signal is interpolated between the frames and sequentially displayed. ing.
  • FIG. 1 is a block diagram showing a schematic configuration of an FRC drive display circuit in a conventional liquid crystal display device.
  • the FRC drive display circuit performs a motion compensation process between frames of an input image signal.
  • An FRC unit 100 that converts the number of frames of an input image signal by interpolating the image signal, a liquid crystal layer, and electrodes for applying a scanning signal and a data signal to the liquid crystal layer.
  • the FRC unit 100 includes a motion vector detection unit 101 that detects motion vector information as well as an input image signal force, and an interpolation frame based on the motion vector information obtained by the motion vector detection unit 101! And an interpolation frame generation unit 102 for generation.
  • the motion vector detecting unit 101 may obtain motion vector information using, for example, a block matching method or a gradient method, which will be described later, and in some form on the input image signal. If motion vector information is included, this may be used.
  • image data compression-encoded using the MP EG method includes motion vector information of a moving image calculated at the time of encoding, and this motion vector information may be obtained.
  • FIG. 2 is a diagram for explaining frame rate conversion processing by the conventional FRC drive display circuit shown in FIG.
  • the FRC unit 100 generates an interpolated frame (image colored in gray in the figure) by motion compensation using the motion vector information output from the motion vector detection unit 101, and generates the generated frame.
  • the frame rate of the input image signal is converted, for example, from 60 frames per second (60 Hz) to 120 frames per second (120 Hz).
  • FIG. 3 is a diagram for explaining interpolation frame generation processing by the motion vector detection unit 101 and the interpolation frame generation unit 102.
  • the motion vector detection unit 101 detects the motion vector 105 from the frame # 1 and the frame # 2 shown in FIG. That is, the motion vector detection unit 101 obtains the motion vector 105 by measuring how much and in which direction the frame # 1 and frame # 2 have moved in 1/60 second.
  • interpolation frame generation section 102 allocates interpolation vector 106 between frame # 1 and frame # 2 using the obtained motion vector 105.
  • An interpolation frame 107 is generated by moving the object (in this case, a car) from the position of frame # 1 to the position 1Z120 seconds later based on this interpolation vector 106.
  • motion vector detection method for example, “television image motion detection method” disclosed in Japanese Patent Laid-Open No. 55-162683 and “video motion vector detection” disclosed in Japanese Patent Laid-Open No. 55-162684 are disclosed.
  • the iterative gradient method described in “Initial Deviation Method for Image Motion Estimation” has been proposed! Speak.
  • the latter motion vector detection method based on the iterative gradient method can detect a motion vector that is smaller and more accurate than the pattern matching method.
  • the motion vector detection method based on the iterative gradient method has a predetermined predetermined size of mX n pixels including m pixels in the horizontal direction and n lines in the vertical direction, for example, for each frame of the digital television signal. By subdividing into blocks, each block is subjected to repetitive gradient calculation based on the signal gradient in the screen and the physical correspondence of the signal difference value between the corresponding screens. The amount of motion is estimated.
  • a moving image has a high correlation between frames and has continuity in the time axis direction.
  • a pixel or block moving in a certain frame moves with the same amount of movement in the subsequent frame or in the previous frame.
  • the ball area moves with the same amount of movement in every frame. That is, there are many cases where motion vectors have continuity between consecutive frames.
  • the motion vector detection in the next frame can be performed more easily or more accurately.
  • JP-A-62-206980 as an initial value for estimating the amount of motion, among motion vector candidates already detected in a plurality of peripheral blocks including a block corresponding to the detected block.
  • To detect the motion vector of the detected block By selecting the optimum one as the initial displacement vector and starting the value force gradient method calculation close to the true motion vector of the detected block, the number of gradient method calculations is reduced, for example, two gradient methods A method for detecting a true motion vector by calculation has been proposed.
  • each block of an image signal separated by at least one field or more than one frame in order to further improve the accuracy of motion vector detection A method has been proposed for detecting the initial displacement of the movement. Furthermore, in the block matching method, it is conceivable to perform efficient motion margin detection by changing the search order with reference to the motion vector detection results in the previous frame. As described above, when a motion vector is detected, a real-time process of frame rate conversion, for example, can be performed by using the already detected motion vector.
  • telops are often included in image signals. Some of them are characters that scroll (move) horizontally or vertically on the screen. Fujine, et.al., Real-Life In-Home Viewing Conditions for FPDs and Statistical Characteristics of Broadcast Video, Digest AM— FPD '06 [Accordingly, the motion speed of subjects in general TV programs is mainly The telop scrolling speed of TV programs is 13.8 degZsec on average and 35.9 degZsec at maximum, while the frequency of telop appearance is 10 to 20 degZsec. In other words, scrolling telops often move faster and faster than typical subjects in TV programs.
  • telops used in TV programs often move at a higher speed than ordinary subjects, so telops are difficult to accurately generate interpolated images. It can be said.
  • the present invention has been made in view of the above problems, and an image display device capable of preventing image quality deterioration of a telop portion resulting from motion compensation type frame rate conversion (FRC) processing, and
  • An object is to provide a method, an image processing apparatus, and a method.
  • the first invention of the present application interpolates an image signal subjected to motion compensation processing between frames or fields of an input image signal, thereby allowing the number of frames or fields of the input image signal to be interpolated.
  • An image display device comprising rate conversion means for converting the signal into a display panel and detecting means for detecting a feature quantity of one or more telops included in the input image signal. Further, the motion compensation processing in the rate conversion means is controlled based on a feature amount of one or more telops.
  • the second invention of the present application is characterized in that the feature amount of the one or more telops is an area of one or more telops moving in a predetermined direction.
  • the detecting means divides the screen into a plurality of regions, obtains an average deviation of the average vector for each region, and sets a value obtained by multiplying this by a predetermined coefficient as a threshold value.
  • the distance force between the average vector for each area and the average vector for the entire screen is detected as a telop area.
  • the fourth invention of the present application is characterized in that different motion compensation processing is performed in the detected telop area and other areas.
  • the fifth invention of the present application is characterized in that motion compensation processing is performed only for the detected one or more telop regions, and motion compensation processing is not performed in other regions. .
  • the frame or field is inserted between frames or fields of the input image signal.
  • An image signal is inserted.
  • the seventh invention of the present application is an image in which linear interpolation processing is performed between frames or fields of the input image signal for regions other than the detected one or more telop regions. It is characterized by interpolating the signal.
  • the eighth invention of the present application is characterized in that a filtering process is performed on a boundary portion between the one or more detected telop regions and other regions.
  • a ninth invention of the present application is characterized in that the feature amount of the one or more telops is a moving speed Z direction of the one or more telops moving in a predetermined direction.
  • the detecting means divides the screen into a plurality of regions, obtains an average deviation of the average vector for each region, and sets a value obtained by multiplying this by a predetermined coefficient as a threshold value.
  • the distance force between the average vector for each area and the average vector for the entire screen The area larger than the threshold is detected as a telop area, and the average vector of the vector in the detected telop area is obtained. It is characterized by detecting the moving speed of the telop as the Z direction.
  • An eleventh aspect of the present invention is characterized in that the motion compensation processing is performed using the detected movement speed Z direction of one or more telops.
  • the twelfth invention of the present application is characterized in that the feature amounts of the one or more telops are one or more telop regions moving in a predetermined direction and a moving speed Z direction.
  • the detecting means divides the screen into a plurality of regions, obtains an average deviation of the average vector for each region, and sets a value obtained by multiplying this by a predetermined coefficient as a threshold value.
  • the distance force between the average vector of each area and the average vector of the entire screen The area larger than the threshold is detected as a telop area, and the vector in the detected telop area It is characterized in that the average vector is obtained and detected as the moving speed z direction of the telop.
  • the fourteenth invention of the present application is characterized in that the motion compensation processing is performed on the detected one or more telop areas using the moving speed Z direction of the detected telop. It is a sign.
  • the fifteenth invention of the present application is characterized in that different motion compensation processing is performed in the one or more detected telop regions and the other regions.
  • the sixteenth invention of the present application is characterized in that motion compensation processing is performed only for the one or more detected telop regions, and motion compensation processing is not performed in other regions. To do.
  • the frame or field is inserted between frames or fields of the input image signal.
  • An image signal is inserted.
  • an image subjected to linear interpolation processing between frames or fields of the input image signal is applied to a region other than the detected one or more telop regions. It is characterized by interpolating the signal.
  • the nineteenth invention of the present application is an image display device characterized in that a filtering process is performed on a boundary portion between the one or more detected telop regions and other regions.
  • the twentieth invention of the present application converts the number of frames or the number of fields of the input image signal by interpolating the image signal subjected to the motion compensation process between frames or fields of the input image signal.
  • An image display apparatus comprising rate conversion means for outputting to a display panel, wherein the rate conversion means converts the frame or field of the input image signal into a plurality of blocks having a predetermined size.
  • a motion vector detecting unit that detects a motion vector representing the magnitude and direction of motion between input image signals separated by at least one frame or one field or more for each block, and the motion vector detecting unit
  • a storage unit that accumulates at least one frame or one field of motion vectors detected for each block, and the storage unit Using the stored motion vectors, and terrorism-up information detection unit for detecting a feature amount of one or more telop included in the input image signal, the one or more telop detected by the telop information detecting unit Using the feature quantity, select the motion vector of the value most suitable for the motion of the detected block from the candidate vector group read from the motion vectors stored in the storage unit as the initial displacement vector of the detected block.
  • the motion vector of the detected block is obtained and output, and the motion vector calculation unit is stored in the storage unit.
  • the initial displacement vector selection unit performs different processing in the one or more telop regions detected by the telop information detection unit and other regions.
  • the initial displacement vector selection unit is a candidate close to the average vector of the entire screen in a region other than the one or more telop regions detected by the telop information detection unit.
  • a vector is preferentially selected.
  • the initial displacement vector selection unit preferentially selects a candidate vector close to a zero vector in a region other than the one or more telop regions detected by the telop information detection unit. It is characterized by selecting.
  • the initial displacement vector selection unit adds the motion vector of the one or more telops detected by the telop information detection unit to the candidate vector for processing. It is characterized by.
  • the initial displacement vector selection unit detects the telop information for blocks corresponding to the one or more telop regions detected by the telop information detection unit.
  • the motion vector of the one or more telops detected by the section is added to the candidate vector and processed.
  • the initial displacement vector selection unit moves the one or more telops in the candidate vector in the one or more telop regions detected by the telop information detection unit.
  • the initial displacement vector is selected by weighting that makes it easy to select vectors.
  • the motion vector calculation unit includes the telop information detection unit. For a block corresponding to the detected one or more telop regions, a vector in the same direction as the direction of the motion vector of the one or more telops detected by the terror information detection unit is present. The calculation method is changed so as to be obtained.
  • the twenty-eighth aspect of the present invention converts the number of frames or the number of fields of the input image signal by interpolating the image signal subjected to the motion compensation process between frames or fields of the input image signal.
  • An image display method comprising a rate conversion step, comprising a detection step for detecting a feature amount of one or more telops included in the input image signal, and the detected feature amount of the one or more telops. Based on this, the motion compensation processing in the rate conversion step is controlled.
  • the twenty-ninth invention of the present application converts the number of frames or the number of fields of the input image signal by interpolating the image signal subjected to the motion compensation process between frames or fields of the input image signal.
  • An image display method comprising a rate conversion step, wherein the rate conversion step divides a frame or a field of the input image signal into a plurality of blocks having a predetermined size, and at least one for each block.
  • a motion vector detecting step for detecting a motion vector representing the magnitude and direction of motion between the input image signals separated from the frame or one field or more, and the motion vector detecting step force includes at least a motion vector detected for each block.
  • Initial displacement that selects the motion vector of the value most suitable for the motion of the detected block from the candidate vector group read out from the motion vectors accumulated in step as the initial displacement vector of the detected block Using the vector selection step and the characteristic amount of the detected telop, the motion vector of the detected block is obtained by performing a predetermined calculation using the initial displacement vector selected in the initial displacement vector selection step as a starting point. And a motion vector calculation step for obtaining and outputting.
  • the number of frames of the input image signal is interpolated by interpolating the image signal subjected to the motion compensation process between frames or fields of the input image signal.
  • the image processing apparatus includes a rate conversion unit that converts the number of fields and outputs the image, and includes a detection unit that detects a feature amount of one or more telops included in the input image signal.
  • the motion compensation processing in the rate conversion means is controlled based on a feature value of one or more telops.
  • the thirty-first invention of the present application converts the number of frames or the number of fields of the input image signal by interpolating the image signal subjected to the motion compensation process between frames or fields of the input image signal.
  • Output rate converting means, and the rate converting means divides the frame or field of the input image signal into a plurality of blocks having a predetermined size, and for each block.
  • a motion vector detection unit that detects a motion vector representing the magnitude and direction of motion between input image signals separated by at least one frame or one field or more is provided, and the motion vector detection unit force is detected for each block.
  • a storage unit that accumulates at least one frame or one field of motion vectors, and motion stored by the storage unit
  • a telop information detection unit that detects a feature amount of one or more telops included in the input image signal using a vector and a feature amount of one or more telops detected by the telop information unit.
  • Initial displacement vector selection for selecting a motion vector having a value most suitable for the motion of the detected block from the candidate vector group read out from the motion vectors stored in the storage unit as the initial displacement vector of the detected block And a telop feature detected by the telop information detection unit, using the initial displacement vector selected by the initial displacement vector selection unit as a starting point and performing a predetermined calculation, It has a motion vector calculation unit that obtains and outputs a vector and accumulates it in the storage unit.
  • the thirty-second invention of the present application converts the number of frames or the number of fields of the input image signal by interpolating the image signal subjected to the motion compensation process between frames or fields of the input image signal.
  • An image processing method comprising a rate conversion step, comprising a detection step for detecting a feature value of one or more telops included in the input image signal, wherein the detected feature value of the one or more telops is included. Based on this, the motion compensation processing in the rate conversion step is controlled.
  • the thirty-third invention of the present application converts the number of frames or the number of fields of the input image signal by interpolating the image signal subjected to the motion compensation process between frames or fields of the input image signal.
  • An image processing method comprising a rate conversion step, wherein the rate conversion step divides a frame or a field of the input image signal into a plurality of blocks having a predetermined size, and at least one for each block.
  • a motion vector detecting step for detecting a motion vector representing the magnitude and direction of motion between the input image signals separated from the frame or one field or more, and the motion vector detecting step force includes at least a motion vector detected for each block.
  • a storage step for storing one frame or one field, and the storage Using the motion vector, a telop information detection step for detecting one or more telop feature amounts included in the input image signal, and using the detected one or more telop feature amounts, the storing is performed.
  • Initial displacement that selects the motion vector of the value most suitable for the motion of the detected block from the candidate vector group read out from the motion vectors accumulated in step as the initial displacement vector of the detected block Using the vector selection step and the characteristic amount of the detected telop, the motion vector of the detected block is obtained by performing a predetermined calculation using the initial displacement vector selected in the initial displacement vector selection step as a starting point. And a motion vector calculation step for obtaining and outputting.
  • FIG. 1 is a block diagram showing a schematic configuration of an FRC drive display circuit in a conventional liquid crystal display device.
  • FIG. 2 is a diagram for explaining frame rate conversion processing by the conventional FRC drive display circuit shown in FIG. 1.
  • FIG. 3 is a diagram for explaining interpolation frame generation processing by a motion vector detection unit and an interpolation frame generation unit.
  • FIG. 4 is a functional block diagram illustrating a configuration example of a motion vector detection unit in a frame rate conversion unit included in the image display device according to the embodiment of the present invention.
  • FIG. 5 is a functional block diagram showing a configuration example of an initial displacement vector selection unit in FIG. [6]
  • FIG. 6 is a functional block diagram showing another configuration example of the initial displacement vector selection unit in FIG.
  • FIG. 7 is a functional block diagram showing still another configuration example of the initial displacement vector selection unit in FIG.
  • FIG. 8 is a vector diagram for explaining a method of calculating a motion vector V by two iteration gradient methods.
  • FIG. 9 is a schematic diagram for specifically explaining a motion vector V of an image moved between the previous frame and the current frame one frame before.
  • FIG. 10 is an explanatory diagram showing a state in which an image is decomposed into a plurality of blocks.
  • FIG. 11 is an explanatory diagram showing a telop that moves in the horizontal direction on the screen.
  • FIG. 12 is an explanatory diagram showing a state in which the screen is divided into a plurality of band-like regions.
  • FIG. 13 is an explanatory diagram showing a state in which the screen is divided into an area including a telop and an area other than that.
  • FIG. 14 is an explanatory diagram showing the relationship between the average vector of the telop area, the average vector of the area other than the telop, and the average vector of the entire screen.
  • FIG. 15 is an explanatory diagram showing the relationship between the average vector of the telop area, the average vector of the area other than the telop, and the average vector of the entire screen.
  • FIG. 16 is an explanatory diagram showing an example of detecting two pieces of telop information.
  • FIG. 4 is a functional block diagram showing an example of the motion vector detection unit provided in the image display device of the present invention.
  • the motion vector detection unit 101 of the present embodiment includes a frame delay unit 1, an initial displacement vector selection unit 2, a motion vector calculation unit 3, a vector memory 4, and a telop information detection unit 5.
  • the motion vector detection unit 101 uses a plurality of input image signals input for each frame, each having a predetermined size, for example, m pixels Xn lines (m and n are integers).
  • the frame delay unit 1 delays each divided block, for example, the motion indicating the direction and magnitude of the motion with the corresponding block in the input image signal one frame before
  • the vector vector is used to determine the vector of motion vectors that have already been detected and stored in the vector memory 4, and the telop information obtained by the telop information detector 5 is used together.
  • the initial displacement vector selection unit 2 that selects an optimal motion vector as an initial displacement vector in the detected block, and the telop information using the initial displacement vector as a starting point Used, and a motion base Tato Le computation unit 3 for obtaining the correct true motion vectors in ⁇ detection block for example by gradient method calculation twice.
  • the telop information detection unit 5 is provided, and the telop information obtained thereby is used for processing in the initial displacement vector selection unit 2 or the motion vector calculation unit 3.
  • the initial displacement vector selection unit 2 different processing is performed in the area where the telop exists and other areas, or the moving speed of the telop is changed. Degree Select the initial displacement vector considering the Z direction, or combine both.
  • the motion vector calculation unit 3 performs vector calculation in consideration of the z moving direction z direction in the area where the telop exists. By performing such processing, a more accurate detection vector can be obtained particularly in a region where a telop exists.
  • the telop information detection unit 5 as the telop feature amount (terror information) included in the input image signal, for example, telop area information indicating which motion detection block in the screen corresponds to the telop, The telop vector information indicating the moving speed Z direction of the telop is detected. If there are multiple telops on the screen, telop area information and telop vector information may be detected for each of them. Details of the telop information detection unit 5 will be described later.
  • the power for explaining an example using the iterative gradient method as a calculation method in the motion vector calculation unit 3 is not limited to this iterative gradient method, and a block matching method or the like may be used.
  • the motion vector detection unit 101 shown in FIG. 4 includes the initial displacement vector selection unit 2, the motion vector calculation unit 3, the vector memory 4, and the telop information detection unit. It is composed of 5 and The initial displacement vector selection unit 2 and the motion vector calculation unit 3 are supplied with the current frame signal and the previous frame signal delayed by one frame via the frame delay unit 1, respectively.
  • the initial displacement vector selection unit 2 calculates the medium force of the already detected motion vector obtained by the motion vector calculation of the previous frame, the value most suitable for the motion of the detected block, for example, the value closest to the motion of the detected block.
  • This is a selection circuit that selects a motion vector as an initial displacement vector as a starting point of gradient method computation, and selects an appropriate motion vector from the above-described candidate vector group and telop vector.
  • the previous frame signal is divided into blocks of m pixels Xn lines, and the current frame signal is used as a reference for selecting the initial displacement vector for each of the divided blocks. And the previous frame signal.
  • the initial displacement vector selection unit 2 includes a coordinate conversion unit 2a, a subtraction unit 2b, an absolute value accumulation unit 2c, a selection unit 2d, and a telop vector addition determination unit 2e. is doing.
  • the initial displacement vector selection unit 2 motion vectors of 8 blocks around the block corresponding to the detected block sequentially read from the vector memory 4, that is, candidate vector groups and 1 output from the telop information detection unit 5
  • Two or more telop vectors and telop area information, a previous frame signal, and a current frame signal are input.
  • the telop vector addition determination unit 2e one or more telop vectors and telop area information are input, and when the block being processed corresponds to a telop area, the telop vector in the telop area is coordinate-transformed. Output to part 2a.
  • the telop vectors in each of the plurality of telop areas that is, the plurality of telop vectors are output to the coordinate conversion unit 2a.
  • Each motion vector of each candidate vector group and one or more telop vector forces output from the telop vector addition determination unit 2e are candidates for the initial displacement vector.
  • the initial displacement vector candidates are supplied to the respective coordinate conversion units 2a, and the target block of the previous frame signal supplied from the frame delay unit 1 is displaced by the motion vector to perform coordinate conversion to the current frame.
  • the coordinate conversion result is supplied to each subtraction unit 2b.
  • the candidate vector group is a force that uses the motion vector of the previous frame detected in eight blocks around the detected block as the candidate vector group for selecting the initial displacement vector of the detected block.
  • these candidate vector groups are not limited to this example, and may be configured to determine the motion vector forces already detected in other regions.
  • Each subtraction unit 2b performs a subtraction process between the previous frame signal coordinate-converted by the coordinate conversion unit 2a and the input current frame signal, and calculates a difference for each pixel.
  • the difference results are supplied to the absolute value accumulating unit 2c.
  • Each absolute value accumulating unit 2c calculates the absolute value of the difference of each pixel, accumulates the absolute value difference for the number of pixels of the block, and uses the accumulated result as the evaluation value of the candidate vector. Are output respectively.
  • the cumulative result obtained by the above procedure is called DFD (Displaced Field Difference).
  • the DFD is an index indicating the degree of accuracy of the calculated vector (here, the candidate vector). The smaller the DFD value, the more the coordinates of the previous frame block and the current frame change. It shows that the corresponding candidate vector with better matching with the converted block is more suitable.
  • the selection unit 2d that has received each accumulated result (DFD) for each block compares the accumulated result (DFD) of each block, and the candidate vector that minimizes the accumulated result (DFD) is obtained. That is, a candidate vector that is most likely to be suitable is detected, the candidate vector is selected as an initial displacement vector, and is supplied to the motion vector calculation unit 3. At this time, using the telop area information from the telop information detection unit 5, if the detected block corresponds to the telop area, processing is performed so that the telop vector is selected with priority.
  • weighting is performed so as to reduce the cumulative result (DFD) for the telop vector among the output values from the absolute value accumulating unit 2c.
  • DFD cumulative result
  • the method of using both the telop area information and the telop vector information detected by the telop information detection unit 5 in the initial displacement vector selection unit 2 has been described.
  • a configuration using only one of the information may be used.
  • an example of a configuration using only telop area information will be described with reference to FIG. In this configuration, since no telop vector is input, the telop vector addition determination unit 2e in FIG. 5 is excluded.
  • the absolute value accumulation unit 2c is weighted so as to give priority to the average vector or 0 vector of the entire screen, and the block being processed If is a telop area, no such weighting is performed.
  • the motion vector calculation unit 3 uses the current frame signal and the previous frame signal to detect a motion vector for each block, and uses the initial displacement supplied from the initial displacement vector selection unit 2. This is an arithmetic circuit that uses the gradient method to calculate the true motion vector from the previous frame signal to the current frame signal, starting from the vector. Note that the motion vector calculation method by the gradient method calculation is detailed in each of the above-mentioned patent documents and non-patent documents, so the description thereof is omitted here, but the initial displacement vector force is used in this embodiment. An iterative gradient method will be described below as an example.
  • the motion displacement VI in which the motion amount of the current frame is estimated from the coordinate position obtained by displacing the previous frame signal with the initial displacement vector VO ( ⁇ , ⁇ ), is Obtained according to equations (1) and (2).
  • Vy ⁇ (sign (Ay)-DFD (x, ⁇ )) / ⁇
  • Vx is the X direction component of the difference between the motion vectors VO and VI
  • Vy is the y direction component of the difference between the motion vectors VO and VI.
  • represents that a sum is obtained by calculating all the coordinates in the block area of m pixels Xn lines, for example, 8 pixels X 8 lines.
  • ⁇ ⁇ is the gradient in the X direction of the image luminance at the target coordinate (difference value from the adjacent pixel in the X direction)
  • ⁇ y is the gradient in the y direction of the image luminance at the target coordinate (with the adjacent pixel in the y direction).
  • DFD (x, y) is the coordinates of the previous frame (X, y) and the coordinates of the current frame (X + a, y + ⁇ ) and the inter-frame difference value, which is the same calculation method as described above.
  • sign ( ⁇ ) and sign (Ay) are signs indicating the direction of the gradient represented by either +1, —1, or 0, respectively.
  • the initial displacement vector is set to VO as shown in Fig. 8.
  • the first displacement VI and the second displacement V2 are obtained, and a motion vector V obtained by adding them is obtained by the following equation (3).
  • V VO + V1 + V2 ...
  • FIG. 9 is a schematic diagram for specifically explaining the motion vector V of the image moved between the previous frame and the current frame one frame before.
  • the motion vector V obtained by the motion vector calculation unit 3 in FIG. 4 is stored in the vector memory 4 and is used for selecting an initial displacement vector used for calculating a motion vector in the next frame and thereafter. Is used as a candidate vector.
  • one or more telop area information from the telop information detection unit 5 is input to the motion vector calculation unit 3, and special processing is performed when the detected block corresponds to the telop area. May be.
  • the iterative gradient method may be performed using only the X value, and the final motion vector may be limited to the horizontal direction.
  • the direction of the telop vector is the vertical direction
  • the iterative gradient method may be performed using only the y value, and the finally obtained motion vector may be limited to the vertical direction. This is based on the direction of the telop vector. This is to make it easier to follow.
  • the motion vector calculation method in the motion vector calculation unit 3 the iterative gradient method using one or more gradient method operations is adopted.
  • the present invention is not limited to this. A pattern matching method and other calculation methods may be used.
  • the vector memory 4 is a storage unit including a RAM (Random Access Memory) that accumulates at least one frame of motion vectors already detected for each block, and its input terminal is a motion vector calculation unit.
  • the motion vector calculation unit 3 sequentially updates the motion vector detected in the corresponding block at the address corresponding to the position of each block divided into 8 pixels x 8 lines. And is configured to accumulate.
  • the motion vector detection result for each block is output from the motion vector detection unit 101 by the above-described procedure.
  • the interpolation frame generation unit 102 generates an interpolation image using the motion vector detection result for each block.
  • the interpolation image generation using the motion vector may be performed in the entire area of the screen, the interpolation image generation using the motion vector is performed in the telop area, and the motion vector is used in the other areas.
  • the same image as the previous frame or the subsequent frame may be repeatedly output without generating the interpolated image.
  • a subject photographed by a normal camera includes a blur (camera blur) caused by the light accumulation time of the camera when the movement is fast. If there are many camera blurs that originally exist, even if the motion blur is reduced by FRC, the effect is difficult to understand.
  • the telop is composed of images afterwards, camera blur is not included even if the motion is fast, and the motion blur improvement effect by FRC is high. Therefore, even if motion compensation processing is performed only in the telop area, a large improvement effect can be obtained visually, and the interpolation image generation processing is limited to the telop area, so that the interpolated image can be obtained. The amount of processing to generate can be reduced.
  • an interpolated image is generated by motion compensation for only the telop area.
  • the presence or absence of motion compensation processing clearly appears in the image at the boundary between the telop area and the other areas.
  • filter processing such as applying a Lonos filter to continuously change the strength of the motion compensation processing. It is desirable to suppress the conspicuousness.
  • image signals of the same frame that are not subjected to motion compensation interpolation processing are output continuously at high speed. That is, the frame rate may be converted by inserting the image signal of the frame between the frames of the input image signal, or an image generated by linear interpolation processing from the previous and subsequent frames may be interpolated. That is, the frame rate may be converted by interpolating the image signal subjected to the linear interpolation process between the frames of the input image signal.
  • an interpolation frame is obtained from the image signals of the previous and subsequent frames by linear interpolation with a frame interpolation ratio a.
  • the telop information detection unit 5 detects the telop information using the already detected motion vector obtained by the motion vector calculation of the previous frame stored in the vector memory 4. An example of a specific method for realizing the telop information detection unit 5 will be described in detail below.
  • Information that can be used for telop detection is only the motion vector of each motion detection block stored in the vector memory 4 and the texture information of each motion detection block. Of these, the colors of the telop vary, so the texture information is auxiliary and cannot be used. For this reason, it is necessary to detect telop area information and telop vector information from the motion vector information of each motion detection block.
  • the telop area and the telop speed are calculated using statistical information such as the difference between the average vector of the entire screen and the motion vector of each motion detection block, and the average deviation of the motion vectors. To detect.
  • Fig. 10 shows a state in which an image is decomposed into blocks for vector detection.
  • the overall size of the image is Wa pixels wide and Ha pixels high.
  • each motion detection block is called B (i, j), and the motion vector detected by each motion detection block is (V ⁇ x (i, j), V_y (i, j)).
  • telops that move in the horizontal direction are set as detection targets.
  • the telop that moves in the horizontal direction is located in a horizontally long belt-like area on the screen. Therefore, as shown in FIG. 12, the screen is divided into n horizontally long strip-shaped regions L (1) to L (n), and it is determined whether or not each region includes a telop.
  • the belt-like region L (j) includes the motion detection block B (l, j) force in FIG. 10 as well as B (m, j). If the average vector of motion vectors of motion detection blocks included in L (j) is (Vave—x (j), Vave_y (j)),
  • the screen is divided into an area including a telop and an area other than that.
  • the height of the telop area when the screen height is 1 is k.
  • the telop area does not exceed half of the screen. That is,
  • the area other than the telop is 1-k.
  • each height is added.
  • the average of the motion vectors of the motion detection blocks included in the telop area is (Vt-x, V t_y), and the motion detection block included in the area other than the telop (referred to as the background area in the present specification) If the average motion vector is (Vb—x, Vb—y), the average vector of the telop area, the average vector of the area other than the telop, and the average vector of the entire screen are
  • Vave_ x kVt x + (1 -k) Vb x... Equation (9)
  • FIG. 14 illustrates the case of Vb—X and Vt—X.
  • Vave—x is located between Vb—x and Vt—x, and the ratio between the distance between Vb—X and Vave—X and the distance between Vave—x and Vt—x is k: 1—k. This relationship holds regardless of the magnitude or sign of Vave—x, Vb—x, and Vt—x. From the condition of equation (8),
  • FIG. 15 shows the case of Vt—X and Vb—X.
  • Vave—x is located between Vt—x and Vb—x, and the ratio between the distance between Vt—X and Vave—X and the distance between Vave—x and Vb—x is 1 k: k ⁇
  • equation (11) always holds from the condition of equation (8).
  • the distance between Vt X and Vave x is always between Vave x and Vb x. Less than distance.
  • the distance between —x is always less than the distance between Vave—X and Vt—x. That means
  • the setting condition of the threshold T is as shown in the equation (13). From this equation (13), it can be seen that in order to determine the threshold T, information on I Vb— X— Vave— X
  • is the difference between the global average vector and the average vector of the background area, and the global average vector and the telop area, respectively.
  • This is the difference between the average vectors, and its value is closely related to the degree of motion vector variation. Therefore
  • the threshold value T is determined by using the average deviation, which is one of the measures of data dispersion.
  • Equation 17 (Vt_x- Vave_x) k + (Vave_x- Vb_x) (1— k)... Equation (l 7)
  • Expression (22) is obtained as a conditional expression even in the case of Vt—x ⁇ Vb—X.
  • the settable range of the constant a Can guide you. Analyze the actual video to determine the tendency of the height k of the telop area, determine k, and determine the constant ⁇ according to the settable range of the constant ⁇ obtained by that.
  • the value of the threshold ⁇ can be determined from the equation (16).
  • the average deviation ⁇ also calculates the detected motion vector force. That is, the value of the threshold value ⁇ ⁇ ⁇ changes every frame depending on the state of the detected motion vector, that is, the motion of the object in the video.
  • the average (Vt_x, Vt_y) of the motion vectors of the motion detection blocks included in the telop area is determined. Can be calculated. This is the telop vector.
  • the telop area is detected if the threshold value whose setting range is limited by Equation (13) or Equation (19) is also set small, that is, if the value of O is not set small. I can't do that. However, if the threshold value T is reduced, the possibility that a non-telop area will be erroneously detected increases.
  • the telop is detected on the assumption that the telop moves in the horizontal direction.
  • the case where the telop moves in the vertical direction or in the oblique direction can also be detected by the same method.
  • the method of dividing the band-like region may be set according to the direction to be detected.
  • the band-like area may be set as a vertically long area.
  • a telop information detection method when there are a plurality of telops on the screen will be described.
  • the screen is divided into two telop detection areas 1 and 2 at the top and bottom, and the telop area information ⁇ and the telop vector information Va are obtained by executing the above-described telop detection method in each area.
  • Telop area information B and telop vector information Vb can be detected.
  • horizontal telop detection processing and vertical telop detection processing are executed in parallel to obtain horizontal telop area information C and telop vector information Vc.
  • Two pieces of telop information including the telop area information D in the vertical direction and the telop vector information Vd may be detected.
  • the common area with D corresponds to the case where the block being processed corresponds to a plurality of telop areas in the above description of the vector detection means.
  • one or more pieces of telop information can be detected by the procedure as described above.
  • the processing using the detected telop information has already been described above.
  • the above-described telop information detection means is merely an example, and even if the telop information is detected using other means, the motion vector detection method and the interpolated image generation method according to the present invention are used. Needless to say, the present invention can be applied.
  • the motion vector of each motion detection block stored in the vector memory 4 is used as an input to the telop information detection unit 5.
  • the motion vector of each motion detection block stored in the vector memory 4 is the motion vector detection result of the previous frame.
  • the processing of the telop information detection unit 5 is the motion beta of the previous frame. This is done using the detection results. Since telops usually exist at the same position across multiple frames, using the motion vector detection result of the previous frame as described above is not a big problem.
  • a telop region and a telop vector are detected as telop feature quantities, and the result is used for initial displacement vector selection and motion vector calculation.
  • the correlation between successive frames may be interrupted due to a scene change or the like.
  • referring to the motion vector detection result of the previous frame stored in the vector memory 4 may cause a vector erroneous detection.
  • a method of resetting the motion vector detection result in a previous frame when the correlation between consecutive frames is interrupted due to a scene change or the like has been proposed (for example, Japanese Patent Laid-Open No. 2000-333134). Publication).
  • the image display device of the present invention can be applied to all image display devices having hold-type display characteristics such as an organic EL display and an electrophoretic display as well as a liquid crystal display using a liquid crystal panel as a display panel.
  • the input image signal is not limited to a television broadcast signal, but may be an image signal reproduced by an external media card!
  • the image processing apparatus of the present invention is integrally provided in the image display apparatus.
  • the image processing apparatus of the present invention is not limited to this, for example, playback of various recording media Needless to say, it may be provided in a video output device such as a device.

Abstract

In an image display device provided with a frame rate conversion (FRC) unit, deterioration in the image quality of a telop portion is particularly prevented. An FRC unit (100) includes a moving vector detecting unit (101) and an interpolation frame generating unit (102). The moving vector detecting unit (101) is comprised of a frame delaying unit (1) for delaying an input signal by one frame, an initial displacement vector selecting unit (2) for selecting and outputting an initial displacement vector used for detecting a vector, a moving vector arithmetic operation unit (3) for detecting the moving vector by means of the initial displacement vector, a vector memory (4) for saving a vector detecting result, and a telop information detecting unit (5)for detecting more than one telop existing domains and their moving speed by using the vector detecting result for a previous frame supplied from the vector memory (4). The detecting result of the telop information detecting unit (5) is reflected in the processing of the initial vector displacement vector selecting unit (2) and/or the moving vector arithmetic operation unit (3), so that the accuracy for detecting a vector in the telop portion is improved.

Description

明 細 書  Specification
画像表示装置及び方法、画像処理装置及び方法  Image display apparatus and method, image processing apparatus and method
技術分野  Technical field
[0001] 本発明は、フレームレートあるいはフィールドレートを変換する機能を備えた画像表 示装置及び方法、画像処理装置及び方法に関し、特にテロップ部分の画質劣化を 防止する画像表示装置及び該装置による画像表示方法、画像処理装置及び該装 置による画像処理方法に関するものである。  TECHNICAL FIELD [0001] The present invention relates to an image display apparatus and method, an image processing apparatus and method having a function of converting a frame rate or a field rate, and in particular, an image display apparatus for preventing image quality deterioration of a telop portion and an image by the apparatus. The present invention relates to a display method, an image processing apparatus, and an image processing method using the apparatus.
背景技術  Background art
[0002] 動画像を具現する用途に従来力も主として用いられてきた陰極線管(CRT: Catho de Ray Tube)に対して、 LCD (Liquid Crystal Display)は、動きのある画像 を表示した場合に、観る者には動き部分の輪郭がぼけて知覚されてしまうという、所 謂、動きぼけの欠点がある。この動きぼけは、 LCDの表示方式そのものに起因するこ とが指摘されている(例えば、特許第 3295437号明細書; "石黒秀一、栗田泰巿郎 、「8倍速 CRTによるホールド発光型ディスプレイの動画質に関する検討」、信学技 報、社団法人電子情報通信学会、 EID96— 4 (1996— 06)、 p. 19— 26"参照)。  [0002] In contrast to cathode ray tubes (CRTs), which have traditionally been used mainly for applications that embody moving images, LCDs (Liquid Crystal Displays) can be viewed when moving images are displayed. There is a drawback of so-called motion blur that the contour of the motion part is blurred and perceived by the person. It has been pointed out that this motion blur is caused by the LCD display method itself (for example, Patent No. 3295437; “Shuichi Ishiguro, Yasuro Kurita,” “8x CRT hold light-emitting display video) "Study on quality", IEICE Technical Report, IEICE, EID96-4 (1996-06), p. 19-26 ").
[0003] 電子ビームを走査して蛍光体を発光させて表示を行う CRTでは、各画素の発光は 蛍光体の若干の残光はあるものの概ねインパルス状になる。これをインパルス型表示 方式という。一方、 LCDでは、液晶に電界を印加することにより蓄えられた電荷が、 次に電界が印加されるまで比較的高い割合で保持される。特に、 TFT方式の場合、 画素を構成するドット毎に TFTスィッチが設けられており、さらに通常は各画素に補 助容量が設けられており、蓄えられた電荷の保持能力が極めて高い。このため、画 素が次のフレームあるいはフィールド(以下、フレームで代表する)の画像情報に基 づく電界印加により書き換えられるまで発光し続ける。これをホールド型表示方式と いう。  [0003] In a CRT that performs display by scanning an electron beam to emit light from a phosphor, the light emission of each pixel is almost impulse-like, although there is some afterglow of the phosphor. This is called an impulse-type display method. On the other hand, in an LCD, the charge stored by applying an electric field to the liquid crystal is held at a relatively high rate until the next electric field is applied. In particular, in the case of the TFT method, a TFT switch is provided for each dot constituting a pixel, and an auxiliary capacitor is usually provided for each pixel, so that the stored charge retention capability is extremely high. For this reason, light emission continues until the pixel is rewritten by applying an electric field based on image information of the next frame or field (hereinafter referred to as a frame). This is called the hold type display method.
[0004] 上記のようなホールド型表示方式においては、画像表示光のインパルス応答が時 間的な広がりを持っため、時間周波数特性が劣化して、それに伴い空間周波数特 性も低下し、動きぼけが生じる。すなわち、人の視線は動くものに対して滑らかに追 従するため、ホールド型のように発光時間が長いと、時間積分効果により画像の動き がぎくしゃくして不自然に見えてしまう。 [0004] In the hold-type display method as described above, the impulse response of the image display light has a time spread, so that the time-frequency characteristic deteriorates and the spatial frequency characteristic also decreases accordingly, resulting in motion blur. Occurs. In other words, a person's line of sight is smoothly added to moving objects. Therefore, if the light emission time is long as in the hold type, the motion of the image becomes jerky due to the time integration effect, and it looks unnatural.
[0005] 上記のホールド型表示方式における動きぼけを改善するために、フレーム間に画 像を内挿することにより、フレームレート(フレーム数)を変換する技術が知られている 。この技術は、 FRC (Frame Rate Converter)と呼ばれ、液晶表示装置等におい て実用化されている。  [0005] In order to improve motion blur in the hold-type display method, a technique for converting a frame rate (the number of frames) by interpolating an image between frames is known. This technology is called FRC (Frame Rate Converter) and has been put into practical use in liquid crystal display devices.
[0006] 従来、フレームレートを変換する方法には、単に同一フレームの複数回繰り返し読 み出しや、フレーム間の直線内挿 (線形補間)によるフレーム内挿などの各種の手法 がある(例えば、山内達郎、「テレビジョン方式変換」、テレビジョン学会誌、 Vol. 45、 No. 12、 pp. 1534— 1543 (1991)参照)。しかしながら、線形補間によるフレーム 内挿処理の場合、フレームレート変換に伴う動きの不自然さ(ジャーキネス、ジャダ一 )が発生するとともに、上述したホールド型表示方式に起因する動きぼけ妨害を十分 に改善することはできず、画質的には不十分なものであった。  [0006] Conventionally, as a method for converting the frame rate, there are various methods such as simply repeatedly reading the same frame multiple times and frame interpolation by linear interpolation between frames (for example, Tatsuro Yamauchi, “Television Conversion”, Journal of the Television Society, Vol. 45, No. 12, pp. 1534–1543 (1991)). However, in the case of frame interpolation processing by linear interpolation, motion unnaturalness (jerkiness, judder) due to frame rate conversion occurs, and the motion blur interference due to the hold type display method described above is sufficiently improved. The image quality was insufficient.
[0007] そこで、上記ジャーキネスの影響等をなくして動画質を改善するために、動きべタト ルを用いた動き補償処理が提案されている。この動き補償処理によれば、動画像そ のものをとらえて動き補償するため、解像度の劣化がなぐまた、ジャーキネスの発生 もなぐ極めて自然な動画を得ることができる。さらに、内挿画像信号は動き補償して 形成されるので、上述したホールド型表示方式に起因する動きぼけ妨害を十分に改 善することが可能となる。  [0007] In order to eliminate the influence of the jerkiness and improve the moving image quality, motion compensation processing using a motion beta has been proposed. According to this motion compensation process, since the motion image is captured and compensated for motion, it is possible to obtain a very natural moving image with no deterioration in resolution and without occurrence of jerkiness. Furthermore, since the interpolated image signal is formed by motion compensation, it is possible to sufficiently improve the motion blur obstruction caused by the hold type display method described above.
[0008] 前述の特許第 3295437号明細書には、動き適応的に内挿フレームを生成すること により、表示画像のフレーム周波数を上げて、動きぼけの原因となる空間周波数特性 の低下を改善するための技術が開示されている。これは、表示画像のフレーム間に 内挿する少なくとも 1つの内挿画像信号を、前後のフレーム力 動き適応的に形成し 、形成した内挿画像信号をフレーム間に内挿して順次表示するようにしている。  [0008] In the above-mentioned Japanese Patent No. 3295437, an interpolated frame is generated adaptively by motion, thereby increasing the frame frequency of the display image and improving the reduction in spatial frequency characteristics that cause motion blur. Techniques for disclosing are disclosed. This is because at least one interpolated image signal to be interpolated between frames of the display image is formed adaptively to the front and rear frame force motion, and the formed interpolated image signal is interpolated between the frames and sequentially displayed. ing.
[0009] 図 1は、従来の液晶表示装置における FRC駆動表示回路の概略構成を示すプロ ック図で、図中、 FRC駆動表示回路は、入力画像信号のフレーム間に動き補償処理 を施した画像信号を内挿することにより入力画像信号のフレーム数を変換する FRC 部 100と、液晶層と該液晶層に走査信号及びデータ信号を印加するための電極とを 有するアクティブマトリクス型の液晶表示パネル 104と、 FRC部 100によりフレームレ ート変換された画像信号に基づいて液晶表示パネル 104の走査電極及びデータ電 極を駆動するための電極駆動部 103と、を備えて構成される。 FIG. 1 is a block diagram showing a schematic configuration of an FRC drive display circuit in a conventional liquid crystal display device. In the figure, the FRC drive display circuit performs a motion compensation process between frames of an input image signal. An FRC unit 100 that converts the number of frames of an input image signal by interpolating the image signal, a liquid crystal layer, and electrodes for applying a scanning signal and a data signal to the liquid crystal layer. An active matrix liquid crystal display panel 104, and an electrode driving unit 103 for driving the scanning electrodes and data electrodes of the liquid crystal display panel 104 based on the image signal subjected to frame rate conversion by the FRC unit 100. It is prepared for.
[0010] FRC部 100は、入力画像信号力も動きベクトル情報を検出する動きベクトル検出部 101と、動きベクトル検出部 101により得られた動きベクトル情報に基づ!/、て内挿フレ ームを生成する内挿フレーム生成部 102とを備える。  [0010] The FRC unit 100 includes a motion vector detection unit 101 that detects motion vector information as well as an input image signal force, and an interpolation frame based on the motion vector information obtained by the motion vector detection unit 101! And an interpolation frame generation unit 102 for generation.
[0011] 上記構成において、動きベクトル検出部 101は、例えば、後述するブロックマツチン グ法ゃ勾配法などを用いて動きベクトル情報を求めてもょ 、し、入力画像信号に何ら かの形で動きベクトル情報が含まれている場合、これを利用してもよい。例えば、 MP EG方式を用いて圧縮符号化された画像データには、符号ィ匕時に算出された動画像 の動きベクトル情報が含まれており、この動きベクトル情報を取得する構成としてもよ い。  [0011] In the above configuration, the motion vector detecting unit 101 may obtain motion vector information using, for example, a block matching method or a gradient method, which will be described later, and in some form on the input image signal. If motion vector information is included, this may be used. For example, image data compression-encoded using the MP EG method includes motion vector information of a moving image calculated at the time of encoding, and this motion vector information may be obtained.
[0012] 図 2は、図 1に示した従来の FRC駆動表示回路によるフレームレート変換処理を説 明するための図である。 FRC部 100は、動きベクトル検出部 101より出力された動き ベクトル情報を用いた動きネ甫償により、フレーム間の内挿フレーム(図中グレーに色 付けされた画像)を生成し、この生成された内挿フレーム信号を入力フレーム信号と ともに、順次出力することで、入力画像信号のフレームレートを例えば毎秒 60フレー ム(60Hz)から毎秒 120フレーム(120Hz)に変換する処理を行う。  FIG. 2 is a diagram for explaining frame rate conversion processing by the conventional FRC drive display circuit shown in FIG. The FRC unit 100 generates an interpolated frame (image colored in gray in the figure) by motion compensation using the motion vector information output from the motion vector detection unit 101, and generates the generated frame. By sequentially outputting the interpolated frame signal together with the input frame signal, the frame rate of the input image signal is converted, for example, from 60 frames per second (60 Hz) to 120 frames per second (120 Hz).
[0013] 図 3は、動きベクトル検出部 101及び内挿フレーム生成部 102による内挿フレーム 生成処理について説明するための図である。動きベクトル検出部 101は、図 3に示し た例えばフレーム # 1とフレーム # 2から勾配法等により動きベクトル 105を検出する 。すなわち、動きベクトル検出部 101は、フレーム # 1とフレーム # 2の 1/60秒間に 、どの方向にどれだけ動いたかを測定することにより動きベクトル 105を求める。次に 、内挿フレーム生成部 102は、求めた動きベクトル 105を用いて、フレーム # 1とフレ ーム # 2間に内挿ベクトル 106を割り付ける。この内挿ベクトル 106に基づいてフレー ム # 1の位置から 1Z120秒後の位置まで対象 (ここでは自動車)を動かすことにより 、内挿フレーム 107を生成する。  FIG. 3 is a diagram for explaining interpolation frame generation processing by the motion vector detection unit 101 and the interpolation frame generation unit 102. The motion vector detection unit 101 detects the motion vector 105 from the frame # 1 and the frame # 2 shown in FIG. That is, the motion vector detection unit 101 obtains the motion vector 105 by measuring how much and in which direction the frame # 1 and frame # 2 have moved in 1/60 second. Next, interpolation frame generation section 102 allocates interpolation vector 106 between frame # 1 and frame # 2 using the obtained motion vector 105. An interpolation frame 107 is generated by moving the object (in this case, a car) from the position of frame # 1 to the position 1Z120 seconds later based on this interpolation vector 106.
[0014] このように、動きベクトル情報を用いて動き補償フレーム内挿処理を行い、表示フレ ーム周波数を上げることで、 LCD (ホールド型表示方式)の表示状態を、 CRT (イン パルス型表示方式)の表示状態に近づけることができ、動画表示の際に生じる動きぼ けによる画質劣化を改善することが可能となる。 [0014] In this way, motion compensation frame interpolation processing is performed using motion vector information, and display frames are displayed. By increasing the screen frequency, the display state of the LCD (hold type display method) can be brought close to the display state of the CRT (impulse type display method), and image quality degradation due to motion blur that occurs during video display can be reduced. It becomes possible to improve.
[0015] ここで、上記動き補償フレーム内挿処理においては、動き補償のために動きべタト ルの検出が不可欠となる。この動きベクトル検出方法としては、例えば、特開昭 55— 162683号公報に示された「テレビジョン画像の動き検出方法」や特開昭 55— 1626 84号公報に示された「画像動ベクトルの漸近的検出方法」などに記載のパターンマ ツチング法、または、特開昭 60— 158786号公報に示された「画像動き量検出方式」 や特開昭 62— 206980号公報に示された「動画像の動き推定における初期偏位方 式」などに記載の反復勾配法が、それぞれ提案されて!ヽる。  [0015] Here, in the motion compensation frame interpolation process, detection of motion vectors is indispensable for motion compensation. As this motion vector detection method, for example, “television image motion detection method” disclosed in Japanese Patent Laid-Open No. 55-162683 and “video motion vector detection” disclosed in Japanese Patent Laid-Open No. 55-162684 are disclosed. The pattern matching method described in “Asymptotic Detection Method” or the like, or “Image Motion Detection Method” disclosed in Japanese Patent Application Laid-Open No. 60-158786 and “Movie” disclosed in Japanese Patent Application Laid-Open No. 62-206980. The iterative gradient method described in “Initial Deviation Method for Image Motion Estimation” has been proposed! Speak.
[0016] 特に、後者の反復勾配法による動きベクトル検出方式は、パターンマッチング法に 比べて、小型でかつ精度良ぐ動きベクトルを検出することができる。すなわち、反復 勾配法による動きベクトル検出方法は、デジタルィ匕したテレビジョン信号のそれぞれ のフレームを、例えば、横方向 m画素、縦方向 nラインを含む mX n画素の予め定め た所定の大きさのブロックに細分化して、それぞれのブロック毎に、その画面内での 信号の勾配及び対応する画面間との信号差分値の物理的な対応などに基づいて、 反復的な勾配法演算を施すことにより動き量を推定するものである。  In particular, the latter motion vector detection method based on the iterative gradient method can detect a motion vector that is smaller and more accurate than the pattern matching method. In other words, the motion vector detection method based on the iterative gradient method has a predetermined predetermined size of mX n pixels including m pixels in the horizontal direction and n lines in the vertical direction, for example, for each frame of the digital television signal. By subdividing into blocks, each block is subjected to repetitive gradient calculation based on the signal gradient in the screen and the physical correspondence of the signal difference value between the corresponding screens. The amount of motion is estimated.
[0017] ところで、動画像はフレーム間の相関が高ぐまた時間軸方向の連続性を持つ。あ るフレームにおいて移動している画素あるいはブロックは、それに続くフレーム、ある いはそれより前のフレームにおいても、同様の動き量で移動している場合が多い。例 えば、ボールが画面の右力 左へと転がっていく様子を撮影した動画像の場合、ボ ールの領域は、どのフレームでも同様の動き量を持ちながら移動していく。すなわち 、連続するフレーム間では、動きベクトルに連続性がある場合が多い。  By the way, a moving image has a high correlation between frames and has continuity in the time axis direction. In many cases, a pixel or block moving in a certain frame moves with the same amount of movement in the subsequent frame or in the previous frame. For example, in the case of a moving image in which the ball is rolling to the right force left of the screen, the ball area moves with the same amount of movement in every frame. That is, there are many cases where motion vectors have continuity between consecutive frames.
[0018] このことから、前フレームでの動きベクトル検出結果を参照することで、その次のフレ ームでの動きベクトル検出をより容易に、あるいは、より正確に行うことが可能である。 前記特開昭 62— 206980号公報においては、動き量を推定する際の初期値として、 被検出ブロックに該当するブロックを含む周辺の複数のブロックにおいて既に検出さ れている動きベクトルの候補の中から、該被検出ブロックの動きベクトル検出用として 最適なものを初期変位ベクトルとして選択し、該被検出ブロックの真の動きベクトルに 近い値力 勾配法演算を開始することにより、勾配法演算の演算回数を少なくして、 例えば 2回の勾配法演算にて真の動きベクトルを検出する方法が提案されている。 [0018] Thus, by referring to the motion vector detection result in the previous frame, the motion vector detection in the next frame can be performed more easily or more accurately. In JP-A-62-206980, as an initial value for estimating the amount of motion, among motion vector candidates already detected in a plurality of peripheral blocks including a block corresponding to the detected block. To detect the motion vector of the detected block By selecting the optimum one as the initial displacement vector and starting the value force gradient method calculation close to the true motion vector of the detected block, the number of gradient method calculations is reduced, for example, two gradient methods A method for detecting a true motion vector by calculation has been proposed.
[0019] また、特開平 06— 217266号公報に示された「動きベクトル検出回路」では、動き ベクトル検出の精度を更に高めるために、少なくとも 1フィールド以上又は 1フレーム 以上離れた画像信号の各ブロック間で動きの初期変位べ外ルを検出する方法が提 案されている。さらに、ブロックマッチング法においても、前フレームでの動きベクトル 検出結果を参照して探索順序を変えるなどして、効率的な動きべ外ル検出を行うこ とが考えられる。このように、動きベクトルを検出する際に、既検出の動きベクトルを利 用することによって、例えばフレームレート変換のリアルタイム処理が可能になる。 In addition, in the “motion vector detection circuit” disclosed in Japanese Patent Application Laid-Open No. 06-217266, each block of an image signal separated by at least one field or more than one frame in order to further improve the accuracy of motion vector detection. A method has been proposed for detecting the initial displacement of the movement. Furthermore, in the block matching method, it is conceivable to perform efficient motion margin detection by changing the search order with reference to the motion vector detection results in the previous frame. As described above, when a motion vector is detected, a real-time process of frame rate conversion, for example, can be performed by using the already detected motion vector.
[0020] ところで、テレビ番組や映画では、字幕、所謂テロップが画像信号中に含まれること が少なくない。その中には、画面上で文字が水平や垂直方向にスクロール (移動)し ていくァロップ [チイ王する。 Fujine, et.al., Real-Life In-Home Viewing Conditions for FPDs and Statistical Characteristics of Broadcast Video , Digest AM— FPD ' 06【こよ れば、一般的なテレビ番組に含まれる被写体の動き速度は、主に 20degZsec以下 に分布し、中でも lOdegZsec以下の頻度が高いのに対し、テレビ番組のテロップの スクロール速度は平均 13. 8degZsec、最大 35. 9degZsecで、 10〜20degZsec のテロップ出現頻度が高いことがわかる。すなわち、スクロールするテロップはテレビ 番組の中では一般的な被写体に比べてより速 、速度で動く場合が多 、。 By the way, in television programs and movies, subtitles, so-called telops are often included in image signals. Some of them are characters that scroll (move) horizontally or vertically on the screen. Fujine, et.al., Real-Life In-Home Viewing Conditions for FPDs and Statistical Characteristics of Broadcast Video, Digest AM— FPD '06 [Accordingly, the motion speed of subjects in general TV programs is mainly The telop scrolling speed of TV programs is 13.8 degZsec on average and 35.9 degZsec at maximum, while the frequency of telop appearance is 10 to 20 degZsec. In other words, scrolling telops often move faster and faster than typical subjects in TV programs.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0021] 通常、動画像においては、オブジェクトの動きが速いほどフレーム間の変化が大き くなり、動きベクトルを正確に推定することが困難になる。すなわち、 FRCにおいては 動きの速いオブジェクトほど正確に内挿画像を生成することが困難である。上述した ように、テレビ番組の中で用いられるテロップは一般的な被写体に比べてより速 ヽ速 度で動く場合が多いことから、テロップは正確に内挿画像を生成することが困難なォ ブジェクトといえる。 [0021] Normally, in a moving image, the faster the movement of an object, the greater the change between frames, making it difficult to accurately estimate a motion vector. In other words, in FRC, the faster the moving object, the more difficult it is to generate an interpolated image. As described above, telops used in TV programs often move at a higher speed than ordinary subjects, so telops are difficult to accurately generate interpolated images. It can be said.
[0022] また、通常、カメラによって撮影された被写体は、その動きが速い場合にはカメラの 光蓄積時間に起因するボケ (カメラボケ)を含む。このように元々ボケを含む画像につ いては、ホールド型表示方式に起因する動きボケが目立ちにくい。また、 FRCを行つ た場合に、もし動きベクトル検出に失敗して内挿画像に破綻が生じたとしても、その 破綻は目立ちにくい。これに対して、テロップは後から画像合成されたものであるた め、その動きが速くてもカメラボケなどは含まれない。このため、ホールド型表示方式 に起因する動きボケが目立ちやすぐ FRCが効果的に機能する一方、 FRCの動きべ タトル検出に失敗してテロップ部分の内挿画像に破綻が生じた場合、その破綻が目 立ちやすい。 [0022] In general, when a subject photographed by a camera moves quickly, Includes blur caused by light accumulation time (camera blur). As described above, motion blur caused by the hold-type display method is less noticeable for an image originally including blur. Also, when FRC is performed, even if motion vector detection fails and the interpolated image fails, the failure is not noticeable. On the other hand, since the telop is an image that was synthesized later, it does not include camera blur even if the movement is fast. For this reason, the motion blur caused by the hold-type display method is conspicuous and the FRC functions effectively.On the other hand, if the FRC motion vector detection fails and the interpolated image of the telop part fails, the failure occurs. Is conspicuous.
[0023] カロえて、視聴者はテロップの内容を読み取ろうとするため、スクロールするテロップ を注視して目で追いかける。このため、もし FRCの動きベクトル検出に失敗して内挿 画像の破綻がテロップ部分に現れた場合、視聴者にとって特に画質劣化が目立ち やすいという問題があった。  [0023] In order to read the contents of the telop, the viewer looks closely at the scrolling telop and follows it. For this reason, if the FRC motion vector detection fails and the interpolated image appears in the telop part, there is a problem that the image quality deterioration is particularly noticeable for the viewer.
[0024] 本発明は、上記課題に鑑みてなされたものであり、動き補償型のフレームレート変 換 (FRC)処理に起因する、テロップ部分の画質劣化を防止することができる画像表 示装置及び方法、画像処理装置及び方法を提供することを目的とする。  [0024] The present invention has been made in view of the above problems, and an image display device capable of preventing image quality deterioration of a telop portion resulting from motion compensation type frame rate conversion (FRC) processing, and An object is to provide a method, an image processing apparatus, and a method.
課題を解決するための手段  Means for solving the problem
[0025] 本願の第 1の発明は、入力画像信号のフレーム間あるいはフィールド間に、動き補 償処理を施した画像信号を内挿することにより、前記入力画像信号のフレーム数ある いはフィールド数を変換して、表示パネルへ出力するレート変換手段を備えた画像 表示装置であって、前記入力画像信号に含まれる 1つ以上のテロップの特徴量を検 出する検出手段を備え、前記検出された 1つ以上のテロップの特徴量に基づいて、 前記レート変換手段における前記動き補償処理を制御することを特徴とする。  [0025] The first invention of the present application interpolates an image signal subjected to motion compensation processing between frames or fields of an input image signal, thereby allowing the number of frames or fields of the input image signal to be interpolated. An image display device comprising rate conversion means for converting the signal into a display panel and detecting means for detecting a feature quantity of one or more telops included in the input image signal. Further, the motion compensation processing in the rate conversion means is controlled based on a feature amount of one or more telops.
[0026] 本願の第 2の発明は、前記 1つ以上のテロップの特徴量が、所定方向に移動する 1 つ以上のテロップの領域であることを特徴とする。  [0026] The second invention of the present application is characterized in that the feature amount of the one or more telops is an area of one or more telops moving in a predetermined direction.
[0027] 本願の第 3の発明は、前記検出手段が、画面を複数の領域に分割して、各領域毎 の平均ベクトルの平均偏差を求め、これに所定の係数をかけた値を閾値とし、各領域 毎の平均ベクトルと画面全体の平均ベクトルとの間の距離力 前記閾値より大きい領 域をテロップの領域として検出することを特徴とする。 [0028] 本願の第 4の発明は、前記検出されたテロップの領域とそれ以外の領域とで異なる 動き補償処理を行うことを特徴とする。 [0027] In the third invention of the present application, the detecting means divides the screen into a plurality of regions, obtains an average deviation of the average vector for each region, and sets a value obtained by multiplying this by a predetermined coefficient as a threshold value. The distance force between the average vector for each area and the average vector for the entire screen is detected as a telop area. [0028] The fourth invention of the present application is characterized in that different motion compensation processing is performed in the detected telop area and other areas.
[0029] 本願の第 5の発明は、前記検出された 1つ以上のテロップの領域に対してのみ動き 補償処理を行 ヽ、それ以外の領域では動き補償処理を行わな ヽことを特徴とする。 [0029] The fifth invention of the present application is characterized in that motion compensation processing is performed only for the detected one or more telop regions, and motion compensation processing is not performed in other regions. .
[0030] 本願の第 6の発明は、前記検出された 1つ以上のテロップの領域以外の領域に対 しては、前記入力画像信号のフレーム間あるいはフィールド間に、該フレームあるい はフィールドの画像信号を挿入することを特徴とする。 [0030] According to a sixth aspect of the present invention, with respect to an area other than the detected one or more telop areas, the frame or field is inserted between frames or fields of the input image signal. An image signal is inserted.
[0031] 本願の第 7の発明は、前記検出された 1つ以上のテロップの領域以外の領域に対 しては、前記入力画像信号のフレーム間あるいはフィールド間に、線形補間処理を 施した画像信号を内挿することを特徴とする。 [0031] The seventh invention of the present application is an image in which linear interpolation processing is performed between frames or fields of the input image signal for regions other than the detected one or more telop regions. It is characterized by interpolating the signal.
[0032] 本願の第 8の発明は、前記検出された 1つ以上のテロップの領域とそれ以外の領域 との境界部分に対してフィルタ処理を行うことを特徴とする。 [0032] The eighth invention of the present application is characterized in that a filtering process is performed on a boundary portion between the one or more detected telop regions and other regions.
[0033] 本願の第 9の発明は、前記 1つ以上のテロップの特徴量が、所定方向に移動する 1 つ以上のテロップの移動速度 Z方向であることを特徴とする。 [0033] A ninth invention of the present application is characterized in that the feature amount of the one or more telops is a moving speed Z direction of the one or more telops moving in a predetermined direction.
[0034] 本願の第 10の発明は、前記検出手段が、画面を複数の領域に分割して、各領域 毎の平均ベクトルの平均偏差を求め、これに所定の係数をかけた値を閾値とし、各領 域毎の平均ベクトルと画面全体の平均ベクトルとの間の距離力 前記閾値より大きい 領域をテロップの領域として検出し、前記検出されたテロップの領域におけるベクトル の平均ベクトルを求め、これをテロップの移動速度 Z方向として検出することを特徴と する。 [0034] In a tenth invention of the present application, the detecting means divides the screen into a plurality of regions, obtains an average deviation of the average vector for each region, and sets a value obtained by multiplying this by a predetermined coefficient as a threshold value. The distance force between the average vector for each area and the average vector for the entire screen The area larger than the threshold is detected as a telop area, and the average vector of the vector in the detected telop area is obtained. It is characterized by detecting the moving speed of the telop as the Z direction.
[0035] 本願の第 11の発明は、前記検出された 1つ以上のテロップの移動速度 Z方向を用 いて、前記動き補償処理を行うことを特徴とする。  [0035] An eleventh aspect of the present invention is characterized in that the motion compensation processing is performed using the detected movement speed Z direction of one or more telops.
[0036] 本願の第 12の発明は、前記 1つ以上のテロップの特徴量が、所定方向に移動する 1つ以上のテロップの領域と移動速度 Z方向とであることを特徴とする。  [0036] The twelfth invention of the present application is characterized in that the feature amounts of the one or more telops are one or more telop regions moving in a predetermined direction and a moving speed Z direction.
[0037] 本願の第 13の発明は、前記検出手段が、画面を複数の領域に分割して、各領域 毎の平均ベクトルの平均偏差を求め、これに所定の係数をかけた値を閾値とし、各領 域毎の平均ベクトルと画面全体の平均ベクトルとの間の距離力 前記閾値より大きい 領域をテロップの領域として検出し、前記検出されたテロップの領域におけるベクトル の平均ベクトルを求め、これをテロップの移動速度 z方向として検出することを特徴と する。 [0037] In a thirteenth invention of the present application, the detecting means divides the screen into a plurality of regions, obtains an average deviation of the average vector for each region, and sets a value obtained by multiplying this by a predetermined coefficient as a threshold value. The distance force between the average vector of each area and the average vector of the entire screen The area larger than the threshold is detected as a telop area, and the vector in the detected telop area It is characterized in that the average vector is obtained and detected as the moving speed z direction of the telop.
[0038] 本願の第 14の発明は、前記検出された 1つ以上のテロップの領域に対しては、前 記検出されたテロップの移動速度 Z方向を用いて前記動き補償処理を行うことを特 徴とする。  [0038] The fourteenth invention of the present application is characterized in that the motion compensation processing is performed on the detected one or more telop areas using the moving speed Z direction of the detected telop. It is a sign.
[0039] 本願の第 15の発明は、前記検出された 1つ以上のテロップの領域とそれ以外の領 域とで異なる動き補償処理を行うことを特徴とする。  [0039] The fifteenth invention of the present application is characterized in that different motion compensation processing is performed in the one or more detected telop regions and the other regions.
[0040] 本願の第 16の発明は、前記検出された 1つ以上のテロップの領域に対してのみ動 き補償処理を行 ヽ、それ以外の領域では動き補償処理を行わな ヽことを特徴とする。 [0040] The sixteenth invention of the present application is characterized in that motion compensation processing is performed only for the one or more detected telop regions, and motion compensation processing is not performed in other regions. To do.
[0041] 本願の第 17の発明は、前記検出された 1つ以上のテロップの領域以外の領域に対 しては、前記入力画像信号のフレーム間あるいはフィールド間に、該フレームあるい はフィールドの画像信号を挿入することを特徴とする。 [0041] In the seventeenth invention of the present application, with respect to an area other than the detected one or more telop areas, the frame or field is inserted between frames or fields of the input image signal. An image signal is inserted.
[0042] 本願の第 18の発明は、前記検出された 1つ以上のテロップの領域以外の領域に対 しては、前記入力画像信号のフレーム間あるいはフィールド間に、線形補間処理を 施した画像信号を内挿することを特徴とする。 [0042] In an eighteenth invention of the present application, an image subjected to linear interpolation processing between frames or fields of the input image signal is applied to a region other than the detected one or more telop regions. It is characterized by interpolating the signal.
[0043] 本願の第 19の発明は、前記検出された 1つ以上のテロップの領域とそれ以外の領 域との境界部分に対してフィルタ処理を行うことを特徴とする画像表示装置。 [0043] The nineteenth invention of the present application is an image display device characterized in that a filtering process is performed on a boundary portion between the one or more detected telop regions and other regions.
[0044] 本願の第 20の発明は、入力画像信号のフレーム間あるいはフィールド間に、動き 補償処理を施した画像信号を内挿することにより、前記入力画像信号のフレーム数 あるいはフィールド数を変換して、表示パネルへ出力するレート変換手段を備えた画 像表示装置であって、前記レート変換手段が、前記入力画像信号のフレームあるい はフィールドを予め定めた所定の大きさの複数のブロックに分割し、各ブロック毎に 少なくとも 1フレームあるいは 1フィールド以上離れた入力画像信号間における動きの 大きさ及び方向を表わす動きベクトルを検出する動きベクトル検出部を備え、前記動 きベクトル検出部が、各ブロック毎に検出された動きベクトルを少なくとも 1フレームあ るいは 1フィールド分蓄積する記憶部と、前記記憶部により蓄積された動きベクトルを 用いて、前記入力画像信号に含まれる 1つ以上のテロップの特徴量を検出するテロ ップ情報検出部と、前記テロップ情報検出部により検出された 1つ以上のテロップの 特徴量を用いて、前記記憶部により蓄積された動きベクトルの中から読み出した候補 ベクトル群の中から、被検出ブロックの動きに最もふさわしい値の動きベクトルを、被 検出ブロックの初期変位ベクトルとして選択する初期変位ベクトル選択部と、前記テ ロップ情報検出部により検出されたテロップの特徴量を用いて、前記初期変位べタト ル選択部により選択された初期変位ベクトルを起点として所定の演算を行うことにより 、被検出ブロックの動きベクトルを求めて出力するとともに、前記記憶部に蓄積する動 きべ外ル演算部とを有することを特徴とする。 [0044] The twentieth invention of the present application converts the number of frames or the number of fields of the input image signal by interpolating the image signal subjected to the motion compensation process between frames or fields of the input image signal. An image display apparatus comprising rate conversion means for outputting to a display panel, wherein the rate conversion means converts the frame or field of the input image signal into a plurality of blocks having a predetermined size. A motion vector detecting unit that detects a motion vector representing the magnitude and direction of motion between input image signals separated by at least one frame or one field or more for each block, and the motion vector detecting unit A storage unit that accumulates at least one frame or one field of motion vectors detected for each block, and the storage unit Using the stored motion vectors, and terrorism-up information detection unit for detecting a feature amount of one or more telop included in the input image signal, the one or more telop detected by the telop information detecting unit Using the feature quantity, select the motion vector of the value most suitable for the motion of the detected block from the candidate vector group read from the motion vectors stored in the storage unit as the initial displacement vector of the detected block. Using the initial displacement vector selected by the initial displacement vector selection unit and the initial displacement vector selected by the initial displacement vector selection unit using the feature amount of the telop detected by the telop information detection unit. Thus, the motion vector of the detected block is obtained and output, and the motion vector calculation unit is stored in the storage unit.
[0045] 本願の第 21の発明は、前記初期変位ベクトル選択部が、前記テロップ情報検出部 により検出された前記 1つ以上のテロップの領域とそれ以外の領域とで異なる処理を 行うことを特徴とする。  [0045] In a twenty-first invention of the present application, the initial displacement vector selection unit performs different processing in the one or more telop regions detected by the telop information detection unit and other regions. And
[0046] 本願の第 22の発明は、前記初期変位ベクトル選択部が、前記テロップ情報検出部 により検出された前記 1つ以上のテロップの領域以外の領域では全画面の平均べク トルに近い候補ベクトルを優先的に選択することを特徴とする。  [0046] In a twenty-second invention of the present application, the initial displacement vector selection unit is a candidate close to the average vector of the entire screen in a region other than the one or more telop regions detected by the telop information detection unit. A vector is preferentially selected.
[0047] 本願の第 23の発明は、前記初期変位ベクトル選択部が、前記テロップ情報検出部 により検出された前記 1つ以上のテロップの領域以外の領域では 0ベクトルに近い候 補ベクトルを優先的に選択することを特徴とする。  [0047] In a twenty-third invention of the present application, the initial displacement vector selection unit preferentially selects a candidate vector close to a zero vector in a region other than the one or more telop regions detected by the telop information detection unit. It is characterized by selecting.
[0048] 本願の第 24の発明は、前記初期変位ベクトル選択部が、前記テロップ情報検出部 により検出された前記 1つ以上のテロップの動きベクトルを、前記候補ベクトルに追カロ して処理することを特徴とする。  [0048] In a twenty-fourth aspect of the present invention, the initial displacement vector selection unit adds the motion vector of the one or more telops detected by the telop information detection unit to the candidate vector for processing. It is characterized by.
[0049] 本願の第 25の発明は、前記初期変位ベクトル選択部が、前記テロップ情報検出部 により検出された前記 1つ以上のテロップの領域に該当するブロックに対しては、前 記テロップ情報検出部により検出された前記 1つ以上のテロップの動きベクトルを、前 記候補ベクトルに追加して処理することを特徴とする。  [0049] In a twenty-fifth aspect of the present application, the initial displacement vector selection unit detects the telop information for blocks corresponding to the one or more telop regions detected by the telop information detection unit. The motion vector of the one or more telops detected by the section is added to the candidate vector and processed.
[0050] 本願の第 26の発明は、前記初期変位ベクトル選択部が、前記テロップ情報検出部 により検出された前記 1つ以上のテロップの領域では前記候補ベクトル中の前記 1つ 以上のテロップの動きベクトルが選択されやすいような重み付けを行って初期変位べ タトルの選択処理を行うことを特徴とする。  [0050] In a twenty-sixth aspect of the present application, the initial displacement vector selection unit moves the one or more telops in the candidate vector in the one or more telop regions detected by the telop information detection unit. The initial displacement vector is selected by weighting that makes it easy to select vectors.
[0051] 本願の第 27の発明は、前記動きベクトル演算部が、前記テロップ情報検出部により 検出された前記 1つ以上のテロップの領域に該当するブロックに対しては、前記テロ ップ情報検出部により検出された前記 1つ以上のテロップの動きベクトルの方向と同 一の方向のベクトルが得られるように演算方法を変更することを特徴とする。 [0051] According to a twenty-seventh aspect of the present invention, the motion vector calculation unit includes the telop information detection unit. For a block corresponding to the detected one or more telop regions, a vector in the same direction as the direction of the motion vector of the one or more telops detected by the terror information detection unit is present. The calculation method is changed so as to be obtained.
[0052] 本願の第 28の発明は、入力画像信号のフレーム間あるいはフィールド間に、動き 補償処理を施した画像信号を内挿することにより、前記入力画像信号のフレーム数 あるいはフィールド数を変換するレート変換ステップを備えた画像表示方法であって 、前記入力画像信号に含まれる 1つ以上のテロップの特徴量を検出する検出ステツ プを備え、前記検出された 1つ以上のテロップの特徴量に基づいて、前記レート変換 ステップにおける前記動き補償処理を制御することを特徴とする。  [0052] The twenty-eighth aspect of the present invention converts the number of frames or the number of fields of the input image signal by interpolating the image signal subjected to the motion compensation process between frames or fields of the input image signal. An image display method comprising a rate conversion step, comprising a detection step for detecting a feature amount of one or more telops included in the input image signal, and the detected feature amount of the one or more telops. Based on this, the motion compensation processing in the rate conversion step is controlled.
[0053] 本願の第 29の発明は、入力画像信号のフレーム間あるいはフィールド間に、動き 補償処理を施した画像信号を内挿することにより、前記入力画像信号のフレーム数 あるいはフィールド数を変換するレート変換ステップを備えた画像表示方法であって 、前記レート変換ステップが、前記入力画像信号のフレームあるいはフィールドを予 め定めた所定の大きさの複数のブロックに分割し、各ブロック毎に少なくとも 1フレー ムあるいは 1フィールド以上離れた入力画像信号間における動きの大きさ及び方向 を表わす動きベクトルを検出する動きベクトル検出ステップを備え、前記動きベクトル 検出ステップ力 各ブロック毎に検出された動きベクトルを少なくとも 1フレームあるい は 1フィールド分蓄積する記憶ステップと、前記蓄積された動きベクトルを用いて、前 記入力画像信号に含まれる 1つ以上のテロップの特徴量を検出するテロップ情報検 出ステップと、前記検出された 1つ以上のテロップの特徴量を用いて、前記記憶ステ ップにて蓄積された動きベクトルの中から読み出した候補ベクトル群の中から、被検 出ブロックの動きに最もふさわしい値の動きベクトルを、被検出ブロックの初期変位べ タトルとして選択する初期変位ベクトル選択ステップと、前記検出されたテロップの特 徴量を用いて、前記初期変位ベクトル選択ステップにて選択された初期変位ベクトル を起点として所定の演算を行うことにより、被検出ブロックの動きベクトルを求めて出 力する動きベクトル演算ステップとを有することを特徴とする。 [0053] The twenty-ninth invention of the present application converts the number of frames or the number of fields of the input image signal by interpolating the image signal subjected to the motion compensation process between frames or fields of the input image signal. An image display method comprising a rate conversion step, wherein the rate conversion step divides a frame or a field of the input image signal into a plurality of blocks having a predetermined size, and at least one for each block. A motion vector detecting step for detecting a motion vector representing the magnitude and direction of motion between the input image signals separated from the frame or one field or more, and the motion vector detecting step force includes at least a motion vector detected for each block. A storage step for storing one frame or one field, and the storage Using the motion vector, a telop information detection step for detecting one or more telop feature amounts included in the input image signal, and using the detected one or more telop feature amounts, the storing is performed. Initial displacement that selects the motion vector of the value most suitable for the motion of the detected block from the candidate vector group read out from the motion vectors accumulated in step as the initial displacement vector of the detected block Using the vector selection step and the characteristic amount of the detected telop, the motion vector of the detected block is obtained by performing a predetermined calculation using the initial displacement vector selected in the initial displacement vector selection step as a starting point. And a motion vector calculation step for obtaining and outputting.
[0054] 本願の第 30の発明は、入力画像信号のフレーム間あるいはフィールド間に、動き 補償処理を施した画像信号を内挿することにより、前記入力画像信号のフレーム数 あるいはフィールド数を変換して、出力するレート変換手段を備えた画像処理装置で あって、前記入力画像信号に含まれる 1つ以上のテロップの特徴量を検出する検出 手段を備え、前記検出された 1つ以上のテロップの特徴量に基づいて、前記レート変 換手段における前記動き補償処理を制御することを特徴とする。 [0054] In the thirtieth invention of the present application, the number of frames of the input image signal is interpolated by interpolating the image signal subjected to the motion compensation process between frames or fields of the input image signal. Alternatively, the image processing apparatus includes a rate conversion unit that converts the number of fields and outputs the image, and includes a detection unit that detects a feature amount of one or more telops included in the input image signal. The motion compensation processing in the rate conversion means is controlled based on a feature value of one or more telops.
[0055] 本願の第 31の発明は、入力画像信号のフレーム間あるいはフィールド間に、動き 補償処理を施した画像信号を内挿することにより、前記入力画像信号のフレーム数 あるいはフィールド数を変換して出力するレート変換手段を備えた画像処理装置で あって、前記レート変換手段が、前記入力画像信号のフレームあるいはフィールドを 予め定めた所定の大きさの複数のブロックに分割し、各ブロック毎に少なくとも 1フレ ームあるいは 1フィールド以上離れた入力画像信号間における動きの大きさ及び方 向を表わす動きベクトルを検出する動きベクトル検出部を備え、前記動きベクトル検 出部力 各ブロック毎に検出された動きベクトルを少なくとも 1フレームあるいは 1フィ 一ルド分蓄積する記憶部と、前記記憶部により蓄積された動きベクトルを用いて、前 記入力画像信号に含まれる 1つ以上のテロップの特徴量を検出するテロップ情報検 出部と、前記テロップ情報部により検出された 1つ以上のテロップの特徴量を用いて 、前記記憶部により蓄積された動きベクトルの中から読み出した候補ベクトル群の中 から、被検出ブロックの動きに最もふさわしい値の動きベクトルを、被検出ブロックの 初期変位ベクトルとして選択する初期変位ベクトル選択部と、前記テロップ情報検出 部により検出されたテロップの特徴量を用いて、前記初期変位ベクトル選択部により 選択された初期変位ベクトルを起点として所定の演算を行うことにより、被検出ブロッ クの動きベクトルを求めて出力するとともに、前記記憶部に蓄積する動きベクトル演算 部とを有することを特徴とする。  [0055] The thirty-first invention of the present application converts the number of frames or the number of fields of the input image signal by interpolating the image signal subjected to the motion compensation process between frames or fields of the input image signal. Output rate converting means, and the rate converting means divides the frame or field of the input image signal into a plurality of blocks having a predetermined size, and for each block. A motion vector detection unit that detects a motion vector representing the magnitude and direction of motion between input image signals separated by at least one frame or one field or more is provided, and the motion vector detection unit force is detected for each block. A storage unit that accumulates at least one frame or one field of motion vectors, and motion stored by the storage unit A telop information detection unit that detects a feature amount of one or more telops included in the input image signal using a vector and a feature amount of one or more telops detected by the telop information unit. Initial displacement vector selection for selecting a motion vector having a value most suitable for the motion of the detected block from the candidate vector group read out from the motion vectors stored in the storage unit as the initial displacement vector of the detected block And a telop feature detected by the telop information detection unit, using the initial displacement vector selected by the initial displacement vector selection unit as a starting point and performing a predetermined calculation, It has a motion vector calculation unit that obtains and outputs a vector and accumulates it in the storage unit.
[0056] 本願の第 32の発明は、入力画像信号のフレーム間あるいはフィールド間に、動き 補償処理を施した画像信号を内挿することにより、前記入力画像信号のフレーム数 あるいはフィールド数を変換するレート変換ステップを備えた画像処理方法であって 、前記入力画像信号に含まれる 1つ以上のテロップの特徴量を検出する検出ステツ プを備え、前記検出された 1つ以上のテロップの特徴量に基づいて、前記レート変換 ステップにおける前記動き補償処理を制御することを特徴とする。 [0057] 本願の第 33の発明は、入力画像信号のフレーム間あるいはフィールド間に、動き 補償処理を施した画像信号を内挿することにより、前記入力画像信号のフレーム数 あるいはフィールド数を変換するレート変換ステップを備えた画像処理方法であって 、前記レート変換ステップが、前記入力画像信号のフレームあるいはフィールドを予 め定めた所定の大きさの複数のブロックに分割し、各ブロック毎に少なくとも 1フレー ムあるいは 1フィールド以上離れた入力画像信号間における動きの大きさ及び方向 を表わす動きベクトルを検出する動きベクトル検出ステップを備え、前記動きベクトル 検出ステップ力 各ブロック毎に検出された動きベクトルを少なくとも 1フレームあるい は 1フィールド分蓄積する記憶ステップと、前記蓄積された動きベクトルを用いて、前 記入力画像信号に含まれる 1つ以上のテロップの特徴量を検出するテロップ情報検 出ステップと、前記検出された 1つ以上のテロップの特徴量を用いて、前記記憶ステ ップにて蓄積された動きベクトルの中から読み出した候補ベクトル群の中から、被検 出ブロックの動きに最もふさわしい値の動きベクトルを、被検出ブロックの初期変位べ タトルとして選択する初期変位ベクトル選択ステップと、前記検出されたテロップの特 徴量を用いて、前記初期変位ベクトル選択ステップにて選択された初期変位ベクトル を起点として所定の演算を行うことにより、被検出ブロックの動きベクトルを求めて出 力する動きベクトル演算ステップとを有することを特徴とする。 [0056] The thirty-second invention of the present application converts the number of frames or the number of fields of the input image signal by interpolating the image signal subjected to the motion compensation process between frames or fields of the input image signal. An image processing method comprising a rate conversion step, comprising a detection step for detecting a feature value of one or more telops included in the input image signal, wherein the detected feature value of the one or more telops is included. Based on this, the motion compensation processing in the rate conversion step is controlled. [0057] The thirty-third invention of the present application converts the number of frames or the number of fields of the input image signal by interpolating the image signal subjected to the motion compensation process between frames or fields of the input image signal. An image processing method comprising a rate conversion step, wherein the rate conversion step divides a frame or a field of the input image signal into a plurality of blocks having a predetermined size, and at least one for each block. A motion vector detecting step for detecting a motion vector representing the magnitude and direction of motion between the input image signals separated from the frame or one field or more, and the motion vector detecting step force includes at least a motion vector detected for each block. A storage step for storing one frame or one field, and the storage Using the motion vector, a telop information detection step for detecting one or more telop feature amounts included in the input image signal, and using the detected one or more telop feature amounts, the storing is performed. Initial displacement that selects the motion vector of the value most suitable for the motion of the detected block from the candidate vector group read out from the motion vectors accumulated in step as the initial displacement vector of the detected block Using the vector selection step and the characteristic amount of the detected telop, the motion vector of the detected block is obtained by performing a predetermined calculation using the initial displacement vector selected in the initial displacement vector selection step as a starting point. And a motion vector calculation step for obtaining and outputting.
発明の効果  The invention's effect
[0058] 本発明によれば、上述のような構成とすることによって、画面中で所定方向に移動 するテロップ部分に対する動き補償処理をより正確に行うことが可能となり、この結果 、テロップの存在する領域の画質向上を実現することができる。 図面の簡単な説明  [0058] According to the present invention, with the above-described configuration, it is possible to more accurately perform motion compensation processing on a telop portion that moves in a predetermined direction on the screen. As a result, the presence of a telop exists. The image quality of the area can be improved. Brief Description of Drawings
[0059] [図 1]従来の液晶表示装置における FRC駆動表示回路の概略構成を示すブロック図 である。  FIG. 1 is a block diagram showing a schematic configuration of an FRC drive display circuit in a conventional liquid crystal display device.
[図 2]図 1に示した従来の FRC駆動表示回路によるフレームレート変換処理を説明す るための図である。  FIG. 2 is a diagram for explaining frame rate conversion processing by the conventional FRC drive display circuit shown in FIG. 1.
[図 3]動きベクトル検出部及び内挿フレーム生成部による内挿フレーム生成処理につ いて説明するための図である。 圆 4]本発明の一実施形態に係る画像表示装置が備えるフレームレート変換部にお ける動きベクトル検出部の構成例を示す機能ブロック図である。 FIG. 3 is a diagram for explaining interpolation frame generation processing by a motion vector detection unit and an interpolation frame generation unit. [4] FIG. 4 is a functional block diagram illustrating a configuration example of a motion vector detection unit in a frame rate conversion unit included in the image display device according to the embodiment of the present invention.
[図 5]図 4における初期変位ベクトル選択部の構成例を示す機能ブロック図である。 圆 6]図 4における初期変位ベクトル選択部の別の構成例を示す機能ブロック図であ る。  5 is a functional block diagram showing a configuration example of an initial displacement vector selection unit in FIG. [6] FIG. 6 is a functional block diagram showing another configuration example of the initial displacement vector selection unit in FIG.
圆 7]図 4における初期変位ベクトル選択部のさらに別の構成例を示す機能ブロック 図である。 [7] FIG. 7 is a functional block diagram showing still another configuration example of the initial displacement vector selection unit in FIG.
[図 8]2回の反復勾配法による動きベクトル Vの算出方法を説明するためのベクトル図 である。  FIG. 8 is a vector diagram for explaining a method of calculating a motion vector V by two iteration gradient methods.
[図 9] 1フレーム前の前フレームと現フレームとの間で移動した画像の動きベクトル V を具体的に説明するための模式図である。  FIG. 9 is a schematic diagram for specifically explaining a motion vector V of an image moved between the previous frame and the current frame one frame before.
圆 10]画像を複数のブロックに分解した様子を示す説明図である。 [10] FIG. 10 is an explanatory diagram showing a state in which an image is decomposed into a plurality of blocks.
[図 11]画面上で水平方向に移動するテロップを示す説明図である。  FIG. 11 is an explanatory diagram showing a telop that moves in the horizontal direction on the screen.
圆 12]画面を複数の帯状領域に分割した様子を示す説明図である。 [12] FIG. 12 is an explanatory diagram showing a state in which the screen is divided into a plurality of band-like regions.
[図 13]画面をテロップが含まれる領域とそれ以外の領域とに分解した様子を示す説 明図である。  FIG. 13 is an explanatory diagram showing a state in which the screen is divided into an area including a telop and an area other than that.
[図 14]テロップの領域の平均ベクトル、テロップ以外の領域の平均ベクトル、画面全 体の平均ベクトルとの関係を示す説明図である。  FIG. 14 is an explanatory diagram showing the relationship between the average vector of the telop area, the average vector of the area other than the telop, and the average vector of the entire screen.
[図 15]テロップの領域の平均ベクトル、テロップ以外の領域の平均ベクトル、画面全 体の平均ベクトルとの関係を示す説明図である。  FIG. 15 is an explanatory diagram showing the relationship between the average vector of the telop area, the average vector of the area other than the telop, and the average vector of the entire screen.
圆 16]2つのテロップ情報を検出する場合の一例を示す説明図である。 [16] FIG. 16 is an explanatory diagram showing an example of detecting two pieces of telop information.
圆 17]2つのテロップ情報を検出する場合の別の例を示す説明図である。 圆 17] An explanatory diagram showing another example in the case of detecting two pieces of telop information.
符号の説明 Explanation of symbols
1 · · 'フレーム遅延部、 2· · '初期変位ベクトル選択部、 2a' · '座標変換部、 2b' · ·減 算部、 2c · · '絶対値累計部、 2d· · '選択部、 2e - - 'テロップベクトル追加判定部、 3 · • ·動きべタトル演算部、 4· · 'ベクトルメモリ、 5 · · ·テロップ情報検出部、 100· · 'フレ ームレート変換 (FRC)部、 101 · · ·動きベクトル検出部、 102· · ·内挿フレーム生成 部、 103 · · ·電極駆動部、 104· · ·液晶表示パネル。 発明を実施するための最良の形態 'Frame delay part, 2' Initial displacement vector selection part, 2a 'Coordinate transformation part, 2b, Subtraction part, 2c, Absolute value accumulation part, 2d 2e--'Telop vector addition decision unit, 3 · · · Motion vector operation unit, 4 ·' Vector memory, 5 · · Telop information detection unit, 100 · 'Frame rate conversion (FRC) unit, 101 · · · · Motion vector detection unit, 102 · · Interpolation frame generation unit, 103 · · · Electrode drive unit, 104 · · · LCD panel. BEST MODE FOR CARRYING OUT THE INVENTION
[0061] 以下、添付図面を参照しながら本発明の好適な画像表示装置の実施の形態につ いて詳細に説明するが、上述した従来例と同一部分には同一符号を付し、その説明 は省略する。なお、本発明は、フィールド信号及び内挿フィールド信号、フレーム信 号及び内挿フレーム信号のいずれに対しても適用できるものである力 両者 (フィ一 ルドとフレーム)は互いに類似の関係にあるため、フレーム信号及び内挿フレーム信 号を代表例として説明するものとする。  Hereinafter, preferred embodiments of the image display device of the present invention will be described in detail with reference to the accompanying drawings. The same reference numerals are given to the same parts as those in the conventional example described above, and the description will be given. Omitted. Note that the present invention can be applied to any of a field signal, an interpolated field signal, a frame signal, and an interpolated frame signal, since both (field and frame) are in a similar relationship. The frame signal and the interpolated frame signal will be described as typical examples.
[0062] (1)全体構成およびテロップ情報の利用方法  [0062] (1) Overall configuration and usage of telop information
図 4は、本発明の画像表示装置が備える動きベクトル検出部の一例を示す機能ブ ロック図で、図 1に示した画像表示装置の FRC部 100中に含まれる動きベクトル検出 部 101の内部構成を詳しく説明するためのものである。本実施形態の動きベクトル検 出部 101は、フレーム遅延部 1、初期変位ベクトル選択部 2、動きベクトル演算部 3、 ベクトルメモリ 4、テロップ情報検出部 5を有している。  FIG. 4 is a functional block diagram showing an example of the motion vector detection unit provided in the image display device of the present invention. The internal configuration of the motion vector detection unit 101 included in the FRC unit 100 of the image display device shown in FIG. It is for explaining in detail. The motion vector detection unit 101 of the present embodiment includes a frame delay unit 1, an initial displacement vector selection unit 2, a motion vector calculation unit 3, a vector memory 4, and a telop information detection unit 5.
[0063] 本実施形態に係る動きベクトル検出部 101は、フレーム毎に入力する入力画像信 号を、予め定めた所定の大きさ、例えば m画素 X nライン (m, nは整数)からなる複数 のブロックに分割して、分割した各ブロック毎に、フレーム遅延部 1にて遅延させた例 えば 1フレーム前の入力画像信号において対応するブロックとの間における動きの方 向及び大きさを表わす動きベクトルを求めるためのものであり、既に検出されて、ベタ トルメモリ 4に蓄積されている動きベクトルの中力 選択した候補ベクトル群と、テロッ プ情報検出部 5によって得られたテロップ情報とを併せ用いて、最適な動きベクトル を被検出ブロックにおける初期変位ベクトルとして選択する初期変位ベクトル選択部 2と、該初期変位ベクトルを起点として、前記テロップ情報を用いて、例えば 2回の勾 配法演算により該被検出ブロックにおける真の動きベクトルを正しく求める動きべタト ル演算部 3とを備えている。  [0063] The motion vector detection unit 101 according to the present embodiment uses a plurality of input image signals input for each frame, each having a predetermined size, for example, m pixels Xn lines (m and n are integers). For example, the frame delay unit 1 delays each divided block, for example, the motion indicating the direction and magnitude of the motion with the corresponding block in the input image signal one frame before The vector vector is used to determine the vector of motion vectors that have already been detected and stored in the vector memory 4, and the telop information obtained by the telop information detector 5 is used together. The initial displacement vector selection unit 2 that selects an optimal motion vector as an initial displacement vector in the detected block, and the telop information using the initial displacement vector as a starting point Used, and a motion base Tato Le computation unit 3 for obtaining the correct true motion vectors in 該被 detection block for example by gradient method calculation twice.
[0064] 特に、本実施形態においては、テロップ情報検出部 5を備え、これによつて得られ たテロップ情報を、初期変位ベクトル選択部 2ある 、は動きベクトル演算部 3での処理 に用いることに特徴がある。初期変位ベクトル選択部 2においては、テロップの存在 する領域とそれ以外の領域とで異なった処理を行うか、あるいは、テロップの移動速 度 Z方向を考慮して初期変位ベクトルを選択するか、あるいは、その両方を組み合 わせて処理を行う。また、動きベクトル演算部 3では、テロップの存在する領域ではテ 口ップの移動速度 z方向を考慮したベクトル演算を行う。このような処理を行うことに より、特にテロップの存在する領域において、より正確な検出ベクトルが得られる。 [0064] In particular, in the present embodiment, the telop information detection unit 5 is provided, and the telop information obtained thereby is used for processing in the initial displacement vector selection unit 2 or the motion vector calculation unit 3. There is a feature. In the initial displacement vector selection unit 2, different processing is performed in the area where the telop exists and other areas, or the moving speed of the telop is changed. Degree Select the initial displacement vector considering the Z direction, or combine both. Further, the motion vector calculation unit 3 performs vector calculation in consideration of the z moving direction z direction in the area where the telop exists. By performing such processing, a more accurate detection vector can be obtained particularly in a region where a telop exists.
[0065] 上記テロップ情報検出部 5では、入力画像信号に含まれるテロップの特徴量 (テロ ップ情報)として、例えば画面中のどの動き検出ブロックがテロップに該当するかを示 すテロップ領域情報と、テロップの移動速度 Z方向を示すテロップベクトル情報とが 検出される。もし画面中にテロップが複数存在する場合は、そのそれぞれについて、 テロップ領域情報とテロップベクトル情報とを検出するようにしても良 、。このテロップ 情報検出部 5の詳細については後述する。  [0065] In the telop information detection unit 5, as the telop feature amount (terror information) included in the input image signal, for example, telop area information indicating which motion detection block in the screen corresponds to the telop, The telop vector information indicating the moving speed Z direction of the telop is detected. If there are multiple telops on the screen, telop area information and telop vector information may be detected for each of them. Details of the telop information detection unit 5 will be described later.
[0066] また、ここでは、動きベクトル演算部 3における演算方法として反復勾配法を用いた 例について説明する力 この反復勾配法に限定されず、ブロックマッチング法などを 用いてもよい。  [0066] Further, here, the power for explaining an example using the iterative gradient method as a calculation method in the motion vector calculation unit 3 is not limited to this iterative gradient method, and a block matching method or the like may be used.
[0067] 更に詳細に説明すると、図 4に示す動きベクトル検出部 101は、前述のように、初期 変位ベクトル選択部 2と、動きベクトル演算部 3と、ベクトルメモリ 4と、テロップ情報検 出部 5とを含んで構成されて 、る。初期変位ベクトル選択部 2及び動きベクトル演算 部 3には、それぞれ、現フレーム信号とフレーム遅延部 1を介して 1フレーム分遅延さ せた前フレーム信号とが供給されて 、る。  In more detail, as described above, the motion vector detection unit 101 shown in FIG. 4 includes the initial displacement vector selection unit 2, the motion vector calculation unit 3, the vector memory 4, and the telop information detection unit. It is composed of 5 and The initial displacement vector selection unit 2 and the motion vector calculation unit 3 are supplied with the current frame signal and the previous frame signal delayed by one frame via the frame delay unit 1, respectively.
[0068] 初期変位ベクトル選択部 2は、前フレームの動きベクトル演算で求められた既検出 動きベクトルの中力 被検出ブロックの動きに最もふさわしい値、例えば被検出ブロッ クの動きに最も近い値の動きベクトルを、勾配法演算の起点となる初期変位ベクトル として選択する選択回路であり、前述した候補ベクトル群とテロップベクトルとの中か ら適切な動きベクトルを選択するものである。初期変位ベクトル選択部 2では、例えば 前述のように前フレーム信号を m画素 X nラインのブロックに分割し、分割されたそれ ぞれのブロック毎に初期変位ベクトルを選択する基準として、現フレーム信号と前フ レーム信号とを利用する。  [0068] The initial displacement vector selection unit 2 calculates the medium force of the already detected motion vector obtained by the motion vector calculation of the previous frame, the value most suitable for the motion of the detected block, for example, the value closest to the motion of the detected block. This is a selection circuit that selects a motion vector as an initial displacement vector as a starting point of gradient method computation, and selects an appropriate motion vector from the above-described candidate vector group and telop vector. In the initial displacement vector selection unit 2, for example, as described above, the previous frame signal is divided into blocks of m pixels Xn lines, and the current frame signal is used as a reference for selecting the initial displacement vector for each of the divided blocks. And the previous frame signal.
[0069] 初期変位ベクトル選択部 2は、例えば図 5に示すように、座標変換部 2aと減算部 2b と、絶対値累計部 2cと、選択部 2dと、テロップベクトル追加判定部 2eとを有している。 初期変位ベクトル選択部 2では、ベクトルメモリ 4から順次読み出された被検出ブロッ クに対応するブロックの周辺 8ブロックの動きベクトル、すなわち候補ベクトル群と、テ ロップ情報検出部 5から出力された 1つ以上のテロップベクトルおよびテロップ領域情 報と、前フレーム信号と、現フレーム信号とが入力される。 [0069] As shown in FIG. 5, for example, the initial displacement vector selection unit 2 includes a coordinate conversion unit 2a, a subtraction unit 2b, an absolute value accumulation unit 2c, a selection unit 2d, and a telop vector addition determination unit 2e. is doing. In the initial displacement vector selection unit 2, motion vectors of 8 blocks around the block corresponding to the detected block sequentially read from the vector memory 4, that is, candidate vector groups and 1 output from the telop information detection unit 5 Two or more telop vectors and telop area information, a previous frame signal, and a current frame signal are input.
[0070] テロップベクトル追加判定部 2eでは、 1つ以上のテロップベクトルおよびテロップ領 域情報を入力し、処理中のブロックがあるテロップ領域に該当する場合に、該テロッ プ領域におけるテロップベクトルを座標変換部 2aに出力する。また、処理中のブロッ クが複数のテロップ領域に該当する場合は、該複数のテロップ領域それぞれにおけ るテロップベクトル、すなわち複数のテロップベクトルを座標変換部 2aに出力する。  [0070] In the telop vector addition determination unit 2e, one or more telop vectors and telop area information are input, and when the block being processed corresponds to a telop area, the telop vector in the telop area is coordinate-transformed. Output to part 2a. When the block being processed corresponds to a plurality of telop areas, the telop vectors in each of the plurality of telop areas, that is, the plurality of telop vectors are output to the coordinate conversion unit 2a.
[0071] 各候補ベクトル群の各動きベクトルおよびテロップベクトル追加判定部 2eから出力 された 1つ以上のテロップベクトル力 初期変位ベクトルの候補となる。該初期変位べ タトルの候補はそれぞれの座標変換部 2aに供給されて、フレーム遅延部 1から供給 される前フレーム信号の対象ブロックをその動きベクトルにて変位させて、現フレーム への座標変換を行ない、該座標変換結果が、それぞれの減算部 2bに供給される。  [0071] Each motion vector of each candidate vector group and one or more telop vector forces output from the telop vector addition determination unit 2e are candidates for the initial displacement vector. The initial displacement vector candidates are supplied to the respective coordinate conversion units 2a, and the target block of the previous frame signal supplied from the frame delay unit 1 is displaced by the motion vector to perform coordinate conversion to the current frame. The coordinate conversion result is supplied to each subtraction unit 2b.
[0072] 尚、本実施形態においては、候補ベクトル群は、被検出ブロックの周囲 8ブロックで 検出された前フレームの動きベクトルを、被検出ブロックの初期変位ベクトル選択用 の候補ベクトル群としている力 これらの候補ベクトル群は、かかる例のみに限られる ものではなぐその他の領域の既検出の動きベクトル力 決定するように構成してもも ちろん構わない。  [0072] In this embodiment, the candidate vector group is a force that uses the motion vector of the previous frame detected in eight blocks around the detected block as the candidate vector group for selecting the initial displacement vector of the detected block. Of course, these candidate vector groups are not limited to this example, and may be configured to determine the motion vector forces already detected in other regions.
[0073] それぞれの減算部 2bでは、座標変換部 2aにて座標変換した前フレーム信号と、入 力された現フレーム信号との間で減算処理を施して、それぞれの画素毎の差分を算 出し、それぞれの差分結果を絶対値累計部 2cに供給する。それぞれの絶対値累計 部 2cでは、それぞれの画素の差分の絶対値を求めて、絶対値化した差分をブロック の画素数分累算し、その累積結果を、候補ベクトルの評価値として選択部 2dにそれ ぞれ出力する。  [0073] Each subtraction unit 2b performs a subtraction process between the previous frame signal coordinate-converted by the coordinate conversion unit 2a and the input current frame signal, and calculates a difference for each pixel. The difference results are supplied to the absolute value accumulating unit 2c. Each absolute value accumulating unit 2c calculates the absolute value of the difference of each pixel, accumulates the absolute value difference for the number of pixels of the block, and uses the accumulated result as the evaluation value of the candidate vector. Are output respectively.
[0074] 上記の手順で得られる累積結果は、 DFD (Displaced Field Difference)と呼 ばれている。 DFDとは、算出ベクトル (ここでは、候補ベクトル)の正確さの程度を示 す指標であり、 DFDの値が小さいほど、前フレームのブロックと現フレームの座標変 換されたブロックとのマッチングが良ぐ対応する候補ベクトルがよりふさわしいことを 示す。 [0074] The cumulative result obtained by the above procedure is called DFD (Displaced Field Difference). The DFD is an index indicating the degree of accuracy of the calculated vector (here, the candidate vector). The smaller the DFD value, the more the coordinates of the previous frame block and the current frame change. It shows that the corresponding candidate vector with better matching with the converted block is more suitable.
[0075] 次に、各ブロック毎にそれぞれの累積結果 (DFD)を受け取った選択部 2dは、各ブ ロックの累積結果 (DFD)を比較して、累積結果 (DFD)が最小となる候補ベクトル、 すなわち最もふさわし ヽと思われる候補ベクトルを検出して、該候補ベクトルを初期 変位ベクトルとして選択し、動きベクトル演算部 3に供給する。この時、テロップ情報 検出部 5からのテロップ領域情報を用いて、被検出ブロックがテロップ領域に該当す る場合は、テロップベクトルを優先して選ぶよう処理する。  [0075] Next, the selection unit 2d that has received each accumulated result (DFD) for each block compares the accumulated result (DFD) of each block, and the candidate vector that minimizes the accumulated result (DFD) is obtained. That is, a candidate vector that is most likely to be suitable is detected, the candidate vector is selected as an initial displacement vector, and is supplied to the motion vector calculation unit 3. At this time, using the telop area information from the telop information detection unit 5, if the detected block corresponds to the telop area, processing is performed so that the telop vector is selected with priority.
[0076] より具体的には、例えば被検出ブロックがテロップ領域に該当する場合は絶対値累 計部 2cからの出力値のうち、テロップベクトルに対する累積結果 (DFD)を小さくする ような重み付けを行う。例えば、テロップベクトルに対する累積結果に係数 w(0<w < 1)をかけることで、テロップベクトルに対する累積結果 (DFD)の値を小さくする方 法を用いることができる。  More specifically, for example, when the detected block corresponds to a telop area, weighting is performed so as to reduce the cumulative result (DFD) for the telop vector among the output values from the absolute value accumulating unit 2c. . For example, it is possible to use a method of reducing the cumulative result (DFD) value for a telop vector by multiplying the cumulative result for the telop vector by a coefficient w (0 <w <1).
[0077] なお、上記実施形態にお!、ては、テロップ情報検出部 5で検出したテロップ領域情 報とテロップベクトル情報との両方を、初期変位ベクトル選択部 2で使用する方法に ついて説明したが、いずれか片方の情報のみを用いる構成としても構わない。例え ばテロップ領域の情報のみを用いる構成の例について、図 6を用いて説明する。この 構成では、テロップベクトルは入力しないため、図 5におけるテロップベクトル追加判 定部 2eを除外している。本例では、選択部 2dにおいて、絶対値累計部 2cの出力に 対し、処理中のブロックがテロップ領域以外の場合は全画面の平均ベクトルあるいは 0ベクトルを優先させる重み付けを行 、、処理中のブロックがテロップ領域の場合は そのような重み付けを行わない。このような処理を行うことで、テロップ領域では相対 的に速いベクトルも選ばれやすくなる。すなわち動きの速いテロップに対応したベタト ルが選ばれやすくなる。  Note that in the above embodiment, the method of using both the telop area information and the telop vector information detected by the telop information detection unit 5 in the initial displacement vector selection unit 2 has been described. However, a configuration using only one of the information may be used. For example, an example of a configuration using only telop area information will be described with reference to FIG. In this configuration, since no telop vector is input, the telop vector addition determination unit 2e in FIG. 5 is excluded. In this example, in the selection unit 2d, when the block being processed is outside the telop area, the absolute value accumulation unit 2c is weighted so as to give priority to the average vector or 0 vector of the entire screen, and the block being processed If is a telop area, no such weighting is performed. By performing such processing, relatively fast vectors are easily selected in the telop area. That is, it is easy to select a solid that corresponds to a fast-moving telop.
[0078] また、例えばテロップベクトルの情報のみを用いる構成の例について、図 7を用いて 説明する。この構成では、テロップ領域情報を入力しない。このため、図 5におけるテ ロップベクトル追加判定部 2eも不要となり、全てのブロックに対して初期変位ベクトル の候補にテロップベクトルを加える。テロップの存在するブロックに対する初期変位べ タトル候補の中に、テロップベクトルと同じ或 、は近 、ベクトルが存在するかどうかは、 前フレームでのベクトル検出状況に依存しており、確実ではない。従って、別途テロッ プベクトルを候補として与えることで、より適切な初期変位ベクトルを選択する可能性 を向上させることが可能である。 Further, for example, an example of a configuration using only telop vector information will be described with reference to FIG. In this configuration, no telop area information is input. For this reason, the telop vector addition determination unit 2e in FIG. 5 is also unnecessary, and telop vectors are added to the initial displacement vector candidates for all blocks. The initial displacement for the block where the telop is present. Whether or not a telop vector is the same as or close to that of the telop vector depends on the vector detection situation in the previous frame, and is not certain. Therefore, it is possible to improve the possibility of selecting a more appropriate initial displacement vector by separately providing a telop vector as a candidate.
[0079] さらに、前述したようなテロップ領域情報、テロップベクトル情報の利用方法の 1つ 以上を任意に組み合わせて用いても良 、ことは言うまでもな 、。  [0079] Furthermore, it goes without saying that one or more of the above-described methods for using telop area information and telop vector information may be used in any combination.
[0080] 動きベクトル演算部 3では、それぞれのブロック毎に動きベクトルを検出するために 、現フレーム信号と前フレーム信号とを利用し、初期変位べ外ル選択部 2から供給さ れた初期変位ベクトルを起点として、前フレーム信号からの現フレーム信号への真の 動きベクトルを、勾配法演算より求める演算回路である。なお、勾配法演算による動き ベクトル算出方法については、前述した各特許文献、非特許文献に詳しいので、ここ ではその説明を省略するが、初期変位ベクトル力 本実施形態においてどのように使 われるかについて、反復勾配法を例にとって以下に説明する。  The motion vector calculation unit 3 uses the current frame signal and the previous frame signal to detect a motion vector for each block, and uses the initial displacement supplied from the initial displacement vector selection unit 2. This is an arithmetic circuit that uses the gradient method to calculate the true motion vector from the previous frame signal to the current frame signal, starting from the vector. Note that the motion vector calculation method by the gradient method calculation is detailed in each of the above-mentioned patent documents and non-patent documents, so the description thereof is omitted here, but the initial displacement vector force is used in this embodiment. An iterative gradient method will be described below as an example.
[0081] 例えば、勾配法演算は、初期変位ベクトル VO ( α , β )にて前フレーム信号を変位 させた座標位置を起点にして、現フレームの動き量を推定した動き変位分 VIを、次 式(1) , (2)に従って求める。  [0081] For example, in the gradient method calculation, the motion displacement VI, in which the motion amount of the current frame is estimated from the coordinate position obtained by displacing the previous frame signal with the initial displacement vector VO (α, β), is Obtained according to equations (1) and (2).
[0082] [数 1] 式 (ι ) [0082] [Equation 1] Formula (ι)
[0083] [数 2]  [0083] [Equation 2]
Vy =∑ (sign(Ay) - DFD(x, ^)) /∑ | | …式 ( 2 ) Vy = ∑ (sign (Ay)-DFD (x, ^)) / ∑ | | Equation (2)
[0084] 但し、式(1) , (2)において、 Vxは動きベクトル VOと VIとの差の X方向成分、 Vyは 動きベクトル VOと VIとの差の y方向成分である。ここで、∑は、 m画素 X nライン、例 えば 8画素 X 8ラインのブロック領域内の全ての座標について演算して和を求めるこ とを表している。また、 Δ χは注目座標における画像輝度の X方向の勾配 (X方向の隣 接画素との差分値)、 Δ yは注目座標における画像輝度の y方向の勾配 (y方向の隣 接画素との差分値)、 DFD (x, y)は前フレームの座標 (X, y)と現フレームの座標 (X + a , y+ β )とにおけるフレーム間差分値を示すものであり、前述したものと同一の 算出方法である。また、 sign ( Δ χ)、 sign ( Ay)はそれぞれ、 + 1, —1, 0のいずれか にて表わされる勾配の方向を示す符号である。 [0084] However, in equations (1) and (2), Vx is the X direction component of the difference between the motion vectors VO and VI, and Vy is the y direction component of the difference between the motion vectors VO and VI. Here, ∑ represents that a sum is obtained by calculating all the coordinates in the block area of m pixels Xn lines, for example, 8 pixels X 8 lines. Δ χ is the gradient in the X direction of the image luminance at the target coordinate (difference value from the adjacent pixel in the X direction), and Δ y is the gradient in the y direction of the image luminance at the target coordinate (with the adjacent pixel in the y direction). Difference), DFD (x, y) is the coordinates of the previous frame (X, y) and the coordinates of the current frame (X + a, y + β) and the inter-frame difference value, which is the same calculation method as described above. Also, sign (Δχ) and sign (Ay) are signs indicating the direction of the gradient represented by either +1, —1, or 0, respectively.
[0085] 例えば、 2回の反復勾配法の場合、図 8に示すように、初期変位ベクトルを VOとして[0085] For example, in the case of two iteration gradient methods, the initial displacement vector is set to VO as shown in Fig. 8.
、 1回目の変位分 VI及び 2回目の変位分 V2を求めて、それらをベクトル加算した動 きベクトル Vを、次の式(3)により求める。 The first displacement VI and the second displacement V2 are obtained, and a motion vector V obtained by adding them is obtained by the following equation (3).
[0086] [数 3] [0086] [Equation 3]
V=VO+V1 +V2 …式 (3 ) V = VO + V1 + V2 ... Formula (3)
[0087] 式(3)により、図 9に示すように、前フレームにて座標(ml, nl)のブロックに存在し て 、た画像力 現フレームにお!/、て座標(ml + α θ, nl + j8 0)の座標位置のブロッ クに移動した際に、その動き量が、ベクトル Vとして求められる。ここで、図 9は、 1フレ ーム前の前フレームと現フレームとの間で移動した画像の動きベクトル Vを具体的に 説明するための模式図である。 [0087] As shown in FIG. 9, according to the equation (3), the image power existing in the block of the coordinates (ml, nl) in the previous frame and the coordinates of the image frame in the current frame (ml + α θ , nl + j8 0), the amount of movement is calculated as vector V when moving to the block at the coordinate position. Here, FIG. 9 is a schematic diagram for specifically explaining the motion vector V of the image moved between the previous frame and the current frame one frame before.
[0088] このようにして、図 4における動きベクトル演算部 3で求められた動きベクトル Vは、 ベクトルメモリ 4に蓄積され、次のフレーム以降の動きベクトル算出のために用いる初 期変位ベクトル選択用の候補ベクトルとして利用される。  In this way, the motion vector V obtained by the motion vector calculation unit 3 in FIG. 4 is stored in the vector memory 4 and is used for selecting an initial displacement vector used for calculating a motion vector in the next frame and thereafter. Is used as a candidate vector.
[0089] 以上のように、画面全体の動き特徴を抽出し、画面全体の動き特徴に基づいて補 償した初期変位ベクトルを適用することにより、初期変位ベクトルの誤検出を防ぎ、例 えば 2回程度の少ない反復勾配法による演算回数で、現フレーム信号のブロック毎 の真の動きベクトルを正しく算出することが可能になる。  [0089] As described above, by extracting the motion characteristics of the entire screen and applying the initial displacement vector compensated based on the motion characteristics of the entire screen, erroneous detection of the initial displacement vector is prevented, for example, twice. It is possible to correctly calculate the true motion vector for each block of the current frame signal with a small number of computations by the iterative gradient method.
[0090] ここで、動きベクトル演算部 3にはテロップ情報検出部 5からの 1つ以上のテロップ 領域情報が入力されており、被検出ブロックがテロップ領域に該当する場合に、特別 な処理を行っても良い。例えば、テロップベクトルの方向が水平方向であった場合、 X 値のみで反復勾配法を実施し、最終的に得られる動きベクトルを水平方向の動きに 限定しても良い。あるいは、テロップベクトルの方向が垂直方向であった場合、 y値の みで反復勾配法を実施し、最終的に得られる動きベクトルを垂直方向の動きに限定 しても良い。これは、テロップベクトルの方向に従って演算を行うことで、テロップの動 きにより追従させやすくするためである。 Here, one or more telop area information from the telop information detection unit 5 is input to the motion vector calculation unit 3, and special processing is performed when the detected block corresponds to the telop area. May be. For example, if the direction of the telop vector is the horizontal direction, the iterative gradient method may be performed using only the X value, and the final motion vector may be limited to the horizontal direction. Alternatively, when the direction of the telop vector is the vertical direction, the iterative gradient method may be performed using only the y value, and the finally obtained motion vector may be limited to the vertical direction. This is based on the direction of the telop vector. This is to make it easier to follow.
[0091] 尚、上記の説明では、動きベクトル演算部 3における動きベクトルの算出方法として は、 1乃至複数回の勾配法演算を用いる反復勾配法を採用しているが、これに限るも のではなぐパターンマッチング法やその他の演算方法を用いても良い。  [0091] In the above description, as the motion vector calculation method in the motion vector calculation unit 3, the iterative gradient method using one or more gradient method operations is adopted. However, the present invention is not limited to this. A pattern matching method and other calculation methods may be used.
[0092] ベクトルメモリ 4は、各ブロック毎に既に検出された少なくとも 1フレーム分の動きべク トルを蓄積する RAM (Random Access Memory)などを含む記憶部であり、その 入力端子が動きベクトル演算部 3の出力端子に接続されていて、例えば 8画素 X 8ラ インに分割された各ブロックの位置に応じたアドレスに、動きベクトル演算部 3にて該 当ブロックで検出された動きベクトルを順次更新して蓄積するように構成されて 、る。  [0092] The vector memory 4 is a storage unit including a RAM (Random Access Memory) that accumulates at least one frame of motion vectors already detected for each block, and its input terminal is a motion vector calculation unit. For example, the motion vector calculation unit 3 sequentially updates the motion vector detected in the corresponding block at the address corresponding to the position of each block divided into 8 pixels x 8 lines. And is configured to accumulate.
[0093] 上述の手順により、動きベクトル検出部 101から各ブロック毎の動きベクトル検出結 果が出力される。  The motion vector detection result for each block is output from the motion vector detection unit 101 by the above-described procedure.
[0094] そして、内挿フレーム生成部 102では、各ブロック毎の動きベクトル検出結果を用 いて、内挿画像を生成する。この時、画面の全領域において動きベクトルを用いた内 挿画像生成を行っても良いし、また、テロップ領域では動きベクトルを用いた内挿画 像生成を行い、その他の領域では動きベクトルを用いた内挿画像生成を行わず、例 えば前フレーム或いは後フレームと同じ画像を繰り返し出力するようにしても良 、。  [0094] Then, the interpolation frame generation unit 102 generates an interpolation image using the motion vector detection result for each block. At this time, the interpolation image generation using the motion vector may be performed in the entire area of the screen, the interpolation image generation using the motion vector is performed in the telop area, and the motion vector is used in the other areas. For example, the same image as the previous frame or the subsequent frame may be repeatedly output without generating the interpolated image.
[0095] すなわち、テロップが検出されていない時は、画面全体にわたって動き補償処理を 行わず、テロップが検出されている時は、テロップ領域に対してのみ動き補償処理を 行 、、それ以外の領域に対しては動き補償処理を行わな 、ようにしても良 、。  That is, when no telop is detected, motion compensation processing is not performed on the entire screen, and when telop is detected, motion compensation processing is performed only on the telop region, and other regions are detected. It is okay if no motion compensation processing is performed.
[0096] 前述のように、通常カメラによって撮影された被写体は、その動きが速い場合には カメラの光蓄積時間に起因するボケ (カメラボケ)を含む。元々存在するカメラボケが 多ければ、 FRCによって動きボケを低減したとしてもその効果はわ力りにくい。これに 対して、テロップは後から画像合成されたものであるため、その動きが速くてもカメラ ボケなどは含まれず、 FRCによる動きボケ改善効果が高い。よって、テロップ領域の みで動き補償処理を行うだけでも、視覚的には大きな改善効果を得ることができ、且 つ、内挿画像生成処理をテロップ領域のみに限定することで、内挿画像を生成する ための処理量を削減することができる。  As described above, a subject photographed by a normal camera includes a blur (camera blur) caused by the light accumulation time of the camera when the movement is fast. If there are many camera blurs that originally exist, even if the motion blur is reduced by FRC, the effect is difficult to understand. On the other hand, since the telop is composed of images afterwards, camera blur is not included even if the motion is fast, and the motion blur improvement effect by FRC is high. Therefore, even if motion compensation processing is performed only in the telop area, a large improvement effect can be obtained visually, and the interpolation image generation processing is limited to the telop area, so that the interpolated image can be obtained. The amount of processing to generate can be reduced.
[0097] また、このようにテロップ領域のみに対して動き補償による内挿画像生成を行った 場合、テロップ領域とそれ以外の領域との境界において動き補償処理の有無が明ら かに画像に現れて目立つ場合がある。これを軽減するために、テロップ領域とそれ以 外の領域との境界部分に対してはローノ スフィルタをかける等のフィルタ処理を行う ことにより、動き補償処理の強度を連続的に変化させて境界が目立つのを抑制する ことが望ましい。 [0097] Further, in this way, an interpolated image is generated by motion compensation for only the telop area. In some cases, the presence or absence of motion compensation processing clearly appears in the image at the boundary between the telop area and the other areas. In order to reduce this, the boundary between the telop area and the other areas is subjected to filter processing such as applying a Lonos filter to continuously change the strength of the motion compensation processing. It is desirable to suppress the conspicuousness.
[0098] ここで、動き補償内挿処理を施さないテロップ領域以外の領域に対しては、上述し たとおり、動き補償内挿処理を行うのではなぐ同一フレームの画像信号を高速連続 出力して、すなわち、入力画像信号のフレーム間に、該フレームの画像信号を挿入 することにより、フレームレート変換するようにしても良いし、或いは、前後フレームか ら線形補間処理により生成した画像を内挿して、すなわち、入力画像信号のフレーム 間に、線形補間処理を施した画像信号を内挿することにより、フレームレート変換す るようにしても良い。尚、線形補間処理とは、前後フレームの画像信号から、フレーム 内挿比 aによる線形補間により内挿フレームを得るものである。  Here, for regions other than the telop region that is not subjected to motion compensation interpolation processing, as described above, image signals of the same frame that are not subjected to motion compensation interpolation processing are output continuously at high speed. That is, the frame rate may be converted by inserting the image signal of the frame between the frames of the input image signal, or an image generated by linear interpolation processing from the previous and subsequent frames may be interpolated. That is, the frame rate may be converted by interpolating the image signal subjected to the linear interpolation process between the frames of the input image signal. In the linear interpolation process, an interpolation frame is obtained from the image signals of the previous and subsequent frames by linear interpolation with a frame interpolation ratio a.
[0099] (2)テロップ情報検出方法の例  [0099] (2) Example of telop information detection method
上述のとおり、テロップ情報検出部 5では、ベクトルメモリ 4に蓄積された前フレーム の動きベクトル演算で求められた既検出動きベクトルを用いて、テロップ情報を検出 する。このテロップ情報検出部 5の具体的な実現方法の一例について、以下詳細に 説明する。  As described above, the telop information detection unit 5 detects the telop information using the already detected motion vector obtained by the motion vector calculation of the previous frame stored in the vector memory 4. An example of a specific method for realizing the telop information detection unit 5 will be described in detail below.
[0100] テロップ検出に使える情報は、ベクトルメモリ 4に蓄積された各動き検出ブロックの 動きベクトルと、各動き検出ブロックのテクスチャの情報のみである。このうち、テロッ プの色は様々であるため、テクスチャの情報は補助的にし力使えない。このため、各 動き検出ブロックの動きベクトルの情報から、テロップ領域情報とテロップベクトル情 報とを検出することが必要となる。  [0100] Information that can be used for telop detection is only the motion vector of each motion detection block stored in the vector memory 4 and the texture information of each motion detection block. Of these, the colors of the telop vary, so the texture information is auxiliary and cannot be used. For this reason, it is necessary to detect telop area information and telop vector information from the motion vector information of each motion detection block.
[0101] また、映像の中には、テロップ以外にも例えば人物や自動車などの様々な動いて V、るオブジェクトが存在する。カメラのパンによって画面全体が相対的に動 、て!/、る 場合もある。このため、例えば動きの速い領域がテロップ領域であるといったような単 純な判定、すなわち動きベクトルの絶対量力 テロップか否かを判定することは困難 である。 [0102] このため、本実施形態においては、画面全体の平均ベクトルと各動き検出ブロック の動きベクトルの差分量、動きベクトルの平均偏差といった、統計的な情報を用いて テロップ領域とテロップ速度とを検出する。 [0101] In addition to the telop, there are various moving objects such as people and cars in the video. The entire screen moves relative to the camera pan! /, Sometimes. For this reason, it is difficult to determine, for example, a simple determination that a fast-moving region is a telop region, that is, whether the motion vector is an absolute force telop. Therefore, in this embodiment, the telop area and the telop speed are calculated using statistical information such as the difference between the average vector of the entire screen and the motion vector of each motion detection block, and the average deviation of the motion vectors. To detect.
[0103] 図 10は、画像をベクトル検出のためのブロックに分解した様子を示している。画像 全体の大きさは、幅 Waピクセル、高さ Haピクセルである。この画像を、幅 Wbピクセ ル、高さ Hbピクセルの動き検出ブロックで分割すると、ブロック数は横 mブロック、縦 n ブロックである。通常、画像全体のピクセル数は整数のブロック数で割り切れるように する。すなわち、 Wa=WbXm、 Ha=HbXnである。  [0103] Fig. 10 shows a state in which an image is decomposed into blocks for vector detection. The overall size of the image is Wa pixels wide and Ha pixels high. When this image is divided into motion detection blocks with a width of Wb pixels and a height of Hb pixels, the number of blocks is m horizontal blocks and n vertical blocks. Normally, the total number of pixels in an image is divisible by an integer number of blocks. That is, Wa = WbXm and Ha = HbXn.
[0104] 例えば、ハイビジョン解像度(Wa= 1920ピクセル、 Ha = 1080ピクセル)の画像で 、ブロックの大きさが 8X8ピクセルの場合、 m=240、 n= 135となる。各動き検出ブ ロックを B(i, j)と呼び、各動き検出ブロックで検出された動きベクトルを (V—x(i, j), V_y(i, j))とする。  [0104] For example, in a high-definition resolution image (Wa = 1920 pixels, Ha = 1080 pixels) and the block size is 8X8 pixels, m = 240 and n = 135. Each motion detection block is called B (i, j), and the motion vector detected by each motion detection block is (V−x (i, j), V_y (i, j)).
[0105] ここで、テロップは水平方向に動くものが多いため、本実施形態では、水平方向に 動くテロップを検出対象とする。水平方向に動くテロップは、図 11に示すように、画面 上では横長の帯状の領域に位置することになる。そこで、図 12に示すように、画面を 横長の帯状の領域 L (1)カゝら L (n)の n個に分割し、それぞれの領域がテロップを含 むか否かを判定する。  Here, since many telops move in the horizontal direction, in this embodiment, telops that move in the horizontal direction are set as detection targets. As shown in Fig. 11, the telop that moves in the horizontal direction is located in a horizontally long belt-like area on the screen. Therefore, as shown in FIG. 12, the screen is divided into n horizontally long strip-shaped regions L (1) to L (n), and it is determined whether or not each region includes a telop.
[0106] 帯状領域 L(j)は、図 10における動き検出ブロック B(l, j)力も B(m, j)を含む。 L(j )に含まれる動き検出ブロックの動きベクトルの平均ベクトルを、(Vave— x(j), Vave _y(j))とすると、  [0106] The belt-like region L (j) includes the motion detection block B (l, j) force in FIG. 10 as well as B (m, j). If the average vector of motion vectors of motion detection blocks included in L (j) is (Vave—x (j), Vave_y (j)),
[0107] [数 4]  [0107] [Equation 4]
Vave _ x(j) x(i, j) …式 (4)Vave _ x (j) x (i, j) ... Equation (4)
[0108] [数 5] νανβ_γα) = …式 (5)[Equation 5] νανβ_γα) =… Equation (5)
[0109] である。 [0110] また、全動き検出ブロックの動きベクトルの平均ベクトル(全体平均ベクトル)を、(V ave― X, Vave― y)とするとゝ [0109]. [0110] If the average vector (overall average vector) of motion vectors of all motion detection blocks is (V ave-X, Vave-y),
[0111] 園 [0111] Garden
Vave :c =丄 y ove ( ) = J- Y x(i, j) …式 (6 ) Vave: c = 丄 y ove () = J- Y x (i, j)… Equation ( 6 )
n mn f=1 i=1 n mn f = 1 i = 1
[0112] [数 7] [0112] [Equation 7]
Vave_y = -†^ Vave _ y(j) =—∑∑V _ y(i, j) …式 (7 ) Vave_y =-† ^ Vave _ y (j) = —∑∑V _ y (i, j)… Equation ( 7 )
ft j- ΪΪΙΥΙ f~i f=\ ft j- ΪΪΙΥΙ f ~ if = \
[0113] である。 [0113]
[0114] さてここで、図 13に示すように、画面をテロップが含まれる領域とそれ以外の領域と に分けて考える。画面の高さを 1とした場合のテロップ領域の高さを kとする。ただし、 テロップ領域が画面の半分を超えることは無いと仮定する。すなわち、  [0114] Now, as shown in FIG. 13, the screen is divided into an area including a telop and an area other than that. The height of the telop area when the screen height is 1 is k. However, it is assumed that the telop area does not exceed half of the screen. That is,
[0115] [数 8]  [0115] [Equation 8]
0≤k<0. 5 式 ( 8 ) 0≤k <0. 5 Equation (8)
[0116] と仮定する。また、テロップ以外の領域の高さは 1—kとなる。なお、テロップ以外の領 域がテロップ領域によって 2つ以上に分割されているときは、それぞれの高さを加え るちのとする。 Assume that [0116]. The area other than the telop is 1-k. In addition, when the area other than the telop is divided into two or more by the telop area, each height is added.
[0117] 次に、テロップ領域に含まれる動き検出ブロックの動きベクトルの平均を (Vt—x, V t_y)、テロップ以外の領域 (本願明細書では背景領域と呼ぶ)に含まれる動き検出 ブロックの動きベクトルの平均を(Vb—x, Vb— y)とすると、テロップ領域の平均べク トル、テロップ以外の領域の平均ベクトル、および画面全体の平均ベクトルとの間に は、  [0117] Next, the average of the motion vectors of the motion detection blocks included in the telop area is (Vt-x, V t_y), and the motion detection block included in the area other than the telop (referred to as the background area in the present specification) If the average motion vector is (Vb—x, Vb—y), the average vector of the telop area, the average vector of the area other than the telop, and the average vector of the entire screen are
[0118] [数 9]  [0118] [Equation 9]
Vave_ x= kVt x+ ( 1 -k) Vb x …式 (9 ) Vave_ x = kVt x + (1 -k) Vb x… Equation (9)
[0119] [数 10] Vave_y = kVt_y + ( 1 -k)Vb_y …式 (i o ) [0119] [Equation 10] Vave_y = kVt_y + (1 -k) Vb_y… Equation (io)
[0120] という関係が成り立つ。 [0120] The relationship is established.
[0121] 実際は、テロップ領域内の全てのブロックがテロップの移動速度と同一の動きべタト ルを持つとは限らない。例えばテロップの文字が途切れている部分のブロックは、テ 口ップの移動速度以外の動きベクトルを持つ。し力しながら、本実施形態では、テロッ プ領域内のブロックは全てテロップの移動速度を持つとひとまず仮定し、以下の説明 を進める。この仮定については後述する。  [0121] Actually, not all blocks in the telop area have the same movement level as the movement speed of the telop. For example, a block where a telop character is interrupted has a motion vector other than the moving speed of the telop. However, in the present embodiment, for the time being, it is assumed that all the blocks in the telop area have the moving speed of the telop, and the following explanation proceeds. This assumption will be described later.
[0122] 本実施形態においては、水平方向に動くテロップを検出対象としているため、以下 では各平均ベクトルについても水平方向の値、すなわちベクトルの X値に注目して説 明を進める。  [0122] In the present embodiment, since the telop moving in the horizontal direction is set as the detection target, the following description will be made focusing on the horizontal value of each average vector, that is, the X value of the vector.
[0123] 式(9)におけるテロップ領域の平均ベクトル Vt—x、テロップ以外の領域の平均べ タトル Vb— x、および全体平均ベクトル Vave—xの関係を図示すると、図 14、図 15 に示すようになる。  [0123] The relationship between the average vector Vt—x of the telop area, the average vector Vb— x of the area other than the telop, and the overall average vector Vave—x in Equation (9) is shown in FIG. 14 and FIG. become.
[0124] 図 14は、 Vb— Xく Vt— Xの場合を図示したものである。 Vave— xは Vb— xと Vt— xとの間に位置し、 Vb— Xと Vave— Xとの間の距離と、 Vave— xと Vt— xとの間の距 離との比は、 k: 1— kになる。この関係は、 Vave— x、 Vb— x、 Vt— xの値の大きさや 正負によらず成り立つ。また、式 (8)の条件より、  FIG. 14 illustrates the case of Vb—X and Vt—X. Vave—x is located between Vb—x and Vt—x, and the ratio between the distance between Vb—X and Vave—X and the distance between Vave—x and Vt—x is k: 1—k. This relationship holds regardless of the magnitude or sign of Vave—x, Vb—x, and Vt—x. From the condition of equation (8),
[0125] [数 11] k< 1— k …式 (1 1 )  [0125] [Equation 11] k <1— k ... Formula (1 1)
[0126] が常に成り立つ。よって、 Vb— Xと Vave— Xとの間の距離は、常に Vave— xと Vt— x との間の距離より小さい。 [0126] always holds. Thus, the distance between Vb—X and Vave—X is always less than the distance between Vave—x and Vt—x.
[0127] 図 15は、 Vt— Xく Vb— Xの場合を図示したものである。 Vave— xは Vt— xと Vb— xとの間に位置し、 Vt— Xと Vave— Xとの間の距離と、 Vave— xと Vb— xとの間の距 離との比は、 1 k: k〖こなる。この関係は、 Vave— x、 Vt— x、 Vb— xの値の大きさや 正負によらず成り立つ。また、式 (8)の条件より式(11)が常に成り立つ。よって、図 1 4の場合と同様、 Vt Xと Vave xとの間の距離は、常に Vave xと Vb xの間の 距離より小さい。 FIG. 15 shows the case of Vt—X and Vb—X. Vave—x is located between Vt—x and Vb—x, and the ratio between the distance between Vt—X and Vave—X and the distance between Vave—x and Vb—x is 1 k: k 〖 This relationship holds regardless of the magnitude or sign of Vave—x, Vt—x, and Vb—x. Also, equation (11) always holds from the condition of equation (8). Thus, as in Figure 14, the distance between Vt X and Vave x is always between Vave x and Vb x. Less than distance.
[0128] すなわち、 Vb— X < Vt— xの場合でも Vt— x < Vb— xの場合でも、 Vb— xと Vave [0128] That is, even if Vb— X <Vt— x and Vt— x <Vb— x, Vb— x and Vave
—xとの間の距離は、常に Vave— Xと Vt—xとの間の距離より小さい。つまり、 The distance between —x is always less than the distance between Vave—X and Vt—x. That means
[0129] [数 12] [0129] [Equation 12]
I Vb― X— Vave― x | < | Vt—x— Vave― x | …式(1 2 ) I Vb― X— Vave― x | <| Vt—x— Vave― x |… Formula (1 2)
[0130] が常に成り立つ。 [0130] always holds.
[0131] そこで、ある閾値 Tを用意し、  [0131] Therefore, a threshold T is prepared,
[0132] [数 13]  [0132] [Equation 13]
I Vb― X— Vave― x | <T< | Vt― x— Vave― x | …式(1 3 ) I Vb― X― Vave― x | <T <| Vt― x― Vave― x |… (1 3)
[0133] となるように定める。この閾値 Tを用いて、図 12における各帯状領域 Ljに含まれる動 き検出ブロックの動きベクトルの平均ベクトル X値 Vave— x (j)に関して、 Vave_x (j) と Vave— xとの距離と閾値 Tとを比較し、 Τより大きければ、その帯状領域 Ljはテロッ プ領域に属する可能性の高い領域であると判定することができる。すなわち、ある帯 状領域 Ljに関して、 [0133] It is determined to be Using this threshold T, the distance between Vave_x (j) and Vave— x and the threshold for the average vector X value Vave— x (j) of the motion detection block included in each band Lj in FIG. Compared with T, if it is larger than Τ, it can be determined that the band-like region Lj is likely to belong to the telop region. That is, for a certain band region Lj,
[0134] [数 14]  [0134] [Equation 14]
T< I Vave― x (j)— Vave― x | …式(1 4 ) [0135] が成り立つと、その帯状領域をテロップ領域と判定する。 T <I Vave—x (j) —Vave—x | (1 4) [0135] When the following expression is established, the band-like area is determined as a telop area.
[0136] ここで問題となるのは、閾値 Tをどのように設定するかということである。以下でその 方法について説明する。  [0136] The problem here is how to set the threshold T. The method is described below.
[0137] 閾値 Tの設定条件は、式(13)に示した通りである。この式(13)から、閾値 Tを決め るためには、 I Vb— X— Vave— X |と | Vt—x— Vave— x |とに関する情報が必要 であることがわかる力 Vt—xと Vb—xとを直接求めることはできない。なぜなら、どの 領域がテロップ領域である力、予めわからな 、からである。 [0137] The setting condition of the threshold T is as shown in the equation (13). From this equation (13), it can be seen that in order to determine the threshold T, information on I Vb— X— Vave— X | and | Vt—x— Vave— x | Vb—x cannot be obtained directly. This is because the power of which region is a telop region is not known in advance.
[0138] ここで、 I Vb—x— Vave— X |と | Vt—x— Vave— x |とはそれぞれ、全体平均 ベクトルと背景領域の平均ベクトルとの差分、全体平均ベクトルとテロップ領域との平 均ベクトルの差分であり、その値は動きベクトルのばらつき具合と関連が深い。そこで[0138] where I Vb—x— Vave— X | and | Vt—x— Vave— x | is the difference between the global average vector and the average vector of the background area, and the global average vector and the telop area, respectively. flat This is the difference between the average vectors, and its value is closely related to the degree of motion vector variation. Therefore
、データのばらつきの尺度の 1つである平均偏差を用いて、閾値 Tの値を決めること にする。 The threshold value T is determined by using the average deviation, which is one of the measures of data dispersion.
[0139] 各帯状領域 Ljの平均ベクトル Vave— x(j)の平均偏差を Mとすると、 Mは、  [0139] The average vector Vave of each strip region Lj— If the average deviation of x (j) is M, M is
[0140] [数 15] …式 (1 5 )[0140] [Equation 15]… Formula (1 5)
[0141] によって算出される。平均偏差 Mに定数 αをかけ、 [0141] Multiply the average deviation M by a constant α
[0142] [数 16] [0142] [Equation 16]
Τ=ひ Μ …式 (1 6 ) Τ = ひ Μ… Formula (1 6)
[0143] と置き、以下のようにして適切な定数 aを求める。 [0143] Find the appropriate constant a as follows.
[0144] まず、 Vb— Xく Vt— Xの場合について考える。この時、平均偏差 Mを Vt— x、 Vb_ xを用いて表すと、  [0144] First, consider the case of Vb—X and Vt—X. At this time, if the average deviation M is expressed using Vt—x and Vb_x,
[0145] [数 17] = (Vt_x- Vave_x) k+ (Vave_x- Vb_x) (1— k) …式 ( l 7 ) [0145] [Equation 17] = (Vt_x- Vave_x) k + (Vave_x- Vb_x) (1— k)… Equation (l 7)
[0146] と表せる。式(17)に式(9)を代入して整理すると、 [0146] Substituting equation (9) into equation (17) and rearranging,
[0147] [数 18] [0147] [Equation 18]
M = 2k( 1 - k) (Vt__x-Vb_x) …式 (i s ) M = 2k (1-k) (Vt__x-Vb_x)… Equation (i s)
[0148] が得られる。 [0148] is obtained.
[0149] 式(13)および式(16)から、  [0149] From Equation (13) and Equation (16),
[0150] [数 19]  [0150] [Equation 19]
|Vb— X— Vave一 X | < Qr < | Vt— x— Vave— x | …式 (1 9 ) [0151] である。 | Vb—X—Vave one X | <Qr <| Vt— x— Vave— x |… Equation (1 9) [0151].
[0152] 一方、 Vb— x<Vt xの条件および式(9)から、 [0153] [数 20] [0152] On the other hand, from the condition of Vb— x <Vt x and Equation (9), [0153] [Equation 20]
|Vb_x-Vave_x | =|k(Vt_x-Vb_x) | =k(Vt_x— Vb— x) …式 ( 2 0 ) | Vb_x-Vave_x | = | k (Vt_x-Vb_x) | = k (Vt_x— Vb— x)… Formula (2 0)
[0154] [数 21] …式 (2 1 ) [0154] [Equation 21] ... Formula (2 1)
[0155] が得られる。 [0155] is obtained.
[0156] 式(19)に式(18)、式(20)、式(21)を代入して整理すると、  [0156] Substituting equation (18), equation (20), and equation (21) into equation (19),
[0157] [数 22]  [0157] [Equation 22]
< a <— …式 (2 2 ) <a <—… Formula (2 2)
2(1- k) 2k  2 (1-k) 2k
[0158] という条件式が得られる。 The conditional expression “0158” is obtained.
[0159] 尚、詳細な記述は省くが、 Vt— x< Vb— Xの場合も条件式として式(22)が得られる  [0159] Although detailed description is omitted, Expression (22) is obtained as a conditional expression even in the case of Vt—x <Vb—X.
[0160] 式(22)によって、テロップ領域の高さ kを仮定することで、定数 aの値を定めること ができる。仮に、 k=0. 2とした場合、式(22)に代入して、 [0160] The value of the constant a can be determined by assuming the height k of the telop area according to equation (22). If k = 0.2, substitute into equation (22),
[0161] [数 23] [0161] [Equation 23]
0. 625く く 2. 5 …式 (2 3 ) 0. 625 2 2.5 ... Formula (2 3)
[0162] という条件が得られる。定数 αをこの範囲内に設定すれば、 k=0. 2程度のテロップ 領域が存在する場合に、それを検出することができる。 The condition [0162] is obtained. If the constant α is set within this range, it is possible to detect a telop area of about k = 0.
[0163] また、仮に k=0. 4とした場合、同様に式(22)に代入して、 [0163] Also, if k = 0.4, it is similarly substituted into equation (22),
[0164] [数 24] [0164] [Equation 24]
0. 833 < < 1 . 25 …式 (2 4 ) 0. 833 <<1.25… Formula (2 4)
[0165] という条件が得られる。すなわち、より幅の広いテロップ領域が存在する場合まで対 応しょうとすると、定数 aの設定可能範囲は狭くなることがわかる。 The condition [0165] is obtained. In other words, if we try to deal with the case where there is a wider telop area, we can see that the settable range of constant a becomes narrower.
[0166] 以上のように、テロップ領域の高さ kの値を仮定することで、定数 aの設定可能範囲 を導くことができる。実際の映像を解析してテロップ領域の高さ kの傾向を求めて kを 定め、それによつて求まった定数 αの設定可能範囲に従って、定数 αを定めればよ い。 [0166] As described above, by assuming the value of the height k of the telop area, the settable range of the constant a Can guide you. Analyze the actual video to determine the tendency of the height k of the telop area, determine k, and determine the constant α according to the settable range of the constant α obtained by that.
[0167] 定数 αを定め、また式(15)より平均偏差 Μを求めれば、式(16)から閾値 Τの値を 決定することができる。ここで、平均偏差 Μは、検出された動きベクトル力も算出され ることに注意が必要である。すなわち、検出された動きベクトルの状況によって、つま りは映像中のオブジェクトの動きによって、閾値 Τの値は毎フレームごとに変わる。  [0167] If the constant α is determined and the average deviation Μ is obtained from the equation (15), the value of the threshold Τ can be determined from the equation (16). Here, it should be noted that the average deviation Μ also calculates the detected motion vector force. That is, the value of the threshold value 変 わ る changes every frame depending on the state of the detected motion vector, that is, the motion of the object in the video.
[0168] 閾値 Τの値が求まれば、式(14)に従って、各帯状領域 Ljの平均ベクトルの X値 Vav e_x (j)に対する判定処理を行い、該帯状領域がテロップ領域であるか否かを判定 することができる。  [0168] Once the value of threshold value Τ is obtained, a determination process is performed on the X value Vav e_x (j) of the average vector of each strip region Lj according to Equation (14), and whether or not the strip region is a telop region Can be determined.
[0169] さらに、各帯状領域 Ljに対して判定を行い、どの帯状領域がテロップ領域であるか が確定すれば、テロップ領域に含まれる動き検出ブロックの動きベクトルの平均 (Vt _x, Vt_y)を算出することができる。これがすなわち、テロップベクトルである。  [0169] Further, when each band-like area Lj is determined and it is determined which band-like area is the telop area, the average (Vt_x, Vt_y) of the motion vectors of the motion detection blocks included in the telop area is determined. Can be calculated. This is the telop vector.
[0170] ここで、上述した説明の中で、テロップ領域内のブロックは全てテロップの速度を持 つと仮定したことについて考察をカ卩える。実際はテロップ領域内の全てのブロックが テロップの速度と同一の動きベクトルを持つとは限らない。テロップ領域中でテロップ の文字を含まないブロックが多いほど、例えばテロップの文字が疎に存在する場合は 、テロップ領域の平均ベクトル Vt—xは、真のテロップベクトルよりも、全体平均べタト ル Vave— Xに近い値となる。また同時に、テロップ以外の領域の平均ベクトル Vb—x も、全体平均ベクトル Vave— Xに近い値となる。すなわち、 I Vt— x—Vave— X |も I Vb—x— Vave— X |も、値が小さくなる。  [0170] Here, in the above description, it can be considered that all the blocks in the telop area are assumed to have the telop speed. Actually, not all blocks in the telop area have the same motion vector as the telop speed. The more blocks that do not contain telop characters in the telop area, for example, when telop characters are sparse, the average vector Vt—x in the telop area is larger than the true telop vector. — A value close to X. At the same time, the average vector Vb—x in the area other than the telop is close to the overall average vector Vave—X. That is, both I Vt—x—Vave—X | and I Vb—x—Vave—X |
[0171] このこと力ら、式(13)あるいは式(19)によって設定範囲が制限されている閾値丁の 値も小さく設定する、すなわち Oの値を小さく設定しなければ、テロップ領域を検出 することができなくなる。しかし、閾値 Tを小さくすると、テロップではない領域が誤検 出される可能性も増加する。  [0171] Based on this fact, the telop area is detected if the threshold value whose setting range is limited by Equation (13) or Equation (19) is also set small, that is, if the value of O is not set small. I can't do that. However, if the threshold value T is reduced, the possibility that a non-telop area will be erroneously detected increases.
[0172] 一方、テロップ領域中でテロップの文字を含まな 、ブロックが少な 、場合、例えば テロップの文字が密に存在する場合は、ほぼ上記の検討どおりの動作が期待できる [0173] このように、実際に適用する際には、どの程度文字が疎なテロップまで検出対象と するか、どの程度の誤検出を許容するカゝを勘案し、定数 αを決定する必要がある。 [0172] On the other hand, if the telop area does not contain telop characters and there are few blocks, for example, if telop characters are densely present, the operation can be expected almost as described above. [0173] As described above, in actual application, it is necessary to determine the constant α in consideration of the extent to which sparse telop characters are to be detected and the extent to which false detection is allowed. is there.
[0174] 尚、上記実施形態においては、テロップを水平方向に動くものと仮定してテロップを 検出したが、縦方向や斜め方向に動く場合も、同様の手法で検出することが可能で ある。その場合は、帯状領域の分割の仕方を、検出したい方向に合わせて設定すれ ばよい。例えば縦方向に移動するテロップを検出したい場合は、帯状領域も縦長の 領域に設定すれば良い。  [0174] In the above embodiment, the telop is detected on the assumption that the telop moves in the horizontal direction. However, the case where the telop moves in the vertical direction or in the oblique direction can also be detected by the same method. In that case, the method of dividing the band-like region may be set according to the direction to be detected. For example, to detect a telop that moves in the vertical direction, the band-like area may be set as a vertically long area.
[0175] 次に、画面内に複数のテロップが存在する場合のテロップ情報検出方法について 述べる。例えば図 16に示すように、画面を上下で 2つのテロップ検出領域 1、 2に分 割し、それぞれの領域において前述のテロップ検出方法を実行することで、テロップ 領域情報 Α及びテロップベクトル情報 Vaと、テロップ領域情報 B及びテロップベクトル 情報 Vbとの 2つのテロップ情報を検出することができる。  Next, a telop information detection method when there are a plurality of telops on the screen will be described. For example, as shown in FIG. 16, the screen is divided into two telop detection areas 1 and 2 at the top and bottom, and the telop area information Α and the telop vector information Va are obtained by executing the above-described telop detection method in each area. , Telop area information B and telop vector information Vb can be detected.
[0176] あるいは、例えば図 17に示すように、水平方向のテロップ検出処理と垂直方向のテ ロップ検出処理を並列して実行して、水平方向のテロップ領域情報 C及びテロップべ タトル情報 Vcと、垂直方向のテロップ領域情報 D及びテロップベクトル情報 Vdとの 2 つのテロップ情報を検出するようにしてもよい。ここで、テロップ領域 Cとテロップ領域 Alternatively, for example, as shown in FIG. 17, horizontal telop detection processing and vertical telop detection processing are executed in parallel to obtain horizontal telop area information C and telop vector information Vc. Two pieces of telop information including the telop area information D in the vertical direction and the telop vector information Vd may be detected. Here, telop area C and telop area
Dとの共通領域は、前述のベクトル検出手段の説明における、処理中のブロックが複 数のテロップ領域に該当する場合、に相当する。 The common area with D corresponds to the case where the block being processed corresponds to a plurality of telop areas in the above description of the vector detection means.
[0177] 本実施形態によれば、以上のような手順により、 1つ以上のテロップ情報を検出する ことができる。検出されたテロップ情報を用いた処理は、既に上記で述べたとおりであ る。  [0177] According to the present embodiment, one or more pieces of telop information can be detected by the procedure as described above. The processing using the detected telop information has already been described above.
[0178] なお、前述のテロップ情報検出手段は一例であり、その他の手段を用いてテロップ 情報を検出する構成とした場合であっても、本発明における動きベクトル検出方法お よび内挿画像生成方法に適用することが可能であることは言うまでも無い。  [0178] Note that the above-described telop information detection means is merely an example, and even if the telop information is detected using other means, the motion vector detection method and the interpolated image generation method according to the present invention are used. Needless to say, the present invention can be applied.
[0179] ここで、テロップ情報検出部 5への入力として、ベクトルメモリ 4に蓄積された各動き 検出ブロックの動きベクトルを用いていることに注意が必要である。ベクトルメモリ 4に 蓄積されて 、る各動き検出ブロックの動きベクトルは、 1フレーム前の動きベクトル検 出結果である。すなわち、テロップ情報検出部 5の処理は、 1フレーム前の動きべタト ル検出結果を用いて行われている。テロップは通常、複数のフレームに渡って同一 の位置に存在するため、上記のように 1フレーム前の動きベクトル検出結果を用いて も大きな問題にはならない。 Here, it should be noted that the motion vector of each motion detection block stored in the vector memory 4 is used as an input to the telop information detection unit 5. The motion vector of each motion detection block stored in the vector memory 4 is the motion vector detection result of the previous frame. In other words, the processing of the telop information detection unit 5 is the motion beta of the previous frame. This is done using the detection results. Since telops usually exist at the same position across multiple frames, using the motion vector detection result of the previous frame as described above is not a big problem.
[0180] 以上詳述したとおり、本実施形態に係る動きベクトル検出方法においては、テロッ プの特徴量としてテロップ領域とテロップベクトルとを検出し、その結果を初期変位べ タトル選択や動きベクトル演算に反映させて動き補償処理を制御することにより、テロ ップ領域の動きベクトル検出をより正しく行うことが可能となり、その結果、テロップ領 域の画質改善を図ることができる。  As described above in detail, in the motion vector detection method according to the present embodiment, a telop region and a telop vector are detected as telop feature quantities, and the result is used for initial displacement vector selection and motion vector calculation. By controlling the motion compensation processing by reflecting it, it becomes possible to perform motion vector detection in the terror region more correctly, and as a result, it is possible to improve the image quality in the telop region.
[0181] ところで、入力画像信号において、シーンチェンジ等により連続するフレーム間の 相関が途切れる場合がある。この場合は、ベクトルメモリ 4に蓄積された 1フレーム前 の動きベクトル検出結果を参照すると、逆にベクトル誤検出の原因となる。このため、 シーンチェンジ等により連続するフレーム間の相関が途切れた場合は、それより前の フレームにおける動きベクトル検出結果をリセットするという方法が、従来より提案され ている(例えば特開 2000— 333134号公報)。  [0181] By the way, in the input image signal, the correlation between successive frames may be interrupted due to a scene change or the like. In this case, referring to the motion vector detection result of the previous frame stored in the vector memory 4 may cause a vector erroneous detection. For this reason, a method of resetting the motion vector detection result in a previous frame when the correlation between consecutive frames is interrupted due to a scene change or the like has been proposed (for example, Japanese Patent Laid-Open No. 2000-333134). Publication).
[0182] しかしながら、シーンチェンジの存在する画像にスクロールするテロップが重畳され ている入力画像信号の場合、前記のようなリセット処理を行うと、テロップの存在する 領域の動きベクトルもリセットされ、テロップが滑ら力にスクロールする内挿画像が得ら れなくなる。従って、テロップ領域として検出された領域については、入力画像信号 にシーンチェンジが発生した場合であっても、その他の領域とは異なる動き補償処理 を行い、テロップが滑らかにスクロールする内挿画像を得られるようにするのが望まし い。  [0182] However, in the case of an input image signal in which a scrolling telop is superimposed on an image in which a scene change exists, when the reset process as described above is performed, the motion vector in the area where the telop exists is also reset, An interpolated image that scrolls with a smooth force cannot be obtained. Therefore, for the area detected as a telop area, even if a scene change occurs in the input image signal, a motion compensation process different from that for other areas is performed to obtain an interpolated image in which the telop scrolls smoothly. It is desirable to be able to
[0183] より具体的には、シーンチェンジが発生した場合であっても、テロップ領域に対して は上記のような動きベクトル検出結果のリセット処理を行わず、継続してベクトル検出 処理を続けることで、シーンチェンジが発生した場合もテロップが滑ら力にスクロール する内挿画像を得ることが可能になるとともに、テロップ領域以外の領域に対しては、 シーンチェンジが発生した場合に上記リセット処理を行い、ベクトルの誤検出を防止 することが可能となり、テロップ領域とそれ以外の領域との画質の両立を図ることがで きる。 [0184] 本発明の画像表示装置は、表示パネルとして液晶パネルを用いた液晶ディスプレ ィばかりでなぐ有機 ELディスプレイ、電気泳動ディスプレイなどのホールド型の表示 特性を有する画像表示装置全般に適用することが可能である。また、入力画像信号 としては、テレビジョン放送信号に限らず、外部メディアカゝら再生された画像信号など 種々の画像信号であってもよ 、ことは言うまでもな!/、。 [0183] More specifically, even if a scene change occurs, the vector detection processing is continued without performing the reset processing of the motion vector detection result as described above for the telop area. Thus, even when a scene change occurs, it is possible to obtain an interpolated image in which the telop scrolls with a smooth force, and for the areas other than the telop area, the above reset process is performed when a scene change occurs. This makes it possible to prevent erroneous detection of vectors, and to achieve both image quality in the telop area and other areas. [0184] The image display device of the present invention can be applied to all image display devices having hold-type display characteristics such as an organic EL display and an electrophoretic display as well as a liquid crystal display using a liquid crystal panel as a display panel. Is possible. Needless to say, the input image signal is not limited to a television broadcast signal, but may be an image signal reproduced by an external media card!
[0185] また、以上の説明においては、本発明の画像処理装置及び方法に関する実施形 態の一例について説明した力 これらの説明から、本画像処理方法をコンピュータに よりプログラムとして実行する画像処理プログラム、及び、該画像処理プログラムをコ ンピュータにより読み取り可能な記録媒体に記録したプログラム記録媒体についても 容易に理解することができるであろう。  Further, in the above description, the power described with respect to the exemplary embodiment of the image processing apparatus and method of the present invention. From these descriptions, an image processing program for executing the image processing method as a program by a computer, Also, a program recording medium in which the image processing program is recorded on a computer-readable recording medium can be easily understood.
さらに、上述した実施形態においては、本発明の画像処理装置を画像表示装置内 に一体的に設けた形態について説明したが、本発明の画像処理装置は、これに限ら ず、例えば各種記録メディア再生装置などの映像出力機器内に設けられても良いこ とは言うまでもない。  Furthermore, in the above-described embodiment, the form in which the image processing apparatus of the present invention is integrally provided in the image display apparatus has been described. However, the image processing apparatus of the present invention is not limited to this, for example, playback of various recording media Needless to say, it may be provided in a video output device such as a device.

Claims

請求の範囲 The scope of the claims
[1] 入力画像信号のフレーム間あるいはフィールド間に、動き補償処理を施した画像信 号を内挿することにより、前記入力画像信号のフレーム数あるいはフィールド数を変 換して、表示パネルへ出力するレート変換手段を備えた画像表示装置であって、 前記入力画像信号に含まれる 1つ以上のテロップの特徴量を検出する検出手段を 備え、  [1] By interpolating motion-compensated image signals between frames or fields of the input image signal, the number of frames or fields of the input image signal is converted and output to the display panel. An image display device including rate conversion means for detecting, comprising: detection means for detecting a feature amount of one or more telops included in the input image signal,
前記検出された 1つ以上のテロップの特徴量に基づいて、前記レート変換手段に おける前記動き補償処理を制御することを特徴とする画像表示装置。  An image display device that controls the motion compensation processing in the rate conversion means based on the detected feature quantity of one or more telops.
[2] 前記請求項 1に記載の画像表示装置にお!、て、  [2] In the image display device according to claim 1,!
前記 1つ以上のテロップの特徴量は、所定方向に移動する 1つ以上のテロップの領 域であることを特徴とする画像表示装置。  The image display device characterized in that the feature quantity of the one or more telops is an area of one or more telops moving in a predetermined direction.
[3] 前記請求項 2に記載の画像表示装置にお 、て、 [3] In the image display device according to claim 2,
前記検出手段は、画面を複数の領域に分割して、各領域毎の平均ベクトルの平均 偏差を求め、これに所定の係数をかけた値を閾値とし、各領域毎の平均ベクトルと画 面全体の平均ベクトルとの間の距離が、前記閾値より大きい領域をテロップの領域と して検出することを特徴とする画像表示装置。  The detection means divides the screen into a plurality of areas, obtains an average deviation of the average vector for each area, and sets a value obtained by multiplying the average vector by a predetermined coefficient as a threshold, and the average vector for each area and the entire screen An image display device that detects, as a telop region, a region in which a distance from the average vector is greater than the threshold value.
[4] 前記請求項 2または 3に記載の画像表示装置にお 、て、 [4] In the image display device according to claim 2 or 3,
前記検出されたテロップの領域とそれ以外の領域とで異なる動き補償処理を行うこ とを特徴とする画像表示装置。  An image display device, wherein different motion compensation processing is performed in the detected telop area and other areas.
[5] 前記請求項 2または 3に記載の画像表示装置にお 、て、 [5] In the image display device according to claim 2 or 3,
前記検出された 1つ以上のテロップの領域に対してのみ動き補償処理を行うことを 特徴とする画像表示装置。  An image display device, wherein motion compensation processing is performed only on the one or more detected telop regions.
[6] 前記請求項 5に記載の画像表示装置にお 、て、 [6] In the image display device according to claim 5,
前記検出された 1つ以上のテロップの領域以外の領域に対しては、前記入力画像 信号のフレーム間あるいはフィールド間に、該フレームあるいはフィールドの画像信 号を挿入することを特徴とする画像表示装置。  An image display device, wherein an image signal of the frame or field is inserted between frames or fields of the input image signal for an area other than the detected one or more telop areas .
[7] 前記請求項 5に記載の画像表示装置にお 、て、 [7] In the image display device according to claim 5,
前記検出された 1つ以上のテロップの領域以外の領域に対しては、前記入力画像 信号のフレーム間ある 、はフィールド間に、線形補間処理を施した画像信号を内挿 することを特徴とする画像表示装置。 For an area other than the one or more detected telop areas, the input image An image display device, wherein an image signal subjected to linear interpolation processing is inserted between frames of a signal or between fields.
[8] 前記請求項 6または 7記載の画像表示装置にお 、て、  [8] In the image display device according to claim 6 or 7,
前記検出された 1つ以上のテロップの領域とそれ以外の領域との境界部分に対し てフィルタ処理を行うことを特徴とする画像表示装置。  An image display device, wherein a filtering process is performed on a boundary portion between the detected one or more telop regions and other regions.
[9] 前記請求項 1に記載の画像表示装置にお!、て、 [9] In the image display device according to claim 1,!
前記 1つ以上のテロップの特徴量は、所定方向に移動する 1つ以上のテロップの移 動速度 Z方向であることを特徴とする画像表示装置。  The image display device characterized in that the feature amount of the one or more telops is a moving speed Z direction of one or more telops moving in a predetermined direction.
[10] 前記請求項 9に記載の画像表示装置において、 [10] In the image display device according to claim 9,
前記検出手段は、画面を複数の領域に分割して、各領域毎の平均ベクトルの平均 偏差を求め、これに所定の係数をかけた値を閾値とし、各領域毎の平均ベクトルと画 面全体の平均ベクトルとの間の距離が、前記閾値より大きい領域をテロップの領域と して検出し、  The detection means divides the screen into a plurality of areas, obtains an average deviation of the average vector for each area, and sets a value obtained by multiplying the average vector by a predetermined coefficient as a threshold, and the average vector for each area and the entire screen A region where the distance to the average vector is greater than the threshold is detected as a telop region,
前記検出されたテロップの領域におけるベクトルの平均ベクトルを求め、これをテロ ップの移動速度 Z方向として検出することを特徴とする画像表示装置。  An image display device characterized in that an average vector of vectors in the detected telop area is obtained and detected as a telocity moving direction Z direction.
[11] 前記請求項 9または 10に記載の画像表示装置において、 [11] In the image display device according to claim 9 or 10,
前記検出された 1つ以上のテロップの移動速度 Z方向を用いて、前記動き補償処 理を行うことを特徴とする画像表示装置。  An image display device that performs the motion compensation processing using the movement speed Z direction of the detected one or more telops.
[12] 前記請求項 1に記載の画像表示装置にお!、て、 [12] In the image display device according to claim 1,!
前記 1つ以上のテロップの特徴量は、所定方向に移動する 1つ以上のテロップの領 域と移動速度 Z方向とであることを特徴とする画像表示装置。  The image display device characterized in that the feature amount of the one or more telops is an area of one or more telops moving in a predetermined direction and a moving speed Z direction.
[13] 前記請求項 12に記載の画像表示装置において、 [13] In the image display device according to claim 12,
前記検出手段は、画面を複数の領域に分割して、各領域毎の平均ベクトルの平均 偏差を求め、これに所定の係数をかけた値を閾値とし、各領域毎の平均ベクトルと画 面全体の平均ベクトルとの間の距離が、前記閾値より大きい領域をテロップの領域と して検出し、  The detection means divides the screen into a plurality of areas, obtains an average deviation of the average vector for each area, and sets a value obtained by multiplying the average vector by a predetermined coefficient as a threshold, and the average vector for each area and the entire screen A region where the distance to the average vector is greater than the threshold is detected as a telop region,
前記検出されたテロップの領域におけるベクトルの平均ベクトルを求め、これをテロ ップの移動速度 Z方向として検出することを特徴とする画像表示装置。 An image display device characterized in that an average vector of vectors in the detected telop area is obtained and detected as a telocity moving direction Z direction.
[14] 前記請求項 12または 13に記載の画像表示装置において、 [14] In the image display device according to claim 12 or 13,
前記検出された 1つ以上のテロップの領域に対しては、前記検出されたテロップの 移動速度 Z方向を用いて前記動き補償処理を行うことを特徴とする画像表示装置。  The image display apparatus characterized in that the motion compensation processing is performed on the detected one or more telop areas using the moving speed Z direction of the detected telop.
[15] 前記請求項 12な ヽし 14の ヽずれかに記載の画像表示装置にお!、て、 [15] In the image display device according to any one of claims 12 to 14, the image display device!
前記検出された 1つ以上のテロップの領域とそれ以外の領域とで異なる動き補償処 理を行うことを特徴とする画像表示装置。  An image display device, wherein different motion compensation processing is performed in the one or more detected telop regions and other regions.
[16] 前記請求項 12な ヽし 14の ヽずれかに記載の画像表示装置にお!、て、 [16] In the image display device according to any one of claims 12 to 14, the image display device!
前記検出された 1つ以上のテロップの領域に対してのみ動き補償処理を行うことを 特徴とする画像表示装置。  An image display device, wherein motion compensation processing is performed only on the one or more detected telop regions.
[17] 前記請求項 16に記載の画像表示装置において、 [17] In the image display device according to claim 16,
前記検出された 1つ以上のテロップの領域以外の領域に対しては、前記入力画像 信号のフレーム間あるいはフィールド間に、該フレームあるいはフィールドの画像信 号を挿入することを特徴とする画像表示装置。  An image display device, wherein an image signal of the frame or field is inserted between frames or fields of the input image signal for an area other than the detected one or more telop areas .
[18] 前記請求項 16に記載の画像表示装置において、 [18] In the image display device according to claim 16,
前記検出された 1つ以上のテロップの領域以外の領域に対しては、前記入力画像 信号のフレーム間ある 、はフィールド間に、線形補間処理を施した画像信号を内挿 することを特徴とする画像表示装置。  For an area other than the detected one or more telop areas, an image signal subjected to linear interpolation processing is interpolated between frames of the input image signal or between fields. Image display device.
[19] 前記請求項 16ないし 18のいずれかに記載の画像表示装置において、 [19] In the image display device according to any one of claims 16 to 18,
前記検出された 1つ以上のテロップの領域とそれ以外の領域との境界部分に対し てフィルタ処理を行うことを特徴とする画像表示装置。  An image display device, wherein a filtering process is performed on a boundary portion between the detected one or more telop regions and other regions.
[20] 入力画像信号のフレーム間あるいはフィールド間に、動き補償処理を施した画像信 号を内挿することにより、前記入力画像信号のフレーム数あるいはフィールド数を変 換して、表示パネルへ出力するレート変換手段を備えた画像表示装置であって、 前記レート変換手段は、前記入力画像信号のフレームあるいはフィールドを予め定 めた所定の大きさの複数のブロックに分割し、各ブロック毎に少なくとも 1フレームある いは 1フィールド以上離れた入力画像信号間における動きの大きさ及び方向を表わ す動きベクトルを検出する動きベクトル検出部を備え、 [20] By interpolating motion-compensated image signals between frames or fields of the input image signal, the number of frames or fields of the input image signal is converted and output to the display panel. The rate conversion means divides a frame or a field of the input image signal into a plurality of blocks having a predetermined size, and at least for each block. A motion vector detection unit that detects a motion vector that represents the magnitude and direction of motion between input image signals separated by one frame or more than one field,
前記動きベクトル検出部は、各ブロック毎に検出された動きベクトルを少なくとも 1フ レームあるいは 1フィールド分蓄積する記憶部と、 The motion vector detection unit receives at least one motion vector detected for each block. A storage unit that accumulates frames or one field,
前記記憶部により蓄積された動きベクトルを用いて、前記入力画像信号に含まれる Included in the input image signal using the motion vector stored in the storage unit
1つ以上のテロップの特徴量を検出するテロップ情報検出部と、 A telop information detection unit that detects a feature amount of one or more telops;
前記テロップ情報検出部により検出された 1つ以上のテロップの特徴量を用いて、 前記記憶部により蓄積された動きベクトルの中から読み出した候補ベクトル群の中か ら、被検出ブロックの動きに最もふさわしい値の動きベクトルを、被検出ブロックの初 期変位ベクトルとして選択する初期変位ベクトル選択部と、  Using the feature quantity of one or more telops detected by the telop information detection unit, the motion vector of the detected block is most frequently selected from among the candidate vector group read from the motion vectors accumulated by the storage unit. An initial displacement vector selection unit that selects a motion vector having an appropriate value as an initial displacement vector of the detected block;
前記テロップ情報検出部により検出されたテロップの特徴量を用いて、前記初期変 位ベクトル選択部により選択された初期変位ベクトルを起点として所定の演算を行う ことにより、被検出ブロックの動きベクトルを求めて出力するとともに、前記記憶部に 蓄積する動きベクトル演算部とを有することを特徴とする画像表示装置。  Using the feature amount of the telop detected by the telop information detection unit, a predetermined calculation is performed using the initial displacement vector selected by the initial displacement vector selection unit as a starting point, thereby obtaining the motion vector of the detected block. And a motion vector calculation unit that accumulates in the storage unit.
[21] 前記請求項 20に記載の画像表示装置において、  [21] In the image display device according to claim 20,
前記初期変位ベクトル選択部は、前記テロップ情報検出部により検出された前記 1 つ以上のテロップの領域とそれ以外の領域とで異なる処理を行うことを特徴とする画 像表示装置。  The image display device, wherein the initial displacement vector selection unit performs different processing in the one or more telop regions detected by the telop information detection unit and other regions.
[22] 前記請求項 21に記載の画像表示装置にお 、て、  [22] In the image display device according to claim 21,
前記初期変位ベクトル選択部は、前記テロップ情報検出部により検出された前記 1 つ以上のテロップの領域以外の領域では全画面の平均ベクトルに近い候補ベクトル を優先的に選択することを特徴とする画像表示装置。  The initial displacement vector selection unit preferentially selects a candidate vector close to an average vector of all screens in an area other than the one or more telop areas detected by the telop information detection unit. Display device.
[23] 前記請求項 21に記載の画像表示装置にぉ 、て、 [23] In the image display device according to claim 21,
前記初期変位ベクトル選択部は、前記テロップ情報検出部により検出された前記 1 つ以上のテロップの領域以外の領域では 0ベクトルに近い候補ベクトルを優先的に 選択することを特徴とする画像表示装置。  The image display apparatus according to claim 1, wherein the initial displacement vector selection unit preferentially selects a candidate vector close to a zero vector in a region other than the one or more telop regions detected by the telop information detection unit.
[24] 前記請求項 20に記載の画像表示装置にお 、て、 [24] In the image display device according to claim 20,
前記初期変位ベクトル選択部は、前記テロップ情報検出部により検出された前記 1 つ以上のテロップの動きベクトルを、前記候補ベクトルに追加して処理することを特徴 とする画像表示装置。  The image display apparatus, wherein the initial displacement vector selection unit processes the motion vectors of the one or more telops detected by the telop information detection unit in addition to the candidate vectors.
[25] 前記請求項 24に記載の画像表示装置にぉ ヽて、 前記初期変位ベクトル選択部は、前記テロップ情報検出部により検出された前記 1 つ以上のテロップの領域に該当するブロックに対しては、前記テロップ情報検出部に より検出された前記 1つ以上のテロップの動きベクトルを、前記候補ベクトルに追加し て処理することを特徴とする画像表示装置。 [25] In the image display device according to claim 24, The initial displacement vector selection unit, for blocks corresponding to the one or more telop areas detected by the telop information detection unit, the one or more telops detected by the telop information detection unit. An image display device characterized in that the motion vector is added to the candidate vector for processing.
[26] 前記請求項 24または 25に記載の画像表示装置において、  [26] In the image display device according to claim 24 or 25,
前記初期変位ベクトル選択部は、前記テロップ情報検出部により検出された前記 1 つ以上のテロップの領域では前記候補ベクトル中の前記 1つ以上のテロップの動き ベクトルが選択されやすいような重み付けを行って初期変位ベクトルの選択処理を行 うことを特徴とする画像表示装置。  The initial displacement vector selection unit performs weighting so that a motion vector of the one or more telops in the candidate vector is easily selected in the region of the one or more telops detected by the telop information detection unit. An image display device that performs an initial displacement vector selection process.
[27] 前記請求項 20に記載の画像表示装置にぉ 、て、 [27] The image display device according to claim 20, wherein
前記動きベクトル演算部は、前記テロップ情報検出部により検出された前記 1っ以 上のテロップの領域に該当するブロックに対しては、前記テロップ情報検出部により 検出された前記 1つ以上のテロップの動きベクトルの方向と同一の方向のベクトルが 得られるように演算方法を変更することを特徴とする画像表示装置。  The motion vector calculation unit, for blocks corresponding to the one or more telop areas detected by the telop information detection unit, of the one or more telops detected by the telop information detection unit. An image display apparatus characterized by changing a calculation method so that a vector in the same direction as a direction of a motion vector is obtained.
[28] 入力画像信号のフレーム間あるいはフィールド間に、動き補償処理を施した画像信 号を内挿することにより、前記入力画像信号のフレーム数あるいはフィールド数を変 換するレート変換ステップを備えた画像表示方法であって、 [28] The method includes a rate conversion step of converting the number of frames or fields of the input image signal by interpolating an image signal subjected to motion compensation processing between frames or fields of the input image signal. An image display method,
前記入力画像信号に含まれる 1つ以上のテロップの特徴量を検出する検出ステツ プを備え、  A detection step for detecting a feature amount of one or more telops included in the input image signal;
前記検出された 1つ以上のテロップの特徴量に基づいて、前記レート変換ステップ における前記動き補償処理を制御することを特徴とする画像表示方法。  An image display method characterized by controlling the motion compensation processing in the rate conversion step based on the detected feature quantity of one or more telops.
[29] 入力画像信号のフレーム間あるいはフィールド間に、動き補償処理を施した画像信 号を内挿することにより、前記入力画像信号のフレーム数あるいはフィールド数を変 換するレート変換ステップを備えた画像表示方法であって、 [29] A rate conversion step of converting the number of frames or the number of fields of the input image signal by interpolating an image signal subjected to motion compensation between frames or fields of the input image signal is provided. An image display method,
前記レート変換ステップは、前記入力画像信号のフレームある 、はフィーノレドを予 め定めた所定の大きさの複数のブロックに分割し、各ブロック毎に少なくとも 1フレー ムあるいは 1フィールド以上離れた入力画像信号間における動きの大きさ及び方向 を表わす動きベクトルを検出する動きベクトル検出ステップを備え、 前記動きベクトル検出ステップは、各ブロック毎に検出された動きベクトルを少なくと も 1フレームあるいは 1フィールド分蓄積する記憶ステップと、 In the rate conversion step, the input image signal is a frame of the input image signal or is divided into a plurality of blocks having a predetermined size, and an input image signal separated by at least one frame or one field or more for each block. A motion vector detecting step for detecting a motion vector representing the magnitude and direction of motion between The motion vector detecting step stores a motion vector detected for each block for at least one frame or one field;
前記蓄積された動きベクトルを用いて、前記入力画像信号に含まれる 1つ以上のテ 口ップの特徴量を検出するテロップ情報検出ステップと、  A telop information detection step of detecting a feature quantity of one or more taps included in the input image signal using the accumulated motion vector;
前記検出された 1つ以上のテロップの特徴量を用いて、前記記憶ステップにて蓄積 された動きベクトルの中力 読み出した候補ベクトル群の中から、被検出ブロックの動 きに最もふさわしい値の動きベクトルを、被検出ブロックの初期変位ベクトルとして選 択する初期変位ベクトル選択ステップと、  Using the detected feature quantity of one or more telops, the motion vector accumulated in the storing step is selected from among the read candidate vector group, and the motion with the value most suitable for the motion of the detected block is detected. An initial displacement vector selection step of selecting a vector as an initial displacement vector of the detected block;
前記検出されたテロップの特徴量を用いて、前記初期変位ベクトル選択ステップに て選択された初期変位ベクトルを起点として所定の演算を行うことにより、被検出プロ ックの動きベクトルを求めて出力する動きベクトル演算ステップとを有することを特徴と する画像表示方法。  Using the detected feature value of the telop, a predetermined calculation is performed with the initial displacement vector selected in the initial displacement vector selection step as a starting point, thereby obtaining and outputting a motion vector of the detected block. And a motion vector calculation step.
[30] 入力画像信号のフレーム間あるいはフィールド間に、動き補償処理を施した画像信 号を内挿することにより、前記入力画像信号のフレーム数あるいはフィールド数を変 換して出力するレート変換手段を備えた画像処理装置であって、  [30] Rate conversion means for converting and outputting the number of frames or fields of the input image signal by interpolating an image signal subjected to motion compensation processing between frames or fields of the input image signal An image processing apparatus comprising:
前記入力画像信号に含まれる 1つ以上のテロップの特徴量を検出する検出手段を 備え、  Detection means for detecting a feature quantity of one or more telops included in the input image signal;
前記検出された 1つ以上のテロップの特徴量に基づいて、前記レート変換手段に おける前記動き補償処理を制御することを特徴とする画像処理装置。  An image processing apparatus that controls the motion compensation processing in the rate conversion means based on the detected feature quantity of one or more telops.
[31] 入力画像信号のフレーム間あるいはフィールド間に、動き補償処理を施した画像信 号を内挿することにより、前記入力画像信号のフレーム数あるいはフィールド数を変 換して出力するレート変換手段を備えた画像処理装置であって、 [31] Rate conversion means for converting and outputting the number of frames or fields of the input image signal by interpolating an image signal subjected to motion compensation between frames or fields of the input image signal An image processing apparatus comprising:
前記レート変換手段は、前記入力画像信号のフレームあるいはフィールドを予め定 めた所定の大きさの複数のブロックに分割し、各ブロック毎に少なくとも 1フレームある いは 1フィールド以上離れた入力画像信号間における動きの大きさ及び方向を表わ す動きベクトルを検出する動きベクトル検出部を備え、  The rate conversion means divides a frame or field of the input image signal into a plurality of blocks having a predetermined size, and each input block between input image signals separated by at least one frame or one field or more. A motion vector detection unit for detecting a motion vector representing the magnitude and direction of motion in
前記動きベクトル検出部は、各ブロック毎に検出された動きベクトルを少なくとも 1フ レームあるいは 1フィールド分蓄積する記憶部と、 前記記憶部により蓄積された動きベクトルを用いて、前記入力画像信号に含まれるThe motion vector detecting unit stores a motion vector detected for each block for at least one frame or one field; Included in the input image signal using the motion vector stored in the storage unit
1つ以上のテロップの特徴量を検出するテロップ情報検出部と、 A telop information detection unit that detects a feature amount of one or more telops;
前記テロップ情報検出部により検出された 1つ以上のテロップの特徴量を用いて、 前記記憶部により蓄積された動きベクトルの中から読み出した候補ベクトル群の中か ら、被検出ブロックの動きに最もふさわしい値の動きベクトルを、被検出ブロックの初 期変位ベクトルとして選択する初期変位ベクトル選択部と、  Using the feature quantity of one or more telops detected by the telop information detection unit, the motion vector of the detected block is most frequently selected from among the candidate vector group read from the motion vectors accumulated by the storage unit. An initial displacement vector selection unit that selects a motion vector having an appropriate value as an initial displacement vector of the detected block;
前記テロップ情報検出部により検出されたテロップの特徴量を用いて、前記初期変 位ベクトル選択部により選択された初期変位ベクトルを起点として所定の演算を行う ことにより、被検出ブロックの動きベクトルを求めて出力するとともに前記記憶部に蓄 積する動きベクトル演算部とを有することを特徴とする画像処理装置。  Using the feature amount of the telop detected by the telop information detection unit, a predetermined calculation is performed using the initial displacement vector selected by the initial displacement vector selection unit as a starting point, thereby obtaining the motion vector of the detected block. And a motion vector calculation unit that stores the output in the storage unit.
[32] 入力画像信号のフレーム間あるいはフィールド間に、動き補償処理を施した画像信 号を内挿することにより、前記入力画像信号のフレーム数あるいはフィールド数を変 換するレート変換ステップを備えた画像処理方法であって、  [32] A rate conversion step for converting the number of frames or the number of fields of the input image signal by interpolating an image signal subjected to motion compensation between frames or fields of the input image signal. An image processing method comprising:
前記入力画像信号に含まれる 1つ以上のテロップの特徴量を検出する検出ステツ プを備え、  A detection step for detecting a feature amount of one or more telops included in the input image signal;
前記検出された 1つ以上のテロップの特徴量に基づいて、前記レート変換ステップ における前記動き補償処理を制御することを特徴とする画像処理方法。  An image processing method comprising: controlling the motion compensation process in the rate conversion step based on the detected feature quantity of one or more telops.
[33] 入力画像信号のフレーム間あるいはフィールド間に、動き補償処理を施した画像信 号を内挿することにより、前記入力画像信号のフレーム数あるいはフィールド数を変 換するレート変換ステップを備えた画像処理方法であって、 [33] The method includes a rate conversion step of converting the number of frames or the number of fields of the input image signal by interpolating an image signal subjected to motion compensation processing between frames or fields of the input image signal. An image processing method comprising:
前記レート変換ステップは、前記入力画像信号のフレームある 、はフィーノレドを予 め定めた所定の大きさの複数のブロックに分割し、各ブロック毎に少なくとも 1フレー ムあるいは 1フィールド以上離れた入力画像信号間における動きの大きさ及び方向 を表わす動きベクトルを検出する動きベクトル検出ステップを備え、  In the rate conversion step, the input image signal is a frame of the input image signal or is divided into a plurality of blocks having a predetermined size, and an input image signal separated by at least one frame or one field or more for each block. A motion vector detecting step for detecting a motion vector representing the magnitude and direction of motion between
前記動きベクトル検出ステップは、各ブロック毎に検出された動きベクトルを少なくと も 1フレームあるいは 1フィールド分蓄積する記憶ステップと、  The motion vector detecting step stores a motion vector detected for each block for at least one frame or one field;
前記蓄積された動きベクトルを用いて、前記入力画像信号に含まれる 1つ以上のテ 口ップの特徴量を検出するテロップ情報検出ステップと、 前記検出された 1つ以上のテロップの特徴量を用いて、前記記憶ステップにて蓄積 された動きベクトルの中力 読み出した候補ベクトル群の中から、被検出ブロックの動 きに最もふさわしい値の動きベクトルを、被検出ブロックの初期変位ベクトルとして選 択する初期変位ベクトル選択ステップと、 A telop information detection step of detecting a feature quantity of one or more taps included in the input image signal using the accumulated motion vector; Using the detected feature quantity of one or more telops, the motion vector accumulated in the storing step is selected from among the read candidate vector group, and the motion with the value most suitable for the motion of the detected block is detected. An initial displacement vector selection step of selecting a vector as an initial displacement vector of the detected block;
前記検出されたテロップの特徴量を用いて、前記初期変位ベクトル選択ステップに て選択された初期変位ベクトルを起点として所定の演算を行うことにより、被検出プロ ックの動きベクトルを求めて出力する動きベクトル演算ステップとを有することを特徴と する画像処理方法。  Using the detected feature value of the telop, a predetermined calculation is performed with the initial displacement vector selected in the initial displacement vector selection step as a starting point, thereby obtaining and outputting a motion vector of the detected block. And a motion vector calculation step.
PCT/JP2007/051914 2006-09-28 2007-02-05 Image display device and method, and image processing device and method WO2008038419A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07708032A EP2077663A4 (en) 2006-09-28 2007-02-05 Image display device and method, and image processing device and method
US12/443,400 US20100085478A1 (en) 2006-09-28 2007-02-05 Image displaying device and method, and image processing device and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006264034 2006-09-28
JP2006-264034 2006-09-28
JP2006-325139 2006-12-01
JP2006325139A JP4157579B2 (en) 2006-09-28 2006-12-01 Image display apparatus and method, image processing apparatus and method

Publications (1)

Publication Number Publication Date
WO2008038419A1 true WO2008038419A1 (en) 2008-04-03

Family

ID=39229864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051914 WO2008038419A1 (en) 2006-09-28 2007-02-05 Image display device and method, and image processing device and method

Country Status (4)

Country Link
US (1) US20100085478A1 (en)
EP (1) EP2077663A4 (en)
JP (1) JP4157579B2 (en)
WO (1) WO2008038419A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009253567A (en) * 2008-04-04 2009-10-29 Hitachi Ltd Television receiver and frame rate conversion method therefor

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100663515B1 (en) * 2004-11-08 2007-01-02 삼성전자주식회사 A portable terminal apparatus and method for inputting data for the portable terminal apparatus
JP4303743B2 (en) 2006-10-04 2009-07-29 シャープ株式会社 Image display apparatus and method, image processing apparatus and method
JP4917867B2 (en) * 2006-11-14 2012-04-18 シャープ株式会社 Telop detection apparatus and method, and image display apparatus and method
JP4940024B2 (en) * 2007-06-06 2012-05-30 株式会社東芝 Information processing apparatus, motion vector generation program, and interpolated image generation program
JP4775408B2 (en) 2008-06-03 2011-09-21 ソニー株式会社 Display device, wiring layout method in display device, and electronic apparatus
JP4636130B2 (en) * 2008-06-27 2011-02-23 ソニー株式会社 Image processing apparatus, imaging apparatus, image processing method, and program
WO2010046990A1 (en) * 2008-10-23 2010-04-29 パイオニア株式会社 Interpolation frame generating device, frame rate converting device, display, interpolation frame generating method, its program, and recording medium where its program is recorded
JP2010181616A (en) * 2009-02-05 2010-08-19 Canon Inc Display device and display method
CN101933081B (en) * 2009-02-19 2013-10-23 松下电器产业株式会社 Image display apparatus and image display method
JP2010283548A (en) * 2009-06-04 2010-12-16 Hitachi Ltd Video interpolation device and video display device
JP5315162B2 (en) * 2009-08-05 2013-10-16 株式会社日立製作所 Video processing apparatus and video processing method
JP5377649B2 (en) * 2009-09-02 2013-12-25 ルネサスエレクトロニクス株式会社 Image processing apparatus and video reproduction apparatus
US8830257B2 (en) 2009-09-18 2014-09-09 Sharp Kabushiki Kaisha Image displaying apparatus
JP5192087B2 (en) * 2009-12-01 2013-05-08 パナソニック株式会社 Image processing apparatus and image processing method
JP5479080B2 (en) * 2009-12-24 2014-04-23 キヤノン株式会社 Video processing apparatus and method
JP4951096B2 (en) 2010-07-07 2012-06-13 シャープ株式会社 Liquid crystal display
JP4892105B1 (en) * 2011-02-21 2012-03-07 株式会社東芝 Video processing device, video processing method, and video display device
JP5853667B2 (en) * 2011-12-20 2016-02-09 株式会社ソシオネクスト Video detection device, video recording device, video recording / playback device, video detection method, video recording method, and video recording / playback method
JP5627617B2 (en) * 2012-02-22 2014-11-19 株式会社東芝 Image processing apparatus and image display system
JP6504604B2 (en) * 2015-08-25 2019-04-24 Kddi株式会社 Moving picture coding apparatus, moving picture decoding apparatus, moving picture processing system, moving picture coding method, moving picture decoding method, and program
GB2553125B (en) 2016-08-24 2022-03-09 Grass Valley Ltd Comparing video sequences using fingerprints
JP7025073B1 (en) * 2021-06-28 2022-02-24 株式会社SEtech Motion information imager

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162684A (en) 1979-06-07 1980-12-18 Nippon Hoso Kyokai <Nhk> Asymptotic detection method of picture dynamic vector
JPS55162683A (en) 1979-06-07 1980-12-18 Nippon Hoso Kyokai <Nhk> Movement detection method for television picture
JPS60158786A (en) 1984-01-30 1985-08-20 Kokusai Denshin Denwa Co Ltd <Kdd> Detection system of picture moving quantity
JPS62206980A (en) 1986-03-07 1987-09-11 Kokusai Denshin Denwa Co Ltd <Kdd> Initial deviation system in moving presumption of dynamic image
JPH0478286A (en) * 1990-07-18 1992-03-12 Oki Electric Ind Co Ltd Detection method for moving vector using initial deviation vector
JPH06217266A (en) 1993-01-20 1994-08-05 Oki Electric Ind Co Ltd Motion vector detecting circuit
JPH11177940A (en) * 1997-06-04 1999-07-02 Hitachi Ltd Image signal system converter and television receiver
JP2000244929A (en) * 1999-02-22 2000-09-08 Toshiba Corp Moving picture re-encoding device
JP2000333134A (en) 1999-05-20 2000-11-30 Toshiba Corp Interpolation field generating circuit and field double speed conversion circuit
JP3295437B2 (en) 1991-03-29 2002-06-24 日本放送協会 Display device
JP2004312680A (en) * 2002-11-23 2004-11-04 Samsung Electronics Co Ltd Motion estimation apparatus and method for detecting scrolling text or graphic data
JP2006031597A (en) * 2004-07-21 2006-02-02 Shibasoku:Kk Motion vector detection device
JP2006217066A (en) * 2005-02-01 2006-08-17 Sharp Corp Motion vector detection method, motion vector detection apparatus, motion vector detection program, and program recording medium

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2050752B (en) * 1979-06-07 1984-05-31 Japan Broadcasting Corp Motion compensated interframe coding system
EP1244311A3 (en) * 2001-03-22 2004-10-06 Sony Corporation Picture encoding
EP1404130A1 (en) * 2002-09-24 2004-03-31 Matsushita Electric Industrial Co., Ltd. Method and apparatus for processing a video signal mixed with an additional image signal
EP1544836A1 (en) * 2003-12-17 2005-06-22 Deutsche Thomson-Brandt GmbH Method and apparatus for processing video pictures in particular in film mode sequences
EP1592247A1 (en) * 2004-04-30 2005-11-02 Matsushita Electric Industrial Co., Ltd. Block mode adaptive motion compensation
EP1592246A1 (en) * 2004-04-30 2005-11-02 Matsushita Electric Industrial Co., Ltd. Film mode determination in video image still areas
DE602004002935T2 (en) * 2004-04-30 2007-02-01 Matsushita Electric Industrial Co., Ltd., Kadoma Processing of tickers in video sequences
WO2006016605A1 (en) * 2004-08-10 2006-02-16 Sony Corporation Information signal processing method, information signal processing device, and computer program recording medium
KR20070020994A (en) * 2005-08-17 2007-02-22 삼성전자주식회사 Apparatus for converting image signal and method thereof
JP4722936B2 (en) * 2005-09-30 2011-07-13 シャープ株式会社 Image display apparatus and method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162684A (en) 1979-06-07 1980-12-18 Nippon Hoso Kyokai <Nhk> Asymptotic detection method of picture dynamic vector
JPS55162683A (en) 1979-06-07 1980-12-18 Nippon Hoso Kyokai <Nhk> Movement detection method for television picture
JPS60158786A (en) 1984-01-30 1985-08-20 Kokusai Denshin Denwa Co Ltd <Kdd> Detection system of picture moving quantity
JPS62206980A (en) 1986-03-07 1987-09-11 Kokusai Denshin Denwa Co Ltd <Kdd> Initial deviation system in moving presumption of dynamic image
JPH0478286A (en) * 1990-07-18 1992-03-12 Oki Electric Ind Co Ltd Detection method for moving vector using initial deviation vector
JP3295437B2 (en) 1991-03-29 2002-06-24 日本放送協会 Display device
JPH06217266A (en) 1993-01-20 1994-08-05 Oki Electric Ind Co Ltd Motion vector detecting circuit
JPH11177940A (en) * 1997-06-04 1999-07-02 Hitachi Ltd Image signal system converter and television receiver
JP2000244929A (en) * 1999-02-22 2000-09-08 Toshiba Corp Moving picture re-encoding device
JP2000333134A (en) 1999-05-20 2000-11-30 Toshiba Corp Interpolation field generating circuit and field double speed conversion circuit
JP2004312680A (en) * 2002-11-23 2004-11-04 Samsung Electronics Co Ltd Motion estimation apparatus and method for detecting scrolling text or graphic data
JP2006031597A (en) * 2004-07-21 2006-02-02 Shibasoku:Kk Motion vector detection device
JP2006217066A (en) * 2005-02-01 2006-08-17 Sharp Corp Motion vector detection method, motion vector detection apparatus, motion vector detection program, and program recording medium

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP2077663A4
SHUICHI ISHIGURO; TAIICHIRO KURITA: "Examination of moving image quality of hold emitting type display on eight speed CRT", TECHNICAL REPORT OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, EID, vol. 96-4, June 1996 (1996-06-01), pages 19 - 26
TATSURO YAMAUCHI: "television system conversion", JOURNAL OF THE INSTITUTE OF TELEVISION ENGINEERS OF JAPAN, vol. 45, no. 12, 1991, pages 1534 - 1543

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009253567A (en) * 2008-04-04 2009-10-29 Hitachi Ltd Television receiver and frame rate conversion method therefor

Also Published As

Publication number Publication date
JP4157579B2 (en) 2008-10-01
EP2077663A4 (en) 2012-03-28
US20100085478A1 (en) 2010-04-08
JP2008107753A (en) 2008-05-08
EP2077663A1 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
WO2008038419A1 (en) Image display device and method, and image processing device and method
US8358373B2 (en) Image displaying device and method, and image processing device and method
US7965303B2 (en) Image displaying apparatus and method, and image processing apparatus and method
US8395700B2 (en) Image displaying device and method, and image processing device and method
US8325272B2 (en) Image displaying device and method and image processing device and method for preventing image deterioration due to motion-compensated rate conversion processing
WO2008056451A1 (en) Image display device and image display method, and image processing device and image processing method
WO2011155258A1 (en) Image processing apparatus, method therefor, image display apparatus, and method therefor
JP4181614B2 (en) Image display apparatus and method, image processing apparatus and method
JP2009055340A (en) Image display device and method, and image processing apparatus and method
JP4355347B2 (en) Image display apparatus and method, image processing apparatus and method
JP4731356B2 (en) Image display apparatus and method
JP2009182865A (en) Image display device and method, image processor, and image processing method
JP2009181067A (en) Image display device and method, and image processing device and method
JP2008193730A (en) Image display device and method, and image processing device and method
JP4231539B2 (en) Image display apparatus and method, image processing apparatus and method
JP4157587B2 (en) Image display apparatus and method, image processing apparatus and method
JP2008109628A (en) Image display apparatus and method, image processor and method
JP2007329952A (en) Image display device and method, and image processing device and method
JP4157586B2 (en) Image display apparatus and method, image processing apparatus and method
JP4917867B2 (en) Telop detection apparatus and method, and image display apparatus and method
JP2008136226A (en) Image display device and method, and image processor and method
JP2008167397A (en) Image display device and method, and image processing device and method
JP2008167398A (en) Image display device and method, and image processing device and method
JP2008079295A (en) Image display device and method and image processing unit and method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780040983.X

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07708032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007708032

Country of ref document: EP