WO2008035651A1 - Catalyseur de combustion d'une substance contenant du carbone, procédé de production du catalyseur, matériau comprenant un catalyseur et procédé de production dudit matériau - Google Patents

Catalyseur de combustion d'une substance contenant du carbone, procédé de production du catalyseur, matériau comprenant un catalyseur et procédé de production dudit matériau Download PDF

Info

Publication number
WO2008035651A1
WO2008035651A1 PCT/JP2007/068038 JP2007068038W WO2008035651A1 WO 2008035651 A1 WO2008035651 A1 WO 2008035651A1 JP 2007068038 W JP2007068038 W JP 2007068038W WO 2008035651 A1 WO2008035651 A1 WO 2008035651A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
based material
catalyst
metal element
combustion catalyst
Prior art date
Application number
PCT/JP2007/068038
Other languages
English (en)
French (fr)
Inventor
Keisuke Mizutani
Takumi Suzawa
Naohisa Ohyama
Yukihiro Yamashita
Original Assignee
Denso Corporation
Nippon Soken, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corporation, Nippon Soken, Inc. filed Critical Denso Corporation
Priority to KR1020087029111A priority Critical patent/KR101049314B1/ko
Priority to BRPI0709958-4A priority patent/BRPI0709958A2/pt
Priority to EP07807439.0A priority patent/EP2075067A4/en
Priority to CN2007800161622A priority patent/CN101437613B/zh
Priority to US12/281,899 priority patent/US20090203517A1/en
Publication of WO2008035651A1 publication Critical patent/WO2008035651A1/ja
Priority to US12/952,442 priority patent/US20110124489A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Definitions

  • the present invention relates to a carbon-based material combustion catalyst used for burning and removing carbon-based materials such as carbon particulates (PM) contained in exhaust gas, a method for producing the same, and the carbon-based material combustion catalyst based on a ceramic substrate.
  • the present invention relates to a catalyst carrier carried on a material and a method for producing the same.
  • a carbon-based material combustion catalyst for example, a noble metal such as Pt, Pd, Rh or an oxide thereof has been generally used.
  • catalysts using expensive noble metals are expensive and there are concerns about the problem of resource depletion.
  • PM combustion activity is insufficient, and under normal operating conditions, untreated PM gradually accumulates.
  • the sulfur dioxide contained in the exhaust gas was converted into sulfur trioxide and sulfuric acid mist, and PM could be removed, but the exhaust gas purification could be incomplete.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-170483
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-230724
  • Patent Document 3 JP 2005-296871
  • Patent Document 4 JP-A-2005-342604
  • the present invention has been made in view of power and conventional problems, and is a carbon-based material combustion catalyst capable of burning and removing a carbon-based material stably at a low temperature for a long period of time.
  • the present invention intends to provide a method, a catalyst carrier and a method for producing the same.
  • the carbon-based material combustion catalyst used for burning the carbon-based material contained in the exhaust gas of the internal combustion engine and supported on the ceramic substrate is used.
  • an aluminosilicate having an atomic equivalent ratio Si / Al ⁇ l and an alkali metal element source and / or an alkaline earth metal element source are mixed in water, and the mixed solution after the mixing step is heated.
  • the carbon-based material combustion catalyst is obtained by the production method of the first example of the present invention.
  • the carbon-based material combustion catalyst is produced by performing the mixing step, the drying step, and the calcination step.
  • an aluminosilicate (sodalite) having an atomic equivalent ratio Si / Al ⁇ l and an alkali metal element source and / or an alkaline earth metal element source are mixed in water.
  • the mixed solution after the mixing step is heated to Evaporate the minutes to obtain a solid.
  • the solid content composed of a mixture of the alkali metal element and / or alkaline earth metal element and the aluminosilicate can be obtained.
  • the solid content is fired at a temperature of 600 ° C or higher. Thereby, the carbon-based material combustion catalyst (second example of the present invention) can be obtained.
  • the carbon-based material combustion catalyst contains the alkali metal element and / or the alkaline earth metal element.
  • the alkali metal element and / or the alkaline earth metal element has a combustion promoting action on carbon-based substances such as particulate suspended matter (PM) in exhaust gas. Therefore, the carbon-based material combustion catalyst can be operated with the force S for burning the carbon-based material at a low temperature.
  • the carbon-based material combustion catalyst can hold the alkali metal element and / or the alkaline earth metal element. Therefore, the alkaline metal element and / or the alkaline earth metal element can be prevented from eluting even in the presence of moisture.
  • the carbon-based material combustion catalyst does not need to be supported in an excessive amount even when it is supported on a substrate such as ceramics, which is difficult to elute even in the presence of moisture. Deterioration of the substrate can be prevented. Therefore, the carbon-based material combustion catalyst can promote the combustion of the carbon-based material stably for a long period of time.
  • the carbon-based material combustion catalyst (second example of the present invention) obtained by the production method of the first example of the present invention is a particulate suspended matter contained in the exhaust gas of the internal combustion engine as described above ( Combustion promoting properties for carbon-based materials such as PM).
  • the carbon-based material combustion catalyst has a force S for burning the carbon-based material at a temperature equal to or lower than that of a conventional noble metal catalyst.
  • the catalytic activity of the carbon-based material combustion catalyst is unlikely to decrease even in the presence of moisture as described above.
  • the carbon-based material combustion catalyst corrodes the ceramic substrate in the presence of water like the conventional alkali metal catalyst when the carbon-based material combustion catalyst is supported on the ceramic substrate. It is possible to prevent deterioration of the ceramic base material that is hardly caused to occur. [0017] Therefore, the carbon-based material combustion catalyst can promote the combustion of the carbon-based material stably for a long period of time even in the presence of moisture.
  • the carbon-based material combustion catalyst retains an alkali metal element and / or an alkaline earth metal element with a relatively strong bonding force in its structure, and these elements are also present in the presence of moisture. Therefore, it is considered that it is possible to suppress the decrease in the catalytic activity as described above and to prevent the corrosion of the ceramic substrate.
  • a mixture (the solid content) of the aluminosilicate (sodalite) and the alkali metal element source and / or the alkaline earth metal element source has a temperature of 600.
  • the above-mentioned carbon-based material combustion catalyst is obtained by performing the above-mentioned calcination step of calcination at or above ° C.
  • the carbon-based material combustion catalyst obtained through the firing step is used by supporting the carbon-based material combustion catalyst on the ceramic substrate. That is, the firing step is performed without supporting the mixture on the ceramic base material, and the support on the ceramic base material is performed after the firing step.
  • sodalite If a mixture of sodalite and an alkali metal element source and / or alkaline earth metal element source was supported on a ceramic substrate and then fired at a temperature of 600 ° C or higher, it was contained in sodalite.
  • Na an alkali metal in the alkali metal element source, an alkaline earth metal in the alkaline earth metal element source, and the like, and the eluted alkali metal and / or alkaline earth metal is, for example, cordierite structural partially changed the, such as cracking in the ceramic substrate thermal expansion coefficient and strength is lowered is a fear force s occurs.
  • the carbon-based material combustion catalyst that has undergone the calcination step as described above. Is used for supporting the ceramic substrate, and in such a carbon-based material combustion catalyst, an alkali metal element and / or an alkaline earth metal element is firmly held. Therefore, when the carbon-based material combustion catalyst is supported on the ceramic substrate, alkali metal and / or alkaline earth metal is eluted from the carbon-based material combustion catalyst by heating at the time of supporting or subsequent heating. Can be prevented. As a result, it is possible to prevent the ceramic substrate from being cracked.
  • the carbon-based material combustion catalyst can be easily produced by the mixing step, the drying step, and the calcination step. That is, the mixture obtained by mixing the aluminosilicate (sodalite) and the alkali metal element source and / or the alkali metal element source in water and drying the mixture (the solid content) is at a temperature of 600 ° C or lower. By calcination above, the carbon-based material combustion catalyst can be easily obtained.
  • a carbon-based material combustion catalyst capable of burning and removing a carbon-based material stably at a low temperature for a long period of time and a method for producing the same are provided. It ’s the power to do.
  • a catalyst carrier comprising a ceramic base material on which a carbon-based material combustion catalyst used for burning a carbon-based material contained in exhaust gas of an internal combustion engine is supported.
  • the production method includes a carrying step of obtaining the catalyst carrier by carrying the carbon-based material combustion catalyst obtained by the production method of the first example of the invention on the ceramic substrate.
  • the catalyst carrier is obtained by the production method of the third example of the present invention.
  • the catalyst carrier (fourth example of the present invention) obtained by the production method of the third example of the present invention is a carbon-based material combustion catalyst obtained by the production method of the first example of the present invention. It is carried on a ceramic substrate.
  • the catalyst carrier can exert the above-described excellent effect of the carbon-based material combustion catalyst. That is, the catalyst carrier can burn and remove the carbon-based material stably at a low temperature for a long period of time.
  • the carbon-based material combustion catalyst is used in the presence of moisture!
  • the elution of edible alkali metal and / or alkaline earth metal can be suppressed. Therefore, in the catalyst carrier, the carbon-based material can be stably burned for a long period of time without corroding the ceramic substrate even in the presence of moisture.
  • a mixture (the solid content) of the aluminosilicate (sodalite) and the alkali metal element source and / or the alkaline earth metal element source is heated to 600 ° C.
  • a supporting step is performed in which the carbon-based material combustion catalyst obtained through the firing step in the first example of the present invention of firing at C or higher is supported on the ceramic substrate to obtain the catalyst support.
  • the above-described carbon-based material combustion catalyst obtained through the above-described calcination step firmly holds an alkali metal element and / or an alkaline earth metal element in its structure.
  • the supporting step elution of alkali metal and / or alkaline earth metal from the carbon-based material combustion catalyst is suppressed.
  • the catalyst carrier can be used stably for a long time.
  • a carbon-based material combustion catalyst used for burning a carbon-based material contained in exhaust gas of an internal combustion engine and supported on a ceramic substrate is manufactured.
  • this method there is a calcining step in which sodalite is calcined at a temperature of 600 ° C. or higher to obtain the carbon-based material combustion catalyst.
  • the carbon-based material combustion catalyst is obtained by the production method of the fifth example of the present invention.
  • the carbon-based material combustion catalyst (sixth example of the present invention) obtained by the manufacturing method of the fifth example of the present invention is, for example, particulate suspended matter (PM) contained in the exhaust gas of an internal combustion engine. Has combustion promoting properties for carbonaceous materials.
  • the carbon-based material combustion catalyst can burn the carbon-based material at a temperature equal to or lower than that of a conventional noble metal catalyst.
  • the catalytic activity of the carbon-based material combustion catalyst is unlikely to decrease even in the presence of moisture.
  • the carbon-based material combustion catalyst corrodes the ceramic substrate in the presence of moisture as in the case of a conventional alkali metal catalyst when the carbon-based material combustion catalyst is supported on the ceramic substrate. It is possible to prevent deterioration of the ceramic base material that is hardly caused to occur.
  • the carbon-based material combustion catalyst can promote the combustion of the carbon-based material stably for a long period of time even in the presence of moisture.
  • the carbon-based material combustion catalyst retains Na with a relatively strong binding force in its structure, and Na is difficult to elute even in the presence of moisture. with a decrease of medium activity can be suppressed, it is considered X_ If it is possible to prevent corrosion of the ceramic substrate.
  • the carbon-based material combustion catalyst is obtained by performing the calcination step of calcining sodalite at a temperature of 600 ° C or higher.
  • the carbon-based material combustion catalyst obtained through the calcining step is used by supporting the carbon-based material combustion catalyst on the ceramic base material. That is, the firing step is performed without supporting the sodalite on the ceramic base material, and the support on the ceramic base material is performed after the firing step.
  • the carbon-based material combustion catalyst that has undergone the firing step as described above is used for supporting the ceramic base material.
  • Alkali metal (Na) contained in sodalite is firmly retained. Therefore, when the carbon-based material combustion catalyst is supported on the ceramic base material, it is possible to prevent the alkali metal from being eluted from the carbon-based material combustion catalyst by heating at the time of supporting or subsequent heating. . As a result, it is possible to prevent the ceramic base material from being cracked.
  • the carbon-based material combustion catalyst can be easily produced by the calcining step.
  • the carbon-based material combustion catalyst can be easily obtained by baking sodalite at a temperature of 600 ° C. or higher.
  • a carbon-based material combustion catalyst capable of stably removing a carbon-based material at a low temperature for a long period of time and a method for producing the same are provided. It ’s the power to do.
  • a catalyst carrier in which a carbon-based material combustion catalyst used for burning a carbon-based material contained in exhaust gas of an internal combustion engine is supported on a ceramic substrate.
  • the production method includes a carrying step of obtaining the catalyst carrier by carrying the carbon-based material combustion catalyst obtained by the production method of the fifth example of the present invention on the ceramic base material.
  • the catalyst carrier is obtained by the production method of the seventh example of the present invention.
  • the catalyst carrier (eighth example of the present invention) obtained by the production method of the seventh example of the present invention is a carbon-based material combustion catalyst obtained by the production method of the fifth example of the present invention. It is carried on a ceramic substrate. Therefore, the catalyst carrier can exhibit the above-described excellent effects of the carbon-based material combustion catalyst. That is, the catalyst carrier can stably remove the carbon-based material at a low temperature for a long period of time.
  • the carbon-based material combustion catalyst can suppress elution of alkali metal and / or alkaline earth metal that can corrode the ceramic substrate in the presence of moisture. Therefore, in the catalyst carrier, the carbon-based material can be stably burned for a long period of time without corroding the ceramic substrate even in the presence of moisture.
  • a supporting step is performed in which the catalyst is supported on the ceramic substrate to obtain the catalyst support.
  • the carbon-based material combustion catalyst obtained through the firing step as described above firmly holds the alkali metal (Na) contained in the sodalite. Therefore, elution of alkali metal from the carbon-based material combustion catalyst is suppressed in the supporting step. As a result, it is possible to prevent the eluted alkali metal from cracking the ceramic substrate with the force S.
  • the carbon-based material combustion catalyst is used for removal of carbon-based material by combustion.
  • Examples of the carbon-based material include carbon fine particles (PM) contained in exhaust gas from a diesel engine.
  • the mixing step, the drying step, and the firing step are performed.
  • an atomic equivalent ratio Si / Al ⁇ l anoreminokeate, an alkali metal element source and / or an alkaline earth metal element source are mixed in water. . At this time, it is preferable to mix until the aluminosilicate and the alkali metal element source and / or the alkaline earth metal element source are uniformly dispersed.
  • the atomic equivalent ratio Si / Al ⁇ 1 the obtained carbon-based material combustion catalyst may easily elute alkali metal elements and / or alkaline earth metal elements in the presence of moisture. is there. As a result, the carbon-based material combustion catalyst may be difficult to stably maintain its catalytic activity for a long period of time.
  • sodalite is used as the aluminosilicate.
  • Sodalite is represented by the general formula 3 (Na 0 -A1 O -2SiO) '2NaX.
  • X is an atom or atomic group that becomes a monovalent anion, and is, for example, a halogen such as F, Cl, Br, or I, or OH.
  • the aluminosilicate (sodalite) and the alkali metal element source and / or the alkaline earth metal element source are mixed in water to obtain a mixed solution.
  • alkali metal element source examples include alkali metal compounds.
  • the alkaline earth metal element source includes, for example, an alkaline earth metal compound.
  • the alkali metal element source contains one or more selected from Na, K, Rb, and Cs, and the alkaline earth metal element contains one or more selected from Ca, Sr, and Ba. It is preferable to do this.
  • the carbon-based material combustion catalyst capable of burning the carbon-based material at a lower temperature can be obtained.
  • the mixing step it is preferable to mix at least the aluminosilicate (sodalite) and the alkaline earth metal element source excluding the alkali metal element source and / or the Mg source.
  • the Mg source can be used in combination with other alkali metal element sources and / or alkaline earth metal element sources without being used alone for mixing with sodalite.
  • the alkali metal element source and / or the alkaline earth metal element source is a carbonate, a sulfate, a phosphate, a nitrate, an organic acid salt, a halide, an oxide, or a hydroxide, respectively. It is preferable.
  • an alkali metal element salt is used as the alkali metal element source
  • an alkaline earth metal salt is used as the alkaline earth metal element source.
  • the alkali metal element source and the alkaline earth metal element source are water or the like. Therefore, when the mixing step is performed in a polar solvent such as water, the aluminosilicate, the alkali metal element source and / or the alkaline earth metal element are used. The source can be easily and uniformly mixed.
  • a polar solvent other than water is used instead of water, and the aluminosilicate and the alkali metal element source and / or the alkaline earth metal element source are contained in the polar solvent.
  • the polar solvent can be evaporated to obtain the solid content.
  • alcohols such as methanol and ethanol can be used as the polar solvent.
  • the polar solvent can be more easily evaporated in the drying step.
  • the total amount of the alkali metal element and the alkaline earth metal element contained in the alkali metal element source and / or the alkaline earth metal element source is the aluminosilicate. It is preferable to mix the aluminosilicate with the alkali metal element source and / or the alkaline earth metal element source so that the amount is 2.25 mol or less per 1 mol of Si element. ,.
  • the firing step The solid content is easily melted inside.
  • the carbon-based material combustion catalyst obtained after the calcination step is likely to have high hardness because it is once in a molten state.
  • the obtained carbon-based material combustion catalyst itself has excellent catalytic activity, it may be easily affected by moisture. That is, there is a possibility that the decrease in catalyst activity due to moisture becomes large. Therefore, it may be difficult to maintain a predetermined catalytic activity for a long time.
  • an alkali metal element and an alkaline earth metal element contained in the alkali metal element source and / or the alkaline earth metal element source is less than 1 mol per 1 mol of Si element in the aluminosilicate
  • the total amount of the alkali metal element and the alkaline earth metal element contained in the alkali metal element source and / or the alkaline earth metal element source is the aluminoacid.
  • the aluminosilicate and the alkali metal element source and / or the alkaline earth metal element source are mixed so that the amount is 0.5 mol or less with respect to 1 mol of Si element in the salt.
  • the total amount of the above-mentioned alkali metal element and alkaline earth metal element is the same as the alkali metal element and alkali earth metal element in the alkali metal element source mixed with the aluminosilicate (sodalite). This is the total amount of alkaline earth metal elements in the source.
  • the amount of the other element is 0 mol. It can be calculated.
  • the total amount can be calculated.
  • the liquid mixture after the mixing step is heated to evaporate water to obtain a solid content.
  • the solid content is a mixture of an alkali metal element source and / or an alkaline earth metal element source and the aluminosilicate (sodalite).
  • the solid content is fired at a temperature of 600 ° C. or higher.
  • the carbon-based material combustion catalyst can be obtained.
  • the firing temperature in the firing step (maximum temperature during heating) is less than 600 ° C, the alkali metal element and / or the alkaline earth metal element is easily eluted in the presence of moisture.
  • a carbon-based material combustion catalyst may have difficulty in stably exhibiting the combustion activity of a carbon-based material for a long period of time.
  • the carbon-based material combustion catalyst is In the firing process, the molten state is once passed, so that there is a risk of forming a lump with high hardness. As a result, in this case, as described later, it may be difficult to adjust the carbon-based material combustion catalyst to a desired particle size by performing a pulverization step after the calcination step.
  • the solid content is fired at a temperature of 700 ° C to 1200 ° C! /.
  • the firing temperature in the firing step is the temperature of the solid content itself, not the ambient temperature. Accordingly, in the baking step, baking is performed so that the temperature of the solid content itself is 600 ° C or higher. In the firing step, firing at the firing temperature is preferably performed for 1 hour or longer, more preferably 5 hours or longer, and even more preferably 10 hours or longer.
  • the particulate carbon-based material combustion catalyst can be obtained.
  • Such a carbon-based material combustion catalyst is easily supported on, for example, a ceramic substrate having a nonicum structure. Further, since the surface area is increased, more excellent catalytic activity can be exhibited.
  • a carbon-based material combustion catalyst having a desired particle size can be obtained by adjusting the pulverization conditions in the pulverization step.
  • the median diameter of the carbon-based material combustion catalyst may be adjusted to 5 O ⁇ m or less.
  • the median diameter exceeds 50 m, clogging or a variation in the loading amount may easily occur when the ceramic base material is coated with the carbon-based material combustion catalyst. More preferably, the median diameter is not more than lO ⁇ m.
  • the median diameter of the carbon-based material combustion catalyst can be measured by, for example, a laser diffraction / scattering particle size distribution measuring device or a scanning electron microscope.
  • the carbon-based material combustion catalyst is used by supporting the carbon-based material combustion catalyst on a ceramic substrate.
  • the above carbon-based material combustion catalyst obtained through the calcination step has an al force in its structure. Li metal elements and / or alkaline earth metal elements are held with relatively strong bonding strength. For this reason, in the above carbon-based material combustion catalyst, it is difficult to elute Al-strength metal and / or Al-strength earth metal when it is supported on the ceramic substrate. It can prevent the ceramic base material from deteriorating.
  • the firing step is performed before supporting the ceramic base material, and is performed without supporting the mixture on the ceramic base material.
  • the carbon-based material combustion catalyst (second example of the present invention) obtained by the production method of the first example of the present invention is contained in the exhaust gas of an internal combustion engine such as a gasoline engine or a diesel engine. Used to burn and remove carbon-based materials such as carbon particulates (PM).
  • an internal combustion engine such as a gasoline engine or a diesel engine.
  • carbon-based materials such as carbon particulates (PM).
  • sodalite is fired at a temperature of 600 ° C or higher.
  • Sodalite is represented by the general formula 3 (Na 2 O 3 .A1 O ⁇ 2SiO) ′ 2NaX.
  • X is an atom or atomic group that becomes a monovalent anion, and is, for example, a halogen such as F, Cl, Br, or I, or OH.
  • the calcination temperature in the calcination step is less than 600 ° C, it is difficult to obtain the carbon-based material combustion catalyst having a desired effect. That is, in this case, the catalytic activity of the obtained carbon-based material combustion catalyst for combustion of the carbon-based material may be reduced.
  • the firing temperature is 700 ° C or higher.
  • the firing temperature exceeds 1200 ° C
  • the sodalite is easily melted during the firing step.
  • the carbon-based material combustion catalyst obtained after the calcination step is likely to have a high hardness because it is once in a molten state. As a result this In some cases, as described later, it may be difficult to adjust the carbon-based material combustion catalyst to a desired particle size by performing a pulverization step after the calcination step.
  • the sodalite is fired at a temperature of 700 ° C. to 1200 ° C. in the firing step.
  • the firing temperature in the firing step is the temperature of the sodalite itself, not the ambient temperature. Therefore, in the above baking step, baking is performed so that the temperature of sodalite itself is 600 ° C or higher. In the firing step, firing at the firing temperature is preferably performed for 1 hour or longer, more preferably 5 hours or longer, and even more preferably 10 hours or longer.
  • a pulverization step of pulverizing the carbon-based material combustion catalyst obtained after the calcination step it is preferable to have a pulverization step of pulverizing the carbon-based material combustion catalyst obtained after the calcination step.
  • the powdery carbon-based material combustion catalyst can be obtained.
  • Such a carbon-based material combustion catalyst is easily supported on, for example, a ceramic substrate having a nonicum structure. Further, since the surface area is increased, more excellent catalytic activity can be exhibited.
  • a carbon-based material combustion catalyst having a desired particle size can be obtained by appropriately adjusting the pulverization conditions. Specifically, like the first example of the present invention, it is preferable to adjust the median diameter of the carbon-based material combustion catalyst to, for example, 50 m or less. More preferably, the median diameter should be 10 mm or less! /.
  • the carbon-based material combustion catalyst is used by supporting the carbon-based material combustion catalyst on a ceramic substrate.
  • the carbon-based material combustion catalyst obtained by performing the firing step retains an anallylic metal (Na) with a relatively strong bonding force in the structure, and therefore, when supported on the ceramic substrate. It is possible to prevent the ceramic base material from being deteriorated by the alkali metal that is difficult to elute.
  • the firing step is performed on the ceramic substrate. It is carried out before carrying, and without carrying sodalite on the ceramic substrate.
  • the carbon-based material combustion catalyst (sixth example of the present invention) obtained by the manufacturing method of the fifth example of the present invention is a carbon contained in the exhaust gas of an internal combustion engine such as a gasoline engine or a diesel engine. Used to burn and remove carbonaceous materials such as particulates (PM).
  • the carbon-based material combustion catalyst obtained by the production method of the first example of the present invention is employed, and the carbon-based material combustion catalyst is described above.
  • the catalyst supporting body (fourth example of the present invention) is obtained by performing a supporting process.
  • the carbon-based material combustion catalyst obtained by the manufacturing method of the fifth example of the present invention is adopted, and the carbon-based material combustion catalyst is used as the ceramic substrate.
  • the catalyst supporting body (eighth example of the present invention) is obtained by performing a supporting process.
  • the carbon-based material combustion catalyst and a sol-like or slurry-like oxide-based ceramic particle are mixed to produce a composite material, and the composite material is coated on the ceramic base material. It is preferable to heat it.
  • the carbon-based material combustion catalyst is mixed with oxide-based ceramic particles such as a sol to obtain a composite material. If necessary, a solvent such as water is further added to the composite material to adjust it to an appropriate viscosity. The obtained slurry-like composite material is coated on the ceramic substrate and heated.
  • the carbon-based material combustion catalyst 1 and the oxide-based ceramic particles 15 are baked onto the base material 22, and the carbon-based material combustion catalyst 1 is treated with the ceramic.
  • the catalyst carrier 2 carried on the mick substrate 22 can be easily obtained.
  • An adhesive layer 155 formed by bonding oxide ceramic particles 15 is formed on the ceramic substrate 22, and the catalyst support in which the carbon-based material combustion catalyst 1 is dispersed and held in the adhesive layer 155. Body 2 can be obtained.
  • the carbon-based material combustion catalyst 1 is firmly held by the adhesive layer 155. Therefore, the catalytic activity can be maintained stably so that the carbon-based material combustion catalyst 1 does not easily fall off during use.
  • the oxide-based ceramic particles preferably include one or more selected from alumina, silica, titania, and zirconia as a main component.
  • the ceramic substrate for example, a substrate mainly composed of cordierite, alumina, aluminum titanate, SiC, titania or the like can be used.
  • the ceramic base material for example, a base material in a pellet shape, a filter shape, a foam shape, a flow-through type monolith shape or the like can be used.
  • the ceramic substrate is made of cordierite, SiC, or aluminum titanate.
  • the ceramic base material has a honeycomb structure. In these cases, the force S makes the catalyst carrier more suitable for exhaust gas purification.
  • the honeycomb structure includes an outer peripheral wall, partition walls provided in a honeycomb shape inside the outer peripheral wall, and a plurality of cells partitioned by the partition walls and penetrating through both end faces.
  • As the honeycomb structure a structure in which all cells are open at both end faces can be used. Some of the cells open at both end faces of the honeycomb structure, and the remaining cells are plugs formed at both end faces. It is also possible to use a structure closed by a part.
  • one or more rare earth elements can be supported on the ceramic substrate.
  • rare earth elements For example, it is possible to adopt Ce, La, Nd, etc.
  • oxide particles of the rare earth element can be employed.
  • oxygen adsorption / desorption occurs due to a change in the state of the rare earth element, which is a force that further promotes the combustion of the carbon-based material.
  • FIG. 19 shows an example of a catalyst carrier 2 in which a rare earth element 16 is supported on a base material 22 together with a carbon-based material combustion catalyst 1.
  • a catalyst carrier 2 is a mixture of a carbon-based material combustion catalyst 1, a rare earth element 1, and oxide-based ceramic particles 15 such as a sol, and water is added as necessary. It is obtained by adjusting the viscosity to an appropriate level and baking the obtained slurry-like composite material on the ceramic substrate 22.
  • an adhesive layer 155 formed by bonding the oxide ceramic particles 15 is formed on the ceramic substrate 22, and the carbon-based material combustion catalyst 1 and the rare earth element 16 are dispersed in the adhesive layer 155.
  • the catalyst carrier 2 supported as described above can be obtained.
  • the catalyst carrier may support a noble metal as required.
  • the catalytic activity for the combustion of the carbon-based material of the catalyst carrier can be further improved.
  • the carbon-based material combustion catalyst has an excellent catalytic activity, the amount of the relatively expensive noble metal supported can be greatly reduced as compared with the conventional case.
  • noble metals include Pt, Pd, and Rh.
  • FIG. 20 shows an example of a catalyst carrier 2 in which a carbon-based material combustion catalyst 1, a rare earth element 16, and a noble metal 17 are dispersed in an adhesive layer 155 formed by bonding oxide ceramic particles 15.
  • a catalyst carrier 2 comprises a carbon-based material combustion catalyst 1, a rare earth element 16, an oxide ceramic particle 15 such as a sol, and a noble metal complex, and water is added as necessary. It can be obtained by adding to adjust to an appropriate viscosity, and baking the obtained slurry-like composite material on the ceramic substrate 22.
  • the noble metal 17 is supported on the oxide ceramic particles 15.
  • the rare earth element oxide particles are contained as the rare earth element, it is preferable that the rare earth element oxide particles 16 carry the noble metal 17 as shown in FIG. /.
  • the catalyst carrier can be formed with a force S for forming a noble metal layer 17 made of a noble metal.
  • the noble metal layer 17 can be formed on the adhesive layer 155 including the carbon-based material combustion catalyst 1 supported on the ceramic substrate 22. That is, the adhesion layer 155 containing the carbon-based material combustion catalyst 1 is formed on the ceramic base material 22, and the force S can be formed to form the noble metal layer 17 on the adhesion layer 155.
  • the noble metal layer 17 can be formed between the adhesive layer 155 containing the carbon-based material combustion catalyst 1 and the ceramic substrate 22. That is, ceramic substrate
  • the force S can be formed by forming the noble metal layer 17 on 22 and forming the adhesive layer 155 including the carbon-based material combustion catalyst 1 on the noble metal layer 17.
  • the alkali metal and / or alkaline earth metal element in the carbon-based material combustion catalyst 1 can be prevented from moving to the ceramic substrate 22 made of ceramics. Thereby, the corrosion of the ceramic substrate 22 can be further prevented.
  • a carbon-based material combustion catalyst used to burn and remove carbon-based material contained in the exhaust gas of an internal combustion engine is produced, and combustion promotion characteristics for the carbon-based material (carbon) are examined. It is.
  • a carbon-based material combustion catalyst is produced by performing a firing step of firing sodalite at a temperature of 600 ° C or higher.
  • this sodalite was fired at a temperature of 1000 ° C. Specifically, the sodalite was heated at a heating rate of 100 ° C / hour, and when it reached a temperature of 1000 ° C (firing temperature), it was fired by holding for 10 hours. Next, the fired product has a median diameter of 10 m or less and the maximum By pulverizing to a particle size of 100 ⁇ or less, a powdery carbon-based material combustion catalyst was obtained. This is designated as sample E1.
  • catalyst species sample El, noble metal catalyst, or potassium carbonate powder
  • CB carbon black
  • an evaluation sample consisting only of CB was prepared for comparison without using a catalyst species.
  • the CB single evaluation sample was mixed for a certain period of time using an agate mortar like the other samples.
  • four types of samples were prepared as evaluation samples: CB alone, a mixture of noble metal catalyst and CB, a mixture of sample E1 and CB, and a mixture of potassium carbonate and CB.
  • the catalyst type (sample El, noble metal catalyst, or potassium carbonate powder) lg was put into 500 cc of water and washed by stirring overnight. Next, the catalyst type after the water washing treatment was filtered, and further 1500 cc of water was passed through the filtered catalyst type to sufficiently wash it, followed by drying.
  • the sample E1 has excellent combustion promoting characteristics with respect to the carbon-based material, and can burn and remove the carbon-based material at a low temperature. In addition, sample E1 can maintain its excellent characteristics even in the presence of moisture, so that the carbonaceous material can be stably burned for a long period of time.
  • sodalite was calcined at a calcining temperature different from that of the sample E1, and three types of catalysts were produced.
  • the combustion acceleration characteristics were measured by measuring the DTA exothermic peak temperature in the same manner as the above sample E1. The result is shown in Fig.2. The figure also shows the results of Sample El, a carbon-based material combustion catalyst that was fired at a firing temperature of 1000 ° C.
  • the DTA exothermic peak top temperature of sodalite obtained by calcining sodalite at a temperature of 600 ° C or higher shows a very low value of 500 ° C or lower. It was. Since the DTA exothermic peak temperature of precious metal (Pt) catalysts generally used as combustion catalysts for carbonaceous materials is about 520 ° C (see Fig. 1), these carbonaceous material combustion catalysts are used for carbonaceous materials. It has a very good catalytic activity and has the power to be strong.
  • Pt precious metal
  • the carbon-based material combustion catalyst that is calcined at a temperature of 600 ° C or higher shows a temperature similar to or lower than the DTA exothermic peak temperature of the noble metal (Pt) catalyst even after washing with water. It can be seen that excellent catalytic activity can be maintained even if dripping after washing with water.
  • the catalyst obtained by calcining at a temperature of 500 ° C must have a DTA exothermic peak temperature (about 520 ° C) similar to that of noble metal (Pt) catalyst before washing with water!
  • the DTA exothermic peak temperature rose to about 540 ° C after washing with water, and the catalytic activity was lower than that of the noble metal catalyst.
  • sodalite that had not been fired had insufficient catalytic activity for the combustion of carbon-based substances before and after washing with water.
  • zeolite other than sodalite a zeolite structure (BEA type, FAU (faujasite) type, FER type, LTA type, LTL type, MFI type, and MOR type) and / Alternatively, 12 types of zeolites having different SiO 2 / Al 2 O ratios in the zeolite composition were prepared (see FIG. 25).
  • Figure 25 shows the product names of these zeolites, the types of zeolite structures, and the SiO 2 / Al 2 O ratio.
  • the names of the zeolites in FIG. 25 and FIG. 3 described later are the product names of zeolites manufactured by Tosoh Corporation.
  • Fig. 25 also shows the sodalite (SOD) used to make sample El.
  • FIG. 25 various zeolites shown in FIG. 25 were fired in the same manner as the sample E1. Specifically, various zeolites were heated at a heating rate of 100 ° C / hour, and were held for 10 hours when the temperature reached 1000 ° C (firing temperature). Next, the fired product was pulverized to a median diameter of 10 m or less and a maximum particle size of 100 am or less to obtain a powdered catalyst. For these catalysts, the combustion promotion characteristics for carbonaceous materials were examined in the same manner as in sample E1. For these catalysts, the combustion promotion characteristics after washing with water were not measured. The results are shown in Fig. 3. FIG. 3 also shows “300” as a result of the sample E1 obtained by baking sodalite.
  • a carbon-based material combustion catalyst capable of burning and removing carbon-based materials stably at a low temperature for a long period of time by firing sodalite at a temperature of 600 ° C or higher. It can be seen that
  • a carbon-based material combustion catalyst is produced by performing a mixing step, a drying step, and a firing step.
  • an aluminosilicate having an atomic equivalent ratio of Si / Al ⁇ l and an alkali metal element source and / or an alkaline earth metal element source are mixed in water.
  • the mixed solution after the mixing step is heated to evaporate water and obtain a solid content.
  • the carbon-based material combustion catalyst is obtained by calcination of the solid content at a temperature of 600 ° C or higher.
  • sodalite (aluminosilicate with an atomic equivalent ratio Si / Al ⁇ l) 3 (Na 2 O.Al 2 0 3 '2Si 0 2 )' 2NaOH) powder was prepared. 100 parts by weight of this sodalite and 5 parts by weight of potassium carbonate were put into water and mixed in water.
  • this solid content was fired at a temperature of 800 ° C. Specifically, the solid content is heated at a rate of 100
  • Firing was performed by heating at ° C / hour and holding for 10 hours when the temperature reached 800 ° C (firing temperature).
  • the obtained fired product was pulverized to a median diameter of 10 m or less and a maximum particle diameter of 100 m or less to obtain a carbon-based material combustion catalyst. This is sample E2.
  • each evaluation sample 6mg was heated to a maximum temperature of 900 ° C at a temperature increase rate of 10 ° C / min.
  • the CB was burned by heating, and the DTA exothermic peak temperature and the relationship between temperature and TG were measured.
  • the DTA exothermic peak temperature was measured using 0.5 mg. Heating was performed while flowing air through the evaluation sample at a flux of 50 mL // min.
  • Figure 4 shows the DTA exothermic peak temperature results for each catalyst type. Regarding the measurement results of temperature and TG, the results using CB alone are shown in Fig.
  • FIG. 5 the results using noble metal catalyst as the catalyst type are shown in Fig. 6, and the results using KCO are shown in Fig. 7.
  • Figure 8 shows the results using sample E2.
  • the vertical axis in Figs. 5 to 8 uses the DTA exothermic peak indicating the maximum burning rate of carbon black.
  • catalyst type (sample E2, noble metal catalyst, or potassium carbonate powder) lg was put into 500 cc of water and washed by stirring overnight. Next, the catalyst type after the water washing treatment is filtered, and after further washing by passing 1500 cc of water through the filtered catalyst type, a temperature of 120 Dry at ° C.
  • the evaluation sample which was washed and dried in the same manner as the other samples, was then mixed in an agate mortar.
  • the evaluation sample using potassium carbonate as the catalyst species was dissolved in water by the washing and washing treatment, so that the subsequent operation could not be performed.
  • three types of samples were prepared as evaluation samples after washing: CB alone, a mixture of noble metal catalyst and CB, and a mixture of sample E2 and CB.
  • the DTA exothermic peak temperature was again measured using a thermal analysis differential thermogravimetric (TG-DTA) simultaneous measurement device. The results of the DTA exothermic peak temperature after the water washing treatment are also shown in Fig. 4.
  • sample using sample E2 and the sample using potassium carbonate had a low DTA exothermic peak temperature at a relatively low temperature. ) Can be burned.
  • sample E2 has a heat generation peak at around 400 ° C. Actually, even at a lower temperature (eg, around 350 ° C), carbon black Combustion has begun!
  • sample E2 has excellent combustion promoting characteristics with respect to the carbon-based material, and can burn and remove the carbon-based material at a low temperature.
  • sample E2 can maintain its excellent characteristics even in the presence of moisture, and can therefore burn carbonaceous materials stably for a long period of time.
  • Sample E2 is a catalyst prepared by calcining a mixture of 100 parts by weight of sodalite and 5 parts by weight of potassium carbonate at a temperature of 800 ° C for 10 hours.
  • sodalite and carbonic acid were used.
  • a plurality of catalysts were prepared by calcining a mixture with lithium (the above solid content).
  • the DTA exothermic peak top temperature of the carbon-based material combustion catalyst produced by firing at a temperature of 600 ° C or higher is approximately 460 ° C before and after water washing!
  • the very low values were as follows.
  • the precious metal (Pt) catalyst which is generally used as a combustion catalyst for carbon-based materials, has a DTA exothermic peak temperature of about 520 ° C (see Fig. 4), so these carbon-based material combustion catalysts are It can be seen that the catalyst activity is sufficiently excellent.
  • the catalyst calcined at a temperature of less than 600 ° C is excellent before it is washed with water! /, which is sufficiently lower than the noble metal (Pt) catalyst! /, And exhibits a DTA exothermic peak temperature. After the water washing, the DTA exothermic peak temperature rose remarkably and the catalytic activity was lower than that of the noble metal catalyst. Also, a mixture of uncalcined sodalite and potassium carbonate Even though it was a compound, it showed excellent catalytic activity before washing with water! /, But the catalytic activity was significantly reduced after washing with water.
  • the firing temperature in the above firing step needs to be performed at 600 ° C or higher.
  • the carbon-based material combustion catalyst having a lower DTA exothermic peak temperature that is, the carbon-based material combustion catalyst having excellent catalytic activity, is obtained by firing at a temperature of 700 ° C to 1200 ° C. It can be seen that Furthermore, as is known from the figure, compared to the case of calcination in 5 hours, the force S in the case of calcination for 10 hours and the decrease in catalytic activity after washing with water were suppressed.
  • a carbon-based material combustion catalyst was prepared by mixing sodalite with potassium carbonate as a K source in the mixing step.
  • a plurality of carbon-based material combustion catalysts were prepared by changing the kind of potassium salt mixed with sodalite, and the DTA exothermic peak top temperature was examined.
  • each potassium salt (potassium carbonate, potassium nitrate, lithium chloride, potassium sulfate, potassium acetate, potassium phosphate, or potassium hydroxide) was mixed with sodalite to obtain a mixture.
  • Each potassium salt was mixed so that the amount of potassium element in the potassium salt was 0.25 monolayer or 0.00225 monolayer with respect to 1 monoelement of Si element in sodalite.
  • mixing was performed in water in the same manner as Sample E2, and the mixture was obtained by drying the water in the mixed solution as described above.
  • the mixture was heated at a rate of temperature increase of 100 ° C / hour, and kept at the temperature of 1000 ° C (calcination temperature) for 10 hours to perform calcination.
  • the obtained calcined product was pulverized to a median diameter of 10 m or less and a maximum particle diameter of 100 am or less to obtain a carbon-based material combustion catalyst.
  • XI represents a key in each alkali metal salt with respect to 1 mol of Si element in sodalite before washing with water.
  • the amount of Lucari metal element (K amount) or alkaline earth metal element amount ( ⁇ amount) in alkaline earth metal salt is 0.225 mol.
  • ⁇ 2 shows that after washing with water, the amount of alkali metal element (K amount) in each alkali metal salt or the amount of alkaline earth metal element (K amount) in alkaline earth metal salt to 1 mol of Si element in sodalite. 0. Indicates 225 mole state.
  • X3 is the amount of alkali metal element (K amount) in each alkali metal salt or the amount of alkaline earth metal element (K amount) in alkaline earth metal salt to 1 mol of Si element in sodalite before washing with water. Indicates the state of 0.0000 mono.
  • X4 is the amount of alkaline metal element (K amount) in each alkali metal salt or alkaline metal element in alkaline earth metal salt per 1 mol of Si element in sodalite after washing with water This indicates a state where the amount (K amount) is 0.0025 mol.
  • the carbon-based material combustion catalyst showed excellent catalytic activity before and after washing with water regardless of the potassium salt used.
  • the catalytic activity slightly decreases when the amount of potassium salt is reduced, in this case as well, the DTA peak exotherm top temperature is maintained at 450 ° C or less before and after washing with water, and excellent catalytic activity is achieved.
  • the DTA peak exotherm top temperature is maintained at 450 ° C or less before and after washing with water, and excellent catalytic activity is achieved.
  • potassium salt was mixed with sodalite as an alkali metal element source (alkali metal salt) to produce a carbon-based material combustion catalyst.
  • alkali metal salt an alkali metal element source
  • various alkali metal element sources or alkaline earth metal element sources are mixed with sodalite in addition to potassium salt to produce a plurality of carbon-based material combustion catalysts, and these DTA The exothermic peak top temperature was examined.
  • sodalite is mixed with various alkali metal salts (sodium carbonate, carbonated lithium, rubidium carbonate, or cesium carbonate), or alkaline earth metal salts (magnesium hydroxide, calcium carbonate). , Strontium carbonate, barium carbonate) to obtain a mixture.
  • alkali metal salt or alkaline earth metal salt has an alkali metal element amount in each alkali metal salt or an alkaline earth metal element amount in the alkaline earth metal salt with respect to 1 mol of Si element in sodalite is 0. 225 monoles or 0.00225 monoles were mixed.
  • mixing was performed in water in the same manner as Sample E2, and the mixture was obtained by drying the water in the mixed solution as described above.
  • the mixture was heated at a rate of temperature increase of 100 ° C / hour to reach a temperature of 1000 ° C (firing temperature). Baking was carried out by holding for 10 hours. Next, the obtained fired product was pulverized to a median diameter of 10 m or less and a maximum particle diameter of 100 am or less to obtain a carbon-based material combustion catalyst.
  • Fig. 11 For each carbon-based material combustion catalyst thus obtained, the DTA exothermic peak temperature before and after washing with water was measured in the same manner as in sample E2. The results are shown in Fig. 11.
  • the horizontal axis indicates the alkali element species in the alkali metal element source added in the mixing step and the alkaline earth metal species in the alkaline earth metal element source, and the vertical axis indicates the DTA exothermic peak temperature.
  • Y1 in Fig. 11 represents the amount of Al element in the alkali metal element source and the element in the alkali metal element source for 1 mol of Si element in the sodalite before washing with water. The amount is 0.225 mol. Y2 in Fig.
  • Y3 in Fig. 11 shows that the amount of alkali element in the alkali metal element source and alkaline earth metal element in the alkaline earth metal element source is 0.002 to 1 mol of Si element in sodalite before washing with water. The mole state is shown.
  • Y4 in Fig. 11 shows that after washing with water, the amount of alkali element in the alkali metal element source and alkali earth metal element in the alkaline earth metal element source relative to 1 mol of Si element in sodalite is 0. The state of 00225 mol is shown.
  • the carbon-based material combustion catalyst prepared by mixing various alkali metal elements (Na, K, Rb, Cs) with sodalite in the above mixing step, Even when used, it showed excellent catalytic activity before and after washing with water.
  • a carbon-based material combustion catalyst having excellent catalytic activity can be obtained even if other alkali metals or alkaline earth metals are mixed with sodalite and calcined. s .
  • Mg source As is known from FIG. 11, Mg is 0 ⁇ 0 per 1 mol of Si element in sodalite. The catalyst obtained by adding 0225 mol showed excellent catalytic activity. However, although the catalyst prepared by adding Mg in the range of 0 ⁇ 225 monole could be put to practical use, its catalytic activity was reduced. On the other hand, catalysts obtained using other alkaline earth metal elements (Ca Sr Ba) showed excellent catalytic activity even in the case of V and deviation.
  • an alkaline earth metal element source when selected, it is preferable to employ an alkaline earth metal element source other than Mg.
  • an Mg source the Mg source and sodalite are mixed so that the amount of Mg in the Mg source is less than 0 ⁇ 225 monolayers per mole of Si element in the sodalite. It is preferable. More preferably, the amount is 0.00225 mol or less.
  • a carbon-based material combustion catalyst was produced by mixing sodalite with one kind of alkali metal or alkaline earth metal in the mixing step.
  • a carbon-based material combustion catalyst is prepared by mixing a plurality of alkali metal elements and alkaline earth metal with sodalite in the above mixing step, and the DTA exothermic peak temperature is measured. did.
  • potassium carbonate is added to sodalite, and then an alkali metal element source is added.
  • Each mixture thus obtained contains sodalite, potassium carbonate, and an alkali metal element source or alkaline earth metal element source other than potassium carbonate.
  • potassium carbonate (potassium source) was added to sodalite so that the amount of potassium in potassium carbonate was 0.1125 mol with respect to 1 mol of Si element in sodalite.
  • Various alkali metal elements in sodalite so that the amount of alkali metal element in each alkali metal element source or the amount of alkaline earth metal element in alkaline earth metal element source is 0.1125 mol per 1 mol of Si element Source or alkaline earth metal element source
  • the total amount of potassium in potassium carbonate and the amount of other alkali metal elements or alkaline earth metal elements with respect to 1 mol of Si element in sodalite is all. 0. 225 mol.
  • the mixture was heated at a rate of temperature increase of 100 ° C / hour and held for 10 hours when the temperature reached 1000 ° C (calcination temperature). Thereby, the mixture was fired.
  • the obtained calcined product was pulverized to a median diameter of 10 m or less and a maximum particle size of 100 m or less to obtain a carbonaceous material combustion catalyst.
  • the DTA exothermic peak temperature before and after washing with water was measured in the same manner as in sample E2.
  • the result is shown in FIG.
  • the vertical axis indicates the DTA exothermic peak temperature
  • the horizontal axis indicates the Al force metal element species in the alkali metal element source added in addition to potassium carbonate or the Al force resource in the alkaline earth metal element source. Earth metal species.
  • the figure also shows the DTA exothermic peak before and after water washing for a carbon-based material combustion catalyst (sample whose horizontal axis is indicated by K in Fig. 12) prepared by mixing and firing potassium carbonate in sodalite. Indicate the temperature.
  • the carbon-based material combustion catalyst was prepared by changing the addition ratio of the alkali metal element source or alkaline earth metal element source mixed in the sample, and the DTA exothermic peak temperature was measured.
  • Barium carbonate 0 parts by weight, 5 parts by weight, 10 parts by weight, 15 parts by weight, 20 parts by weight, 4 parts respectively
  • a mixture was prepared by mixing 0 parts by weight, 70 parts by weight, 100 parts by weight, 150 parts by weight, 200 parts by weight, and 300 parts by weight.
  • FIG. 26 shows a value obtained by converting the mixing amount (parts by weight) of K with respect to 100 parts by weight of sodalite into the mixing amount (mol) of K with respect to the amount of Si (mol) in sodalite.
  • FIG. 27 shows a value obtained by converting the mixing amount (parts by weight) of Ba with respect to 100 parts by weight of sodalite into the mixing amount (mol) of Ba with respect to the Si amount (mol) in sodalite (FIG. 27). 2 See 7).
  • the carbon-based material combustion catalyst obtained is excellent even if the alkali metal element amount and alkaline earth metal element amount in the mixing step are changed. Showed good catalytic activity!
  • the amount of alkali metal or alkaline earth metal was increased, the difference in the DTA exothermic peak temperature before and after washing with water increased.
  • sodalite and an alkali metal element source or alkaline earth metal element source are mixed so that the amount of (Ba) is 225 mol or less with respect to 1 mol of Si element in sodalite, DTA before and after water washing It can be seen that a carbon-based material combustion catalyst having a relatively small exothermic peak temperature difference, that is, a carbon-based material combustion catalyst having excellent durability against moisture can be produced.
  • the amount of the alkali metal element and the amount of the alkaline earth metal element exceeds 2.25 mol, the mixture is easily melted at the time of firing, and it is difficult to pulverize the carbon-based material combustion catalyst obtained after the firing. become.
  • the amount of the alkali metal element (mole) and the amount of the alkaline earth metal element (mole) per mole is preferably 1 mol or less, and more preferably 0.5 mol or less.
  • a carbon-based material combustion catalyst capable of stably removing a carbon-based material at a low temperature for a long period of time is manufactured by performing the mixing step and the calcination step. That's the power S.
  • This example is an example of producing a catalyst carrier 2 in which the carbon-based material combustion catalyst (sample E2) produced in Example 2 is supported on a ceramic substrate (ceramic honeycomb structure) 22 having a honeycomb structure.
  • the ceramic base material 22 of the present example was partitioned by an outer peripheral wall 21, partition walls 25 provided inside the outer peripheral wall 21 in a honeycomb shape, and the partition walls 25.
  • the cell 3 is partially open at both end faces 23 and 24 of the ceramic substrate 22. That is, some of the cells 3 are open at both end faces 23 and 24 of the ceramic substrate 22, and the remaining senore 3 is closed by the plug portions 32 formed at the both end faces 23 and 24.
  • the opening 31 that opens the end of the cell 3 and the plug 32 that closes the end of the cell 3 are alternately arranged, so-called A checkered pattern is formed.
  • the carbon-based material combustion catalyst 1 (sample E2) produced in Example 2 is supported on the partition walls 25 of the ceramic substrate 22. Further, as shown in FIG. 18, an adhesive layer 155 made by baking alumina sol is formed on the partition wall 25, and the carbon-based material combustion catalyst 1 is supported in the adhesive layer 155.
  • the adhesive layer 155 is formed by bonding oxide ceramic particles 15 made of alumina, and the carbon-based material combustion catalyst 1 is dispersed in the adhesive layer 155.
  • the end of the cell located on the upstream end face 23 that becomes the inlet side of the exhaust gas 10 and the downstream end face 24 that becomes the outlet of the exhaust gas 10.
  • the part has the part where the plug part 32 is arranged and has! /, Na! / And parts alternately! /.
  • a large number of pores are formed in the partition wall 2 so that the exhaust gas 10 can pass therethrough.
  • the overall size of the catalyst carrier 2 of this example is 160 mm in diameter and 100 mm in length, and the tenor size is a tenor thickness of 3 mm and a tenor pitch of 1 ⁇ 47 mm.
  • the ceramic substrate 22 was made of cordierite, and the cell 3 had a rectangular cross section.
  • the cell 3 can also employ various other cross-sectional shapes such as a triangle and a hexagon.
  • the opening 31 that opens the end of the cell 3 and the plug 32 that closes the end of the cell 3 are alternately arranged to form a so-called checkered pattern. Yes.
  • talc, fused silica, and aluminum hydroxide were weighed to obtain a desired cordierite composition, a pore-forming agent, a binder, water, and the like were added, and the mixture was stirred with a mixer. Then, the obtained clay-like ceramic material was extrusion-molded with a molding machine to obtain a honeycomb-shaped molded body. After drying this, it is cut into a desired length, and an outer peripheral wall, a partition wall provided in a honeycomb shape inside, and a plurality of cells partitioned by the partition wall and penetrating through both end surfaces. A formed body was prepared. Subsequently, this compact was calcined by heating at a temperature of 1400 to 1450 ° C for 2 to 10 hours to obtain a calcined body (a nodular cam structure).
  • a masking tape was attached so as to cover the entire both end faces of the honeycomb structure.
  • the masking tape corresponding to the positions to be plugged on both end faces of the ceramic honeycomb structure was sequentially irradiated with a laser beam, and the masking tape was melted or burned to form through holes. This allows the through hole to be plugged by the plug at the end of the cell. Formed.
  • the other part of the end of the cell is covered with masking tape.
  • the through holes were formed in the masking tape so that the through holes and the portions covered with the masking tape were alternately arranged on both end faces of the cell.
  • a resin film having a thickness of 0.1 mm was used as the masking tape.
  • talc, fused silica, alumina, and aluminum hydroxide which are the main raw materials for the plug material that is the material of the plug part, are weighed to have a desired composition, and a binder, water, and the like are added to the mixer. The mixture was agitated and stirred to prepare a slurry-like plug material. At this time, pore forming material can be added as necessary. And after preparing the container which put the slurry-like plug material, the end surface of the honeycomb structure in which the through-hole was partially formed was immersed. As a result, an appropriate amount of plug material penetrated from the through hole of the masking tape to the end of the cell. The same process was performed on the other end face of the honeycomb structure. In this way, a honeycomb structure in which the plug material was arranged in the opening of the cell to be plugged was obtained.
  • the honeycomb structure and the plug material disposed in the portion to be plugged were simultaneously fired at about 1400-; 1450 ° C.
  • the masking tape is removed by incineration, and as shown in FIG. 15, at both ends of the cell 3, a plurality of opening portions 31 that open the end portions and a plurality of plug portions 32 that close the end portions of the cell 3 are provided.
  • a ceramic honeycomb structure (ceramic base material) 22 having the above structure was produced.
  • the carbon-based material combustion catalyst (sample E2) produced in Example 2 was mixed with an alumina slurry containing 3 wt% of alumina sol. Furthermore, water was added to adjust the viscosity to a desired value, and a slurry-like composite material was obtained. Next, this composite material was coated on the partition wall 25 of the ceramic substrate 22. Then, baking was performed by heating at a temperature of 500 ° C. The coating amount of the slurry-like composite material was 60 g per liter of the base material (no-cam structure). Thus, a catalyst carrier 2 in which the carbon-based material combustion catalyst 1 was carried on the ceramic substrate 22 as shown in FIGS. 15, 16, and 18 was obtained.
  • the catalyst carrier 2 of this example carries the carbon-based material combustion catalyst 1 (sample E2) of Example 2 on the cell wall 22. Therefore, taking advantage of the excellent characteristics of the carbon-based material combustion catalyst 1, the honeycomb structure 2 can burn the carbon-based material at a low temperature without corroding the base material. In addition, the catalytic activity against carbon-based substances is also reduced by moisture. Not at all.
  • the carbon-based material combustion catalyst (sample E2) is obtained by calcining a mixture of sodalite and an alkali metal element source (potassium carbonate). Since the carbon-based material combustion catalyst has a relatively strong alkali metal element in its structure, it is difficult for the alkali metal to elute. Therefore, even when the carbon-based material combustion catalyst is supported on the honeycomb structure, it is possible to prevent the alkali metal from being eluted and corroding the ceramic substrate.
  • an alkali metal element source potassium carbonate
  • a force for producing a catalyst carrier using a ceramic base material (ceramic honeycomb structure) made of cordierite.
  • the ceramic base material for example, porous high heat resistance such as SiC, aluminum titanate, etc.
  • a plug portion is formed to suppress force, for example, pressure loss, using the ceramic honeycomb structure in which the plug portion that closes the end portion of the cell is formed as the ceramic base material.
  • a ceramic honeycomb structure can be used.
  • a carbon-based material is added to an alumina slurry containing 3 wt% of alumina sol.
  • the combustion catalyst (sample E2), it can be prepared by further adding oxide particles made of, for example, CeO, ZrO, CeO-ZrO solid solution, etc.
  • a carbon-based material combustion catalyst (sample E2) is mixed with an alumina slurry containing 3 wt% of alumina sol. In this case, for example, it is measured by the force of making a platinum nitrate aqueous solution further dispersed by a predetermined amount.
  • the carbon-based material combustion catalyst (sample E2) prepared in Example 2 was supported on a ceramic base material to prepare a catalyst support, but instead of the sample E2, an example was used.
  • the carbon-based material combustion catalyst prepared in 1 (for example, sample E1)
  • the carbon-based material combustion catalyst prepared in Example 1 is supported on the ceramic substrate by performing the same operation as in this example.
  • a catalyst carrier can be produced.
  • an unfired saw A catalyst carrier is prepared by supporting a mixture of dallite and an alkali metal element source (potassium carbonate) on a ceramic substrate.
  • the catalyst carrier produced in this example is the same as in Example 3 except that the catalyst to be supported is different.
  • this mixture was mixed with an alumina slurry containing 3 wt% of alumina sol, and further water was added to adjust the viscosity to a desired viscosity to obtain a slurry-like composite material.
  • the composite was then baked onto the ceramic substrate by coating the composite material on the ceramic substrate partition as in Example 3 and heating at a temperature of 500 ° C. In this way, a comparative catalyst carrier was obtained.
  • the catalyst carrier obtained in this way had a partial crack in the ceramic substrate. That is, when a mixture of sodalite that has not been fired and an alkali metal element source (carbonic acid lithium) is supported on a ceramic substrate, alkali metal (potassium) is likely to be eluted from the mixture during heating such as baking. The eluted alkali metal attacks the cordierite component of the ceramic substrate and destroys the crystal system. For this reason, the thermal expansion coefficient and strength of the ceramic base material are partially changed, and the ceramic base material is easily cracked as described above.
  • alkali metal element source carbonic acid lithium
  • FIG. 1 is an explanatory diagram showing the DTA exothermic peak temperature when a carbon-based material is burned using each catalyst type or without using a catalyst according to Example 1.
  • FIG. 2 is an explanatory diagram showing the relationship between the calcination temperature and the DTA exothermic peak temperature of the carbon-based material combustion catalyst before and after washing according to Example 1.
  • FIG. 3 is an explanatory diagram showing the relationship between the zeolite species and the DTA exothermic peak temperature of the catalyst according to Example 1. 4] An explanatory diagram showing a DTA exothermic peak temperature when a carbonaceous material according to Example 2 is burned with or without using each catalyst type.
  • Example 5 A diagram showing the relationship between temperature, TG, and DTA in Example 2 when carbon black was burned alone without using a catalyst.
  • FIG. 8 A diagram showing the relationship between temperature, TG, and DTA when carbon black is burned using a carbon-based material combustion catalyst (sample E1) as the catalyst type according to Example 2.
  • FIG. 9 is an explanatory diagram showing the relationship between the firing temperature and the DTA exothermic peak temperature of the carbon-based material combustion catalyst before and after washing with water according to Example 2.
  • FIG. 10 An explanatory diagram showing the relationship between the potassium salt species and the DTA exothermic peak temperature of the carbon-based material combustion catalyst before and after washing according to Example 2.
  • FIG. 10 An explanatory diagram showing the relationship between the potassium salt species and the DTA exothermic peak temperature of the carbon-based material combustion catalyst before and after washing according to Example 2.
  • FIG. 13 An explanatory diagram showing the relationship between the amount of potassium mixed in the mixing step and the DTA exothermic peak temperature of the carbon-based material combustion catalyst before and after washing according to Example 2.
  • FIG. 15 A perspective view of a catalyst carrier (ceramic honeycomb structure) according to Example 3.
  • FIG. 15 A perspective view of a catalyst carrier (ceramic honeycomb structure) according to Example 3.
  • FIG. 16 A longitudinal sectional view of a catalyst carrier (ceramic honeycomb structure) according to Example 3.
  • FIG. 16 A longitudinal sectional view of a catalyst carrier (ceramic honeycomb structure) according to Example 3.
  • Example 3 A cross-sectional view of the catalyst carrier according to Example 3 showing the state of exhaust gas passing through the catalyst carrier (ceramic honeycomb structure).
  • Example 3 A cross-sectional view of a catalyst carrier showing a configuration of a catalyst carrier in which a carbon-based material combustion catalyst is dispersed in an adhesive layer formed by bonding oxide ceramic particles.
  • a sectional view of a catalyst carrier showing a configuration of a catalyst carrier in which a carbon-based material combustion catalyst and a rare earth element are dispersed in an adhesive layer formed by bonding oxide ceramic particles.
  • FIG. 22 is an explanatory diagram showing a state in which a noble metal is supported on a rare earth element (rare earth element oxide particles).
  • FIG. 23 A cross-sectional view of the catalyst carrier showing the configuration of the catalyst carrier in which a noble metal layer is further formed on the adhesive layer containing the carbon-based material combustion catalyst formed on the substrate.
  • FIG. 24 is a cross-sectional view of a catalyst carrier showing a configuration of a catalyst carrier in which a noble metal layer is formed between a base material and an adhesive layer containing a carbon-based material combustion catalyst.
  • FIG. 25 is a graph showing the zeolite type and the SiO 2 / Al 2 O ratio in the zeolite composition.
  • G-26 A graph showing the DTA exothermic peak temperature results before and after washing with a carbon-based material combustion catalyst made using potassium carbonate.
  • G-27 A graph showing the results of the DTA exothermic peak temperature before and after washing with a carbon-based material combustion catalyst prepared using barium carbonate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

明 細 書
炭素系物質燃焼触媒及びその製造方法、触媒担持体及びその製造方 法
技術分野
[0001] 本発明は、排ガス中に含まれる炭素微粒子 (PM)等の炭素系物質を燃焼除去する ために用いられる炭素系物質燃焼触媒及びその製造方法、並びに上記炭素系物質 燃焼触媒をセラミックス基材に担持した触媒担持体及びその製造方法に関する。 背景技術
[0002] ディーゼルエンジン等の内燃機関の排ガス中に含まれる炭素微粒子 (粒子状浮遊 物、 PM)は、ディーゼルパティキュレートフィルター(DPF)等により燃焼除去されて いた。低コストでかつ多くの PMを除去するために、燃焼除去は比較的低温で行われ ることが望まれていた。そのため、排ガス中の PMを燃焼除去する際には、 PM等の 炭素系物質の燃焼を促進する触媒を担持した DPFが用いられていた。
[0003] このような炭素系物質燃焼触媒としては、例えば Pt、 Pd、 Rh等の貴金属又はその 酸化物が一般的に用いられていた。しかし、高価な貴金属を用いた触媒はコストが高 くなると共に、資源の枯渴という問題に対する懸念もある。また、 PMの燃焼活性が不 十分であり、通常の稼働条件では、徐々に未処理の PMが蓄積してしまうという問題 があった。蓄積した PMを除去するためには、燃料を用いて排ガスの温度を上昇させ る力、、又は電気的に加熱することによって、触媒の温度を 600°C以上にする必要があ つた。その結果、排ガス中に含まれる二酸化硫黄が三酸化硫黄や硫酸ミストに転化し 、 PMの除去は可能でも排ガスの浄化が不完全になるおそれがあった。
[0004] そこで、酸化物セラミック系粒子にカリウム等のアルカリ金属の酸化物よりなる触媒 粒子を担持させた触媒が開発されている(特許文献 1〜4参照)。このようなアルカリ 金属を担持させることにより、 400°C前後という低温で排ガス中の粒子状浮遊物(PM )を燃焼除去することができる。
[0005] しかしながら、アルカリ金属を用いた触媒においては、水分の存在下で触媒成分で あるアルカリ金属が溶出するおそれがある。したがって、エンジンの排ガスのように多 くの水蒸気を含む環境下で用いると、長期間安定的に排ガスの浄化を行うことができ なくなるおそれがあった。また、触媒活性の低下を防止するために、アルカリ金属の 溶出を見越して過剰量のアルカリ金属を用いると、該アルカリ金属を担持させるセラミ ックス等からなる基材を損傷させてしまうおそれがあった。
特許文献 1:特開 2001— 170483号公報
特許文献 2:特開 2005— 230724号公報
特許文献 3 :特開 2005— 296871号公報
特許文献 4 :特開 2005— 342604号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、力、かる従来の問題点に鑑みてなされたものであって、低温でかつ長期 間安定に炭素系物質を燃焼除去することができる炭素系物質燃焼触媒及びその製 造方法、並びに触媒担持体及びその製造方法を提供しょうとするものである。
課題を解決するための手段
[0007] 本発明の第一例によると、内燃機関の排ガス中に含まれる炭素系物質を燃焼させ るために用いられると共に、セラミック基材に担持して用いられる炭素系物質燃焼触 媒の製造方法において、原子当量比 Si/Al≥lのアルミノケィ酸塩と、アルカリ金属 元素源及び/又はアルカリ土類金属元素源とを水中で混合する混合工程と、該混 合工程後の混合液を加熱し、水分を蒸発させて固形分を得る乾燥工程と、上記固形 分を温度 600°C以上で焼成することにより上記炭素系物質燃焼触媒を得る焼成工程 とを有し、上記アルミノケィ酸塩は、ソーダライトであることを特徴とする。
[0008] また、本発明の第二例では、炭素系物質燃焼触媒は上記本発明の第一例の製造 方法によって得られる。
[0009] 本発明の第一例の製造方法においては、上記混合工程と、上記乾燥工程と、上記 焼成工程とを行うことにより、上記炭素系物質燃焼触媒を作製する。
[0010] 即ち、上記混合工程においては、原子当量比 Si/Al≥lのアルミノケィ酸塩 (ソー ダライト)と、アルカリ金属元素源及び/又はアルカリ土類金属元素源とを水中で混 合する。次いで、上記乾燥工程においては、上記混合工程後の混合液を加熱し、水 分を蒸発させて固形分を得る。これにより、アルカリ金属元素及び/又はアルカリ土 類金属元素と上記アルミノケィ酸塩との混合物からなる上記固形分を得ることができ る。次いで、上記焼成工程においては、上記固形分を温度 600°C以上で焼成する。 これにより、上記炭素系物質燃焼触媒 (本発明の第二例)を得ることができる。
[0011] 上記炭素系物質燃焼触媒は、上記アルカリ金属元素及び/又は上記アルカリ土 類金属元素を含有する。上記アルカリ金属元素及び/又は上記アルカリ土類金属 元素は、例えば排ガス中の粒子状浮遊物(PM)等の炭素系物質に対する燃焼促進 作用を有する。そのため、上記炭素系物質燃焼触媒は、低温で上記炭素系物質を 燃焼させること力 Sでさる。
[0012] また、上記炭素系物質燃焼触媒は、上記アルカリ金属元素及び/又は上記アル力 リ土類金属元素を保持することができる。そのため、水分存在下においても上記アル カリ金属元素及び/又は上記アルカリ土類金属元素が溶出することを防止すること ができる。
[0013] このように、上記炭素系物質燃焼触媒は、水分存在下においても溶出され難ぐ例 えばセラミックス等の基材に担持させて用いる場合にも過剰量を担持させる必要がな くなり、基材の劣化を防止できる。そのため、上記炭素系物質燃焼触媒は、長期間安 定的に炭素系物質の燃焼を促進することができる。
[0014] 上記本発明の第一例の製造方法によって得られた上記炭素系物質燃焼触媒 (本 発明の第二例)は、上述のごとぐ内燃機関の排ガス中に含まれる粒子状浮遊物 (P M)等の炭素系物質に対する燃焼促進特性を有する。上記炭素系物質燃焼触媒は 、従来の貴金属触媒と同等又はそれよりも低い温度で上記炭素系物質を燃焼させる こと力 Sでさる。
[0015] また、上記炭素系物質燃焼触媒は、上述のごとぐ水分存在下においても、その触 媒活性が低下し難い。
[0016] また、上記炭素系物質燃焼触媒は、該炭素系物質燃焼触媒を上記セラミック基材 に担持して用いたときに、従来のアルカリ金属触媒のように水分存在下でセラミック基 材を腐食させてしまうことがほとんどなぐ上記セラミック基材の劣化を防止することが できる。 [0017] そのため、上記炭素系物質燃焼触媒は、水分存在下においても長期間安定に炭 素系物質の燃焼を促進させることができる。
[0018] 上記炭素系物質燃焼触媒が上記のごとく優れた触媒活性を発揮する理由は定か ではないが、原料であるアルミノケィ酸塩(ソーダライト)中の Na、上記アルカリ金属元 素源中のアル力リ金属元素、上記アル力リ土類金属元素中のアル力リ土類金属元素 が触媒活性に寄与してレ、ると考えられる。
[0019] 即ち、上記炭素系物質燃焼触媒においては、ソーダライト中の Naと、上記アルカリ 金属元素源中のアル力リ金属元素及び/又は上記アル力リ土類金属元素源中のァ ルカリ土類金属元素とが炭素系物質の燃焼促進特性を発揮していると考えられる。
[0020] また、上記炭素系物質燃焼触媒は、その構造中に比較的強い結合力でアルカリ金 属元素及び/又はアルカリ土類金属元素を保持しており、水分の存在下においても これらの元素が溶出し難くなつているため、上記のごとく触媒活性の低下を抑制でき ると共に、セラミック基材の腐食を防止することができると考えられる。
[0021] また、上記本発明の第一例においては、上記アルミノケィ酸塩 (ソーダライト)と上記 アルカリ金属元素源及び/又は上記アルカリ土類金属元素源との混合物(上記固形 分)を温度 600°C以上で焼成するという上記焼成工程を行って上記炭素系物質燃焼 触媒を得る。そして、上記焼成工程を経て得られた上記炭素系物質燃焼触媒は、該 炭素系物質燃焼触媒を上記セラミック基材に担持させて用いられる。即ち、上記焼 成工程は、上記混合物を上記セラミック基材に担持することなく行われ、上記セラミツ ク基材への担持は上記焼成工程後に行われる。
[0022] 仮に、ソーダライトとアルカリ金属元素源及び/又はアルカリ土類金属元素源との 混合物をセラミック基材に担持した後に、温度 600°C以上で焼成すると、ソーダライト 中に含まれていた Na、上記アルカリ金属元素源中のアルカリ金属、上記アルカリ土 類金属元素源中のアルカリ土類金属等が溶出し、溶出したアルカリ金属及び/又は アルカリ土類金属が例えばコージエライト等からなるセラミック基材の構造を部分的に 変化させ、熱膨張係数や強度が低下してセラミック基材に割れ等が発生するおそれ 力 sある。
[0023] 本発明においては、上記のごとぐ上記焼成工程を経た上記炭素系物質燃焼触媒 が上記セラミック基材の担持に用いられており、このような炭素系物質燃焼触媒にお いては、アルカリ金属元素及び/又はアルカリ土類金属元素が強固に保持されてい る。そのため、上記炭素系物質燃焼触媒を上記セラミック基材に担持させたときに、 担持時の加熱又はその後の加熱により、上記炭素系物質燃焼触媒からアルカリ金属 及び/又はアルカリ土類金属が溶出することを防止することができる。その結果、上 記セラミック基材に割れ等が発生することを防止することができる。
[0024] また、上記本発明の第一例においては、上記混合工程と上記乾燥工程と上記焼成 工程とにより上記炭素系物質燃焼触媒を簡単に製造することができる。即ち、上記ァ ルミノケィ酸塩(ソーダライト)と上記アルカリ金属元素源及び/又は上記アルカリ金 属元素源とを水中で混合し、乾燥して得られる混合物(上記固形分)を温度 600°C以 上で焼成することにより、簡単に上記炭素系物質燃焼触媒を得ることができる。
[0025] このように、上記本発明の第一例及び第二例によれば、低温でかつ長期間安定に 炭素系物質を燃焼除去することができる炭素系物質燃焼触媒及びその製造方法を 提供すること力でさる。
[0026] 本発明の第三例によると、内燃機関の排ガス中に含まれる炭素系物質を燃焼させ るために用いられる炭素系物質燃焼触媒をセラミック基材に担持させてなる触媒担 持体を製造する方法において、上記本発明の第一例の製造方法によって得られる 上記炭素系物質燃焼触媒を上記セラミック基材に担持させて上記触媒担持体を得る 担持工程を有する。
[0027] また、本発明の第四例では、触媒担持体は上記本発明の第三例の製造方法によ つて得られる。
[0028] 上記本発明の第三例の製造方法によって得られる上記触媒担持体 (本発明の第 四例)は、上記本発明の第一例の製造方法によって得られる炭素系物質燃焼触媒を 上記セラミック基材に担持してなる。
[0029] そのため、上記触媒担持体は、上記炭素系物質燃焼触媒の上述の優れた作用効 果を発揮すること力 Sできる。即ち、上記触媒担持体は、低温でかつ長期間安定的に 炭素系物質を燃焼除去することができる。
[0030] また、上記炭素系物質燃焼触媒は、水分存在下にお!/、て上記セラミック基材を腐 食させうるアルカリ金属及び/又はアルカリ土類金属の溶出を抑制することができる 。そのため、上記触媒担持体においては、水分存在下においても、上記セラミック基 材をほとんど腐食させることがなぐ長期期間安定に炭素系物質を燃焼させることが できる。
[0031] また、上記本発明の第三例においては上記アルミノケィ酸塩 (ソーダライト)と上記 アルカリ金属元素源及び/又は上記アルカリ土類金属元素源との混合物(上記固形 分)を温度 600°C以上で焼成するという上記本発明の第一例における上記焼成工程 を経て得られた上記炭素系物質燃焼触媒を、上記セラミック基材に担持させて上記 触媒担持体を得る担持工程を行う。上述のごとぐ上記焼成工程を経て得られた上 記炭素系物質燃焼触媒は、その構造中にアルカリ金属元素及び/又はアルカリ土 類金属元素を強固に保持している。そのため、上記担持工程においては、上記炭素 系物質燃焼触媒からのアルカリ金属及び/又はアルカリ土類金属の溶出が抑制さ れる。その結果、溶出したアルカリ金属及び/又はアルカリ土類金属が上記セラミツ ク基材に割れ等を発生させることを防止することができる。また、担持後に得られた上 記触媒担持体を加熱しても、上記炭素系物質燃焼触媒からはアルカリ金属元素及 び/又はアルカリ土類金属元素は溶出し難い。そのため、上記触媒担持体は長期 間安定に使用することができる。
[0032] このように、上記本発明の第三例及び第四例によれば、低温でかつ長期間安定に 炭素系物質を燃焼除去することができる触媒担持体及びその製造方法を提供するこ と力 Sできる。
[0033] 本発明の第五例によると、内燃機関の排ガス中に含まれる炭素系物質を燃焼させ るために用いられると共に、セラミック基材に担持して用いられる炭素系物質燃焼触 媒を製造する方法にお!/、て、ソーダライトを温度 600°C以上で焼成して上記炭素系 物質燃焼触媒を得る焼成工程を有する。
[0034] また、本発明の第六例では、炭素系物質燃焼触媒は上記本発明の第五例の製造 方法によって得られる。
[0035] 上記本発明の第五例の製造方法によって得られる上記炭素系物質燃焼触媒 (本 発明の第六例)は、内燃機関の排ガス中に含まれる例えば粒子状浮遊物(PM)等の 炭素系物質に対する燃焼促進特性を有する。上記炭素系物質燃焼触媒は、従来の 貴金属触媒と同等又はそれよりも低い温度で上記炭素系物質を燃焼させることがで きる。
[0036] また、上記炭素系物質燃焼触媒は、水分存在下においても、その触媒活性が低下 し難い。
[0037] また、上記炭素系物質燃焼触媒は、該炭素系物質燃焼触媒を上記セラミック基材 に担持して用いたときに、従来のアルカリ金属触媒のように水分存在下でセラミック基 材を腐食させてしまうことがほとんどなぐ上記セラミック基材の劣化を防止することが できる。
[0038] そのため、上記炭素系物質燃焼触媒は、水分存在下においても長期間安定に炭 素系物質の燃焼を促進させることができる。
[0039] 上記炭素系物質燃焼触媒が上記のごとく優れた触媒活性を発揮する理由は定か ではないが、原料であるソーダライト中の Naが触媒活性に寄与していると考えられる
[0040] 即ち、ソーダライトを温度 600°C以上で焼成して得られる上記炭素系物質燃焼触媒 においては、ソーダライト中に含有されていた Naが炭素系物質の燃焼促進特性を発 揮していると考免られる。
[0041] また、上記炭素系物質燃焼触媒は、その構造中に比較的強い結合力で Naを保持 しており、水分の存在下においても Naが溶出し難くなつているため、上記のごとく触 媒活性の低下を抑制できると共に、セラミック基材の腐食を防止することができると考 X_られる。
[0042] また、上記本発明の第五例においては、ソーダライトを温度 600°C以上で焼成する という上記焼成工程を行って上記炭素系物質燃焼触媒を得る。そして、上記焼成ェ 程を経て得られた上記炭素系物質燃焼触媒は、該炭素系物質燃焼触媒を上記セラ ミック基材に担持させて用いられる。即ち、上記焼成工程は、上記ソーダライトを上記 セラミック基材に担持することなく行われ、上記セラミック基材への担持は上記焼成ェ 程後に行われる。
[0043] 仮に、ソーダライトをセラミック基材に担持した後に、温度 600°C以上で焼成すると、 ソーダライト中の Naが溶出し、溶出した Naが例えばコージエライト等からなるセラミツ ク基材の構造を部分的に変化させ、熱膨張係数や強度が低下してセラミック基材に 割れ等が発生するおそれがある。
[0044] 本発明においては、上記のごとぐ上記焼成工程を経た上記炭素系物質燃焼触媒 が上記セラミック基材の担持に用いられており、このような炭素系物質燃焼触媒にお いては、上記ソーダライト中に含まれていたアルカリ金属(Na)が強固に保持されて いる。そのため、上記炭素系物質燃焼触媒を上記セラミック基材に担持させたときに 、担持時の加熱又はその後の加熱により、上記炭素系物質燃焼触媒からアルカリ金 属が溶出することを防止することができる。その結果、上記セラミック基材に割れ等が 発生することを防止すること力 Sできる。
[0045] また、上記本発明の第五例においては、上記焼成工程により上記炭素系物質燃焼 触媒を簡単に製造することができる。即ち、ソーダライトを温度 600°C以上で焼成す ることにより、簡単に上記炭素系物質燃焼触媒を得ることができる。
[0046] このように、上記本発明の第五例及び第六例によれば、低温でかつ長期間安定に 炭素系物質を燃焼除去することができる炭素系物質燃焼触媒及びその製造方法を 提供すること力でさる。
[0047] 本発明の第七例によると、内燃機関の排ガス中に含まれる炭素系物質を燃焼させ るために用いられる炭素系物質燃焼触媒をセラミック基材に担持させてなる触媒担 持体を製造する方法において、上記本発明の第五例の製造方法によって得られる 上記炭素系物質燃焼触媒を上記セラミック基材に担持させて上記触媒担持体を得る 担持工程を有する。
[0048] また、本発明の第八例では、触媒担持体は上記本発明の第七例の製造方法によ つて得られる。
[0049] 上記本発明の第七例の製造方法によって得られる上記触媒担持体 (本発明の第 八例)は、上記本発明の第五例の製造方法によって得られる炭素系物質燃焼触媒を 上記セラミック基材に担持してなる。そのため、上記触媒担持体は、上記炭素系物質 燃焼触媒の上述の優れた作用効果を発揮することができる。即ち、上記触媒担持体 は、低温でかつ長期間安定的に炭素系物質を燃焼除去することができる。 [0050] また、上記炭素系物質燃焼触媒は、水分存在下にお!/、て上記セラミック基材を腐 食させうるアルカリ金属及び/又はアルカリ土類金属の溶出を抑制することができる 。そのため、上記触媒担持体においては、水分存在下においても、上記セラミック基 材をほとんど腐食させることがなぐ長期期間安定に炭素系物質を燃焼させることが できる。
[0051] また、上記本発明の第七例においては、ソーダライトを温度 600°C以上で焼成する という上記本発明の第五例における上記焼成工程を行うことにより得られた上記炭素 系物質燃焼触媒を、上記セラミック基材に担持させて上記触媒担持体を得る担持ェ 程を行う。上述のごとぐ上記焼成工程を経て得られた上記炭素系物質燃焼触媒は 、ソーダライト中に含まれていたアルカリ金属(Na)を強固に保持している。そのため 、上記担持工程においては、上記炭素系物質燃焼触媒からのアルカリ金属の溶出 が抑制される。その結果、溶出したアルカリ金属が上記セラミック基材に割れ等を発 生させることを防止すること力 Sでさる。
[0052] このように、上記本発明の第七例及び第八例によれば、低温でかつ長期間安定に 炭素系物質を燃焼除去することができる触媒担持体及びその製造方法を提供するこ と力 Sできる。
発明を実施するための最良の形態
[0053] 次に、本発明の好ましい実施の形態について説明する。
[0054] まず、上記本発明の第一例について説明する。
[0055] 上記炭素系物質燃焼触媒は、炭素系物質の燃焼除去等に用いられる。上記炭素 系物質としては、例えばディーゼルエンジンの排ガス中に含まれる炭素微粒子(PM )等がある。
[0056] 上記本発明の第一例における製造方法にあたっては、上記混合工程と、上記乾燥 工程と、上記焼成工程とを行う。
[0057] 上記本発明の第一例における上記混合工程においては、原子当量比 Si/Al≥l ァノレミノケィ酸塩と、アルカリ金属元素源及び/又はアルカリ土類金属元素源とを水 中で混合する。このとき、アルミノケィ酸塩と、アルカリ金属元素源及び/又はアル力 リ土類金属元素源とが均一に分散されるまで混合することが好ましい。 [0058] また、原子当量比 Si/Al< 1の場合には、得られる炭素系物質燃焼触媒は、水分 存在下でアルカリ金属元素及び/又はアルカリ土類金属元素が溶出し易くなるおそ れがある。その結果、上記炭素系物質燃焼触媒は、長期間安定して触媒活性を維 持することが困難になるおそれがある。
[0059] 具体的には、上記本発明の第一例においては、上記アルミノケィ酸塩としては、ソ 一ダライトを用いる。ソーダライトは、一般式 3(Na 0 -A1 O - 2SiO ) ' 2NaXで表され る。 Xは、一価の陰イオンとなる原子又は原子団であり、例えば F、 Cl、 Br、 I等のハロ ゲン、又は OH等である。
[0060] 上記混合工程においては、上記アルミノケィ酸塩 (ソーダライト)と、アルカリ金属元 素源及び/又はアルカリ土類金属元素源とを水中で混合して混合液を得る。
[0061] 上記アルカリ金属元素源としては、例えばアルカリ金属の化合物等がある。また、上 記アルカリ土類金属元素源は、例えばアルカリ土類金属の化合物等がある。
[0062] 上記アルカリ金属元素源は、 Na、 K、 Rb、及び Csから選ばれる 1種以上を含有し、 上記アルカリ土類金属元素は、 Ca、 Sr、及び Baから選ばれる 1種以上を含有するこ とが好ましい。この場合には、炭素系物質をより低温で燃焼させることができる上記炭 素系物質燃焼触媒を得ることができる。
[0063] 即ち、上記混合工程においては、上記アルミノケィ酸塩 (ソーダライト)と、上記アル カリ金属元素源及び/又は Mg源を除く上記アルカリ土類金属元素源を少なくとも混 合することが好ましい。 Mg源は、ソーダライトとの混合に単独で用いずに、他のアル カリ金属元素源及び/又はアルカリ土類金属元素源と併用することができる。
[0064] 上記アルカリ金属元素源及び/又は上記アルカリ土類金属元素源は、それぞれ炭 酸塩、硫酸塩、リン酸塩、硝酸塩、有機酸塩、ハロゲン化物、酸化物、又は水酸化物 であることが好ましい。
[0065] この場合には、容易に水等の極性溶媒に混合させることができるため、上記混合ェ 程において、均一に混合させることができる。
[0066] より好ましくは、上記アルカリ金属元素源としてはアルカリ金属元素の塩を用い、上 記アルカリ土類金属元素源としてはアルカリ土類金属元素の塩を用いることがよい。 この場合には、上記アルカリ金属元素源及び上記アルカリ土類金属元素源は、水等 の極性溶媒に対して優れた溶解性で溶解できるため、上記混合工程を水等の極性 溶媒中で行う場合に、上記アルミノケィ酸塩と、上記アルカリ金属元素源及び/又は 上記アルカリ土類金属元素源とを簡単かつ均一に混合させることができる。
[0067] また、上記混合工程においては、水の代わりに水以外の極性溶媒を用い、上記ァ ルミノケィ酸塩と上記アルカリ金属元素源及び/又は上記アルカリ土類金属元素源 とを上記極性溶媒中で混合し、上記乾燥工程においては、上記極性溶媒を蒸発さ せて上記固形分を得ることができる。具体的には、上記極性溶媒としては、メタノーノレ 、エタノール等のアルコールを用いることができる。
[0068] 上記極性溶媒としては、水よりも揮発し易い溶媒を用いることが好ましい。
[0069] この場合には、上記乾燥工程において上記極性溶媒をより簡単に蒸発させることが できる。
[0070] また、上記混合工程においては、上記アルカリ金属元素源及び/又は上記アル力 リ土類金属元素源中に含まれるアルカリ金属元素とアルカリ土類金属元素との合計 量が上記アルミノケィ酸塩中の Si元素 1モルに対して 2. 25モル以下となるように、上 記アルミノケィ酸塩と上記アルカリ金属元素源及び/又は上記アルカリ土類金属元 素源とを混合することが好ましレ、。
[0071] 上記アルカリ金属元素と上記アルカリ土類金属元素との合計量が上記アルミノケィ 酸塩 (ソーダライト)中の Si元素 1モルに対して 2· 25モルを超える場合には、上記焼 成工程中に上記固形分が溶融し易くなる。そのため、上記焼成工程後に得られる上 記炭素系物質燃焼触媒は、一旦溶融状態を経るため、硬度が高くなつてしまうおそ れがある。その結果この場合には、後述のごとく上記焼成工程後に粉砕工程を行つ て上記炭素系物質燃焼触媒を所望の粒径に調整することが困難になるおそれがあ る。また、この場合には、得られる上記炭素系物質燃焼触媒自体の触媒活性は優れ ていても、水分による影響を受けやすくなるおそれがある。即ち、水分による触媒活 性の低下幅が大きくなるおそれがある。そのため、所定の触媒活性を長期間維持さ せることが困難になるおそれがある。
[0072] より好ましくは、上記混合工程においては、上記アルカリ金属元素源及び/又は上 記アルカリ土類金属元素源中に含まれるアルカリ金属元素とアルカリ土類金属元素 との合計量が上記アルミノケィ酸塩中の Si元素 1モルに対して 1モル以下となるように
、上記アルミノケィ酸塩と上記アルカリ金属元素源及び/又は上記アルカリ土類金属 元素源とを混合することがょレ、。
[0073] さらに好ましくは、上記混合工程においては、上記アルカリ金属元素源及び/又は 上記アルカリ土類金属元素源中に含まれるアルカリ金属元素とアルカリ土類金属元 素との合計量が上記アルミノケィ酸塩中の Si元素 1モルに対して 0. 5モル以下となる ように、上記アルミノケィ酸塩と上記アルカリ金属元素源及び/又は上記アルカリ土 類金属元素源とを混合することがょレ、。
[0074] また、上述のアルカリ金属元素とアルカリ土類金属元素との合計量は、上記アルミノ ケィ酸塩(ソーダライト)に混合するアルカリ金属元素源中のアルカリ金属元素とアル カリ土類金属元素源中のアルカリ土類金属元素との合計量であり、アルカリ金属元素 源及びアルカリ土類金属元素源のうちいずれか一方だけを用いた場合には、もう一 方の元素の量は 0モルとして算出できる。また、複数のアルカリ金属元素源、複数の アルカリ土類金属元素源を用いた場合には、それらのすべての合計量として算出で きる。
[0075] 次に、上記乾燥工程にお!/、ては、上記混合工程後の混合液を加熱し、水分を蒸発 させて固形分を得る。上記本発明の第一例において、上記固形分は、アルカリ金属 元素源及び/又はアルカリ土類金属元素源と上記アルミノケィ酸塩 (ソーダライト)と の混合物からなる。
[0076] 次に、上記焼成工程においては、上記固形分を温度 600°C以上で焼成する。これ により上記炭素系物質燃焼触媒を得ることができる。
[0077] 上記焼成工程における焼成温度 (加熱時の最高温度)が 600°C未満の場合には、 水分の存在下で、アルカリ金属元素及び/又はアルカリ土類金属元素が溶出し易く なり、上記炭素系物質燃焼触媒は、炭素系物質の燃焼活性を長期間安定的に発揮 することが困難になるおそれがある。また、上記焼成工程においては、焼成温度 700 °C以上で加熱することが好ましぐより好ましくは焼成温度 800°C以上で加熱すること がよい。
[0078] また、焼成温度が 1200°Cを越える場合には、上記炭素系物質燃焼触媒は、上記 焼成工程において一旦溶融状態を経るため、硬度の高い塊状になってしまうおそれ がある。その結果この場合には、後述のごとく上記焼成工程後に粉砕工程を行って 上記炭素系物質燃焼触媒を所望の粒径に調整することが困難になるおそれがある。
[0079] したがって、好ましくは、上記焼成工程においては、上記固形分を温度 700°C〜1 200°Cで焼成することがよ!/、。
[0080] なお、上記焼成工程における焼成温度は、上記固形分自体の温度のことであり、 雰囲気温度ではない。したがって、上記焼成工程においては、上記固形分自体の温 度が 600°C以上になるように焼成を行う。上記焼成工程においては、上記焼成温度 の焼成を好ましくは 1時間以上、より好ましくは 5時間以上、さらに好ましくは 10時間 以上行うことがよい。
[0081] 次に、上記焼成工程後に、上記炭素系物質燃焼触媒を粉砕する粉砕工程を行う。
この場合には、粒子状の上記炭素系物質燃焼触媒を得ることができる。かかる炭素 系物質燃焼触媒は、例えばノヽニカム構造のセラミック基板等に担持させやすくなる。 また、表面積が大きくなるため、より優れた触媒活性を発揮させることができる。
[0082] また、上記粉砕工程にお!/、ては、粉砕条件を調整することにより、所望の粒径の炭 素系物質燃焼触媒を得ることができる。
[0083] 好ましくは、上記粉砕工程においては、上記炭素系物質燃焼触媒のメジアン径を 5 O ^ m以下に調整することがよい。メジアン径が 50 mを超える場合には、上記炭素 系物質燃焼触媒を上記セラミック基材にコートする際に、 目詰まりが起こったり、担持 量にばらつきが生じ易くなるおそれがある。より好ましくは、メジアン径は lO ^ m以下 であることがよい。
[0084] 上記炭素系物質燃焼触媒のメジアン径は、例えばレーザー回折/散乱式粒度分 布測定装置あるいは走査電子顕微鏡等により測定することができる。
[0085] 上記炭素系物質燃焼触媒は、該炭素系物質燃焼触媒をセラミック基材に担持して 用いられる。
[0086] 上記アルミノケィ酸塩(ソーダライト)と上記アルカリ金属元素源及び/又は上記ァ ルカリ土類金属元素源との混合物(上記固形分)を温度 600°C以上で焼成するとレ、う 上記記焼成工程を経て得られる上記炭素系物質燃焼触媒は、その構造中にアル力 リ金属元素及び/又はアルカリ土類金属元素を比較的強い結合力で保持している。 そのため、上記炭素系物質燃焼触媒においては、上記セラミック基材に担持させる 際にアル力リ金属及び/又はアル力リ土類金属が溶出し難ぐ溶出したアル力リ金属 及びアルカリ土類金属によりセラミック基材が劣化してしまうことを防止することができ
[0087] これに対し、仮に焼成を行って!/、な!/、上記混合物をセラミック基材に担持させると、 担持の際の加熱又は担持後の加熱時に、ソーダライト中の Na、上記アルカリ金属元 素源中のアル力リ金属、上記アル力リ土類金属元素源中のアル力リ土類金属元素が セラミック基材を劣化させてしまうおそれがある。
[0088] 即ち、上記本発明の第一例において、上記焼成工程は、上記セラミック基材への 担持前に行われ、上記混合物を上記セラミック基材に担持することなく行われる。
[0089] 上記本発明の第一例の製造方法によって得られた上記炭素系物質燃焼触媒 (本 発明の第二例)は、例えばガソリンエンジン、ディーゼルエンジン等の内燃機関の排 ガス中に含まれる炭素微粒子(PM)等の炭素系物質を燃焼して除去するために用 いられる。
[0090] 次に、上記本発明の第五例について説明する。
[0091] 上記本発明の第五例の上記焼成工程においては、ソーダライトを温度 600°C以上 で焼成する。
[0092] ソーダライトは、一般式 3(Na O .A1 O - 2SiO ) ' 2NaXで表される。 Xは、一価の陰 イオンとなる原子又は原子団であり、例えば F、 Cl、 Br、 I等のハロゲン、又は OH等で ある。
[0093] 上記焼成工程における焼成温度が 600°C未満の場合には、所望の効果を有する 上記炭素系物質燃焼触媒を得ることが困難になる。即ち、この場合には、得られる上 記炭素系物質燃焼触媒の炭素系物質の燃焼に対する触媒活性が低下するおそれ がある。好ましくは、焼成温度は 700°C以上がよい。
[0094] また、焼成温度が 1200°Cを越える場合には、上記焼成工程中に上記ソーダライト が溶融し易くなる。そのため、上記焼成工程後に得られる上記炭素系物質燃焼触媒 は、一旦溶融状態を経るため、硬度が高くなつてしまうおそれがある。その結果この 場合には、後述のごとく上記焼成工程後に粉砕工程を行って上記炭素系物質燃焼 触媒を所望の粒径に調整することが困難になるおそれがある。
[0095] したがって、好ましくは、上記焼成工程においては、上記ソーダライトを温度 700°C 〜; 1200°Cで焼成することがよい。
[0096] なお、上記焼成工程における焼成温度は、上記ソーダライト自体の温度のことであ り、雰囲気温度ではない。したがって、上記焼成工程においては、ソーダライト自体 の温度が 600°C以上になるように焼成を行う。上記焼成工程においては、上記焼成 温度の焼成を好ましくは 1時間以上、より好ましくは 5時間以上、さらに好ましくは 10 時間以上行うことがよい。
[0097] また、上記焼成工程後に得られる上記炭素系物質燃焼触媒を粉砕する粉砕工程 を有することが好ましい。
[0098] この場合には、粉末状の上記炭素系物質燃焼触媒を得ることができる。かかる炭素 系物質燃焼触媒は、例えばノヽニカム構造のセラミック基板等に担持させやすくなる。 また、表面積が大きくなるため、より優れた触媒活性を発揮させることができる。
[0099] 上記粉砕工程にお!/、ては、粉砕条件を適宜調整することにより、所望の粒径の炭 素系物質燃焼触媒を得ることができる。具体的には、上記本発明の第一例と同様に 、上記炭素系物質燃焼触媒のメジアン径を例えば 50 m以下に調整することが好ま しレ、。より好ましくは、メジアン径は 10〃 m以下がよ!/、。
[0100] また、上記炭素系物質燃焼触媒は、該炭素系物質燃焼触媒をセラミック基材に担 持して用いられる。
[0101] 上記焼成工程を行って得られる上記炭素系物質燃焼触媒は、その構造中にァノレ カリ金属(Na)を比較的強い結合力で保持しているため、上記セラミック基材に担持 させる際にアルカリ金属が溶出し難ぐ溶出したアルカリ金属によってセラミック基材 力 S劣ィ匕してしまうことを防止すること力 Sできる。
[0102] これに対し、仮に焼成して!/、な!/、ソーダライトをセラミック基材に担持させると、担持 の際の加熱又は担持後の加熱時に、ソーダライト中のアルカリ金属(Na)が溶出し、 セラミック基材を劣化させてしまうおそれがある。
[0103] 即ち、上記本発明の第五例において、上記焼成工程は、上記セラミック基材への 担持前に行われ、ソーダライトを上記セラミック基材に担持することなく行われる。
[0104] 上記本発明の第五例の製造方法によって得られる上記炭素系物質燃焼触媒 (本 発明の第六例)は、例えばガソリンエンジン、ディーゼルエンジン等の内燃機関の排 ガス中に含まれる炭素微粒子(PM)等の炭素系物質を燃焼して除去するために用 いられる。
[0105] 次に、上記本発明の第三例及び上記本発明の第七例の触媒担持体の製造方法、 並びに上記本発明の第四例及び上記本発明の第八例の触媒担持体の好ましい実 施形態について、図面を用いて説明する。
[0106] 上記本発明の第三例及び上記本発明の第七例の製造方法、並びに上記本発明 の第四例及び上記本発明の第八例の触媒担持体においては、上記炭素系物質燃 焼触媒が異なる点を除いては、同様の形態を採用しうる。
[0107] 即ち、上記本発明の第三例の製造方法においては、上記本発明の第一例の製造 方法によって得られた炭素系物質燃焼触媒を採用し、該炭素系物質燃焼触媒を上 記セラミック基材に担持させると!/、う担持工程を行って上記触媒担持体 (本発明の第 四例)を得る。また、上記本発明の第七例の製造方法においては、上記本発明の第 五例の製造方法によって得られる炭素系物質燃焼触媒を採用し、該炭素系物質燃 焼触媒を上記セラミック基材に担持させると!/、う担持工程を行って上記触媒担持体( 本発明の第八例)を得る。
[0108] 上記担持工程においては、少なくとも上記炭素系物質燃焼触媒とゾル状又はスラリ 一状の酸化物系セラミック粒子とを混合して複合材料を作製し、該複合材料を上記 セラミック基材にコートして加熱することが好ましい。
[0109] 具体的には、まず、上記炭素系物質燃焼触媒と、例えばゾル状等の酸化物系セラ ミックス粒子とを混合し複合材料を得る。該複合材料に必要に応じてさらに水等の溶 媒を加えて、適当な粘度に調整する。得られたスラリー状の複合材料を上記セラミツ ク基材にコートして加熱する。
[0110] この場合には、図 18に示すごとぐ上記炭素系物質燃焼触媒 1と、酸化物系セラミ ックス粒子 15とが上記基材 22上に焼き付けられ、上記炭素系物質燃焼触媒 1をセラ ミック基材 22に担持してなる上記触媒担持体 2を簡単に得ることができる。また、上記 セラミック基材 22上に、酸化物系セラミックス粒子 15が結合してなる接着層 155が形 成されると共に、該接着層 155中に上記炭素系物質燃焼触媒 1が分散して保持され た触媒担持体 2を得ることができる。
[0111] かかる構造の上記触媒担持体 2は、上記接着層 155により上記炭素系物質燃焼触 媒 1が強固に保持されている。そのため、使用中に上記炭素系物質燃焼触媒 1が脱 落し難ぐ安定に触媒活性を維持することができる。
[0112] 上記酸化物系セラミックス粒子は、アルミナ、シリカ、チタニア、及びジルコユアから 選ばれる 1種以上を主成分とすることが好ましい。
[0113] この場合には、比表面積の大きな接着層が形成されやすくなり、上記触媒担持体 の表面積を大きくすることができる。その結果、上記炭素系物質燃焼触媒と炭素系物 質とが接触し易くなり、上記触媒担持体はより効率よく炭素系物質の燃焼を行うことが できる。
[0114] また、上記セラミック基材としては、例えばコージエライト、アルミナ、チタン酸アルミ、 SiC、又はチタニア等を主成分とする基材を用いることができる。
[0115] また、上記セラミック基材としては、例えばペレット形状、フィルタ形状、フォーム形 状、フロースルー型のモノリス形状等の基材を用いることができる。
[0116] 好ましくは、上記セラミック基材はコージエライト、 SiC、又はチタン酸アルミニウムよ りなること力 Sよい。また、好ましくは、上記セラミック基材はハ二カム構造体であることが よい。これらの場合には、上記触媒担持体を排ガス浄化用としてより好適なものにす ること力 Sでさる。
[0117] 上記ハニカム構造体としては、外周壁と、該外周壁の内側においてハニカム状に 設けられた隔壁と、該隔壁により仕切られていると共に両端面に貫通してなる複数の セルとを有する構造体がある。ハニカム構造体としては、全てのセルが両端面に開口 した構造体を用いることもできるカ、一部のセルがハニカム構造体の両端面に開口し 、残りのセルは両端面に形成された栓部によって閉塞された構造体を用いることもで きる。
[0118] また、上記触媒担持体においては、上記炭素系物質燃焼触媒の他に、 1種以上の 希土類元素を上記セラミック基材に担持させることができる。希土類元素としては、例 えば Ce、 La、 Nd等を採用すること力 Sできる。また、上記希土類元素としては、該希土 類元素の酸化物粒子を採用することができる。
[0119] この場合には、希土類元素の状態変動により酸素の吸脱着が生じ、炭素系物質の 燃焼をより促進させること力でさる。
[0120] 図 19に、炭素系物質燃焼触媒 1と共に希土類元素 16を基材 22に担持させてなる 触媒担持体 2の例を示す。このような触媒担持体 2は、炭素系物質燃焼触媒 1と、希 土類元素 1と、例えばゾル状等の酸化物系セラミックス粒子 15とを混合し、さらに必 要に応じて水を添加し、適当な粘度に調整し、得られたスラリー状の複合材料を上記 セラミック基材 22に焼き付けることによって得られる。この場合には、セラミック基材 22 上に酸化物セラミックス粒子 15が結合してなる接着層 155が形成されると共に、該接 着層 155中に炭素系物質燃焼触媒 1と希土類元素 16とが分散して担持された上記 触媒担持体 2を得ることができる。
[0121] また、上記触媒担持体においては、炭素系物質燃焼触媒の他に、必要に応じて貴 金属を担持させることも可能である。この場合には、上記触媒担持体の炭素系物質 の燃焼に対する触媒活性をより向上させることができる。また、この場合には炭素系 物質燃焼触媒が優れた触媒活性を有しているため、比較的高価な貴金属の担持量 を従来よりも大幅に減らすこと力できる。貴金属としては、例えば Pt、 Pd、 Rh等がある
[0122] 図 20に、酸化物セラミックス粒子 15が結合してなる接着層 155中に、炭素系物質 燃焼触媒 1と、希土類元素 16と、貴金属 17とが分散された触媒担持体 2の例を示す 。このような触媒担持体 2は、炭素系物質燃焼触媒 1と、希土類元素 16と、例えばゾ ル状等の酸化物系セラミックス粒子 15と、貴金属錯体とを混合し、さらに必要に応じ て水を添加して適当な粘度に調整し、得られたスラリー状の複合材料を上記セラミツ ク基材 22に焼き付けることによって得ることができる。
[0123] 図 21に示すごとぐ上記貴金属 17は上記酸化物系セラミックス粒子 15に担持され ていること力 S好ましい。また、上記希土類元素として希土類元素の酸化物粒子を含有 する場合には、図 22に示すごとぐ上記希土類元素の酸化物粒子 16に上記貴金属 17が担持されて!/、ることが好まし!/、。 [0124] また、上記触媒担持体には、図 23及び図 24に示すごとぐ貴金属からなる貴金属 層 17を形成すること力 Sできる。
[0125] 図 23に示すごとぐ上記貴金属層 17は、上記セラミック基材 22上に担持された上 記炭素系物質燃焼触媒 1を含む上記接着層 155上に形成することができる。即ち、 セラミック基材 22上に、炭素系物質燃焼触媒 1を含む接着層 155が形成され、該接 着層 155上に貴金属層 17を形成させること力 Sできる。
[0126] この場合には、上記触媒担持体において、上記炭素系物質燃焼触媒 1中のアル力 リ金属及び/又はアルカリ土類金属の被毒対策を図ることができる。
[0127] また、図 24に示すごとぐ上記貴金属層 17は、炭素系物質燃焼触媒 1を含む上記 接着層 155とセラミック基材 22との間に形成させることができる。即ち、セラミック基材
22上に貴金属層 17を形成し、該貴金属層 17上に炭素系物質燃焼触媒 1を含む上 記接着層 155を形成させること力 Sできる。
[0128] この場合には、上記炭素系物質燃焼触媒 1中のアルカリ金属及び/又はアルカリ 土類金属元素がセラミックスからなるセラミック基材 22へ移動することを抑制すること ができる。これにより、セラミック基材 22の腐食をより一層防止することができる。 実施例
[0129] (実施例 1)
次に、本発明の実施例につき、説明する。
[0130] 本例においては、内燃機関の排ガス中に含まれる炭素系物質を燃焼除去するため に用いられる炭素系物質燃焼触媒を作製し、その炭素系物質 (カーボン)に対する 燃焼促進特性を調べる例である。
[0131] 本例においては、ソーダライトを温度 600°C以上で焼成するという焼成工程を行うこ とにより、炭素系物質燃焼触媒を作製する。
[0132] 具体的には、まず、ソーダライト(3(Na O -Al O - 2SiO )· 2NaOH)の粉末を準備 した。
[0133] 次いで、このソーダライトを温度 1000°Cで焼成した。具体的には、ソーダライトを昇 温速度 100°C/時間で加熱し、温度 1000°C (焼成温度)に達したところで 10時間保 持することにより焼成を行った。次いで、焼成物をメジアン径 10 m以下、かつ最大 粒径 100 πι以下にまで粉砕し、粉末状の炭素系物質燃焼触媒を得た。これを試料 E1とする。
[0134] 次に、本例において作製した炭素系物質燃焼触媒 (試料 E1)について、炭素系物 質に対する燃焼促進特性を調べた。また、比較用として、貴金属系触媒 (Pt粉末)、 炭酸カリウム粉末についても燃焼促進特性を調べた。
[0135] 具体的には、まず、触媒種 (試料 El、貴金属系触媒、又は炭酸カリウム粉末) 200 mgとカーボンブラック(CB) 20mgとをそれぞれ電子天秤にて正確に秤量した。これ らをメノウ乳鉢を用いて触媒種 (重量): CB (重量) = 10 : 1となるように一定時間混合 し、各触媒種とカーボンブラックとを含有する 3種類の評価サンプルを得た。さらに、 触媒種を用いずに、 CBのみからなる評価サンプルを比較用として作製した。 CB単 独の評価サンプルについても、他のサンプルと同様にメノウ乳鉢を用いて一定時間 混合したものを用いた。即ち、評価サンプルとしては、 CB単独、貴金属系触媒と CB との混合物、試料 E1と CBとの混合物、炭酸カリウムと CBとの混合物という 4種類のサ ンプルを作製した。
[0136] 次いで、熱分析 示差熱重量 (TG— DTA)同時測定装置 (理学電機社製の TG8 120)用いて、各評価サンプル 6mgを昇温速度 10°C/minにて最高温度 900°Cま で加熱して CBを燃焼させると共に、このときの DTA発熱ピーク温度を測定した。な お、 CB単独からなる評価サンプルについては、 0. 5mgを用いて DTA発熱ピーク温 度の測定を行った。また、加熱は、流束 50mL//minで空気を評価サンプルに流 通させながら行った。各触媒種を用いたときの DTA発熱ピーク温度の測定結果を図 1に示す。
[0137] また、触媒種 (試料 El、貴金属系触媒、又は炭酸カリウム粉末) lgを水 500cc中に 投入し、一昼夜撹拌することにより洗浄した。次に、水洗浄処理後の触媒種をろ過し 、ろ過後の触媒種にさらに 1500ccの水を流通させて充分に洗浄した後、乾燥させた 。これらの水洗浄処理後の触媒種 (試料 E1及び貴金属系触媒) 200mgとカーボン ブラック(CB) 20mgとを電子天秤にて正確に秤量した。これらをメノウ乳鉢を用いて 触媒種 (重量): CB (重量) = 10 : 1となるように一定時間混合し、各触媒種とカーボン ブラックとを含有する 2種類の評価サンプルを得た。なお、 CB単独からなる評価サン プルについては、他のサンプルと同様に洗浄及び乾燥を行い、その後メノウ乳鉢で 混合したものを用いた。また、触媒種として炭酸カリウムを用いた評価サンプルは、水 洗洗浄処理により水に溶解してしまったため、その後の操作を行うことができなかった 。即ち、水洗後の評価サンプルとしては、 CB単独、貴金属系触媒と CBとの混合物、 試料 E1と CBとの混合物という 3種類のサンプルを作製した。これらのサンプルにつ いて、再度熱分析 示差熱重量 (TG— DTA)同時測定装置によって、 DTA発熱ピ ーク温度の測定を行った。水洗浄処理後の DTA発熱ピーク温度の結果を図 1に併 記する。
[0138] 図 1より知られるごとぐ水洗浄前において、試料 E1を用いたサンプル及び炭酸カリ ゥム用いたサンプルは、 DTA発熱ピーク温度が低ぐ比較的低い温度で炭素系物 質(CB)を燃焼できること力 Sわ力、る。なお、図 1から知られるごとぐ試料 E1は、約 450 °C付近に発熱ピークを有している力 実際にはこれよりも低い温度(例えば 400°C程 度)でもカーボンブラックの燃焼は開始されて!/、る。
[0139] また、図 1より知られるごとぐ CB単独、貴金属系触媒、及び試料 E1については、 水洗前後で CBに対する燃焼促進特性はほとんど変化しなかった。これに対して、炭 酸カリウムを用いたサンプルは、水洗後に炭酸カリウムが水に溶解し、測定が不可能 であった。
[0140] したがって、試料 E1は、炭素系物質に対して優れた燃焼促進特性を有し、低温で 炭素系物質を燃焼除去することができる。また、試料 E1は、水分存在下においても その優れた特性を維持できるため、長期間安定して炭素系物質の燃焼を行うことが できる。
[0141] また、本例においては、上記試料 E1とは異なる焼成温度でソーダライトを焼成し、 さらに 3種類の触媒を作製した。
[0142] 即ち、上記試料 E1においては、焼成温度 1000°C (保持時間 10時間)でソーダライ トの焼成を行った力 これら 2種類の触媒においては、それぞれ焼成温度 700°C (保 持時間 10時間)、焼成温度 600°C (保持時間 10時間)又は焼成温度 500°C (保持時 間 10時間)で焼成して作製した。そしてこれら 3種類種類の炭素系物質燃焼触媒に ついても、上記試料 E1と同様に炭素系物質に対する燃焼促進特性を調べた。このと き、比較用として炭素系物質燃焼触媒の作製に用いたソーダライト粉末についても炭 素系物質に対する燃焼促進特性を調べた。このソーダライトの粉末としては、焼成を 行う代わりに室温 (約 25°C)で約 10時間放置したものを採用した。燃焼促進特性の 測定は、上記試料 E1と同様にして DTA発熱ピーク温度を測定することにより行った 。その結果を図 2に示す。なお、同図には、試料 El、即ち焼成温度 1000°Cで焼成し てなる炭素系物質燃焼触媒の結果を併記する。
[0143] 図 2より知られるごとぐソーダライトを温度 600°C以上で焼成して得られた炭素系物 質燃焼触媒の DTA発熱ピークトップ温度は、 500°C以下という非常に低い値を示し た。炭素系物質に対する燃焼触媒として一般に用いられる貴金属 (Pt)触媒の DTA 発熱ピーク温度は 520°C程度(図 1参照)であることから、これらの炭素系物質燃焼触 媒は、炭素系物質に対して充分に優れた触媒活性を有してレ、ること力 Sわ力、る。
[0144] また、温度 600°C以上で焼成してなる炭素系物質燃焼触媒は、水洗後においても 、貴金属(Pt)触媒の DTA発熱ピーク温度と同程度又はそれより低い温度を示して おり、水洗後にぉレ、ても優れた触媒活性を維持できることがわかる。
[0145] これに対し、温度 500°Cで焼成して得られた触媒は、水洗前にお!/、ては、貴金属( Pt)触媒と同程度の DTA発熱ピーク温度(約 520°C)を示した力 S、水洗後にぉレ、て は、 DTA発熱ピーク温度は約 540°Cまで上昇し、貴金属触媒よりも触媒活性が低下 していた。また、焼成を行っていないソーダライトにおいては、水洗前後にかかわらず 炭素系物質の燃焼に対する触媒活性が不十分であった。
[0146] また、本例においては、上記試料 E1の比較用として、ソーダライト(SOD)以外の各 種ゼオライトを焼成し、これを触媒として用いて燃焼促進特性を調べた。
[0147] 具体的には、まず、ソーダライト以外のゼォライトとして、ゼォライト構造 (BEA型、 F AU (フォージャサイト)型、 FER型、 LTA型、 LTL型、 MFI型、及び MOR型)及び /又はゼォライト組成中の SiO /Al O比が異なる 12種類のゼォライトを準備した( 図 25参照)。
[0148] これらは、いずれも東ソー(株)製のゼォライトである。これらのゼォライトの製品名、 ゼォライト構造の型の種類、及び SiO /Al O比を図 25に示す。なお、図 25及び後 述の図 3におけるゼォライト種の名称は、東ソー(株)製のゼォライトの製品名である。 また、図 25には試料 Elの作製に用いたソーダライト(SOD)についても併記してある
[0149] 次に、図 25に示す各種ゼォライトを上記試料 E1と同様に焼成した。具体的には、 各種ゼォライトをそれぞれ昇温速度 100°C/時間で加熱し、温度 1000°C (焼成温度 )に達したところで 10時間保持することにより焼成を行った。次いで、焼成物をメジァ ン径 10 m以下、かつ最大粒径 100 a m以下にまで粉砕し、粉末状の触媒を得た。 そしてこれらの触媒についても、上記試料 E1と同様に炭素系物質に対する燃焼促 進特性を調べた。なお、これらの触媒については、水洗後の燃焼促進特性の測定は 行っていない。その結果を図 3に示す。また、図 3には、ソーダライトを焼成して得られ た上記試料 E1の結果「300」として併記してある。
[0150] 図 3より知られるごとぐソーダライト以外のゼォライトを焼成してなる物質を触媒とし て用いた場合には、 DTA発熱ピーク温度が非常に高ぐ炭素系物質の燃焼促進特 性が不十分であった。これに対し、 SODを焼成してなる触媒 (試料 E1)は、約 450°C という非常に低い DTA発熱ピーク温度を示しており、炭素系物質を低温で燃焼でき る。よって、上記焼成工程においては、ゼォライトの中でもソーダライトを採用すること が必要であることがわかる。
[0151] 以上のように、本例によれば、ソーダライトを温度 600°C以上で焼成することにより、 低温でかつ長期間安定に炭素系物質を燃焼除去することができる炭素系物質燃焼 触媒が得られることがわかる。
(実施例 2)
本例は、混合工程と乾燥工程と焼成工程とを行うことにより炭素系物質燃焼触媒を 作製する例である。
[0152] 混合工程においては、原子当量比 Si/ Al≥lのアルミノケィ酸塩と、アルカリ金属 元素源及び/又はアルカリ土類金属元素源とを水中で混合する。乾燥工程におい ては、混合工程後の混合液を加熱し、水分を蒸発させて固形分を得る。また、焼成 工程においては、固形分を温度 600°C以上で焼成することにより上記炭素系物質燃 焼触媒を得る。
[0153] 具体的には、まず、原子当量比 Si/Al≥lのアルミノケィ酸塩として、ソーダライト( 3(Na2O.Al23' 2Si〇2)' 2NaOH)の粉末を準備した。このソーダライト 100重量部と 炭酸カリウム 5重量部とを水に投入し、水中で混合した。
[0154] 次いで、混合液を温度 120°Cで加熱し、水分を蒸発させた。これにより、固形分(ソ 一ダライトと炭酸カリウムとの混合物)を得た。
[0155] 次に、この固形分を温度 800°Cで焼成した。具体的には、固形分を昇温速度 100
°C /時間で加熱し、温度 800°C (焼成温度)に達したところで 10時間保持することに より焼成を行った。
[0156] 次いで、得られた焼成物をメジアン径 10 m以下、かつ最大粒径 100 m以下に まで粉砕し、炭素系物質燃焼触媒を得た。これを試料 E2とする。
[0157] 次に、本例において作製した炭素系物質燃焼触媒 (試料 E2)について、炭素系物 質に対する燃焼促進特性を調べた。また、比較用として、貴金属系触媒 (Pt粉末)、 炭酸カリウム粉末についても燃焼促進特性を調べた。
[0158] 具体的には、まず、実施例 1と同様にして、 CB単独、貴金属系触媒と CBとの混合 物、試料 E2と CBとの混合物、炭酸カリウムと CBとの混合物という 4種類の評価サン プルを作製した。
[0159] 次いで、熱分析 示差熱重量 (TG— DTA)同時測定装置(理学電機社製の TG8 120)用いて、各評価サンプル 6mgを昇温速度 10°C/minにて最高温度 900°Cま で加熱して CBを燃焼させると共に、このときの DTA発熱ピーク温度、及び温度と TG との関係を測定した。なお、 CB単独からなる評価サンプルについては、 0. 5mgを用 いて DTA発熱ピーク温度の測定を行った。また、加熱は、流束 50mL//minで空 気を評価サンプルに流通させながら行った。各触媒種を用いたときの DTA発熱ピー ク温度の結果を図 4に示す。また、温度と TGとの測定結果については、 CB単独を用 いた結果を図 5に示し、触媒種として貴金属系触媒を用いた結果を図 6に示し、 K C Oを用いた結果を図 7に示し、試料 E2を用いた結果を図 8に示す。図 5〜図 8の縦 軸は、カーボンブラックの最大燃焼速度を示す DTA発熱ピークを用いている。
[0160] また、触媒種 (試料 E2、貴金属系触媒、又は炭酸カリウム粉末) lgを水 500cc中に 投入し、一昼夜撹拌することにより洗浄した。次に、水洗浄処理後の触媒種をろ過し 、ろ過後の触媒種にさらに 1500ccの水を流通させて充分に洗浄した後、温度 120 °Cにて乾燥させた。これらの水洗浄処理後の触媒種 (試料 E2及び貴金属系触媒) 2 OOmgとカーボンブラック(CB) 20mgとを電子天秤にて正確に秤量した。これらをメノ ゥ乳鉢を用いて触媒種 (重量): CB (重量) = 10 : 1となるように一定時間混合し、各 触媒種とカーボンブラックとを含有する 2種類の評価サンプルを得た。なお、 CB単独 力、らなる評価サンプルについては、他のサンプルと同様に洗浄及び乾燥を行い、そ の後メノウ乳鉢で混合したものを用いた。また、触媒種として炭酸カリウムを用いた評 価サンプルは、水洗洗浄処理により水に溶解してしまったため、その後の操作を行う ことができな力、つた。即ち、水洗後の評価サンプルとしては、 CB単独、貴金属系触媒 と CBとの混合物、試料 E2と CBとの混合物という 3種類のサンプルを作製した。これら のサンプルについて、再度熱分析 示差熱重量 (TG— DTA)同時測定装置によつ て、 DTA発熱ピーク温度の測定を行った。水洗浄処理後の DTA発熱ピーク温度の 結果を図 4に併記する。
[0161] 図 4〜図 8より知られるごとぐ水洗浄前において、試料 E2を用いたサンプル及び 炭酸カリウム用いたサンプルは、 DTA発熱ピーク温度が低ぐ比較的低い温度で炭 素系物質(CB)を燃焼できることがわかる。なお、図 4及び図 8から知られるごとぐ試 料 E2は、約 400°C付近に発熱ピークを有している力 実際にはこれよりも低い温度( 例えば 350°C程度)でもカーボンブラックの燃焼は開始されて!/、る。
[0162] 図 4より知られるごとぐ CB単独、貴金属系触媒、及び試料 E2については、水洗前 後で CBに対する燃焼促進特性はほとんど変化しな力、つた。これに対して、炭酸力リウ ムを用いたサンプルは、水洗後に炭酸カリウムが水に溶解し、測定が不可能であった
[0163] したがって、試料 E2は、炭素系物質に対して優れた燃焼促進特性を有し、低温で 炭素系物質を燃焼除去することができる。また、試料 E2は、水分存在下においても その優れた特性を維持できるため、長期間安定して炭素系物質の燃焼を行うことが できる。
[0164] 上記試料 E2は、ソーダライト 100重量部と炭酸カリウム 5重量部との混合物を温度 8 00°Cで 10時間焼成することにより作製した触媒である。次に、本例においては、焼 成温度による触媒活性への影響を調べるために、異なる温度でソーダライトと炭酸力 リウムとの混合物(上記固形分)を焼成して複数の触媒を作製した。
[0165] 具体的には、まず、ソーダライト 100重量部と炭酸カリウム 10重量部とを水中で混 合し混合液を得た。次いで、混合液を温度 120°Cで加熱し、水分を蒸発させ、固形 分(混合物)を得た。次に、この混合物を温度 500。C、 600。C、 700。C、 800。C、 900 °C、 1000°C、 1100°C、 1200°C、 1300°Cで焼成して 9種類の触媒を作製した。これ らの触媒は、焼成温度を変更した点を除いては同様にして作製した触媒であり、ソー ダライトに対する炭酸カリウムの混合割合及び焼成温度を変更した点を除いては、上 記試料 E2と同様にして作製した。さらに、温度 600°Cでの焼成については焼成時間 の影響を調べるため、上記試料 E2と同様に 10時間の焼成を行つて作製した触媒の 他に、焼成時間を 5時間にして作製した触媒も準備した。その他の焼成温度で作製 した触媒は、上記試料 E2と同様に!/、ずれも 10時間焼成を行って作製した。
[0166] そしてこれらの触媒についても、上記試料 E2と同様に炭素系物質に対する燃焼促 進特性を調べた。このとき、比較用としてソーダライトと炭酸カリウムとの混合物につい ても炭素系物質に対する燃焼促進特性を調べた。このソーダライトと炭酸カリウムとの 混合物としては、焼成を行う代わりに室温 (約 25°C)で約 10時間放置したものを採用 した。
[0167] 燃焼促進特性の測定は、上記試料 E2と同様にして DTA発熱ピーク温度を測定す ることにより行った。その結果を図 9に示す。
[0168] 図 9より知られるごとぐ温度 600°C以上で焼成を行って作製した炭素系物質燃焼 触媒の DTA発熱ピークトップ温度は、水洗前及び水洗後にお!/、ても約 460°C以下と いう非常に低い値を示した。炭素系物質に対する燃焼触媒として一般に用いられる 貴金属(Pt)触媒の DTA発熱ピーク温度は 520°C程度(図 4参照)であることから、こ れらの炭素系物質燃焼触媒は、炭素系物質に対して充分に優れた触媒活性を有し ていることがわかる。
[0169] これに対し、温度 600°C未満で焼成した触媒は、水洗前にお!/、ては、貴金属(Pt) 触媒に比べて充分に低!/、DTA発熱ピーク温度を示し、優れた触媒活性を示して!/ヽ た力 水洗後においては、 DTA発熱ピーク温度は著しく上昇し、貴金属触媒よりも触 媒活性が低下していた。また、焼成を行っていないソーダライトと炭酸カリウムとの混 合物につ!/、ても、水洗前には優れた触媒活性を示して!/、たが、水洗後には触媒活性 が著しく低下していた。
[0170] 温度 600°C未満で焼成して得られる触媒、及び焼成を行なわずに作製した触媒に おいて、上記のごとく水洗後において触媒活性が著しく低下していた原因は、水洗 後にカリウムが溶出したためであると考えられる。
[0171] したがって、上記焼成工程における焼成温度は 600°C以上で行う必要があることが わかる。また、図 9より知られるごとぐ特に温度 700°C〜1200°Cで焼成を行うことに より、より DTA発熱ピーク温度の低い炭素系物質燃焼触媒、即ち触媒活性に優れた 炭素系物質燃焼触媒が得られることがわかる。さらに、同図より知られるごとぐ 5時間 で焼成を行った場合に比べて 10時間焼成を行った場合の方力 S、水洗後の触媒活性 の低下が抑制されていた。
[0172] 上述の例においては、上記混合工程においてソーダライトに K源として炭酸カリウム を混合して炭素系物質燃焼触媒を作製した。本例においては、次に、ソーダライトに 混合するカリウム塩の種類を変えて複数の炭素系物質燃焼触媒を作製し、その DT A発熱ピークトップ温度を調べた。
[0173] 具体的には、ソーダライトに、各カリウム塩 (炭酸カリウム、硝酸カリウム、塩化力リウ ム、硫酸カリウム、酢酸カリウム、リン酸カリウム、又は水酸化カリウム)を混合して混合 物を得た。各カリウム塩は、カリウム塩中のカリウム元素量がソーダライト中の Si元素 1 モノレに対して 0. 225モノレ又は 0. 00225モノレとなるように混合を fiつた。また、混合 は、上記試料 E2と同様に水中で行い、上述のごとく混合液の水分を乾燥させること により混合物を得た。
[0174] 次に、混合物を昇温速度 100°C/時間で加熱し、温度 1000°C (焼成温度)に達し たところで 10時間保持することにより焼成を行った。次いで、得られた焼成物をメジァ ン径 10 m以下、かつ最大粒径 100 a m以下にまで粉砕し、炭素系物質燃焼触媒 を得た。
[0175] このようにして得られた各炭素系物質燃焼触媒について、上記試料 E2と同様に水 洗前後の DTA発熱ピーク温度を測定した。その結果を図 10に示す。図 10において 、 XIは、水洗前で、ソーダライト中の Si元素 1モルに対する各アルカリ金属塩中のァ ルカリ金属元素量 (K量)又はアルカリ土類金属塩中のアルカリ土類金属元素量 (κ 量)が 0. 225モルの状態を示す。 Χ2は、水洗後で、ソーダライト中の Si元素 1モルに 対する各アルカリ金属塩中のアルカリ金属元素量 (K量)又はアルカリ土類金属塩中 のアルカリ土類金属元素量 (K量)が 0. 225モルの状態を示す。 X3は、水洗前で、ソ 一ダライト中の Si元素 1モルに対する各アルカリ金属塩中のアルカリ金属元素量 (K 量)又はアルカリ土類金属塩中のアルカリ土類金属元素量 (K量)が 0. 00225モノレ の状態を示す。 X4は、水洗後で、ソーダライト中の Si元素 1モルに対する各アルカリ 金属塩中のアル力リ金属元素量 (K量)又はアル力リ土類金属塩中のアル力リ土類金 属元素量(K量)が 0· 00225モルの状態を示す。
[0176] 図 10より知られるごとぐいずれのカリウム塩を用いて作製しても、炭素系物質燃焼 触媒は、水洗前後において優れた触媒活性を示した。また、カリウム塩の量を減らす と若干触媒活性は低下するものの、この場合においても水洗前後において 450°C以 下とレ、う非常に DTAピーク発熱トップ温度を維持しており、優れた触媒活性を示して いた。
[0177] 上述の例においては、上記混合工程においてソーダライトにアルカリ金属元素源( アルカリ金属塩)としてカリウム塩を混合し、炭素系物質燃焼触媒を作製した。次に、 本例においては、混合工程においてソーダライトにカリウム塩の他にも各種アルカリ 金属元素源又はアルカリ土類金属元素源を混合して複数の炭素系物質燃焼触媒を 作製し、これらの DTA発熱ピークトップ温度を調べた。
[0178] 具体的には、まず、ソーダライトに、各種アルカリ金属塩 (炭酸ナトリウム、炭酸力リウ ム、炭酸ルビジウム、又は炭酸セシウム)、又はアルカリ土類金属塩 (水酸化マグネシ ゥム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム)を混合して混合物を得た。 各アルカリ金属塩又はアルカリ土類金属塩は、ソーダライト中の Si元素 1モルに対す る各アルカリ金属塩中のアルカリ金属元素量又はアルカリ土類金属塩中のアルカリ 土類金属元素量が 0. 225モノレ又は 0. 00225モノレとなるように混合した。また、混合 は、上記試料 E2と同様に水中で行い、上述のごとく混合液の水分を乾燥させること により混合物を得た。
[0179] 次に、混合物を昇温速度 100°C/時間で加熱し、温度 1000°C (焼成温度)に達し たところで 10時間保持することにより焼成を行った。次いで、得られた焼成物をメジァ ン径 10 m以下、かつ最大粒径 100 a m以下にまで粉砕し、炭素系物質燃焼触媒 を得た。
[0180] このようにして得られた各炭素系物質燃焼触媒について、上記試料 E2と同様に水 洗前後の DTA発熱ピーク温度を測定した。その結果を図 11に示す。図 11において 、横軸は、混合工程において添加したアルカリ金属元素源中のアルカリ元素種、及 びアルカリ土類金属元素源中のアルカリ土類金属種を示し、縦軸は、 DTA発熱ピー ク温度を示す。図 11の Y1は、水洗前で、ソーダライト中の Si元素 1モルに対するァ ルカリ金属元素源中のアル力リ元素、及びアル力リ土類金属元素源中のアル力リ土 類金属元素の量が 0. 225モルの状態を示す。図 11の Y2は、水洗後で、ソーダライ ト中の Si元素 1モルに対するアルカリ金属元素源中のアルカリ元素、及びアルカリ土 類金属元素源中のアルカリ土類金属元素の量が 0. 225モルの状態を示す。図 11の Y3は、水洗前で、ソーダライト中の Si元素 1モルに対するアルカリ金属元素源中のァ ルカリ元素、及びアルカリ土類金属元素源中のアルカリ土類金属元素の量が 0. 002 25モルの状態を示す。図 11の Y4は、水洗後で、ソーダライト中の Si元素 1モルに対 するアルカリ金属元素源中のアルカリ元素、及びアルカリ土類金属元素源中のアル カリ土類金属元素の量が 0. 00225モルの状態を示す。
[0181] 図 11より知られるごとぐ上記混合工程においてソーダライトに各種アルカリ金属元 素(Na、 K、 Rb、 Cs)を混合して作製した炭素系物質燃焼触媒は、いずれのアルカリ 金属元素を用いた場合でも、水洗前後にお!、て優れた触媒活性を示した。
[0182] これに対し、上記混合工程においてソーダライトに各種アルカリ土類金属元素(Mg 、 Ca、 Sr、 Ba)を混合して作製した炭素系物質燃焼触媒においては、アルカリ土類 金属元素として Mgを選択した場合に、若干触媒活性が不十分である場合が認めら れるものの、いずれの場合においても、実用上問題ないレベルの触媒活性を示した
[0183] このように、 K以外にも、その他のアルカリ金属、又はアルカリ土類金属をソーダライ トに混合して焼成しても、優れた触媒活性を有する炭素系物質燃焼触媒が得られる こと力 sゎカゝる。 [0184] また、アルカリ土類金属元素源として Mg源を用いた場合について、さらに詳細に説 明すると、図 11より知られるごとぐ Mgをソーダライト中の Si元素 1モルに対して 0· 0 0225モル加えて得られた触媒は優れた触媒活性を示した。し力、し、 Mgを 0· 225モ ノレ加えて作製した触媒は、実用に供することは可能であるものの、触媒活性が低下し ていた。一方、その他のアルカリ土類金属元素(Ca Sr Ba)を用いて得られた触媒 は、 V、ずれの場合にお!/、ても優れた触媒活性を示した。
[0185] したがって、アルカリ土類金属元素源を選択する場合には、 Mg以外のアルカリ土 類金属元素源を採用することが好ましい。また、 Mg源を採用する場合には、 Mg源 中の Mg量がソーダライト中の Si元素 1モルに対して 0· 225モノレ未満となるように、 M g源とソーダライトとの混合を行うことが好ましい。より好ましくは、 0. 00225モル以下 がよい。
[0186] 上記の例においては、上記混合工程において、ソーダライトに 1種類のアルカリ金 属又はアルカリ土類金属を混合して炭素系物質燃焼触媒を作製した。次に、本例に おいては、上記混合工程において、ソーダライトに複数のアルカリ金属元素、アル力 リ土類金属を混合して炭素系物質燃焼触媒を作製し、その DTA発熱ピーク温度を 測定した。
[0187] 具体的には、まず、ソーダライトに、炭酸カリウムを加え、さらにアルカリ金属元素源
(炭酸ナトリウム、炭酸ルビジウム、又は炭酸セシウム)又はアルカリ土類金属元素源( 水酸化マグネシウム、炭酸カルシウム、炭酸ストロンチウム、又は炭酸バリウム)を加え て混合し混合物を得た。このようにして得られた各混合物は、ソーダライトと、炭酸カリ ゥムと、炭酸カリウム以外のアルカリ金属元素源又はアルカリ土類金属元素源とを含 有する。
[0188] 各混合物は、ソーダライト中の Si元素 1モルに対して炭酸カリウム中のカリウム量が 0. 1125モルとなるようにソーダライトに炭酸カリウム(カリウム源)を加え、さらにソー ダライト中の Si元素 1モルに対して各アルカリ金属元素源中のアルカリ金属元素量又 はアルカリ土類金属元素源中のアルカリ土類金属元素量が 0. 1125モルとなるよう にソーダライトに各種アルカリ金属元素源又はアルカリ土類金属元素源を加えて作
; ^^し/ [0189] したがって、各混合物においては、ソーダライト中の Si元素 1モルに対する炭酸カリ ゥム中のカリウム量と、その他のアルカリ金属元素量又はアルカリ土類金属元素量と の合計量は、いずれも 0. 225モルとなっている。
[0190] また、混合は、上記試料 E2と同様に水中で行い、上述のごとく混合液の水分を乾 燥させることにより混合物を得た。
[0191] 次に、混合物を昇温速度 100°C/時間で加熱し、温度 1000°C (焼成温度)に達し たところで 10時間保持した。これにより混合物の焼成を行った。次いで、得られた焼 成物をメジアン径 10 m以下、かつ最大粒径 100 m以下にまで粉砕し、炭素系物 質燃焼触媒を得た。
[0192] このようにして得られた各炭素系物質燃焼触媒について、上記試料 E2と同様に水 洗前後の DTA発熱ピーク温度を測定した。その結果を図 12に示す。同図において 、縦軸は DTA発熱ピーク温度を示し、横軸は、炭酸カリウム以外に添加したアルカリ 金属元素源中のアル力リ金属元素種又はアル力リ土類金属元素源中のアル力リ土類 金属元素種を示す。また、同図には、ソーダライトに炭酸カリウムだけを混合し焼成し て作製した炭素系物質燃焼触媒(図 12において横軸が Kで示されたサンプル)につ いての水洗前後の DTA発熱ピーク温度を併記する。
[0193] 図 12より知られるごとぐ上記混合工程において、ソーダライトに K (カリウム)の他に 、さらに各種アルカリ金属元素(Na、 Rb、 Cs)又はアルカリ土類金属元素(Mg、 Ca、 Sr、 Ba)を混合した場合においても、 Kを単独で混合した場合と同様に、優れた触媒 活性を有する炭素系物質燃焼触媒が得られた。
[0194] このように、混合工程において複数のアルカリ金属元素源及びアルカリ土類金属源 を用いても、優れた触媒活性を有する炭素系物質燃焼触媒が得られることがわかる。
[0195] 次に、本例においては、アルカリ金属元素源又はアルカリ土類金属元素源の添カロ 量が炭素系物質燃焼触媒の触媒活性に与える影響を調べるために、上記混合工程 において、ソーダライトに混合するアルカリ金属元素源又はアルカリ土類金属元素源 の添加割合を変えて炭素系物質燃焼触媒を作製し、その DTA発熱ピーク温度を測 定した。
[0196] まず、ソーダライト 100重量部に、炭酸カリウム又は炭酸バリウムを 0〜; 100重量部 の添加量で混合し、混合物を得た。
[0197] 具体的には、後述の図 26及び図 13に示すごとぐソーダライト(SOD) 100重量部 に対して、炭酸カリウムをそれぞれ 0重量部、 0. 1重量部、 0. 5重量部、 1重量部、 3 重量部、 5重量部、 10重量部、 15重量部、 20重量部、 40重量部、及び 100重量部 混合して混合物を作製した。
[0198] また、後述の図 27及び図 14に示すごとぐソーダライト(SOD) 100重量部に対して
、炭酸バリウムをそれぞれ 0重量部、 5重量部、 10重量部、 15重量部、 20重量部、 4
0重量部、 70重量部、 100重量部、 150重量部、 200重量部、及び 300重量部混合 して混合物を作製した。
[0199] これらの混合は、上記試料 E2と同様に水中で行い、上述のごとく混合液の水分を 乾燥させることにより複数の混合物を得た。
[0200] 次に、これらの混合物を昇温速度 100°C/時間で加熱し、温度 1000°Cに達したと ころで 10時間保持した。これにより、混合物の焼成を行った。次いで、得られた焼成 物をメジアン径 10 m以下、かつ最大粒径 100 m以下にまで粉砕し、炭素系物質 燃焼触媒を得た。
[0201] このようにして得られた各炭素系物質燃焼触媒について、上記試料 E2と同様に水 洗前後の DTA発熱ピーク温度を測定した。
[0202] 炭酸カリウムを用いて作製した炭素系物質燃焼触媒の水洗前後の DTA発熱ピー ク温度の結果を図 26及び図 13に示し、炭酸バリウムを用いて作製した炭素系物質 燃焼触媒の水洗前後の DTA発熱ピーク温度の結果を図 27及び図 14に示す。
[0203] なお、図 26には、ソーダライト 100重量部に対する Kの混合量(重量部)をソーダラ イト中の Si量 (mol)に対する Kの混合量 (mol)に換算した値を示してある(図 26参照 )。同様に、図 27には、ソーダライト 100重量部に対する Baの混合量(重量部)をソー ダライト中の Si量 (mol)に対する Baの混合量 (mol)に換算した値を示してある(図 2 7参照)。
[0204] 図 26、図 27、図 13、及び図 14より知られるごとぐ上記混合工程におけるアルカリ 金属元素量及びアルカリ土類金属元素量を変えても、得られる炭素系物質燃焼触 媒は優れた触媒活性を示して!/、た。 [0205] その一方で、アルカリ金属量又はアルカリ土類金属量を増やすと、水洗前後におけ る DTA発熱ピーク温度の差が大きくなつていた。図 26及び図 27より知られるごとぐ 上記混合工程においては、アルカリ金属元素源 (K CO )中に含まれるアルカリ金属 元素 (K)量、アルカリ土類金属元素源 (BaCO )中に含まれるアルカリ土類金属元素
(Ba)量がソーダライト中の Si元素 1モルに対して 2· 25モル以下となるように、ソーダ ライトとアルカリ金属元素源又はアルカリ土類金属元素源とを混合すれば、水洗前後 における DTA発熱ピーク温度の差が比較的小さな炭素系物質燃焼触媒、即ち水分 に対する耐久性に優れた炭素系物質燃焼触媒を作製できることがわかる。また、上 述のアルカリ金属元素量とアルカリ土類金属元素量が 2. 25モルを超える場合には、 混合物が焼成時に一旦溶融し易くなり、焼成後に得られる炭素系物質燃焼触媒の 粉砕が困難になる。
[0206] 同様の観点から、より好ましくは、上記混合工程において、ソーダライト中の Si元素
1モルに対してアルカリ金属元素量(モル)、アルカリ土類金属元素量(モル)は 1モル 以下がよぐさらにより好ましくは 0. 5モル以下がよい。
[0207] 以上のように、本例によれば、上記混合工程と上記焼成工程とを行うことにより、低 温でかつ長期間安定に炭素系物質を燃焼除去できる炭素系物質燃焼触媒を製造 すること力 Sでさる。
(実施例 3)
本例は、実施例 2で作製した炭素系物質燃焼触媒 (試料 E2)をハニカム構造のセ ラミック基材 (セラミックハニカム構造体) 22に担持させた触媒担持体 2を作製する例 である。
[0208] 図 15〜図 17に示すごとぐ本例のセラミック基材 22は、外周壁 21と、該外周壁 21 の内側においてハニカム状に設けられた隔壁 25と、該隔壁 25により仕切られた複数 のセル 3とを有する。セル 3は、セラミック基材 22の両端面 23、 24に部分的に開口し ている。即ち、一部のセル 3は、セラミック基材 22の両端面 23、 24に開口し、残りの セノレ 3は、両端面 23、 24に形成された栓部 32によって閉塞している。図 15及び図 1 6に示すように、本例においては、セル 3の端部を開口する開口部 31と、セル 3の端 部を閉塞する栓部 32とは交互に配置されており、所謂市松模様を形成している。そ して、セラミック基材 22の隔壁 25には、実施例 2で作製した炭素系物質燃焼触媒 1 ( 試料 E2)が担持されている。また、図 18に示すごとぐ隔壁 25上には、アルミナゾル を焼き付けてなる接着層 155が形成され、該接着層 155中に炭素系物質燃焼触媒 1 が担持されている。接着層 155は、アルミナからなる酸化物系セラミックス粒子 15が 結合してなり、接着層 155には、炭素系物質燃焼触媒 1が分散されている。
[0209] また、図 17に示すごとぐ本例の触媒担持体 2においては、排ガス 10の入口側とな る上流側端面 23及び排ガス 10の出口となる下流側端面 24に位置するセルの端部 は、栓部 32が配置された部分と配置されて!/、な!/、部分とをそれぞれ交互に有して!/、 る。隔壁 2には多数の空孔が形成され、排ガス 10が通過できるようになつている。
[0210] また、本例の触媒担持体 2の全体サイズは、直径 160mm、長さ 100mmであり、セ ノレサイズは、セノレ厚さ 3mm、セノレピッチ 1 · 47mmである。
[0211] また、セラミック基材 22はコーディエライトからなり、そのセル 3は、断面が四角形状 のものを採用した。セル 3は、その他にも例えば、三角形、六角形等の様々な断面形 状を採用すること力できる。
[0212] また、本例においては、セル 3の端部を開口する開口部 31と、セル 3の端部を閉塞 する栓部 32とは交互に配置されており、所謂市松模様を形成している。
[0213] 次に、本例のセラミックハニカム構造体の製造方法につき、説明する。
[0214] まず、タルク、溶融シリカ、及び水酸化アルミニウムを所望のコーディエライト組成と なるように秤量し、造孔剤、バインダー、水等を加え、混合機にて混合撹拌した。そし て、得られた粘土質のセラミック材料を成形機にて押出成形し、ハニカム状の成形体 を得た。これを乾燥した後、所望の長さに切断し、外周壁と、その内側においてハニ カム状に設けられた隔壁と、隔壁により仕切られていると共に両端面に貫通してなる 複数のセルとを有する成形体を作製した。次いで、この成形体を温度 1400〜; 1450 °Cで 2〜; 10時間加熱することにより仮焼して仮焼体 (ノヽ二カム構造体)を得た。
[0215] 次に、ハニカム構造体の両端面全体を覆うようにマスキングテープを貼り付けた。そ して、セラミックハニカム構造体の両端面の栓詰めすべき位置に対応するマスキング テープにレーザ光を順次照射し、マスキングテープを溶融又は焼却除去して貫通穴 を形成した。これにより、セルの端部における栓部により栓詰めすべき部分に貫通穴 を形成した。セルの端部のその他の部分はマスキングテープで覆われている。本例 においては、セルの両端面に貫通穴とマスキングテープで覆われた部分とが交互に 配置するように、マスキングテープに貫通穴を形成した。本例では、マスキングテー プとしては、厚さ 0. 1mmの樹脂フィルムを用いた。
[0216] 次に、栓部の材料である栓材の主原料となるタルク、溶融シリカ、アルミナ、及び水 酸化アルミニウムを所望の組成となるように秤量し、バインダー、水等を加え、混合機 にて混合撹拌し、スラリー状の栓材を作製した。このとき、必要に応じて造孔材を添 カロすることもできる。そして、スラリー状の栓材を入れた容器を準備した後、貫通孔を 部分的に形成したハニカム構造体の端面を浸漬した。これにより、マスキングテープ の貫通穴からセルの端部に栓材を適量浸入させた。また、ハニカム構造体のもう一 方の端面についても同様の工程を行った。このようにして、栓詰めすべきセルの開口 部内に栓材が配置されたハニカム構造体を得た。
[0217] 次に、ハニカム構造体とその栓詰めすべき部分に配置した栓材とを同時に約 1400 〜; 1450°Cで焼成した。これにより、マスキングテープは焼却除去され、図 15に示す ごとぐセル 3の両端に、その端部を開口する複数の開口部 31と、セル 3の端部を閉 塞する複数の栓部 32とが形成されたセラミックハニカム構造体 (セラミック基材) 22を 作製した。
[0218] 次に、実施例 2で作製した炭素系物質燃焼触媒 (試料 E2)をアルミナゾルを 3wt% 配合したアルミナスラリーに混合した。さらに水分を加えて所望の粘度に調整し、スラ リー状の複合材料を得た。次に、この複合材料をセラミック基材 22の隔壁 25にコート した。その後、温度 500°Cで加熱することにより、焼き付けを行った。なお、スラリー状 の複合材料のコート量は、基材 (ノ、二カム構造体) 1L当りに 60gとした。このようにし て、図 15、図 16、及び図 18に示すごとぐ炭素系物質燃焼触媒 1をセラミック基材 22 に担持した触媒担持体 2を得た。
[0219] 本例の触媒担持体 2は、実施例 2の炭素系物質燃焼触媒 1 (試料 E2)をセル壁 22 に担持している。そのため、炭素系物質燃焼触媒 1の優れた特徴を生かして、ハニカ ム構造体 2においては、基材を腐食させることなぐ低温で炭素系物質を燃焼させる ことができる。また、水分によって、炭素系物質に対する触媒活性が低下することもほ とんどない。
[0220] また、炭素系物質燃焼触媒 (試料 E2)は、ソーダライトとアルカリ金属元素源 (炭酸 カリウム)との混合物を焼成してなる。力、かる炭素系物質燃焼触媒は、その構造中に 比較的強固にアルカリ金属元素を保持しているため、アルカリ金属の溶出が起こり難 い。したがって、炭素系物質燃焼触媒をハニカム構造体に担持させる際においても、 アルカリ金属が溶出し、セラミック基材を腐食してしまうことを防止することができる。
[0221] 本例においては、コージエライトからなるセラミック基材 (セラミックハニカム構造体) を用いて触媒担持体を作製した力 上記セラミック基材として、例えば SiC、チタン酸 アルミニウム等の多孔質の高耐熱性セラミックスを用いても同様の触媒担持体を作製 すること力 Sできる。また、本例においては、上記セラミック基材として、セルの端部を閉 塞する栓部が形成されたセラミックハニカム構造体を用いた力 例えば圧力損失を抑 えるために、栓部を形成してレ、な!/、セラミックハニカム構造体を用いることができる。
[0222] また、複合酸化物粒子の他に、希土類元素を含有する炭素系物質燃焼触媒を担 持させた触媒担持体を作製する場合には、アルミナゾルを 3wt%配合したアルミナス ラリーに炭素系物質燃焼触媒 (試料 E2)を混合する際に、例えば CeO 、 ZrO 、 CeO -ZrO固溶体等からなる酸化物粒子をさらに加えることにより作製することができる
[0223] また、炭素系物質燃焼触媒の他に貴金属を担持させた触媒担持体を作製する場 合には、アルミナゾルを 3wt%配合したアルミナスラリーに炭素系物質燃焼触媒 (試 料 E2)を混合する際に、例えば硝酸白金水溶液をさらに所定量分散させることにより 作製すること力でさる。
[0224] なお、本例においては、実施例 2において作製した炭素系物質燃焼触媒 (試料 E2 )をセラミック基材に担持させて触媒担持体を作製したが、上記試料 E2の代わりに実 施例 1において作製した炭素系物質燃焼触媒 (例えば試料 E1)を用いて、本例と同 様の操作を行うことにより、実施例 1で作製した炭素系物質燃焼触媒をセラミック基材 に担持させてなる触媒担持体を作製することができる。
(比較例)
本例においては、実施例 3の触媒担持体の比較用として、焼成を行っていないソー ダライトとアルカリ金属元素源 (炭酸カリウム)との混合物をセラミック基材に担持して なる触媒担持体を作製する。
[0225] 本例にお!/、て作製する触媒担持体は、担持させる触媒が異なる点を除!/、ては、上 記実施例 3と同様のものである。
[0226] 本例の触媒担持体の作製にあたっては、まず、実施例 3と同様のコージエライトから なるセラミック基材 (セラミックハニカム構造体)を準備した。
[0227] 次いで、ソーダライト 100重量部と炭酸カリウム 5重量部とを水に混合した。混合液 を加熱し、水分を蒸発させ、固形分(混合物)を得た。このようにして、ソーダライトと炭 酸カリウムとの混合物を得た。
[0228] 次に、この混合物をアルミナゾルを 3wt%配合したアルミナスラリーに混合し、さら に水分を加えて所望の粘度に調整してスラリー状の複合材料を得た。次いで、実施 例 3と同様に、この複合材料をセラミック基材の隔壁にコートし、温度 500°Cで加熱す ることにより、混合物をセラミック基材に焼付けた。このようにして、比較用の触媒担持 体を得た。
[0229] 本例にお!/、て得られた触媒担持体にお!/、ては、セラミック基材に部分的な割れが 生じていた。即ち、焼成を行っていないソーダライトとアルカリ金属元素源 (炭酸力リウ ム)との混合物をセラミック基材に担持すると、焼付け等の加熱時に、混合物からアル カリ金属(カリウム)が溶出し易い。この溶出したアルカリ金属は、セラミック基材のコ一 ジェライト成分を攻撃して、その結晶系を破壊してしまう。そのため、セラミック基材の 熱膨張係数及び強度が部分的に変化し、上記のごとくセラミック基材に割れ等が発 生し易くなる。
図面の簡単な説明
[0230] [図 1]実施例 1にかかる、各触媒種を用いて、又は触媒を用いずに、炭素系物質を燃 焼させたときの DTA発熱ピーク温度を示す説明図。
[図 2]実施例 1にかかる、焼成温度と水洗前後における炭素系物質燃焼触媒の DTA 発熱ピーク温度との関係を示す説明図。
[図 3]実施例 1にかかる、ゼォライト種と触媒の DTA発熱ピーク温度との関係を示す 説明図。 園 4]実施例 2にかかる、各触媒種を用いて、又は触媒を用いずに、炭素系物質を燃 焼させたときの DTA発熱ピーク温度を示す説明図。
園 5]実施例 2にかかる、触媒を用いずにカーボンブラックを単独で燃焼させた場合 における温度と TG及び DTAとの関係を示す線図。
園 6]実施例 2にかかる、触媒種として貴金属系触媒を用いてカーボンブラックを燃焼 させた場合における温度と TG及び DTAとの関係を示す線図。
園 7]実施例 2にかかる、触媒種として炭酸カリウムを用いてカーボンブラックを燃焼さ せた場合における温度と TG及び DTAとの関係を示す線図。
園 8]実施例 2にかかる、触媒種として炭素系物質燃焼触媒 (試料 E1)を用いてカー ボンブラックを燃焼させた場合における温度と TG及び DTAとの関係を示す線図。
[図 9]実施例 2にかかる、焼成温度と水洗前後における炭素系物質燃焼触媒の DTA 発熱ピーク温度との関係を示す説明図。
園 10]実施例 2にかかる、カリウム塩種と水洗前後における炭素系物質燃焼触媒の D TA発熱ピーク温度との関係を示す説明図。
園 11]実施例 2にかかる、アルカリ金属元素種 ·アルカリ土類金属元素種と水洗前後 における炭素系物質燃焼触媒の DTA発熱ピーク温度との関係を示す説明図。 園 12]実施例 2にかかる、カリウム以外のアルカリ金属元素種 ·アルカリ土類金属元素 種と水洗前後における炭素系物質燃焼触媒の DTA発熱ピーク温度との関係を示す 説明図。
園 13]実施例 2にかかる、混合工程において混合するカリウム量と水洗前後における 炭素系物質燃焼触媒の DTA発熱ピーク温度との関係を示す説明図。
園 14]実施例 2にかかる、混合工程において混合するバリウム量と水洗前後における 炭素系物質燃焼触媒の DTA発熱ピーク温度との関係を示す説明図。
園 15]実施例 3にかかる、触媒担持体 (セラミックハニカム構造体)の斜視図。
園 16]実施例 3にかかる、触媒担持体 (セラミックハニカム構造体)の長手方向の断面 図。
園 17]実施例 3にかかる、触媒担持体 (セラミックハニカム構造体)内を排ガスが通過 する様子を示す触媒担持体の断面図。 園 18]酸化物系セラミックス粒子が結合してなる接着層中に炭素系物質燃焼触媒が 分散された触媒担持体の構成を示す触媒担持体の断面図。
園 19]酸化物系セラミックス粒子が結合してなる接着層中に炭素系物質燃焼触媒と 希土類元素とが分散された触媒担持体の構成を示す触媒担持体の断面図。
園 20]酸化物系セラミックス粒子が結合してなる接着層中に、炭素系物質燃焼触媒と 希土類元素と貴金属とが分散された触媒担持体の構成を示す触媒担持体の断面図 園 21]貴金属が酸化物粒子に担持された状態を示す説明図。
[図 22]貴金属が希土類元素 (希土類元素の酸化物粒子)に担持された状態を示す 説明図。
園 23]基材上に形成された炭素系物質燃焼触媒を含有する接着層上にさらに貴金 属層を形成した触媒担持体の構成を示す触媒担持体の断面図。
[図 24]基材と炭素系物質燃焼触媒を含有する接着層との間に貴金属層を形成した 触媒担持体の構成を示す触媒担持体の断面図。
[図 25]ゼォライト種類及びゼォライト組成中の SiO /Al O比を示す図。
園 26]炭酸カリウムを用いて作製した炭素系物質燃焼触媒の水洗前後の DTA発熱 ピーク温度の結果を示す図。
園 27]炭酸バリウムを用いて作製した炭素系物質燃焼触媒の水洗前後の DTA発熱 ピーク温度の結果を示す図。

Claims

請求の範囲
[1] 内燃機関の排ガス中に含まれる炭素系物質を燃焼させるために用いられると共に、 セラミック基材に担持して用いられる炭素系物質燃焼触媒の製造方法において、 原子当量比 Si/Al≥lのアルミノケィ酸塩と、アルカリ金属元素源及び/又はアル カリ土類金属元素源とを水中で混合する混合工程と、
該混合工程後の混合液を加熱し、水分を蒸発させて固形分を得る乾燥工程と、 上記固形分を温度 600°C以上で焼成することにより上記炭素系物質燃焼触媒を得 る焼成工程とを有し、
上記アルミノケィ酸塩は、ソーダライトであることを特徴とする炭素系物質燃焼触媒 の製造方法。
[2] 請求項 1にお!/、て、上記アルカリ金属元素源は、 Na、 K、 Rb、及び Csから選ばれる
1種以上を含有し、上記アルカリ土類金属元素源は、 Ca、 Sr、及び Baから選ばれる 1種以上を含有することを特徴とする炭素系物質燃焼触媒の製造方法。
[3] 請求項 1又は 2において、上記アルカリ金属元素源及び/又は上記アルカリ土類 金属元素源は、それぞれ炭酸塩、硫酸塩、リン酸塩、硝酸塩、有機酸塩、ハロゲン化 物、酸化物、又は水酸化物であることを特徴とする炭素系物質燃焼触媒の製造方法
[4] 請求項;!〜 3のいずれか一項において、上記焼成工程後に、上記炭素系物質燃焼 触媒を粉砕する粉砕工程を行うことを特徴とする炭素系物質燃焼触媒の製造方法。
[5] 請求項;!〜 4のいずれか一項において、上記混合工程においては、水の代わりに 水以外の極性溶媒を用い、上記アルミノケィ酸塩と上記アルカリ金属元素源及び/ 又は上記アルカリ土類金属元素源とを上記極性溶媒中で混合し、上記乾燥工程に おいては、上記極性溶媒を蒸発させて上記固形分を得ることを特徴とする炭素系物 質燃焼触媒の製造方法。
[6] 請求項;!〜 5のいずれか一項において、上記アルカリ金属元素源及び/又は上記 アルカリ土類金属元素源中に含まれるアルカリ金属元素とアルカリ土類金属元素と の合計量が上記アルミノケィ酸塩中の Si元素 1モルに対して 2. 25モル以下となるよ うに、上記アルミノケィ酸塩と上記アル力リ金属元素源及び/又は上記アル力リ土類 金属元素源とを混合することを特徴とする炭素系物質燃焼触媒の製造方法。
[7] 請求項 6において、上記混合工程においては、上記アルカリ金属元素源及び/又 は上記アルカリ土類金属元素源中に含まれるアルカリ金属元素とアルカリ土類金属 元素との合計量が上記アルミノケィ酸塩中の Si元素 1モルに対して 1モル以下となる ように、上記アルミノケィ酸塩と上記アルカリ金属元素源及び/又は上記アルカリ土 類金属元素源とを混合することを特徴とする炭素系物質燃焼触媒の製造方法。
[8] 請求項 7において、上記混合工程においては、上記アルカリ金属元素源及び/又 は上記アルカリ土類金属元素源中に含まれるアルカリ金属元素とアルカリ土類金属 元素との合計量が上記アルミノケィ酸塩中の Si元素 1モルに対して 0. 5モル以下と なるように、上記アルミノケィ酸塩と上記アルカリ金属元素源及び/又は上記アルカリ 土類金属元素源とを混合することを特徴とする炭素系物質燃焼触媒の製造方法。
[9] 請求項 1〜8のいずれか一項において、上記焼成工程においては、上記固形分を 温度 700°C〜; 1200°Cで焼成することを特徴とする炭素系物質燃焼触媒の製造方法
[10] 請求項 1〜9のいずれか一項に記載の製造方法によって得られたことを特徴とする 炭素系物質燃焼触媒。
[11] 内燃機関の排ガス中に含まれる炭素系物質を燃焼させるために用いられる炭素系 物質燃焼触媒をセラミック基材に担持させてなる触媒担持体を製造する方法におい て、
請求項;!〜 9のいずれか一項に記載の製造方法によって得られた上記炭素系物質 燃焼触媒を上記セラミック基材に担持させて上記触媒担持体を得る担持工程を有す ることを特徴とする触媒担持体の製造方法。
[12] 請求項 11おいて、上記担持工程においては、少なくとも上記炭素系物質燃焼触媒 とゾル状又はスラリー状の酸化物系セラミック粒子とを混合して複合材料を作製し、 該複合材料を上記セラミック基材にコートして加熱することを特徴とする触媒担持体 の製造方法。
[13] 請求項 12において、上記酸化物系セラミックス粒子は、アルミナ、シリカ、チタニア 、及びジルコユアから選ばれる 1種以上を主成分とすることを特徴とする触媒担持体 の製造方法。
[14] 請求項 11〜; 13のいずれか一項において、上記セラミック基材はコージエライト、 Si C又はチタン酸アルミニウムよりなることを特徴とする触媒担持体の製造方法。
[15] 請求項 11〜; 14のいずれか一項において、上記セラミック基材はハ二カム構造体で あることを特徴とする触媒担持体の製造方法。
[16] 請求項 11〜; 15のいずれか一項に記載の製造方法によって得られたことを特徴と する触媒担持体。
[17] 内燃機関の排ガス中に含まれる炭素系物質を燃焼させるために用いられると共に、 セラミック基材に担持して用いられる炭素系物質燃焼触媒を製造する方法において ソーダライトを温度 600°C以上で焼成して上記炭素系物質燃焼触媒を得る焼成ェ 程を有することを特徴とする炭素系物質燃焼触媒の製造方法。
[18] 請求項 17において、上記焼成工程においては、上記ソーダライトを温度 700°C〜1
200°Cで焼成することを特徴とする炭素系物質燃焼触媒の製造方法。
[19] 請求項 17又は 18において、上記焼成工程後に得られる上記炭素系物質燃焼触 媒を粉砕する粉砕工程を有することを特徴とする炭素系物質燃焼触媒の製造方法。
[20] 請求項 17〜; 19のいずれか一項に記載の製造方法によって得られたことを特徴と する炭素系物質燃焼触媒。
[21] 内燃機関の排ガス中に含まれる炭素系物質を燃焼させるために用いられる炭素系 物質燃焼触媒をセラミック基材に担持させてなる触媒担持体を製造する方法におい て、
請求項 17〜; 19のいずれか一項に記載の製造方法によって得られた上記炭素系 物質燃焼触媒を上記セラミック基材に担持させて上記触媒担持体を得る担持工程を 有することを特徴とする触媒担持体の製造方法。
[22] 請求項 21おいて、上記担持工程においては、少なくとも上記炭素系物質燃焼触媒 とゾル状又はスラリー状の酸化物系セラミック粒子とを混合して複合材料を作製し、 該複合材料を上記セラミック基材にコートして加熱することを特徴とする触媒担持体 の製造方法。
[23] 請求項 22において、上記酸化物系セラミックス粒子は、アルミナ、シリカ、チタニア 、及びジルコユアから選ばれる 1種以上を主成分とすることを特徴とする触媒担持体 の製造方法。
[24] 請求項 2;!〜 23のいずれか一項において、上記セラミック基材はコージエライト、 Si C、又はチタン酸アルミニウムよりなることを特徴とする触媒担持体の製造方法。
[25] 請求項 2;!〜 24のいずれか一項において、上記セラミック基材はハ二カム構造体で あることを特徴とする触媒担持体の製造方法。
[26] 請求項 2;!〜 25のいずれか一項に記載の製造方法によって得られたことを特徴と する触媒担持体。
PCT/JP2007/068038 2006-09-19 2007-09-18 Catalyseur de combustion d'une substance contenant du carbone, procédé de production du catalyseur, matériau comprenant un catalyseur et procédé de production dudit matériau WO2008035651A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020087029111A KR101049314B1 (ko) 2006-09-19 2007-09-18 탄소계 물질 연소 촉매 및 그의 제조 방법, 촉매 담지체 및그의 제조 방법
BRPI0709958-4A BRPI0709958A2 (pt) 2006-09-19 2007-09-18 método de manufatura de um catalisador de combustão de material à base de carbono, catalisador de combustão de material à base de carbono, método de manufatura de um veìculo de catalisador, e, veìculo veìculo de catalisador
EP07807439.0A EP2075067A4 (en) 2006-09-19 2007-09-18 COMBUSTION CATALYST OF A CARBON-CONTAINING SUBSTANCE, PROCESS FOR PRODUCING THE CATALYST, MATERIAL COMPRISING A CATALYST, AND PROCESS FOR PRODUCING THE SAME
CN2007800161622A CN101437613B (zh) 2006-09-19 2007-09-18 碳基材料燃烧催化剂、其制造方法,催化剂载体和其制造方法
US12/281,899 US20090203517A1 (en) 2006-09-19 2007-09-18 Carbon-based material combustion catalyst, manufacturing method of the same, catalyst carrier, and manufacturing method of the same
US12/952,442 US20110124489A1 (en) 2006-09-19 2010-11-23 Carbon-based material combustion catalyst, manufacturing method of the same, catalyst carrier, and manufacturing method of the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006252121 2006-09-19
JP2006-252121 2006-09-19
JP2007-234748 2007-09-10
JP2007234748A JP5303130B2 (ja) 2006-09-19 2007-09-10 炭素系物質燃焼触媒及びその製造方法、触媒担持体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2008035651A1 true WO2008035651A1 (fr) 2008-03-27

Family

ID=39200477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068038 WO2008035651A1 (fr) 2006-09-19 2007-09-18 Catalyseur de combustion d'une substance contenant du carbone, procédé de production du catalyseur, matériau comprenant un catalyseur et procédé de production dudit matériau

Country Status (7)

Country Link
US (1) US20090203517A1 (ja)
EP (1) EP2075067A4 (ja)
JP (1) JP5303130B2 (ja)
KR (1) KR101049314B1 (ja)
BR (1) BRPI0709958A2 (ja)
RU (1) RU2401697C2 (ja)
WO (1) WO2008035651A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2116843A1 (en) * 2008-05-09 2009-11-11 Nippon Soken Inc. Particulate sensor element and fault detection apparatus
JP2009262076A (ja) * 2008-04-25 2009-11-12 Nippon Soken Inc 排ガス浄化フィルタ
CN101665735A (zh) * 2008-09-01 2010-03-10 埃文·里普斯丁 燃烧催化剂

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4941975B2 (ja) * 2007-03-20 2012-05-30 三菱自動車工業株式会社 排ガス浄化用触媒の製造方法
JP2011000514A (ja) * 2009-06-17 2011-01-06 Nippon Soken Inc Egrクーラ用排ガス浄化触媒体及びegr還流装置
JP5624842B2 (ja) * 2010-10-04 2014-11-12 株式会社日本自動車部品総合研究所 炭素系物質燃焼触媒及び触媒担持体
JP2013227882A (ja) * 2012-04-24 2013-11-07 Ngk Insulators Ltd 排ガス浄化装置
CN103566920B (zh) 2012-08-01 2016-05-25 通用电气公司 物质和使用其的排气装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170483A (ja) 1999-12-17 2001-06-26 Tanaka Kikinzoku Kogyo Kk ディーゼル排ガス処理用の燃焼触媒
JP2002200190A (ja) * 2000-12-28 2002-07-16 National Institute Of Advanced Industrial & Technology 炭化水素及びハロゲン含有有機物燃焼分解除去剤
JP2005230724A (ja) 2004-02-20 2005-09-02 Tanaka Kikinzoku Kogyo Kk ディーゼル排ガス処理用の燃焼触媒
JP2005296871A (ja) 2004-04-14 2005-10-27 Tanaka Kikinzoku Kogyo Kk ディーゼル排ガス処理用の燃焼触媒
JP2005342604A (ja) 2004-06-02 2005-12-15 Tanaka Kikinzoku Kogyo Kk ディーゼル排ガス処理用の燃焼触媒及びディーゼル排ガスの処理方法
JP2007083114A (ja) * 2005-09-20 2007-04-05 Univ Of Tokyo 排ガス浄化用触媒

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8602341D0 (sv) * 1986-05-22 1986-05-22 Eka Nobel Ab Sett att framstella en modifierad zeolit y
US5053372A (en) * 1989-07-31 1991-10-01 Shell Oil Company Basic alkaline earth metal-zeolite compositions
AU645632B2 (en) * 1990-12-06 1994-01-20 Tosoh Corporation Catalyst for purifying exhaust gas
US5262144A (en) * 1991-12-26 1993-11-16 Uop Siliceous molecular sieves having low acid activity and process for preparing same
FR2688223B1 (fr) * 1992-03-05 1994-05-20 Institut Francais Petrole Nouveau procede d'adoucissement de coupes petrolieres sans adjonction reguliere de solution aqueuse alcaline, utilisant un catalyseur solide basique.
US5633216A (en) * 1992-03-03 1997-05-27 Institut Francais Du Petrole Process for sweetening petroleum cuts without regular addition of alkaline solution using a basic solid catalyst
JP3498357B2 (ja) * 1993-05-28 2004-02-16 マツダ株式会社 排気ガス浄化用触媒の製造方法
US6165933A (en) * 1995-05-05 2000-12-26 W. R. Grace & Co.-Conn. Reduced NOx combustion promoter for use in FCC processes
US6129834A (en) * 1995-05-05 2000-10-10 W. R. Grace & Co. -Conn. NOx reduction compositions for use in FCC processes
US6136291A (en) * 1998-10-08 2000-10-24 Mobile Oil Corporation Faujasite zeolitic materials
JP2000176298A (ja) * 1998-12-11 2000-06-27 Mazda Motor Corp 排気ガス浄化用触媒及びその製造方法
US6617276B1 (en) * 2000-07-21 2003-09-09 Johnson Matthey Public Limited Company Hydrocarbon trap/catalyst for reducing cold-start emissions from internal combustion engines
WO2003011437A1 (en) * 2001-08-01 2003-02-13 Johnson Matthey Public Limited Company Gasoline engine with an exhaust system for combusting particulate matter
US6776975B2 (en) * 2002-05-09 2004-08-17 Uop Llc Crystalline aluminosilicate zeolitic composition: UZM-4M
KR100599251B1 (ko) * 2003-09-20 2006-07-13 에스케이 주식회사 디메틸에테르 합성용 촉매와 촉매의 제조방법
JP2009262076A (ja) * 2008-04-25 2009-11-12 Nippon Soken Inc 排ガス浄化フィルタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170483A (ja) 1999-12-17 2001-06-26 Tanaka Kikinzoku Kogyo Kk ディーゼル排ガス処理用の燃焼触媒
JP2002200190A (ja) * 2000-12-28 2002-07-16 National Institute Of Advanced Industrial & Technology 炭化水素及びハロゲン含有有機物燃焼分解除去剤
JP2005230724A (ja) 2004-02-20 2005-09-02 Tanaka Kikinzoku Kogyo Kk ディーゼル排ガス処理用の燃焼触媒
JP2005296871A (ja) 2004-04-14 2005-10-27 Tanaka Kikinzoku Kogyo Kk ディーゼル排ガス処理用の燃焼触媒
JP2005342604A (ja) 2004-06-02 2005-12-15 Tanaka Kikinzoku Kogyo Kk ディーゼル排ガス処理用の燃焼触媒及びディーゼル排ガスの処理方法
JP2007083114A (ja) * 2005-09-20 2007-04-05 Univ Of Tokyo 排ガス浄化用触媒

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
OGURA M. ET AL.: "Diesel Particulate Jokyo-yo Sodalite Tanji Kalium Shokubai-jo deno Soten'i ni yoru Kokasseiten no Keisei", SHOKUBAI CATALYSIS SOCIETY OF JAPAN, vol. 49, no. 6, 5 September 2007 (2007-09-05), pages 521 - 523, XP003021868 *
OGURA M. ET AL.: "Potassium-doped sodalite: A tectoalminosilicate for the catalytic material towards continuous combustion of carbonaceous matters", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 77, 8 August 2007 (2007-08-08), pages 294 - 299, XP022369690 *
OGURA M. ET AL.: "Sodalite Tanji Kalium Shokubai no Carbon Nensho Tokusei", DAI 98 KAI SHOKUBAI TORONKAI TORONKAI A YOKOSHU, CATALYSIS SOCIETY OF JAPAN, 26 September 2006 (2006-09-26), pages 279, XP003021867 *
OKUBO T. ET AL.: "Diesel Hai-gas-chu no Particulate Nensho no Tameno Shinki DPF-shokubai System no Kaihatsu", DAI 71 NENKAI KENKYU HAPPYO KOEN YOSHISHU, SHADAN HOJIN THE SOCIETY OF CHEMICAL ENGINEERS, JAPAN, 28 February 2006 (2006-02-28), pages 710, XP003021866 *
See also references of EP2075067A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262076A (ja) * 2008-04-25 2009-11-12 Nippon Soken Inc 排ガス浄化フィルタ
EP2116843A1 (en) * 2008-05-09 2009-11-11 Nippon Soken Inc. Particulate sensor element and fault detection apparatus
CN101665735A (zh) * 2008-09-01 2010-03-10 埃文·里普斯丁 燃烧催化剂

Also Published As

Publication number Publication date
RU2008152397A (ru) 2010-07-10
RU2401697C2 (ru) 2010-10-20
US20090203517A1 (en) 2009-08-13
KR101049314B1 (ko) 2011-07-13
BRPI0709958A2 (pt) 2011-08-02
EP2075067A4 (en) 2013-11-13
JP5303130B2 (ja) 2013-10-02
JP2008100216A (ja) 2008-05-01
KR20090014181A (ko) 2009-02-06
EP2075067A1 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP5303131B2 (ja) 炭素系物質燃焼触媒及びその製造方法、触媒担持体及びその製造方法
WO2008035651A1 (fr) Catalyseur de combustion d&#39;une substance contenant du carbone, procédé de production du catalyseur, matériau comprenant un catalyseur et procédé de production dudit matériau
KR20170067818A (ko) 배기가스를 처리하기 위한 분자체 촉매
JP2004066069A (ja) セラミック触媒体
JP2009515680A (ja) 極薄触媒酸化塗膜を有するディーゼル粉塵フィルター
JP2003334457A (ja) 触媒体および触媒体の製造方法
JP2011078977A (ja) 触媒材料の製造方法
US7576028B2 (en) Catalyst body
JP2009219971A (ja) セラミックハニカム構造体
KR20180036744A (ko) NOx 저장 물질의 제조 방법
US20020077248A1 (en) Ceramic carrier and ceramic catalyst body
JP2009262076A (ja) 排ガス浄化フィルタ
JPS6050491B2 (ja) 希土類含有多孔性被膜を有する排ガス浄化用触媒の製造方法
JP2011074882A (ja) 排ガス浄化装置
JP5545167B2 (ja) 触媒材料およびその製造方法
EP3138622B1 (en) Carrier for exhaust gas purification catalyst and exhaust gas purification catalyst
JP2020062645A (ja) 排ガス浄化触媒用担体及び排ガス浄化触媒
WO2018055894A1 (ja) 粒子状物質燃焼触媒及び粒子状物質燃焼触媒フィルタ
JP2010184183A (ja) 排ガス浄化装置
JP2017000973A (ja) ディーゼルパティキュレートフィルタ及びそれを用いた粒子状物質燃焼触媒フィルタ
US20110124489A1 (en) Carbon-based material combustion catalyst, manufacturing method of the same, catalyst carrier, and manufacturing method of the same
JP5624842B2 (ja) 炭素系物質燃焼触媒及び触媒担持体
JP6296392B2 (ja) 燃焼触媒及びそれを用いた排ガス燃焼フィルタ
WO2022131070A1 (ja) Al-P複合酸化物およびこれを用いた排気ガス浄化用触媒
JP2016168513A (ja) 粒子状物質燃焼触媒及び粒子状物質燃焼触媒フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807439

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12281899

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007807439

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780016162.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008152397

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 7218/CHENP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0709959

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081013

Ref document number: PI0709958

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081013