WO2008030872A1 - Systems and methods for power and flow rate control - Google Patents
Systems and methods for power and flow rate control Download PDFInfo
- Publication number
- WO2008030872A1 WO2008030872A1 PCT/US2007/077634 US2007077634W WO2008030872A1 WO 2008030872 A1 WO2008030872 A1 WO 2008030872A1 US 2007077634 W US2007077634 W US 2007077634W WO 2008030872 A1 WO2008030872 A1 WO 2008030872A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aspiration
- vacuum
- occlusion
- handpiece
- flow restrictor
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/00736—Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/71—Suction drainage systems
- A61M1/74—Suction control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/71—Suction drainage systems
- A61M1/74—Suction control
- A61M1/743—Suction control by changing the cross-section of the line, e.g. flow regulating valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00084—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/71—Suction drainage systems
- A61M1/77—Suction-irrigation systems
Definitions
- the field of the invention relates to systems and methods for fluid control, and more particularly to systems and methods for power and flow rate control.
- a number of medically recognized techniques are utilized for cataractic lens removal based on, for example, phacoemulsification, mechanical cutting or destruction, laser treatments, water jet treatments, and so on.
- the phacoemulsification method includes making a corneal incision and the insertion of a phacoemulsification handpiece which includes a needle that is ultrasonically driven in order to emulsify, or liquefy, the lens.
- a phacoemulsification system 5 known in the ait is shown in Fig. 1.
- the system 5 generally includes a phacemulsification handpiece 10 coupled to an irrigation source 30 and an aspiration pump 40.
- the handpiece 10 includes a distal tip 15 (shown within the anterior chamber of the patient's eye 1) that emits ultrasonic energy to emulsify the cataractic lens within the patient's eye 1.
- the handpiece 10 further includes an irrigation port 25 proximal to the distal tip 15, which is coupled to an irrigation source 30 via an irrigation line 35, and an aspiration port 20 at the distal tip 15, which is coupled to an aspiration pump 40 via an aspiration line 45.
- fluid from the irrigation source 30, which is typically an elevated bottle of saline solution is irrigated into the eye 1 via the irrigation line 35 and the irrigation port 25, and the irrigation fluid and emulsified cataractic lens material are aspirationd from the eye 1 by the aspiration pump 40 via the aspiration port 20 and the aspiration line 45.
- Other medical techniques for removing cataractic lenses also typically include irrigating the eye and aspirating lens parts and other liquids.
- Aspiration can be achieved with a variety of different aspiration pumps 40 known in the art.
- the two most common types are (1) volumetric flow or positive displacement pumps (such as peristaltic or scroll pumps) and (2) vacuum-based pumps (such as venturi, diaphragm, or rotary- vane pumps).
- volumetric flow or positive displacement pumps such as peristaltic or scroll pumps
- vacuum-based pumps such as venturi, diaphragm, or rotary- vane pumps.
- Fig. 2 an example peristaltic flow pump 50 is illustrated. In this configuration, the aspiration line 45 is in direct contact with a rotating pump head 50 having rollers 52 around its perimeter.
- FIG. 3 an example vacuum-based pump 60 is illustrated. This type of pump indirectly controls fluid flow by controlling the vacuum within the fluidic circuit.
- the vacuum-based pump 60 can be an pneumatic pump (e.g., a venturi pump) that creates a pressure differential in a drainage cassette reservoir 65 that causes the fluid to be sucked from the aspiration line 45 into the drainage cassette reservoir 65.
- a pneumatic pump e.g., a venturi pump
- the fluid is essentially pulled by vacuum through the line 45.
- the rate of fluid flow generated by a vacuum-based pump is generally higher than the rate of fluid flow generated by a volumetric flow based pump; however, current systems and methods for controlling the rate of volumetric flow for the vacuum-based pump, which typically involve adjusting the operative vacuum level, are imprecise, which raises safety and efficacy concerns.
- This occlusion is caused by particles blocking a lumen or tube in the aspirating handpiece 10, e.g., the aspiration port 20 or irrigation port 25.
- this blockage can result in increased vacuum (i.e. increasingly negative pressure) in the aspiration line 45 and the longer the occlusion is in place, the greater the vacuum, hi contrast, with a vacuum-based pump, this blockage can result in a volumetric fluid flow drop off near the aspiration port 20.
- a resulting rush of fluid from the anterior chamber into the aspiration line 45 can outpace the volumetric flow of new fluid into the eye 1 from the irrigation source 30.
- post-occlusion surge or fluidic surge
- the resulting imbalance of incoming and outgoing fluid can create a phenomenon known as post-occlusion surge or fluidic surge, in which the structure of the anterior chamber moves rapidly as fluid is replaced due to the dynamic change in the rate of fluid flow and pressure.
- post-occlusion surge events may lead to eye trauma.
- the most common approach to preventing or minimizing the post-occlusion surge is to quickly adjust the vacuum-level or rate of fluid flow in the aspiration line 45 and/or the ultrasonic power of the handpiece 10 upon detection of an occlusion.
- Many surgeons rely on their own visual observations to detect the occlusion; however, because of the unpredictable and time- sensitive nature of the problem, a reliable computer-based detection and response system is preferable.
- a computer-based system can utilize a vacuum sensor 55 placed on the aspiration line 45 to detect the vacuum increase and respond accordingly (an example of such a system is described in "Barwick” and "Claus").
- the vacuum level within the aspiration line 45 is tied to the vacuum power generated by the pump 60 and thus, may not be an effective indicator of whether an occlusion has occurred. Accordingly, an improved system and method for controlling the rate of fluid flow and vacuum based on the detection of occlusion within a fluid circuit is desirable.
- an aspiration system includes an aspiration line having distal and proximal ends and an aspiration port defined in the distal end; a fluid transport device operatively coupled to the proximal end of the aspiration line; and a flow restrictor operatively coupled to the aspiration line in between the fluid transport device and the aspiration port.
- first and second pressure sensors are utilized, the first sensor being operatively coupled to the aspiration line between the port and the restrictor and the second sensor being operatively coupled to the aspiration line between the restrictor and the fluid transport device.
- the pressure differential between the two sensors can provide an indication of the onset, presence, and/or elimination of an occlusion.
- the flow restrictor is a variable flow restrictor controllable by a computer processor.
- Fig. 1 is a diagram of a phacoemulsification system known in the art.
- Fig. 2 is a diagram of a phacoemulsification system having a flow pump known in the art.
- Fig. 3 is a diagram of a phacoemulsification system having a vacuum-based pump known in the art.
- Fig. 4 is a diagram of a vacuum-based aspiration system in accordance with a preferred embodiment.
- Fig. 5 a is a diagram of a variable flow restrictor in accordance with a preferred embodiment.
- Fig. 5b is a diagram of another variable flow restrictor in accordance with a preferred embodiment.
- Fig. 6 is a diagram of another vacuum-based aspiration system in accordance with a preferred embodiment.
- Fig. 7 is a diagram of another vacuum-based aspiration system in accordance with a preferred embodiment.
- Fig. 8 is a diagram of a phacoemulsification system in accordance with a preferred embodiment.
- Fig. 9 is a diagram of an irrigation/aspiration system in accordance with a preferred embodiment.
- the rate of fluid flow is a function of three (3) basic parameters: (1) the effective viscosity of the fluid, (2) the operative or driving vacuum level, and (3) the instantaneous effective resistance of the fluid transport pathway (e.g., aspiration line 45).
- the instantaneous effective resistance of the fluid transport pathway is a parameter that can vary independent of the vacuum-level, and thus, is not easily quantified or dynamically compensated for in cases such as fluid transport pathway obstruction (e.g., occlusion), which is a significant reason why volumetric flow rate is difficult to control by only adjusting the operative vacuum-level.
- fluid transport pathway obstruction e.g., occlusion
- one existing approach is to utilize a fixed flow restrictor (not shown) on the aspiration line 45 between the aspiration port 20 and the pump 60.
- the fixed flow restrictor can be an orifice within the line 45 that reduces the cross- sectional area of the portion of the line 45 having the orifice. This, in rum, increases the instantaneous effective resistance of the line 45 and reduces the volumetric flow rate.
- variable flow restrictors typically drop the volumetric flow rate down to rates generated by flow pumps 50, which can create a safer operating environment for surgeons (e.g., suppress post- occlusion surge), but these fixed flow restrictors also undesirably limit the range of operation that a vacuum-based pump can provide (e.g., range of allowable volumetric flow rates).
- One approach to address this issue is to utilize a variable flow restrictor.
- Fig. 4 a vacuum-based aspiration system 100 having a variable flow restrictor 150 is shown.
- the variable flow restrictor 150 is located on an aspiration line 110 having an aspiration port 120 at its distal end, and a drainage cassette 130 and vacuum pump 140 at its proximal end.
- the valuable flow restrictor 150 is generally a device, preferably controllable by a computer system (not shown), that variably controls the instantaneous effective resistance of the fluid pathway (e.g., the aspiration line 110) of the system 100. This can allow for precise control of the volumetric flow rate for a vacuum-based pump 140 while still utilizing a wide range of operation.
- the variable flow restrictor 150 is configured to deform a specific, localized, deformable segment 115 of the aspiration line 110. By distorting the cross-sectional area of the segment 115 into a smaller total area or by significantly distorting the width vs. height ratio of the segment 115, the instantaneous effective resistance can be increased, which inversely lowers both the current actual volumetric flow rate and also the theoretical maximum volumetric flow rate potential of the fluid.
- variable flow restrictor 200 is shown in more detail.
- the segment 115 of the aspiration line 110 coupled to the variable flow restrictor 200 is preferably made of an elastomeric deformable tubing having a resistance variability of at least 2:1 (comparing non-deformed vs. maximum deformation cross-sectional profiles).
- the variable flow restrictor 200 includes a plunger 210 coupled to an actuator 230 controllable by a computer system (not shown). During operation, the actuator 230 pushes the plunger 210 into mechanical contact with the deformable segment 115 of the aspiration line 110, causing the segment 115 of the aspiration line 110 to deform, thereby adjusting the effective resistance, as explained above.
- the actuator 230 can be any type of actuator known in the art, such as a mechanical actuator (e.g., a linear motor, axial solenoid, rotary solenoid, or electro magnetic motor), a pneumatic actuator (e.g., such as a low friction pneumatic rotary or axial bladder/cylinder with a variable pressure supply) or a thermal actuator (e.g., such as a bi-metallic strip).
- a mechanical actuator e.g., a linear motor, axial solenoid, rotary solenoid, or electro magnetic motor
- a pneumatic actuator e.g., such as a low friction pneumatic rotary or axial bladder/cylinder with a variable pressure supply
- a thermal actuator e.g., such as a bi-metallic strip.
- a pneumatic actuator is preferable because it can be continuously variable, which desirably increases the resolution of the control of the plunger 210 and thus the control of the effective resistance.
- a spacer 220 such as a wedge or cam, (also controllable by a computer system (not shown)), can be utilized in between the plunger 210 and the actuator 230 (or behind the actuator 240) to further control the plunger's 210 range of motion, thereby increasing controllability of the effective resistance.
- variable flow restrictor 300 is shown coupled to the aspiration line 110 (shown in cross-sectional view).
- This variable flow restrictor 300 includes a rigid case 350, having a fixed height, surrounding the line 110.
- the case 350 limits the amount of deformation on the line 110.
- the restrictor 300 further includes a flat plunger 310 having a width greater than the width of the case 350.
- the plunger 310 is coupled to an actuator (not shown) such as the actuator 230 described above. The actuator pushes the plunger 310 into mechanical contact with the line 110, causing the line 110 to deform; however, deformation of the line 110 is limited to the top of the case 350.
- variable flow restrictors 150 that deform segment 115 include devices that stretch the segment 115 in the longitudinal direction of the line 110 (not shown) and also devices that twist the segment 115 into a spiral shape (not shown).
- the variable flow restrictor 150 can be a device that is integrated with the line 110, for example, a chamber (not shown) within the line 110 with a deformable cross-section.
- the aspiration system 1000 includes a flow restrictor 1200, which is preferably a variable flow restrictor but can be a fixed flow restrictor, located on an aspiration line 1110 having an aspiration port 1120 at its distal end and a drainage cassette 1130 and vacuum-based pump 1140 at its proximal end. Further included are first and second vacuum sensors 1300/1350.
- the first vacuum sensor 1300 is operatively coupled to the aspiration line 1110 between the port 1120 and the restrictor 1200 ("port 1120 side'), and the second vacuum sensor 1350 is located between the restrictor 1200 and the pump 1140 ("pump 1140 side").
- the flow restrictor 1200 will produce a differential volumetric flow rate between the port 1120 side of the line and the pump 1140 side of the line. This accordingly, will cause a vacuum or pressure differential, ⁇ P, between the port 1120 side of the line 1110 and the pump 1140 side of the line.
- the vacuum level, or pressure, on the pump 1140 side of the line 1110 will generally be substantially tied to the vacuum level of the pump 1140; however, the vacuum level, or pressure, on the port 1120 side can vary with the volumetric flow rate in the port 1120 side.
- a ⁇ P (P pO rt-side - Ppump-side) pressure differential can be measured and utilized in a computer-based algorithm, such as those described in the Claus and Barwick applications referenced above, to detect the onset, presence, breakage, or elimination of an occlusion.
- the vacuum-based aspiration system 1000 can provide both computer-based detection of occlusion and precise control of the volumetric flow rate while still maintaining the vacuum- based pump's 1140 full range of operation.
- Another approach to detect the occurrence of an occlusion is to utilize a Doppler flow meter, known in the ait, to measure the volumetric flow rate in the aspiration line (not shown).
- a Doppler flow meter known in the ait
- the volumetric flow rate will decrease, which will be detected by the Doppler flow meter, and the aspiration system (vacuum or flow pump based) can respond accordingly.
- thermodilution is the measurement of rate of fluid flow in a fluid circuit based on the change in temperature of the fluid from one point of the circuit to another downstream.
- a technique known in the art as thermodilution is the measurement of rate of fluid flow in a fluid circuit based on the change in temperature of the fluid from one point of the circuit to another downstream.
- a vacuum-based aspiration system 1005 is shown having the same parts as aspiration system 1000 except instead of pressure sensors 1300 and 1350, temperature sensors 1500/1600 are used.
- a first temperature sensor 1500 for measuring fluid is coupled to the aspiration line 1110 towards the distal section of the line 1110
- a second temperature sensor 1600 is coupled downstream of the first sensor 1500 towards the proximal section of the line 1110.
- the change in temperature, ⁇ T, in the fluid as read by the sensors 1500/1600 will correlate with the rate of fluid flow, as one of ordinary skill in the ait would appreciate, e.g., a higher rate of fluid flow will cause a smaller change in temperature compared to a lower rate of fluid flow.
- a fluid of a known starting temperature is injected into the aspiration line 1110.
- a ⁇ T is measured using the second temperature sensor 1600.
- a heating element 1490 is used to heat the fluid within the line 1110 to a desired temperature. Again, ⁇ T is measured using the second temperature sensor 1600.
- the system 2000 includes a control unit 2102 and a handpiece 2104 operably coupled together.
- the handpiece 2104 may include a needle (not shown) for insertion into an eye E and a vibrating unit (not shown) that is configured to ultrasonically vibrate the needle.
- the vibrating unit which may include, e.g., a piezoelectric crystal, vibrates the needle according to one or more parameters, such as frequency, pulse width, shape, size, duty cycle, amplitude, and so on.
- the handpiece 2104 provides power, P, irrigation fluid, F, from an irrigation fluid ("IF”) source 2128, and an aspiration line A.
- IF irrigation fluid
- the control unit 2102 includes a vacuum-based pump 2112 operative coupled to aspiration line A, first and second vacuum sensors 2250/2260 in between the pump 2112 and the handpiece 2104, and a flow restrictor 2270 (which is preferably variable) in between the vacuum sensors 2250/2260.
- the control unit 2102 further includes a microprocessor computer 2110 which is operably connected to and controls the various other elements of the system, such as the vacuum-based pump 2112, a vacuum level controller 2200, a pulsed ultrasonic power source 2114, a flow restrictor controller 2116 (which controls the volumetric flow rate of the aspiration line A by controlling the flow restrictor 2270 as described above), and an ultrasonic power level controller 2118 in accordance with algorithms described in the Claus application referenced above.
- a pressure differential ⁇ P sensor 2120 provides an input to the computer 2110 representing the pressure differential between the first and second vacuum sensors 2250/2260. Venting may be provided by a vent 2122.
- the control unit 2102 may also include a phase detector 2124 for providing an input to the computer 2110 that represents a phase shift between a sine wave representation of the voltage applied to the handpiece 2104 and the resultant current into the handpiece 2104.
- the functional representation of the system 2000 also includes a system bus 2126 to enable the various elements to be operably in communication with each other.
- an irrigation/aspiration cassette 3000 (preferably disposable) is shown for use in a surgical system, such as a phacoemulsification system.
- the irrigation/aspiration cassette 3000 includes an irrigation source 3100 operatively coupled to a handpiece 3200 via an irrigation line.
- An irrigation valve 3150 controls the irrigation source 3100.
- the handpiece 3200 is further coupled to the aspiration portion of the cassette 3000 having both a vacuum-based pump 3500 and a flow pump 3300.
- the operation of one or the other is controlled by a selector valve 3250. When the selector valve 3250 is closed, then the flow pump 3300, which is a first peristaltic pump 3300 is the present embodiment, aspirations the fluid from the handpiece 3200.
- the flow pump 3300 pushes the fluid to a holding tank 3450, which is then drained to a collection bag 3600 by a second peristaltic pump.
- a vacuum sensor 3750 communicatively coupled to a computer system is utilized between the flow pump 3300 and the handpiece 3200 to detect any change in vacuum level, which can indicate a possible occlusion.
- the selector valve 3250 When the selector valve 3250 is open, then the fluid flows through the circuit controlled by the vacuum-based pump 3500, which creates an air-vacuum in the holding tank 3450 that sucks the fluid from the handpiece 3200.
- the aspiration portion of the cassette 3000 further includes an air filter 3350 and a vent valve 3400, which are utilized by the flow punip 3300 and the vacuum-based pump 3500.
- a flow restrictor 3650 preferably variable
- an air transducer 3700 operatively located in between the holding tank 3450 and the vacuum pump 3500.
- the flow restrictor 3650 enables direct control of the volumetric flow rate, as explained above, and the pressure differential, ⁇ P, can be measured by using both the air-coupled vacuum transducer 3700 and the fluid-coupled vacuum sensor 3750 also used by the flow pump 3300 when in operation.
- the aspiration/irrigation cassette 3000 shown in Fig. 8 provides the surgeon with a choice between a vacuum-based pump or a flow pump within a single surgical system, such as a phacoemulsification system. Further, the cassette 3000 allows the flow pump 3300 and the vacuum-based pump 3500 to share a common fluid circuit, which can reduce the manufacturing costs and the volume/length of the aspiration pathway is reduced.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Ophthalmology & Optometry (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Surgery (AREA)
- External Artificial Organs (AREA)
- Flow Control (AREA)
Abstract
The invention is generally directed to systems and methods for fluid control, and more particularly to systems and methods for power and flow rate control for aspiration. In accordance with one embodiment, an aspiration system includes an aspiration line having distal and proximal ends and an aspiration port defined in the distal end; a fluid transport device operatively coupled to the proximal end of the aspiration line; and a flow restrictor operatively coupled to the aspiration line in between the fluid transport device and the aspiration port. To measure occlusion within the line, first and second pressure sensors are utilized, the first sensor being operatively coupled to the aspiration line between the port and the restrictor and the second sensor being operatively coupled to the aspiration line between the restrictor and the fluid transport device. The pressure differential between the two sensors can provide an indication of the onset, presence, and/or elimination of an occlusion.
Description
SYSTEMS AND METHODS FOR POWER AND FLOW RATE CONTROL
FIELD OF THE INVENTION [0001] The field of the invention relates to systems and methods for fluid control, and more particularly to systems and methods for power and flow rate control.
BACKGROUND OF THE INVENTION [0002] A number of medically recognized techniques are utilized for cataractic lens removal based on, for example, phacoemulsification, mechanical cutting or destruction, laser treatments, water jet treatments, and so on.
[0003] The phacoemulsification method includes making a corneal incision and the insertion of a phacoemulsification handpiece which includes a needle that is ultrasonically driven in order to emulsify, or liquefy, the lens. A phacoemulsification system 5 known in the ait is shown in Fig. 1. The system 5 generally includes a phacemulsification handpiece 10 coupled to an irrigation source 30 and an aspiration pump 40. The handpiece 10 includes a distal tip 15 (shown within the anterior chamber of the patient's eye 1) that emits ultrasonic energy to emulsify the cataractic lens within the patient's eye 1. The handpiece 10 further includes an irrigation port 25 proximal to the distal tip 15, which is coupled to an irrigation source 30 via an irrigation line 35, and an aspiration port 20 at the distal tip 15, which is coupled to an aspiration pump 40 via an aspiration line 45. Concomitantly with the emulsification, fluid from the irrigation source 30, which is typically an elevated bottle of saline solution, is irrigated into the eye 1 via the irrigation line 35 and the irrigation port 25, and the irrigation fluid and emulsified cataractic lens material are aspirationd from the eye 1 by the aspiration pump 40 via the aspiration port 20 and the aspiration line 45. Other medical techniques for removing cataractic lenses also typically include irrigating the eye and aspirating lens parts and other liquids. Additionally, some procedures may include irrigating the eye 1 and aspirating the irrigating fluid without concomitant destruction, alteration or removal of the lens. [0004] Aspiration can be achieved with a variety of different aspiration pumps 40 known in the art. The two most common types are (1) volumetric flow or positive displacement pumps (such as peristaltic or scroll pumps) and (2) vacuum-based pumps (such as venturi, diaphragm, or rotary- vane pumps). Each type has its own general advantages and
disadvantages. Turning to Fig. 2, an example peristaltic flow pump 50 is illustrated. In this configuration, the aspiration line 45 is in direct contact with a rotating pump head 50 having rollers 52 around its perimeter. As the pump head 50 rotates clockwise, the rollers 52 press against the line 45 causing fluid to flow within the line 45 in the direction of the rollers 52. This is referred to as a volumetric flow pump because the pump 50 directly controls the volume or rate of fluid flow. An advantage with this type of pump 50 is that the rate of fluid flow can be easily and precisely controlled by adjusting the rotational speed of the pump head 50. [0005] Turning to Fig. 3, an example vacuum-based pump 60 is illustrated. This type of pump indirectly controls fluid flow by controlling the vacuum within the fluidic circuit. For example, the vacuum-based pump 60 can be an pneumatic pump (e.g., a venturi pump) that creates a pressure differential in a drainage cassette reservoir 65 that causes the fluid to be sucked from the aspiration line 45 into the drainage cassette reservoir 65. Thus, instead of pushing fluid through the aspiration line 45 like the flow pump 50, the fluid is essentially pulled by vacuum through the line 45. The rate of fluid flow generated by a vacuum-based pump is generally higher than the rate of fluid flow generated by a volumetric flow based pump; however, current systems and methods for controlling the rate of volumetric flow for the vacuum-based pump, which typically involve adjusting the operative vacuum level, are imprecise, which raises safety and efficacy concerns. [0006] As is well known, for these various surgical techniques it is necessary to maintain a stable volume of liquid in the anterior chamber of the eye and this is accomplished by irrigating fluid into the eye at the same rate as aspirating fluid and lens material. For example, see U.S. Patent No. 5,700,240, to Berwick et. al, filed January 24, 1995 ("Berwick") and U.S. Patent Application No. 11/401,529 to Claus et. al, filed April 10, 2006 ("Claus"), which are both hereby incorporated by reference in their entirety. During phacoemulsification, it is possible for the aspirating phacoemulsification handpiece 10 to become occluded. This occlusion is caused by particles blocking a lumen or tube in the aspirating handpiece 10, e.g., the aspiration port 20 or irrigation port 25. hi the case of volumetric flow based pumps, this blockage can result in increased vacuum (i.e. increasingly negative pressure) in the aspiration line 45 and the longer the occlusion is in place, the greater the vacuum, hi contrast, with a vacuum-based pump, this blockage can result in a volumetric fluid flow drop off near the aspiration port 20. In either case, once the occlusion is cleared, a
resulting rush of fluid from the anterior chamber into the aspiration line 45 can outpace the volumetric flow of new fluid into the eye 1 from the irrigation source 30. [0007] The resulting imbalance of incoming and outgoing fluid can create a phenomenon known as post-occlusion surge or fluidic surge, in which the structure of the anterior chamber moves rapidly as fluid is replaced due to the dynamic change in the rate of fluid flow and pressure. Such post-occlusion surge events may lead to eye trauma. The most common approach to preventing or minimizing the post-occlusion surge is to quickly adjust the vacuum-level or rate of fluid flow in the aspiration line 45 and/or the ultrasonic power of the handpiece 10 upon detection of an occlusion. Many surgeons rely on their own visual observations to detect the occlusion; however, because of the unpredictable and time- sensitive nature of the problem, a reliable computer-based detection and response system is preferable.
[0008] For current systems with volumetric flow pumps 50, if an occlusion occurs, the flow rate will decrease at the aspiration port 20 and the vacuum level within the aspiration line 45 between the pump 50 and the handpiece 10 will increase. Thus, a computer-based system (not shown) can utilize a vacuum sensor 55 placed on the aspiration line 45 to detect the vacuum increase and respond accordingly (an example of such a system is described in "Barwick" and "Claus"). For current systems with vacuum-based pumps 60, however, the vacuum level within the aspiration line 45 is tied to the vacuum power generated by the pump 60 and thus, may not be an effective indicator of whether an occlusion has occurred. Accordingly, an improved system and method for controlling the rate of fluid flow and vacuum based on the detection of occlusion within a fluid circuit is desirable.
SUMMARY OF THE INVENTION [0009] The invention is generally directed to systems and methods for fluid control, and more particularly to systems and methods for power and flow rate control for aspiration. [0010] In accordance with one embodiment, an aspiration system includes an aspiration line having distal and proximal ends and an aspiration port defined in the distal end; a fluid transport device operatively coupled to the proximal end of the aspiration line; and a flow restrictor operatively coupled to the aspiration line in between the fluid transport device and the aspiration port. To measure occlusion within the line, first and second pressure sensors are utilized, the first sensor being operatively coupled to the aspiration line between the port and the restrictor and the second sensor being operatively coupled to the aspiration line
between the restrictor and the fluid transport device. The pressure differential between the two sensors can provide an indication of the onset, presence, and/or elimination of an occlusion.
[0011] In accordance with another embodiment, the flow restrictor is a variable flow restrictor controllable by a computer processor.
[0012] Other systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] In order to better appreciate how the above-recited and other advantages and objects of the inventions are obtained, a more particular description of the embodiments briefly described above will be rendered by reference to specific embodiments thereof, which are illustrated in the accompanying drawings. It should be noted that the components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views. However, like parts do not always have like reference numerals. Moreover, all illustrations are intended to convey concepts, where relative sizes, shapes and other detailed attributes may be illustrated schematically rather than literally or precisely.
Fig. 1 is a diagram of a phacoemulsification system known in the art. Fig. 2 is a diagram of a phacoemulsification system having a flow pump known in the art.
Fig. 3 is a diagram of a phacoemulsification system having a vacuum-based pump known in the art.
Fig. 4 is a diagram of a vacuum-based aspiration system in accordance with a preferred embodiment. Fig. 5 a is a diagram of a variable flow restrictor in accordance with a preferred embodiment.
Fig. 5b is a diagram of another variable flow restrictor in accordance with a preferred embodiment.
Fig. 6 is a diagram of another vacuum-based aspiration system in accordance with a preferred embodiment.
Fig. 7 is a diagram of another vacuum-based aspiration system in accordance with a preferred embodiment. Fig. 8 is a diagram of a phacoemulsification system in accordance with a preferred embodiment.
Fig. 9 is a diagram of an irrigation/aspiration system in accordance with a preferred embodiment.
DETAILED DESCRIPTION OF THE PREFERiIED EMBODIMENTS
[0014] What are described below are preferred embodiments of aspiration systems using vacuum-based pumps, which can be applied to any system, medical (such as phacoemulsification, wound drainage, blood circulation, dialysis, or similar), or non-medical. [0015] Variable Flow Restrictors [0016] In general, the rate of fluid flow is a function of three (3) basic parameters: (1) the effective viscosity of the fluid, (2) the operative or driving vacuum level, and (3) the instantaneous effective resistance of the fluid transport pathway (e.g., aspiration line 45). For many surgical procedures, a constant effective viscosity can be assumed (particularly if the fluid is predominantly a known irrigation source), and further, the operative or driving vacuum level can be easily measured and adjusted in an open-loop pressure monitoring system; however, for current aspiration systems with vacuum based pumps, the instantaneous effective resistance of the fluid transport pathway is a parameter that can vary independent of the vacuum-level, and thus, is not easily quantified or dynamically compensated for in cases such as fluid transport pathway obstruction (e.g., occlusion), which is a significant reason why volumetric flow rate is difficult to control by only adjusting the operative vacuum-level. [0017] To compensate for the third parameter, one existing approach is to utilize a fixed flow restrictor (not shown) on the aspiration line 45 between the aspiration port 20 and the pump 60. The fixed flow restrictor can be an orifice within the line 45 that reduces the cross- sectional area of the portion of the line 45 having the orifice. This, in rum, increases the instantaneous effective resistance of the line 45 and reduces the volumetric flow rate. These fixed flow restrictors typically drop the volumetric flow rate down to rates generated by flow pumps 50, which can create a safer operating environment for surgeons (e.g., suppress post-
occlusion surge), but these fixed flow restrictors also undesirably limit the range of operation that a vacuum-based pump can provide (e.g., range of allowable volumetric flow rates). [0018] One approach to address this issue is to utilize a variable flow restrictor. Turning to Fig. 4, a vacuum-based aspiration system 100 having a variable flow restrictor 150 is shown. The variable flow restrictor 150 is located on an aspiration line 110 having an aspiration port 120 at its distal end, and a drainage cassette 130 and vacuum pump 140 at its proximal end. The valuable flow restrictor 150 is generally a device, preferably controllable by a computer system (not shown), that variably controls the instantaneous effective resistance of the fluid pathway (e.g., the aspiration line 110) of the system 100. This can allow for precise control of the volumetric flow rate for a vacuum-based pump 140 while still utilizing a wide range of operation. In a preferred embodiment, the variable flow restrictor 150 is configured to deform a specific, localized, deformable segment 115 of the aspiration line 110. By distorting the cross-sectional area of the segment 115 into a smaller total area or by significantly distorting the width vs. height ratio of the segment 115, the instantaneous effective resistance can be increased, which inversely lowers both the current actual volumetric flow rate and also the theoretical maximum volumetric flow rate potential of the fluid.
[0019] Turning to Fig. 5a, an example variable flow restrictor 200 is shown in more detail. The segment 115 of the aspiration line 110 coupled to the variable flow restrictor 200 is preferably made of an elastomeric deformable tubing having a resistance variability of at least 2:1 (comparing non-deformed vs. maximum deformation cross-sectional profiles). The variable flow restrictor 200 includes a plunger 210 coupled to an actuator 230 controllable by a computer system (not shown). During operation, the actuator 230 pushes the plunger 210 into mechanical contact with the deformable segment 115 of the aspiration line 110, causing the segment 115 of the aspiration line 110 to deform, thereby adjusting the effective resistance, as explained above. The actuator 230 can be any type of actuator known in the art, such as a mechanical actuator (e.g., a linear motor, axial solenoid, rotary solenoid, or electro magnetic motor), a pneumatic actuator (e.g., such as a low friction pneumatic rotary or axial bladder/cylinder with a variable pressure supply) or a thermal actuator (e.g., such as a bi-metallic strip). A pneumatic actuator is preferable because it can be continuously variable, which desirably increases the resolution of the control of the plunger 210 and thus the control of the effective resistance. In addition, a spacer 220, such as a wedge or cam, (also controllable by a computer system (not shown)), can be utilized in between the plunger 210
and the actuator 230 (or behind the actuator 240) to further control the plunger's 210 range of motion, thereby increasing controllability of the effective resistance.
[0020] Turning to Fig. 5b, another variable flow restrictor 300 is shown coupled to the aspiration line 110 (shown in cross-sectional view). This variable flow restrictor 300 includes a rigid case 350, having a fixed height, surrounding the line 110. The case 350 limits the amount of deformation on the line 110. The restrictor 300 further includes a flat plunger 310 having a width greater than the width of the case 350. The plunger 310 is coupled to an actuator (not shown) such as the actuator 230 described above. The actuator pushes the plunger 310 into mechanical contact with the line 110, causing the line 110 to deform; however, deformation of the line 110 is limited to the top of the case 350.
[0021] Other variable flow restrictors 150 that deform segment 115 include devices that stretch the segment 115 in the longitudinal direction of the line 110 (not shown) and also devices that twist the segment 115 into a spiral shape (not shown). In addition, the variable flow restrictor 150 can be a device that is integrated with the line 110, for example, a chamber (not shown) within the line 110 with a deformable cross-section. [0022] Flow Rate Sensing Method
[0023] As mentioned above, with aspiration systems having flow pumps 50 (Fig. 2), if an occlusion occurs, the vacuum level within the aspiration line 45 between the pump 50 and the aspiration port 20 will increase; however, for current systems with vacuum-based pumps 60 (Fig. 3), the vacuum level within the aspiration line 45 is tied to the vacuum generated by the pump 60 and thus, may not be an effective indicator of whether an occlusion has occurred. Turning to Fig. 6, another vacuum-based aspiration system 1000 is shown. The aspiration system 1000 includes a flow restrictor 1200, which is preferably a variable flow restrictor but can be a fixed flow restrictor, located on an aspiration line 1110 having an aspiration port 1120 at its distal end and a drainage cassette 1130 and vacuum-based pump 1140 at its proximal end. Further included are first and second vacuum sensors 1300/1350. The first vacuum sensor 1300 is operatively coupled to the aspiration line 1110 between the port 1120 and the restrictor 1200 ("port 1120 side'), and the second vacuum sensor 1350 is located between the restrictor 1200 and the pump 1140 ("pump 1140 side"). [0024] As one of ordinary skill in the art would appreciate, during aspiration, by increasing the effective resistance in a localized segment of the aspiration line 1110, the flow restrictor 1200 will produce a differential volumetric flow rate between the port 1120 side of the line and the pump 1140 side of the line. This accordingly, will cause a vacuum or pressure
differential, ΔP, between the port 1120 side of the line 1110 and the pump 1140 side of the line. The vacuum level, or pressure, on the pump 1140 side of the line 1110 will generally be substantially tied to the vacuum level of the pump 1140; however, the vacuum level, or pressure, on the port 1120 side can vary with the volumetric flow rate in the port 1120 side. For example, if an occlusion in the port 1120 occurs, the volumetric flow rate on the port 1120 side of the line will be reduced, which will in turn reduce the pressure, PpOrt-side5 on the port 1120 side of the line, while the vacuum, or pressure, PpUmp-side, on the pump 1140 side of the line remains substantially tied to the vacuum-level of the pump. By utilizing the first and second vacuum sensors 1300/1350, a ΔP (PpOrt-side - Ppump-side) pressure differential can be measured and utilized in a computer-based algorithm, such as those described in the Claus and Barwick applications referenced above, to detect the onset, presence, breakage, or elimination of an occlusion. If the flow restrictor 1200 is a variable flow restrictor, then the vacuum-based aspiration system 1000 can provide both computer-based detection of occlusion and precise control of the volumetric flow rate while still maintaining the vacuum- based pump's 1140 full range of operation.
[0025] Another approach to detect the occurrence of an occlusion is to utilize a Doppler flow meter, known in the ait, to measure the volumetric flow rate in the aspiration line (not shown). When an occlusion occurs, the volumetric flow rate will decrease, which will be detected by the Doppler flow meter, and the aspiration system (vacuum or flow pump based) can respond accordingly.
[0026] In yet another approach to detect the occurrence of an occlusion is to utilize a technique known in the art as thermodilution, which is the measurement of rate of fluid flow in a fluid circuit based on the change in temperature of the fluid from one point of the circuit to another downstream. Turning to Fig. 7, another vacuum-based aspiration system 1005 is shown having the same parts as aspiration system 1000 except instead of pressure sensors 1300 and 1350, temperature sensors 1500/1600 are used. In this embodiment, a first temperature sensor 1500 for measuring fluid is coupled to the aspiration line 1110 towards the distal section of the line 1110, and a second temperature sensor 1600 is coupled downstream of the first sensor 1500 towards the proximal section of the line 1110. The change in temperature, ΔT, in the fluid as read by the sensors 1500/1600 will correlate with the rate of fluid flow, as one of ordinary skill in the ait would appreciate, e.g., a higher rate of fluid flow will cause a smaller change in temperature compared to a lower rate of fluid flow. In another embodiment (not shown), instead of a first temperature sensor 1500, a fluid of a
known starting temperature is injected into the aspiration line 1110. Again, a ΔT is measured using the second temperature sensor 1600. In yet another embodiment, instead of, or in addition to a first temperature sensor 1500, a heating element 1490 is used to heat the fluid within the line 1110 to a desired temperature. Again, ΔT is measured using the second temperature sensor 1600.
[0027] Cataract Removal System
[0028] Turning to Fig. 8, a functional block diagram of a phacoemulsification system in accordance with a preferred embodiment is shown. The system 2000 includes a control unit 2102 and a handpiece 2104 operably coupled together. The handpiece 2104 may include a needle (not shown) for insertion into an eye E and a vibrating unit (not shown) that is configured to ultrasonically vibrate the needle. The vibrating unit, which may include, e.g., a piezoelectric crystal, vibrates the needle according to one or more parameters, such as frequency, pulse width, shape, size, duty cycle, amplitude, and so on. The handpiece 2104 provides power, P, irrigation fluid, F, from an irrigation fluid ("IF") source 2128, and an aspiration line A.
[0029] The control unit 2102 includes a vacuum-based pump 2112 operative coupled to aspiration line A, first and second vacuum sensors 2250/2260 in between the pump 2112 and the handpiece 2104, and a flow restrictor 2270 (which is preferably variable) in between the vacuum sensors 2250/2260. The control unit 2102 further includes a microprocessor computer 2110 which is operably connected to and controls the various other elements of the system, such as the vacuum-based pump 2112, a vacuum level controller 2200, a pulsed ultrasonic power source 2114, a flow restrictor controller 2116 (which controls the volumetric flow rate of the aspiration line A by controlling the flow restrictor 2270 as described above), and an ultrasonic power level controller 2118 in accordance with algorithms described in the Claus application referenced above. A pressure differential ΔP sensor 2120 provides an input to the computer 2110 representing the pressure differential between the first and second vacuum sensors 2250/2260. Venting may be provided by a vent 2122. The control unit 2102 may also include a phase detector 2124 for providing an input to the computer 2110 that represents a phase shift between a sine wave representation of the voltage applied to the handpiece 2104 and the resultant current into the handpiece 2104. The functional representation of the system 2000 also includes a system bus 2126 to enable the various elements to be operably in communication with each other.
[0030] Dual Pump System
[0031] Turning to Fig. 9, an irrigation/aspiration cassette 3000 (preferably disposable) is shown for use in a surgical system, such as a phacoemulsification system. The irrigation/aspiration cassette 3000 includes an irrigation source 3100 operatively coupled to a handpiece 3200 via an irrigation line. An irrigation valve 3150 controls the irrigation source 3100. The handpiece 3200 is further coupled to the aspiration portion of the cassette 3000 having both a vacuum-based pump 3500 and a flow pump 3300. The operation of one or the other is controlled by a selector valve 3250. When the selector valve 3250 is closed, then the flow pump 3300, which is a first peristaltic pump 3300 is the present embodiment, aspirations the fluid from the handpiece 3200. The flow pump 3300 pushes the fluid to a holding tank 3450, which is then drained to a collection bag 3600 by a second peristaltic pump. A vacuum sensor 3750 communicatively coupled to a computer system (not shown) is utilized between the flow pump 3300 and the handpiece 3200 to detect any change in vacuum level, which can indicate a possible occlusion.
[0032] When the selector valve 3250 is open, then the fluid flows through the circuit controlled by the vacuum-based pump 3500, which creates an air-vacuum in the holding tank 3450 that sucks the fluid from the handpiece 3200. The aspiration portion of the cassette 3000 further includes an air filter 3350 and a vent valve 3400, which are utilized by the flow punip 3300 and the vacuum-based pump 3500. Further included in the circuit controlled by the vacuum-pump 3500 is a flow restrictor 3650 (preferably variable) and an air transducer 3700 operatively located in between the holding tank 3450 and the vacuum pump 3500. The flow restrictor 3650 enables direct control of the volumetric flow rate, as explained above, and the pressure differential, ΔP, can be measured by using both the air-coupled vacuum transducer 3700 and the fluid-coupled vacuum sensor 3750 also used by the flow pump 3300 when in operation. The aspiration/irrigation cassette 3000 shown in Fig. 8 provides the surgeon with a choice between a vacuum-based pump or a flow pump within a single surgical system, such as a phacoemulsification system. Further, the cassette 3000 allows the flow pump 3300 and the vacuum-based pump 3500 to share a common fluid circuit, which can reduce the manufacturing costs and the volume/length of the aspiration pathway is reduced. [0033] In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the
invention. For example, the reader is to understand that the specific ordering and combination of process actions described herein is merely illustrative, and the invention may appropriately be performed using different or additional process actions, or a different combination or ordering of process actions. For example, this invention is particularly suited for applications involving medical systems, but can be used beyond medical systems in general. As a further example, each feature of one embodiment can be mixed and matched with other features shown in other embodiments. Additionally and obviously, features may be added or subtracted as desired. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.
Claims
1. An aspiration system comprising: an aspiration line having distal and proximal ends and an aspiration port defined in the distal end; a fluid transport device operatively coupled to the proximal end of the aspiration line; a flow restrictor operatively coupled to the aspiration line in between the fluid transport device and the aspiration port; a first vacuum sensor operatively coupled to the aspiration line between the port and the restrictor; a second vacuum sensor operatively coupled to the aspiration line between the restrictor and the fluid transport device; and a computer program product that includes a computer-usable medium having a sequence of instructions which, when executed by a processor, causes said processor to execute a process for measuring a pressure differential between the first and second vacuum sensors.
2. The system of claim 1, wherein the aspiration system is configured to be coupled to a phacoemulsification system.
3. The system of claim 1, wherein the fluid transport device is a vacuum-based pump.
4. The system of claim 1, wherein one of the first and second vacuum sensors includes an air transducer.
5. The system of claim 1 , wherein the flow restrictor is a variable flow restrictor.
6. The system of claim 5, wherein the aspiration line includes a deformable segment operatively coupled to the variable flow restrictor, and the variable flow restrictor comprises: a plunger element; and an actuator coupled to the plunger element and configured to deform the deformable segment via the plunger element.
7. The system of claim 5, further comprising: a computer program product that includes a computer-usable medium having a sequence of instructions which, when executed by a processor, causes said processor to control the variable flow restrictor.
8. The system of claim 1, further comprising a controller operatively coupled to the computer program product and configured to: control a system parameter to be greater than or equal to the lower value or to be less than or equal to an upper value; sense an occlusion in the aspiration line based on the pressure differential between the first and second vacuum sensors; determine a duration of occlusion; and control a system parameter based at least in part on at least one of (1) the sensing of an occlusion and (2) the duration of occlusion.
9. A surgical system for eye surgery comprising: a handpiece configured to be placed in an operative relationship with an eye for a surgical procedure; an irrigation fluid configured to supply an irrigation fluid source to the eye; an aspiration line having an aspiration port coupled to the handpiece; a vacuum-based aspiration source configured to apply a vacuum to the handpiece via the aspiration line in order to aspiration the irrigation fluid from the eye through the handpiece; and an occlusion detecting system coupled to the aspiration line.
10. The surgical system of claim 9, wherein the occlusion detecting system includes: a flow restrictor operatively coupled to the aspiration line in between the vacuum- based aspiration source and the aspiration port; a first vacuum sensor operatively coupled to the aspiration line between the port and the restrictor; a second vacuum sensor operatively coupled to the aspiration line between the restrictor and vacuum-based aspiration source; and a computer program product that includes a computer-usable medium having a sequence of instructions which, when executed by a processor, causes said processor to execute a process for measuring a pressure differential between the first and second vacuum sensors.
11. The system of claim 10, further comprising a controller operatively coupled to the computer program product and configured to: control a controlled system parameter to be greater than or equal to the lower value or to be less than or equal to an upper value; sense an occlusion in the aspiration line based on the pressure differential between the first and second vacuum sensors; determine a duration of occlusion; and control a system parameter based at least in part on at least one of (1) the sensing of an occlusion and (2) the duration of occlusion.
12. The system of claim 11, wherein the controlled system parameter is at least one of supply irrigation pressure, supply irrigation rate, aspiration rate, aspiration vacuum level, and power applied to the handpiece.
13. The system of claim 11, wherein the flow restrictor is a variable flow restrictor and the controller is operatively coupled to the variable flow restrictor for controlling the aspiration rate.
14. The system of claim 9, wherein the handpiece is a phacoemulsification handpiece.
15. A method of operating a surgical handpiece, comprising: placing a handpiece in an operative relationship with an eye for a surgical procedure; supplying irrigation fluid from an irrigation fluid source to the eye; applying vacuum from a vacuum-based fluid transport device to the handpiece in order to aspiration the irrigation fluid from the eye through the handpiece; sensing a value of an occlusion-indicating parameter corresponding to an occlusion of the handpiece; from the sensing of the value, determining a duration of occlusion; and controlling a system parameter based at least in part on the duration of occlusion.
16. The method of claim 15, wherein the occlusion indicating parameter is at least one of supply irrigation pressure, supply irrigation rate, aspiration rate, aspiration vacuum level, and power applied to the handpiece.
17. The method of claim 15, further comprising using a flow restrictor between the vacuum-based fluid transport device and the handpiece.
18. The method of claim 17, wherein the occlusion indicating parameter is a pressure differential between the pressure between the flow restrictor and the handpiece and the pressure between the flow restrictor and the vacuum-based fluid transport device.
19. The method of claim 18, wherein the flow restrictor is a variable flow restrictor.
20. The method of claim 19, wherein the controlled system parameter is the aspiration rate controlled by the variable flow restrictor.
21. The method of claim 15, wherein the controlled system parameter is at least one of supply irrigation pressure, supply irrigation rate, aspiration rate, aspiration vacuum level, or power applied to the handpiece
22. The method of claim 15, wherein the controlled system parameter is controlled by at least one of lowering a maximum level and raising a minimum level of the controlled system parameter allowed during the surgical procedure.
23. The method of claim 15, further comprising an upper value of the controlled system parameter and a lower value of the controlled system parameter, wherein the controlled system parameter is controlled to be less than or equal to the lower value.
24. The method of claim 23, further comprising sensing a drop in the controlled system parameter below a lower threshold and, in response to the drop, controlling the controlled system parameter to be less than or equal to the upper value.
25. The method of claim 15, further comprising an upper value of the controlled system parameter and a lower value of the controlled system parameter, wherein the controlled system parameter is controlled to be greater than or equal to the upper value.
26. The method of claim 25, further comprising sensing a rise in the controlled system parameter above an upper threshold and, in response to the rise, controlling the controlled system parameter to be greater than or equal to the lower value.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT07814683T ATE516829T1 (en) | 2006-09-08 | 2007-09-05 | POWER AND FLOW RATE CONTROL SYSTEMS |
EP07814683A EP2059275B1 (en) | 2006-09-08 | 2007-09-05 | Systems for power and flow rate control |
AU2007292376A AU2007292376B2 (en) | 2006-09-08 | 2007-09-05 | Systems and methods for power and flow rate control |
CA2662797A CA2662797C (en) | 2006-09-08 | 2007-09-05 | Systems and methods for power and flow rate control |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/530,306 | 2006-09-08 | ||
US11/530,306 US8652086B2 (en) | 2006-09-08 | 2006-09-08 | Systems and methods for power and flow rate control |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008030872A1 true WO2008030872A1 (en) | 2008-03-13 |
Family
ID=38983713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/077634 WO2008030872A1 (en) | 2006-09-08 | 2007-09-05 | Systems and methods for power and flow rate control |
Country Status (6)
Country | Link |
---|---|
US (4) | US8652086B2 (en) |
EP (2) | EP2059275B1 (en) |
AT (2) | ATE531347T1 (en) |
AU (1) | AU2007292376B2 (en) |
CA (2) | CA2662797C (en) |
WO (1) | WO2008030872A1 (en) |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009019495A1 (en) * | 2007-08-06 | 2009-02-12 | Smith & Nephew Plc | Apparatus |
WO2010054225A2 (en) * | 2008-11-07 | 2010-05-14 | Abbott Medical Optics Inc. | Automatically switching different aspiration levels and/or pumps to an ocular probe |
US8333744B2 (en) | 2007-08-06 | 2012-12-18 | Edward Hartwell | Apparatus for the provision of topical negative pressure therapy |
US8565839B2 (en) | 2005-10-13 | 2013-10-22 | Abbott Medical Optics Inc. | Power management for wireless devices |
US8635042B2 (en) | 2008-11-07 | 2014-01-21 | Abbott Medical Optics Inc. | Semi-automatic device calibration |
US8749188B2 (en) | 2008-11-07 | 2014-06-10 | Abbott Medical Optics Inc. | Adjustable foot pedal control for ophthalmic surgery |
KR101419988B1 (en) | 2008-11-07 | 2014-07-15 | 프리미엄 보드 핀란드 오와이 | Coated recyclable paper or paperboard and methods for their production |
US8843327B2 (en) | 2007-08-06 | 2014-09-23 | Smith & Nephew Plc | Canister status determination |
US8845619B2 (en) | 2004-04-27 | 2014-09-30 | Smith & Nephew Plc | Wound treatment apparatus and method |
US8845603B2 (en) | 2007-07-02 | 2014-09-30 | Smith & Nephew Plc | Silencer for vacuum system of a wound drainage apparatus |
US8882746B2 (en) | 2003-10-28 | 2014-11-11 | Smith & Nephew Plc | Wound cleansing apparatus with scaffold |
US8923768B2 (en) | 2005-10-13 | 2014-12-30 | Abbott Medical Optics Inc. | Reliable communications for wireless devices |
US9005157B2 (en) | 2008-11-07 | 2015-04-14 | Abbott Medical Optics Inc. | Surgical cassette apparatus |
US9050399B2 (en) | 2007-07-02 | 2015-06-09 | Smith & Nephew Plc | Wound treatment apparatus with exudate volume reduction by heat |
US9133835B2 (en) | 2008-11-07 | 2015-09-15 | Abbott Medical Optics Inc. | Controlling of multiple pumps |
US9198801B2 (en) | 2004-04-05 | 2015-12-01 | Bluesky Medical Group, Inc. | Flexible reduced pressure treatment appliance |
US9295765B2 (en) | 2006-11-09 | 2016-03-29 | Abbott Medical Optics Inc. | Surgical fluidics cassette supporting multiple pumps |
US9386922B2 (en) | 2012-03-17 | 2016-07-12 | Abbott Medical Optics Inc. | Device, system and method for assessing attitude and alignment of a surgical cassette |
US9408954B2 (en) | 2007-07-02 | 2016-08-09 | Smith & Nephew Plc | Systems and methods for controlling operation of negative pressure wound therapy apparatus |
AU2015203795B2 (en) * | 2008-11-07 | 2016-09-08 | Johnson & Johnson Surgical Vision, Inc. | Automatically switching different aspiration levels and/or pumps to an ocular probe |
US9492317B2 (en) | 2009-03-31 | 2016-11-15 | Abbott Medical Optics Inc. | Cassette capture mechanism |
US9522221B2 (en) | 2006-11-09 | 2016-12-20 | Abbott Medical Optics Inc. | Fluidics cassette for ocular surgical system |
US9636440B2 (en) | 2006-10-13 | 2017-05-02 | Bluesky Medical Group Inc. | Control circuit and method for negative pressure wound treatment apparatus |
US9757275B2 (en) | 2006-11-09 | 2017-09-12 | Abbott Medical Optics Inc. | Critical alignment of fluidics cassettes |
US9795507B2 (en) | 2008-11-07 | 2017-10-24 | Abbott Medical Optics Inc. | Multifunction foot pedal |
US9801985B2 (en) | 2007-12-06 | 2017-10-31 | Smith & Nephew Plc | Apparatus for topical negative pressure therapy |
EP3300704A1 (en) * | 2016-09-29 | 2018-04-04 | Nidek Co., Ltd. | Ophthalmic apparatus |
US10058642B2 (en) | 2004-04-05 | 2018-08-28 | Bluesky Medical Group Incorporated | Reduced pressure treatment system |
WO2019069189A1 (en) * | 2017-10-04 | 2019-04-11 | Johnson & Johnson Surgical Vision, Inc. | A system and method to augment irrigation pressure and to maintain iop during post occlusion surge |
EP3505083A1 (en) * | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical evacuation sensor arrangements |
WO2019130118A1 (en) * | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical evacuation sensor arrangements |
US10342701B2 (en) | 2007-08-13 | 2019-07-09 | Johnson & Johnson Surgical Vision, Inc. | Systems and methods for phacoemulsification with vacuum based pumps |
US10349925B2 (en) | 2008-11-07 | 2019-07-16 | Johnson & Johnson Surgical Vision, Inc. | Method for programming foot pedal settings and controlling performance through foot pedal variation |
WO2019069204A3 (en) * | 2017-10-04 | 2019-07-25 | Johnson & Johnson Surgical Vision, Inc. | System for maintaining anterior chamber intraoperative intraocular pressure |
US10363166B2 (en) | 2007-05-24 | 2019-07-30 | Johnson & Johnson Surgical Vision, Inc. | System and method for controlling a transverse phacoemulsification system using sensed data |
US10478336B2 (en) | 2007-05-24 | 2019-11-19 | Johnson & Johnson Surgical Vision, Inc. | Systems and methods for transverse phacoemulsification |
US10596032B2 (en) | 2007-05-24 | 2020-03-24 | Johnson & Johnson Surgical Vision, Inc. | System and method for controlling a transverse phacoemulsification system with a footpedal |
US10813790B2 (en) | 2008-11-07 | 2020-10-27 | Johnson & Johnson Surgical Vision, Inc. | Automatically pulsing different aspiration levels to an ocular probe |
US10959881B2 (en) | 2006-11-09 | 2021-03-30 | Johnson & Johnson Surgical Vision, Inc. | Fluidics cassette for ocular surgical system |
EP3838203A1 (en) * | 2019-12-21 | 2021-06-23 | Covidien LP | Motor-driven, multi-output surgical pump assembly and surgical generator incorporating the same |
US11071816B2 (en) | 2017-10-04 | 2021-07-27 | Johnson & Johnson Surgical Vision, Inc. | System, apparatus and method for monitoring anterior chamber intraoperative intraocular pressure |
US11298453B2 (en) | 2003-10-28 | 2022-04-12 | Smith & Nephew Plc | Apparatus and method for wound cleansing with actives |
US11337855B2 (en) | 2006-11-09 | 2022-05-24 | Johnson & Johnson Surgical Vision, Inc. | Holding tank devices, systems, and methods for surgical fluidics cassette |
US11446424B2 (en) | 2017-10-04 | 2022-09-20 | Johnson & Johnson Surgical Vision, Inc. | Systems and methods for measuring fluid flow in a venturi based system |
GB2618801A (en) * | 2022-05-17 | 2023-11-22 | Edwards Ltd | Fluid routing for a vacuum pumping system |
US11969380B2 (en) | 2017-10-04 | 2024-04-30 | Johnson & Johnson Surgical Vision, Inc. | Advanced occlusion management methods for a phacoemulsification system |
US12121648B2 (en) | 2007-08-06 | 2024-10-22 | Smith & Nephew Plc | Canister status determination |
Families Citing this family (244)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0518826D0 (en) * | 2005-09-15 | 2005-10-26 | Smith & Nephew | Apparatus with actives from tissue - exudialysis |
GB0518825D0 (en) * | 2005-09-15 | 2005-10-26 | Smith & Nephew | Apparatus with actives from tissue - sai |
GB0325126D0 (en) | 2003-10-28 | 2003-12-03 | Smith & Nephew | Apparatus with heat |
GB0518804D0 (en) * | 2005-09-15 | 2005-10-26 | Smith & Nephew | Exudialysis tissue cleanser |
US8758313B2 (en) * | 2003-10-28 | 2014-06-24 | Smith & Nephew Plc | Apparatus and method for wound cleansing with actives |
US20070203445A1 (en) * | 2004-02-26 | 2007-08-30 | V-Kardia Pty Ltd | Isolating cardiac circulation |
GB0508528D0 (en) * | 2005-04-27 | 2005-06-01 | Smith & Nephew | SAI with macrostress |
GB0409444D0 (en) * | 2004-04-28 | 2004-06-02 | Smith & Nephew | Apparatus |
US8366690B2 (en) * | 2006-09-19 | 2013-02-05 | Kci Licensing, Inc. | System and method for determining a fill status of a canister of fluid in a reduced pressure treatment system |
AU2007297579B2 (en) | 2006-09-19 | 2013-02-14 | Solventum Intellectual Properties Company | Reduced pressure treatment system having blockage clearing and dual-zone pressure protection capabilities |
ES2340085T5 (en) | 2006-09-28 | 2014-04-16 | Smith & Nephew, Inc. | Portable wound therapy system |
US8152786B2 (en) * | 2006-11-07 | 2012-04-10 | Osprey Medical, Inc. | Collection catheter and kit |
US20220096112A1 (en) | 2007-01-02 | 2022-03-31 | Aquabeam, Llc | Tissue resection with pressure sensing |
US9232959B2 (en) | 2007-01-02 | 2016-01-12 | Aquabeam, Llc | Multi fluid tissue resection methods and devices |
EP3689274A1 (en) | 2007-02-05 | 2020-08-05 | Boston Scientific Limited | Thrombectomy system |
KR101217918B1 (en) * | 2007-02-09 | 2013-01-02 | 케이씨아이 라이센싱 인코포레이티드 | Apparatus and method for managing reduced pressure at a tissue site |
CA2675263C (en) | 2007-02-20 | 2012-01-03 | Kci Licensing, Inc. | System and method for distinguishing leaks from a disengaged canister condition in a reduced pressure treatment system |
US20110088151A1 (en) * | 2007-04-17 | 2011-04-21 | Semra Peksoz | Firefighter's turnout coat with seamless collar |
US8162633B2 (en) * | 2007-08-02 | 2012-04-24 | Abbott Medical Optics Inc. | Volumetric fluidics pump with translating shaft path |
US9492318B2 (en) | 2007-11-05 | 2016-11-15 | Abbott Medical Optics Inc. | Systems and methods for enhanced occlusion removal during ophthalmic surgery |
CA2705898C (en) | 2007-11-21 | 2020-08-25 | Smith & Nephew Plc | Wound dressing |
GB0723855D0 (en) | 2007-12-06 | 2008-01-16 | Smith & Nephew | Apparatus and method for wound volume measurement |
GB0803564D0 (en) | 2008-02-27 | 2008-04-02 | Smith & Nephew | Fluid collection |
ES2769535T3 (en) | 2008-03-06 | 2020-06-26 | Aquabeam Llc | Tissue ablation and cauterization with optical energy carried in a fluid stream |
US10912869B2 (en) | 2008-05-21 | 2021-02-09 | Smith & Nephew, Inc. | Wound therapy system with related methods therefor |
US8414519B2 (en) | 2008-05-21 | 2013-04-09 | Covidien Lp | Wound therapy system with portable container apparatus |
US8177763B2 (en) | 2008-09-05 | 2012-05-15 | Tyco Healthcare Group Lp | Canister membrane for wound therapy system |
EP3311856B1 (en) * | 2008-08-08 | 2019-07-17 | KCI Licensing, Inc. | Reduced-pressure treatment systems with reservoir control |
US9050400B2 (en) * | 2008-08-12 | 2015-06-09 | Osprey Medical, Inc. | Remote sensing catheter system and methods |
US20100041984A1 (en) * | 2008-08-12 | 2010-02-18 | James Edward Shapland | Impedance sensing device and catheter system |
US8827983B2 (en) | 2008-08-21 | 2014-09-09 | Smith & Nephew, Inc. | Sensor with electrical contact protection for use in fluid collection canister and negative pressure wound therapy systems including same |
US9510854B2 (en) * | 2008-10-13 | 2016-12-06 | Boston Scientific Scimed, Inc. | Thrombectomy catheter with control box having pressure/vacuum valve for synchronous aspiration and fluid irrigation |
US8469050B2 (en) * | 2008-11-07 | 2013-06-25 | Abbott Medical Optics Inc. | Capacitive fluid level sensing |
US8876757B2 (en) * | 2009-11-12 | 2014-11-04 | Abbott Medical Optics Inc. | Fluid level detection system |
US9295816B2 (en) * | 2009-12-09 | 2016-03-29 | Osprey Medical, Inc. | Catheter with distal and proximal ports |
US8783255B2 (en) * | 2010-07-30 | 2014-07-22 | Covidien Lp | Medical device tube having suction lumen and an associated suctioning system |
GB201015656D0 (en) | 2010-09-20 | 2010-10-27 | Smith & Nephew | Pressure control apparatus |
CA2814657A1 (en) | 2010-10-12 | 2012-04-19 | Kevin J. Tanis | Medical device |
US20120191086A1 (en) | 2011-01-20 | 2012-07-26 | Hansen Medical, Inc. | System and method for endoluminal and translumenal therapy |
WO2012114334A1 (en) | 2011-02-24 | 2012-08-30 | Ilan Ben Oren | Hybrid catheter for endoluminal intervention |
US9067003B2 (en) | 2011-05-26 | 2015-06-30 | Kalypto Medical, Inc. | Method for providing negative pressure to a negative pressure wound therapy bandage |
US9211372B2 (en) | 2011-08-11 | 2015-12-15 | Osprey Medical, Inc. | Systems and methods for limb treatment |
US9084845B2 (en) | 2011-11-02 | 2015-07-21 | Smith & Nephew Plc | Reduced pressure therapy apparatuses and methods of using same |
US10004856B2 (en) | 2011-12-01 | 2018-06-26 | Buffalo Filter Llc | Filtration system and method |
ES2595211T3 (en) | 2011-12-08 | 2016-12-28 | Alcon Research, Ltd. | Selectively movable valve elements for suction and irrigation circuits |
CN104203078B (en) | 2012-02-29 | 2018-04-20 | 普罗赛普特生物机器人公司 | The cutting tissue of automated image guiding and processing |
RU2014138377A (en) | 2012-03-20 | 2016-05-20 | СМИТ ЭНД НЕФЬЮ ПиЭлСи | REDUCED PRESSURE THERAPY SYSTEM OPERATION MANAGEMENT BASED ON DETERMINING THE THRESHOLD THRESHOLD |
EP2844330B1 (en) | 2012-04-24 | 2020-06-03 | The Queen Elizabeth Hospital King's Lynn NHS Foundation Trust | A device for performing regional anesthesia |
US9427505B2 (en) | 2012-05-15 | 2016-08-30 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
AU2013264938B2 (en) | 2012-05-22 | 2017-11-23 | Smith & Nephew Plc | Apparatuses and methods for wound therapy |
DE102012018983A1 (en) * | 2012-09-27 | 2014-03-27 | Carl Zeiss Meditec Ag | Ophthalmic surgical device for phacoemulsification |
US9918814B2 (en) | 2012-12-21 | 2018-03-20 | Koninklijke Philips N.V | Plaque detection using a stream probe |
JP6258965B2 (en) * | 2012-12-21 | 2018-01-10 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Plaque detection using a stream probe |
US10231867B2 (en) | 2013-01-18 | 2019-03-19 | Auris Health, Inc. | Method, apparatus and system for a water jet |
USD698019S1 (en) | 2013-03-05 | 2014-01-21 | Alcon Research, Ltd. | Ophthalmic surgical cassette |
US9867635B2 (en) * | 2013-03-08 | 2018-01-16 | Auris Surgical Robotics, Inc. | Method, apparatus and system for a water jet |
US9167757B2 (en) * | 2013-03-11 | 2015-10-27 | International Business Machines Corporation | Irrigation system and method |
US9173353B2 (en) | 2013-03-11 | 2015-11-03 | International Business Machines Corporation | Irrigation system |
US9149011B2 (en) | 2013-03-11 | 2015-10-06 | International Business Machines Corporation | Controllable emitter |
CA2902634C (en) | 2013-03-14 | 2023-01-10 | Smith & Nephew Inc. | Systems and methods for applying reduced pressure therapy |
US9737649B2 (en) | 2013-03-14 | 2017-08-22 | Smith & Nephew, Inc. | Systems and methods for applying reduced pressure therapy |
US9775968B2 (en) * | 2013-03-15 | 2017-10-03 | Abbott Medical Optics Inc. | Magnetically controlled stiffness of materials |
US9549850B2 (en) | 2013-04-26 | 2017-01-24 | Novartis Ag | Partial venting system for occlusion surge mitigation |
WO2014201165A1 (en) | 2013-06-11 | 2014-12-18 | Auris Surgical Robotics, Inc. | System for robotic assisted cataract surgery |
US10155070B2 (en) | 2013-08-13 | 2018-12-18 | Smith & Nephew, Inc. | Systems and methods for applying reduced pressure therapy |
US10426661B2 (en) | 2013-08-13 | 2019-10-01 | Auris Health, Inc. | Method and apparatus for laser assisted cataract surgery |
US10022268B2 (en) | 2013-12-17 | 2018-07-17 | Medical Instrument Development Laboratories, Inc. | Diaphragm-position-controlled, multi-mode ocular fluid management system and method |
WO2015113872A1 (en) * | 2014-01-30 | 2015-08-06 | Koninklijke Philips N.V. | Reducing blockages of a plaque detection stream probe |
US9433427B2 (en) | 2014-04-08 | 2016-09-06 | Incuvate, Llc | Systems and methods for management of thrombosis |
US9248221B2 (en) | 2014-04-08 | 2016-02-02 | Incuvate, Llc | Aspiration monitoring system and method |
US9883877B2 (en) | 2014-05-19 | 2018-02-06 | Walk Vascular, Llc | Systems and methods for removal of blood and thrombotic material |
US9597142B2 (en) * | 2014-07-24 | 2017-03-21 | Arthrocare Corporation | Method and system related to electrosurgical procedures |
CA3179001A1 (en) | 2014-07-31 | 2016-02-04 | Smith & Nephew, Inc. | Systems and methods for applying reduced pressure therapy |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
CN106999146B (en) | 2014-11-18 | 2020-11-10 | C·R·巴德公司 | Ultrasound imaging system with automatic image rendering |
CN107106124B (en) | 2014-11-18 | 2021-01-08 | C·R·巴德公司 | Ultrasound imaging system with automatic image rendering |
JP6725528B2 (en) | 2014-12-22 | 2020-07-22 | スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company | Device and method for negative pressure wound therapy |
US10549016B2 (en) | 2014-12-30 | 2020-02-04 | Smith & Nephew, Inc. | Blockage detection in reduced pressure therapy |
DE102015202967B4 (en) * | 2015-02-19 | 2016-12-08 | Carl Zeiss Meditec Ag | Flow restrictor for a fluid line in a phacoemulsification system |
US20160287279A1 (en) | 2015-04-01 | 2016-10-06 | Auris Surgical Robotics, Inc. | Microsurgical tool for robotic applications |
US10702292B2 (en) | 2015-08-28 | 2020-07-07 | Incuvate, Llc | Aspiration monitoring system and method |
US10561440B2 (en) | 2015-09-03 | 2020-02-18 | Vesatek, Llc | Systems and methods for manipulating medical devices |
US20170100142A1 (en) | 2015-10-09 | 2017-04-13 | Incuvate, Llc | Systems and methods for management of thrombosis |
US9949749B2 (en) | 2015-10-30 | 2018-04-24 | Auris Surgical Robotics, Inc. | Object capture with a basket |
US9955986B2 (en) | 2015-10-30 | 2018-05-01 | Auris Surgical Robotics, Inc. | Basket apparatus |
US10231793B2 (en) | 2015-10-30 | 2019-03-19 | Auris Health, Inc. | Object removal through a percutaneous suction tube |
US20170172796A1 (en) * | 2015-12-16 | 2017-06-22 | Novartis Ag | Surgical system with substance delivery system |
US10226263B2 (en) | 2015-12-23 | 2019-03-12 | Incuvate, Llc | Aspiration monitoring system and method |
CA3014354A1 (en) | 2016-02-12 | 2017-08-17 | Smith & Nephew, Inc. | Systems and methods for detecting operational conditions of reduced pressure therapy |
US10492805B2 (en) | 2016-04-06 | 2019-12-03 | Walk Vascular, Llc | Systems and methods for thrombolysis and delivery of an agent |
CN109414292A (en) | 2016-05-05 | 2019-03-01 | 爱克斯莫医疗有限公司 | Device and method for cutting off and/or melting unwanted tissue |
JP7159192B2 (en) | 2017-03-28 | 2022-10-24 | オーリス ヘルス インコーポレイテッド | shaft actuation handle |
US10285574B2 (en) | 2017-04-07 | 2019-05-14 | Auris Health, Inc. | Superelastic medical instrument |
CN110602976B (en) | 2017-04-07 | 2022-11-15 | 奥瑞斯健康公司 | Patient introducer alignment |
WO2018195101A1 (en) | 2017-04-19 | 2018-10-25 | Smith & Nephew, Inc. | Negative pressure wound therapy canisters |
CN107080865A (en) * | 2017-05-17 | 2017-08-22 | 江西罡龙医疗器械有限公司 | Closed drainage seal water system with counterflow-preventing overvoltage protection buffer structure |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11026687B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Clip applier comprising clip advancing systems |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US10959744B2 (en) | 2017-10-30 | 2021-03-30 | Ethicon Llc | Surgical dissectors and manufacturing techniques |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11058498B2 (en) | 2017-12-28 | 2021-07-13 | Cilag Gmbh International | Cooperative surgical actions for robot-assisted surgical platforms |
US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US20190201039A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Situational awareness of electrosurgical systems |
US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
US20190201139A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication arrangements for robot-assisted surgical platforms |
US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
US11612408B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Determining tissue composition via an ultrasonic system |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
US10898622B2 (en) | 2017-12-28 | 2021-01-26 | Ethicon Llc | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US20190201146A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Safety systems for smart powered surgical stapling |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11399858B2 (en) | 2018-03-08 | 2022-08-02 | Cilag Gmbh International | Application of smart blade technology |
US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11197668B2 (en) | 2018-03-28 | 2021-12-14 | Cilag Gmbh International | Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout |
US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
CN112218596A (en) | 2018-06-07 | 2021-01-12 | 奥瑞斯健康公司 | Robotic medical system with high-force instruments |
JP7391886B2 (en) | 2018-06-28 | 2023-12-05 | オーリス ヘルス インコーポレイテッド | Medical system incorporating pulley sharing |
US11678905B2 (en) | 2018-07-19 | 2023-06-20 | Walk Vascular, Llc | Systems and methods for removal of blood and thrombotic material |
US11759219B2 (en) | 2018-07-24 | 2023-09-19 | Penumbra, Inc. | Apparatus and methods for controlled clot aspiration |
WO2020036685A1 (en) | 2018-08-15 | 2020-02-20 | Auris Health, Inc. | Medical instruments for tissue cauterization |
EP3806758A4 (en) | 2018-08-17 | 2022-04-06 | Auris Health, Inc. | Bipolar medical instrument |
CN109125884B (en) * | 2018-09-21 | 2020-10-16 | 温州医科大学附属第二医院、温州医科大学附属育英儿童医院 | Controllable intelligent drainage tube device |
JP2022502224A (en) * | 2018-09-24 | 2022-01-11 | ストライカー・コーポレイション | Systems and methods to improve control responsiveness during suction |
WO2020068303A1 (en) | 2018-09-26 | 2020-04-02 | Auris Health, Inc. | Systems and instruments for suction and irrigation |
US11576738B2 (en) | 2018-10-08 | 2023-02-14 | Auris Health, Inc. | Systems and instruments for tissue sealing |
US11950863B2 (en) | 2018-12-20 | 2024-04-09 | Auris Health, Inc | Shielding for wristed instruments |
CN113347938A (en) | 2019-01-25 | 2021-09-03 | 奥瑞斯健康公司 | Vascular sealer with heating and cooling capabilities |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11298129B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
CN113613566B (en) | 2019-03-25 | 2024-10-11 | 奥瑞斯健康公司 | System and method for medical suturing |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
US11369386B2 (en) | 2019-06-27 | 2022-06-28 | Auris Health, Inc. | Systems and methods for a medical clip applier |
CN114040727A (en) | 2019-06-28 | 2022-02-11 | 奥瑞斯健康公司 | Medical instrument including a wrist with hybrid redirecting surfaces |
US11896330B2 (en) | 2019-08-15 | 2024-02-13 | Auris Health, Inc. | Robotic medical system having multiple medical instruments |
EP4034349A1 (en) | 2019-09-26 | 2022-08-03 | Auris Health, Inc. | Systems and methods for collision detection and avoidance |
WO2021064536A1 (en) | 2019-09-30 | 2021-04-08 | Auris Health, Inc. | Medical instrument with capstan |
US11737835B2 (en) | 2019-10-29 | 2023-08-29 | Auris Health, Inc. | Braid-reinforced insulation sheath |
US11986422B2 (en) * | 2019-11-20 | 2024-05-21 | Johnson & Johnson Surgical Vision, Inc. | Vane pump for medical instrument |
AU2020408299A1 (en) * | 2019-12-17 | 2022-08-11 | Johnson & Johnson Surgical Vision, Inc. | Cassette design and systems and methods thereof |
JP2023508718A (en) | 2019-12-31 | 2023-03-03 | オーリス ヘルス インコーポレイテッド | Advanced basket drive mode |
EP4084717A4 (en) | 2019-12-31 | 2024-02-14 | Auris Health, Inc. | Dynamic pulley system |
WO2022003485A1 (en) | 2020-06-29 | 2022-01-06 | Auris Health, Inc. | Systems and methods for detecting contact between a link and an external object |
US11931901B2 (en) | 2020-06-30 | 2024-03-19 | Auris Health, Inc. | Robotic medical system with collision proximity indicators |
US11357586B2 (en) | 2020-06-30 | 2022-06-14 | Auris Health, Inc. | Systems and methods for saturated robotic movement |
US11957365B2 (en) | 2020-11-20 | 2024-04-16 | Covidien Lp | Aspiration pulsator |
WO2022231966A1 (en) | 2021-04-27 | 2022-11-03 | Contego Medical, Inc. | Thrombus aspiration system and methods for controlling blood loss |
US20230028279A1 (en) * | 2021-07-26 | 2023-01-26 | Johnson & Johnson Surgical Vision, Inc. | Progressive cavity pump cartridge with infrared temperature sensors on fluid inlet and outlet |
US12038322B2 (en) | 2022-06-21 | 2024-07-16 | Eximo Medical Ltd. | Devices and methods for testing ablation systems |
EP4371507A1 (en) | 2022-11-18 | 2024-05-22 | Penumbra, Inc. | Aspiration thrombectomy system for dynamic system state detection |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3920014A (en) * | 1971-12-15 | 1975-11-18 | Anton Banko | Surgical system for controlling the infusion of fluid to and the evacuation of fluid and material from an operating field |
US5106367A (en) * | 1989-11-28 | 1992-04-21 | Alexander Ureche | Eye surgery apparatus with vacuum surge suppressor |
EP1382291A2 (en) * | 2002-07-19 | 2004-01-21 | W.O.M. World of Medicine AG | Device for irrigation of a body cavity |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4384578A (en) * | 1981-04-16 | 1983-05-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Bio-medical flow sensor |
US4555940A (en) * | 1982-11-01 | 1985-12-03 | Renger Herman L | Method and apparatus for measuring fluid flow rates and volumes through fluid flow paths |
US4680445A (en) * | 1984-09-06 | 1987-07-14 | Genshiro Ogawa | Electronically-controlled heating device for infusion liquids |
US4653719A (en) * | 1985-06-21 | 1987-03-31 | Coulter Electronics, Inc. | Fluid conduit and pinch valve for use therewith |
US4702733A (en) | 1985-11-22 | 1987-10-27 | Innovative Surgical Products, Inc. | Foot actuated pinch valve and high vacuum source for irrigation/aspiration handpiece system |
US4818186A (en) * | 1987-05-01 | 1989-04-04 | Abbott Laboratories | Drive mechanism for disposable fluid infusion pumping cassette |
US5167620A (en) | 1989-11-28 | 1992-12-01 | Alexandar Ureche | Eye surgery methods |
US5108372A (en) * | 1990-12-12 | 1992-04-28 | Houston Advanced Research Center | Intravenous fluid temperature regulation method and apparatus |
US5486286A (en) | 1991-04-19 | 1996-01-23 | Althin Medical, Inc. | Apparatus for performing a self-test of kidney dialysis membrane |
US5242404A (en) * | 1992-02-12 | 1993-09-07 | American Cyanamid Company | Aspiration control system |
US5354268A (en) * | 1992-11-04 | 1994-10-11 | Medical Instrument Development Laboratories, Inc. | Methods and apparatus for control of vacuum and pressure for surgical procedures |
US5591127A (en) * | 1994-01-28 | 1997-01-07 | Barwick, Jr.; Billie J. | Phacoemulsification method and apparatus |
US5695473A (en) * | 1994-07-27 | 1997-12-09 | Sims Deltec, Inc. | Occlusion detection system for an infusion pump |
US5476448A (en) | 1994-10-19 | 1995-12-19 | Urich; Alex | Apparatus for suppressing a vacuum surge in eye surgery |
US5616120A (en) | 1995-02-06 | 1997-04-01 | Andrew; Mark S. | Method and apparatus for lenticular liquefaction and aspiration |
AU6268396A (en) | 1995-06-02 | 1996-12-18 | Surgical Design Corporation | Phacoemulsification handpiece, sleeve, and tip |
US5827223A (en) * | 1995-08-31 | 1998-10-27 | Alaris Medical Systems, Inc. | Upstream occulsion detection system |
US5766146A (en) * | 1996-04-04 | 1998-06-16 | Allergan | Method of infusion control during phacoemulsification surgery |
US5697898A (en) * | 1996-05-31 | 1997-12-16 | Surgical Design Corporation | Automated free flow mechanism for use in phacoemulsification, irrigation and aspiration of the eye |
US5733256A (en) * | 1996-09-26 | 1998-03-31 | Micro Medical Devices | Integrated phacoemulsification system |
US5885243A (en) | 1996-12-11 | 1999-03-23 | Alcon Laboratories, Inc. | Liquefaction handpiece |
GB2320419B (en) | 1996-12-20 | 2000-08-16 | Notetry Ltd | Improved vacuum cleaner |
US5865764A (en) * | 1996-12-30 | 1999-02-02 | Armoor Opthalmics, Inc. | Device and method for noninvasive measurement of internal pressure within body cavities |
US6599271B1 (en) | 1999-04-13 | 2003-07-29 | Syntec, Inc. | Ophthalmic flow converter |
US6423029B1 (en) * | 1999-04-29 | 2002-07-23 | Medtronic, Inc. | System and method for detecting abnormal medicament pump fluid pressure |
AU2001288949B2 (en) | 2000-09-07 | 2006-03-16 | Robert J. Cionni | Surge-flow regulator for use in ophthalmic surgical aspiration |
EP1427607A4 (en) * | 2001-09-12 | 2004-12-08 | Gen Electric | Bumper beam with crush cans |
US6599277B2 (en) | 2001-11-30 | 2003-07-29 | Bausch & Lomb Incorporated | Aspiration flow meter and control |
US8182461B2 (en) * | 2003-11-04 | 2012-05-22 | Smiths Medical Asd, Inc. | Syringe pump rapid occlusion detection system |
US7811255B2 (en) | 2004-03-22 | 2010-10-12 | Alcon, Inc. | Method of controlling a surgical system based on a rate of change of an operating parameter |
US20050234441A1 (en) | 2004-03-30 | 2005-10-20 | Bisch Michael E | Guided and filtered user interface for use with an ophthalmic surgical system |
US7785316B2 (en) * | 2005-03-21 | 2010-08-31 | Abbott Medical Optics Inc. | Application of a system parameter as a method and mechanism for controlling eye chamber stability |
US7670330B2 (en) | 2005-03-21 | 2010-03-02 | Abbott Medical Optics Inc. | Application of vacuum as a method and mechanism for controlling eye chamber stability |
-
2006
- 2006-09-08 US US11/530,306 patent/US8652086B2/en active Active
-
2007
- 2007-09-05 CA CA2662797A patent/CA2662797C/en not_active Expired - Fee Related
- 2007-09-05 EP EP07814683A patent/EP2059275B1/en not_active Not-in-force
- 2007-09-05 CA CA2882350A patent/CA2882350C/en not_active Expired - Fee Related
- 2007-09-05 WO PCT/US2007/077634 patent/WO2008030872A1/en active Application Filing
- 2007-09-05 AT AT10153823T patent/ATE531347T1/en active
- 2007-09-05 AU AU2007292376A patent/AU2007292376B2/en not_active Ceased
- 2007-09-05 EP EP10153823A patent/EP2191798B1/en not_active Not-in-force
- 2007-09-05 AT AT07814683T patent/ATE516829T1/en not_active IP Right Cessation
-
2011
- 2011-09-23 US US13/243,765 patent/US8715220B2/en active Active
- 2011-09-23 US US13/243,721 patent/US8668665B2/en active Active
- 2011-09-23 US US13/243,643 patent/US9149568B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3920014A (en) * | 1971-12-15 | 1975-11-18 | Anton Banko | Surgical system for controlling the infusion of fluid to and the evacuation of fluid and material from an operating field |
US5106367A (en) * | 1989-11-28 | 1992-04-21 | Alexander Ureche | Eye surgery apparatus with vacuum surge suppressor |
EP1382291A2 (en) * | 2002-07-19 | 2004-01-21 | W.O.M. World of Medicine AG | Device for irrigation of a body cavity |
Cited By (110)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8882746B2 (en) | 2003-10-28 | 2014-11-11 | Smith & Nephew Plc | Wound cleansing apparatus with scaffold |
US11298453B2 (en) | 2003-10-28 | 2022-04-12 | Smith & Nephew Plc | Apparatus and method for wound cleansing with actives |
US10363346B2 (en) | 2004-04-05 | 2019-07-30 | Smith & Nephew, Inc. | Flexible reduced pressure treatment appliance |
US10350339B2 (en) | 2004-04-05 | 2019-07-16 | Smith & Nephew, Inc. | Flexible reduced pressure treatment appliance |
US11730874B2 (en) | 2004-04-05 | 2023-08-22 | Smith & Nephew, Inc. | Reduced pressure treatment appliance |
US10842919B2 (en) | 2004-04-05 | 2020-11-24 | Smith & Nephew, Inc. | Reduced pressure treatment system |
US10105471B2 (en) | 2004-04-05 | 2018-10-23 | Smith & Nephew, Inc. | Reduced pressure treatment system |
US10058642B2 (en) | 2004-04-05 | 2018-08-28 | Bluesky Medical Group Incorporated | Reduced pressure treatment system |
US9198801B2 (en) | 2004-04-05 | 2015-12-01 | Bluesky Medical Group, Inc. | Flexible reduced pressure treatment appliance |
US8845619B2 (en) | 2004-04-27 | 2014-09-30 | Smith & Nephew Plc | Wound treatment apparatus and method |
US9545463B2 (en) | 2004-04-28 | 2017-01-17 | Smith & Nephew Plc | Wound treatment apparatus and method |
US8923768B2 (en) | 2005-10-13 | 2014-12-30 | Abbott Medical Optics Inc. | Reliable communications for wireless devices |
US9635152B2 (en) | 2005-10-13 | 2017-04-25 | Abbott Medical Optics Inc. | Power management for wireless devices |
US8565839B2 (en) | 2005-10-13 | 2013-10-22 | Abbott Medical Optics Inc. | Power management for wireless devices |
US9131034B2 (en) | 2005-10-13 | 2015-09-08 | Abbott Medical Optics Inc. | Power management for wireless devices |
US9636440B2 (en) | 2006-10-13 | 2017-05-02 | Bluesky Medical Group Inc. | Control circuit and method for negative pressure wound treatment apparatus |
US11850348B2 (en) | 2006-10-13 | 2023-12-26 | Smith & Nephew, Inc. | Control circuit and method for negative pressure wound treatment apparatus |
US10709826B2 (en) | 2006-10-13 | 2020-07-14 | Smith & Nephew, Inc. | Control circuit and method for negative pressure wound treatment apparatus |
US11337855B2 (en) | 2006-11-09 | 2022-05-24 | Johnson & Johnson Surgical Vision, Inc. | Holding tank devices, systems, and methods for surgical fluidics cassette |
US11058577B2 (en) | 2006-11-09 | 2021-07-13 | Johnson & Johnson Surgical Vision, Inc. | Fluidics cassette for ocular surgical system |
US11065153B2 (en) | 2006-11-09 | 2021-07-20 | Johnson & Johnson Surgical Vision, Inc. | Fluidics cassette for ocular surgical system |
US10441461B2 (en) | 2006-11-09 | 2019-10-15 | Johnson & Johnson Surgical Vision, Inc. | Critical alignment of fluidics cassettes |
US9757275B2 (en) | 2006-11-09 | 2017-09-12 | Abbott Medical Optics Inc. | Critical alignment of fluidics cassettes |
US9295765B2 (en) | 2006-11-09 | 2016-03-29 | Abbott Medical Optics Inc. | Surgical fluidics cassette supporting multiple pumps |
US11918729B2 (en) | 2006-11-09 | 2024-03-05 | Johnson & Johnson Surgical Vision, Inc. | Fluidics cassette for ocular surgical system |
US10959881B2 (en) | 2006-11-09 | 2021-03-30 | Johnson & Johnson Surgical Vision, Inc. | Fluidics cassette for ocular surgical system |
US9522221B2 (en) | 2006-11-09 | 2016-12-20 | Abbott Medical Optics Inc. | Fluidics cassette for ocular surgical system |
US10363166B2 (en) | 2007-05-24 | 2019-07-30 | Johnson & Johnson Surgical Vision, Inc. | System and method for controlling a transverse phacoemulsification system using sensed data |
US10485699B2 (en) | 2007-05-24 | 2019-11-26 | Johnson & Johnson Surgical Vision, Inc. | Systems and methods for transverse phacoemulsification |
US11504272B2 (en) | 2007-05-24 | 2022-11-22 | Johnson & Johnson Surgical Vision, Inc. | Systems and methods for transverse phacoemulsification |
US11690758B2 (en) | 2007-05-24 | 2023-07-04 | Johnson & Johnson Surgical Vision, Inc. | System and method for controlling a transverse phacoemulsification system with a footpedal |
US11911315B2 (en) | 2007-05-24 | 2024-02-27 | Johnson & Johnson Surgical Vision, Inc. | System and method for controlling a transverse phacoemulsification system using sensed data |
US10596032B2 (en) | 2007-05-24 | 2020-03-24 | Johnson & Johnson Surgical Vision, Inc. | System and method for controlling a transverse phacoemulsification system with a footpedal |
US10478336B2 (en) | 2007-05-24 | 2019-11-19 | Johnson & Johnson Surgical Vision, Inc. | Systems and methods for transverse phacoemulsification |
US10857030B2 (en) | 2007-05-24 | 2020-12-08 | Johnson & Johnson Surgical Vision, Inc. | System and method for controlling a transverse phacoemulsification system using sensed data |
US8845603B2 (en) | 2007-07-02 | 2014-09-30 | Smith & Nephew Plc | Silencer for vacuum system of a wound drainage apparatus |
US9642951B2 (en) | 2007-07-02 | 2017-05-09 | Smith & Nephew Plc | Silencer for vacuum system of a wound drainage apparatus |
US10617800B2 (en) | 2007-07-02 | 2020-04-14 | Smith & Nephew Plc | Silencer for vacuum system of a wound drainage apparatus |
US11969541B2 (en) | 2007-07-02 | 2024-04-30 | Smith & Nephew Plc | Systems and methods for controlling operation of negative pressure wound therapy apparatus |
US10328187B2 (en) | 2007-07-02 | 2019-06-25 | Smith & Nephew Plc | Systems and methods for controlling operation of negative pressure wound therapy apparatus |
US9050399B2 (en) | 2007-07-02 | 2015-06-09 | Smith & Nephew Plc | Wound treatment apparatus with exudate volume reduction by heat |
US9408954B2 (en) | 2007-07-02 | 2016-08-09 | Smith & Nephew Plc | Systems and methods for controlling operation of negative pressure wound therapy apparatus |
US9192699B2 (en) | 2007-07-02 | 2015-11-24 | Smith & Nephew Plc | Silencer for vacuum system of a wound drainage apparatus |
US9956327B2 (en) | 2007-07-02 | 2018-05-01 | Smith & Nephew Plc | Wound treatment apparatus with exudate volume reduction by heat |
US10994060B2 (en) | 2007-08-06 | 2021-05-04 | Smith & Nephew Plc | Canister status determination |
US11559620B2 (en) | 2007-08-06 | 2023-01-24 | Smith & Nephew Plc | Canister status determination |
US12121648B2 (en) | 2007-08-06 | 2024-10-22 | Smith & Nephew Plc | Canister status determination |
US8333744B2 (en) | 2007-08-06 | 2012-12-18 | Edward Hartwell | Apparatus for the provision of topical negative pressure therapy |
WO2009019495A1 (en) * | 2007-08-06 | 2009-02-12 | Smith & Nephew Plc | Apparatus |
US10617801B2 (en) | 2007-08-06 | 2020-04-14 | Smith & Nephew Plc | Canister status determination |
US8843327B2 (en) | 2007-08-06 | 2014-09-23 | Smith & Nephew Plc | Canister status determination |
US9878074B2 (en) | 2007-08-06 | 2018-01-30 | Smith & Nephew Plc | Canister status determination |
US8974429B2 (en) | 2007-08-06 | 2015-03-10 | Smith & Nephew Plc | Apparatus and method for applying topical negative pressure |
US10342701B2 (en) | 2007-08-13 | 2019-07-09 | Johnson & Johnson Surgical Vision, Inc. | Systems and methods for phacoemulsification with vacuum based pumps |
US11433176B2 (en) | 2007-12-06 | 2022-09-06 | Smith & Nephew Plc | Apparatus for topical negative pressure therapy |
US10561769B2 (en) | 2007-12-06 | 2020-02-18 | Smith & Nephew Plc | Apparatus for topical negative pressure therapy |
US11717655B2 (en) | 2007-12-06 | 2023-08-08 | Smith & Nephew Plc | Apparatus for topical negative pressure therapy |
US12064579B2 (en) | 2007-12-06 | 2024-08-20 | Smith & Nephew Plc | Apparatus for topical negative pressure therapy |
US9801985B2 (en) | 2007-12-06 | 2017-10-31 | Smith & Nephew Plc | Apparatus for topical negative pressure therapy |
US10993839B2 (en) | 2008-11-07 | 2021-05-04 | Johnson & Johnson Surgical Vision, Inc. | Automatically pulsing different aspiration levels to an ocular probe |
AU2009313402B2 (en) * | 2008-11-07 | 2015-04-23 | Johnson & Johnson Surgical Vision, Inc. | Automatically switching different aspiration levels and/or pumps to an ocular probe |
US10349925B2 (en) | 2008-11-07 | 2019-07-16 | Johnson & Johnson Surgical Vision, Inc. | Method for programming foot pedal settings and controlling performance through foot pedal variation |
US10478534B2 (en) | 2008-11-07 | 2019-11-19 | Johnson & Johnson Surgical Vision, Inc. | Automatically switching different aspiration levels and/or pumps to an ocular probe |
WO2010054225A2 (en) * | 2008-11-07 | 2010-05-14 | Abbott Medical Optics Inc. | Automatically switching different aspiration levels and/or pumps to an ocular probe |
WO2010054225A3 (en) * | 2008-11-07 | 2010-09-02 | Abbott Medical Optics Inc. | Automatically switching different aspiration levels and/or pumps to an ocular probe |
US8635042B2 (en) | 2008-11-07 | 2014-01-21 | Abbott Medical Optics Inc. | Semi-automatic device calibration |
US8749188B2 (en) | 2008-11-07 | 2014-06-10 | Abbott Medical Optics Inc. | Adjustable foot pedal control for ophthalmic surgery |
US10265443B2 (en) | 2008-11-07 | 2019-04-23 | Johnson & Johnson Surgical Vision, Inc. | Surgical cassette apparatus |
KR101419988B1 (en) | 2008-11-07 | 2014-07-15 | 프리미엄 보드 핀란드 오와이 | Coated recyclable paper or paperboard and methods for their production |
US10251983B2 (en) | 2008-11-07 | 2019-04-09 | Johnson & Johnson Surgical Vision, Inc. | Automatically switching different aspiration levels and/or pumps to an ocular probe |
US10668192B2 (en) | 2008-11-07 | 2020-06-02 | Johnson & Johnson Surgical Vision, Inc. | Automatically switching different aspiration levels and/or pumps to an ocular probe |
US10238778B2 (en) | 2008-11-07 | 2019-03-26 | Johnson & Johnson Surgical Vision, Inc. | Automatically switching different aspiration levels and/or pumps to an ocular probe |
US10813790B2 (en) | 2008-11-07 | 2020-10-27 | Johnson & Johnson Surgical Vision, Inc. | Automatically pulsing different aspiration levels to an ocular probe |
US9005157B2 (en) | 2008-11-07 | 2015-04-14 | Abbott Medical Optics Inc. | Surgical cassette apparatus |
US9566188B2 (en) | 2008-11-07 | 2017-02-14 | Abbott Medical Optics Inc. | Automatically switching different aspiration levels and/or pumps to an ocular probe |
US9133835B2 (en) | 2008-11-07 | 2015-09-15 | Abbott Medical Optics Inc. | Controlling of multiple pumps |
AU2009313402C1 (en) * | 2008-11-07 | 2015-10-15 | Johnson & Johnson Surgical Vision, Inc. | Automatically switching different aspiration levels and/or pumps to an ocular probe |
US10905588B2 (en) | 2008-11-07 | 2021-02-02 | Johnson & Johnson Surgical Vision, Inc. | Automatically pulsing different aspiration levels to an ocular probe |
US9271806B2 (en) | 2008-11-07 | 2016-03-01 | Abbott Medical Optics Inc. | Adjustable foot pedal control for ophthalmic surgery |
AU2015203795B2 (en) * | 2008-11-07 | 2016-09-08 | Johnson & Johnson Surgical Vision, Inc. | Automatically switching different aspiration levels and/or pumps to an ocular probe |
US11266526B2 (en) | 2008-11-07 | 2022-03-08 | Johnson & Johnson Surgical Vision, Inc. | Automatically pulsing different aspiration levels to an ocular probe |
US9795507B2 (en) | 2008-11-07 | 2017-10-24 | Abbott Medical Optics Inc. | Multifunction foot pedal |
US11369729B2 (en) | 2008-11-07 | 2022-06-28 | Johnson & Johnson Surgical Vision, Inc. | Automatically switching different aspiration levels and/or pumps to an ocular probe |
US11369728B2 (en) | 2008-11-07 | 2022-06-28 | Johnson & Johnson Surgical Vision, Inc. | Automatically switching different aspiration levels and/or pumps to an ocular probe |
EP3175831A1 (en) * | 2008-11-07 | 2017-06-07 | Abbott Medical Optics Inc. | Automatically switching different aspiration levels and/or pumps to an ocular probe |
US11364145B2 (en) | 2008-11-07 | 2022-06-21 | Johnson & Johnson Surgical Vision, Inc. | Automatically pulsing different aspiration levels to an ocular probe |
US9492317B2 (en) | 2009-03-31 | 2016-11-15 | Abbott Medical Optics Inc. | Cassette capture mechanism |
US9877865B2 (en) | 2009-03-31 | 2018-01-30 | Abbott Medical Optics Inc. | Cassette capture mechanism |
US9700457B2 (en) | 2012-03-17 | 2017-07-11 | Abbott Medical Optics Inc. | Surgical cassette |
US11154422B2 (en) | 2012-03-17 | 2021-10-26 | Johnson & Johnson Surgical Vision, Inc. | Surgical cassette manifold, system, and methods thereof |
US10265217B2 (en) | 2012-03-17 | 2019-04-23 | Johnson & Johnson Surgical Vision, Inc. | Pre-alignment surgical cassette interface |
US10583040B2 (en) | 2012-03-17 | 2020-03-10 | Johnson & Johnson Surgical Vision, Inc. | Device, system and method for assessing attitude and alignment of a surgical cassette |
US11872159B2 (en) | 2012-03-17 | 2024-01-16 | Johnson & Johnson Surgical Vision, Inc. | Pre-alignment surgical cassette interface |
US10219938B2 (en) | 2012-03-17 | 2019-03-05 | Johnson & Johnson Surgical Vision, Inc. | Surgical cassette manifold, system, and methods thereof |
US10980668B2 (en) | 2012-03-17 | 2021-04-20 | Johnson & Johnson Surgical Vision, Inc. | Surgical cassette |
US10857029B2 (en) | 2012-03-17 | 2020-12-08 | Johnson & Johnson Surgical Vision, Inc. | Valve system of surgical cassette manifold, system, and methods thereof |
US9386922B2 (en) | 2012-03-17 | 2016-07-12 | Abbott Medical Optics Inc. | Device, system and method for assessing attitude and alignment of a surgical cassette |
US9895262B2 (en) | 2012-03-17 | 2018-02-20 | Abbott Medical Optics Inc. | Device, system and method for assessing attitude and alignment of a surgical cassette |
US10888456B2 (en) | 2012-03-17 | 2021-01-12 | Johnson & Johnson Surgical Vision, Inc. | Surgical cassette |
EP3300704A1 (en) * | 2016-09-29 | 2018-04-04 | Nidek Co., Ltd. | Ophthalmic apparatus |
US11446424B2 (en) | 2017-10-04 | 2022-09-20 | Johnson & Johnson Surgical Vision, Inc. | Systems and methods for measuring fluid flow in a venturi based system |
US11383020B2 (en) | 2017-10-04 | 2022-07-12 | Johnson & Johnson Surgical Vision, Inc. | System and method to augment irrigation pressure and to maintain IOP during post occlusion surge |
WO2019069189A1 (en) * | 2017-10-04 | 2019-04-11 | Johnson & Johnson Surgical Vision, Inc. | A system and method to augment irrigation pressure and to maintain iop during post occlusion surge |
WO2019069204A3 (en) * | 2017-10-04 | 2019-07-25 | Johnson & Johnson Surgical Vision, Inc. | System for maintaining anterior chamber intraoperative intraocular pressure |
US11969380B2 (en) | 2017-10-04 | 2024-04-30 | Johnson & Johnson Surgical Vision, Inc. | Advanced occlusion management methods for a phacoemulsification system |
US11071816B2 (en) | 2017-10-04 | 2021-07-27 | Johnson & Johnson Surgical Vision, Inc. | System, apparatus and method for monitoring anterior chamber intraoperative intraocular pressure |
EP3505083A1 (en) * | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical evacuation sensor arrangements |
WO2019130118A1 (en) * | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical evacuation sensor arrangements |
EP3838203A1 (en) * | 2019-12-21 | 2021-06-23 | Covidien LP | Motor-driven, multi-output surgical pump assembly and surgical generator incorporating the same |
GB2618801A (en) * | 2022-05-17 | 2023-11-22 | Edwards Ltd | Fluid routing for a vacuum pumping system |
Also Published As
Publication number | Publication date |
---|---|
ATE531347T1 (en) | 2011-11-15 |
US20120041362A1 (en) | 2012-02-16 |
EP2059275A1 (en) | 2009-05-20 |
ATE516829T1 (en) | 2011-08-15 |
CA2882350A1 (en) | 2008-03-13 |
US8652086B2 (en) | 2014-02-18 |
CA2662797A1 (en) | 2008-03-13 |
EP2059275B1 (en) | 2011-07-20 |
US20120041360A1 (en) | 2012-02-16 |
AU2007292376A1 (en) | 2008-03-13 |
US20120065580A1 (en) | 2012-03-15 |
EP2191798B1 (en) | 2011-11-02 |
CA2662797C (en) | 2016-06-28 |
US8715220B2 (en) | 2014-05-06 |
EP2191798A1 (en) | 2010-06-02 |
CA2882350C (en) | 2016-10-11 |
US20080125698A1 (en) | 2008-05-29 |
AU2007292376B2 (en) | 2014-01-09 |
US9149568B2 (en) | 2015-10-06 |
US8668665B2 (en) | 2014-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2882350C (en) | Systems and methods for power and flow rate control | |
CA2696344C (en) | Systems and methods for phacoemulsification with vacuum based pumps | |
CA2559749C (en) | Method of controlling a surgical system based on a load on the cutting tip of a handpiece | |
CA2559501C (en) | Method of controlling a surgical system based on a rate of change of an operating parameter | |
WO2005092022A2 (en) | 'method of controlling a surgical system based on irrigation flow' | |
WO2006101908A2 (en) | The application of vacuum as a method and mechanism for controlling eye chamber stability | |
AU2006262932A1 (en) | Aspiration control via flow or impedance | |
CA2607593A1 (en) | Reflux control in microsurgical system | |
AU2013201762B2 (en) | Systems and methods for power and flow rate control | |
WO2024081231A1 (en) | Occlusion detection in vacuum-based ophthalmic surgical systems | |
CN118678938A (en) | Tip occlusion removal using controlled aspiration reflux |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07814683 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007292376 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007814683 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2662797 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |