WO2008030795A2 - Compositions and methods for inhibition of tyrosine kinases - Google Patents

Compositions and methods for inhibition of tyrosine kinases Download PDF

Info

Publication number
WO2008030795A2
WO2008030795A2 PCT/US2007/077511 US2007077511W WO2008030795A2 WO 2008030795 A2 WO2008030795 A2 WO 2008030795A2 US 2007077511 W US2007077511 W US 2007077511W WO 2008030795 A2 WO2008030795 A2 WO 2008030795A2
Authority
WO
WIPO (PCT)
Prior art keywords
mmol
nmr
mhz
hou03
cdc13
Prior art date
Application number
PCT/US2007/077511
Other languages
French (fr)
Other versions
WO2008030795A3 (en
Inventor
William Bornmann
David Maxwell
Zhenghong Peng
Liwei Guo
Original Assignee
Boards Of Regents, The University Of Texas System
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boards Of Regents, The University Of Texas System filed Critical Boards Of Regents, The University Of Texas System
Priority to US12/439,402 priority Critical patent/US20100144743A1/en
Publication of WO2008030795A2 publication Critical patent/WO2008030795A2/en
Publication of WO2008030795A3 publication Critical patent/WO2008030795A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present disclosure generally relates to tyrosine kinases.
  • the present disclosure relates to compositions useful in inhibiting catalytic activity of tyrosine kinases and associated methods of use.
  • Tyrosine kinases are a class of enzymes, which catalyze the transfer of the terminal phosphate of adenosine triphosphate to the phenolic hydroxyl group of a tyrosine residue present in the target protein.
  • Tyrosine kinases play a critical role in signal transduction for several cellular functions including cell proliferation, angiogenesis, carcinogenesis, apoptosis, and cell differentiation. Therefore inhibitors of these enzymes would be useful for the treatment or prevention of proliferative diseases which are dependent on these enzymes.
  • Strong epidemiologic evidence suggests that the overexpression or activation of receptor protein tyrosine kinases leading to constitutive mitogenic signaling is an important factor in a growing number of human malignancies, such as cancer.
  • Tyrosine kinases that have been implicated in these processes include AbI, CDK's, EGF, EMT, FGF, FAK, Flk-1/KDR, HER- 2, IGF-IR, IR, LCK, MET, PDGF, Src, ephrins, and VEGF.
  • Ephrin receptors represent the largest family of receptor tyrosine kinases and have emerged as essential regulators of angiogenesis.
  • Angiogenesis refers to the formation of new capillaries from existing vasculature and it is a crucial element in tumor growth. It is required for nourishment and removal of metabolic waste. If neovascularization is insufficient to support the growth and development of tumors, then hypoxia may arise.
  • HIF-I hypoxia induced factor
  • Figure 1 shows a schematic illustrating one of top scoring compounds bound to the ATP binding pocket of ephrin.
  • Figure 2 shows a flowchart showing a strategy to analyze the data from in-silico screening.
  • Figure 3 shows a synthesis scheme for preparation of one example of a composition of the present disclosure.
  • Figure 4 shows a general synthesis scheme for the preparation of one example of a composition of the present disclosure.
  • Figure 5 shows a synthesis scheme for LG2-9 and LG2-13 compositions of the present disclosure.
  • Figure 6 shows a synthesis scheme for LG2-3 and LG2-7 compositions of the present disclosure.
  • Figure 7 shows a synthesis scheme for LG2-11.
  • Figure 8 shows a synthesis scheme for LG2-73 and LG2-75.
  • Figure 9 shows a synthesis scheme for LG2-87 and LG2-89.
  • Figure 10 shows a synthesis scheme for LG2-60 and LG2-65.
  • Figure 11 shows a synthesis scheme for LG2-55 and LG2-62.
  • Figure 12 shows a synthesis scheme for LG2-85.
  • Figure 13 shows a synthesis scheme for LG2-77 and LG2-81.
  • Figure 14 shows a synthesis scheme for LG2-95 and LG2-98.
  • Figure 15 shows a synthesis scheme for N-(2-hydroxyethyl)-3-(4,4,5,5-tetramethyl- 1 ,3,2-dioxaborolan-2-yl)-benzamide.
  • Figure 16 shows a synthesis scheme for LG2-91 and LG2-96.
  • Figure 17 shows a synthesis scheme for LG2-101 and LG2-102.
  • Figure 18 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to PX-478.
  • Figure 19 shows the results of testing for HIF-I expression (top) and viability
  • FIG. 20 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to LG2-11.
  • Figure 21 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to LG2-13.
  • Figure 22 shows the results of testing for HIF-I expression (top) and viability
  • Figure 23 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to LG2-65.
  • Figure 24 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to LG2-75.
  • Figure 25 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to LG2-81.
  • Figure 26 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to LG2-85.
  • Figure 27 shows the results of testing for HEF-I expression (top) and viability
  • Figure 28 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to LG2-96.
  • Figure 29 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to LG2-98.
  • Figure 30 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to LG2-102.
  • the present disclosure generally relates to tyrosine kinases.
  • the present disclosure relates to compositions useful in inhibiting catalytic activity of tyrosine kinases and associated methods of use.
  • the compositions of the present disclosure may at least partially inhibit catalytic activity of tyrosine kinases.
  • tyrosine kinases that may be suitable targets for the compositions of the present disclosure include, but are not limited to, receptor tyrosine kinases and cellular tyrosine kinases.
  • receptor tyrosine kinases include, but are not limited to, Eph receptors, EGF receptors, insulin receptors, IGF receptor-1, Trk A, PDGF receptors, M-CSF receptors, FGR receptors, VEGF receptors.
  • cellular tyrosine kinases include, but are not limited to, Src, Frk, Btk, Csk, AbI, ZAP70, Fes, Fps, Fak, Jak, Ack, Yes, Fyn, Lyn, Lck, BIk, Hck, Fgr and Yrk.
  • compositions of the present disclosure may at least partially inhibit catalytic activity of a tyrosine kinase directly by interacting with the kinase itself; or indirectly, by interacting with another molecule on which the catalytic activity of the kinase is dependent.
  • the compositions of the present disclosure may also inhibit HIF-I expression and HIF-I signal transduction pathways.
  • compositions of the present disclosure may comprise a compound of the following Formula (I):
  • compositions of the present disclosure may comprise a compound of the following Formula (II):
  • Rl may represent a group selected from the following:
  • the compounds of Formula (I) and (II) may be enantiomers, diastereomers, pharmaceutically acceptable salts, hydrates, prodrugs, or solvates thereof.
  • compositions of the present disclosure may comprise a compound of the following Formula (III):
  • Ri may represent a group selected from the following:
  • R 2 may represent a group selected from the following:
  • the compounds of Formula (III) may be enantiomers, diastereomers, pharmaceutically acceptable salts, hydrates, prodrugs, or solvates thereof.
  • the compositions of the present disclosure generally may be synthesized using methods known in the art, including for example, suzuki coupling reactions.
  • compositions of the present disclosure also may be provided as a pharmaceutical composition comprising a compound of Formula (I), (II), or (III) and a pharmaceutically acceptable carrier.
  • the compositions also may be used in a pharmaceutical composition comprising a compound represented by Formula (I), (II), or (III) in combination with pharmaceutically acceptable carrier and an anti-cancer or cytotoxic agent.
  • the anticancer or cytotoxic agent may be chosen from one or more of linomide; inhibitors of integrin ⁇ V ⁇ 3 function; angiostatin; razoxane; tamoxifen; toremifene; raloxifene; droloxifene; iodoxifene; megestrol acetate; anastrozole; letrozole; borazole; exemestane; flutamide; nilutamide; bicalutamide; cyproterone acetate; gosereline acetate; leuprolide; finasteride; metalloproteinase inhibitors; inhibitors of urokinase plasminogen activator receptor function; growth factor antibodies; growth factor receptor antibodies such as Avastin® (bevacizumab) and Erbitu® (cetuximab); tyrosine kinase inhibitors; serine/threonine kinase
  • HOU03 1125151 daunomycin; epirubicin; idarubicin; mitomycin-C; dactinomycin; mithramycin; cisplatin; carboplatin; nitrogen mustard; melphalan; chlorambucil; busulphan; cyclophosphamide; ifosfamide nitrosoureas; thiotepa; vincristine; Taxol® (pacliatxel); Taxotere® (docetaxel); epothilone analogs; discodermolide analogs; eleutherobin analogs; etoposide; teniposide; amsacrine; topotecan; flavopyridols; biological response modifiers and proteasome inhibitors such as Velcade® (bortezomib).
  • the compounds represented by Formula (I), (II), or (III) or a pharmaceutically acceptable salt or hydrate or solvate thereof may be administered to a mammal, including a human, to treat cancers of that mammal.
  • the administration method may include, for example, oral or parenteral.
  • cancer refers to an abnormal growth of cells which tend to proliferate in an uncontrolled way, including neoplasms, tumors, and leukemia.
  • the methods of the present disclosure may provide for control of neovascularization of tumor cells using compounds represented by Formula (I), (II), or (III).
  • the compounds represented by Formula (I), (II), or (III) may bind to a tyrosine kinase, thereby inhibiting its activity.
  • the angiogenesis of tumor cells may depend on the activation of tyrosine kinases, and thus, inhibition of tyrosine kinases may decrease tumor growth and development.
  • a compound represented by Formula (I), (II), or (III) or a pharmaceutically acceptable salt or hydrate or solvate thereof may be used to inhibit catalytic activity of tyrosine kinases in cancer cells in a dose dependent manner. It will be recognized by one of skill in the art that the optimal quantity and spacing of individual dosages of a compound represented by Formula (I), (II), or (III) will be determined by the nature and extent of the condition being treated, the form, route and site of administration, and the particular patient being treated, and that such optimums can be determined by conventional techniques.
  • the optimal course of treatment for example, the number of doses of a compound represented by Formula (I), (II), or (III) given per day for a defined number of days, can be ascertained by those skilled in the art using conventional course of treatment determination tests.
  • the present disclosure also provides methods of inhibiting protein kinase activity of tyrosine kinases which may comprise administering to a mammal in need thereof, a therapeutically effective amount of a compound of Formula (I), (II), or (III).
  • the term "therapeutically effective amount” refers to the amount of an active compound or
  • HOU03:1125151 pharmaceutical agent that elicits the desired biological or medicinal response in a tissue, system, animal or human.
  • the methods of the present disclosure may be useful in inhibiting tyrosine kinases of the Eph family of receptors.
  • compositions of the present disclosure may be used to treat a proliferative disease, comprising administering to a mammal in need thereof, a therapeutically effective amount of a compound of Formula (I), (II), or (III).
  • the proliferative disease may be cancer.
  • the design, synthesis, and preliminary results from the in-vitro testing of compounds designed as inhibitors of ephrin kinase, specifically ephrin A4 are hereinafter described.
  • the design resulted from the in-silico screening of several targeted libraries via docking to a homology model of ephrin A4 constructed from the nearly identical ephrin A2 crystal structure, followed by post-filtering using several criteria. This filtering included consideration of the binding mode, docking score, and consensus docking score. This resulted in several structural cores and two of those cores were selected based on synthetic feasibility.
  • Several compounds were synthesized based on the core and structures identified by in-silico screening.
  • the design of ephrin inhibitors provided herein includes the selection of screening compounds, in-silico screening via docking, analysis of docking results, preliminary selection of compounds with a degree of specificity toward ephrin A4 kinase, and final selection of candidate compounds.
  • HOU03:1125151 written to analyze the data and provide consensus information.
  • a flowchart showing this strategy is shown in Figure 2.
  • the analysis included identifying hydrogen bonding elements within each docking configuration for each ligand and comparing those against the specific areas of the receptor site. Interactions with the NH hydrogen of Met88 and Carbonyl oxygen of Met88 were mandated and those compounds within a particular distance were flagged and the combination of elements was used as a filter for the binding mode. This procedure was followed for docked configurations determined for each of the compounds in the screening libraries. Several candidate compounds were identified in this manner. After restricting to a particular binding mode, the above mentioned filters were then applied in the order of docking score then consensus score. This computational strategy indicated that compounds based on a Imidazo[l,2-a]pyrazine and Imidogen, 4-pyrimidinyl- cores may be effective for inhibition of ephrin kinase.
  • Figure 3 illustrates a synthesis scheme for preparation of one example of a composition of the present disclosure.
  • 4,6-dichloropyrimidine (0.59g, 4 mmol) is dissolved with 2 g of N-(2-methoxyphenyl)-3-aminobenzenesulfonamide (4 mmol) in 15 ml ethanol, then added 1.75 ml DIEA (10 mmol). Reaction in under reflux for 2 hr and cooled down to ambient temperature.
  • Figure 4 illustrates a general synthesis scheme for the preparation of one example of a composition of the present disclosure. Examples of these compositions are hereinafter classified as LG2-#. All commercial reagents were used as received. IH and 13C NMR and 2D-NMR spectra were recorded at ambient temperature using a 600 MHz Bruker
  • UltrashieldTMplus spectrometer The chemical shifts are reported in ⁇ values (ppm) relative to an internal reference of tetramethylsilane (TMS).
  • Mass spectra were obtained from Applied Biosystems QTRAP LC/MS/MS system (electrospray, positive mode). All reactions were carried out in dry glassware and were protected from atmospheric moisture. Thin-layer chromatography (TLC) was performed on a Merck TLC aluminum sheet (silica gel 60 F254). Preparative separations were performed on RediSepTM flash columns under ISCO CombiFlash® CompanionTM system. Microwaved synthesis was performed on CEM ExplorerPLS® system, and Discover® platform.
  • Figure 5 illustrates a synthesis scheme for LG2-9 and LG2-13.
  • a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (2.02 g, 7.29 mmol), p-anisidine (4.30 g, 34.91 mmol), and N,N-diisopropylethylamine (6.6 ml, 37.88 mmol) in CF3CH2OH (25 ml) was heated at 90 0 C under microwave irradiation for 5 hours.
  • LG2-13 synthesis to a solution of LG2-9 (98 mg, 0.307 mmol), 3-(4,4,5,5- tetramethyl-l,3,2-dioxaborolan-2-yl)-benzamide (116 mg, 0.469 mmol, 1.5 equiv.), and
  • Tetrakis(triphenylphosphine) palladium(0) [Pd(PPh3)4, 41 mg, 0.035 mmol) in THF (2.0 ml) was added 1.0 ml of aqueous 1 N K2CO3 solution.
  • the resultant mixture was heated at 160 0 C under microwave irradiation for 10 min.
  • the mixture was diluted with EtOAc (15 ml), and the organic phase was separated out. After removal of solvent, the residue was subjected to flash column chromatography on silica gel (elution with CH2C12-MeOH) to give LG2-13 as a white solid (67 mg, 61%).
  • Figure 6 illustrates a synthesis scheme for LG2-3 and LG2-7.
  • a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (318 mg, 1.0 mmol), 4-phenoxyaniline (0.97 g, 5.2 mmol), and N,N-diisopropylethylamine (0.95 ml, 5.4 mmol) in CF3CH2OH (5.4 ml) was heated at 90 0 C under microwave irradiation for 5 hours.
  • LG2-7 For synthesis of LG2-7, to a solution of LG2-3 (70 mg, 0.183 mmol), 5-(4,4,5,5- tetramethyl-l,3,2-dioxaborolan-2-yl)-lH-indole (67 mg, 0.275 mmol, 1.5 equiv.), and Tetrakis(triphenylphosphine)-palladium(0) (25 mg, 0.022 mmol) in THF (2.0 ml) was added 1.0 ml of aqueous 1 N K2CO3 solution. The resultant mixture was heated at 160 0 C under microwave irradiation for 10 min. The mixture was diluted with EtOAc (15 ml), and the organic phase was separated out. After removal of solvent, the residue was subjected to flash column chromatography on silica gel (elution with CH2C12 -MeOH) to yield LG2-7 as a
  • Figure 7 illustrates a synthesis scheme for LG2-11.
  • LG2-3 80 mg, 0.209 mmol
  • N-(2-dimethylaminoethyl)-4-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)- benzamide 100 mg, 0.314 mmol, 1.5 equiv.
  • Tetrakis(triphenylphosphine)-palladium(0) 28 mg, 0.024 mmol
  • THF 2.0 ml
  • the resultant mixture was heated at 160 0 C under microwave irradiation for 10 min.
  • Figure 8 illustrates a synthesis scheme for LG2-73 and LG2-75.
  • a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (512 mg, 1.84 mmol), 3,4,5- trimethoxyaniline (1.66 g, 9.1 mmol), and N,N-diisopropylethylamine (1.65 ml, 9.5 mmol) in CF3CH2OH (6.5 ml) was heated at 90 0 C under microwave irradiation for 5 hours.
  • Figure 9 illustrates a synthesis scheme for LG2-87 and LG2-89.
  • a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (0.5 g, 1.84 mmol), 5-aminoindole (1.21 g, 9.2 mmol), and N,N-diisopropylethylamine (1.65 ml, 9.5 mmol) in CF3CH2OH (6.5 ml) was heated at 90°C under microwave irradiation for 5 hours.
  • LG2-89 For preparation of LG2-89, to a solution of LG2-87 (25 mg, 0.076 mmol), 2-(l- naphthylene)-4,4,5,5-tetramethyl-l,3,2-dioxaborolane (39 mg, 0.152 mmol, 2.0 equiv.), and Tetrakis(triphenylphosphine)-palladium(0) (11 mg, 0.0096 mmol) in THF (1.0 ml) was added 0.5 ml of aqueous 1 N K2CO3 solution. The resultant mixture was heated at 160 0 C under microwave irradiation for 10 min. The mixture was diluted with EtOAc (10 ml), and the organic phase was separated out.
  • Figure 10 illustrates a synthesis scheme for LG2-60 and LG2-65.
  • a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (1.0 g, 3.64 mmol), 4-isopropylaniline (2.46 g, 18.22 mmol), and N,N-diisopropylethylamine (3.3 ml, 18.94 mmol) in CF3CH2OH (12.5 ml) was heated at 90 0 C under microwave irradiation for 5 hours.
  • LG2-65 To synthesize LG2-65, to a solution of LG2-60 (83 mg, 0.25 mmol), 3-(4,4,5,5- tetramethyl-l,3,2-dioxaborolan-2-yl)-phenol (83 mg, 0.375 mmol, 1.5 equiv.), and Tetrakis(triphenylphosphine)-palladium(0) (35 mg, 0.03 mmol) in THF (2.5 ml) was added 1.2 ml of aqueous 1 N K2CO3 solution. The resultant mixture was heated at 160 0 C under microwave irradiation for 10 min. The mixture was diluted with EtOAc (20 ml), and the organic phase was separated out.
  • Figure 11 illustrates a synthesis scheme for LG2-55 and LG2-62.
  • a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (1.0 g, 3.64 mmol), aniline (1.70 g, 18.22 mmol), andN,N-diisopropylethylamine (3.3 ml, 18.94 mmol) in CF3CH2OH (12.5 ml) was heated at 90 0 C under microwave irradiation for 5 hours.
  • LG2-62 To synthesize LG2-62, to a solution of LG2-55 (31 mg, 0.107 mmol), 2-methoxy-4- (4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)-phenol (40 mg, 0.161 mmol, 1.5 equiv.), and Tetrakis(triphenylphosphine)-palladium(0) (15 mg, 0.013 mmol) in THF (1.0 ml) was added 0.5 ml of aqueous 1 N K2CO3 solution. The resultant mixture was heated at 160 °C under microwave irradiation for 10 min. The mixture was diluted with EtOAc (15 ml), and the organic phase was separated out.
  • Figure 12 illustrates a synthesis scheme for LG2-85.
  • LG2-55 32 mg, 0.110 mmol
  • 2-(3-Methoxyphenyl)-4,4,5,5-tetramethyl-l,3,2-dioxaborolane 39 mg, 0.166 mmol, 1.5 equiv.
  • Tetrakis(triphenylphosphine)-palladium(0) 11 mg, 0.010 mmol
  • THF 1.0 ml
  • the resultant mixture was heated at 160 0 C under microwave irradiation for 10 min.
  • the mixture was diluted with EtOAc, and the organic phase was separated out.
  • Figure 13 illustrates a synthesis scheme for LG2-77 and LG2-81.
  • a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (0.52 g, 1.84 mmol), 4-morpholinoaniline (1.64 g, 9.1 mmol), and N,N-diisopropylethylamine (1.65 ml) in CF3CH2OH (6.5 ml) was heated at 90°C under microwave irradiation for 5 hours. The volatiles were evaporated, and the residue was subjected to flash column chromatography on silica gel (elution with hexane-
  • LG2-81 To synthesize LG2-81, to a solution of LG2-77 (34 mg, 0.091 mmol), l-[3-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2- yl)phenyl]-ethanone (33 mg, 0.136 mmol, 1.5 equiv.) and Tetrakis(triphenylphosphine)- palladium(O) (10 mg, 0.013 mmol) in THF (1.0 ml) was added 0.5 ml of aqueous 1 N K2CO3 solution. The resultant mixture was heated at 160 0 C under microwave irradiation for 10 min. The mixture was diluted with EtOAc, and the organic phase was separated out.
  • Figure 14 shows a synthesis scheme for LG2-95 and LG2-98.
  • a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (0.52 g, 1.84 mmol), thiophene-2- methylamine (1.04 g, 9.2 mmol), and N,N-diisopropylethylamine (1.65 ml) in CF3CH2OH (6.5 ml) was heated at 90 0 C under microwave irradiation for 5 hours.
  • LG2-98 To synthesize LG2-98, to a solution of LG2-95 (34 mg, 0.110 mmol), N-(2- hydroxyethyl)-3-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)-benzamide (63 mg, 0.203 mmol, 1.85 equiv.) and Tetrakis(triphenylphosphine)-palladium(0) (147 mg, 0.127 mmol,
  • Figure 15 shows a synthesis scheme for N-(2-hydroxyethyl)-3-(4,4,5,5-tetramethyl- l,3,2-dioxaborolan-2-yl)-benzamide.
  • 3-(4,4,5,5-tetramethyl-l,3,2- dioxaborolan-2-yl)-benzoic acid (1.15 g, 4.63 mmol) and HBTU (1.52 g, 4.03 mmol) in anhydrous DMF (20 ml) was added N,N-diisopropylethylamine (1.2 ml, 6.71 mmol). The resultant solution was stirred at room temperature for 45 min.
  • Figure 16 shows synthesis of LG2-91 and LG2-96.
  • a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (0.52 g, 1.84 mmol), 4-fluorobenzylamine (1.15 g, 9.2 mmol), and N,N-diisopropylethylamine (1.65 ml) in CF3CH2OH (6.5 ml) was heated at 90 0 C under microwave irradiation for 5 hours. The volatiles were evaporated, and the residue was subjected to flash column chromatography on silica gel (elution with hexane-EtOAc) to yield LG2-91 as a pale yellow solid (143 mg, 24 %).
  • LG2-96 To synthesize LG2-96, to a solution of LG2-91 (39 mg, 0.121 mmol), N-(2- hydroxyethyl)-3-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)-benzamide (99 mg, 0.340 mmol, 2.8 equiv.) and Tetrakis(triphenylphosphine)-palladium(0) (49 mg, 0.042 mmol) in THF (1.0 ml) was added 0.5 ml of aqueous 1 N K2CO3 solution. The resultant mixture was
  • HOU03:1125151 heated at 160 0 C under microwave irradiation for 10 min.
  • the mixture was diluted with EtOAc, and the organic phase was separated out. After removal of solvent, the residue was subjected to flash column chromatography on silica gel (elution with CH2C12-MeOH) to yield LG2-96 as a pale brown foam (37 mg, 73%).
  • Figure 17 shows a synthesis scheme for LG2-101 and LG2-102.
  • a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (0.52 g, 1.84 mmol), aminomethylpropane (0.65 g, 9.2 mmol), and N,N-diisopropylethylamine (1.65 ml) in CF3CH2OH (6.5 ml) was heated at 90 0 C under microwave irradiation for 5 hours. The volatiles were evaporated, and the residue was subjected to flash column chromatography on silica gel (elution with hexane- EtOAc) to yield LG2-101 as a pale yellow solid (120 mg, 24 %).
  • LG2-102 To prepare LG2-102, to a solution of LG2-101 (32 mg, 0.119 mmol), 2-(3,5- dimethoxyphenyl)-(4,4,5,5-tetramethyl-l,3,2-dioxaborolane (47 mg, 0.178 mmol, 1.5 equiv.) and Tetrakis(triphenylphosphine)-palladium(0) (16 mg, 0.013 mmol) in THF (1.0 ml) was added 0.5 ml of aqueous 1 N K2CO3 solution. The resultant mixture was heated at 160 0 C under microwave irradiation for 10 min. The mixture was diluted with EtOAc, and the organic phase was separated out.
  • LG-2 Compounds and HIF-lGFP/DsRFP expression and WST-I test in C6#4 cells.
  • C6#4 cells were transfer into in 96 well Costar plates 20xl0 ⁇ 3 cell/well in 100 ⁇ l/well media and cultivated for 24 hours, than cultural media was replaced with 100 ⁇ l/well media, containing the drugs in different concentrations with logarithmic dilutions from 200 ⁇ M to 0.1 ⁇ M and cultivated for additional 24 hours.
  • TECAN SAFIRE plate reader
  • Excitation wavelength 484 nm
  • Emission wavelength 510 nm.
  • Cell viability (proliferation) was estimated by and WST-I 4h testing.
  • Figure 18- Figure 30 show the results of testing for HIF-I expression (top) and viability (bottom).
  • Table 2 shows that the influence of LG2-compounds on HIF-I is dependent upon GFP expression.
  • LG2-13 doesn't have cytotoxicity, but may be involved in HIF-I.
  • EC 50 G/R 7.95.
  • LG2-65 doesn't influence on C6#4 cells at concentration 200 ⁇ M.
  • Table 3 shows a summary of the effects of the different compound on C6#4 cells EC-50.
  • Table 4 shows a summary of the average effects of LG2-compounds in terms of GFP/RFP expression and WST-testing.

Abstract

Compositions for inhibiting the catalytic activity of tyrosine kinases comprising compounds represented by Formulas (I), (II), and (III). Methods for treating proliferative diseases comprising administering a therapeutically effective amount of the above compositions.

Description

COMPOSITIONS AND METHODS FOR INHIBITION OF TYROSINE KINASES CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Application Serial No. 60/824,501 filed on September 5, 2006, which is incorporated by reference. BACKGROUND
The present disclosure, according to specific example embodiments, generally relates to tyrosine kinases. In particular, the present disclosure relates to compositions useful in inhibiting catalytic activity of tyrosine kinases and associated methods of use.
Tyrosine kinases are a class of enzymes, which catalyze the transfer of the terminal phosphate of adenosine triphosphate to the phenolic hydroxyl group of a tyrosine residue present in the target protein. Tyrosine kinases play a critical role in signal transduction for several cellular functions including cell proliferation, angiogenesis, carcinogenesis, apoptosis, and cell differentiation. Therefore inhibitors of these enzymes would be useful for the treatment or prevention of proliferative diseases which are dependent on these enzymes. Strong epidemiologic evidence suggests that the overexpression or activation of receptor protein tyrosine kinases leading to constitutive mitogenic signaling is an important factor in a growing number of human malignancies, such as cancer. Tyrosine kinases that have been implicated in these processes include AbI, CDK's, EGF, EMT, FGF, FAK, Flk-1/KDR, HER- 2, IGF-IR, IR, LCK, MET, PDGF, Src, ephrins, and VEGF. Ephrin receptors represent the largest family of receptor tyrosine kinases and have emerged as essential regulators of angiogenesis. Angiogenesis refers to the formation of new capillaries from existing vasculature and it is a crucial element in tumor growth. It is required for nourishment and removal of metabolic waste. If neovascularization is insufficient to support the growth and development of tumors, then hypoxia may arise. Tumors with low oxygenation are generally associated with poor prognosis. A key element in the hypoxic response is the hypoxia induced factor (HIF). HIF-I is a transcription factor that is activated in solid tumors, and is up-regulated along with ephrins and VEGF. As a result of this, ephrins have been described as good targets for anticancer therapies.
HOU03:1125151 FIGURES
Some specific example embodiments of the disclosure may be understood by referring, in part, to the following description and the accompanying drawings.
Figure 1 shows a schematic illustrating one of top scoring compounds bound to the ATP binding pocket of ephrin.
Figure 2 shows a flowchart showing a strategy to analyze the data from in-silico screening.
Figure 3 shows a synthesis scheme for preparation of one example of a composition of the present disclosure. Figure 4 shows a general synthesis scheme for the preparation of one example of a composition of the present disclosure.
Figure 5 shows a synthesis scheme for LG2-9 and LG2-13 compositions of the present disclosure.
Figure 6 shows a synthesis scheme for LG2-3 and LG2-7 compositions of the present disclosure.
Figure 7 shows a synthesis scheme for LG2-11. Figure 8 shows a synthesis scheme for LG2-73 and LG2-75. Figure 9 shows a synthesis scheme for LG2-87 and LG2-89. Figure 10 shows a synthesis scheme for LG2-60 and LG2-65. Figure 11 shows a synthesis scheme for LG2-55 and LG2-62.
Figure 12 shows a synthesis scheme for LG2-85. Figure 13 shows a synthesis scheme for LG2-77 and LG2-81. Figure 14 shows a synthesis scheme for LG2-95 and LG2-98. Figure 15 shows a synthesis scheme for N-(2-hydroxyethyl)-3-(4,4,5,5-tetramethyl- 1 ,3,2-dioxaborolan-2-yl)-benzamide.
Figure 16 shows a synthesis scheme for LG2-91 and LG2-96. Figure 17 shows a synthesis scheme for LG2-101 and LG2-102. Figure 18 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to PX-478. Figure 19 shows the results of testing for HIF-I expression (top) and viability
(bottom) after exposure of C6#4 cells to LG2-7.
HOU03:1125151 Figure 20 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to LG2-11.
Figure 21 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to LG2-13. Figure 22 shows the results of testing for HIF-I expression (top) and viability
(bottom) after exposure of C6#4 cells to LG2-62.
Figure 23 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to LG2-65.
Figure 24 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to LG2-75.
Figure 25 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to LG2-81.
Figure 26 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to LG2-85. Figure 27 shows the results of testing for HEF-I expression (top) and viability
(bottom) after exposure of C6#4 cells to LG2-89.
Figure 28 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to LG2-96.
Figure 29 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to LG2-98.
Figure 30 shows the results of testing for HIF-I expression (top) and viability (bottom) after exposure of C6#4 cells to LG2-102.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
While the present disclosure is susceptible to various modifications and alternative forms, specific example embodiments have been shown in the figures and are herein described in more detail. It should be understood, however, that the description of specific example embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, this disclosure is to cover all modifications and equivalents as illustrated, in part, by the appended claims.
HOU03:1125151 DESCRIPTION
The present disclosure, according to specific example embodiments, generally relates to tyrosine kinases. In particular, the present disclosure relates to compositions useful in inhibiting catalytic activity of tyrosine kinases and associated methods of use. The compositions of the present disclosure may at least partially inhibit catalytic activity of tyrosine kinases. Examples of tyrosine kinases that may be suitable targets for the compositions of the present disclosure include, but are not limited to, receptor tyrosine kinases and cellular tyrosine kinases. Examples of receptor tyrosine kinases include, but are not limited to, Eph receptors, EGF receptors, insulin receptors, IGF receptor-1, Trk A, PDGF receptors, M-CSF receptors, FGR receptors, VEGF receptors. Examples of cellular tyrosine kinases include, but are not limited to, Src, Frk, Btk, Csk, AbI, ZAP70, Fes, Fps, Fak, Jak, Ack, Yes, Fyn, Lyn, Lck, BIk, Hck, Fgr and Yrk.
The compositions of the present disclosure may at least partially inhibit catalytic activity of a tyrosine kinase directly by interacting with the kinase itself; or indirectly, by interacting with another molecule on which the catalytic activity of the kinase is dependent. The compositions of the present disclosure may also inhibit HIF-I expression and HIF-I signal transduction pathways.
In one embodiment, compositions of the present disclosure may comprise a compound of the following Formula (I):
Figure imgf000005_0001
(I).
In another embodiment, compositions of the present disclosure may comprise a compound of the following Formula (II):
HOU03:1125151
Figure imgf000006_0001
(II). In Formula (I) or in Formula (II), Rl may represent a group selected from the following:
Figure imgf000006_0002
The compounds of Formula (I) and (II) may be enantiomers, diastereomers, pharmaceutically acceptable salts, hydrates, prodrugs, or solvates thereof.
HOU03:1125151 In another embodiment, the compositions of the present disclosure may comprise a compound of the following Formula (III):
Figure imgf000007_0001
(III). In Formula (III), Ri may represent a group selected from the following:
Figure imgf000007_0002
HOU03:U25151 In Formula (III), R2 may represent a group selected from the following:
Figure imgf000008_0001
The compounds of Formula (III) may be enantiomers, diastereomers, pharmaceutically acceptable salts, hydrates, prodrugs, or solvates thereof. The compositions of the present disclosure generally may be synthesized using methods known in the art, including for example, suzuki coupling reactions.
The compositions of the present disclosure also may be provided as a pharmaceutical composition comprising a compound of Formula (I), (II), or (III) and a pharmaceutically acceptable carrier. The compositions also may be used in a pharmaceutical composition comprising a compound represented by Formula (I), (II), or (III) in combination with pharmaceutically acceptable carrier and an anti-cancer or cytotoxic agent. In certain embodiments, the anticancer or cytotoxic agent may be chosen from one or more of linomide; inhibitors of integrin αVβ3 function; angiostatin; razoxane; tamoxifen; toremifene; raloxifene; droloxifene; iodoxifene; megestrol acetate; anastrozole; letrozole; borazole; exemestane; flutamide; nilutamide; bicalutamide; cyproterone acetate; gosereline acetate; leuprolide; finasteride; metalloproteinase inhibitors; inhibitors of urokinase plasminogen activator receptor function; growth factor antibodies; growth factor receptor antibodies such as Avastin® (bevacizumab) and Erbitu® (cetuximab); tyrosine kinase inhibitors; serine/threonine kinase inhibitors; methotrexate; 5-fluorouracil; purine; adenosine analogues; cytosine arabinoside; doxorubicin;
HOU03:1125151 daunomycin; epirubicin; idarubicin; mitomycin-C; dactinomycin; mithramycin; cisplatin; carboplatin; nitrogen mustard; melphalan; chlorambucil; busulphan; cyclophosphamide; ifosfamide nitrosoureas; thiotepa; vincristine; Taxol® (pacliatxel); Taxotere® (docetaxel); epothilone analogs; discodermolide analogs; eleutherobin analogs; etoposide; teniposide; amsacrine; topotecan; flavopyridols; biological response modifiers and proteasome inhibitors such as Velcade® (bortezomib).
The compounds represented by Formula (I), (II), or (III) or a pharmaceutically acceptable salt or hydrate or solvate thereof may be administered to a mammal, including a human, to treat cancers of that mammal. The administration method may include, for example, oral or parenteral. As used herein, the term "cancer" refers to an abnormal growth of cells which tend to proliferate in an uncontrolled way, including neoplasms, tumors, and leukemia.
In certain embodiments, the methods of the present disclosure may provide for control of neovascularization of tumor cells using compounds represented by Formula (I), (II), or (III). In these embodiments, the compounds represented by Formula (I), (II), or (III) may bind to a tyrosine kinase, thereby inhibiting its activity. In some embodiments, the angiogenesis of tumor cells may depend on the activation of tyrosine kinases, and thus, inhibition of tyrosine kinases may decrease tumor growth and development.
In certain embodiments, a compound represented by Formula (I), (II), or (III) or a pharmaceutically acceptable salt or hydrate or solvate thereof may be used to inhibit catalytic activity of tyrosine kinases in cancer cells in a dose dependent manner. It will be recognized by one of skill in the art that the optimal quantity and spacing of individual dosages of a compound represented by Formula (I), (II), or (III) will be determined by the nature and extent of the condition being treated, the form, route and site of administration, and the particular patient being treated, and that such optimums can be determined by conventional techniques. Similarly, the optimal course of treatment, for example, the number of doses of a compound represented by Formula (I), (II), or (III) given per day for a defined number of days, can be ascertained by those skilled in the art using conventional course of treatment determination tests. The present disclosure also provides methods of inhibiting protein kinase activity of tyrosine kinases which may comprise administering to a mammal in need thereof, a therapeutically effective amount of a compound of Formula (I), (II), or (III). As used herein, the term "therapeutically effective amount" refers to the amount of an active compound or
HOU03:1125151 pharmaceutical agent that elicits the desired biological or medicinal response in a tissue, system, animal or human. In certain embodiments, the methods of the present disclosure may be useful in inhibiting tyrosine kinases of the Eph family of receptors.
In certain embodiments, the compositions of the present disclosure may be used to treat a proliferative disease, comprising administering to a mammal in need thereof, a therapeutically effective amount of a compound of Formula (I), (II), or (III). In certain embodiments, the proliferative disease may be cancer.
To facilitate a better understanding of the present invention, the following examples of specific embodiments are given. In no way should the following examples be read to limit or define the entire scope of the invention.
EXAMPLES
The design, synthesis, and preliminary results from the in-vitro testing of compounds designed as inhibitors of ephrin kinase, specifically ephrin A4 are hereinafter described. The design resulted from the in-silico screening of several targeted libraries via docking to a homology model of ephrin A4 constructed from the nearly identical ephrin A2 crystal structure, followed by post-filtering using several criteria. This filtering included consideration of the binding mode, docking score, and consensus docking score. This resulted in several structural cores and two of those cores were selected based on synthetic feasibility. Several compounds were synthesized based on the core and structures identified by in-silico screening. These were tested in an ephrin A4 kinase assay and found to have only marginal activity at the lOuM level. Knowledge of a link between hypoxia induced factor- 1 alpha (hifl alpha) and ephrin, led to the same compounds and additional analogs being tested in an assay used to gauge hifl alpha pathway inhibition. In these assays, several compounds were found to inhibit hifl alpha expression in the low uM range that was separate from a much higher general cytotoxicity value.
Structure-Based Design of Ephrin Inhibitors.
Since no crystal structure currently exists for ephA4, the crystal structure of ephA2 (PDB accession code IMQB) was used as a template to construct a homology model. The primary amino acid sequence for human ephA4 was located with the tools available from NCBI (http://www.ncbi.nlm.nih.gov), accession code NP_004429. The sequence was truncated to 615-881 and this region was read in as a raw sequence to Swiss-PDB Viewer. A search for suitable templates, not surprisingly, led to ephB2 (IJPA) and the aforementioned ephA2 structure. A fit was completed to initially align the sequences and prepare for model
HOU03: 1125151 building. Due to the high sequence identity, the alignment did not require any further modification; however, there was a missing structural segment corresponding to the activation loop, which is noted in the paper discussing the crystal structure. This alignment was submitted to the Swiss-Model server and it returned a viable structure to begin design work. Although the sequence is nearly identical, it was not until the homology model was constructed that the extent of differences in the ATP binding site region could be assessed. The crystal structure of ephA2 and the homology model of ephA4 were compared in the region within 5 A of the ANP ligand. In this region, the sequence identity between these two receptors is nearly 100%, with only two residues differing between them. Several commercially available kinase targeted libraries were prepared for in-silico screening and the docking of these libraries led to the identification of several functionalized cores to use as "lead" structures.
The design of ephrin inhibitors provided herein includes the selection of screening compounds, in-silico screening via docking, analysis of docking results, preliminary selection of compounds with a degree of specificity toward ephrin A4 kinase, and final selection of candidate compounds.
Compounds from three vendors: Asinex (Winston-Salem, NC), BioFocus (Saffron Walden, Essex, UK), and LifeChem (Burlington, ON, Canada) were screened in-silico against ephrin A4 via docking of the individual ligands into the receptor binding site. The traditional metric for this type of screening has been the individual docking scores, which aim to capture the binding affinity of the ligand and receptor. Though useful in ranking ligands, the scoring methods are imperfect, so the consensus of several scoring methods (Clark, et al., (2002) J MoI Graph Model 20, 281-95) is generally utilized in the final selection. In the present study, the consensus scoring was completed with the scoring methods provided in the FlexX module within Sybyl 7.1. Over 32,000 compounds were screened in this manner. While compounds with the highest scores were of interest, additional metrics were also considered. One additional element used in the selection of compounds was the evaluation of binding mode. Utilization of specific interactions along with the docking scores has been shown to increase the hit ratio of in-silico screening. Information on these binding interactions was derived from the inhibitor bound crystal structure. An example of such a structure is provided by Figure 1 which is a schematic showing one of top scoring compounds bound to the ATP binding pocket of ephrin. This level of analysis was not available as part of the normal docking interface, so code was
HOU03:1125151 written to analyze the data and provide consensus information. A flowchart showing this strategy is shown in Figure 2. The analysis included identifying hydrogen bonding elements within each docking configuration for each ligand and comparing those against the specific areas of the receptor site. Interactions with the NH hydrogen of Met88 and Carbonyl oxygen of Met88 were mandated and those compounds within a particular distance were flagged and the combination of elements was used as a filter for the binding mode. This procedure was followed for docked configurations determined for each of the compounds in the screening libraries. Several candidate compounds were identified in this manner. After restricting to a particular binding mode, the above mentioned filters were then applied in the order of docking score then consensus score. This computational strategy indicated that compounds based on a Imidazo[l,2-a]pyrazine and Imidogen, 4-pyrimidinyl- cores may be effective for inhibition of ephrin kinase.
Preparation of Ephrin Inhibitors.
Figure 3 illustrates a synthesis scheme for preparation of one example of a composition of the present disclosure. 4,6-dichloropyrimidine (0.59g, 4 mmol) is dissolved with 2 g of N-(2-methoxyphenyl)-3-aminobenzenesulfonamide (4 mmol) in 15 ml ethanol, then added 1.75 ml DIEA (10 mmol). Reaction in under reflux for 2 hr and cooled down to ambient temperature. After evaporating solvent, the crude product was purified by flash chromatography with a linear gradient of hexane and ethyl acetate to give N-(2- methoxyphenyl)-3-(6-Chloro-pyrimidine-4-yl)-benzenesulfonamide (a in Figure 3). Yield 1 g. (71%). MS: 391.1 (M+H);
50 mg (0.13 mmol) N-(2-methoxyphenyl)-3-(6-Chloro-pyrimidine-4-yl)- benzenesulfonamide, 2'-(4,4,5,5-Tetramethyl-l,3,2-dioxaborolan-2-yl)acetanilide (0.13 mmol), 70 mg (0.5 mmol) of potassium carbonate and 10 mg palladium tetrakis triphenylphonsphine (0.01 mmol) was mixed in MeCN/water (1 : 1 ) 4 ml. After fill with argon, the reaction was performed under microwave at 150 oC for 30min. Filter hot reaction solution was filtered and the product (b in Figure 3) was crystallized from the reaction mixture. The pale solid is collected by filtration and washed with water. 50 mg (80%). MS: 490.5 (M+H); IH NMR(DMSO) δ 11.14 (s, IH), 10.01 (s,lH), 8.78 (s, IH), 8.15(s, IH), 8.10 (d, , J= 8.0 Hz, IH), 7.67 (t, J= 8.0 Hz, IH), 7.48 (m,2H), 7.26 (d, J= 8.0 Hz, IH), 7.26 (m, 2H), 7.09(s, 2H), 6.87 (m, 3H), 3.5 (s,3H), 2.07(s,3H). Additional examples of synthesized inhibitors and their corresponding properties are described in Table 1 below.
HOU03:1125151 TABLE 1
8.83 (s, IH), , J= 8.0 Hz, 7.00 (d, IH),
Figure imgf000013_0001
HOU03:1125151 8.68 (s, IH), J= 8.4 Hz, IH), 7.45 (t, J= 7.10(s,
8.24 (d, J= (t, J= 8.0 Hz, (d, J= 8.0 Hz,
8.22 (d, J= 8.4 Hz, (t,lH), 6.87 (m,
Figure imgf000014_0001
HOU03:1125151 8.60(s,lH), IH), 7.91 (d, , J= 8.0 Hz, (t, IH), 3.92 (s,3H),
8.78 (s, IH), 7.79 (t, IH), 3H), 6.70
(s, IH), IH), 7.26 3.50(s,3H).
Figure imgf000015_0001
HOU03:1125151 9.60 (s,lH), IH), 7.8-7.5 (m, 2H),
8.67(s, IH), , J= 8.0 Hz, (t,lH), 3H), 6.70 (m,
8.37 (s, IH), IH), 7.08 (d,
7.79 (d, J= IH), 7.18 (d, J= 8.4 Hz,
Figure imgf000016_0001
HOU03:1125151 8.80 (s, IH), 7.64 (br, IH), 7.03 (t,
8.16 (d, J= IH), 7.24 (t, J= 8.4
Figure imgf000017_0001
HOU03:1125151
Figure imgf000018_0001
HOU03: 1125151
Figure imgf000019_0001
Figure 4 illustrates a general synthesis scheme for the preparation of one example of a composition of the present disclosure. Examples of these compositions are hereinafter classified as LG2-#. All commercial reagents were used as received. IH and 13C NMR and 2D-NMR spectra were recorded at ambient temperature using a 600 MHz Bruker
UltrashieldTMplus spectrometer. The chemical shifts are reported in δ values (ppm) relative to an internal reference of tetramethylsilane (TMS). Mass spectra were obtained from Applied Biosystems QTRAP LC/MS/MS system (electrospray, positive mode). All reactions were carried out in dry glassware and were protected from atmospheric moisture. Thin-layer chromatography (TLC) was performed on a Merck TLC aluminum sheet (silica gel 60 F254). Preparative separations were performed on RediSepTM flash columns under ISCO CombiFlash® CompanionTM system. Microwaved synthesis was performed on CEM ExplorerPLS® system, and Discover® platform.
Figure 5 illustrates a synthesis scheme for LG2-9 and LG2-13. To prepare LG2-9, a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (2.02 g, 7.29 mmol), p-anisidine (4.30 g, 34.91 mmol), and N,N-diisopropylethylamine (6.6 ml, 37.88 mmol) in CF3CH2OH (25 ml) was heated at 90 0C under microwave irradiation for 5 hours. The volatiles were evaporated, and the residue (re-dissolved in CH2C12) was subjected to flash column chromatography on silica gel (elution with hexane-EtOAc) to give LG2-9 as a yellow solid (549 mg, 23 %). ESI- MS: m/z 319 (M+l), 321 (M+2+1); IH NMR (600 MHz, CDC13): δ 7.79 (IH, br. s, NH),
HOU03:1125151 7.70 (2H, d, J= 9.0 Hz), 7.53 (2H, d+s, J= 4.2 Hz), 7.50 (IH, d, J= 4.2 Hz), 6.93 (2H, d, J= 9.0 Hz), 3.82 (3H, s, OCH3); 13C NMR (150.9 MHz, CDC13): δ 155.99, 146.41, 133.60, 132.22, 131.89, 129.23, 121.88, 114.36, 108.82, 98.10, 55.56.
For LG2-13 synthesis, to a solution of LG2-9 (98 mg, 0.307 mmol), 3-(4,4,5,5- tetramethyl-l,3,2-dioxaborolan-2-yl)-benzamide (116 mg, 0.469 mmol, 1.5 equiv.), and
Tetrakis(triphenylphosphine) palladium(0) [Pd(PPh3)4, 41 mg, 0.035 mmol) in THF (2.0 ml) was added 1.0 ml of aqueous 1 N K2CO3 solution. The resultant mixture was heated at 160 0C under microwave irradiation for 10 min. The mixture was diluted with EtOAc (15 ml), and the organic phase was separated out. After removal of solvent, the residue was subjected to flash column chromatography on silica gel (elution with CH2C12-MeOH) to give LG2-13 as a white solid (67 mg, 61%). ESI-MS: m/z 360 (M+l); IH NMR (600 MHz, MeOH-d4): δ 8.14 (IH, s), 7.97 (IH, d, J= 7.8 Hz), 7.89 (IH, d, J= 4.8 Hz), 7.84 (IH, d, J= 7.8 Hz), 7.77 (IH, s), 7.72 (2H, d, J= 6.6 Hz), 7.68 (IH, t, J= 7.8 Hz), 7.42 (IH, d, J= 4.8 Hz), 6.95 (2H, d, J= 6.6 Hz), 3.81 (3H, s, OCH3); 13C NMR (150.9 MHz, CDC13-MeOH-d4 85:15 v/v): δ 169.59, 155.80, 146.78, 134.51, 133.57, 132.09, 131.15, 130.65, 129.50, 128.92, 128.66, 127.66, 127.55, 127.23, 121.95, 114.21, 108.62, 55.43.
Figure 6 illustrates a synthesis scheme for LG2-3 and LG2-7. To prepare LG2-3, a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (318 mg, 1.0 mmol), 4-phenoxyaniline (0.97 g, 5.2 mmol), and N,N-diisopropylethylamine (0.95 ml, 5.4 mmol) in CF3CH2OH (5.4 ml) was heated at 90 0C under microwave irradiation for 5 hours. The volatiles were evaporated, and the residue (re-dissolved in CH2C12) was subjected to flash column chromatography on silica gel (elution with hexane-EtOAc) to yield LG2-3 as a pale brown solid (70 mg, 18 %). ESI-MS: m/z 381 (M+l), 383 (M+2+1); IH NMR (600 MHz, CDC13): δ 7.87 (IH, br. s), 7.80 (2H, d, J= 9.0 Hz), 7.56 (IH, d, J= 4.8 Hz), 7.55 (IH, s), 7.54 (IH, d, J= 4.8 Hz), 7.32 (2H, m), 7.09-7.01 (5H, m); 13C NMR (150.9 MHz, CDC13): δ 157.81, 152.68, 146.12, 134.53, 133.75, 132.32, 129.70, 129.08, 122.93, 121.39, 119.89, 118.35, 109.15, 98.23. For synthesis of LG2-7, to a solution of LG2-3 (70 mg, 0.183 mmol), 5-(4,4,5,5- tetramethyl-l,3,2-dioxaborolan-2-yl)-lH-indole (67 mg, 0.275 mmol, 1.5 equiv.), and Tetrakis(triphenylphosphine)-palladium(0) (25 mg, 0.022 mmol) in THF (2.0 ml) was added 1.0 ml of aqueous 1 N K2CO3 solution. The resultant mixture was heated at 160 0C under microwave irradiation for 10 min. The mixture was diluted with EtOAc (15 ml), and the organic phase was separated out. After removal of solvent, the residue was subjected to flash column chromatography on silica gel (elution with CH2C12 -MeOH) to yield LG2-7 as a
HOU03:1125151 white solid (46 mg, 61%). ESI-MS: m/z 418 (M+l); IH NMR (600 MHz, CDCB): δ 8.33 (IH, s), 7.99 (IH, s), 7.84 (3H, m), 7.76 (IH, d, J= 4.8 Hz), 7.63 (IH, s), 7.56 (IH, d, J= 7.8 Hz), 7.45 (IH, d, J= 4.8 Hz), 7.38 (IH, dd, J= 2.4, 8.4 Hz), 7.34-7.31 (3H, m), 7.09-7.06 (3H, m), 7.03 (2H, m), 6.66 (IH, m); 13C NMR (150.9 MHz, CDC13): δ 152.28, 146.66, 135.82, 135.15, 130.48, 130.09, 129.66, 128.44, 128.22, 125.49, 122.79, 122.50, 121.23, 120.91, 120.00, 119.89, 118.23, 111.90, 109.48, 103.13.
Figure 7 illustrates a synthesis scheme for LG2-11. To a solution of LG2-3 (80 mg, 0.209 mmol), N-(2-dimethylaminoethyl)-4-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)- benzamide (100 mg, 0.314 mmol, 1.5 equiv.), and Tetrakis(triphenylphosphine)-palladium(0) (28 mg, 0.024 mmol) in THF (2.0 ml) was added 1.0 ml of aqueous 1 N K2CO3 solution. The resultant mixture was heated at 160 0C under microwave irradiation for 10 min. The mixture was diluted with EtOAc (15 ml), and the organic phase was separated out. After removal of solvent, the residue was subjected to flash column chromatography on silica gel (elution with CH2C12-MeOH) to furnish LG2-11 as a pale yellow foam (85 mg, 82%). ESI- MS: m/z 493 (M+l); IH NMR (600 MHz, CDC13): δ 8.13 (IH, br. s, NH), 7.98 (2H, d, J= 8.4 Hz), 7.82 (2H, d, J= 9.0 Hz), 7.70 (IH, d, J= 4.8 Hz), 7.67 (IH, s), 7.64 (2H, d, J= 8.4 Hz), 7.49 (IH, d, J= 4.8 Hz), 7.31 (2H, m), 7.12 (IH, br. s, NH), 7.08-7.00 (5H, m), 3.58 (2H, dd, J= 10.8, 5.4 Hz), 2.58 (2H, t, J= 6.0 Hz), 2.32 (6H, s); 13C NMR (150.9 MHz, CDC13): δ 166.63, 157.87, 152.50, 146.77, 134.84, 134.55, 134.04, 131.43, 131.36, 129.69, 129.00, 128.13, 127.85, 127.79, 122.88, 121.34, 119.94, 118.28, 109.07, 57.84, 45.14, 37.19.
Figure 8 illustrates a synthesis scheme for LG2-73 and LG2-75. To prepare LG2-73, a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (512 mg, 1.84 mmol), 3,4,5- trimethoxyaniline (1.66 g, 9.1 mmol), and N,N-diisopropylethylamine (1.65 ml, 9.5 mmol) in CF3CH2OH (6.5 ml) was heated at 90 0C under microwave irradiation for 5 hours. The volatiles were evaporated, and the residue was subjected to flash column chromatography on silica gel (elution with hexane-EtOAc) to yield LG2-73 as a pale yellow foam (126 mg, 18 %). ESI-MS: m/z 379 (M+l), 381 (M+2+1); IH NMR (600 MHz, CDC13): δ 7.89 (IH, s, NH), 7.61 (IH, d, J= 4.2 Hz), 7.58 (IH, s), 7.57 (IH d, J= 4.2 Hz), 7.19 (2H, s), 3.94 (6H, s), 3.87 (3H, s). For preparation of LG2-75, to a solution of LG2-73 (30 mg, 0.079 mmol), l-[3-
(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)phenyl]-ethanone (29 mg, 0.118 mmol, 1.5 equiv.), and Tetrakis(triphenylphosphine)-palladium(0) (11 mg, 0.0096 mmol) in THF (0.8 ml) was added 0.4 ml of aqueous 1 N K2CO3 solution. The resultant mixture was heated at
HOU03:1125151 160 0C under microwave irradiation for 10 min. The mixture was diluted with EtOAc (10 ml), and the organic phase was separated out. After removal of solvent, the residue was subjected to flash column chromatography on silica gel (elution with hexane-EtOAc) to yield LG2-75 as a white foam (35 mg). ESI-MS: m/z 419 (M+l); IH NMR (600 MHz, CDC13): δ 8.18 (IH, s), 8.04 (IH, d, J= 7.8 Hz), 7.99 (IH, s), 7.78 (IH, d, J= 7.8 Hz), 7.70 (IH, s), 7.69 (IH, d, J= 4.8 Hz), 7.66 (IH, t, J= 6.8 Hz), 7.52 (IH, d, J= 4.8 Hz), 7.21 (2H, s), 3.92 (6H, s), 3.85 (3H, s), 2.69 (3H, s); 13C NMR (150.9 MHz, CDC13): δ 197.41, 153.43, 146.73, 138.11, 135.32, 133.93, 133.90, 132.36, 132.15, 132.08, 131.33, 129.74, 129.13, 129.07, 128.61, 128.56, 127.56, 108.95, 97.43, 61.05, 56.17, 26.78. Figure 9 illustrates a synthesis scheme for LG2-87 and LG2-89. To prepare LG2-87, a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (0.5 g, 1.84 mmol), 5-aminoindole (1.21 g, 9.2 mmol), and N,N-diisopropylethylamine (1.65 ml, 9.5 mmol) in CF3CH2OH (6.5 ml) was heated at 90°C under microwave irradiation for 5 hours. The volatiles were evaporated, and the residue was subjected to flash column chromatography on silica gel (elution with CH2C12-MeOH) to yield LG2-87 as a white solid (35 mg, 6 %). ESI-MS: m/z 328 (M+l), 330 (M+2+1); IH NMR (600 MHz, CDC13-MeOH-d4 85:15 v/v): δ 8.07 (IH, d, J= 1.8 Hz), 7.56 (IH, s), 7.55 (IH, d, J= 4.8 Hz), 7.51 (IH, d, J= 4.8 Hz), 7.43 (IH, d, J= 8.4 Hz), 7.38 (IH, dd, J= 1.8, 9.0 Hz), 7.25 (IH, d, J= 3.0 Hz), 6.52 (IH, d, J= 3.0 Hz); 13C NMR (150.9 MHz, CDC13-MeOH-d4 85:15 v/v): δ 147.21, 134.05, 133.79, 131.96, 130.71, 129.62, 128.45, 125.73, 117.11, 113.39, 111.77, 108.66, 102.08, 98.64.
For preparation of LG2-89, to a solution of LG2-87 (25 mg, 0.076 mmol), 2-(l- naphthylene)-4,4,5,5-tetramethyl-l,3,2-dioxaborolane (39 mg, 0.152 mmol, 2.0 equiv.), and Tetrakis(triphenylphosphine)-palladium(0) (11 mg, 0.0096 mmol) in THF (1.0 ml) was added 0.5 ml of aqueous 1 N K2CO3 solution. The resultant mixture was heated at 160 0C under microwave irradiation for 10 min. The mixture was diluted with EtOAc (10 ml), and the organic phase was separated out. After removal of solvent, the residue was subjected to flash column chromatography on silica gel (elution with hexane-EtOAc) to yield LG2-89 as a white foam (33 mg). ESI-MS: m/z 376 (M+l); IH NMR (600 MHz, CDC13): δ 8.23 (IH, s), 8.18 (IH, br .s), 8.11 (IH, s), 8.02 (IH, br. s), 7.98 (IH, d, J= 7.8 Hz), 7.73 (IH, s), 7.62 (3H, m), 7.57 (IH, t, J= 7.2 Hz), 7.52 (IH, d, J= 8.4 Hz), 7.49 (IH, t, J= 7.8 Hz), 7.42 (IH, d, J= 9.0 Hz), 7.39 (IH, d, J= 4.2 Hz), 7.23 (IH, s), 7.13 (IH, d, J= 4.2 Hz), 6.59 (IH, s); 13C NMR (150.9 MHz, CDC13): δ 147.36, 133.91, 133.84, 132.91, 132.22, 131.98, 131.78,
HOU03:1125151 129.94, 129.10, 128.70, 128.63, 128.32, 127.13, 126.58, 126.51, 125.61, 125.49, 125.20, 124.93, 117.03, 112.68, 111.27, 109.27, 103.01.
Figure 10 illustrates a synthesis scheme for LG2-60 and LG2-65. To prepare LG2-60, a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (1.0 g, 3.64 mmol), 4-isopropylaniline (2.46 g, 18.22 mmol), and N,N-diisopropylethylamine (3.3 ml, 18.94 mmol) in CF3CH2OH (12.5 ml) was heated at 900C under microwave irradiation for 5 hours. The volatiles were evaporated, and the residue was subjected to flash column chromatography on silica gel (elution with hexane-EtOAc) to yield LG2-60 as a brown gel (315 mg, 26 %). ESI-MS: m/z 330 (M+l), 333 (M+2+1); IH NMR (600 MHz, CDC13): δ 7.88 (IH, s), 7.72 (2H, d, J= 8.4 Hz), 7.56 (IH, d, J= 4.2 Hz), 7.54 (IH, s), 7.52 (IH, d, J= 4.2 Hz), 7.25 (2H, d, J= 8.4 Hz), 2.91 (IH, m), 1.26 (6H, d, J= 6.6 Hz); 13C NMR (150.9 MHz, CDC13): δ 146.24, 144.12, 136.46, 133.82, 132.23, 129.22, 127.00, 120.05, 108.99, 98.15, 33.63, 24.09.
To synthesize LG2-65, to a solution of LG2-60 (83 mg, 0.25 mmol), 3-(4,4,5,5- tetramethyl-l,3,2-dioxaborolan-2-yl)-phenol (83 mg, 0.375 mmol, 1.5 equiv.), and Tetrakis(triphenylphosphine)-palladium(0) (35 mg, 0.03 mmol) in THF (2.5 ml) was added 1.2 ml of aqueous 1 N K2CO3 solution. The resultant mixture was heated at 1600C under microwave irradiation for 10 min. The mixture was diluted with EtOAc (20 ml), and the organic phase was separated out. After removal of solvent, the residue was redissolved in dichloromethane, and the resultant white solids were collected to yield LG2-65 as a white solid (44 mg, 51%). ESI-MS: m/z 345 (M+l); IH NMR (600 MHz, CDC13-MeOH-d4 85:15 v/v): δ 7.85 (IH, d, J= 4.8 Hz), 7.74 (2H, d, J= 8.4 Hz), 7.65 (IH, s), 7.43 (IH, d, J= 4.8 Hz), 7.38 (IH, t, J= 7.8 Hz), 7.25 (2H, d, J= 8.4 Hz), 7.08 (IH, d, J= 7.2 Hz), 7.03 (IH, br. s), 6.91 (IH, dd, J= 1.8, 8.4 Hz), 2.91 (IH, m), 1.27 (6H, d, J= 7.2 Hz); 13C NMR (150.9 MHz, CDC13-MeOH-d4 85:15 v/v): δ 157.87, 146.50, 143.97, 136.83, 133.20, 130.29, 130.00, 129.12, 128.92, 128.20, 126.60, 120.28, 119.05, 115.82, 114.70, 109.24, 33.55, 23.50.
Figure 11 illustrates a synthesis scheme for LG2-55 and LG2-62. To prepare LG2-55, a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (1.0 g, 3.64 mmol), aniline (1.70 g, 18.22 mmol), andN,N-diisopropylethylamine (3.3 ml, 18.94 mmol) in CF3CH2OH (12.5 ml) was heated at 900C under microwave irradiation for 5 hours. The volatiles were evaporated, and the residue was subjected to flash column chromatography on silica gel (elution with hexane- EtOAc) to yield LG2-55 as a white crystalline solid (109 mg, 10 %). ESI-MS: m/z 289 (M+l), 291 (M+2+1); IH NMR (600 MHz, CDC13): δ 7.94 (IH, s, NH), 7.84 (2H, d, J= 8.4 Hz), 7.58 (IH, d, J= 4.2 Hz), 7.55 (IH, s), 7.54 (IH, d, J= 4.2 Hz), 7.39 (2H, t, J= 7.8 Hz),
HOU03:1125151 7.10 (IH, t, J= 7.8 Hz); 13C NMR (150.9 MHz, CDC13): δ 146.09, 138.90, 133.80, 132.31, 129.08 (3 x C), 123.27, 119.65 (2 x C), 109.25, 98.21.
To synthesize LG2-62, to a solution of LG2-55 (31 mg, 0.107 mmol), 2-methoxy-4- (4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)-phenol (40 mg, 0.161 mmol, 1.5 equiv.), and Tetrakis(triphenylphosphine)-palladium(0) (15 mg, 0.013 mmol) in THF (1.0 ml) was added 0.5 ml of aqueous 1 N K2CO3 solution. The resultant mixture was heated at 160 °C under microwave irradiation for 10 min. The mixture was diluted with EtOAc (15 ml), and the organic phase was separated out. After removal of solvent, the residue was subjected to flash column chromatography on silica gel (elution with CH2C12-MeOH) to yield LG2-62 as a white solid (19 mg, 54%). ESI-MS: m/z 333 (M+l); IH NMR (600 MHz, CDC13): δ 8.03
(IH, s, NH), 7.87 (2H, d, J= 7.8 Hz), 7.67 (IH, d, J= 4.8 Hz), 7.57 (IH, s), 7.48 (IH, d, J= 4.8 Hz), 7.39 (2H, t, J= 7.8 Hz), 7.09 (IH, t, J= 7.8 Hz), 7.08 (2H, s), 7.01 (IH, s), 5.83 (IH, s, OH), 3.97 (3H, s, OCH3); 13C NMR (150.9 MHz, CDC13): δ 148.98, 147.12, 146.64, 146.38, 139.32, 130.45, 129.07, 128.46, 122.98, 121.69, 120.33, 119.56, 115.20, 110.92, 109.31, 56.18.
Figure 12 illustrates a synthesis scheme for LG2-85. To a solution of LG2-55 (32 mg, 0.110 mmol), 2-(3-Methoxyphenyl)-4,4,5,5-tetramethyl-l,3,2-dioxaborolane (39 mg, 0.166 mmol, 1.5 equiv.), and Tetrakis(triphenylphosphine)-palladium(0) (11 mg, 0.010 mmol) in THF (1.0 ml) was added 0.5 ml of aqueous 1 N K2CO3 solution. The resultant mixture was heated at 160 0C under microwave irradiation for 10 min. The mixture was diluted with EtOAc, and the organic phase was separated out. After removal of solvent, the residue was subjected to flash column chromatography on silica gel (elution with hexane-EtOAc) to yield LG2-85 as a white foam (32 mg, 91%). ESI-MS: m/z 317 (M+l); IH NMR (600 MHz, CDC13): δ 8.06 (IH, s, NH), 7.87 (2H, d, J= 7.8 Hz), 7.74 (IH, d, J= 4.8 Hz), 7.64 (IH, s), 7.49 (IH, d, J= 4.8 Hz), 7.45 (IH, t, J= 7.8 Hz), 7.39 (2H, t, J= 7.8 Hz), 7.16 (IH, d, J= 7.8 Hz), 7.09 (2H, m), 7.00 (IH, dd, J= 7.8, 3.0 Hz), 3.87 (3H, s); 13C NMR (150.9 MHz, CDC13): δ 160.24, 146.69, 139.27, 133.80, 130.95, 130.42, 129.70, 129.06, 128.59, 123.00, 120.31, 119.59, 114.10, 113.83, 109.44, 55.45.
Figure 13 illustrates a synthesis scheme for LG2-77 and LG2-81. To prepare LG2-77, a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (0.52 g, 1.84 mmol), 4-morpholinoaniline (1.64 g, 9.1 mmol), and N,N-diisopropylethylamine (1.65 ml) in CF3CH2OH (6.5 ml) was heated at 90°C under microwave irradiation for 5 hours. The volatiles were evaporated, and the residue was subjected to flash column chromatography on silica gel (elution with hexane-
HOU03:1125151 EtOAc) to yield LG2-77 as a brown crystalline solid (97 mg, 14 %). ESI-MS: m/z 374 (M+l), 376 (M+2+1); IH NMR (600 MHz, CDC13): δ 7.81 (IH, s, NH), 7.69 (2H, d, J= 9.0 Hz), 7.54 (2H, d+s), 7.50 (IH, d, J= 6.4 Hz), 6.95 (2H, d, J= 9.0 Hz), 3.87 (4H, t, J= 6.4 Hz),
3.14 (4H, t, J= 6.4 Hz); 13C NMR (150.9 MHz, CDC13): δ 147.75, 146.34, 133.81, 132.17, 131.59, 129.28, 121.48, 116.63, 108.75, 98.11, 66.96, 49.96. To synthesize LG2-81, to a solution of LG2-77 (34 mg, 0.091 mmol), l-[3-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2- yl)phenyl]-ethanone (33 mg, 0.136 mmol, 1.5 equiv.) and Tetrakis(triphenylphosphine)- palladium(O) (10 mg, 0.013 mmol) in THF (1.0 ml) was added 0.5 ml of aqueous 1 N K2CO3 solution. The resultant mixture was heated at 160 0C under microwave irradiation for 10 min. The mixture was diluted with EtOAc, and the organic phase was separated out. After removal of solvent, the residue was subjected to flash column chromatography on silica gel (elution with CH2C12-MeOH) to yield LG2-81 as a pale yellow solid (18 mg, 48%). ESI-MS: m/z 414 (M+l); IH NMR (600 MHz, CDC13): δ 8.16 (IH, s, NH), 8.02 (IH, d, J= 7.8 Hz), 7.97 (IH, s), 7.77 (IH, d, J= 7.8 Hz), 7.73 (2H, d, J= 9.0 Hz), 7.67 (IH, s), 7.65 (2H, d+t), 7.48 (lH,d, J= 6.4 Hz), 6.96 (2H, d, J= 9.0 Hz), 3.87 (4H, t, J= 6.4 Hz), 3.14 (4H, t, J= 6.4 Hz), 2.69 (3H, s); 13C NMR (150.9 MHz, CDC13): δ 197.41, 147.63, 146.97, 138.08, 134.00, 132.33, 131.91, 131.22, 129.68, 129.24, 129.21, 128.48, 127.57, 121.43, 116.66, 108.52, 66.97, 50.00, 26.77.
Figure 14 shows a synthesis scheme for LG2-95 and LG2-98. To prepare LG2-95, a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (0.52 g, 1.84 mmol), thiophene-2- methylamine (1.04 g, 9.2 mmol), and N,N-diisopropylethylamine (1.65 ml) in CF3CH2OH (6.5 ml) was heated at 90 0C under microwave irradiation for 5 hours. The volatiles were evaporated, and the residue was subjected to flash column chromatography on silica gel (elution with hexane-EtOAc) to yield LG2-95 as a pale yellow solid (110 mg, 19 %). ESI- MS: m/z 309 (M+l), 311 (M+2+1); IH NMR (600 MHz, CDC13): δ 7.51 (IH, d, J= 4.8 Hz), 7.46 (IH, s), 7.44 (IH, d, J= 4.8 Hz), 7.22 (IH, d, J= 5.4 Hz), 7.07 (IH, d, J= 3.0 Hz), 6.96 (IH, dd, J= 5.4, 3.0 Hz), 4.96 (2H, d, J= 6.0 Hz).
To synthesize LG2-98, to a solution of LG2-95 (34 mg, 0.110 mmol), N-(2- hydroxyethyl)-3-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)-benzamide (63 mg, 0.203 mmol, 1.85 equiv.) and Tetrakis(triphenylphosphine)-palladium(0) (147 mg, 0.127 mmol,
1.15 equiv) in THF (1.0 ml) was added 0.5 ml of aqueous 1 N K2CO3 solution. The resultant mixture was heated at 160 0C under microwave irradiation for 10 min. The mixture was diluted with EtOAc, and the organic phase was separated out. After removal of solvent, the
HOU03: 1125151 residue was subjected to flash column chromatography on silica gel (elution with CH2C12- acetone) to yield LG2-98 as a white solid (8.8 mg, 20%). ESI-MS: m/z 394 (M+l); IH NMR (600 MHz, CDC13): δ 8.00 (IH, br. s), 7.81 (IH, d, J= 7.8 Hz), 7.69 (IH, d, J= 7.8 Hz), 7.60 (3H, m), 7.44 (IH, d, J= 4.8 Hz), 7.23 (IH, dd, J= 0.9, 5.1 Hz), 7.10 (IH, d, J= 3.0 Hz), 6.97 (IH, dd, J= 5.1, 3.0 Hz), 5.00 (2H, d, J= 5.4 Hz), 3.88 (2H, dd, J= 4.8, 9.6 Hz), 3.68 (2H, J= 4.8, 9.6 Hz); 13C NMR (150.9 MHz, CDC13): δ 167.58, 148.88, 141.20, 135.46, 133.75, 131.05, 130.80, 129.51, 129.25, 129.22, 127.34, 126.85, 126.74, 126.72, 126.10, 125.09, 107.94, 62.09, 42.85, 39.49.
Figure 15 shows a synthesis scheme for N-(2-hydroxyethyl)-3-(4,4,5,5-tetramethyl- l,3,2-dioxaborolan-2-yl)-benzamide. To a solution of 3-(4,4,5,5-tetramethyl-l,3,2- dioxaborolan-2-yl)-benzoic acid (1.15 g, 4.63 mmol) and HBTU (1.52 g, 4.03 mmol) in anhydrous DMF (20 ml) was added N,N-diisopropylethylamine (1.2 ml, 6.71 mmol). The resultant solution was stirred at room temperature for 45 min. Ethanolamine (0.29 ml, 4.84 mmol) was added slowly to the solution, and the stirring was continued for another 25 h. After evaporation of solvent, the residue was subjected to flash column chromatography on silica gel (elution with CH2C12-EtOAC) to yield N-(2-hydroxyethyl)-3-(4,4,5,5-tetramethyl- l,3,2-dioxaborolan-2-yl)-benzamide as white crystals (398 mg). ESI-MS: m/z 292 (M+l); IH NMR (600 MHz, CDC13): δ 8.11 (IH, s), 7.98 (IH, d, J= 7.2 Hz), 7.94 (IH, d, J= 7.2 Hz), 7.46 (IH, t, J= 7.2 Hz), 3.85 (2H, t, J= 4.8 Hz), 3.64 (2H, dd, J= 4.8, 10.2 Hz); 13C NMR (150.9 MHz, CDC13): δ 168.69, 138.00, 133.42, 132.39, 130.52, 128.21, 84.19, 62.47, 42.97, 24.88.
Figure 16 shows synthesis of LG2-91 and LG2-96. To prepare LG2-91, a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (0.52 g, 1.84 mmol), 4-fluorobenzylamine (1.15 g, 9.2 mmol), and N,N-diisopropylethylamine (1.65 ml) in CF3CH2OH (6.5 ml) was heated at 90 0C under microwave irradiation for 5 hours. The volatiles were evaporated, and the residue was subjected to flash column chromatography on silica gel (elution with hexane-EtOAc) to yield LG2-91 as a pale yellow solid (143 mg, 24 %). ESI-MS: m/z 321 (M+l), 323 (M+2+1); IH NMR (600 MHz, CDC13): δ 7.48 (IH, d, J= 4.8 Hz), 7.46 (IH, s), 7.44 (IH, d, J= 4.8 Hz), 7.36 (2H, dd, J=8.4, 5.4 Hz), 7.02 (2H, t, J= 8.4 Hz), 4.76 (2H, d, J= 5.4 Hz). To synthesize LG2-96, to a solution of LG2-91 (39 mg, 0.121 mmol), N-(2- hydroxyethyl)-3-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)-benzamide (99 mg, 0.340 mmol, 2.8 equiv.) and Tetrakis(triphenylphosphine)-palladium(0) (49 mg, 0.042 mmol) in THF (1.0 ml) was added 0.5 ml of aqueous 1 N K2CO3 solution. The resultant mixture was
HOU03:1125151 heated at 160 0C under microwave irradiation for 10 min. The mixture was diluted with EtOAc, and the organic phase was separated out. After removal of solvent, the residue was subjected to flash column chromatography on silica gel (elution with CH2C12-MeOH) to yield LG2-96 as a pale brown foam (37 mg, 73%). ESI-MS: mix 406 (M+l); IH NMR (600 MHz, CDC13): δ 8.01 (IH, s), 7.80 (IH, d, J= 7.8 Hz), 7.68 (IH, d, J= 7.2 Hz), 7.60 (3H, m), 7.40 (3H, m), 7.03 (2H, t, J= 8.4 Hz), 6.67 (IH, br. s, OH), 6.34 (IH, t, J= 5.4 Hz, NH), 4.79 (2H, d, J= 5.4 Hz), 3.87 (2H, t, J= 5.4 Hz), 3.68 (2H, J= 5.4, 10.2 Hz); 13C NMR (150.9 MHz, CDC13): δ 167.61, 162.17 (d, UC-F= 245 Hz), 149.14, 135.41, 134.29, 133.66, 130.82, 130.67, 129.47, 129.41, 129.30, 128.99, 127.38, 126.86, 126.69, 115.45 (d, 2JC-F = 21 Hz), 107.76, 61.78, 43.97, 42.87.
Figure 17 shows a synthesis scheme for LG2-101 and LG2-102. To prepare LG2-101, a solution of 3,5-dibromo-imidazo[l,2-a]pyrazine (0.52 g, 1.84 mmol), aminomethylpropane (0.65 g, 9.2 mmol), and N,N-diisopropylethylamine (1.65 ml) in CF3CH2OH (6.5 ml) was heated at 90 0C under microwave irradiation for 5 hours. The volatiles were evaporated, and the residue was subjected to flash column chromatography on silica gel (elution with hexane- EtOAc) to yield LG2-101 as a pale yellow solid (120 mg, 24 %). ESI-MS: m/z 267 (M+l), 269 (M+2+1); IH NMR (600 MHz, CDC13): δ 7.47 (IH, s), 7.44 (IH, d, J= 4.8 Hz), 7.39 (IH, d, J= 4.8 Hz), 3.43 (2H, dd, J= 5.4, 6.6 Hz), 1.16 (IH, m), 0.58 (2H, m), 0.31 (2H, m); 13C NMR (150.9 MHz, CDC13): δ 148.95, 133.74, 131.83, 129.58, 107.43, 97.76, 45.84, 10.62, 3.59.
To prepare LG2-102, to a solution of LG2-101 (32 mg, 0.119 mmol), 2-(3,5- dimethoxyphenyl)-(4,4,5,5-tetramethyl-l,3,2-dioxaborolane (47 mg, 0.178 mmol, 1.5 equiv.) and Tetrakis(triphenylphosphine)-palladium(0) (16 mg, 0.013 mmol) in THF (1.0 ml) was added 0.5 ml of aqueous 1 N K2CO3 solution. The resultant mixture was heated at 160 0C under microwave irradiation for 10 min. The mixture was diluted with EtOAc, and the organic phase was separated out. After removal of solvent, the residue was subjected to flash column chromatography on silica gel (elution with hexane-EtOAc) to yield LG2-102 as a white gel (16 mg, 41%). ESI-MS: m/z 325 (M+l); IH NMR (600 MHz, CDC13): δ 7.60 (IH, d, J= 4.8 Hz), 7.55 (IH, s), 7.36 (IH, d, J= 4.8 Hz), 6.673 (IH, s), 6.670 (IH, s), 6.53 (IH, s), 6.14 (IH, t, J= 5.4 Hz, NH), 3.85 (6H, s), 3.46 (2H, dd, J= 5.4, 12.0 Hz), 1.18 (IH, m), 0.59 (2H, m), 0.32 (2H, m); 13C NMR (150.9 MHz, CDC13): δ 161.41, 149.54, 133.76, 130.59, 130.47, 129.07, 128.25, 107.78, 106.16, 100.37, 55.54, 45.84, 10.71, 3.62.
LG-2 Compounds and HIF-lGFP/DsRFP expression and WST-I test in C6#4 cells.
HOU03:1125151 In this experiment were used Ephrin compounds: LG2-7; LG2-11; LG2-13; LG2-62; LG2-65;LG2-75; LG2-81; LG2-85; LG2-89; LG2-96:LG2-98;LG2-102. Px-478 HIF-I inhibitor was used as positive control, DMSO - as negative control.»C6#4 cell line (after additional sorting )was growing into flasks with D-MEM/F-12 medium with 10% FBS and antibiotics at 37o C in humidified atmosphere with 5% CO2. Cells were kept in the Log phase proliferate activity. On the day of experiment, C6#4 cells were transfer into in 96 well Costar plates 20xl0Λ3 cell/well in 100 μl/well media and cultivated for 24 hours, than cultural media was replaced with 100 μl/well media, containing the drugs in different concentrations with logarithmic dilutions from 200 μM to 0.1 μM and cultivated for additional 24 hours. TECAN (SAFIRE plate reader) was used for determination of the level of expression GFP and RFP. Excitation wavelength: 484 nm; Emission wavelength: 510 nm. Cell viability (proliferation) was estimated by and WST-I 4h testing. 11 μl/well of Cell Proliferation Reagent (WST-I) was added into wells with cells, growing in 100 ul media and plates were incubated at 370C for additional 4 hours. Measure the absorbance was made by SAFIRE plate reader with wavelength 440 nm for measuring the absorbance of the formazan product, and wavelength 600 nm for the reference.
To analyze possible influence drugs on HIF-I expression, we first normalized level of the GFP by subdividing data of the GFP expression on data of RFP expression (G/R data) and then compared it to cell viability detected by WST-I test. We classified the compound as possibly involved in HIF-I pathways if drug concentration down-regulated GFP expression, stimulated by CoC12, but did not influence on cell viability.
Statistical analysis, detection of the EC-50, and Graphics made with Graph Pad Prism- 4.
Figure 18-Figure 30 show the results of testing for HIF-I expression (top) and viability (bottom). Table 2 below shows that the influence of LG2-compounds on HIF-I is dependent upon GFP expression. LG2-13 doesn't have cytotoxicity, but may be involved in HIF-I. EC 50 G/R = 7.95. LG2-65 doesn't influence on C6#4 cells at concentration 200 μM. Table 3 shows a summary of the effects of the different compound on C6#4 cells EC-50. Table 4 shows a summary of the average effects of LG2-compounds in terms of GFP/RFP expression and WST-testing.
HOU03:1125151 TABLE 2: Influence of LG2-compounds on HIF-I Compounds G/R (EC-50) WST-I (EC-50) G/R: WST-I μM μM Ratio
Px-478 45.2 88.2 2.1
LG2-7 9.1 35.2 5.6
LG2-11 2.2 19.6 2.2
LG2-13 7.95 - -
LG2-62 18.9 30.1 1.5
LG2-75 14.77 16.76 1.2
LG2-81 10.5 38.8 3.7
LG2-85 23.5 48.1 2.0
LG2-89 27.9 35.4 1.4
LG2-96 24.3 2575? ?
LG2-98 20.38 367? ?
LG2-102 37.36 52.68 1.4
HOU03:1125151 S
T-ABLE 3: Summary of Effects of Different Inlubitor Compounds on Co^ Cells
N)
Figure imgf000030_0001
TABLE 4: Summary of Average Effects of LG2-compounds on C6#4 Cells (Mean and Standard Deviation)
Figure imgf000031_0001
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as illustrated, in part, by the appended claims. References
Kaplan, W., Littlejohn, T. G. (2001) Swiss-PDB Viewer (Deep View) Brief Bioinform 2, 195-7.
Guex, N., Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling Electrophoresis 18, 2714-23.
HOU03: 1125151 Kramer, B., Rarey, M., Lengauer, T. (1999) Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking Proteins 37, 228-41.
Sybyl 7.1, Tripos, Inc., 1699 South Hanley Road, St. Louis, Missouri, 63144, USA
Hindle, S. A., Rarey, M., Buning, C, Lengaue, T. (2002) Flexible docking under pharmacophore type constraints J Comput Aided MoI Des 16, 129-49.
Boehm, H.-J., Stahl, M. (2002) The use of scoring functions in drug discovery applications Reviews in Computational Chemistry 18, 41-87.
Fisher, M. J. A., Ann E.; Giese, Ulrich; Gunn, Bruce P.; Harms, Cathy S.; Khau, Vien; Kinnick, Michael D.; Lindstrom, Terry D.; Martinelli, Michael J.; Mest, Hans-Juergen; Mohr, Michael; Morin, John M., Jr.; Mullaney, Jeffrey T.; Nunes, Anne; Paal, Michael; Rapp, Achim; Ruehter, Gerd; Ruterbories, Ken J.; Sail, Daniel J.; Scarborough, Robert M.; Schotten, Theo; Sommer, Birgit; Stenzel, Wolfgang; Towner, Richard D.; Um, Suzane L.; Utterback, Barbara G.; Vasileff, Robert T.; Voeelkers, Silke; Wyss, Virginia L.; Jakubowski, Joseph A. Journal of Medicinal Chemistry 1999, 42, 4875-4889.
HOU03:1125151

Claims

What is claimed is:
1. A composition for inhibiting catalytic activity of a tyrosine kinase comprising a compound represented by Formula (I) or an enantiomer, diastereomer, pharmaceutically acceptable salt, hydrate, prodrug, or solvate thereof
Figure imgf000033_0001
(I) wherein Ri is selected from the group consisting of the following structures:
Figure imgf000033_0002
HOU03:1125151
2. A composition for inhibiting catalytic activity of a tyrosine kinase comprising a compound represented by Formula (II) or an enantiomer, diastereomer, pharmaceutically acceptable salt, hydrate, prodrug, or solvate thereof
Figure imgf000034_0001
(H) wherein Ri is selected from the group consisting of the following structures
Figure imgf000034_0002
HOU03: 1125151
3. A composition for inhibiting catalytic activity of a tyrosine kinase comprising a compound of Formula (III) or an enantiomer, diastereomer, pharmaceutically acceptable salt, hydrate, prodrug, or solvate thereof
Figure imgf000035_0001
(III) wherein R] is selected from the group consisting of the following structures:
Figure imgf000035_0002
and wherein R2 is selected from the group consisting of the following structures:
HOU03:1125151
Figure imgf000036_0001
4. A method of treating a proliferative disease comprising administering to a mammal in need thereof, a therapeutically effective amount of a composition according to claim 1.
5. The method of claim 4 wherein the mammal is a human.
6. The method of claim 4 wherein the proliferative disease is cancer.
7. A method of treating a proliferative disease comprising administering to a mammal in need thereof, a therapeutically effective amount of a composition according to claim 2.
8. The method of claim 7 wherein the mammal is a human.
9. The method of claim 7 wherein the proliferative disease is cancer.
10. A method of treating a proliferative disease comprising administering to a mammal in need thereof, a therapeutically effective amount of a composition according to claim 3.
11. The method of claim 10 wherein the mammal is a human.
12. The method of claim 10 wherein the proliferative disease is cancer.
HOU03:1125151
PCT/US2007/077511 2006-09-05 2007-09-04 Compositions and methods for inhibition of tyrosine kinases WO2008030795A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/439,402 US20100144743A1 (en) 2006-09-05 2007-09-04 Compositions and methods for inhibition of tyrosine kinases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US82450106P 2006-09-05 2006-09-05
US60/824,501 2006-09-05

Publications (2)

Publication Number Publication Date
WO2008030795A2 true WO2008030795A2 (en) 2008-03-13
WO2008030795A3 WO2008030795A3 (en) 2008-11-27

Family

ID=39157972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/077511 WO2008030795A2 (en) 2006-09-05 2007-09-04 Compositions and methods for inhibition of tyrosine kinases

Country Status (2)

Country Link
US (1) US20100144743A1 (en)
WO (1) WO2008030795A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009024585A2 (en) 2007-08-21 2009-02-26 Biofocus Dpi Limited Imidazo [1,2-a] pyrazine compounds for treatment of viral infections such as hepatitis
WO2010069684A1 (en) * 2008-12-17 2010-06-24 Biomarin Iga, Ltd. Compounds for treatment of duchenne muscular dystrophy
WO2011013729A1 (en) 2009-07-30 2011-02-03 オンコセラピー・サイエンス株式会社 Fused imidazole derivative having ttk inhibitory action
WO2011151259A1 (en) 2010-06-01 2011-12-08 Bayer Pharma Aktiengesellschaft Substituted imidazopyrazines
US8716282B2 (en) 2009-10-30 2014-05-06 Janssen Pharmaceutica Nv Imidazo[1,2-b]pyridazine derivatives and their use as PDE10 inhibitors
US8859543B2 (en) 2010-03-09 2014-10-14 Janssen Pharmaceutica Nv Imidazo[1,2-a]pyrazine derivatives and their use for the prevention or treatment of neurological, psychiatric and metabolic disorders and diseases
WO2015166370A1 (en) 2014-04-28 2015-11-05 Pfizer Inc. Heteroaromatic compounds and their use as dopamine d1 ligands
US9550784B2 (en) 2012-07-09 2017-01-24 Beerse Pharmaceutica NV Inhibitors of phosphodiesterase 10 enzyme
US9669035B2 (en) 2012-06-26 2017-06-06 Janssen Pharmaceutica Nv Combinations comprising PDE 2 inhibitors such as 1-aryl-4-methyl-[1,2,4]triazolo-[4,3-A]]quinoxaline compounds and PDE 10 inhibitors for use in the treatment of neurological of metabolic disorders
US10604523B2 (en) 2011-06-27 2020-03-31 Janssen Pharmaceutica Nv 1-aryl-4-methyl-[1,2,4]triazolo[4,3-a]quinoxaline derivatives

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007028051A2 (en) * 2005-09-02 2007-03-08 Abbott Laboratories Novel imidazo based heterocycles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007028051A2 (en) * 2005-09-02 2007-03-08 Abbott Laboratories Novel imidazo based heterocycles

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8362018B2 (en) 2007-08-21 2013-01-29 Biofocus Dpi, Ltd. Substituted imidazo[1,2-a]pyrazine compounds useful for the treatment of viral infections
WO2009024585A3 (en) * 2007-08-21 2009-08-06 Biofocus Dpi Ltd Imidazo [1,2-a] pyrazine compounds for treatment of viral infections such as hepatitis
WO2009024585A2 (en) 2007-08-21 2009-02-26 Biofocus Dpi Limited Imidazo [1,2-a] pyrazine compounds for treatment of viral infections such as hepatitis
EP2567960A3 (en) * 2007-08-21 2013-06-05 Biofocus DPI Limited Imidazo[1,2-a]pyrazine compounds for treatment of viral infections such as hepatitis
WO2010069684A1 (en) * 2008-12-17 2010-06-24 Biomarin Iga, Ltd. Compounds for treatment of duchenne muscular dystrophy
WO2011013729A1 (en) 2009-07-30 2011-02-03 オンコセラピー・サイエンス株式会社 Fused imidazole derivative having ttk inhibitory action
US8716282B2 (en) 2009-10-30 2014-05-06 Janssen Pharmaceutica Nv Imidazo[1,2-b]pyridazine derivatives and their use as PDE10 inhibitors
US8859543B2 (en) 2010-03-09 2014-10-14 Janssen Pharmaceutica Nv Imidazo[1,2-a]pyrazine derivatives and their use for the prevention or treatment of neurological, psychiatric and metabolic disorders and diseases
WO2011151259A1 (en) 2010-06-01 2011-12-08 Bayer Pharma Aktiengesellschaft Substituted imidazopyrazines
US10604523B2 (en) 2011-06-27 2020-03-31 Janssen Pharmaceutica Nv 1-aryl-4-methyl-[1,2,4]triazolo[4,3-a]quinoxaline derivatives
US9669035B2 (en) 2012-06-26 2017-06-06 Janssen Pharmaceutica Nv Combinations comprising PDE 2 inhibitors such as 1-aryl-4-methyl-[1,2,4]triazolo-[4,3-A]]quinoxaline compounds and PDE 10 inhibitors for use in the treatment of neurological of metabolic disorders
US9550784B2 (en) 2012-07-09 2017-01-24 Beerse Pharmaceutica NV Inhibitors of phosphodiesterase 10 enzyme
WO2015166370A1 (en) 2014-04-28 2015-11-05 Pfizer Inc. Heteroaromatic compounds and their use as dopamine d1 ligands
US9856263B2 (en) 2014-04-28 2018-01-02 Pfizer Inc. Heteroaromatic compounds and their use as dopamine D1 ligands

Also Published As

Publication number Publication date
US20100144743A1 (en) 2010-06-10
WO2008030795A3 (en) 2008-11-27

Similar Documents

Publication Publication Date Title
WO2008030795A2 (en) Compositions and methods for inhibition of tyrosine kinases
TWI735681B (en) Chemical compounds
Zhang et al. Design and discovery of 4-anilinoquinazoline-acylamino derivatives as EGFR and VEGFR-2 dual TK inhibitors
CN100445276C (en) Sulfonylamino-derivatives as novel inhibitors of histone deacetylase
EP3612519B1 (en) Phenyl-2-hydroxy-acetylamino-2-methyl-phenyl compounds
EA038635B1 (en) 2-substituted quinazoline compounds comprising a substituted heterocyclic group and methods of use thereof
Liu et al. Design, synthesis and structure-activity relationships of novel 4-phenoxyquinoline derivatives containing 1, 2, 4-triazolone moiety as c-Met kinase inhibitors
CN103298814A (en) 2-anilinopurin-8-ones as inhibitors of TTK/MPS1 for the treatment of proliferative disorders
ES2933980T3 (en) Selective estrogen receptor degraders
TWI774758B (en) C5-anilinoquinazoline compounds and their use in treating cancer
TW201815789A (en) Chemical compounds
EP3502103B1 (en) Crystal form, salt type of substituted 2-hydro-pyrazole derivative and preparation method therefor
TWI431008B (en) Compound useful as a c-met inhibitor
CN105646454A (en) 2-arylamine pyrimidine derivatives containing hydroxamic acid fragments and preparation and application
CN114149432A (en) Dual CLK/CDK1 inhibitors for cancer treatment
La Pietra et al. Challenging clinically unresponsive medullary thyroid cancer: Discovery and pharmacological activity of novel RET inhibitors
Khan et al. Synthesis, biological evaluation and molecular docking study of pyrimidine based thiazolidinone derivatives as potential anti-urease and anti-cancer agents
Argyros et al. Design and synthesis of novel 7-aminosubstituted pyrido [2, 3-b] pyrazines exhibiting anti-breast cancer activity
Takwale et al. Structure-activity relationship analysis of novel GSPT1 degraders based on benzotriazinone scaffold and its antitumor effect on xenograft mouse model
CN110467637B (en) Bisaminyl chloropyrimidine compound containing phosphine oxide substituted aniline, preparation method and application thereof
Qin et al. Design, synthesis and biological evaluation of quinoxalin-2 (1H)-one derivatives as EGFR tyrosine kinase inhibitors
CN110452243B (en) Pyrrolopyrimidine derivative epidermal growth factor inhibitor and preparation method and application thereof
US20240043399A1 (en) Pyridinyl pyrazole derivative or pharmaceutically acceptable salt thereof, and use thereof
CN114105892B (en) FAK/PLK1 double-target quinazoline derivative and preparation method and application thereof
CN103420906B (en) novel tyrosine protein kinase inhibitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07841804

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07841804

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12439402

Country of ref document: US