WO2008028055A2 - Isolation and characterization of novel clostridial species - Google Patents

Isolation and characterization of novel clostridial species Download PDF

Info

Publication number
WO2008028055A2
WO2008028055A2 PCT/US2007/077264 US2007077264W WO2008028055A2 WO 2008028055 A2 WO2008028055 A2 WO 2008028055A2 US 2007077264 W US2007077264 W US 2007077264W WO 2008028055 A2 WO2008028055 A2 WO 2008028055A2
Authority
WO
WIPO (PCT)
Prior art keywords
ethanol
growth
strain
clostridium
production
Prior art date
Application number
PCT/US2007/077264
Other languages
French (fr)
Other versions
WO2008028055A3 (en
Inventor
Raymond L. Huhnke
Randy S. Lewis
Ralph S. Tanner
Original Assignee
The Board Of Regents For Oklahoma State University
The Board Of Regents Of The University Of Oklahoma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Board Of Regents For Oklahoma State University, The Board Of Regents Of The University Of Oklahoma filed Critical The Board Of Regents For Oklahoma State University
Priority to MX2009002194A priority Critical patent/MX2009002194A/en
Priority to EA200970241A priority patent/EA200970241A1/en
Priority to CA002661974A priority patent/CA2661974A1/en
Priority to JP2009526915A priority patent/JP2010502191A/en
Priority to EP07814594A priority patent/EP2061872A4/en
Priority to BRPI0715200-0A priority patent/BRPI0715200A2/en
Publication of WO2008028055A2 publication Critical patent/WO2008028055A2/en
Publication of WO2008028055A3 publication Critical patent/WO2008028055A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/065Ethanol, i.e. non-beverage with microorganisms other than yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/145Clostridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the invention generally relates to bacteria that are capable of producing biofuel from waste.
  • the invention provides a novel clostridial species ⁇ Clostridium ragsdalei having the identifying characteristics of ATCC Deposit Nos. BAA-622 and/or PTA-7826) and a method of synthesizing ethanol and other useful products from CO using the Clostridia species.
  • Direct fermentation is the process in which a saccharolytic microorganism, such as a yeast or bacteria, converts sugars to ethanol. These sugars may be simple (i.e. glucose) or complex (i.e. starch, cellulose, hemicellulose).
  • Corn starch is the primary substrate used in ethanol producing plants today.
  • lignocellulosic biomass i.e. grasses, small trees, paper waste, saw dust
  • Lignocellulose is comprised of cellulose, hemicellulose, pectin, and lignin.
  • Synthesis gas (CO-H 2 -CO 2 ), a product of pyrolyzed biomass or coal, has been and is currently being recognized for its potential role in the indirect fermentation of biomass to fuel alcohol (Zeikus, 1980, Bredwell et. al., 1980).
  • Anaerobic microorganisms such as acetogenic bacteria offer a viable route to convert syngas to useful products, in particular to liquid biofuels such as ethanol.
  • Such bacteria catalyze the conversion of syngas with higher specificity, higher yields and lower energy costs than can be attained using chemical processes (Vega et al, 1990; Phillips et al., 1994).
  • Several microorganisms capable of producing biofuels from waste gases and other substrates have been identified: Three strains of acetogens (Drake, 1994) have been described for use in the production of liquid fuels from syngas: Butyribacterium methylotrophicum (Grethlein et al., 1990; Jain et al., 1994b); Clostridium autoethanogenum (Abrini et al., 1994); Clostridium ljungdahlii (Arora et al, 1995; Barik et al., 1988; Barik et al. 1990; and Tanner et al., 1993). Of these, Clostridium ljungdahlii and Clostridium autoethanogenum are known to convert CO to
  • United States patent 5,192,673 to Jain et al. discloses a mutant strain of Clostridium acetobytylicum and a process for making butanol with the strain.
  • United States patent 5,593,886 to Gaddy et al. discloses Clostridium ljungdahlii ATCC No. 55380. This microorganism can anaerobically produce acetate and ethanol using waste gas (e.g. carbon black waste gas) as a substrate.
  • waste gas e.g. carbon black waste gas
  • United States patent 5,807,722 to Gaddy et al. discloses a method and apparatus for converting waste gases into useful products such as organic acids and alcohols using anaerobic bacteria, such as Clostridium ljungdahlii ATCC No. 55380.
  • United States patent 6,136,577 to Gaddy et al. discloses a method and apparatus for converting waste gases into useful products such as organic acids and alcohols (particularly ethanol) using anaerobic bacteria, such as Clostridium ljungdahlii ATCC Nos. 55988 and 55989.
  • United States patent 6,136,577 to Gaddy et al. discloses a method and apparatus for converting waste gases into useful products such as organic acids and alcohols (particularly acetic acid) using anaerobic strains of Clostridium ljungdahlii.
  • United States patent 6,753,170 to Gaddy et al. discloses an anaerobic microbial fermentation process for the production of acetic acid.
  • the present invention provides a novel biologically pure anaerobic bacterium ⁇ Clostridium ragsdalei, deposited at the American Type Culture Collection in Manassas, VA, in October 2002 under the designation BAA-622 and again on June 14, 2006 under the designation PTA-7826, also referred to as "Pl 1") that is capable of producing high yields of valuable organic fluids from relatively common substrates.
  • the microorganism can produce ethanol and acetic acid by fermenting CO.
  • One common source of CO is syngas, the gaseous byproduct of coal gasification. The microbes can thus convert substances that would otherwise be waste products into valuable products, some of which are biofuels.
  • Syngas, and thus CO can also be produced from readily available low-cost agricultural raw materials by pyrolysis, providing a means to address both economic and environmental concerns of energy production.
  • the bacteria of the invention thus participate in the indirect conversion of biomass to biofuel via a gasification/fermentation pathway.
  • the invention provides a composition for producing ethanol.
  • the composition comprises 1) a source of CO, and 2) Clostridium ragsdalei .
  • the source of CO is syngas.
  • the invention provides a method of producing ethanol.
  • the method comprises the step of combining a source of CO and Clostridium ragsdalei under conditions which allow said Clostridium ragsdalei to convert CO to ethanol.
  • the invention further provides a system for producing ethanol, the system comprising 1) a vessel in which a source of CO is combined with Clostridium ragsdalei ; and 2) a controller which controls conditions in said vessel which permit the Clostridium ragsdalei to convert the CO to ethanol.
  • the system also includes 1) a second vessel for producing syngas; and 2) a transport for transporting the syngas to the vessel, wherein the syngas serves as the source of CO.
  • Figure 5 shows the vessel 100 and controller 101, with the optional second vessel 200 and transport 201.
  • Figure 4 Phylogenetic tree based on 16S rDNA gene sequence similarities and constructed using the neighbor-joining method, indicating the position of C. ragsdalei ATCC BAA-622 and/or PTA-7826 and representative species of the genus of Clostridium. GenBank accession numbers for the 16s rRNA sequences are given after the strain numbers.
  • Figure 5. Schematic for a system for producing ethanol from syngas using PIl.
  • the present invention is based on the discovery of a novel acetogenic bacterium that is capable, under anaerobic conditions, of producing high yields of valuable products from CO and other readily available substrates.
  • the microorganism produces valuable liquid products such as ethanol, butanol and acetate by fermenting CO, with ethanol being a predominant product.
  • fermenting we mean a physiological process whereby the substrate serves as both the source of electrons and the electron sink (oxidation of a portion of the substrate and reduction of a portion of the substrate) which can be used for the production of products such as alcohols and acids.
  • this organism is capable of converting what would otherwise be waste gases into useful products such as biofuel.
  • the anaerobic microbe of the invention is a novel Clostridia species which displays the characteristics of purified cultures represented by ATCC deposits BAA-622 and/or PTA-7826, herein referred to as "PI l".
  • Pl 1 The morphological and biochemical properties of Pl 1 have been analyzed and are described herein in the Examples section below. While certain of the properties of Pl 1 are similar to other Clostridium species, Pl 1 possesses unique characteristics that indicate it is a novel species of this genus. PI l has been denominated Clostridium ragsdalei, and is considered to be representative of this species.
  • the bacteria in the biologically pure cultures of the present invention have the ability, under anaerobic conditions, to produce ethanol from the substrates CO + H 2 O and/or H 2 + CO 2 according to the following reactions:
  • ⁇ gases such as syngas, oil refinery waste gases, gases (containing some H 2 ) which are produced by yeast fermentation and some clostridial fermentations, gasified cellulosic materials, coal gasification, etc.
  • gases containing some H 2
  • gaseous substrates are not necessarily produced as byproducts of other processes, but may be produced specifically for use in the fermentation reactions of the invention, which utilize PI l.
  • the source of H 2 O for the reaction represented by Equation (1) is typically the aqueous media in which the organism is cultured.
  • the source of CO, CO 2 and H 2 is syngas.
  • Syngas for use as a substrate may be obtained, for example, as a gaseous byproduct of coal gasification.
  • the bacteria thus convert a substance that would otherwise be a waste product into valuable biofuel.
  • syngas can be produced by gasification of readily available low-cost agricultural raw materials expressly for the purpose of bacterial fermentation, thereby providing a route for indirect fermentation of biomass to fuel alcohol.
  • raw materials which can be converted to syngas include but are not limited to perennial grasses such as switchgrass, crop residues such as corn stover, processing wastes such as sawdust, etc.
  • syngas is generated in a gasifier from dried biomass primarily by pyrolysis, partial oxidation, and steam reforming, the primary products being CO, H 2 and CO 2 .
  • gasification and “pyrolysis” refer to similar processes. Both processes limit the amount of oxygen to which the biomass is exposed. Gasification allows a small amount of oxygen (this may also be referred to as “partial oxidation” and pyrolysis allows more oxygen.
  • partial oxidation and pyrolysis allows more oxygen.
  • the term “gasification” is sometimes used to include both gasification and pyrolysis.
  • a part of the product gas is recycled to optimize product yields and minimize residual tar formation.
  • the primary source of CO, CO 2 and H 2 may be syngas, but this may be supplemented with gas from other sources, e.g. from various commercial sources.
  • the reaction according to Equation (1) above generates four molecules of CO 2
  • reaction according to Equation (2) utilizes 6 H2 but only two molecules of CO 2 .
  • H 2 is plentiful, CO 2 buildup may occur.
  • supplementing the media with additional H2 would result in an increase of the utilization of CO 2 , and the consequent production of yet more ethanol.
  • the primary product produced by the fermentation of CO by the bacterium of the present invention is ethanol.
  • acetate may also be produced. Acetate production likely occurs via the following reactions:
  • the organisms of the present invention must be cultured under anaerobic conditions.
  • anaerobic conditions we mean that dissolved oxygen is absent from the medium.
  • the media for culturing the acetogen of the invention is a liquid medium such as ATCC medium 1754 (developed by R. S. Tanner).
  • ATCC medium 1754 developed by R. S. Tanner
  • alternative media can be utilized, for example, ATCC medium 1045 under a H2:CO 2 or CO:CO 2 atmosphere at an initial pH of 6.
  • various media supplements may be added for any of several purposes, e.g. buffering agents, metals, vitamins, salts, etc. hi particular, those of skill in the art are familiar with such techniques as nutrient manipulation and adaptation, which result in increased or optimized the yields of a product of interest.
  • culturing microbes under "non-growth" conditions i.e.
  • non-growth conditions include, for example, maintaining the culture at non-optimal temperature or pH, the limitation of nutrients and carbon sources, etc.
  • non-growth conditions would be implemented after a desired density of bacteria is reached in the culture.
  • media optimization it is possible by media optimization to favor production of one product over others, e.g. to favor the production of ethanol over acetate. For example, increasing the concentration of iron tenfold compared to that in standard medium doubles the concentration of ethanol produced, while decreasing the production of acetic acid.
  • Clostridium ragsdalei may be cultured using Balch technique (Balch and Wolfe, 1976, Appl. Environ. Microbiol. 32:781-791; Balch et al., 1979, Microbiol. Rev. 43:260-296), as described in the reviews by: Tanner, 1997, Manual
  • Examples include but are not limited to bubble column reactors, two stage bioreactors, trickle bed reactors, membrane reactors, packed bed reactors containing immobilized cells, etc.
  • the chief requirements of such an apparatus include that sterility, anaerobic conditions, and suitable conditions or temperature, pressure, and pH be maintained; and that sufficient quantities of substrates are supplied to the culture; that the products can be readily recovered; etc.
  • the reactor may be, for example, a traditional stirred tank reactor, a column fermenter with immobilized or suspended cells, a continuous flow type reactor, a high pressure reactor, a suspended cell reactor with cell recycle, and other examples as listed above, etc.
  • reactors may be arranged in a series and/or parallel reactor system which contains any of the above-mentioned reactors. For example, multiple reactors can be useful for growing cells under one set of conditions and generating ethanol (or other products) with minimal growth under another set of conditions.
  • fermentation will be allowed to proceed until a desired level of product is produced, e.g. until a desired quantity of ethanol is produced in the culture media.
  • this level of ethanol is in the range of at least about 1 gram/liter of culture medium to about 50 gram/liter, with a level of at least about 30 gram/liter (or higher) being preferable.
  • cells or cell culturing systems that are optimized to produce from about 1 to 10, or from about 10 to 20, or from about 20 to 30, or from about 30 to 40, or from about 40 to 50 gram/liter are also contemplated.
  • Pl 1 remains viable and will grow in ethanol concentrations of at least 60 g/L.
  • production may be halted when a certain rate of production is achieved, e.g.
  • ethanol can be removed and further processed, e.g. by solvent extraction; distillation to the azeotrope followed by azeotropic distillation; molecular sieve dehydration; pervaporation; or flow-through zeolite tubes.
  • solvent extraction e.g. by solvent extraction; distillation to the azeotrope followed by azeotropic distillation; molecular sieve dehydration; pervaporation; or flow-through zeolite tubes.
  • Those of skill in the art will recognize that the two main techniques in industry for ethanol dehydration following distil lation are azeotropic distillation and molecular sieve dehydration. (See, for example, Kohl, S. "Ethanol 101-7: Dehydration" in Ethanol Today, March 2004: 40-41).
  • Pl 1 is cultured as a pure culture in order to produce ethanol (or other products of interest).
  • PI l may be cultured together with other organisms.
  • Clostridium ragsdalei a new mesophilic, carbon monoxide utilizing, acetogen was isolated and is described hereafter.
  • the characterization of the new organism was done in part by comparison to known Clostridium ljundahlii strain PETC
  • Clostridium ljundahlii strain PETC was obtained from a fructose stock culture maintained by Dr. Ralph S. Tanner and was used as the reference control strain.
  • Strain PI l was obtained from an anaerobic enrichment inoculated with fresh water sediment from the Duck Pond at the University of Oklahoma by a procedure described previously (Bryant, 1972) under an atmosphere of CO:N 2 :CO 2 (75:15: 10) and an initial pH of 6.0.
  • the carbon monoxide oxidizing Clostridium described within was named Clostridium ragsdalei.
  • This bacterium was designated strain PI l and was originally deposited with the American Type Culture Collection as strain ATCC BAA-622 and, later, deposited again as ATCC PTA-7826.
  • the medium used in this study was prepared using strict anaerobic technique described by Balch & Wolfe (1976) and contained the mineral salts, trace metals and vitamin solution described by Tanner (2002), supplemented with yeast extract (1 g/L, Difco) (Tables 1-4).
  • Resazurin (lmg/L) was used as the redox indicator.
  • Purified agar was added to the medium at a concentration of 2% for colony morphology description (Table 5).
  • Heat labile substrates were filter sterilized (not autoclaved) and added from sterile stock solutions to a final concentration of 5 g/L before inoculation. The optimum temperature and pH (initial pH) was determined in medium containing fructose as the substrate.
  • HOMOPIPES homopiperazine-N,N'-bis-2-[ethanesulfonic acid] (Research Organics, Cleveland, OH), MES (2-[N-morpholino]ethanesulfonic acid), or TES (N-tris [hydroxymethyl] methyl-2-aminoethanesulfonic acid) at (1.0 g/L).
  • MES 2-[N-morpholino]ethanesulfonic acid
  • TES N-tris [hydroxymethyl] methyl-2-aminoethanesulfonic acid
  • Fermentation balance A fermentation balance was determined for growth on fructose. Fructose was measured using a phenol-sulfuric acid carbohydrate assay (Dubois et. al., 1956). Acetate and ethanol were measured simultaneously by a gas chromatograph (GC) equipped with a flame ionization detector (FID) on a Varian 3400 equipped with a 2m steel column packed with an 80/120 Carbopak B-DA/4% carbowax resin 2OM (Supelco, Bellfonte, PA). The column, injector, and detector temperature were 155, 200, and 200 0 C, respectively. Helium was the carrier gas and flow rate was set at 30ml min-1.
  • GC gas chromatograph
  • FID flame ionization detector
  • CO 2 was measured with a gas chromatograph equipped with a thermal conductivity detector (TCD) (Varian, Sugar Land, TX) and a Porapak Super Q 2m steel column (Alltech, Deerfield, MI).
  • TCD thermal conductivity detector
  • a Porapak Super Q 2m steel column Alltech, Deerfield, MI.
  • the column temperature was set at 60 0 C with a flow rate of 15ml min-1 and helium as the carrier gas.
  • Electron and phase contrast microscopy Exponential-phase cells grown on 0.5% yeast extract as substrate were used for transmission electron microscopy. Cells were spread onto carbon coated Formvar grids, fixed with 1 % glutaraldehyde, and stained with 0.5% phosphotunsgate (pH 7.0). Cells were examined and photographed using a JEOL JEM 2000 FX TEM. An Olympus CH-2 phase-contrast microscope was used to observe cells.
  • PCR mixtures contained 2.5 ⁇ l 1OX buffer B (50OmM KCl and 100 niM Tris « HCl, Fisher Scientific), 2 ⁇ l MgCl 2 »6H 2 0 (25mM, Fisher Scientific), 0.25 ⁇ l Taq polymerase (Fisher Scientific), 0.5 ⁇ l of each deoxynucleoside triphosphate (10 mM, Promega, Madison, WI), l ⁇ l primer, and sample DNA in a final volume of 25 ⁇ l.
  • PCR reaction was run on a Robocycler Gradient 40 Temperature Cycler (Stratagene, Cedar Creek, TX) using a protocol of an initial denaturation step (94°C, four min, one cycle), 30 reaction cycles (94°C for one min, 50 0 C for one min, 72°C for eight min), and a final extension step (72°C for eight min).
  • PCR product (lO ⁇ l) was run on a 5% polyacrylamide vertical gel with a 100 base pair ladder (Fisher Scientific) for 17 hr at 26°C and 120 mAmps. The ethidium bromide-stained gel image was analyzed using a NucleoCam Digital Image
  • DNA hybridization assays were performed at the DSMZ using the previously described methods of Wayne et al. (1987).
  • GenBank accession numbers for the 16s rDNA gene sequences of strain Pl 1 ATCC BAA-622 are AY1700378 and DQ20022. RESULTS AND DISCUSSION
  • Cellular morphology Cells of strain PI l were rarely motile, rod-shaped, stained gram-positive, and occurred singly or in chains. Cells were 0.7-0.8 ⁇ m by 4-5 ⁇ m and were peritrichously flagellated (see Figure 1). Spores occurred infrequently, but when present were non-swelling and located subterminal to terminal. Colonies appeared circular, translucent and flat on nutrient agar.
  • Clostridium ragsdalei was strictly anaerobic. Yeast extract stimulated growth, although in its absence marginal growth was observed after an extended lag phase. Autotrophic growth occurred with H 2 /CO 2 or CO/CO 2 and chemoorganotrophic growth was observed with the following substrates: pyruvate, D-threose, xylose, mannose, fructose, glucose, sucrose, ethanol, 1-propanol, casamino acids, glutamate, serine, choline, and alanine (Table 6). Malate or formate did not initially support growth even when examined at a pH range of 5.0-6.5.
  • strain PI l when grown with fructose and CO under optimal conditions was 0.143 h "1 and 0.175 bf 1 respectively. However, when grown with xylose the doubling time decreased significantly (0.220 h "1 ), indicating that xylose may be the preferred carbon and energy source of strain PI l.
  • Strain Pl 1 produced 2.35 mmol of acetic acid from 1 mmol of fructose; in addition, 0.63 mmol of CO 2 and 0.5 mmol of ethanol were produced as end products (Table 7).
  • Other acetogenic organisms, Acetobacterium woodii, Acetohacterium wieringae and Acetobacterium carbinolicum have also been observed to produce ethanol during the fermentation of hexoses (Buschhorn et. al., 1989).
  • Acetate was the only product formed in significant amounts when grown on H 2 /CO 2 , indicating that C. ragsdalei more than likely utilizes the acetyl coenzyme A (acetyl-Co-A) Wood/Ljungdahl pathway (Drake 1994).
  • Strain PI l had unique band of 1,500 base pairs. Therefore, these two Clostridia were readily shown to be different using this technique. Although genomic fingerprinting is not a substitute for DNA-DNA hybridization, the use of this technique may be a valuable tool for many labs wanting to distinguish closely related bacterial strains.
  • the 16S rDNA sequence of strain PI l was most similar (99.9%) to that of Clostridium ljungdahlii ATCC M59097 ( Figure 4), an acetogen also capable of growth on CO (Tanner et. al., 1993).
  • EXAMPLE 2 The study of improving, maximizing or minimizing effects, and certain features already found to be contained within an organism without changing its inherent properties to obtain the most desirable result could be defined as optimization. Optimization studies are a key element in developing strategies to improve growth as well as the production of a desired fermentation product. In our case, ethanol is the desired end product. MATERIALS AND METHODS
  • Clostridial strain PI l was used throughout the study. Carbon monoxide medium (COM) was used to cultivate and maintain the culture. The growth temperature was 37°C.
  • COM is an undefined buffered medium initially pressurized to lOpsi (70 kPa) with N 2 /CO 2 and then autoclaved for 15 minutes at 121°C.
  • the medium contained per liter of distilled water: 25ml mineral solution (Table 1), 10ml trace metals solution (Table 2, 10ml vitamin solution (Table 3), 1.Og of yeast extract, 1Og of MES (2-[N-morpholino] ethanesulfonic acid), 0.00 Ig resazurin, 4.Og cysteine»HCl, and 4.0 Na 2 S»9H 2 O; the initial pH of this medium was 6.1-6.3.
  • the medium was prepared using strict anaerobic technique (Balch & Wolfe, 1976). Carbon monoxide was the sole substrate provided at 210 kPa (30psi).
  • the amended COM with ethanol was prepared by adding filter sterilized ethanol to pre- sterilized Balch tubes, and then purging with N/ CO2 to remove oxygen. After the media was sterilized, the ethanol was then added to the appropriate concentrations. These bottles were inoculated with the Pl 1 cells from the semi-continuous batch cultures that were already established above. Growth and pH were measured periodically. A portion of the medium extracted for those measurements was taken for analyses of ethanol and acetate concentrations. Trace metals. Iron (Fe), molybdenum (Mo), cobalt (Co), copper (Cu), and nickel (Ni) were examined at various concentrations to determine their effect on growth yield and ethanol production.
  • Triplicate tubes of unamended (IX) and amended (OX and 10X) media were inoculated with strain Pl 1 where each of these individual trace metals were added to or eliminated from the COM at 1OX and OX the original metal concentration.
  • the cultures were fed every 48 hours with CO.
  • Metabolic Inhibitors - FAfTFA The MIC established for fluoroacetate (FA) and trifluoroacetate (TFA) was 10OmM and 15OmM respectively. Definitive trends were not established with PI l for ethanol and acetate production in the presence of FA and TFA at the various concentrations assayed (see Table 8). When grown in COM containing 2OmM FA, no significant differences in growth yield (OD) or end products was observed relative to the PI l control. However, in the presence of 3OmM FA and above, acetate production decreased nearly ninety percent and the ethanol production and growth yield decreased fifty and forty percent respectively. The ethanol to acetate ratio increased eighty percent.
  • the PIl growth yield remained stable or increased during monitoring throughout a four month period. After correcting for dilution, the growth yield for one PI l culture reached 2.4 OD units. The pH for all cultures was consistently measured around 4.3.
  • the amended COM (pH 5.5) achieved the highest ethanol yield at 252mM (11.6g/L) and ethanol to acetate ratio, whereas the highest unamended ethanol yield was 95mM (4.4g/L).
  • An increase in acetate concentration and a decrease in ethanol production was the trend generally exhibited in cultures over the time period (a possible indicator of strain degeneration). The exception was the Pl 1 culture initiated at a pH of 5.5. (Data is not shown.) Ethanol Tolerance
  • Strain Pl 1 was grown in COM amended with 15, 20, 25, 30, and 35g/L and found to be initially tolerant of ethanol concentrations up to 30 g/L with the minimum inhibitory concentration being 35 g/L. Growth was retarded in the presence of all ethanol concentrations relative to the unamended control without ethanol. Measurable growth was not achieved for the amended cultures until 48 hours, except for the 25g/L amended culture that grew at 98 hours (data not shown). The best growth at the highest ethanol concentration occurred at 20 g/L.
  • Strain PI l was inhibited by ethanol at a concentration of 30 grams per liter upon initial isolation. Cultures were adapted to tolerate higher concentrations of ethanol by adaptation, similar to the adaptation techniques in Yamano et al., 1998. To date, the culture has been adapted to function fully at an ethanol concentration of 50 grams per liter ethanol. This example shows that adaptation procedures used in industrial microbiology can be used to enhance the performance of strain Pl 1 as a microbial catalyst for ethanol and/or acetic acid production.
  • Methanobacterium ruminantium in a pressurized atmosphere Appl Environ Microbiol 32, 781-791.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A novel clostridia bacterial species (Clostridium ragsdalei, ATCC BAA-622 and/or PTA-7826, 'P11') is provided. P11 is capable of synthesizing, from waste gases, products which are useful as biofuel. In particular, P11 can convert CO to ethanol. Thus, this novel bacterium transforms waste gases (e.g. syngas and refinery wastes) into useful products. P11 also catalyzes the production of acetate.

Description

ISOLATION AND CHARACTERIZATION OF
NOVEL CLOSTRIDIAL SPECIES
Field of the Invention The invention generally relates to bacteria that are capable of producing biofuel from waste. In particular, the invention provides a novel clostridial species {Clostridium ragsdalei having the identifying characteristics of ATCC Deposit Nos. BAA-622 and/or PTA-7826) and a method of synthesizing ethanol and other useful products from CO using the Clostridia species. Background of the Invention
It was not until the petroleum crises of the 1970's that the U.S. government started funding more initiatives to find a way to develop renewable resources to alleviate the country's dependence on oil imports (Klass, 1998). It was also then when the government had a renewed interest in biobased solvent production for gasoline blending. One of particular interest and even more so recently, is bioethanol (ethanol from biomass).
Currently the major mode of bioethanol production is through direct fermentation, which accounts for 90% of the ethanol output in the U.S. (Licht, 2001). Direct fermentation is the process in which a saccharolytic microorganism, such as a yeast or bacteria, converts sugars to ethanol. These sugars may be simple (i.e. glucose) or complex (i.e. starch, cellulose, hemicellulose). Corn starch is the primary substrate used in ethanol producing plants today. Other than corn starch, lignocellulosic biomass (i.e. grasses, small trees, paper waste, saw dust) is also being researched as a substrate for this process. Lignocellulose is comprised of cellulose, hemicellulose, pectin, and lignin. The difficulty with the direct fermentation of lignocellulosic biomass is that added pretreatment processes are necessary to break down the biomass into its individual components before microorganismal utilization. This adds more cost in the areas of materials, plant design, waste management, etc In an attempt to make the most out the resources available for the production of fuel ethanol, alternative methods are being examined. One of these alternative methods is indirect fermentation. Indirect fermentation is the process in which lignocellulosic biomass is pyrolyzed (burned to produce gases) and the gases produced are converted to ethanol by bacteria. The gases produced are generally termed synthesis gas. Synthesis gas (CO-H2-CO2), a product of pyrolyzed biomass or coal, has been and is currently being recognized for its potential role in the indirect fermentation of biomass to fuel alcohol (Zeikus, 1980, Bredwell et. al., 1980).
Anaerobic microorganisms such as acetogenic bacteria offer a viable route to convert syngas to useful products, in particular to liquid biofuels such as ethanol.
Such bacteria catalyze the conversion of syngas with higher specificity, higher yields and lower energy costs than can be attained using chemical processes (Vega et al, 1990; Phillips et al., 1994). Several microorganisms capable of producing biofuels from waste gases and other substrates have been identified: Three strains of acetogens (Drake, 1994) have been described for use in the production of liquid fuels from syngas: Butyribacterium methylotrophicum (Grethlein et al., 1990; Jain et al., 1994b); Clostridium autoethanogenum (Abrini et al., 1994); Clostridium ljungdahlii (Arora et al, 1995; Barik et al., 1988; Barik et al. 1990; and Tanner et al., 1993). Of these, Clostridium ljungdahlii and Clostridium autoethanogenum are known to convert CO to ethanol.
United States patent 5,173,429 to Gaddy et al. discloses Clostridium ljungdahlii ATCC No. 49587, an anaerobic microorganism that produces ethanol and acetate from CO and H2O and/or CO2 and H2 in synthesis gas.
United States patent 5,192,673 to Jain et al. discloses a mutant strain of Clostridium acetobytylicum and a process for making butanol with the strain. United States patent 5,593,886 to Gaddy et al. discloses Clostridium ljungdahlii ATCC No. 55380. This microorganism can anaerobically produce acetate and ethanol using waste gas (e.g. carbon black waste gas) as a substrate.
United States patent 5,807,722 to Gaddy et al. discloses a method and apparatus for converting waste gases into useful products such as organic acids and alcohols using anaerobic bacteria, such as Clostridium ljungdahlii ATCC No. 55380.
United States patent 6,136,577 to Gaddy et al. discloses a method and apparatus for converting waste gases into useful products such as organic acids and alcohols (particularly ethanol) using anaerobic bacteria, such as Clostridium ljungdahlii ATCC Nos. 55988 and 55989. United States patent 6,136,577 to Gaddy et al. discloses a method and apparatus for converting waste gases into useful products such as organic acids and alcohols (particularly acetic acid) using anaerobic strains of Clostridium ljungdahlii.
United States patent 6,753,170 to Gaddy et al. discloses an anaerobic microbial fermentation process for the production of acetic acid.
Other strains of aceotgens have also been described for use in the production of liquid fuels from synthesis gas, e.g.: Butyribacterium methylotrophicum (Grethlein et al., 1990, Appl. Biochem. Biotech. 24/24:875-884); and Clostridium autoethanogenum (Abrini et al., 1994, Arch. Microbiol. 161:345-351). There remains an ongoing need to discover and develop additional microorganisms that are capable of producing useful products such as biofuels via fermentation. In particular, it would be advantageous to provide microbes that are robust, relatively easy to culture and maintain, and that provide good yields of products of interest, such as biofuels. SUMMARY OF THE INVENTION
The present invention provides a novel biologically pure anaerobic bacterium {Clostridium ragsdalei, deposited at the American Type Culture Collection in Manassas, VA, in October 2002 under the designation BAA-622 and again on June 14, 2006 under the designation PTA-7826, also referred to as "Pl 1") that is capable of producing high yields of valuable organic fluids from relatively common substrates. In particular, the microorganism can produce ethanol and acetic acid by fermenting CO. One common source of CO is syngas, the gaseous byproduct of coal gasification. The microbes can thus convert substances that would otherwise be waste products into valuable products, some of which are biofuels. Syngas, and thus CO, can also be produced from readily available low-cost agricultural raw materials by pyrolysis, providing a means to address both economic and environmental concerns of energy production. The bacteria of the invention thus participate in the indirect conversion of biomass to biofuel via a gasification/fermentation pathway.
Cultures of Clostridium ragsdalei are extremely stable and can be stored on the at room temperature or in a 380C incubator for over one year while retaining activity. It is an object of this invention to provide a biologically pure culture of the microorganism Clostridium ragsdalei . The microorganism has all of the identifying characteristics of ATCC Nos. BAA-622 and/or PTA-7826. In addition, the invention provides a composition for producing ethanol. The composition comprises 1) a source of CO, and 2) Clostridium ragsdalei . In one embodiment of the invention, the source of CO is syngas.
In yet another embodiment, the invention provides a method of producing ethanol. The method comprises the step of combining a source of CO and Clostridium ragsdalei under conditions which allow said Clostridium ragsdalei to convert CO to ethanol.
The invention further provides a system for producing ethanol, the system comprising 1) a vessel in which a source of CO is combined with Clostridium ragsdalei ; and 2) a controller which controls conditions in said vessel which permit the Clostridium ragsdalei to convert the CO to ethanol. In one embodiment of the invention, the system also includes 1) a second vessel for producing syngas; and 2) a transport for transporting the syngas to the vessel, wherein the syngas serves as the source of CO. Such a system is illustrated in Figure 5, which shows the vessel 100 and controller 101, with the optional second vessel 200 and transport 201.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1. Transmission electron micrograph of negatively stained cell of strain
PI l. Bar, lμm.
Figure 2. Determination of optimum pH for strain PI l with fructose as the substrate.
Figure 3. Determination of optimum temperature for strain PI l with fructose as the substrate.
Figure 4. Phylogenetic tree based on 16S rDNA gene sequence similarities and constructed using the neighbor-joining method, indicating the position of C. ragsdalei ATCC BAA-622 and/or PTA-7826 and representative species of the genus of Clostridium. GenBank accession numbers for the 16s rRNA sequences are given after the strain numbers. Figure 5. Schematic for a system for producing ethanol from syngas using PIl.
DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS OF THE INVENTION The present invention is based on the discovery of a novel acetogenic bacterium that is capable, under anaerobic conditions, of producing high yields of valuable products from CO and other readily available substrates. In particular, the microorganism produces valuable liquid products such as ethanol, butanol and acetate by fermenting CO, with ethanol being a predominant product. By "fermenting" we mean a physiological process whereby the substrate serves as both the source of electrons and the electron sink (oxidation of a portion of the substrate and reduction of a portion of the substrate) which can be used for the production of products such as alcohols and acids. As a result, this organism is capable of converting what would otherwise be waste gases into useful products such as biofuel. The anaerobic microbe of the invention is a novel Clostridia species which displays the characteristics of purified cultures represented by ATCC deposits BAA-622 and/or PTA-7826, herein referred to as "PI l".
The morphological and biochemical properties of Pl 1 have been analyzed and are described herein in the Examples section below. While certain of the properties of Pl 1 are similar to other Clostridium species, Pl 1 possesses unique characteristics that indicate it is a novel species of this genus. PI l has been denominated Clostridium ragsdalei, and is considered to be representative of this species.
The bacteria in the biologically pure cultures of the present invention have the ability, under anaerobic conditions, to produce ethanol from the substrates CO + H2O and/or H2 + CO2 according to the following reactions:
Ethanol Synthesis
6CO + 3H2O — > C2H5OH + 4CO2 ( 1 )
6H2 + 2CO2 — > C2H5OH + 3H2O (2)
With respect to the source of these substrates, those of skill in the art will recognize that many sources of CO, CO2 and H2 exist. For example, preferred sources of the substrates are "waste" gases such as syngas, oil refinery waste gases, gases (containing some H2) which are produced by yeast fermentation and some clostridial fermentations, gasified cellulosic materials, coal gasification, etc. Alternatively, such gaseous substrates are not necessarily produced as byproducts of other processes, but may be produced specifically for use in the fermentation reactions of the invention, which utilize PI l. Those of skill in the art will recognize that any source of substrate gas may be used in the practice of the present invention, so long as it is possible to provide the bacterium with sufficient quantities of the substrate gases under conditions suitable for the microbe to carry out the fermentation reactions. The source of H2O for the reaction represented by Equation (1) is typically the aqueous media in which the organism is cultured.
In a preferred embodiment of the invention, the source of CO, CO2 and H2 is syngas. Syngas for use as a substrate may be obtained, for example, as a gaseous byproduct of coal gasification. The bacteria thus convert a substance that would otherwise be a waste product into valuable biofuel. Alternatively, syngas can be produced by gasification of readily available low-cost agricultural raw materials expressly for the purpose of bacterial fermentation, thereby providing a route for indirect fermentation of biomass to fuel alcohol. There are numerous examples of raw materials which can be converted to syngas, as most types of vegetation could be used for this purpose. Preferred raw materials include but are not limited to perennial grasses such as switchgrass, crop residues such as corn stover, processing wastes such as sawdust, etc. Those of skill in the art are familiar with the generation of syngas from such starting materials. In general, syngas is generated in a gasifier from dried biomass primarily by pyrolysis, partial oxidation, and steam reforming, the primary products being CO, H2 and CO2. (The terms "gasification" and "pyrolysis" refer to similar processes. Both processes limit the amount of oxygen to which the biomass is exposed. Gasification allows a small amount of oxygen (this may also be referred to as "partial oxidation" and pyrolysis allows more oxygen. The term "gasification" is sometimes used to include both gasification and pyrolysis.) Typically, a part of the product gas is recycled to optimize product yields and minimize residual tar formation. Cracking of unwanted tar and coke in the syngas to CO may be carried our using lime and/or dolomite. These processes are described in detail in, for example, Reed, 1981. (Reed, T.B.,1981, Biomass gasification: principles and technology, Noves Data Corporation, Park Ridge, NJ.)
In addition, combinations of sources of substrate gases may be utilized. For example, the primary source of CO, CO2 and H2 may be syngas, but this may be supplemented with gas from other sources, e.g. from various commercial sources. For example, the reaction according to Equation (1) above generates four molecules of CO2, and reaction according to Equation (2) utilizes 6 H2 but only two molecules of CO2. Unless H2 is plentiful, CO2 buildup may occur. However, supplementing the media with additional H2 would result in an increase of the utilization of CO2, and the consequent production of yet more ethanol.
The primary product produced by the fermentation of CO by the bacterium of the present invention is ethanol. However, acetate may also be produced. Acetate production likely occurs via the following reactions:
Acetate Synthesis
4CO + 2H2O — > CH3COOH + 2CO2 (3)
4H2 + 2CO2 — > CH3COOH + 2H2O (4)
The organisms of the present invention must be cultured under anaerobic conditions. By "anaerobic conditions" we mean that dissolved oxygen is absent from the medium.
In general, the media for culturing the acetogen of the invention is a liquid medium such as ATCC medium 1754 (developed by R. S. Tanner). However, those of skill in the art will recognize that alternative media can be utilized, for example, ATCC medium 1045 under a H2:CO2 or CO:CO2 atmosphere at an initial pH of 6. Further, various media supplements may be added for any of several purposes, e.g. buffering agents, metals, vitamins, salts, etc. hi particular, those of skill in the art are familiar with such techniques as nutrient manipulation and adaptation, which result in increased or optimized the yields of a product of interest. For example, culturing microbes under "non-growth" conditions (i.e. conditions which do not favor bacterial growth and reproduction) may result in higher production of fermentation products. This is likely because under non-growth conditions, the resources of the bacteria are not dedicated to reproduction and are therefore free for other synthetic activities. Examples of non-growth conditions include, for example, maintaining the culture at non-optimal temperature or pH, the limitation of nutrients and carbon sources, etc. Generally, non-growth conditions would be implemented after a desired density of bacteria is reached in the culture. Also, it is possible by media optimization to favor production of one product over others, e.g. to favor the production of ethanol over acetate. For example, increasing the concentration of iron tenfold compared to that in standard medium doubles the concentration of ethanol produced, while decreasing the production of acetic acid. Those of skill in the art are familiar with procedures for optimizing the production of desired products, and all such optimized procedures using the PI l bacterium are intended to be encompassed by the present invention. Reference is made, for example, to work carried out with Clostridium acetobutylicum which provides guidance for such techniques (see, for example, Bahl et al., 1986, Appl Environ. Microbiol. 52:169-172; and US patents 5,192,673 to Jain et al. and US patent 5,173,429 to Gaddy, the complete contents of both of which are hereby incorporated by reference).
In particular, Clostridium ragsdalei may be cultured using Balch technique (Balch and Wolfe, 1976, Appl. Environ. Microbiol. 32:781-791; Balch et al., 1979, Microbiol. Rev. 43:260-296), as described in the reviews by: Tanner, 1997, Manual
Environ. Microbiol., p. 52-60, ASM Press; Tanner, 2002, Manual Environ. Microbiol. 2nd ed., p. 62-70; Wiegel et al., 2005, An Introduction to the Family Clostridiaceae, The Prokaryotes, Release 3.20; Tanner, 2006, Manual Environ. Microbiol. 3rd ed., ASM Press. This entails the aid of an anaerobic chamber for preparing culture materials and a gas exchange manifold to establish whatever gas phase is desired for culture in sealed tubes or vessels. More specific details on culturing solvent-producing acetogens, such as the use of an acidic pH, appear in Tanner et al., 1993, Int. J. Syst. Bacteriol. 43:232-236 and Liou et al., 2005, Int. J. Syst. Evol. Microbiol. 55:2085-2091. Methods to enhance ethanol production include optimization of every medium component (such as ammonium, phosphate and trace metals), control of culture pH, mutagenesis and clonal screening etc. The fermentation of CO by the organisms of the invention can be carried out in any of several types of apparatuses that are known to those of skill in the art, with or without additional modifications, or in other styles of fermentation equipment that are currently under development. Examples include but are not limited to bubble column reactors, two stage bioreactors, trickle bed reactors, membrane reactors, packed bed reactors containing immobilized cells, etc. The chief requirements of such an apparatus include that sterility, anaerobic conditions, and suitable conditions or temperature, pressure, and pH be maintained; and that sufficient quantities of substrates are supplied to the culture; that the products can be readily recovered; etc. The reactor may be, for example, a traditional stirred tank reactor, a column fermenter with immobilized or suspended cells, a continuous flow type reactor, a high pressure reactor, a suspended cell reactor with cell recycle, and other examples as listed above, etc. Further, reactors may be arranged in a series and/or parallel reactor system which contains any of the above-mentioned reactors. For example, multiple reactors can be useful for growing cells under one set of conditions and generating ethanol (or other products) with minimal growth under another set of conditions.
In general, fermentation will be allowed to proceed until a desired level of product is produced, e.g. until a desired quantity of ethanol is produced in the culture media. Typically, this level of ethanol is in the range of at least about 1 gram/liter of culture medium to about 50 gram/liter, with a level of at least about 30 gram/liter (or higher) being preferable. However, cells or cell culturing systems that are optimized to produce from about 1 to 10, or from about 10 to 20, or from about 20 to 30, or from about 30 to 40, or from about 40 to 50 gram/liter are also contemplated. Pl 1 remains viable and will grow in ethanol concentrations of at least 60 g/L. Alternatively, production may be halted when a certain rate of production is achieved, e.g. when the rate of production of a desired product has declined due to, for example, build-up of bacterial waste products, reduction in substrate availability, feedback inhibition by products, reduction in the number of viable bacteria, or for any of several other reasons known to those of skill in the art. In addition, continuous culture techniques exist which allow the continual replenishment of fresh culture medium with concurrent removal of used medium, including any liquid products therein (i.e. the chemostat mode).
The products that are produced by the bacteria of the invention can be removed from the culture and purified by any of several methods that are known to those of skill in the art. For example, ethanol can be removed and further processed, e.g. by solvent extraction; distillation to the azeotrope followed by azeotropic distillation; molecular sieve dehydration; pervaporation; or flow-through zeolite tubes. Those of skill in the art will recognize that the two main techniques in industry for ethanol dehydration following distil lation are azeotropic distillation and molecular sieve dehydration. (See, for example, Kohl, S. "Ethanol 101-7: Dehydration" in Ethanol Today, March 2004: 40-41). In addition, depending on the number of products, several separation techniques may need to be employed to obtain several pure products. Likewise, acetate may be removed and further processed by similar processes. hi some embodiments of the invention, Pl 1 is cultured as a pure culture in order to produce ethanol (or other products of interest). However, in other embodiments, PI l may be cultured together with other organisms.
EXAMPLES EXAMPLE 1.
In an effort to discover novel microbial catalysts capable of efficiently metabolizing syn-gas and producing ethanol, Clostridium ragsdalei, a new mesophilic, carbon monoxide utilizing, acetogen was isolated and is described hereafter. The characterization of the new organism was done in part by comparison to known Clostridium ljundahlii strain PETC
MATERIALS AND METHODS
Organisms. Clostridium ljundahlii strain PETC was obtained from a fructose stock culture maintained by Dr. Ralph S. Tanner and was used as the reference control strain. Strain PI l was obtained from an anaerobic enrichment inoculated with fresh water sediment from the Duck Pond at the University of Oklahoma by a procedure described previously (Bryant, 1972) under an atmosphere of CO:N2:CO2 (75:15: 10) and an initial pH of 6.0. The carbon monoxide oxidizing Clostridium described within was named Clostridium ragsdalei. This bacterium was designated strain PI l and was originally deposited with the American Type Culture Collection as strain ATCC BAA-622 and, later, deposited again as ATCC PTA-7826.
Media. The medium used in this study was prepared using strict anaerobic technique described by Balch & Wolfe (1976) and contained the mineral salts, trace metals and vitamin solution described by Tanner (2002), supplemented with yeast extract (1 g/L, Difco) (Tables 1-4).
TABLE 1. Mineral stock solution/
Figure imgf000013_0001
a, store at room temperature
TABLE 2. Trace metals solution/
Figure imgf000013_0002
Figure imgf000014_0001
a. Store at 4°C.
TABLE 3. Vitamin solution.3
Figure imgf000014_0002
a, Store at 4°C in the dark. b, Mercaptoethanesulfonic acid.
TABLE 4. Description of culture medium for strain Pl l.a
Figure imgf000014_0003
a, pH 6.1-6.3 b, 2-[N-morpholino]ethanesulfonic acid.
Except for the deletion Of NaHCO3 and an initial pH 6.3, growth on organic and gaseous substrates was performed as previously described (Tanner et. al., 1993).
Resazurin (lmg/L) was used as the redox indicator. Purified agar was added to the medium at a concentration of 2% for colony morphology description (Table 5). Heat labile substrates were filter sterilized (not autoclaved) and added from sterile stock solutions to a final concentration of 5 g/L before inoculation. The optimum temperature and pH (initial pH) was determined in medium containing fructose as the substrate. For determination of the optimum pH, media was buffered with HOMOPIPES (homopiperazine-N,N'-bis-2-[ethanesulfonic acid] (Research Organics, Cleveland, OH), MES (2-[N-morpholino]ethanesulfonic acid), or TES (N-tris [hydroxymethyl] methyl-2-aminoethanesulfonic acid) at (1.0 g/L). A 0.1ml (-2%) inoculum of fructose-grown cells was used to initiate growth. All media components used in these experiments were obtained from Sigma unless otherwise noted (Sigma Chemical Co., St. Louis, MO).
TABLE 5. Nutrient agar used for description of colony morphology.a
Figure imgf000015_0001
a, pH 6.1-6.3 b, Mercaptoethanesulfonic acid. Biochemical reactions. Biochemical assays for esculin and starch hydrolysis, gelatinase production, and indole production were performed by procedures described by Smibert & Krieg (1994). Nitrate reduction was measured using a CHEMetrics test kit and spectronic 2OD set at 520nm. Cells grown mid to late-exponential phase in medium supplemented with fructose were used for the assays.
Fermentation balance. A fermentation balance was determined for growth on fructose. Fructose was measured using a phenol-sulfuric acid carbohydrate assay (Dubois et. al., 1956). Acetate and ethanol were measured simultaneously by a gas chromatograph (GC) equipped with a flame ionization detector (FID) on a Varian 3400 equipped with a 2m steel column packed with an 80/120 Carbopak B-DA/4% carbowax resin 2OM (Supelco, Bellfonte, PA). The column, injector, and detector temperature were 155, 200, and 2000C, respectively. Helium was the carrier gas and flow rate was set at 30ml min-1. CO2 was measured with a gas chromatograph equipped with a thermal conductivity detector (TCD) (Varian, Sugar Land, TX) and a Porapak Super Q 2m steel column (Alltech, Deerfield, MI). The column temperature was set at 600C with a flow rate of 15ml min-1 and helium as the carrier gas.
Electron and phase contrast microscopy. Exponential-phase cells grown on 0.5% yeast extract as substrate were used for transmission electron microscopy. Cells were spread onto carbon coated Formvar grids, fixed with 1 % glutaraldehyde, and stained with 0.5% phosphotunsgate (pH 7.0). Cells were examined and photographed using a JEOL JEM 2000 FX TEM. An Olympus CH-2 phase-contrast microscope was used to observe cells.
Analytical methods. Growth was measured spectrophotometrically at 600nm (Spectronic 2OD; Milton Roy) in aluminum seal tubes (Balch & Wolfe, 1976). To demonstrate strain PI l was capable of utilizing a substrate, growth had to occur after consecutive transfers in replicate tubes. For the substrate malate, utilization was analyzed by HPLC ("high-performance liquid chromatography") equipped with a UV detector set at 214nm using a Alltech, Prevail Organic Acid column (4.6 x 150 mm, 5 μm; Alltech, Deerfield, MI) with a mobile phase of 25mM KH2PO4, pH 2.5 and 10% (v/v) methanol. DNA for mol % G+C (guanine plus cytosine) analysis was isolated according to a modified method of the Marmur procedure (Johnson, 1994) and included treatments with lysozyme, proteinase K and RNase. A lysozyme treatment of at least 6 hours was found to be most effective. The G+C content was measured by HPLC (Mesbah et al., 1989). An Alltech, Prevail C18 reversed-phase column (4.6 x 250 mm, 5 μm particle size; Alltech, Deerfield, DL) was used with a mobile phase of 25mM KH2PO4, pH 2.5 and 4% (v/v) acetonitrile, and a UV detector set at 254 nm.
BOX-PCR genomic fingerprinting. Repetitive DNA PCR fingerprinting was performed using the BOXAlR primer, obtained from Invitrogen (Carlsbad, CA) and the protocol from Versalovic et al. (1994). PCR mixtures contained 2.5μl 1OX buffer B (50OmM KCl and 100 niM Tris«HCl, Fisher Scientific), 2μl MgCl2»6H20 (25mM, Fisher Scientific), 0.25 μl Taq polymerase (Fisher Scientific), 0.5 μl of each deoxynucleoside triphosphate (10 mM, Promega, Madison, WI), lμl primer, and sample DNA in a final volume of 25 μl. The PCR reaction was run on a Robocycler Gradient 40 Temperature Cycler (Stratagene, Cedar Creek, TX) using a protocol of an initial denaturation step (94°C, four min, one cycle), 30 reaction cycles (94°C for one min, 500C for one min, 72°C for eight min), and a final extension step (72°C for eight min). PCR product (lOμl) was run on a 5% polyacrylamide vertical gel with a 100 base pair ladder (Fisher Scientific) for 17 hr at 26°C and 120 mAmps. The ethidium bromide-stained gel image was analyzed using a NucleoCam Digital Image
Documentation System (Nucleo Tech Corp., San Mateo, CA). 16S rDNA sequence analysis. The sequence analysis was performed according to the procedures described by Chandler et al. (1997).
DNA hybridization. The DNA hybridization assays were performed at the DSMZ using the previously described methods of Wayne et al. (1987).
Nucleotide sequence analysis. The GenBank accession numbers for the 16s rDNA gene sequences of strain Pl 1 ATCC BAA-622 are AY1700378 and DQ20022. RESULTS AND DISCUSSION
Cellular morphology. Cells of strain PI l were rarely motile, rod-shaped, stained gram-positive, and occurred singly or in chains. Cells were 0.7-0.8 μm by 4-5 μm and were peritrichously flagellated (see Figure 1). Spores occurred infrequently, but when present were non-swelling and located subterminal to terminal. Colonies appeared circular, translucent and flat on nutrient agar.
Physiology. Clostridium ragsdalei was strictly anaerobic. Yeast extract stimulated growth, although in its absence marginal growth was observed after an extended lag phase. Autotrophic growth occurred with H2/CO2 or CO/CO2 and chemoorganotrophic growth was observed with the following substrates: pyruvate, D-threose, xylose, mannose, fructose, glucose, sucrose, ethanol, 1-propanol, casamino acids, glutamate, serine, choline, and alanine (Table 6). Malate or formate did not initially support growth even when examined at a pH range of 5.0-6.5. However, after an incubation period of about thirty days in the tested pH range C Ijungdahlii was able to grow with malate as the sole carbon source. This is indicative that this organism may require adaptation to malate under the conditions tested. Similar requirements have been shown with C. Ijungdahlii when grown on glucose. Table 6 shows a comparison between strain PI l and Clostridium Ijungdahlii strain PETC and their growth on substrates as sole carbon and energy sources.
TABLE 6. Comparison of substrate utilization by Clostridium ragsdalei strain Pl 1 and Clostridium ljundahlii strain PETC
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000020_0001
+, positive (indicates a final OD600 of greater than or equal to 0.1.) -, negative (indicates a final OD600 less than the negative control.) *, result different from previously reported (Tanner, 1993). f , results of this study
Strain Pl 1 grew optimally at an initial pH 6.3; growth occurred at initial pH values between 4.0 and 8.5 (Figure 2). When cultured in unbuffered media with an initial pH of 6.3, a final pH of 4.1 was measured. The optimal temperature for growth was 37°C (Figure 3); the temperature range in which Pl 1 grew was 18-37°C.
The doubling time for strain PI l when grown with fructose and CO under optimal conditions was 0.143 h"1 and 0.175 bf1 respectively. However, when grown with xylose the doubling time decreased significantly (0.220 h"1), indicating that xylose may be the preferred carbon and energy source of strain PI l.
Strain Pl 1 produced 2.35 mmol of acetic acid from 1 mmol of fructose; in addition, 0.63 mmol of CO2 and 0.5 mmol of ethanol were produced as end products (Table 7). Other acetogenic organisms, Acetobacterium woodii, Acetohacterium wieringae and Acetobacterium carbinolicum have also been observed to produce ethanol during the fermentation of hexoses (Buschhorn et. al., 1989). Acetate was the only product formed in significant amounts when grown on H2/CO2, indicating that C. ragsdalei more than likely utilizes the acetyl coenzyme A (acetyl-Co-A) Wood/Ljungdahl pathway (Drake 1994).
TABLE 7. Fermentation balance of strain PI l with fructose.
Figure imgf000021_0001
% carbon recovered, 99.8 % hydrogen recovered, 98 % oxygen recovered, 100 BOX-PCR genomic fingerprinting. The result of the gel electrophoresis of PCR products from C. ljungdahlii and strain PI l were compared (not shown). Both had a band of approximately 1,310 base pairs in size, a band of approximately 1,210 base pairs in size, a band of approximately 980 base pairs in size, a band of approximately 820 base pairs in size, a band of approximately 400 base pairs in size in common. C. ljungdahlii also had PCR product bands of 2,000 base pairs, 1,770 base pairs, 1,410 base pairs, 1,370 base pairs, 1,260 base pairs, 1,040 base pairs, 680 base pairs, and 360 base pairs in size. Strain PI l had unique band of 1,500 base pairs. Therefore, these two Clostridia were readily shown to be different using this technique. Although genomic fingerprinting is not a substitute for DNA-DNA hybridization, the use of this technique may be a valuable tool for many labs wanting to distinguish closely related bacterial strains.
Genetic analysis. Phylogenetic analysis of the 16S rDNA gene sequences of Pl 1 indicated that the organism belonged to cluster I of the genus Clostridium (Collins et. al., 1994) essentially group I of Johnson & Francis (1975). In this cluster, strain PI l was located within a unit of five other Clostridia; C. ljungdahlii, C. tyrobutyricum, C. magnum, C. pasteurianum, and C. scatologenes. The 16S rDNA sequence of strain PI l was most similar (99.9%) to that of Clostridium ljungdahlii ATCC M59097 (Figure 4), an acetogen also capable of growth on CO (Tanner et. al., 1993).
Because of the high 16S rDNA similarity between strain Pl 1 and C. lungdahlii a DNA-DNA hybridization study was performed. The determined value was 57 percent, clearly indicating that strain Pl 1 was a novel species. The mol% G+C of the DNA was 29-30% (n = 5), also similar to that of closely related Clostridium species. This example shows that This example shows that Clostridium ragsdalei strain Pl 1 is a distinct novel species, based both phenotypic differences to C. ljungdahlii and related species, and the clear standard of having less than 70% DNA-DNA relatedness (Wayne et al., 1987).
EXAMPLE 2. The study of improving, maximizing or minimizing effects, and certain features already found to be contained within an organism without changing its inherent properties to obtain the most desirable result could be defined as optimization. Optimization studies are a key element in developing strategies to improve growth as well as the production of a desired fermentation product. In our case, ethanol is the desired end product. MATERIALS AND METHODS
Bacterial Strain and Cultivation Media. Clostridial strain PI l was used throughout the study. Carbon monoxide medium (COM) was used to cultivate and maintain the culture. The growth temperature was 37°C. COM is an undefined buffered medium initially pressurized to lOpsi (70 kPa) with N2/CO2 and then autoclaved for 15 minutes at 121°C. The medium contained per liter of distilled water: 25ml mineral solution (Table 1), 10ml trace metals solution (Table 2, 10ml vitamin solution (Table 3), 1.Og of yeast extract, 1Og of MES (2-[N-morpholino] ethanesulfonic acid), 0.00 Ig resazurin, 4.Og cysteine»HCl, and 4.0 Na2S»9H2O; the initial pH of this medium was 6.1-6.3. The medium was prepared using strict anaerobic technique (Balch & Wolfe, 1976). Carbon monoxide was the sole substrate provided at 210 kPa (30psi). Unless otherwise noted all growth experiments were conducted under a pressure of 30 psi with CO as the sole or primary substrate and were incubated horizontally to maximize gas diffusion into the medium. Standard inoculum size was about 2% (v/v) transferred from a stock culture that was growing in mid to late exponential phase, unless otherwise noted.
Analytical methods. Growth was measured spectrophotometrically at 600nm (Spectronic 2OD; Milton Roy) in aluminum seal tubes (Balch & Wolfe, 1976). Acetate and ethanol were measured simultaneously by a gas chromatograph (GC) equipped with a flame ionization detector (FID) on a Varian 3400 equipped with a 2m steel column packed with an 80/120 Carbopak B-D A/4% carbowax resin 2OM (Supelco, Bellfonte, PA). The column, injector, and detector temperature were 155, 200, and 2000C respectively. Helium was the carrier gas and the flow rate was set at 3OmI mIn "1. Hydrogen ion concentration was measured by electrode. Metabolic Inhibitor Studies. Filter sterilized anaerobic stock solutions of fluoroacetate (FA) and trifluoroacetate (TFA) (Sigma Chemical Co.) were prepared to final concentrations of 4.5M. Before preparation, the FA and TFA powders were allowed to sit overnight in small beakers in the anaerobic chamber to allow any trapped oxygen to diffuse from the powder. Final concentrations ranging from 5mM to 21OmM were assayed in trying to determine the minimum inhibitory concentration (MIC) and the most effective concentration to inhibit acetogenesis for maximum ethanol production relative to the growth yield. The inhibitors were usually added to the medium one day prior to inoculating with Pl 1 to ensure anaerobicity was maintained. AU additions were made anaerobically by syringe. During this study growth was measured periodically by spectroscopy. Toward the end of resting cell phase, liquid samples (ImL) were taken and stored frozen (-200C) until analyzed by GC and HPLC.
Semi-Continuous Batch Cultures. Long term semi-continuous batch culture experiments were performed with 50OmL serum bottles containing between
100-20OmL of unamended COM. COM amended to a pH of 5.5 was also added for observation along with one culture grown in shaking conditions (50 rpm). The cultures were maintained by exchanging the spent liquid media with new unamended and amended COM and the addition/exchange of H2/CO2 to atmosphere and CO every 7-10 days. CO was added to at least 30 psi. During medium exchange growth and pH measurements were taken and liquid samples (1.OmL) were taken from this and stored frozen (-200C) until ethanol and acetate were analyzed by GC and HPLC.
Ethanol tolerance. The effect of ethanol on CO metabolism and solvent production was investigated with strain Pl 1. The initial maximum concentration at which strain Pl 1 could survive was determined during the course of these studies. Balch tubes with COM containing ethanol concentrations ranging from 15-35 gram per liter were inoculated with PI l and growth was measured for approximately 10 days. Liquid samples (1.OmL) were extracted once the cells remained at stationary phase and stored frozen (-200C) until analyzed by GC and HPLC. After the maximum ethanol concentration for cell survival was determined semi-continuous batch culture experiments were conducted using 50OmL serum bottles containing between 100-20OmL of COM containing different concentrations of ethanol (20, 30, 40, and 50 g/L) to adapt strain Pl 1 to high solvent conditions. The amended COM with ethanol was prepared by adding filter sterilized ethanol to pre- sterilized Balch tubes, and then purging with N/ CO2 to remove oxygen. After the media was sterilized, the ethanol was then added to the appropriate concentrations. These bottles were inoculated with the Pl 1 cells from the semi-continuous batch cultures that were already established above. Growth and pH were measured periodically. A portion of the medium extracted for those measurements was taken for analyses of ethanol and acetate concentrations. Trace metals. Iron (Fe), molybdenum (Mo), cobalt (Co), copper (Cu), and nickel (Ni) were examined at various concentrations to determine their effect on growth yield and ethanol production. Triplicate tubes of unamended (IX) and amended (OX and 10X) media were inoculated with strain Pl 1 where each of these individual trace metals were added to or eliminated from the COM at 1OX and OX the original metal concentration. The cultures were fed every 48 hours with CO.
This was also completed in duplicate in 16OmL serum bottles to simulate small scale batch conditions. Stock solutions were prepared for each of the above metals and added during the media preparation before boiling and degassing. To minimize metal ion carry-over and deplete the amounts of the metals present in the cells for the OμM metals test concentrations, at least 6 transfers were made before the growth experiments were started. In order to adapt cells to the higher concentrations of metals, at least 2 transfers were made for each set-up. This experiment was performed in triplicate and growth was measured over 7 days after which pH and ethanol concentration analyses were completed. Yeast extract. Various concentrations of yeast extract ranging from 0 - 2.0% were examined to determine their effect on growth and ethanol production. Growth was measured over a 7 day period and the pH and ethanol concentration determined at the conclusion of the experiment. Yeast extract was examined at the following percent concentrations: 0, 0.025, 0.05, 0.1, 0.2. CO was the primary substrate and carbon source. Strain PI l was adapted to the lower concentrations as before by using at least six consecutive transfers and at least two consecutive transfers for the higher concentrations. pH. Optimum pH studies were completed to determine the best conditions for the enhancement of ethanol production from CO metabolism. For determination of the optimum pH, media was buffered with HOMOPIPES
(homopiperazine-N,N'-bis-2-[ethanesulfonic acid] (Research Organics, Cleveland, OH), MES (2-[N-morpholino]ethanesulfonic acid), or TES (N-tris [hydroxymethyl] methyl-2-aminoethanesulfonic acid) at (1.0 g L-I). A 0.1ml (~2%) inoculum of stationary phase CO grown cells was used to initiate growth. All media components used in these experiments were obtained from Sigma unless otherwise noted (Sigma Chemical Co., St. Louis, MO). At the completion of these experiments, pH was determined and the ethanol and acetate concentrations were analyzed.
Two sets of experiments were performed concerning pH. The first pH experiment was carried out in Balch tubes and growth was examined over 5 days without maintaining the pH. The second was carried out in small serum bottles
(12OmL) to determine optimum pH for ethanol production. In the second setup the pH was controlled by the addition of sterilized IN HCl or IN NaOH. RESULTS
Metabolic Inhibitors - FAfTFA. The MIC established for fluoroacetate (FA) and trifluoroacetate (TFA) was 10OmM and 15OmM respectively. Definitive trends were not established with PI l for ethanol and acetate production in the presence of FA and TFA at the various concentrations assayed (see Table 8). When grown in COM containing 2OmM FA, no significant differences in growth yield (OD) or end products was observed relative to the PI l control. However, in the presence of 3OmM FA and above, acetate production decreased nearly ninety percent and the ethanol production and growth yield decreased fifty and forty percent respectively. The ethanol to acetate ratio increased eighty percent.
When grown in COM containing 3OmM TFA, there was a 126 and 52 percent increase in the ethanol and acetate produced respectively, although the solvent to acid ratio only increased slightly (50%). The growth yield remained unchanged. This suggests that carbon flow was shifted from acid to solvent production for both inhibitors used, only affecting the growth in the case of FA.
TABLE 8. Final OD and ETOH and acetate production with and without metabolic inhibitors
Figure imgf000027_0001
Semicontinuous Batch Cultures
The PIl growth yield remained stable or increased during monitoring throughout a four month period. After correcting for dilution, the growth yield for one PI l culture reached 2.4 OD units. The pH for all cultures was consistently measured around 4.3. The amended COM (pH 5.5) achieved the highest ethanol yield at 252mM (11.6g/L) and ethanol to acetate ratio, whereas the highest unamended ethanol yield was 95mM (4.4g/L). An increase in acetate concentration and a decrease in ethanol production was the trend generally exhibited in cultures over the time period (a possible indicator of strain degeneration). The exception was the Pl 1 culture initiated at a pH of 5.5. (Data is not shown.) Ethanol Tolerance
Strain Pl 1 was grown in COM amended with 15, 20, 25, 30, and 35g/L and found to be initially tolerant of ethanol concentrations up to 30 g/L with the minimum inhibitory concentration being 35 g/L. Growth was retarded in the presence of all ethanol concentrations relative to the unamended control without ethanol. Measurable growth was not achieved for the amended cultures until 48 hours, except for the 25g/L amended culture that grew at 98 hours (data not shown). The best growth at the highest ethanol concentration occurred at 20 g/L.
Using the culture growing the presence of the 20 g/L concentration and semi-continuous batch culture was started and maintained. Once the culture was established at 20 g/L an attempt to adapt it to 30 g/L was successfully made. This adaptation process continued until the 50 g/L concentration was reached. After this point, the culture was not able to be established at concentrations above 50 g/L although several attempts were made. Growth at the 50 g/L concentration was not able to be maintained above 0.55 OD units, but remained close to this level throughout the monitoring. Acetate and ethanol production had mixed results throughout the monitoring and therefore definitive trends were not established with these cultures. Trace Metals The effects of metal elimination and addition on CO metabolism in Pl 1 were tested. The elimination of Fe, Co, Cu, and Ni limited CO metabolism. However, in the absence of Mo, CO metabolism increased slightly. The increased levels of Mo, Fe, Co, Cu, and Ni (200μM, 80μM, 12μM,& 8μM respectively) stimulated CO metabolism, and was especially noticeable after a 48 hour feeding (data not shown). The solvent to acid ratio improved with the elimination of all metals, except
Mo. In the case of Fe and Ni elimination, there was close to a 300 and 400 percent increase in the solvent to acid ratio. The elimination of Co and Cu decreased acetate production, increasing the solvent to acid ratio, while Mo elimination increased acetate production. Yeast Extract
Initially strain PI l did not grow at the 0% yeast extract concentration and the growth experiment was only conducted with the other concentrations mentioned above. However, after nearly four weeks evidence of growth was observed. From that point on transfers were made every one to two weeks, and the initial tubes were refed with CO. At least 15 transfers were made. Thus, PI l can be adapted to grow in the absence of the complex medium component yeast extract. Optimum pH Effects on Ethanol Production
Growth and alcohol: acid ratio was measured. The optimum pH for CO metabolism and ethanol production in C. ragsdalei was determined to be between 5.5 and 6.0. The ethanol: acetate ratio for the cultures with initial pH of 5.5 and 6.0 was 0.7: 1 and 0.6: 1 respectively. DISCUSSION
FA/TFA
Previously a 5OmM concentration of fluoroacetate had been shown to inhibit growth of a thermophilic Clostridium (Rothstein, 1986). The importance of the data presented here is that it showed an increase of ethanol production by Pl 1 in the presence of fluoroacetate and trifluoroacetate when compared to the control strains maintained in identical conditions.
Strain PI l was inhibited by ethanol at a concentration of 30 grams per liter upon initial isolation. Cultures were adapted to tolerate higher concentrations of ethanol by adaptation, similar to the adaptation techniques in Yamano et al., 1998. To date, the culture has been adapted to function fully at an ethanol concentration of 50 grams per liter ethanol. This example shows that adaptation procedures used in industrial microbiology can be used to enhance the performance of strain Pl 1 as a microbial catalyst for ethanol and/or acetic acid production.
REFERENCES, each of which is incorporated herein by reference.
Balch, W.E. & R.S. Wolfe. (1976). New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanosulfonic acid (HS-CoM)-dependent growth of
Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32, 781-791.
Bredwell, M.D., Srivastava, P., & Worden, R.M. (1999). Reactor design issues for synthesis-gas fermentations. Biotechnol Prog 15, 834-844.
Bryant, M.P. (1972). Commentary on the Hungate technique for culture of anaerobic bacteria. Am Journ Clin Nutrition 25, 1324-1328.
Buschhorn, H., Durre, P., & Gottschalk. (1989). Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl Environ Microbiol 55, 1835-1840. Collins, M.D., Lawson, P.A., Willems, A., Cordoba, J. J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H. & Farrow, J.A.E. (1994). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44, 812-826.
Drake, H.L. (1994). Acetogenesis, acetogenic bacteria, and the acetyl-CoA "Wood/Ljungdahl" pathway: past and current perspectives. In Acetogenesis, pp. 3-60. Edited by H.L. Drake. New York: Chapman and Hall.
Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956.
Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356.
Johnson, J.L., & B. S. Francis. (1975). Taxonomy of the Clostridia: ribosomal ribonucleic acid homologies among the species. J Gen Microbiol 88, 229-244.
Johnson, J.L. (1994). Similarity analysis of DNAs. In Methods for General and Molecular Microbiology, pp. 655-682. Edited by P. Gerhardt, R. G. E. Murray, W.A. Wood, and N. R. Krieg. Washington, DC: American Society for Microbiology.
Klass, Donald L. (1998). Biomass for renewable energy, fuels, and chemicals. San Diego, CA: Academic Press.
Licht, F.O. (2001). World Ethanol Markets, Analysis and Outlook, p. 17. Kent, United Kingdom: F.O. Licht
Mesbah, M., Premachandran, U., & Whitman, W.B. (1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159-167. Rothstein, D. M. 1986. Clostridium thermosaccharolyticum strain deficient in acetate production. J. Bacteriol. 165:319-320.
Smibert, R. M., & Krieg, N. R. (1994). Phenotypic Characterization. In Methods for General and Molecular Microbiology, pp. 611-654. Edited by P. Gerhardt, R. G. E. Murray, W.A. Wood, and N. R. Krieg. Washington, DC: American Society for Microbiology.
Tanner, R.S., Miller, L.M., & Yang, D. (1993). Clostridium Ijungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol 43,
232-236.
Tanner, R.S. (2002). Cultivation of bacteria and fungi. In Manual of Environmental Microbiology, pp. 62-70. Edited by CJ. Hurst, Crawford, R.L., G.R. Knudson, MJ. Mclnerney, & L.D. Stetzenbach. Washington, DC: American Society for Microbiology.
Versalovic, J., Schneider, M., de Bruihn, FJ. & Lupski, J.R. (1994). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods MoI Cell Biol 5, 25-40.
Wayne, L.G., Brenner, DJ., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., Starr, M.P. & Trϋper, H. G. (1987). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463-464.
Yamano, L. P., S. W. York, and L. O. Ingram. 1998. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KOl 1 for fuel ethanol production. J. Indust. Microbiol. Biotechnol. 20:132-138. Zeikus, J.G. (1980). Chemical and fuel production by anaerobic bacteria. Annu Rev Microbiol 34, 423-464.
While the invention has been described in terms of its preferred embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims. Accordingly, the present invention should not be limited to the embodiments as described above, but should further include all modifications and equivalents thereof within the spirit and scope of the description provided herein.

Claims

CLAIMSWe claim:
1. A biologically pure culture of the microorganism Clostridium ragsdalei having all of the identifying characteristics of ATCC Nos. BAA-622 or PTA-7826.
2. A composition for producing ethanol, comprising a source of CO, and Clostridium ragsdalei .
3. The composition of claim 2, wherein said source of CO is syngas.
4. A method of producing ethanol, comprising the step of combining a source of CO and Clostridium ragsdalei under conditions which allow said Clostridium ragsdalei to convert CO to ethanol.
5. A system for producing ethanol, comprising a vessel in which a source of CO is combined with Clostridium ragsdalei; and a controller which controls conditions in said vessel which permit said Clostridium ragsdalei to convert said CO to ethanol.
6. The system of claim 5, further comprising a second vessel for producing syngas; and a transport for transporting said syngas to said vessel, wherein said syngas serves as said source of CO.
PCT/US2007/077264 2006-08-31 2007-08-30 Isolation and characterization of novel clostridial species WO2008028055A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2009002194A MX2009002194A (en) 2006-08-31 2007-08-30 Isolation and characterization of novel clostridial species.
EA200970241A EA200970241A1 (en) 2006-08-31 2007-08-30 ISOLATION AND CHARACTERISTICS OF A NEW TYPE OF CLOSTRIDIUM
CA002661974A CA2661974A1 (en) 2006-08-31 2007-08-30 Isolation and characterization of novel clostridial species
JP2009526915A JP2010502191A (en) 2006-08-31 2007-08-30 Isolation and characterization of a new Clostridial species
EP07814594A EP2061872A4 (en) 2006-08-31 2007-08-30 Isolation and characterization of novel clostridial species
BRPI0715200-0A BRPI0715200A2 (en) 2006-08-31 2007-08-30 Biologically pure culture of clostridium ragsdalei microorganisms, and composition, method and system for producing ethanol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/514,385 2006-08-31
US11/514,385 US7704723B2 (en) 2006-08-31 2006-08-31 Isolation and characterization of novel clostridial species

Publications (2)

Publication Number Publication Date
WO2008028055A2 true WO2008028055A2 (en) 2008-03-06
WO2008028055A3 WO2008028055A3 (en) 2008-12-18

Family

ID=39136894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/077264 WO2008028055A2 (en) 2006-08-31 2007-08-30 Isolation and characterization of novel clostridial species

Country Status (9)

Country Link
US (2) US7704723B2 (en)
EP (1) EP2061872A4 (en)
JP (1) JP2010502191A (en)
CN (1) CN101573437A (en)
BR (1) BRPI0715200A2 (en)
CA (1) CA2661974A1 (en)
EA (1) EA200970241A1 (en)
MX (1) MX2009002194A (en)
WO (1) WO2008028055A2 (en)

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009010347A2 (en) * 2007-07-19 2009-01-22 Ineos Europe Limited Process for the production of alcohols
WO2009058028A1 (en) * 2007-10-28 2009-05-07 Lanzatech New Zealand Limited Improved carbon capture in fermentation
WO2009154788A2 (en) * 2008-06-20 2009-12-23 Ineos Usa Llc Methods for sequestering carbon dioxide into alcohols via gasification fermentation
WO2010064932A1 (en) 2008-12-01 2010-06-10 Lanzatech New Zealand Limited Optimised fermentation media
EP2217696A2 (en) * 2007-11-13 2010-08-18 Lanzatech New Zealand Limited Novel bacteria and methods of use thereof
WO2010093262A1 (en) 2009-01-29 2010-08-19 Lanzatech New Zealand Limited Alcohol production process
WO2010098679A1 (en) 2009-02-26 2010-09-02 Lanzatech New Zealand Limited Methods of sustaining culture viability
WO2011002318A1 (en) 2009-07-02 2011-01-06 Lanzatech New Zealand Limited Alcohol production process
WO2011028137A1 (en) 2009-09-06 2011-03-10 Lanzatech New Zealand Limited Improved fermentation of gaseous substrates
WO2011078709A1 (en) * 2009-12-23 2011-06-30 Lanzatech New Zealand Limited, Alcohol production process
US7972824B2 (en) 2006-04-07 2011-07-05 Lanzatech New Zealand Limited Microbial fermentation of gaseous substrates to produce alcohols
WO2012015317A1 (en) * 2010-07-28 2012-02-02 Lanzatech New Zealand Limited Novel bacteria and methods of use thereof
US8119378B2 (en) 2008-03-12 2012-02-21 Lanzatech New Zealand Limited Microbial alcohol production process
US8119844B2 (en) 2008-05-01 2012-02-21 Lanzatech New Zealand Limited Alcohol production process
US8143037B2 (en) 2010-03-19 2012-03-27 Coskata, Inc. Ethanologenic Clostridium species, Clostridium coskatii
FR2965279A1 (en) * 2010-09-29 2012-03-30 Total Sa PROCESS FOR PRODUCING OXYGEN COMPOUND
WO2012053905A1 (en) 2010-10-22 2012-04-26 Lanzatech New Zealand Limited Production of butanol from carbon monoxide by a recombinant microorganism
WO2012054798A2 (en) 2010-10-22 2012-04-26 Lanzatech New Zealand Limited Methods and systems for the production of hydrocarbon products
WO2012058508A2 (en) 2010-10-29 2012-05-03 Lanzatech New Zealand Limited Methods and systems for the production of hydrocarbon products
WO2012115527A2 (en) 2011-02-25 2012-08-30 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
US8263372B2 (en) 2009-04-29 2012-09-11 Lanzatech New Zealand Limited Carbon capture in fermentation
US8293509B2 (en) 2007-03-19 2012-10-23 Lanzatech New Zealand Limited Alcohol production process
US8377665B2 (en) 2010-01-14 2013-02-19 Lanzatech New Zealand Limited Alcohol production process
EP2580330A1 (en) * 2010-06-09 2013-04-17 Coskata, Inc. Cloning and expression of the genes encoding key clostridial catalyzing mechanisms for syngas to ethanol production and functional characterization thereof
WO2013147621A1 (en) 2012-03-30 2013-10-03 Lanzatech New Zealand Limited A fermentation method
WO2013152236A1 (en) 2012-04-05 2013-10-10 Lanzatech New Zealand Limited Enzyme-altered metabolite activity
US8592190B2 (en) 2009-06-11 2013-11-26 Ineos Bio Limited Methods for sequestering carbon dioxide into alcohols via gasification fermentation
WO2013177466A1 (en) 2012-05-23 2013-11-28 Lanzatech New Zealand Limited A fermentation and simulated moving bed process
WO2013180584A1 (en) 2012-06-01 2013-12-05 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
WO2013180581A1 (en) 2012-05-30 2013-12-05 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
WO2013191567A1 (en) 2012-06-21 2013-12-27 Lanzatech New Zealand Limited Recombinant microorganisms make biodiesel
US8658408B2 (en) 2008-06-09 2014-02-25 Lanza Tech New Zealand Limited Process for production of alcohols by microbial fermentation
WO2014036152A1 (en) 2012-08-28 2014-03-06 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
WO2014075013A1 (en) 2012-11-12 2014-05-15 Lanzatech New Zealand Limited Biomass liquefaction through gas fermentation
WO2014088427A1 (en) 2012-12-05 2014-06-12 Lanzatech New Zealand Limited A fermentation process
WO2014120023A1 (en) 2013-01-29 2014-08-07 Lanzatech New Zealand Limited System and method for improved gas dissolution
WO2014120852A2 (en) 2013-01-30 2014-08-07 Lanzatech New Zealand Limited Recombinant microorganisms comprising nadph dependent enzymes and methods of production thereof
WO2014140336A1 (en) * 2013-03-14 2014-09-18 Total Research & Technology Feluy Method for production of n-propanol and other c3-carbon containing products from syngas by symbiotic arrangement of c1-fixing and c3-producing anaerobic microorganism cultures
WO2014151158A1 (en) 2013-03-15 2014-09-25 Lanzatech New Zealand Limitied A system and method for controlling metabolite production in a microbial fermentation
US8900836B2 (en) 2010-03-10 2014-12-02 Lanzatech New Zealand Limited Acid production by fermentation
WO2014197746A1 (en) 2013-06-05 2014-12-11 Lanzatech New Zealand Limited Recombinant microorganisms exhibiting increased flux through a fermentation pathway
WO2015002552A1 (en) 2013-07-04 2015-01-08 Lanzatech New Zealand Limited Multiple reactor system and process for continuous gas fermentation
US8987431B2 (en) 2010-07-01 2015-03-24 Coskata, Inc. Essential genes encoding conserved metabolic pathway function in autotrophic solventogenic clostridial species
WO2015042550A1 (en) 2013-09-22 2015-03-26 Lanzatech New Zealand Limited A fermentation process
US9034618B2 (en) 2009-03-09 2015-05-19 Ineos Bio Sa Method for sustaining microorganism culture in syngas fermentation process in decreased concentration or absence of various substrates
US9045758B2 (en) 2013-03-13 2015-06-02 Coskata, Inc. Use of clostridial methyltransferases for generating novel strains
WO2015116874A1 (en) 2014-01-30 2015-08-06 Lanzatech New Zealand Limited Recombinant microorganisms and methods of use thereof
WO2015116734A1 (en) 2014-01-28 2015-08-06 Lanzatech New Zealand Limited Method of producing a recombinant microorganism
US9284538B2 (en) 2008-12-16 2016-03-15 Coskata, Inc. Genes encoding key catalyzing mechanisms for ethanol production from syngas fermentation
EP3010997A1 (en) * 2013-06-18 2016-04-27 Evonik Degussa GmbH Method for storing excess energy
WO2016065217A1 (en) 2014-10-22 2016-04-28 Lanzatech New Zealand Limited Multi-stage bioreactor processes
WO2016065085A1 (en) 2014-10-22 2016-04-28 Lanzatech New Zealand Limited Gas testing unit and method
US9365873B2 (en) 2014-08-11 2016-06-14 Lanzatech New Zealand Limited Genetically engineered bacterium with altered carbon monoxide dehydrogenase (CODH) activity
WO2016094334A1 (en) 2014-12-08 2016-06-16 Lanzatech New Zealand Limited Recombinant microorganisms exhibiting increased flux through a fermentation pathway
WO2016109286A1 (en) * 2014-12-31 2016-07-07 Indiana University Research & Technology Corporation Culture conditions that allow zymomonas mobilis to assimilate n2 gas as a nitrogen source during bio-ethanol production
EP3050966A1 (en) * 2015-01-28 2016-08-03 Evonik Degussa GmbH An aerobic method of producing alcohols
US9410130B2 (en) 2011-02-25 2016-08-09 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
WO2016138050A1 (en) 2015-02-23 2016-09-01 Lanzatech New Zealand Limited Recombinant acetogenic bacterium for the conversion of methane to products
WO2016164339A2 (en) 2015-04-07 2016-10-13 Synata Bio, Inc. Compositions and methods for the conversion of short-chained carboxylic acids to alcohols using clostridial enzymes
US9617509B2 (en) 2013-07-29 2017-04-11 Lanzatech New Zealand Limited Fermentation of gaseous substrates
WO2017096324A1 (en) 2015-12-03 2017-06-08 Lanzatech New Zealand Limited Arginine supplementation to improve efficiency in gas fermenting acetogens
WO2017117309A1 (en) 2015-12-28 2017-07-06 Lanzatech New Zealand Limited Microorganism with modified hydrogenase activity
WO2017136478A1 (en) 2016-02-01 2017-08-10 Lanzatech New Zealand Limited Integrated fermentation and electrolysis process
US9738875B2 (en) 2015-10-13 2017-08-22 Lanzatech New Zealand Limited Genetically engineered bacterium comprising energy-generating fermentation pathway
US9745566B2 (en) 2013-09-12 2017-08-29 Lanzatech New Zealand Limited Recombinant microorganisms and methods of use thereof
WO2017147555A1 (en) 2016-02-26 2017-08-31 Lanzatech New Zealand Limited Crispr/cas systems for c-1 fixing bacteria
US9816111B2 (en) 2012-09-18 2017-11-14 Calysta, Inc. Propylene synthesis using engineered enzymes
WO2017200884A1 (en) 2016-05-14 2017-11-23 Lanzatech, Inc. Microorganism with modified aldehyde:ferredoxin oxidoreductase activity and related methods
US9890384B2 (en) 2012-06-08 2018-02-13 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
US10010807B2 (en) 2016-02-04 2018-07-03 Lanzatech New Zealand Limited Low pressure separator having an internal divider and uses therefor
US10174303B2 (en) 2015-05-27 2019-01-08 Lanzatech New Zealand Limited Genetically engineered microorganisms for the production of chorismate-derived products
WO2019147702A1 (en) * 2018-01-23 2019-08-01 Lanzatech, Inc. Two-step fermenation process for production of a product
US10415043B2 (en) 2012-05-23 2019-09-17 Lanzatech New Zealand Limited Vitamin prototrophy as a selectable marker
US10677769B2 (en) 2012-09-20 2020-06-09 Sekisui Chemical Co., Ltd. Productivity evaluation method, productivity evaluation device, program, and recording medium
WO2020188033A1 (en) 2019-03-20 2020-09-24 Global Bioenergies Improved means and methods for producing isobutene from acetyl-coa
US10815502B2 (en) 2013-10-17 2020-10-27 Lanzatech New Zealand Limited Carbon capture in fermentation
US10856560B2 (en) 2015-05-21 2020-12-08 Lanzatech New Zealand Limited Gas fermentation for the production of protein or feed
US11680216B2 (en) 2019-01-29 2023-06-20 Lanzatech, Inc. Production of bio-based liquefied petroleum gas
US11760989B2 (en) 2020-06-06 2023-09-19 Lanzatech, Inc. Microorganism with knock-in at acetolactate decarboxylase gene locus
US11788092B2 (en) 2021-02-08 2023-10-17 Lanzatech, Inc. Recombinant microorganisms and uses therefor
US11898134B2 (en) 2021-11-03 2024-02-13 Lanzatech, Inc. Reactor having dynamic sparger
US12091648B2 (en) 2021-11-03 2024-09-17 Lanzatech, Inc. System and method for generating bubbles in a vessel

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070275447A1 (en) * 2006-05-25 2007-11-29 Lewis Randy S Indirect or direct fermentation of biomass to fuel alcohol
US8198055B2 (en) * 2007-06-08 2012-06-12 Coskata, Inc. Process for converting syngas to liquid products with microorganisms on two-layer membrane
US8329456B2 (en) * 2008-02-22 2012-12-11 Coskata, Inc. Syngas conversion system using asymmetric membrane and anaerobic microorganism
US20080305539A1 (en) * 2007-06-08 2008-12-11 Robert Hickey Membrane supported bioreactor for conversion of syngas components to liquid products
US20080305540A1 (en) * 2007-06-08 2008-12-11 Robert Hickey Membrane supported bioreactor for conversion of syngas components to liquid products
WO2009018469A1 (en) * 2007-07-31 2009-02-05 Hoffman Richard B System and method of preparing pre-treated biorefinery feedstock from raw and recycled waste cellulosic biomass
US20090035848A1 (en) * 2007-08-03 2009-02-05 Robert Hickey Moving bed biofilm reactor (mbbr) system for conversion of syngas components to liquid products
MX2010004863A (en) * 2007-11-02 2010-07-28 Ceres Inc Materials and methods for use in biomass processing.
US8211679B2 (en) * 2008-02-25 2012-07-03 Coskata, Inc. Process for producing ethanol
US20090307974A1 (en) * 2008-06-14 2009-12-17 Dighe Shyam V System and process for reduction of greenhouse gas and conversion of biomass
DE102009002583A1 (en) 2009-04-23 2010-10-28 Evonik Degussa Gmbh Cells and processes for the production of acetone
US8212093B2 (en) * 2009-05-19 2012-07-03 Coskata, Inc. Olefin production from syngas by an integrated biological conversion process
US8759047B2 (en) * 2009-09-16 2014-06-24 Coskata, Inc. Process for fermentation of syngas from indirect gasification
US8303849B2 (en) * 2009-10-27 2012-11-06 Coskata, Inc. HCN removal from syngas using chemical and biological treatment
US8597934B2 (en) * 2009-10-30 2013-12-03 Coskata, Inc. Process for controlling sulfur in a fermentation syngas feed stream
DE102009046623A1 (en) 2009-11-11 2011-05-12 Evonik Röhm Gmbh Use of a protein homologous to a MeaB protein to increase the enzymatic activity of a 3-hydroxycarboxylic acid CoA mutase
WO2011063363A2 (en) * 2009-11-20 2011-05-26 Opx Biotechnologies, Inc. Production of an organic acid and/or related chemicals
US8354257B2 (en) * 2010-01-08 2013-01-15 Coskata, Inc. Integrated process for production of alcohol from syngas and removal of CO2
WO2011088364A2 (en) 2010-01-15 2011-07-21 Massachuseits Institute Of Technology Bioprocess and microbe engineering for total carbon utilization in biofuelproduction
US20110236919A1 (en) * 2010-03-24 2011-09-29 James Allen Zahn Process for restricting carbon monoxide dissolution in a syngas fermentation
US8585789B2 (en) 2010-04-13 2013-11-19 Ineos Usa Llc Methods for gasification of carbonaceous materials
US8999021B2 (en) 2010-04-13 2015-04-07 Ineos Usa Llc Methods for gasification of carbonaceous materials
US8580152B2 (en) 2010-04-13 2013-11-12 Ineos Usa Llc Methods for gasification of carbonaceous materials
WO2011157573A2 (en) 2010-06-14 2011-12-22 Evonik Röhm Gmbh An enzyme for the preparation of methylmalonate semialdehyde
EP2609206A4 (en) * 2010-08-26 2014-07-09 Lanzatech New Zealand Ltd Process for producing ethanol and ethylene via fermentation
EP2450449A1 (en) 2010-11-09 2012-05-09 Ineos Commercial Services UK Limited Process and apparatus for the production of alcohols
EP2450450A1 (en) 2010-11-09 2012-05-09 Ineos Commercial Services UK Limited Process and apparatus for producing ethylene via preparation of syngas
CN103443283B (en) 2010-12-03 2016-06-22 伊内奥斯生物股份公司 Comprise the fermentation operation method of the gaseous state substrate of hydrogen
CN103443282B (en) 2010-12-03 2016-05-25 伊内奥斯生物股份公司 The fermentation operation method of the gaseous state substrate that contains carbon monoxide and hydrogen
CN103476935B (en) 2010-12-03 2016-06-01 伊内奥斯生物股份公司 Relate to regulating the fermentation process than common uptake rate
US9976158B2 (en) 2011-06-30 2018-05-22 Peter Simpson Bell Method and apparatus for syngas fermentation with high CO mass transfer coefficient
US8771999B2 (en) 2011-09-23 2014-07-08 Coskata, Inc. Low energy, high substrate efficiency, anaerobic, deep, bubble column fermentation processes
US8980597B2 (en) 2011-09-23 2015-03-17 Coskata, Inc. From carbon monoxide and hydrogen anaerobic fermentation processing using a pre-reactor/deep tank reactor system
US8936927B2 (en) 2011-09-23 2015-01-20 Coskata, Inc. Processes for starting up deep tank anaerobic fermentation reactors for making oxygenated organic compound from carbon monoxide and hydrogen
US20130149693A1 (en) 2011-12-12 2013-06-13 Ineos Bio Sa Management of ethanol concentration during syngas fermentation
DE102012207921A1 (en) 2012-05-11 2013-11-14 Evonik Industries Ag Multi-stage synthesis process with synthesis gas
US9193947B2 (en) 2012-05-22 2015-11-24 Ineos Bio Sa Process for culturing microorganisms on a selected substrate
US10100336B2 (en) 2012-05-22 2018-10-16 Ineos Bio S.A. Syngas fermentation process and medium
US9157100B2 (en) 2012-06-15 2015-10-13 Coskata, Inc. Integrated processes for bioconverting syngas to oxygenated organic compound with sulfur supply
CN104685060B (en) 2012-07-13 2019-11-01 凯利斯塔公司 Biorefining system, its method and composition
US10233478B2 (en) 2012-09-19 2019-03-19 Ineos Bio Sa Process for reducing CO2 emissions and increasing alcohol productivity in syngas fermentation
US9200297B2 (en) 2012-10-03 2015-12-01 Green Cellulosity Corporation Acidogenic clostridia and processes of using thereof for producing volatile fatty acids
US9469860B2 (en) * 2013-01-18 2016-10-18 Synata Bio, Inc. Method for production of n-butanol from syngas using syntrophic co-cultures of anaerobic microorganisms
US10100337B2 (en) 2013-02-14 2018-10-16 Ineos Bio Sa Process for fermenting co-containing gaseous substrates
US9850503B2 (en) 2013-06-10 2017-12-26 Ineos Bio Sa Control of conductivity in anaerobic fermentation
US9885063B2 (en) 2013-06-10 2018-02-06 Ineos Bio Sa Process for fermenting co-containing gaseous substrates in a low phosphate medium effective for reducing water usage
CN103337653A (en) * 2013-06-27 2013-10-02 南京工业大学 Device for synthesizing biofuel and use thereof
WO2015017857A1 (en) * 2013-08-02 2015-02-05 The Board Of Regents For Oklahoma State University Method improving producer gas fermentation
US20150075062A1 (en) 2013-09-13 2015-03-19 Ineos Bio Sa Alcohol compositions and a process for their production
CN103555638B (en) * 2013-11-15 2016-01-13 河北省科学院生物研究所 A kind of alcohol patience produces acetic acid microorganism composite bacteria and uses thereof
RU2016133400A (en) * 2014-01-16 2018-02-19 Калиста, Инк. COMPOSITIONS AND METHODS FOR PRODUCING DIFFICULT GAS AND OIL
EP2944696A1 (en) 2014-05-13 2015-11-18 Evonik Degussa GmbH Method of producing organic compounds
EP2944697A1 (en) 2014-05-13 2015-11-18 Evonik Degussa GmbH Method of producing nylon
EP2975131A1 (en) 2014-07-17 2016-01-20 Evonik Degussa GmbH Synthesis of alkanes
EP3050967A1 (en) 2015-01-28 2016-08-03 Evonik Degussa GmbH A method of producing higher alcohols
US9914945B2 (en) 2015-03-27 2018-03-13 Synata Bio Inc. Processes for bioconverting syngas to oxygenated hydrocarbonaceous compounds
EP3095868A1 (en) 2015-05-19 2016-11-23 Evonik Degussa GmbH Methionine production
US20180135085A1 (en) 2015-07-10 2018-05-17 Evonik Degussa Gmbh Amino acid production
AU2016296399B2 (en) 2015-07-17 2020-10-08 Synata Bio, Inc. Methods for sustaining the viability of microorganisms during a cessation of syngas flow and processes for storage and reactivation of microorganisms
EP3390622B1 (en) 2015-12-17 2020-05-13 Evonik Operations GmbH A genetically modified acetogenic cell
ES2786976T3 (en) 2016-05-27 2020-10-14 Evonik Degussa Gmbh Biotechnological production of propanol and / or propionic acid in the presence of acetate
FR3051799B1 (en) 2016-05-31 2018-06-15 IFP Energies Nouvelles PROCESS FOR PRODUCING BTX BY CATALYTIC PYROLYSIS FROM BIOMASS WITH INJECTION OF OXYGEN COMPOUNDS
FR3051800B1 (en) 2016-05-31 2018-06-15 IFP Energies Nouvelles PROCESS FOR PRODUCING BTX BY CATALYTIC PYROLYSIS FROM NON-RECYCLED BIOMASS OF OXYGEN COMPOUNDS
JP2019525761A (en) 2016-07-27 2019-09-12 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Process for producing alcohols under aerobic conditions and product extraction with oleyl alcohol
JP2019523271A (en) 2016-07-27 2019-08-22 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH N-acetylhomoserine
MX2019007508A (en) 2016-12-22 2019-11-28 Synata Bio Inc Methods and systems using ionophores to control contamination in fermentation of gaseous substrates.
EP3592857B1 (en) 2017-03-08 2022-06-29 Evonik Operations GmbH Biotechnological method for producing allyl alcohol
WO2019006301A1 (en) 2017-06-30 2019-01-03 Massachusetts Institute Of Technology Controlling metabolism by substrate cofeeding
SG11202000798PA (en) 2017-07-31 2020-02-27 Synata Bio Inc System and method for concentrating suspended solids prior to removal
BR112020008718A2 (en) 2017-12-19 2020-11-24 Lanzatech, Inc. genetically modified microorganism, and method of producing ethylene glycol or an ethylene glycol precursor.
AU2019220419B2 (en) * 2018-02-15 2023-12-07 Evonik Operations Gmbh Extraction of alkanoic acids
US11401496B2 (en) 2018-05-21 2022-08-02 Jupeng Bio, Inc. System and process for increasing protein product yield from bacterial cells
US11773416B2 (en) 2018-08-08 2023-10-03 Jupeng Bio, Inc. Carbon dioxide bioconversion process
EP3884061A1 (en) 2018-11-20 2021-09-29 Evonik Operations GmbH Method of producing higher alkanones, preferably 6-undecanone, and derivatives thereof
WO2020104411A1 (en) 2018-11-20 2020-05-28 Evonik Operations Gmbh Production and extraction of alkanoic acids
EP3741863A1 (en) 2019-05-20 2020-11-25 Evonik Operations GmbH Regenerating and utilizing carbon dioxide
CN114174249A (en) 2019-07-29 2022-03-11 赢创运营有限公司 Extraction of aliphatic alcohols
WO2021233732A1 (en) 2020-05-19 2021-11-25 Evonik Operations Gmbh Method for producing higher linear fatty acids or esters
FR3114596B1 (en) 2020-09-29 2023-11-24 Ifp Energies Now Production of aromatics by reverse gas-to-water conversion, fermentation and recycling to pyrolysis.
FR3114594B1 (en) 2020-09-29 2023-11-10 Ifp Energies Now Production of aromatics and ethanol by pyrolysis, reverse gas-to-water conversion, and fermentation.
FR3114595B1 (en) 2020-09-29 2023-11-24 Ifp Energies Now Production of aromatics by reverse gas-to-water conversion, fermentation and flavoring.
EP4255609A1 (en) 2020-12-03 2023-10-11 Evonik Operations GmbH Method of capturing carbon dioxide
CN116848085A (en) 2021-02-17 2023-10-03 赢创运营有限公司 Aqueous compositions comprising 6-undecanoate
JP2024515039A (en) 2021-03-30 2024-04-04 エボニック オペレーションズ ゲーエムベーハー Process for producing higher linear alkanes
TW202307202A (en) 2021-08-06 2023-02-16 美商朗澤科技有限公司 Microorganisms and methods for improved biological production of ethylene glycol
FR3126992A1 (en) 2021-09-10 2023-03-17 IFP Energies Nouvelles Ethanol production by oxy-fuel combustion, reverse water gas conversion, and fermentation.
FR3126993A1 (en) 2021-09-10 2023-03-17 IFP Energies Nouvelles Ethanol production by chemical loop combustion, reverse water gas conversion, and fermentation.

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292406A (en) * 1979-09-11 1981-09-29 The United States Of America As Represented By The United States Department Of Energy Anaerobic thermophilic culture system
US4568644A (en) * 1981-12-10 1986-02-04 Massachusetts Institute Of Technology Fermentation method producing ethanol
US5192673A (en) * 1990-04-30 1993-03-09 Michigan Biotechnology Institute Mutant strain of C. acetobutylicum and process for making butanol
US5173429A (en) * 1990-11-09 1992-12-22 The Board Of Trustees Of The University Of Arkansas Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism
US5593886A (en) * 1992-10-30 1997-01-14 Gaddy; James L. Clostridium stain which produces acetic acid from waste gases
US5807722A (en) * 1992-10-30 1998-09-15 Bioengineering Resources, Inc. Biological production of acetic acid from waste gases with Clostridium ljungdahlii
US6136577A (en) * 1992-10-30 2000-10-24 Bioengineering Resources, Inc. Biological production of ethanol from waste gases with Clostridium ljungdahlii
US5821111A (en) * 1994-03-31 1998-10-13 Bioengineering Resources, Inc. Bioconversion of waste biomass to useful products
US5932456A (en) * 1995-06-07 1999-08-03 Ingram-Howell, L.L.C. Production of ethanol and other fermentation products from biomass
JP4101295B2 (en) * 1996-07-01 2008-06-18 バイオエンジニアリング・リソーシズ・インコーポレーテツド Biological production of acetic acid from waste gas
UA72220C2 (en) * 1998-09-08 2005-02-15 Байоенджініерінг Рісорсиз, Інк. Water-immiscible mixture solvent/cosolvent for extracting acetic acid, a method for producing acetic acid (variants), a method for anaerobic microbial fermentation for obtaining acetic acid (variants), modified solvent and a method for obtaining thereof
US20070275447A1 (en) * 2006-05-25 2007-11-29 Lewis Randy S Indirect or direct fermentation of biomass to fuel alcohol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2061872A4 *

Cited By (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7972824B2 (en) 2006-04-07 2011-07-05 Lanzatech New Zealand Limited Microbial fermentation of gaseous substrates to produce alcohols
US8293509B2 (en) 2007-03-19 2012-10-23 Lanzatech New Zealand Limited Alcohol production process
WO2009010347A3 (en) * 2007-07-19 2009-03-05 Ineos Europe Ltd Process for the production of alcohols
US9051585B2 (en) 2007-07-19 2015-06-09 Ineos Sales (Uk) Limited Process for the production of alcohols
EA017162B1 (en) * 2007-07-19 2012-10-30 Инеос Юроуп Лимитед Process for the production of alcohols
WO2009010347A2 (en) * 2007-07-19 2009-01-22 Ineos Europe Limited Process for the production of alcohols
US8507228B2 (en) 2007-10-28 2013-08-13 Lanzatech New Zealand Limited Carbon capture in fermentation
WO2009058028A1 (en) * 2007-10-28 2009-05-07 Lanzatech New Zealand Limited Improved carbon capture in fermentation
US9127296B2 (en) 2007-10-28 2015-09-08 Lanzatech New Zealand Limited Carbon capture in fermentation using blended gaseous substrate
US8376736B2 (en) 2007-10-28 2013-02-19 Lanzatech New Zealand Limited Carbon capture in fermentation
EP2217696A4 (en) * 2007-11-13 2011-09-14 Lanzatech New Zealand Ltd Novel bacteria and methods of use thereof
CN102876609A (en) * 2007-11-13 2013-01-16 兰扎泰克新西兰有限公司 Novel bacteria and methods of use thereof
US8222013B2 (en) 2007-11-13 2012-07-17 Lanzatech New Zealand Limited Bacteria and methods of use thereof
EP2217696A2 (en) * 2007-11-13 2010-08-18 Lanzatech New Zealand Limited Novel bacteria and methods of use thereof
US8119378B2 (en) 2008-03-12 2012-02-21 Lanzatech New Zealand Limited Microbial alcohol production process
US8119844B2 (en) 2008-05-01 2012-02-21 Lanzatech New Zealand Limited Alcohol production process
US8658408B2 (en) 2008-06-09 2014-02-25 Lanza Tech New Zealand Limited Process for production of alcohols by microbial fermentation
WO2009154788A3 (en) * 2008-06-20 2010-07-22 Ineos Usa Llc Methods for sequestring carbon dioxide into alcohols via gasification and fermentation
JP2019059946A (en) * 2008-06-20 2019-04-18 イネオス バイオ ソシエテ アノニム Method of separating carbon dioxide and alcohol by gasification fermentation
AU2009260739B2 (en) * 2008-06-20 2015-09-24 Jupeng Bio (Hk) Limited Methods for sequestring carbon dioxide into alcohols via gasification and fermentation
JP2015156873A (en) * 2008-06-20 2015-09-03 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー Methods for sequestering carbon dioxide into alcohols via gasification fermentation
EP4151705A1 (en) * 2008-06-20 2023-03-22 Jupeng Bio (HK) Limited Methods for sequestering carbon dioxide into alcohols via gasification and fermentation
WO2009154788A2 (en) * 2008-06-20 2009-12-23 Ineos Usa Llc Methods for sequestering carbon dioxide into alcohols via gasification fermentation
JP2011524933A (en) * 2008-06-20 2011-09-08 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー Method of sequestering carbon dioxide into alcohol by gasification fermentation
US8354269B2 (en) 2008-12-01 2013-01-15 Lanzatech New Zealand Limited Optimised media containing nickel for fermentation of carbonmonoxide
WO2010064932A1 (en) 2008-12-01 2010-06-10 Lanzatech New Zealand Limited Optimised fermentation media
US9284538B2 (en) 2008-12-16 2016-03-15 Coskata, Inc. Genes encoding key catalyzing mechanisms for ethanol production from syngas fermentation
US9045760B2 (en) 2008-12-16 2015-06-02 Coskata, Inc. Genes encoding key catalyzing mechanisms for ethanol production from syngas fermentation
US9624512B2 (en) 2009-01-29 2017-04-18 Lanzatech New Zealand Limited Alcohol production process
EP2391724A4 (en) * 2009-01-29 2013-02-13 Lanzatech New Zealand Ltd Alcohol production process
CN102361989B (en) * 2009-01-29 2014-03-12 兰扎泰克新西兰有限公司 Alcohol production process
WO2010093262A1 (en) 2009-01-29 2010-08-19 Lanzatech New Zealand Limited Alcohol production process
JP2012516152A (en) * 2009-01-29 2012-07-19 ランザテク・ニュージーランド・リミテッド Method for producing alcohol
CN102361989A (en) * 2009-01-29 2012-02-22 兰扎泰克新西兰有限公司 Alcohol production process
EP2391724A1 (en) * 2009-01-29 2011-12-07 Lanzatech New Zealand Limited Alcohol production process
AU2010214147B2 (en) * 2009-01-29 2013-01-10 Lanzatech Nz, Inc. Alcohol production process
EP3399019A1 (en) 2009-02-26 2018-11-07 LanzaTech New Zealand Limited Methods of sustaining culture viability
WO2010098679A1 (en) 2009-02-26 2010-09-02 Lanzatech New Zealand Limited Methods of sustaining culture viability
US8658415B2 (en) 2009-02-26 2014-02-25 Lanza Tech New Zealand Limited Methods of sustaining culture viability
US9034618B2 (en) 2009-03-09 2015-05-19 Ineos Bio Sa Method for sustaining microorganism culture in syngas fermentation process in decreased concentration or absence of various substrates
US8263372B2 (en) 2009-04-29 2012-09-11 Lanzatech New Zealand Limited Carbon capture in fermentation
US8592190B2 (en) 2009-06-11 2013-11-26 Ineos Bio Limited Methods for sequestering carbon dioxide into alcohols via gasification fermentation
EP2449121A4 (en) * 2009-07-02 2014-01-01 Lanzatech New Zealand Ltd Alcohol production process
US8906655B2 (en) 2009-07-02 2014-12-09 Lanzatech New Zealand Limited Alcohol production process
WO2011002318A1 (en) 2009-07-02 2011-01-06 Lanzatech New Zealand Limited Alcohol production process
EP2449121A1 (en) * 2009-07-02 2012-05-09 Lanzatech New Zealand Limited Alcohol production process
EP3739056A1 (en) 2009-07-02 2020-11-18 LanzaTech New Zealand Limited Alcohol production process
WO2011028137A1 (en) 2009-09-06 2011-03-10 Lanzatech New Zealand Limited Improved fermentation of gaseous substrates
US8178330B2 (en) 2009-09-06 2012-05-15 Lanza Tech New Zealand Limited Fermentation of gaseous substrates
WO2011078709A1 (en) * 2009-12-23 2011-06-30 Lanzatech New Zealand Limited, Alcohol production process
US8377665B2 (en) 2010-01-14 2013-02-19 Lanzatech New Zealand Limited Alcohol production process
EP3070170A1 (en) 2010-01-14 2016-09-21 Lanzatech New Zealand Limited Fermentation of co2 by using an electrical potential
US8900836B2 (en) 2010-03-10 2014-12-02 Lanzatech New Zealand Limited Acid production by fermentation
JP2013521807A (en) * 2010-03-19 2013-06-13 コスカタ・インコーポレーテツド A new ethanol-producing Clostridium species, CLOSTRIDIUMCOSKAT II
US8143037B2 (en) 2010-03-19 2012-03-27 Coskata, Inc. Ethanologenic Clostridium species, Clostridium coskatii
US8802405B2 (en) 2010-03-19 2014-08-12 Coskata, Inc. Ethanologenic Clostridium species, Clostridium coskatii
EP2580330A4 (en) * 2010-06-09 2014-01-01 Coskata Inc Cloning and expression of the genes encoding key clostridial catalyzing mechanisms for syngas to ethanol production and functional characterization thereof
KR101506137B1 (en) * 2010-06-09 2015-03-26 코스카타, 인코포레이티드 Cloning and expression of the genes encoding key clostridial catalyzing mechanisms for syngas to ethanol production and functional characterization thereof
EP2580330A1 (en) * 2010-06-09 2013-04-17 Coskata, Inc. Cloning and expression of the genes encoding key clostridial catalyzing mechanisms for syngas to ethanol production and functional characterization thereof
US8987431B2 (en) 2010-07-01 2015-03-24 Coskata, Inc. Essential genes encoding conserved metabolic pathway function in autotrophic solventogenic clostridial species
EA025778B1 (en) * 2010-07-28 2017-01-30 Ланзатек Нью Зиленд Лимитед Novel bacteria and methods of use thereof
WO2012015317A1 (en) * 2010-07-28 2012-02-02 Lanzatech New Zealand Limited Novel bacteria and methods of use thereof
US10494600B2 (en) 2010-07-28 2019-12-03 Lanzatech New Zealand Limited Bacteria and methods of use thereof
WO2012042155A2 (en) 2010-09-29 2012-04-05 Total Sa Process for producing an oxygen-containing compound
FR2965279A1 (en) * 2010-09-29 2012-03-30 Total Sa PROCESS FOR PRODUCING OXYGEN COMPOUND
WO2012042155A3 (en) * 2010-09-29 2012-08-30 Total Sa Process for producing an oxygen-containing compound
US9359611B2 (en) 2010-10-22 2016-06-07 Lanzatech New Zealand Limited Recombinant microorganism and methods of production thereof
WO2012053905A1 (en) 2010-10-22 2012-04-26 Lanzatech New Zealand Limited Production of butanol from carbon monoxide by a recombinant microorganism
WO2012054798A2 (en) 2010-10-22 2012-04-26 Lanzatech New Zealand Limited Methods and systems for the production of hydrocarbon products
WO2012058508A2 (en) 2010-10-29 2012-05-03 Lanzatech New Zealand Limited Methods and systems for the production of hydrocarbon products
WO2012115527A2 (en) 2011-02-25 2012-08-30 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
US9410130B2 (en) 2011-02-25 2016-08-09 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
EP3401405A1 (en) 2011-02-25 2018-11-14 LanzaTech New Zealand Limited Recombinant microorganisms and uses therefor
WO2013147621A1 (en) 2012-03-30 2013-10-03 Lanzatech New Zealand Limited A fermentation method
US8735115B2 (en) 2012-03-30 2014-05-27 Lanzatech New Zealand Limited Method for controlling the sulphur concentration in a fermentation method
WO2013152236A1 (en) 2012-04-05 2013-10-10 Lanzatech New Zealand Limited Enzyme-altered metabolite activity
US8980596B2 (en) 2012-05-23 2015-03-17 Lanzatech New Zealand Limited Fermentation and simulated moving bed process
US10415043B2 (en) 2012-05-23 2019-09-17 Lanzatech New Zealand Limited Vitamin prototrophy as a selectable marker
WO2013177466A1 (en) 2012-05-23 2013-11-28 Lanzatech New Zealand Limited A fermentation and simulated moving bed process
US9994878B2 (en) 2012-05-30 2018-06-12 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
WO2013180581A1 (en) 2012-05-30 2013-12-05 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
WO2013180584A1 (en) 2012-06-01 2013-12-05 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
EP3346008A1 (en) 2012-06-01 2018-07-11 LanzaTech New Zealand Limited Recombinant microorganisms and uses therefor
US10913958B2 (en) 2012-06-01 2021-02-09 Lanzatech New Zealand Limited Microbial fermentation for the production of terpenes
EP3795680A1 (en) 2012-06-01 2021-03-24 LanzaTech New Zealand Limited Recombinant microorganisms and uses therefor
US9890384B2 (en) 2012-06-08 2018-02-13 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
WO2013191567A1 (en) 2012-06-21 2013-12-27 Lanzatech New Zealand Limited Recombinant microorganisms make biodiesel
US9347076B2 (en) 2012-06-21 2016-05-24 Lanzatech New Zealand Limited Recombinant microorganisms that make biodiesel
US9284564B2 (en) 2012-08-28 2016-03-15 Lanzatech New Zealand Limited Recombinant microorganisms comprising stereospecific diol dehydratase enzyme and methods related thereto
WO2014036152A1 (en) 2012-08-28 2014-03-06 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
US9816111B2 (en) 2012-09-18 2017-11-14 Calysta, Inc. Propylene synthesis using engineered enzymes
US11662337B2 (en) 2012-09-20 2023-05-30 Sekisui Chemical Co., Ltd. Productivity evaluation method, productivity evaluation device, program, and recording medium
US10677769B2 (en) 2012-09-20 2020-06-09 Sekisui Chemical Co., Ltd. Productivity evaluation method, productivity evaluation device, program, and recording medium
WO2014075013A1 (en) 2012-11-12 2014-05-15 Lanzatech New Zealand Limited Biomass liquefaction through gas fermentation
WO2014088427A1 (en) 2012-12-05 2014-06-12 Lanzatech New Zealand Limited A fermentation process
US10724059B2 (en) 2012-12-05 2020-07-28 Lanzatech New Zealand Limited Fermentation process
WO2014120023A1 (en) 2013-01-29 2014-08-07 Lanzatech New Zealand Limited System and method for improved gas dissolution
WO2014120852A2 (en) 2013-01-30 2014-08-07 Lanzatech New Zealand Limited Recombinant microorganisms comprising nadph dependent enzymes and methods of production thereof
US9428755B2 (en) 2013-03-13 2016-08-30 Coskata, Inc. Use of clostridial methyltransferases for generating novel strains
US9045758B2 (en) 2013-03-13 2015-06-02 Coskata, Inc. Use of clostridial methyltransferases for generating novel strains
WO2014140336A1 (en) * 2013-03-14 2014-09-18 Total Research & Technology Feluy Method for production of n-propanol and other c3-carbon containing products from syngas by symbiotic arrangement of c1-fixing and c3-producing anaerobic microorganism cultures
WO2014151158A1 (en) 2013-03-15 2014-09-25 Lanzatech New Zealand Limitied A system and method for controlling metabolite production in a microbial fermentation
EP4424833A2 (en) 2013-03-15 2024-09-04 LanzaTech NZ, Inc. A system and method for controlling metabolite production in a microbial fermentation
WO2014197746A1 (en) 2013-06-05 2014-12-11 Lanzatech New Zealand Limited Recombinant microorganisms exhibiting increased flux through a fermentation pathway
EP3010997A1 (en) * 2013-06-18 2016-04-27 Evonik Degussa GmbH Method for storing excess energy
EP2816096B1 (en) * 2013-06-18 2021-05-12 Evonik Operations GmbH Method and apparatus for storing excess energy
US9988598B2 (en) 2013-07-04 2018-06-05 Lanzatech New Zealand Limited Multiple reactor system for continuous gas fermentation
WO2015002552A1 (en) 2013-07-04 2015-01-08 Lanzatech New Zealand Limited Multiple reactor system and process for continuous gas fermentation
US9617509B2 (en) 2013-07-29 2017-04-11 Lanzatech New Zealand Limited Fermentation of gaseous substrates
US9745566B2 (en) 2013-09-12 2017-08-29 Lanzatech New Zealand Limited Recombinant microorganisms and methods of use thereof
US9771603B2 (en) 2013-09-22 2017-09-26 Lanzatech New Zealand Limited Fermentation process
WO2015042550A1 (en) 2013-09-22 2015-03-26 Lanzatech New Zealand Limited A fermentation process
EP4166673A1 (en) 2013-09-22 2023-04-19 LanzaTech NZ, Inc. A fermentation process
US10815502B2 (en) 2013-10-17 2020-10-27 Lanzatech New Zealand Limited Carbon capture in fermentation
US9315830B2 (en) 2014-01-28 2016-04-19 Lanzatech New Zealand Limited Method of producing a recombinant microorganism
WO2015116734A1 (en) 2014-01-28 2015-08-06 Lanzatech New Zealand Limited Method of producing a recombinant microorganism
WO2015116874A1 (en) 2014-01-30 2015-08-06 Lanzatech New Zealand Limited Recombinant microorganisms and methods of use thereof
US11549103B2 (en) 2014-01-30 2023-01-10 Lanzatech Nz, Inc. Recombinant microorganisms and methods of use thereof
US9365873B2 (en) 2014-08-11 2016-06-14 Lanzatech New Zealand Limited Genetically engineered bacterium with altered carbon monoxide dehydrogenase (CODH) activity
EP4180806A1 (en) 2014-10-22 2023-05-17 LanzaTech NZ, Inc. Bioreactor and gas testing unit and method
US9834792B2 (en) 2014-10-22 2017-12-05 Lanzatech New Zealand Limited Multi-stage bioreactor processes
US10113194B2 (en) 2014-10-22 2018-10-30 Lanzatech New Zealand Limited Gas testing unit and method
WO2016065217A1 (en) 2014-10-22 2016-04-28 Lanzatech New Zealand Limited Multi-stage bioreactor processes
WO2016065085A1 (en) 2014-10-22 2016-04-28 Lanzatech New Zealand Limited Gas testing unit and method
EP4198118A1 (en) 2014-10-22 2023-06-21 LanzaTech NZ, Inc. Multi-stage bioreactor processes
US10590406B2 (en) 2014-12-08 2020-03-17 Lanzatech New Zealand Limited Recombinant microorganisms exhibiting increased flux through a fermentation pathway
WO2016094334A1 (en) 2014-12-08 2016-06-16 Lanzatech New Zealand Limited Recombinant microorganisms exhibiting increased flux through a fermentation pathway
US11254954B2 (en) 2014-12-31 2022-02-22 Indiana University Research And Technology Corporation Culture conditions that allow Zymomonas mobilis to assimilate N2 gas as a nitrogen source during bio-ethanol production
WO2016109286A1 (en) * 2014-12-31 2016-07-07 Indiana University Research & Technology Corporation Culture conditions that allow zymomonas mobilis to assimilate n2 gas as a nitrogen source during bio-ethanol production
US9920334B2 (en) 2015-01-28 2018-03-20 Evonik Degussa Gmbh Aerobic method of producing alcohols
EP3050968A1 (en) * 2015-01-28 2016-08-03 Evonik Degussa GmbH An aerobic method of producing alcohols
RU2724532C2 (en) * 2015-01-28 2020-06-23 Эвоник Оперейшенс ГмбХ Aerobic method of producing alcohols
EP3050966A1 (en) * 2015-01-28 2016-08-03 Evonik Degussa GmbH An aerobic method of producing alcohols
WO2016138050A1 (en) 2015-02-23 2016-09-01 Lanzatech New Zealand Limited Recombinant acetogenic bacterium for the conversion of methane to products
WO2016164339A2 (en) 2015-04-07 2016-10-13 Synata Bio, Inc. Compositions and methods for the conversion of short-chained carboxylic acids to alcohols using clostridial enzymes
US9790522B2 (en) 2015-04-07 2017-10-17 Synata Bio Compositions and methods for the conversion of short-chained carboxylic acids to alcohols using clostridial enzymes
US10856560B2 (en) 2015-05-21 2020-12-08 Lanzatech New Zealand Limited Gas fermentation for the production of protein or feed
US10174303B2 (en) 2015-05-27 2019-01-08 Lanzatech New Zealand Limited Genetically engineered microorganisms for the production of chorismate-derived products
US9738875B2 (en) 2015-10-13 2017-08-22 Lanzatech New Zealand Limited Genetically engineered bacterium comprising energy-generating fermentation pathway
US9957531B1 (en) 2015-10-13 2018-05-01 Lanzatech New Zealand Limited Genetically engineered bacterium for the production of 3-hydroxybutyrate
EP3901267A1 (en) 2015-10-13 2021-10-27 Lanzatech New Zealand Limited Genetically engineered bacterium comprising energy-generating fermentation pathway
WO2017096324A1 (en) 2015-12-03 2017-06-08 Lanzatech New Zealand Limited Arginine supplementation to improve efficiency in gas fermenting acetogens
EP3981869A1 (en) 2015-12-03 2022-04-13 LanzaTech NZ, Inc. Arginine as sole nitrogen source for c1-fixing microorganism
WO2017117309A1 (en) 2015-12-28 2017-07-06 Lanzatech New Zealand Limited Microorganism with modified hydrogenase activity
EP4234708A2 (en) 2016-02-01 2023-08-30 LanzaTech NZ, Inc. Integrated fermentation and electrolysis process
WO2017136478A1 (en) 2016-02-01 2017-08-10 Lanzatech New Zealand Limited Integrated fermentation and electrolysis process
EP4234707A2 (en) 2016-02-01 2023-08-30 LanzaTech NZ, Inc. Integrated fermentation and electrolysis process
US10252183B2 (en) 2016-02-04 2019-04-09 Lanzatech New Zealand Limited Product management in biological conversion processes
US10010807B2 (en) 2016-02-04 2018-07-03 Lanzatech New Zealand Limited Low pressure separator having an internal divider and uses therefor
WO2017147555A1 (en) 2016-02-26 2017-08-31 Lanzatech New Zealand Limited Crispr/cas systems for c-1 fixing bacteria
WO2017200884A1 (en) 2016-05-14 2017-11-23 Lanzatech, Inc. Microorganism with modified aldehyde:ferredoxin oxidoreductase activity and related methods
WO2019147702A1 (en) * 2018-01-23 2019-08-01 Lanzatech, Inc. Two-step fermenation process for production of a product
US11680216B2 (en) 2019-01-29 2023-06-20 Lanzatech, Inc. Production of bio-based liquefied petroleum gas
WO2020188033A1 (en) 2019-03-20 2020-09-24 Global Bioenergies Improved means and methods for producing isobutene from acetyl-coa
US11760989B2 (en) 2020-06-06 2023-09-19 Lanzatech, Inc. Microorganism with knock-in at acetolactate decarboxylase gene locus
US11788092B2 (en) 2021-02-08 2023-10-17 Lanzatech, Inc. Recombinant microorganisms and uses therefor
US11898134B2 (en) 2021-11-03 2024-02-13 Lanzatech, Inc. Reactor having dynamic sparger
US12091648B2 (en) 2021-11-03 2024-09-17 Lanzatech, Inc. System and method for generating bubbles in a vessel

Also Published As

Publication number Publication date
CA2661974A1 (en) 2008-03-06
CN101573437A (en) 2009-11-04
WO2008028055A3 (en) 2008-12-18
US7704723B2 (en) 2010-04-27
EA200970241A1 (en) 2009-08-28
MX2009002194A (en) 2009-06-05
EP2061872A2 (en) 2009-05-27
US20100203606A1 (en) 2010-08-12
EP2061872A4 (en) 2010-10-20
US20080057554A1 (en) 2008-03-06
BRPI0715200A2 (en) 2013-06-11
JP2010502191A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
US7704723B2 (en) Isolation and characterization of novel clostridial species
US8802405B2 (en) Ethanologenic Clostridium species, Clostridium coskatii
KR101643429B1 (en) Production of butanediol by anaerobic microbial fermentation
Levin et al. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates
US8900836B2 (en) Acid production by fermentation
US20070275447A1 (en) Indirect or direct fermentation of biomass to fuel alcohol
Sinha et al. Biohydrogen production from various feedstocks by Bacillus firmus NMBL-03
WO2014113209A1 (en) Method for production of n-butanol from syngas using syntrophic co-cultures of anaerobic microorganisms
WO2014133668A1 (en) A butyrate producing clostridium species, clostridium pharus
US20150322402A1 (en) Syntrophic co-culture of anaerobic microorganism for production of n-butanol from syngas
US20130344555A1 (en) Dsmz 24726 for second generation bio-ethanol production
Ramachandriya et al. Heat shocking of Clostridium strain P11 to promote sporulation and ethanol production
Terrill et al. Effect of energetic gas composition on hydrogenase activity and ethanol production in syngas fermentation by Clostridium ragsdalei
Saraphirom Project Title
Baldursson BioHydrogen: bioprospecting: thermophilic hydrogen producing anaerobes in Icelandic hot-springs

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780040322.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07814594

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2661974

Country of ref document: CA

Ref document number: 1316/DELNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/002194

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2009526915

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007814594

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200970241

Country of ref document: EA

NENP Non-entry into the national phase

Ref country code: RU

ENP Entry into the national phase

Ref document number: PI0715200

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090227