WO2008024807A2 - Early kick detection in an oil and gas well - Google Patents

Early kick detection in an oil and gas well Download PDF

Info

Publication number
WO2008024807A2
WO2008024807A2 PCT/US2007/076464 US2007076464W WO2008024807A2 WO 2008024807 A2 WO2008024807 A2 WO 2008024807A2 US 2007076464 W US2007076464 W US 2007076464W WO 2008024807 A2 WO2008024807 A2 WO 2008024807A2
Authority
WO
WIPO (PCT)
Prior art keywords
impedance
fluid
transducer
borehole
sensor plate
Prior art date
Application number
PCT/US2007/076464
Other languages
French (fr)
Other versions
WO2008024807A3 (en
Inventor
Roland E. Chemali
Volker Krueger
Rocco Difoggio
Original Assignee
Baker Hughes Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Incorporated filed Critical Baker Hughes Incorporated
Priority to GB0903368A priority Critical patent/GB2454424B/en
Publication of WO2008024807A2 publication Critical patent/WO2008024807A2/en
Priority to NO20090867A priority patent/NO20090867L/en
Publication of WO2008024807A3 publication Critical patent/WO2008024807A3/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/107Locating fluid leaks, intrusions or movements using acoustic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/024Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/028Analysing fluids by measuring mechanical or acoustic impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02818Density, viscosity

Definitions

  • This disclosure relates generally to oil and gas well logging tools. More particularly, this disclosure relates to tools and methods for identifying the influx of gas into the borehole in real-time during drilling operations
  • Exploration for hydrocarbons commonly includes using a bottomhole assembly including a drill-bit for drilling a borehole in an earth formation.
  • Drilling fluid or "mud” used in the drilling may vary in density or "mud weight” for a number of reasons. Such variations can result from changes in the quantity and density of cuttings (particles of formation); changes in the "mud program” at the surface, changes in temperature, etc. Variations in mud density also occur when gas or liquid enter the borehole from the formation. Such influx of formation fluids may likely be the result of formation overpressures or abnormally high pressures.
  • Pressure detection concepts are especially important in drilling. Not only does the drilling rate decrease with a high overbalance of mud pressure versus formation pressure, but also lost circulation and differential pressure sticking of the drill pipe can readily occur. More importantly, an underbalance of mud pressure versus formation pressure can cause a pressure "kick." A well may kick without forewarning. Balanced drilling techniques often require only a fine margin between effective pressure control and a threatened blowout. Additionally, there are situations where underbalance is maintained to avoid formation damage so that it is important to detect inflow of formation liquids into the borehole.
  • Some prior art techniques for detecting abnormal formation pressure are based on measurement of drilling parameters such as drilling rate, torque and drag; drilling mud parameters such as mud gas cuttings, flow line mud weight, pressure kicks, flow line temperature, pit level and pit volume, mud flow rate; shale cutting parameters such as bulk density, shale factor, volume and size of cuttings. All of these suffer from the drawback that the measurements are not available in real-time as they must wait for the bottom hole fluid to reach the surface.
  • the apparatus includes a bottomhole assembly (BHA) configured to be conveyed in a borehole.
  • the BHA includes at least one transducer assembly which has a sensor plate in contact with the borehole fluid and a cavity disposed between a transducer and the sensor plate.
  • the transducer is configured to generate acoustic vibrations in the sensor plate.
  • the apparatus includes a processor configured to estimate from a signal indicative of the acoustic vibrations an impedance of the borehole fluid, and to use the estimated fluid impedance to provide an indication of the gas influx.
  • the cavity may include a fluid having a known density and compressional velocity.
  • the signal indicative of the acoustic vibrations may be provided by the transducer and/or a receiver.
  • a sensor plate may have an acoustic impedance selected to match an expected impedance of the borehole fluid.
  • the processor may be configured to estimate the impedance of the borehole fluid by determining a quality factor of the acoustic vibrations.
  • the processor may be configured to provide the indication of gas influx using a table lookup.
  • the apparatus may further include a device configured to measure a P-wave velocity in the borehole fluid, and wherein the processor may be configured to provide the indication of gas influx using a density derived from the estimated fluid impedance and the measured P-wave velocity.
  • the sensor plate may be made of a material selected from a polyamide, a polymethylpentene, pyrolitic graphite, titanium, and/or aluminum.
  • the at least one transducer assembly may include a plurality of transducer assemblies in electrical communication.
  • One embodiment of the present disclosure is a method of detecting a gas influx from the formation during drilling of a borehole.
  • the method includes conveying a BHA including at least one transducer assembly into the borehole.
  • a transducer on a first side of the cavity in the transducer assembly is used to generate acoustic vibrations in a sensor plate on a second side of the cavity, the sensor plate being in contact with the borehole fluid.
  • the method further includes estimating from a signal indicative of the acoustic vibrations an impedance of the borehole fluid, and using the estimated fluid impedance to provide an indication of the gas influx.
  • the method may further include having a fluid with a known density and knowing compressional velocity in the cavity.
  • the signal indicative of the acoustic vibrations may be provided using the transducer and/or a receiver.
  • the method may further include selecting a material for the sensor plate that has an acoustic impedance which matches an expected impedance of the borehole fluid. Estimation of the impedance of the borehole fluid may be done by determining a quality factor of the acoustic vibrations. A table lookup may be used to provide the indication of gas influx.
  • the method may further include measuring a P-wave velocity in the borehole fluid, and providing the indication of gas influx may further use a density derived from the estimated fluid impedance and the measured P-wave velocity.
  • the method may further include electing a material for the sensor plate from a polyamide, a polymethylpentene, pyrolitic graphite, titanium, and/or aluminum.
  • the method may further include providing an abosrptive backing on a backside of the transducer to reduce reflections.
  • a plurality of transducer assemblies in electrical communication may be used.
  • Providing the indication of gas influx may further include providing an alarm signal when the estimated fluid impedance changes by more than a specified threshold value relative to the estimated fluid impedance in an earlier interval.
  • Another embodiment of the disclosure is a computer readable medium for use with an apparatus for detecting a gas influx from the formation during drilling of a borehole.
  • the apparatus includes a bottomhole assembly configured to be conveyed in a borehole, a transducer assembly on the BHA that includes a sensor plate in contact with the borehole fluid, and a cavity between a transducer and the sensor plate, the transducer being configured to generate acoustic vibrations in the sensor plate.
  • the medium includes instructions that enable a processor to estimate from a signal indicative of the acoustic vibrations an impedance of the borehole fluid, and use the estimated fluid impedance to provide an indication of the gas influx.
  • the medium may include a ROM, an EPROM, a flash memory and/or an optical disk
  • FIG. 1 (Prior Art) shows a measurement- while-drilling tool suitable for use with the present disclosure
  • FIG. 2 is a cross sectional view of a measurement sub of the present disclosure
  • FIG. 3 is a detailed sectional view of the acoustic transducer in Figure 2;
  • FIGS. 4a and 4b show exemplary signals using the acoustic transducer of
  • FIG. 5 shows modeled bulk moduli of fluid mixtures as a function of density using a model of Batzle & Wang as calculated in the thesis of Terra
  • FIG. 6 shows an embodiment of the disclosure in which a plurality of acoustic transducers are disposed along the drill collar.
  • FIG. 1 shows a schematic diagram of a drilling system 10 with a drillstring 20 carrying a drilling assembly 90 (also referred to as the bottom-hole assembly, or -'BHA”) conveyed in a "wellbore" or “borehole” 26 for drilling the wellbore.
  • the drilling system 10 includes a conventional derrick 11 erected on a floor 12 which supports a rotary table 14 that is rotated by a prime mover such as an electric motor (not shown) at a desired rotational speed.
  • the drillstring 20 includes a tubing such as a drill pipe 22 or a coiled-tubing extending downward from the surface into the borehole 26. The drillstring 20 is pushed into the wellbore 26 when a drill pipe 22 is used as the tubing.
  • a tubing injector such as an injector (not shown), however, is used to move the tubing from a source thereof, such as a reel (not shown), to the wellbore 26.
  • the drill bit 50 attached to the end of the drillstring breaks up the geological formations when it is rotated to drill the borehole 26.
  • the drillstring 20 is coupled to a drawworks 30 via a Kelly joint 21, swivel 28, and line 29 through a pulley 23.
  • the drawworks 30 is operated to control the weight on bit, which is an important parameter that affects the rate of penetration.
  • the operation of the drawworks is well known in the art and is thus not described in detail herein.
  • a suitable drilling fluid 31 from a mud pit (source) 32 is circulated under pressure through a channel in the drillstring 20 by a mud pump 34.
  • the drilling fluid passes from the mud pump 34 into the drillstring 20 via a desurger (not shown), fluid line 38 and Kelly joint 21.
  • the drilling fluid 31 is discharged at the borehole bottom 51 through an opening in the drill bit 50.
  • the drilling fluid 31 circulates uphole through the annular space 27 between the drillstring 20 and the borehole 26 and returns to the mud pit 32 via a return line 35.
  • the drilling fluid acts to lubricate the drill bit 50 and to carry borehole cutting or chips away from the drill bit 50.
  • a sensor Si typically placed in the line 38 provides information about the fluid flow rate.
  • a surface torque sensor S 2 and a sensor S 3 associated with the drillstring 20 respectively provide information about the torque and rotational speed of the drillstring.
  • a sensor (not shown) associated with line 29 is used to provide the hook load of the drillstring 20.
  • the drill bit 50 is rotated by only rotating the drill pipe 22.
  • a downhole motor 55 (mud motor) is disposed in the drilling assembly 90 to rotate the drill bit 50 and the drill pipe 22 is rotated usually to supplement the rotational power, if required, and to effect changes in the drilling direction.
  • the mud motor 55 is coupled to the drill bit 50 via a drive shaft (not shown) disposed in a bearing assembly 57.
  • the mud motor rotates the drill bit 50 when the drilling fluid 31 passes through the mud motor 55 under pressure.
  • the bearing assembly 57 supports the radial and axial forces of the drill bit.
  • a stabilizer 58 coupled to the bearing assembly 57 acts as a centralizer for the lowermost portion of the mud motor assembly.
  • a drilling sensor module 59 is placed near the drill bit 50.
  • the drilling sensor module contains sensors, circuitry and processing software and algorithms relating to the dynamic drilling parameters. Such parameters typically include bit bounce, stick-slip of the drilling assembly, backward rotation, torque, shocks, borehole and annulus pressure, acceleration measurements and other measurements of the drill bit condition.
  • a suitable telemetry or communication sub 72 using, for example, two-way telemetry, is also provided as illustrated in the drilling assembly 90.
  • the drilling sensor module processes the sensor information and transmits it to the surface control unit 40 via the telemetry system 72.
  • the communication sub 72, a power unit 78 and an MWD tool 79 are all connected in tandem with the drillstring 20. Flex subs, for example, are used in connecting the MWD tool 79 in the drilling assembly 90. Such subs and tools form the bottom hole drilling assembly 90 between the drillstring 20 and the drill bit 50.
  • the drilling assembly 90 makes various measurements including the pulsed nuclear magnetic resonance measurements while the borehole 26 is being drilled.
  • the communication sub 72 obtains the signals and measurements and transfers the signals, using two-way telemetry, for example, to be processed on the surface. Alternatively, the signals can be processed using a downhole processor in the drilling assembly 90.
  • the surface control unit or processor 40 also receives signals from other downhole sensors and devices and signals from sensors S 1 -S 3 and other sensors used in the system 10 and processes such signals according to programmed instructions provided to the surface control unit 40.
  • the surface control unit 40 displays desired drilling parameters and other information on a display/monitor 42 utilized by an operator to control the drilling operations.
  • the surface control unit 40 typically includes a computer or a microprocessor-based processing system, memory for storing programs or models and data, a recorder for recording data, and other peripherals.
  • the control unit 40 is typically adapted to activate alarms 44 when certain unsafe or undesirable operating conditions occur.
  • FIG. 2 a cross-section of an acoustic sub that can be used for determining the formation density is illustrated.
  • the drill collar is denoted by 103 and the borehole wall by 101.
  • An acoustic transducer assembly 107 is positioned inside the drill collar.
  • the acoustic transducer assembly includes an fluid-filled cavity 109.
  • An acoustic transducer 111 such as a piezoelectric transducer is positioned at one side of the cavity 109.
  • On the other side of the cavity 109 is a sensor plate 115.
  • the cavity is filled with a fluid with known density and compressional wave velocity.
  • the plate 115 has a known thickness, compressional wave velocity and density.
  • ray path 117 corresponds to an acoustic wave that is reflected from the inner wall of the sensor plate.
  • the raypath 121 corresponds to an acoustic wave that is reflected from the outer surface of the sensor plate while raypath 119 corresponds to a wave that passes into the borehole fluid in the annulus between the BHA and the borehole wall.
  • the transducer 111 is provided with an absorptive backing 113 with an impedance that closely matches that of the transducer so as to reduce reflections from the back side of the transducer.
  • a single transducer acts as both a transmitter and as a receiver, though this is not to be construed as limitation to the disclosure: separate acoustic transmitters and receivers may be used.
  • the present disclosure relies on the signals recorded by excitation of the transducer as an indication of gas in the borehole fluid.
  • Free gas in the borehole fluid has three main effects on the acoustic properties of the fluid.
  • the first effect is a reduction in density of the fluid.
  • a more important effect is the dramatic reduction in the bulk modulus of the fluid (and hence the acoustic velocity). This is the phenomenon that is the basis for the so-called "bright spot" effect in hydrocarbon exploration wherein the presence of gas in a reservoir can produce strong reflections on seismic data.
  • the average compressibility (the reciprocal of bulk modulus which is linearly related to the square of the acoustic velocity) is obtained by a weighted average of the compressibilities of the two fluids.
  • the third effect that may be observed is the attenuation of the wave that actually propagates into the borehole and may be reflected by the borehole wall.
  • an objective of the disclosure is to determine the pressure kicks before gas comes out of solution in the borehole fluid.
  • Invasion of formation fluids into the borehole is usually the result of the formation pore pressure exceeding the fluid pressure in the borehole. This may be a harbinger of a blowout and remedial action is necessary. Due to the difference in the density and P- wave velocity of the borehole mud and the density and P-wave velocity of formation fluid, this influx is detectable. Specifically, the effect of invasion is to lower the bulk modulus and density of the fluid in the borehole. This translates into a change in the impedance of the mud.
  • Fig. 5 shows an example of a cross-plot of modeled bulk modulus versus density for a three phase mixture.
  • the example is from Bulloch (Michigan Technological University M.S. Thesis) using a model proposed by Batzle et al.
  • the curve 191 is for an oil-water mixture for different fluid saturations
  • the curve 193 is for a three phase mixture of oil, water and gas
  • the curve 195 is for a gas-water mixture.
  • the model of Batzle et al. may be used with appropriate parameters for drilling fluid, live oil (oil with dissolved gas) and dead oil. This is not to be construed as a limitation of the present disclosure and other models for predicting the elastic properties of fluid mixtures may be used.
  • Han & Batzle shows correlations of velocity and density to API gravity, Gas-Oil Raio (GOR), Gas gravity and in situ pressure and temperatures.
  • GOR Gas-Oil Raio
  • the empirical cross-plots may be stored in the form of a table and a table lookup performed to determine the presence of gas in the borehole fluid.
  • Such a model may also be used for predicting the properties of a mixture of drilling mud and formation fluid. The net result of a fluid influx is to change the impedance of the borehole fluid.
  • polymethlypentene (tradenamed TPX, which is made by Mitsui) that has an acoustic impedance of 1840 kRayls.
  • Pyrolytic graphite (6 480 kRayls depending on orientation) from GE Advanced Ceramics is a good candidate.
  • titanium about 24 000 kRayls
  • aluminum about 15 800 kRayls
  • the inside face of the plate is in contact with oil in a pressure-balanced enclosure, with known acoustic characteristics. Incoming water oil or gas is expected to lower the acoustic impedance markedly. The instrument takes a reading every second and stores it in memory for 2 hours.
  • the instrument if it observes a change in acoustic impedance of 10% or more during a 2 minute interval from the extrapolated value of the preceding hour then it sends a high priority alarm and a series of informative values of the acoustic impedance from say intervals of 20 seconds preceding the alarm.
  • the use of a 10% change in acoustic impedance is for exemplary purposes only and other criteria could be used for sending an alarm.
  • FIG. 6 Another embodiment of the disclosure is illustrated in Fig. 6.
  • the BHA 205 is provided with a transducer arrangement 209 of the type discussed above and additional transducer assemblies 211, 213, 215, 217, 219 are disposed along the drill collar 221.
  • the impedance of the mud is estimated by determining the Q of the resonant plate.
  • the velocity of P- waves in the mud may be measured using, for example, the apparatus described in US Patent Application Ser. No. 10/298706 of Hassan et al., having the same assignee as the present disclosure and the contents of which are incorporated herein by reference.
  • the density can be determined. The density may be a better indication of a potential gas kick than impedance or velocity separately.
  • the processing of the data may be accomplished by a downhole processor.
  • measurements may be stored on a suitable memory device and processed upon retrieval of the memory device for detailed analysis
  • Implicit in the control and processing of the data is the use of a computer program on a suitable machine readable medium that enables the processor to perform the control and processing.
  • the machine readable medium may include ROMs, EPROMs, EAROMs, Flash Memories and Optical disks. All of these media have the capability of storing the data acquired by the logging tool and of storing the instructions for processing the data. It would be apparent to those versed in the art that due to the amount of data being acquired and processed, it is impossible to do the processing and analysis without use of an electronic processor or computer.

Abstract

An acoustic transducer on a downhole tool sends an acoustic wave through a sensor plate in contact with drilling fluid. Vibrations of the sensor plate are indicative of the impedance of the borehole plate that may be associated with gas influx. A processor analyzes the vibrations and uses an estimated Q of the vibrations to determine gas influx.

Description

EARLY KICK DETECTION IN AN OIL AND GAS WELL Roland E Chemali; Volker Krueger & Rocco DiFoggio
BACKGROUND OF THE DISCLOSURE
1. Field of the Disclosure
[0001] This disclosure relates generally to oil and gas well logging tools. More particularly, this disclosure relates to tools and methods for identifying the influx of gas into the borehole in real-time during drilling operations
2. Description of the Related Art
[0002] Exploration for hydrocarbons commonly includes using a bottomhole assembly including a drill-bit for drilling a borehole in an earth formation. Drilling fluid or "mud" used in the drilling may vary in density or "mud weight" for a number of reasons. Such variations can result from changes in the quantity and density of cuttings (particles of formation); changes in the "mud program" at the surface, changes in temperature, etc. Variations in mud density also occur when gas or liquid enter the borehole from the formation. Such influx of formation fluids may likely be the result of formation overpressures or abnormally high pressures.
[0003] Pressure detection concepts are especially important in drilling. Not only does the drilling rate decrease with a high overbalance of mud pressure versus formation pressure, but also lost circulation and differential pressure sticking of the drill pipe can readily occur. More importantly, an underbalance of mud pressure versus formation pressure can cause a pressure "kick." A well may kick without forewarning. Balanced drilling techniques often require only a fine margin between effective pressure control and a threatened blowout. Additionally, there are situations where underbalance is maintained to avoid formation damage so that it is important to detect inflow of formation liquids into the borehole.
[0004] Some prior art techniques for detecting abnormal formation pressure are based on measurement of drilling parameters such as drilling rate, torque and drag; drilling mud parameters such as mud gas cuttings, flow line mud weight, pressure kicks, flow line temperature, pit level and pit volume, mud flow rate; shale cutting parameters such as bulk density, shale factor, volume and size of cuttings. All of these suffer from the drawback that the measurements are not available in real-time as they must wait for the bottom hole fluid to reach the surface.
[0005] Other prior art methods for identifying possible kicks rely on density measurements of the borehole fluid. See, for example, US4492865 to Murphy et al, US4412130 to Winters, US6648083 to Evans et al., and US6768106 to Gzara et al. A drawback of methods that make density measurements is that gas must be present in sufficient quantities to affect the density of the mud, so that dissolved gas that may be a precursor to a gas kick would not register with conventional density measuring devices. In addition, the density measurements made by the prior art devices are responsive to varying degrees to the density of the formation. They also require the use of a radioactive source - a safety hazard during drilling operations.
[0006] There is a need for a technique to measure the properties of the borehole fluid downhole with a single tool in order to detect kicks and inflow of formation liquids. The present disclosure satisfies this need.
SUMMARY OF THE DISCLOSURE
[0007] One embodiment of the disclosure is an apparatus for detection of gas influx in a borehole fluid during drilling operations. The apparatus includes a bottomhole assembly (BHA) configured to be conveyed in a borehole. The BHA includes at least one transducer assembly which has a sensor plate in contact with the borehole fluid and a cavity disposed between a transducer and the sensor plate. The transducer is configured to generate acoustic vibrations in the sensor plate. The apparatus includes a processor configured to estimate from a signal indicative of the acoustic vibrations an impedance of the borehole fluid, and to use the estimated fluid impedance to provide an indication of the gas influx. The cavity may include a fluid having a known density and compressional velocity. The signal indicative of the acoustic vibrations may be provided by the transducer and/or a receiver. A sensor plate may have an acoustic impedance selected to match an expected impedance of the borehole fluid. The processor may be configured to estimate the impedance of the borehole fluid by determining a quality factor of the acoustic vibrations. The processor may be configured to provide the indication of gas influx using a table lookup. The apparatus may further include a device configured to measure a P-wave velocity in the borehole fluid, and wherein the processor may be configured to provide the indication of gas influx using a density derived from the estimated fluid impedance and the measured P-wave velocity. The sensor plate may be made of a material selected from a polyamide, a polymethylpentene, pyrolitic graphite, titanium, and/or aluminum. The at least one transducer assembly may include a plurality of transducer assemblies in electrical communication.
[0008] One embodiment of the present disclosure is a method of detecting a gas influx from the formation during drilling of a borehole. The method includes conveying a BHA including at least one transducer assembly into the borehole. A transducer on a first side of the cavity in the transducer assembly is used to generate acoustic vibrations in a sensor plate on a second side of the cavity, the sensor plate being in contact with the borehole fluid. The method further includes estimating from a signal indicative of the acoustic vibrations an impedance of the borehole fluid, and using the estimated fluid impedance to provide an indication of the gas influx. The method may further include having a fluid with a known density and knowing compressional velocity in the cavity. The signal indicative of the acoustic vibrations may be provided using the transducer and/or a receiver. The method may further include selecting a material for the sensor plate that has an acoustic impedance which matches an expected impedance of the borehole fluid. Estimation of the impedance of the borehole fluid may be done by determining a quality factor of the acoustic vibrations. A table lookup may be used to provide the indication of gas influx. The method may further include measuring a P-wave velocity in the borehole fluid, and providing the indication of gas influx may further use a density derived from the estimated fluid impedance and the measured P-wave velocity. The method may further include electing a material for the sensor plate from a polyamide, a polymethylpentene, pyrolitic graphite, titanium, and/or aluminum. The method may further include providing an abosrptive backing on a backside of the transducer to reduce reflections. A plurality of transducer assemblies in electrical communication may be used. Providing the indication of gas influx may further include providing an alarm signal when the estimated fluid impedance changes by more than a specified threshold value relative to the estimated fluid impedance in an earlier interval. [0009] Another embodiment of the disclosure is a computer readable medium for use with an apparatus for detecting a gas influx from the formation during drilling of a borehole. The apparatus includes a bottomhole assembly configured to be conveyed in a borehole, a transducer assembly on the BHA that includes a sensor plate in contact with the borehole fluid, and a cavity between a transducer and the sensor plate, the transducer being configured to generate acoustic vibrations in the sensor plate. The medium includes instructions that enable a processor to estimate from a signal indicative of the acoustic vibrations an impedance of the borehole fluid, and use the estimated fluid impedance to provide an indication of the gas influx. The medium may include a ROM, an EPROM, a flash memory and/or an optical disk
BRIEF DESCRIPTION OF THE DRAWINGS
[0010] The present disclosure is best understood with reference to the accompanying figures in which like numerals refer to like elements and in which:
FIG. 1 (Prior Art) shows a measurement- while-drilling tool suitable for use with the present disclosure;
FIG. 2 is a cross sectional view of a measurement sub of the present disclosure; FIG. 3 is a detailed sectional view of the acoustic transducer in Figure 2;
FIGS. 4a and 4b show exemplary signals using the acoustic transducer of
Figure 2 when the impedance of the borehole fluid is (a) close to that of the sensor plate, and (b) different from that of the sensor plate;
FIG. 5 (prior art) shows modeled bulk moduli of fluid mixtures as a function of density using a model of Batzle & Wang as calculated in the thesis of Terra
Bulloch; and
FIG. 6 shows an embodiment of the disclosure in which a plurality of acoustic transducers are disposed along the drill collar.
DETAILED DESCRIPTION OF THE DISCLOSURE
[0011] Fig. 1 shows a schematic diagram of a drilling system 10 with a drillstring 20 carrying a drilling assembly 90 (also referred to as the bottom-hole assembly, or -'BHA") conveyed in a "wellbore" or "borehole" 26 for drilling the wellbore. The drilling system 10 includes a conventional derrick 11 erected on a floor 12 which supports a rotary table 14 that is rotated by a prime mover such as an electric motor (not shown) at a desired rotational speed. The drillstring 20 includes a tubing such as a drill pipe 22 or a coiled-tubing extending downward from the surface into the borehole 26. The drillstring 20 is pushed into the wellbore 26 when a drill pipe 22 is used as the tubing. For coiled-tubing applications, a tubing injector, such as an injector (not shown), however, is used to move the tubing from a source thereof, such as a reel (not shown), to the wellbore 26. The drill bit 50 attached to the end of the drillstring breaks up the geological formations when it is rotated to drill the borehole 26. If a drill pipe 22 is used, the drillstring 20 is coupled to a drawworks 30 via a Kelly joint 21, swivel 28, and line 29 through a pulley 23. During drilling operations, the drawworks 30 is operated to control the weight on bit, which is an important parameter that affects the rate of penetration. The operation of the drawworks is well known in the art and is thus not described in detail herein.
[0012] During drilling operations, a suitable drilling fluid 31 from a mud pit (source) 32 is circulated under pressure through a channel in the drillstring 20 by a mud pump 34. The drilling fluid passes from the mud pump 34 into the drillstring 20 via a desurger (not shown), fluid line 38 and Kelly joint 21. The drilling fluid 31 is discharged at the borehole bottom 51 through an opening in the drill bit 50. The drilling fluid 31 circulates uphole through the annular space 27 between the drillstring 20 and the borehole 26 and returns to the mud pit 32 via a return line 35. The drilling fluid acts to lubricate the drill bit 50 and to carry borehole cutting or chips away from the drill bit 50. A sensor Si typically placed in the line 38 provides information about the fluid flow rate. A surface torque sensor S2 and a sensor S3 associated with the drillstring 20 respectively provide information about the torque and rotational speed of the drillstring. Additionally, a sensor (not shown) associated with line 29 is used to provide the hook load of the drillstring 20.
[0013] In one embodiment of the disclosure, the drill bit 50 is rotated by only rotating the drill pipe 22. In another embodiment of the disclosure, a downhole motor 55 (mud motor) is disposed in the drilling assembly 90 to rotate the drill bit 50 and the drill pipe 22 is rotated usually to supplement the rotational power, if required, and to effect changes in the drilling direction. [0014] In an exemplary embodiment of Fig. 1, the mud motor 55 is coupled to the drill bit 50 via a drive shaft (not shown) disposed in a bearing assembly 57. The mud motor rotates the drill bit 50 when the drilling fluid 31 passes through the mud motor 55 under pressure. The bearing assembly 57 supports the radial and axial forces of the drill bit. A stabilizer 58 coupled to the bearing assembly 57 acts as a centralizer for the lowermost portion of the mud motor assembly.
[0015] In one embodiment of the disclosure, a drilling sensor module 59 is placed near the drill bit 50. The drilling sensor module contains sensors, circuitry and processing software and algorithms relating to the dynamic drilling parameters. Such parameters typically include bit bounce, stick-slip of the drilling assembly, backward rotation, torque, shocks, borehole and annulus pressure, acceleration measurements and other measurements of the drill bit condition. A suitable telemetry or communication sub 72 using, for example, two-way telemetry, is also provided as illustrated in the drilling assembly 90. The drilling sensor module processes the sensor information and transmits it to the surface control unit 40 via the telemetry system 72.
[0016] The communication sub 72, a power unit 78 and an MWD tool 79 are all connected in tandem with the drillstring 20. Flex subs, for example, are used in connecting the MWD tool 79 in the drilling assembly 90. Such subs and tools form the bottom hole drilling assembly 90 between the drillstring 20 and the drill bit 50. The drilling assembly 90 makes various measurements including the pulsed nuclear magnetic resonance measurements while the borehole 26 is being drilled. The communication sub 72 obtains the signals and measurements and transfers the signals, using two-way telemetry, for example, to be processed on the surface. Alternatively, the signals can be processed using a downhole processor in the drilling assembly 90.
[0017] The surface control unit or processor 40 also receives signals from other downhole sensors and devices and signals from sensors S1-S3 and other sensors used in the system 10 and processes such signals according to programmed instructions provided to the surface control unit 40. The surface control unit 40 displays desired drilling parameters and other information on a display/monitor 42 utilized by an operator to control the drilling operations. The surface control unit 40 typically includes a computer or a microprocessor-based processing system, memory for storing programs or models and data, a recorder for recording data, and other peripherals. The control unit 40 is typically adapted to activate alarms 44 when certain unsafe or undesirable operating conditions occur.
[0018] Turning now to Fig. 2, a cross-section of an acoustic sub that can be used for determining the formation density is illustrated. The drill collar is denoted by 103 and the borehole wall by 101. An acoustic transducer assembly 107 is positioned inside the drill collar.
[0019] As shown in Fig. 3, the acoustic transducer assembly includes an fluid-filled cavity 109. An acoustic transducer 111 such as a piezoelectric transducer is positioned at one side of the cavity 109. On the other side of the cavity 109 is a sensor plate 115. The cavity is filled with a fluid with known density and compressional wave velocity. The plate 115 has a known thickness, compressional wave velocity and density.
[0020] As shown in Fig. 3, activation of the transducer generates acoustic waves in the fluid. Exemplary raypaths resulting from the excitation are shown in Fig. 3. The ray path 117, for example, corresponds to an acoustic wave that is reflected from the inner wall of the sensor plate. The raypath 121 corresponds to an acoustic wave that is reflected from the outer surface of the sensor plate while raypath 119 corresponds to a wave that passes into the borehole fluid in the annulus between the BHA and the borehole wall. The transducer 111 is provided with an absorptive backing 113 with an impedance that closely matches that of the transducer so as to reduce reflections from the back side of the transducer. In the example shown, a single transducer acts as both a transmitter and as a receiver, though this is not to be construed as limitation to the disclosure: separate acoustic transmitters and receivers may be used.
[0021] The present disclosure relies on the signals recorded by excitation of the transducer as an indication of gas in the borehole fluid. Free gas in the borehole fluid has three main effects on the acoustic properties of the fluid. The first effect is a reduction in density of the fluid. A more important effect is the dramatic reduction in the bulk modulus of the fluid (and hence the acoustic velocity). This is the phenomenon that is the basis for the so-called "bright spot" effect in hydrocarbon exploration wherein the presence of gas in a reservoir can produce strong reflections on seismic data. Basically, in a gas-liquid mixture, the average compressibility (the reciprocal of bulk modulus which is linearly related to the square of the acoustic velocity) is obtained by a weighted average of the compressibilities of the two fluids. The third effect that may be observed is the attenuation of the wave that actually propagates into the borehole and may be reflected by the borehole wall. However, by the time actual gas bubbles appear in the borehole at depth, it may be on the verge of a blowout. Accordingly, an objective of the disclosure is to determine the pressure kicks before gas comes out of solution in the borehole fluid.
[0022] Invasion of formation fluids into the borehole is usually the result of the formation pore pressure exceeding the fluid pressure in the borehole. This may be a harbinger of a blowout and remedial action is necessary. Due to the difference in the density and P- wave velocity of the borehole mud and the density and P-wave velocity of formation fluid, this influx is detectable. Specifically, the effect of invasion is to lower the bulk modulus and density of the fluid in the borehole. This translates into a change in the impedance of the mud.
[0023] Fig. 5 shows an example of a cross-plot of modeled bulk modulus versus density for a three phase mixture. The example is from Bulloch (Michigan Technological University M.S. Thesis) using a model proposed by Batzle et al. The curve 191 is for an oil-water mixture for different fluid saturations, the curve 193 is for a three phase mixture of oil, water and gas, and the curve 195 is for a gas-water mixture. For the present disclosure, the model of Batzle et al. may be used with appropriate parameters for drilling fluid, live oil (oil with dissolved gas) and dead oil. This is not to be construed as a limitation of the present disclosure and other models for predicting the elastic properties of fluid mixtures may be used. Han & Batzle shows correlations of velocity and density to API gravity, Gas-Oil Raio (GOR), Gas gravity and in situ pressure and temperatures. This is an example of another model that may be used with the method of the present disclosure. In practice, the empirical cross-plots may be stored in the form of a table and a table lookup performed to determine the presence of gas in the borehole fluid. [0024] Such a model may also be used for predicting the properties of a mixture of drilling mud and formation fluid. The net result of a fluid influx is to change the impedance of the borehole fluid.
[0025] Those versed in the art and having benefit of the present disclosure would recognize that if the impedance of the fluid is matched to that of the plate, then reverberations of the plate caused by excitation of the transducer will decay very rapidly. This is shown schematically in Fig. 4a by the decay curve 153 of the reverberatory signal 151. If, on the other hand, the impedance of the fluid is greatly different from that of the plate, the reverberations 161 die out more slowly 163. The relative decay can be quantified by the Q (or quality factor) of the plate. This is something that can be readily measured using prior art techniques.
[0026] Maximum sensitivity is obtained by using a plate whose acoustic impedance is as close as possible to the fluid impedance so as to minimize the impedance contrast with the fluid, which typically ranges from 1500 kRayls for a light drilling fluid to 2300 kRayls for a heavy drilling fluid. The plate must also be thermally stable, mechanically tough, and chemically resistant. Among polymers, a polyimide ranging from 2400 to 2920 kRayls or a poly(etherether-ketone) ranging from 3122 to 3514 kRayls are good candidates. Another polymer that is a good candidate is polymethlypentene (tradenamed TPX, which is made by Mitsui) that has an acoustic impedance of 1840 kRayls. Pyrolytic graphite (6 480 kRayls depending on orientation) from GE Advanced Ceramics is a good candidate. Among metals, titanium (about 24 000 kRayls) or aluminum (about 15 800 kRayls) are good candidates. The inside face of the plate is in contact with oil in a pressure-balanced enclosure, with known acoustic characteristics. Incoming water oil or gas is expected to lower the acoustic impedance markedly. The instrument takes a reading every second and stores it in memory for 2 hours. In one embodiment of the disclosure, if the instrument observes a change in acoustic impedance of 10% or more during a 2 minute interval from the extrapolated value of the preceding hour then it sends a high priority alarm and a series of informative values of the acoustic impedance from say intervals of 20 seconds preceding the alarm. The use of a 10% change in acoustic impedance is for exemplary purposes only and other criteria could be used for sending an alarm. [0027] Another embodiment of the disclosure is illustrated in Fig. 6. Here, the BHA 205 is provided with a transducer arrangement 209 of the type discussed above and additional transducer assemblies 211, 213, 215, 217, 219 are disposed along the drill collar 221. These are in electrical communication with each other and with a processor at the surface using wired-pipe telemetry (though other telemetry methods may be used). The impedance of the mud is estimated by determining the Q of the resonant plate. The velocity of P- waves in the mud may be measured using, for example, the apparatus described in US Patent Application Ser. No. 10/298706 of Hassan et al., having the same assignee as the present disclosure and the contents of which are incorporated herein by reference. Once the impedance and velocity are known, the density can be determined. The density may be a better indication of a potential gas kick than impedance or velocity separately.
[0028] The processing of the data may be accomplished by a downhole processor. Alternatively, measurements may be stored on a suitable memory device and processed upon retrieval of the memory device for detailed analysis Implicit in the control and processing of the data is the use of a computer program on a suitable machine readable medium that enables the processor to perform the control and processing. The machine readable medium may include ROMs, EPROMs, EAROMs, Flash Memories and Optical disks. All of these media have the capability of storing the data acquired by the logging tool and of storing the instructions for processing the data. It would be apparent to those versed in the art that due to the amount of data being acquired and processed, it is impossible to do the processing and analysis without use of an electronic processor or computer.
[0029] While the foregoing disclosure is directed to the specific embodiments of the disclosure, various modifications will be apparent to those skilled in the art. It is intended that all such variations within the scope of the appended claims be embraced by the foregoing disclosure.

Claims

What is claimed is: 1. An apparatus for detection of gas influx in a borehole fluid during drilling operations, the apparatus comprising: (a) a bottomhole assembly (BHA) configured to be conveyed in the borehole; (b) at least one transducer assembly on the BHA including: (A) a sensor plate in contact with the borehole fluid, and (B) a cavity disposed between a transducer and the sensor plate, the transducer configured to generate acoustic vibrations in the sensor plate; and (c) a processor configured: (C) to estimate from a signal indicative of the acoustic vibrations an impedance of the borehole fluid, and (D) to use the estimated fluid impedance to provide an indication of the gas influx.
2. The apparatus of claim 1 wherein the cavity includes a fluid having a known density and compressional velocity.
3. The apparatus of claim 1 wherein the signal indicative of the acoustic vibrations is provided by at least one of: (i) the transducer, and (ii) a receiver.
4. The apparatus of claim 1 wherein the sensor plate has an acoustic impedance selected to match an expected impedance of the borehole fluid.
5. The apparatus of claim 1 wherein the processor is configured to estimate the impedance of the borehole fluid by determining a quality factor (Q) of the acoustic vibrations.
6. The apparatus of claim 1 wherein the processor is configured to provide the indication of gas influx using a table lookup.
7. The apparatus of claim 1 further comprising a device configured to measure a P-wave velocity in the borehole fluid and wherein the processor is configured to provide the indication of gas influx using a density derived from the estimated fluid impedance and the measured P-wave velocity.
8. The apparatus of claim 1 wherein the sensor plate is made of a material selected from: (i) a polyamide, (ii) a polymethylpentene, (iii) pyrolitic graphite, (iv) titanium, and (v) aluminum.
9. The apparatus of claim 1 further comprising an absorptive backing on a back side of the transducer having an impedance substantially equal to that of the transducer.
10. The apparatus of claim 1 wherein the at least one transducer assembly further comprises a plurality of transducer assemblies in electrical communication.
11. The apparatus of claim 1 wherein the transducer is configured to provide the indication of gas influx by providing an alarm signal when the estimated fluid impedance changes by more than a specified threshold value relative to the estimated fluid impedance in an earlier interval.
12. A method of detecting gas influx in a borehole fluid during drilling operations, the method comprising: (a) conveying a bottomhole assembly (BHA) including at least one transducer assembly into the borehole; (b) using a transducer on a first side of a cavity in the transducer assembly to generate acoustic vibrations in a sensor plate on a second side of the cavity, the sensor plate being in contact with the borehole fluid; (c) estimating from a signal indicative of the acoustic vibrations an impedance of the borehole fluid, and (d) using the estimated fluid impedance to provide an indication of the gas influx.
13. The method of claim 12 further comprising having a fluid having with a known density and a known compressional velocity in the cavity.
14. The method of claim 12 further comprising providing the signal indicative of the acoustic vibrations using at least one of: (i) the transducer, and (ii) a receiver.
15. The method of claim 12 further comprising selecting a material for the sensor plate that has an acoustic impedance which matches an expected impedance of the borehole fluid.
16. The method of claim 12 wherein estimating the impedance of the borehole fluid further comprises determining a quality factor (Q) of the acoustic vibrations.
17. The method of claim 12 wherein the providing the indication of gas influx further comprises using a table lookup.
18. The method of claim 12 further comprising measuring a P- wave velocity in the borehole fluid and wherein the providing the indication of gas influx further comprises using a density derived from the estimated fluid impedance and the measured P-wave velocity.
19. The method of claim 12 further comprising selecting a material for the sensor plate from: (i) a polyamide, (ii) a polymethylpentene, (iii) pyrolitic graphite, (iv) titanium, and (v) aluminum.
20. The method of claim 12 further comprising providing an absorptive backing on a back side of the transducer to reduce reflections therefrom
21. The method of claim 12 further comprising using, for the at least one transducer assembly, a plurality of transducer assemblies in electrical communication.
22. The method of claim 12 wherein providing the indication of gas influx further comprises providing an alarm signal when the estimated fluid impedance changes by more than a specified threshold value relative to the estimated fluid impedance in an earlier interval.
23. A computer readable medium for use with an apparatus for detection of gas influx in a borehole fluid during drilling operations, the apparatus comprising: (a) a bortomhole assembly (BHA) configured to be conveyed in the borehole; (b) at least one transducer assembly on the BHA including: (A) a sensor plate in contact with the borehole fluid, and (B) a cavity disposed between a transducer and the sensor plate, the transducer configured to generate acoustic vibrations in the sensor plate; the medium comprising instructions that enable a processor to: (c) estimate from a signal indicative of the acoustic vibrations an impedance of the borehole fluid, and (d) use the estimated fluid impedance to provide an indication of the gas influx.
24. The computer readable medium of claim 23 further comprising at least one of: (i) a ROM, (ii) an EPROM, (iii) an EAROM, (iv) a flash memory, and (v) an optical disk.
PCT/US2007/076464 2006-08-23 2007-08-22 Early kick detection in an oil and gas well WO2008024807A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB0903368A GB2454424B (en) 2006-08-23 2007-08-22 Early kick detection in an oil and gas well
NO20090867A NO20090867L (en) 2006-08-23 2009-02-25 Early detection of wells in an oil and gas well

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US83960206P 2006-08-23 2006-08-23
US60/839,602 2006-08-23
US11/841,527 US20080047337A1 (en) 2006-08-23 2007-08-20 Early Kick Detection in an Oil and Gas Well
US11/841,527 2007-08-20

Publications (2)

Publication Number Publication Date
WO2008024807A2 true WO2008024807A2 (en) 2008-02-28
WO2008024807A3 WO2008024807A3 (en) 2013-10-17

Family

ID=39092802

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2007/076464 WO2008024807A2 (en) 2006-08-23 2007-08-22 Early kick detection in an oil and gas well
PCT/US2007/076463 WO2008024806A2 (en) 2006-08-23 2007-08-22 Early kick detection in an oil and gas well

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2007/076463 WO2008024806A2 (en) 2006-08-23 2007-08-22 Early kick detection in an oil and gas well

Country Status (4)

Country Link
US (1) US20080047337A1 (en)
GB (1) GB2454424B (en)
NO (1) NO20090867L (en)
WO (2) WO2008024807A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109488286A (en) * 2018-12-03 2019-03-19 西南石油大学 A kind of oil/gas well underground multipoint pressure overflow monitoring method
US11773717B2 (en) 2021-07-30 2023-10-03 Saudi Arabian Oil Company Downhole apparatus to determine microwave and acoustic properties of circulating drill mud

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8794062B2 (en) * 2005-08-01 2014-08-05 Baker Hughes Incorporated Early kick detection in an oil and gas well
US9109433B2 (en) 2005-08-01 2015-08-18 Baker Hughes Incorporated Early kick detection in an oil and gas well
US8794350B2 (en) * 2007-12-19 2014-08-05 Bp Corporation North America Inc. Method for detecting formation pore pressure by detecting pumps-off gas downhole
US20090159334A1 (en) * 2007-12-19 2009-06-25 Bp Corporation North America, Inc. Method for detecting formation pore pressure by detecting pumps-off gas downhole
US8032311B2 (en) 2008-05-22 2011-10-04 Baker Hughes Incorporated Estimating gas-oil ratio from other physical properties
US20100315900A1 (en) * 2009-06-12 2010-12-16 Baker Hughes Incorporated Method and apparatus for high resolution sound speed measurements
US20110203805A1 (en) * 2010-02-23 2011-08-25 Baker Hughes Incorporated Valving Device and Method of Valving
US8689904B2 (en) 2011-05-26 2014-04-08 Schlumberger Technology Corporation Detection of gas influx into a wellbore
US9366133B2 (en) 2012-02-21 2016-06-14 Baker Hughes Incorporated Acoustic standoff and mud velocity using a stepped transmitter
US9494033B2 (en) * 2012-06-22 2016-11-15 Intelliserv, Llc Apparatus and method for kick detection using acoustic sensors
CN103063274B (en) * 2012-12-25 2015-01-21 天津大学 Piezoelectric transducer downhole liquid level measuring instrument
CN103362496A (en) * 2013-07-11 2013-10-23 天津大学 Underground liquid level measuring device based on high-power ultrasonic probe admittance curve
US10633965B2 (en) * 2014-09-22 2020-04-28 Baker Hughes, A Ge Company, Llc DAS-based downhole tool orientation determination
US9938820B2 (en) 2015-07-01 2018-04-10 Saudi Arabian Oil Company Detecting gas in a wellbore fluid
US10570724B2 (en) 2016-09-23 2020-02-25 General Electric Company Sensing sub-assembly for use with a drilling assembly
WO2018231278A1 (en) * 2017-06-16 2018-12-20 Landmark Graphics Corporation Systems and methods for detecting kick and well flow
CA3123020A1 (en) 2018-12-18 2020-06-25 Saudi Arabian Oil Company Downhole tool for gas kick detection using coaxial resonators
US10865640B2 (en) 2019-04-10 2020-12-15 Saudi Arabian Oil Company Downhole tool with CATR
US11332991B2 (en) 2019-07-17 2022-05-17 Saudi Arabian Oil Company Targeted downhole delivery with container
CN111263548B (en) * 2020-02-17 2021-02-09 中海石油(中国)有限公司 Oil gas well wellhead sand production vibration signal analyzer mainframe box
US11366071B2 (en) 2020-03-04 2022-06-21 Saudi Arabian Oil Company Performing microwave measurements on samples under confining pressure using coaxial resonators
US11268380B2 (en) 2020-04-22 2022-03-08 Saudi Arabian Oil Company Kick detection using logging while drilling
US11414984B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11414985B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11631884B2 (en) 2020-06-02 2023-04-18 Saudi Arabian Oil Company Electrolyte structure for a high-temperature, high-pressure lithium battery
US11149510B1 (en) 2020-06-03 2021-10-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11391104B2 (en) 2020-06-03 2022-07-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11719089B2 (en) 2020-07-15 2023-08-08 Saudi Arabian Oil Company Analysis of drilling slurry solids by image processing
US11255130B2 (en) 2020-07-22 2022-02-22 Saudi Arabian Oil Company Sensing drill bit wear under downhole conditions
US11506044B2 (en) 2020-07-23 2022-11-22 Saudi Arabian Oil Company Automatic analysis of drill string dynamics
US11867008B2 (en) 2020-11-05 2024-01-09 Saudi Arabian Oil Company System and methods for the measurement of drilling mud flow in real-time
US11434714B2 (en) 2021-01-04 2022-09-06 Saudi Arabian Oil Company Adjustable seal for sealing a fluid flow at a wellhead
US11697991B2 (en) 2021-01-13 2023-07-11 Saudi Arabian Oil Company Rig sensor testing and calibration
US11572752B2 (en) 2021-02-24 2023-02-07 Saudi Arabian Oil Company Downhole cable deployment
US11727555B2 (en) 2021-02-25 2023-08-15 Saudi Arabian Oil Company Rig power system efficiency optimization through image processing
US11846151B2 (en) 2021-03-09 2023-12-19 Saudi Arabian Oil Company Repairing a cased wellbore
US11879328B2 (en) 2021-08-05 2024-01-23 Saudi Arabian Oil Company Semi-permanent downhole sensor tool
US11624265B1 (en) 2021-11-12 2023-04-11 Saudi Arabian Oil Company Cutting pipes in wellbores using downhole autonomous jet cutting tools
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus
US11867049B1 (en) 2022-07-19 2024-01-09 Saudi Arabian Oil Company Downhole logging tool
US11913329B1 (en) 2022-09-21 2024-02-27 Saudi Arabian Oil Company Untethered logging devices and related methods of logging a wellbore

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3776032A (en) * 1972-07-03 1973-12-04 Shell Oil Co Method and apparatus for detecting an inflow of fluid into a well
US4273212A (en) * 1979-01-26 1981-06-16 Westinghouse Electric Corp. Oil and gas well kick detector
US4733232A (en) * 1983-06-23 1988-03-22 Teleco Oilfield Services Inc. Method and apparatus for borehole fluid influx detection
US5163029A (en) * 1991-02-08 1992-11-10 Teleco Oilfield Services Inc. Method for detection of influx gas into a marine riser of an oil or gas rig
US5275040A (en) * 1990-06-29 1994-01-04 Anadrill, Inc. Method of and apparatus for detecting an influx into a well while drilling
US6050141A (en) * 1998-08-28 2000-04-18 Computalog Research, Inc. Method and apparatus for acoustic logging of fluid density and wet cement plugs in boreholes
US6208586B1 (en) * 1991-06-14 2001-03-27 Baker Hughes Incorporated Method and apparatus for communicating data in a wellbore and for detecting the influx of gas

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4255798A (en) * 1978-05-30 1981-03-10 Schlumberger Technology Corp. Method and apparatus for acoustically investigating a casing and cement bond in a borehole
US4412130A (en) * 1981-04-13 1983-10-25 Standard Oil Company Downhole device to detect differences in fluid density
US4492865A (en) * 1982-02-04 1985-01-08 Nl Industries, Inc. Borehole influx detector and method
US4846003A (en) * 1988-06-08 1989-07-11 Beckman Instruments, Inc. Acoustic impedance system for pipette tip detection
US4980642A (en) * 1990-04-20 1990-12-25 Baroid Technology, Inc. Detection of influx of fluids invading a borehole
US5130950A (en) * 1990-05-16 1992-07-14 Schlumberger Technology Corporation Ultrasonic measurement apparatus
CA2133286C (en) * 1993-09-30 2005-08-09 Gordon Moake Apparatus and method for measuring a borehole
AU8164898A (en) * 1997-06-27 1999-01-19 Baker Hughes Incorporated Drilling system with sensors for determining properties of drilling fluid downhole
US6648083B2 (en) * 2000-11-02 2003-11-18 Schlumberger Technology Corporation Method and apparatus for measuring mud and formation properties downhole
US6768106B2 (en) * 2001-09-21 2004-07-27 Schlumberger Technology Corporation Method of kick detection and cuttings bed buildup detection using a drilling tool
WO2003097997A1 (en) * 2002-05-15 2003-11-27 Halliburton Energy Services, Inc. Acoustic doppler downhole fluid flow measurement
US7024917B2 (en) * 2004-03-16 2006-04-11 Baker Hughes Incorporated Method and apparatus for an acoustic pulse decay density determination
US7377169B2 (en) * 2004-04-09 2008-05-27 Shell Oil Company Apparatus and methods for acoustically determining fluid properties while sampling
US6957572B1 (en) * 2004-06-21 2005-10-25 Schlumberger Technology Corporation Apparatus and methods for measuring mud slowness in a borehole
US7334651B2 (en) * 2004-07-21 2008-02-26 Schlumberger Technology Corporation Kick warning system using high frequency fluid mode in a borehole
US7523640B2 (en) * 2005-08-01 2009-04-28 Baker Hughes Incorporated Acoustic fluid analyzer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3776032A (en) * 1972-07-03 1973-12-04 Shell Oil Co Method and apparatus for detecting an inflow of fluid into a well
US4273212A (en) * 1979-01-26 1981-06-16 Westinghouse Electric Corp. Oil and gas well kick detector
US4733232A (en) * 1983-06-23 1988-03-22 Teleco Oilfield Services Inc. Method and apparatus for borehole fluid influx detection
US5275040A (en) * 1990-06-29 1994-01-04 Anadrill, Inc. Method of and apparatus for detecting an influx into a well while drilling
US5163029A (en) * 1991-02-08 1992-11-10 Teleco Oilfield Services Inc. Method for detection of influx gas into a marine riser of an oil or gas rig
US6208586B1 (en) * 1991-06-14 2001-03-27 Baker Hughes Incorporated Method and apparatus for communicating data in a wellbore and for detecting the influx of gas
US6050141A (en) * 1998-08-28 2000-04-18 Computalog Research, Inc. Method and apparatus for acoustic logging of fluid density and wet cement plugs in boreholes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109488286A (en) * 2018-12-03 2019-03-19 西南石油大学 A kind of oil/gas well underground multipoint pressure overflow monitoring method
CN109488286B (en) * 2018-12-03 2022-03-11 西南石油大学 Method for monitoring underground multi-point pressure measurement overflow of oil and gas well
US11773717B2 (en) 2021-07-30 2023-10-03 Saudi Arabian Oil Company Downhole apparatus to determine microwave and acoustic properties of circulating drill mud

Also Published As

Publication number Publication date
US20080047337A1 (en) 2008-02-28
WO2008024806A2 (en) 2008-02-28
NO20090867L (en) 2009-03-23
WO2008024806A3 (en) 2008-04-24
GB0903368D0 (en) 2009-04-08
GB2454424B (en) 2011-11-23
WO2008024806A8 (en) 2008-08-07
WO2008024807A3 (en) 2013-10-17
GB2454424A (en) 2009-05-06

Similar Documents

Publication Publication Date Title
US20080047337A1 (en) Early Kick Detection in an Oil and Gas Well
US9109433B2 (en) Early kick detection in an oil and gas well
US8794062B2 (en) Early kick detection in an oil and gas well
CA2133286C (en) Apparatus and method for measuring a borehole
US7970544B2 (en) Method and apparatus for characterizing and estimating permeability using LWD Stoneley-wave data
US7950451B2 (en) Annulus mud flow rate measurement while drilling and use thereof to detect well dysfunction
US6829947B2 (en) Acoustic Doppler downhole fluid flow measurement
US20070005251A1 (en) Density log without a nuclear source
US5726951A (en) Standoff compensation for acoustic logging while drilling systems
US7770663B2 (en) Apparatus for making quality control measurements while drilling
NO333516B1 (en) Procedure for optimized formation logging during drilling
WO2013126388A1 (en) Early kick detection in an oil and gas well
US6708781B2 (en) System and method for quantitatively determining variations of a formation characteristic after an event
US8387722B2 (en) Strength (UCS) of carbonates using compressional and shear acoustic velocities
US8077545B2 (en) Method for detecting gas influx in wellbores and its application to identifying gas bearing formations
US20090000859A1 (en) Method and Apparatus for Phased Array Acoustic Well Logging
US8464790B2 (en) Brine salinity from sound speed
Maranuk Development of an MWD hole caliper for drilling and formation evaluation applications
Maranuk Acoustic MWD caliper improves accuracy with digital-signal technology

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 0903368.9

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07814327

Country of ref document: EP

Kind code of ref document: A2