WO2008023648A1 - Microparticle, process for producing microparticle, and, loaded with the microparticle, resin composition and optical film - Google Patents

Microparticle, process for producing microparticle, and, loaded with the microparticle, resin composition and optical film Download PDF

Info

Publication number
WO2008023648A1
WO2008023648A1 PCT/JP2007/066053 JP2007066053W WO2008023648A1 WO 2008023648 A1 WO2008023648 A1 WO 2008023648A1 JP 2007066053 W JP2007066053 W JP 2007066053W WO 2008023648 A1 WO2008023648 A1 WO 2008023648A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
mass
fine particles
particle size
classification
Prior art date
Application number
PCT/JP2007/066053
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Shimizu
Miwako Tominaga
Shinji Takasaki
Shin-Ichi Horo
Original Assignee
Nippon Shokubai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co., Ltd. filed Critical Nippon Shokubai Co., Ltd.
Priority to KR1020117028715A priority Critical patent/KR101382369B1/en
Priority to CN2007800275144A priority patent/CN101490138B/en
Priority to JP2008530887A priority patent/JP5478066B2/en
Publication of WO2008023648A1 publication Critical patent/WO2008023648A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B7/00Combinations of wet processes or apparatus with other processes or apparatus, e.g. for dressing ores or garbage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00654Controlling the process by measures relating to the particulate material
    • B01J2208/00672Particle size selection

Definitions

  • Fine particle method for producing fine particle, resin composition containing the fine particle, and optical finem
  • the present invention relates to fine particles whose particle diameter is highly controlled, and a resin composition using the same.
  • optical resin materials used in optical applications such as liquid crystal displays (LCDs), plasma display panels (PDPs), electoric luminescence displays (ELDs), transmissive screens and touch panels.
  • optical resin compositions containing fine particles made of organic materials or inorganic materials are used as raw materials for optical resin films (sheets, plates) that impart light diffusibility and antireflection antiglare properties. Being! /
  • Patent Document 1 that discloses fine particles used for optical applications
  • particles having a particle size corresponding to a desired application can be obtained with a very sharp particle size distribution.
  • Patent Documents 2 to 4 coarse particles are From the viewpoint of deteriorating display quality and causing defects in the optical film, a method for producing fine particles in which the content of particles having a particle size exceeding a predetermined size with respect to the average particle size is reduced (Patent Document 2), fine particles Prior to use, a method of removing coarse particles by subjecting the fine particles in the emulsion or dispersion state to filtration is proposed (Patent Documents 3 and 4).
  • Patent Document 1 JP 2004-307644 A, etc.
  • Patent Document 2 JP-A-2002-166228, claims, etc.
  • Patent Document 3 JP-A-2005-309399, claims, etc.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-191956, Claims, etc.
  • Patent Document 1 it is actually difficult to control the particle size distribution at a high level in the fine particle synthesis stage, and as pointed out in Patent Documents 2 to 4. Even if the particle size distribution is controlled within a suitable range, if there are coarse particles that greatly deviate from the average particle size, the display quality is deteriorated and the optical film has a defect. Therefore, the demand for reducing the amount of coarse particles tends to increase further from the viewpoint of improving visibility and productivity, and even with the techniques of Patent Documents 2 to 4, fine particles that sufficiently satisfy such a demand can be obtained. It was difficult to get.
  • the present invention has been made paying attention to the above circumstances, and its object is to provide fine particles in which the content of coarse particles deviating from a suitable particle size is reduced to a low level, and such fine particles. It is in providing the manufacturing method of particle
  • the fine particles of the present invention that have solved the above problems are summarized in that the number of coarse particles having a particle size of twice or more the average particle size is 1000 particles / 0.5 g or less.
  • the fine particles are preferably an organic-inorganic composite including an organic polymer skeleton and a polysiloxane skeleton.
  • the method for producing fine particles of the present invention includes a step of wet-classifying a fine particle dispersion having a solid content concentration of 0.5 to 50% by mass and a B-type viscosity of 0.5 to 2 OmPa's, and fine particles after wet classification It is characterized in that it comprises a step of drying and pulverizing to form fine powder particles having a water content of 0.05-2 mass%, and a step of dry classification of the fine powder particles.
  • raw materials (particulate dispersion, powder) having specific physical properties are treated by a method combining wet classification and dry classification. As a result, coarse particles and fine particles deviating from the preferred range of particle size can be reduced more efficiently.
  • compositions and optical films obtained by applying the coating composition on a substrate films having an uneven shape on the surface, such as a light diffusion film and an antiglare film.
  • the fine particles of the present invention are those in which the content of coarse particles that deviate from the preferred range of particle size is reduced to a low level. Further, according to the method of the present invention, the content of fine particles can be reduced together with coarse particles that deviate from the preferred range of particle size. Therefore, it is considered that a molded product obtained from the resin composition containing the particles of the present invention is less prone to defects due to coarse particles. In addition, since the content of fine particles is reduced, it is considered that the transparency of the resin itself is hardly damaged.
  • the fine particles of the present invention are particularly suitable for optical resin compositions, and the light diffusion film, antiglare film obtained from such resin composition, and the light diffusion plate containing the fine particles of the present invention are excellent. It is considered that the optical characteristics are exhibited.
  • the fine particles of the present invention are characterized in that the number of coarse particles having a particle size of at least twice the average particle size is 1000 particles / 0.5 g or less.
  • the fine particles used in the optical field include coarse particles that deviate from the preferred range of the particle size, there is a possibility that the film surface may be scratched or the fine particles are likely to be visually recognized.
  • the present inventors have confirmed that the above phenomenon becomes remarkable when fine particles having a particle size of twice or more the average particle size of the fine particles used are present (increased).
  • 500 particles / 0.5 g or less of coarse particles having a particle size twice or more the average particle size more preferably 200 solids / 0.5 g or less, and even more preferably 100 particles / 0.5 g
  • the amount of coarse particles within the above range and the number of coarse particles having a particle size of 2.5 times or more of the average particle size is 50 particles / 0.5 g or less is used for optical applications. In that case, it is preferable because defects due to coarse particles are less likely to occur. More preferably, it is 30 pieces / 0.5 g or less, and further preferably 10 pieces / 0.5 g or less.
  • the fine particles of the present invention preferably have a reduced number of fine particles having a particle size of 1/2 or less of the average particle size! /. It contains a lot of power and fine fine particles!
  • the fine particles are used for optical purposes (for example, a light diffusing film or an anti-glare anti-glare film provided on the image display surface of various image display devices), there is a possibility that transparency and luminance are lowered. Therefore, the fine particles having a particle size of 1/2 or less of the average particle size is preferably 10% by volume or less, more preferably 7% by volume or less.
  • the average particle size of the fine particles of the present invention is not particularly limited.
  • the force is preferably 50 ⁇ m S, more preferably;! To 30 ⁇ m, and even more preferably 2 to 20 ⁇ m.
  • the average particle diameter is within the above range, for example, when used in optical applications, advantageous effects such as excellent light diffusibility and surface light emission (brightness) can be obtained. If the average particle size is too small, the dispersibility of the resin serving as a medium may be reduced, and if it is too large, a sufficient light diffusion effect may not be obtained.
  • the particle size distribution measurement, average particle diameter, and the content of the fine particles are determined using a precision particle size distribution measurement apparatus (for example, “Multisizer 11” manufactured by Beckman Coulter, Inc.) using the Coulter principle. And measured on a volume basis.
  • the shape of the fine particles of the present invention is not particularly limited, and examples thereof include a spherical shape, a needle shape, a plate shape, a scale shape, a pulverized shape, an uneven shape, an eyebrows shape, and a candy sugar shape.
  • the shape when used for optical applications (when used for optical resin compositions, etc.), is a perfect sphere or nearly a perfect sphere, and the ratio of the long particle diameter to the short particle diameter is 1.0 to 1; 2 and the coefficient of variation of the particle diameter is preferably 10% or less.
  • the fine particles of the present invention are obtained by dry classification of fine powder particles having a predetermined water content, true specific gravity, bulk specific gravity, and particle diameter.
  • the powder particles subjected to the dry classification have a water content of 0.05 to 2% by mass. If the water content is too high, the force and moisture will act as a binder during classification and the particles will aggregate.On the other hand, if the water content is too low, the particles will aggregate due to static electricity. Even in the case of deviation, classification accuracy tends to be low and coarse particles tend to increase. If the water content is in the above range, the particles are difficult to aggregate, so that the classification operation can proceed smoothly.
  • the true specific gravity is preferably 1 to; 1.25 g / ml, the bulk specific gravity is 0. !! to lg / ml, and the average particle size is preferably 1 to 50 m.
  • the classification accuracy may be low because differences in centrifugal force and wind resistance due to the size of the particles are unlikely to occur. . If the true specific gravity is too large, large equipment and power are required, which is not preferable. On the other hand, when the bulk specific gravity is too large, large equipment and power are required, which is not preferable. On the other hand, when the bulk specific gravity is too small, a difference due to the size of the particle diameter hardly occurs, and classification accuracy may be lowered. If the particle size is too small, a good dispersion state in which the powders are strongly agglomerated may not be obtained, and the classification accuracy may decrease.If the particle size is too large, large equipment and power are required. Absent.
  • the content of coarse particles more than twice the average particle diameter in the powder particles subjected to dry classification by wet classification and in the dispersion obtained by wet classification is 200,000 or less per 0.5 g Is preferable. More preferably, it is 100,000 pieces / 0.5 g or less, and further preferably 50,000 pieces / 0.5 g or less. If the number of coarse particles of a specific size contained in the powder particles subjected to dry classification and the dispersion obtained by wet classification is within the above range, high yield and high yield can be achieved by performing dry classification. / Or preferred because it is easy to obtain fine particles with a small content of coarse particles at a high classification processing speed!
  • the water content, true specific gravity, bulk specific gravity and particle diameter are preferably in the above ranges, more preferably the fine particles have a water content of 0 .;! To 0.5% by mass.
  • the true specific gravity is;! ⁇ 1.5g / ml is preferred
  • the bulk specific gravity is 0.3 ⁇ 0.8g / ml
  • the preferred average particle diameter is 2 ⁇ 20m Preferably there is.
  • the “water content” is a value measured by a Karl Fischer moisture meter (for example, a moisture measuring device manufactured by Hiranuma Sangyo Co., Ltd.).
  • the “bulk density” is the amount of powder that enters the container when the powder is placed in a constant volume container in a constant state, expressed as mass per unit volume. Measured with a powder tester (manufactured by Hosokawa Micron).
  • the “true specific gravity” of fine powder particles means that fine powder particles are filled into a container of a certain volume, and the sample voids are completely replaced with liquid, and the volume of liquid required at this time is reduced by the volume capacity of the container.
  • the value of the particle size is a volume-based value measured by the precision particle size distribution measuring apparatus (for example, “Multisizer 1” manufactured by Beckman Coulter, Inc.).
  • An air classifier is an apparatus that separates fine particles (powder layer) according to the particle size (particle size, mass) of the particles (ie, from the inertia of the particles and the air flow). The flying distance is determined and classified by the balance of drag force). Normally, in a classifier that uses only a sieve or a filter, the physical properties of the recovered particles depend on the sieve opening used and the filtration efficiency of the filter, so that the desired physical properties such as the particle diameter are within a specific range. In order to obtain only the contained particles, it is necessary to perform a plurality of classification operations. On the other hand, if an airflow classifier is used, coarse particles and fine particles can be removed simultaneously.
  • the classification mechanism of the airflow classifier is not particularly limited. Therefore, those that use only the airflow, those that have a rotating rotor that gives propulsive force to the airflow, and guide vanes that guide the wind, and that use the airflow generated by the combined action of these, and It can be combined with other classification means (sieves and meshes).
  • Specific airflow classifiers include high-precision airflow classifiers such as the DXF type (manufactured by Nippon Pneumatic Kogyo Co., Ltd.); (Registered trademark, manufactured by Hosokawa Micron Co., Ltd.) Rotary rotor type air classifier with classification rotor; Elbow Jet (manufactured by Nittetsu Mining Co.) etc. Coanda effect using Coanda effect (Elbow jet type classifier); Dry type Examples include air classifiers that use mesh openings such as Sieve High Volta (Toyo Hitec) and Dry Sieve Blower Shifter (Yugrop).
  • a high-precision air classifier, a rotary rotor type air classifier, and an air classifier using the Coanda effect are preferable because they can remove coarse particles efficiently! /.
  • the high-accuracy air classifier is a dispersion zone formed by moving parts (movable members) and air flowing into the classification zone to generate a high-speed swirling air current, and centrifugal force is applied to the particles supplied into the apparatus.
  • the air is exhausted from the classification zone by a suction blower so as to resist the centrifugal force applied to the particles, and the coarse and fine particles are classified from the particles by the balance between the centrifugal force and the drag.
  • Rotating rotor type airflow classification device is equipped with a freely rotating cylinder (classification rotor) and an intake port that takes air into the device from outside the device.
  • Centrifugal force due to eddy currents is applied to the particles supplied inside, while the drag force of the centrifugal force is
  • This is a device that takes in air to classify the coarse powder and fine powder from the particles based on the balance between centrifugal force and drag force.
  • An air classifier that uses the Coanda effect is a Coanda effect that uses a Coanda effect in which a jet flows along a wall when a wall is placed only on one side.
  • a Coanda block that guides the jet (including particles) into the classification chamber Separating classification edge is provided at any position.
  • the jet (including particles) ejected from a part of the ejector tends to flow along the Coanda block.
  • the inertial force acting on the particles (there is a difference in the inertial force acting on the fine particles and coarse particles, and the coarse particles try to fly further), Particles are classified.
  • an airflow classifier (elbow, one-jet type classifier) using the Counder effect is preferred.
  • this elbow jet classifier it is preferable to raise the feed air to the maximum recommended air pressure in order to improve the classification accuracy.
  • the feed air be set to 0!;! ⁇ LOkgf;! ⁇ 5kgf from the viewpoint of improving the accuracy of force classification.
  • the feed air is increased too much, the flying distance of coarse particles increases, and there is a high possibility that coarse particles that bounce off the front wall will be mixed into the fine powder.
  • the fine particles according to the present invention are obtained through a wet classification process and then a dry classification process, as will be described later, and since the coarse particles are removed to some extent by the wet classification process, they rebound. There is no mixing of coarse particles into fine powder. Therefore, classification accuracy can be improved by raising the feed air.
  • the classification edge is used to isolate particles according to their properties, and one end (particle entry side) has a wedge-shaped shape that becomes thicker toward the other end. is doing. Further, the bottom cross section (one end having a thickness in the wedge shape) is substantially rectangular and has a specific width. Note that the width of the classification edge is usually designed to be approximately equal to the width of the flow path of the jet flow containing particles.
  • the slim edge has a shorter distance between the wedge-shaped slopes than the standard edge that is usually used. About half of the standard edge).
  • the slim edge is usually used to prevent particles from accumulating at the tip of the edge and reducing classification accuracy when processing highly charged particles. The reason why the classification accuracy is improved by using the slim edge is considered to be that the disturbance of the air flow hardly occurs in addition to the purpose of the slim edge (suppressing the reduction of the classification accuracy due to the accumulation of particles).
  • the fine powder particles subjected to the dry classification are wet-classified with a fine particle dispersion having a solid content concentration of 0.5 to 50% by mass and a B-type viscosity of 0.5 to 20 mPa's, and then dried and pulverized. What is obtained is preferable.
  • the solid content concentration of the fine particle dispersion is preferably from 0.5 to 20% by mass.
  • the B-type viscosity is preferably from 0.5 to; lOmPa's.
  • the solid content concentration of the fine particle dispersion solution supplied to the wet classifier is high or the viscosity is high, it takes a long time for classification, or the load on the mesh increases and the mesh opening increases. May increase the classification accuracy.
  • the solid content concentration is less than 0.5% by mass, the classification takes a long time.
  • the particles to be subjected to wet classification have a small content of coarse particles larger than a particle size twice the average particle size.
  • the content force of coarse particles larger than a particle size twice as large as the average particle size is 1 million or less per 0.5 g. More preferably, it is 500,000 pieces / 0.5 g, more preferably 200,000 pieces / 0.5 g or less.
  • the fine particle dispersion may be prepared by dispersing fine particles prepared in advance in a dispersion medium (water, organic solvent, etc.). In the case where the fine particles have an organic polymer or organic-inorganic composite material strength described later.
  • the reaction solution after the polymerization reaction may be used as it is. You can also use the fine particle dispersion obtained by the wet process.
  • Apparatuses that can be used for wet classification of the above-mentioned fine particle dispersion are not particularly limited! /, But include a filtration apparatus using a finoleta sieve, a centrifugal force, and a liquid cyclone apparatus using an inertial force. Can be mentioned.
  • Specific wet classifiers include cartridge filters (for example, manufactured by Loki Tano Co., Ltd., Nippon Ball Co., Ltd.), and liquid cyclones (for example, manufactured by Rasa Industrial Co., Ltd., manufactured by Industry) that perform classification using centrifugal force. Can be mentioned.
  • a plurality of cartridge filters may be used in combination.
  • a final filter that satisfies the required filtration accuracy for the purpose of reducing running costs by extending the service life.
  • a combination of a filter and a prefilter used to extend the life of the final filter may be used.
  • the final filter selection criteria is preferably a type that can remove 50% by mass or more of particles twice the average particle size.
  • an SLP type cartridge filter manufactured by Loki Techno Co., Ltd. is preferable as a final filter because it has a filter medium thickness that is a feature of a depth filter and a wide filter area that is a feature of a pleated filter.
  • the pre-filter selection criterion is preferably a type that can filter 50% by mass or more of particles more than 3 times the average particle size.
  • the liquid cyclone device is a device that uses a liquid as a medium and classifies particles dispersed in the liquid by centrifugal force.
  • a liquid as a medium
  • fine particle dispersion is supplied from the tangential direction of the device cylindrical portion, and coarse particles are centrifuged while the fine particle dispersion descends the cylindrical portion as a swirling flow. It is moved in the radial direction by the action of force, collides with the inner wall of the cylinder, drops along the inner wall to the lower part of the device, and is recovered from the lower part of the device.
  • the fine particles move upward along the upward swirling flow generated near the center, so that the fine particles are recovered from the upper part of the device.
  • the particles after wet classification are preferably dried and pulverized! /.
  • the dry and pulverized conditions are the physical properties of the fine powder particles described above (moisture content 0.05 to 2 mass%, true specific gravity;! To 1.25 g / ml, bulk specific gravity 0.;! To lg / ml,
  • the particle size is not particularly limited as long as it can satisfy 1 to 50 111).
  • the fine particles of the present invention are obtained by dry-classifying fine powder particles having predetermined physical properties, and may be combined with other classification means as needed, in particular, fine powder particles. It is recommended that the wet classification process described above be used for the adjustment from the viewpoint of reducing the content of coarse particles and fine particles to a low level. That is, a preferred process for obtaining the fine particles of the present invention is a process of subjecting a fine particle dispersion having predetermined physical properties to wet classification, drying and pulverizing the particles after wet classification, and further subjecting to dry classification. Be By passing through such a process, the fine particles of the present invention in which the number of coarse particles having a particle size of twice or more the average particle size is 1000 or more / 0.5 g or less can be obtained more efficiently.
  • the form of the fine particles according to the present invention is not particularly limited, and an organic polymer, an inorganic material, an organic It may be any of the inorganic composite materials.
  • the organic polymer include linear polymers such as polystyrene, polymethyl methacrylate, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polysulfone, polycarbonate, and polyamide; dibulebenzene, hexatriene, dibule ether, Divinylsulfone, diallyl carbinol, alkylene diatalylate, oligo or polyalkylene glycol diatalylate, oligo or polyalkylene glycol dimetatalylate, alkylene tritalylate, alkylene tetraatalylate, alkylene trimetatalylate, both Reticulated polymers obtained by polymerizing terminal acrylic-modified polybutadiene oligomers alone or with other polymerizable monomers
  • Examples of the organic-inorganic inorganic composite material include (A) fine particles in which inorganic fine particles such as metal oxides such as silica, alumina, and titania, metal nitrides, metal sulfides, and metal carbides are dispersed and contained in an organic resin. And (B) fine particles formed by a metalloxane chain (molecular chain containing a “metal-oxygen-metal” bond) such as (organo) polysiloxane and polytitanoxane and organic molecules at the molecular level, methyltrimethoxysilane, etc.
  • A fine particles in which inorganic fine particles such as metal oxides such as silica, alumina, and titania, metal nitrides, metal sulfides, and metal carbides are dispersed and contained in an organic resin.
  • B fine particles formed by a metalloxane chain (molecular chain containing a “metal-oxygen-metal” bond) such as (organo
  • Polysiloxanes and polymerizable groups made from silicon fine particles such as polymethylsilsesquioxane obtained by hydrolysis and condensation reaction of organoalkoxysilanes, and (C) silicon compounds having hydrolyzable silyl groups.
  • Organic non-machine quality composite material comprising a polysiloxane skeleton.
  • Examples of the inorganic material include glass, silica, and alumina.
  • fine particles made of an organic polymer or an organic-inorganic inorganic composite material are preferable because the characteristics of the fine particles can be designed relatively freely, and particles having a sharp particle size distribution can be easily obtained.
  • the organic polymer made of an amino resin, and the organic polymer particles obtained by the seed polymerization method (the ratio of the crosslinkable monomer to the total amount of the polymerizable monomer is 20% by mass or more, more
  • 3 (C) is particularly preferable among fine particles made of an organic-inorganic composite material in which particles of 0% by mass or more, more preferably 50% by mass or more are preferred.
  • these particles are hardened or cross-linked during the synthesis process, and are hardly dissolved or swollen by an organic solvent. Therefore, when used in a coating resin composition for forming a light diffusing layer and an antiglare layer, which will be described later, even if used simultaneously with an organic solvent or the like, the particles are unlikely to change in quality or change in particle diameter. This is preferable because the effect of reducing the large particles within the above range can be sufficiently obtained.
  • These particles are preferably subjected to a wet classification process in the state of a particle suspension obtained at the time of synthesis of each particle! That is, a suspension with a small content of coarse particles more than twice the average particle size (for example, less than 1 million particles / 0.5 g) is easily obtained.
  • a suspension with a small content of coarse particles more than twice the average particle size for example, less than 1 million particles / 0.5 g
  • Particularly preferred are fine particles having an organic-inorganic composite material strength and organic polymer fine particles having an amino resin strength, which can be obtained by a preferable production method described below!
  • the particle preferably has a particle diameter variation coefficient (based on a particle size distribution calculated on a volume basis) of 20% or less. More preferably, it is 10% or less. The smaller the variation coefficient of the particle size, the smaller the variation in the particle size. If the above range is satisfied, the amount of coarse particles contained in the fine particles after the wet classification and dry classification processes is reduced. Since it is easy to reduce, it is preferable.
  • the variation coefficient of the particle diameter is a value calculated from the following formula.
  • is the standard deviation of the particle diameter
  • X is the average particle diameter
  • the average particle size and the standard deviation of the particle size are measured using the above-described precision particle size distribution measuring apparatus (for example, “Multisizer II” manufactured by Beckman Coulter, Inc.), and the volume is measured. Calculated by reference.
  • amino resin crosslinked particles which are fine particles made of the organic polymer
  • Examples of the production method of the amino resin crosslinked particles include a first production method and a second production method described below. According to these first and second production methods, since the particle diameter can be controlled in the fine particle synthesis stage, the production of coarse particles can be somewhat suppressed. Therefore, by subjecting the amino resin crosslinked particles obtained by the production method to the above-described process for obtaining the fine particles according to the present invention, it is easier to reduce the content of particles that deviate from the preferred range of the particle size. Therefore, it is preferable. First, the first manufacturing method will be described.
  • the first production method of the crosslinked amino resin particles (hereinafter sometimes simply referred to as “first production method”) is a resinization method in which an amino compound and formaldehyde are reacted to obtain an amino resin precursor.
  • it includes a curing step of performing a curing reaction of the emulsified amino resin precursor to obtain amino resin crosslinked particles.
  • the resinification step is a step of reacting an amino compound with formaldehyde to produce an amino resin precursor that is an initial condensation reaction product.
  • Water is used as a solvent for reacting the amino compound with formaldehyde.
  • Specific methods for carrying out this resination step include a method in which an amino compound is added to formaldehyde in an aqueous solution (formalin) and reacted, or trioxane or paraformaldehyde is added to water to formaldehyde in water.
  • Preferred examples include a method in which an amino compound is added to an aqueous solution prepared so as to cause the reaction.
  • the former method is more preferable in terms of economy because it requires a preparation tank for an aqueous formaldehyde solution and it is easy to obtain raw materials.
  • the resinification step is preferably performed with stirring by a known stirring device or the like.
  • the amino compound used as a starting material in the resinification step is not particularly limited.
  • benzoguanamine (2,4 diamine-6 phenyl sym. —Triazine), cyclohexanecarboguanamine And cyclohexenecarboguanamine and melamine.
  • amino compounds having a triazine ring are more preferred.
  • benzoguanamine has a benzene ring and two reactive groups
  • the resulting amino resin crosslinked particles are flexible (hardness), stain resistant, and heat resistant. It is particularly preferable because of its excellent properties, solvent resistance and chemical resistance.
  • the above amino compounds may be used alone or in combination of two or more.
  • the total proportion of the amino compounds (benzoguanamine, cyclohexanecarboguanamine, cyclohexenecarboguanamine, and melamine) in the total amount of the amino compounds to be used should be 40% by mass or more. Is more preferably 60% by mass or more, still more preferably 80% by mass or more, and most preferably 100% by mass.
  • the content of the amino compound is 40% by mass or more, the resulting amino resin crosslinked particles are excellent in heat resistance and solvent resistance.
  • the molar ratio (amino compound (mole) / formaldehyde (mole)) of amino compound and formaldehyde to be reacted in the resination process is 1/3 ⁇ 5 to 1/1 ⁇ 5. 1 / 3.5 ⁇ ; 1/1 ⁇ 8 is more preferable than force S, and 1/3 ⁇ 2 ⁇ ; 1/2 is more preferable. If the above molar ratio is less than 1/3. 5, there is a risk of increasing the amount of unreacted formaldehyde, and if it exceeds 1 / 1.5, there may be an increase in the amount of unreacted amino compound. .
  • the concentration of the amino compound and formaldehyde at the time of preparation of the resinification step is desirably higher as long as the reaction is not hindered.
  • the viscosity at the temperature range of 95-98 ° C of the reaction solution containing the amino resin precursor is the reaction product, 2X10- 2 ⁇ 5. 5X10- 2 Pa range's (20 ⁇ 55cP) It is preferable to adjust the concentration within a controllable range.
  • the reaction solution is added to an aqueous solution of an emulsifier or an emulsifier or an emulsifier is added to the reaction solution so that the concentration of the amino resin precursor in the emulsion is within a range of 30 to 60% by mass. Any concentration may be used as long as an aqueous solution of the emulsifier can be added.
  • the viscosity within the temperature range of 95 to 9 8 ° C of the reaction solution containing the Amino resin precursor obtained in resinification process 2X10- 2 ⁇ 5. 5X10- 2 Pa 's (20 ⁇ 55cP) it mosquito preferably, more preferably 2 ⁇ 5X10- 2 ⁇ 5. 5X10- 2 Pa's (25 ⁇ 55cP), even more favorable Mashiku 3.0X10- 2 ⁇ 5. 5X10- 2 Pa's (30 ⁇ 55cP) is there.
  • Method for measuring the viscosity and Therefore, a method using a viscometer that can grasp the progress of the reaction immediately (in real time) and accurately determine the end point of the reaction is optimal.
  • a vibration viscometer manufactured by MIVIITS Japan, product name: MIVI6001
  • MIVI6001 Via Via Viscosity of the reaction liquid
  • MIVI6001 Via Viscosity of the reaction liquid
  • an amino resin precursor which is a so-called initial condensate can be obtained.
  • the reaction temperature is preferably within a temperature range of 95 to 98 ° C. so that the progress of the reaction can be immediately grasped and the end point of the reaction can be accurately determined.
  • the reaction of the amino compound and formaldehyde when the viscosity of the reaction solution becomes within a range of 2 X 10- 2 ⁇ 5. 5 X 10- 2 Pa 's, such as cooling the reaction mixture What is necessary is just to complete
  • the reaction time is not particularly limited.
  • the amino resin precursor obtained in the resinification step is a molar ratio of the structural unit derived from the amino compound and the structural unit derived from formaldehyde constituting the amino resin precursor (the structural unit derived from the amino compound).
  • (Mol) / formaldehyde-derived structural unit (mol)) is 1 / 3.5 ⁇ ; 1/1 ⁇ 5 force S, preferably 1/3 ⁇ 5 ⁇ ; 1/1 ⁇ 8 force More preferably, it is more preferably 1/3. If the molar ratio is within the above range, the particle size distribution is narrow! / And the ability to obtain particles can be obtained.
  • the amino resin precursor is usually acetone, dioxane, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethyl acetate, butyl acetate, methineless cellosolve, ethyl acetate solve, methyl ethyl ketone, toluene, xylene, etc. Forces that are soluble in other organic solvents are substantially insoluble in water.
  • the particle diameter of the finally obtained amino resin crosslinked particles is reduced by reducing the viscosity of the reaction solution in the resinification step of preparing the reaction solution containing the amino resin precursor. can do. While also force 'is less than s, or 5. 5 X 10- 2 Pa' viscosity of the reaction solution 2 X 10- 2 Pa when exceeding s eventually particle diameter was approximately Soroitsu ( In some cases, it is difficult to obtain crosslinked amino resin particles having a narrow particle size distribution. That is, When the viscosity of the reaction solution is less than 2 ⁇ 10 ⁇ 2 Pa ′ s (20 cP), the stability of the emulsion obtained in the emulsification step described later becomes poor.
  • the resulting amino resin crosslinked particles may be enlarged or the particles may be aggregated, and the particle diameter of the amino resin crosslinked particles can be controlled. Therefore, there is a possibility that amino resin crosslinked particles having a wide particle size distribution may be obtained. Also, if the stability of the emulsion is poor, the particle size (average particle size) of the amino resin cross-linked particles may change each time it is manufactured (each batch), which may cause variations in the product. There is also. On the other hand, if the viscosity of the reaction solution is greater than 5.
  • reaction solution may not be sufficiently stirred (emulsified). For this reason, it is difficult to control the particle diameter of the finally obtained amino resin crosslinked particles, which may result in amino resin crosslinked particles having a wide particle size distribution. Therefore, it is preferable to adjust the reaction solution in the above viscosity range in advance in the resinification step.
  • the emulsification step is a step of preparing an emulsion of the amino resin precursor by emulsifying the amino resin precursor obtained in the resinification step.
  • emulsification of the amino resin precursor for example, it is preferable to use an emulsifier that can form a protective colloid, and in particular, it is preferable to use an emulsifier made of a water-soluble polymer that can form a protective colloid! / ,.
  • Examples of the emulsifier include polybulal alcohol, carboxymethylcellulose, sodium alginate, polyacrylic acid, water-soluble polyacrylic acid salt, and polybulurpyrrolidone. These emulsifiers may be used in the form of an aqueous solution in which the entire amount is dissolved in water, or a part of the emulsifier is used in the form of an aqueous solution and the rest is used as it is (for example, powder, granule, liquid, etc.). May be.
  • polybulal alcohol is more preferable in consideration of the stability of the emulsion, interaction with the catalyst, and the like.
  • the polybulal alcohol may be a completely saponified product or a partially saponified product. Further, the degree of polymerization of polybulal alcohol is not particularly limited.
  • the amount of the emulsifier used is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the amino resin precursor obtained in the resinification step;! To 5 parts by mass Is more preferable. If the amount used is outside the above range, the stability of the emulsion may be poor. Also, As the amount of emulsifier used relative to the mino resin precursor increases, the particle size of the resulting particles tends to decrease.
  • the reaction obtained in the resinification step so that the concentration of the amino resin precursor (that is, the solid content concentration) is in the range of 30 to 60% by mass in the aqueous solution of the emulsifier.
  • the concentration of the aqueous solution of the emulsifier is not particularly limited as long as the concentration of the amino resin precursor can be adjusted within the above range. If the concentration of the amino resin precursor is less than 30% by mass, the productivity of the amino resin crosslinked particles may be lowered. If the concentration exceeds 60% by mass, the resulting amino resin crosslinked particles may be enlarged or the particles may aggregate. Control of the particle diameter of the crosslinked amino resin particles may be difficult, and the particle size distribution of the resulting crosslinked amino resin particles may be widened.
  • the stirrer include, for example, a so-called high-speed stirrer, homomixer, TK homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.), high-speed disperser, Ebara Milezaichi (manufactured by Ebara Corporation), Izumi Food Machinery Co., Ltd.), static mixer (manufactured by Noritake Company Limited), etc.
  • the emulsification step it is preferable to promote emulsification until the amino resin precursor obtained in the resinification step has a predetermined particle size.
  • the predetermined particle diameter may be appropriately set so that finally the amino resin crosslinked particles having a desired particle diameter can be obtained.
  • the emulsification is carried out so that the average particle size of the emulsified amino resin precursor becomes 0.; Is preferably 0.5 to 20 mm 111, and more preferably 1 to 5 mm.
  • the particle size of the amino resin crosslinked particles can be controlled within a desired range.
  • the milk obtained after the above emulsification step is, if necessary, to more reliably prevent the finally obtained amino resin crosslinked particles from agglomerating firmly.
  • Inorganic particles can be added to the suspension.
  • Specific examples of the inorganic particles include silica fine particles, zirconium fine particles, aluminum powder, alumina sol, and #3 sol. Silica fine particles are more preferable because they are easily available.
  • the specific surface area of the inorganic particles is preferably from it preferably tool is 10 ⁇ 400m 2 / g 20 ⁇ 350m 2 / g , even more preferably 30 ⁇ 300m 2 / g.
  • the particle size of the inorganic particles is more preferably 0.2 in or less, more preferably 0. or less, and still more preferably 0.05 05 or less. If the specific surface area and the particle diameter are within the above ranges, it is possible to exhibit a more excellent effect in preventing the finally obtained amino resin crosslinked particles from being strongly aggregated.
  • the method of adding the inorganic particles to the emulsion is not particularly limited. Specifically, for example, the method of adding the inorganic particles as they are (particulate), or the inorganic particles to water. The method of adding in the state of the disperse
  • the amount of inorganic particles added to the emulsion is preferably from! To 30 parts by mass, more preferably from 2 to 28 parts by mass, based on 100 parts by mass of the amino resin precursor contained in the emulsion. Even more preferably, it is 3 to 25 parts by mass. If the amount is less than 1 part by mass, it may not be possible to sufficiently prevent the finally obtained amino resin crosslinked particles from agglomerating firmly.
  • an aggregate of only inorganic particles may be present. May occur.
  • the method using the above-mentioned apparatus having a high shearing force is preferable in that the inorganic particles are firmly fixed to the amino resin particles.
  • a catalyst (specifically a curing catalyst) is added to the emulsion prepared in the emulsification step, and the emulsified amino resin precursor is cured (the amino resin precursor is hardened in an emulsion state). )
  • amino resin crosslinked particles specifically, suspension of amino resin crosslinked particles.
  • an acid catalyst is suitable.
  • Acid catalysts include mineral acids such as hydrochloric acid, sulfuric acid and phosphoric acid; ammonium salts of these mineral acids; sulfamic acids; sulfonic acids such as benzenesulfonic acid, paratoluenesulfonic acid and dodecylbenzenesulfonic acid; phthalic acid, benzoic acid, Organic acids such as acetic acid, propionic acid, salicylic acid and the like can be used.
  • mineral acids are preferred in terms of cure speed. Furthermore, they are corrosive to equipment and use mineral acids. In terms of safety during use, sulfuric acid is more preferable.
  • the amount of the catalyst used is preferably 0.;! To 5 parts by mass with respect to 100 parts by mass of the amino resin precursor in the emulsion obtained by the emulsification step. Is 0.3 to 4.5 parts by mass, and still more preferably 0.5 to 4.0 parts by mass. If the amount of the catalyst used exceeds 5 parts by mass, the emulsion state may be destroyed and the particles may agglomerate. If the amount is less than 0.1 parts by mass, the reaction may take a long time or be cured. May become insufficient. Similarly, the amount of the catalyst used is preferably 0.002 mol or more, more preferably 0.005 mol or more, and still more preferably based on 1 mol of the amino compound used as the raw material compound. 0. 01 -0. 1 mole. If the amount of the catalyst used is less than 0.002 mol with respect to 1 mol of the amino compound, the reaction may take a long time or the curing may be insufficient.
  • the reaction solution is preferably at 15 (room temperature) to 80 ° C, more preferably 20 to 70 ° C, still more preferably 30 to 60 ° C, and at least After holding for 1 hour, it is preferably carried out at a temperature in the range of 60 to 150 ° C, more preferably 60 to 130 ° C, more preferably 60 to 100 ° C under normal or elevated pressure. preferable. If the reaction temperature of the curing reaction is less than 1S 60 ° C, curing may not proceed sufficiently, and the solvent resistance and heat resistance of the resulting amino resin crosslinked particles may be reduced. On the other hand, when the reaction temperature exceeds 150 ° C, a strong pressure reactor is required, which is not economical. The end point of the curing reaction may be judged by sampling or visual observation. Further, the reaction time of the curing reaction is not particularly limited.
  • a known stirring device may be used as the stirring means that is preferably performed under stirring in the curing step.
  • the average particle diameter of the crosslinked amino resin particles obtained by curing the emulsion of the amino resin precursor in the emulsion state is preferably 0.;! To 20 m, more preferably 0. 5 to 20 111, even more preferably;! To 5 m.
  • the first production method may include a coloring step of adding an aqueous solution obtained by dissolving a dye in water to a suspension of an emulsion of an amino resin precursor and an amino resin crosslinked particle.
  • a neutralization step of neutralizing the suspension containing the amino resin crosslinked particles obtained by the curing step may be provided.
  • the neutralization step is preferably performed when an acid catalyst such as sulfuric acid is used as the curing catalyst in the curing step.
  • the acid catalyst can be removed (specifically, the acid catalyst can be neutralized).
  • the amino acid when the amino resin crosslinked particles are heated is used. It is possible to suppress the discoloration of the resin crosslinked particles (for example, discoloration to yellow).
  • Neutralization as used in the neutralization step means that the pH of the suspension containing the amino resin crosslinked particles is 5 or more, and more preferably 5-9. If the pH of the suspension is less than 5, since the acid catalyst remains, the amino resin bridge particles may be discolored in the heating step described later. By adjusting the pH of the suspension within the above range by neutralization, amino resin bridge particles having high hardness, excellent solvent resistance and heat resistance, and no discoloration can be obtained.
  • a neutralizing agent that can be used in the neutralization step for example, an alkaline substance is suitable. Examples of the alkaline substance include sodium carbonate, sodium hydroxide, potassium hydroxide, and ammonia S. Among them, an aqueous sodium hydroxide solution that sodium hydroxide is preferable is preferable because it is easy to handle. Used. These can be used alone or in combination of two or more.
  • a separation step of taking out the amino resin crosslinked particles from the suspension of the amino resin crosslinked particles obtained after the curing step or after the neutralization step may be provided.
  • Examples of a method (separation method) for taking out the amino resin crosslinked particles from the suspension include a filtration method and a method using a separator such as a centrifuge, but the method is particularly limited. Any of the conventionally known separation methods can be used.
  • the amino resin crosslinked particles taken out from the suspension may be washed with water or the like, if necessary.
  • the first production method it is preferable to perform a heating step of heating the amino resin crosslinked particles taken out through the separation step at a temperature of 130 to 190 ° C.
  • a heating step of heating the amino resin crosslinked particles taken out through the separation step at a temperature of 130 to 190 ° C.
  • moisture adhering to the amino resin crosslinked particles and remaining free (unreacted) formaldehyde can be removed, and condensation (crosslinking) in the amino resin crosslinked particles can be further reduced.
  • Power to promote S If the heating temperature is lower than 130 ° C, the amino resin cross-links Condensation (crosslinking) within the particles cannot be sufficiently promoted, and the hardness, solvent resistance and heat resistance of the crosslinked amino resin particles may not be improved.
  • the resulting amino resin crosslinked particles may be discolored.
  • the heating temperature of the crosslinked amino resin particles is within the above range after performing the neutralization step. Is preferable.
  • the heating method in the heating step is not particularly limited, and a generally known heating method may be used.
  • the heating step may be completed when, for example, the moisture content of the amino resin crosslinked particles reaches 3% by mass or less, preferably 2% by mass or less. Further, the heating time is not particularly limited.
  • the amino resin crosslinked particles obtained by the first production method are separated from the aqueous medium at the time of emulsification, dried and pulverized, and then the obtained pulverized product is dispersed in a solvent and suspended.
  • This can be supplied to wet and dry classification processes.
  • the suspension after the curing step (including any suspension until the separation step such as the suspension obtained through the neutralization step after the curing step) may be subjected to wet classification.
  • the suspension after the wet classification is dried and pulverized after the above-described separation step and heating step as necessary, to obtain fine powder particles having a moisture content of 0.05 to 2% by mass. It is preferable to use it for the classification process.
  • the second production method of the crosslinked amino resin particles refers to an amino resin precursor obtained by reacting an amino compound with formaldehyde.
  • the amino resin precursor is granulated and precipitated in the aqueous medium by mixing with a surfactant in an aqueous medium and adding a catalyst to the mixed solution, and then the amino resin crosslinked particles are added to the aqueous medium. This is a method of separating the force and drying, and then crushing the resulting dried product.
  • the resin conversion step is adopted and the resin conversion process is performed.
  • the amino compound precursor and formaldehyde are reacted to form an amino resin precursor.
  • the amino resin precursor obtained in the resinification step is mixed with a surfactant in an aqueous medium.
  • a curing process to obtain amino resin crosslinked particles by adding a catalyst to the mixed solution containing the amino resin precursor and the surfactant to form particles by precipitation and precipitation of the amino resin precursor. It differs from the first manufacturing method in adopting it.
  • the type and composition ratio of the amino compound used in the second production method are appropriately set so as to satisfy the degree of water miscibility described later.
  • the amino resin precursor obtained in the resinification step is preferably water-soluble.
  • the surfactant used in the second production method is used for imparting water affinity to the aqueous medium of the amino resin precursor, and the surfactant is used for the first production.
  • the emulsifier used in the method is not included.
  • the water affinity is 15% by mass% of the amount of water added to the initial condensate until water is dropped to the amino resin precursor that is the initial condensate to cause white turbidity (hereinafter referred to as "%"). This is called water miscibility.)
  • % white turbidity
  • the water miscibility of the amino resin precursor suitable for the second production method is 100% or more. In the case of an amino resin precursor having a water miscibility of less than 100%, no matter how it is dispersed in an aqueous liquid containing a surfactant, only a non-uniform suspension having a relatively large particle size is formed. The spherical fine particles obtained in this way are unlikely to have a uniform particle size (wide particle size distribution).
  • the amino resin precursor obtained in the resinification step is mixed with a surfactant in an aqueous medium by stirring or the like to prepare a mixed solution.
  • surfactant examples include ayu surfactant and cationic surfactant. Any surfactant such as an agent, a nonionic surfactant, and an amphoteric surfactant can be used, but an anionic surfactant, a nonionic surfactant, or a mixture thereof is particularly preferable.
  • anionic surfactant examples include alkali metal alkyl sulfates such as sodium dodecyl sulfate and potassium dodecyl sulfate; ammonium alkyl sulfates such as ammonium dodecyl san sulfate; sodium dodecyl polyglycol ether sulfate; sodium Sulfolicinoates; Alkyl sulfonates such as alkali metal salts of sulfonated paraffins, ammonium salts of sulfonated paraffins; Fatty acids such as sodium laurate, triethanolamine oleate, triethanolamine abiate, etc.
  • alkali metal alkyl sulfates such as sodium dodecyl sulfate and potassium dodecyl sulfate
  • ammonium alkyl sulfates such as ammonium dodecyl san sulfate
  • Alkyl aryl sulfonic acid salts such as sodium dodecylbenzenesulfonate, alkali metal sulfate of alkali phenolic ethylene; Lunaphthalene sulfonate; naphthalene sulfonate formalin condensate; dialkyl sulfosuccinate; polyoxyethylene alkyl sulfate salt; polyoxyethylene alkyl aryl sulfate salt can be used.
  • the amount of the surfactant used is preferably in the range of 0.01 to 10 parts by mass with respect to 100 parts by mass of the amino resin precursor obtained in the resinification step. If the amount is less than 01 parts by mass, a stable suspension of the amino resin bridge particles may not be obtained. If the amount exceeds 10 parts by mass, unnecessary foaming may occur in the suspension, or the final suspension may be lost. It may adversely affect the physical properties of the resulting amino resin crosslinked particles.
  • the concentration of the amino resin precursor (that is, the solid content concentration) is obtained in the above resination step so as to be in the range of 3 to 25% by mass. It is preferable to mix after adding the reaction solution.
  • the concentration of the aqueous surfactant solution is not particularly limited, and the concentration of the amino resin precursor can be adjusted within the above range. Any concentration can be used. If the concentration of the amino resin precursor is less than 3% by mass, the productivity of the amino resin crosslinked particles may be reduced. If the concentration exceeds 25% by mass, the resulting amino resin crosslinked particles may be enlarged or particles may be produced. There is a possibility that they may aggregate with each other, and the particle diameter of the amino resin crosslinked particles cannot be controlled, so that there is a possibility that the particles have a wide particle size distribution and amino resin crosslinked particles.
  • a stirring method in the mixing step a general stirring method may be employed.
  • a stirring method using stirring blades such as a disk turbine, a fan turbine, a Faudler type, a propeller type, and a multistage blade is used. Etc. are preferred.
  • inorganic particles are added to the mixed liquid obtained after the mixing step. It may be added.
  • inorganic particles and the addition method thereof the description in the first production method described above can be similarly applied.
  • a catalyst (specifically a curing catalyst) is added to the mixed solution prepared in the above mixing step to carry out the curing reaction and particle formation of the amino resin precursor. Specifically, a suspension of amino resin crosslinked particles) is produced.
  • an acid catalyst is suitable.
  • the same force S as exemplified in the first production method is preferably used, and in the second production method, alkylbenzenesulfonic acid having an alkyl group having 10 to 18 carbon atoms is used. It is preferable to use it.
  • Alkylbenzenesulfonic acid having an alkyl group having 10 to 18 carbon atoms exhibits a unique surface activity in the aqueous liquid of the amino resin precursor as the initial condensate, and forms a stable suspension of the cured resin. Generate.
  • decyl benzene sulfonic acid dodecyl benzene sulfonic acid, tetradecyl benzene sulfonic acid, hexadecyl benzene sulfonic acid, and octadecyl benzene sulfonic acid. These can be used alone or in combination of two or more.
  • the amount of the catalyst used is preferably 0.;! To 20 parts by mass with respect to 100 parts by mass of the amino resin precursor in the mixed solution obtained by the mixing step. 0.5 to 10 parts by mass, even more preferably;! To 10 parts by mass.
  • the amount of the catalyst used is less than the above range, it takes a long time for condensation and curing, and the stable crosslinking of the amino resin crosslinked particles. There is a possibility that a suspension cannot be obtained, and can only be obtained in a state containing a large amount of particles that are finally agglomerated and coarsened.
  • the catalyst such as alkylbenzene sulfonic acid is distributed more than necessary in the amino resin crosslinked particles in the generated suspension, and as a result, the amino resin crosslinked particles are dispersed. If the particles are agglomerated and condensed between the particles during condensation curing, fusion is likely to occur, and finally an amino resin crosslinked particle having a uniform particle size may not be obtained!
  • the amount of the catalyst used is preferably 0.005 mol or more, more preferably 0.002 mol or more with respect to 1 mol of the amino compound used as the raw material compound. More preferably, it is 0.005-0.05 mol. If the amount of the catalyst used is less than 0.0005 mol with respect to 1 mol of the amino compound, the reaction may take a long time or the curing may be insufficient.
  • the curing reaction and particle formation in the particle formation process are carried out by adding the above catalyst to the mixture of the amino resin precursor and stirring the solution from a low temperature of 0 ° C to a high temperature of 100 ° C or higher under pressure. It is sufficient to keep at an appropriate temperature.
  • the method for adding the catalyst is not particularly limited and can be appropriately selected.
  • the end point of the curing reaction may be judged by sampling or visual observation.
  • the reaction time of the curing reaction is not particularly limited.
  • the curing reaction is generally a force that can be completed by raising the temperature to 90 ° C or higher and holding it for a certain period of time. It is sufficient if the amino resin bridge particles in the suspension are cured to such an extent that they do not swell with methanol or acetone.
  • the curing and particle formation step be performed under stirring by a generally known stirring device or the like.
  • the average particle size of the preferred amino resin crosslinked particles is the same as that of the average particle size of the amino resin crosslinked particles in the curing step of the first production method.
  • the second production method may include a neutralization step of neutralizing the suspension containing the amino resin crosslinked particles obtained by the curing step.
  • a neutralization step of neutralizing the suspension containing the amino resin crosslinked particles obtained by the curing step For details such as the pH range and the type of neutralizing agent in the neutralization step, the explanation in the first production method can be applied in the same way.
  • the separation step of taking out the amino resin crosslinked particles from the suspension of the amino resin crosslinked particles obtained after the curing and particle forming step or after the neutralization step. You may choose.
  • the separation of the amino resin crosslinked particles from the suspension means that the amino resin crosslinked particles obtained by curing are separated and removed from the aqueous medium in the mixing step. is there.
  • a method (separation method) for taking out the amino resin crosslinked particles from the suspension a method similar to the first production method can be applied.
  • the second production method it is preferable to perform a heating step in which the amino resin crosslinked particles taken out through the separation step are heated at a temperature of 130 to 190 ° C.
  • the heating step the same conditions as those for the heating step of the first manufacturing method can be applied.
  • the amino resin crosslinked particles obtained by the second production method are separated from the aqueous medium at the time of the mixing step or the curing and granulating step, dried and pulverized. It is preferable to mix with a solvent to form a suspension, which is subjected to wet classification, separation and drying, and then dry classification. It is preferable to supply the suspension after the curing and granulating step or the suspension after the neutralization step / water washing step to wet and dry classification. After wet classification, it is preferable to separate the particles, and if necessary, dry and pulverize them through a heating step to form fine powder particles having a water content of 0.05 to 2% by mass, and then dry classification.
  • fine particles that are organic-inorganic composite material force are particles including an organic polymer skeleton as an organic part and a polysiloxane skeleton as an inorganic part. is there.
  • the composite particle has an organic carbon atom in which a chemical atom in the polysiloxane skeleton is directly chemically bonded to at least one carbon atom in the organic polymer skeleton (chemical bond).
  • the polysiloxane skeleton and the organic polymer skeleton form a three-dimensional network structure by bonding the carbon atom in the polysiloxane skeleton and the carbon atom in the organic polymer skeleton.
  • the organic polymer skeleton may have a side chain, a branched structure, or a bridge structure.
  • Molecular weight and composition of organic polymer forming the skeleton The structure and the presence / absence of a functional group are not particularly limited.
  • the organic polymer include (meth) acrylic resins, bully polymers such as polystyrene and polyolefin, polyamide such as nylon, polyimide, polyester, polyether, polyurethane, and polyurea.
  • a polymer having a main chain composed of repeating units represented by the formula (so-called bull polymers) is preferable.
  • the polysiloxane skeleton has the following formula (2):
  • the amount of SiO constituting the polysiloxane skeleton is preferably from 0.;! To 25% by mass, more preferably from 1 to 10%, based on the weight of the composite particles. If the amount of SiO 2 in the polysiloxane skeleton is in the above range, the hardness of the composite particles can be easily controlled. Further, if it is less than 0.1% by mass, the flexibility and elasticity of the particles are lowered, and there is a possibility that the inside of the particles may be broken when external stress is applied to the resin composition.
  • the amount of SiO constituting the polysiloxane skeleton is a mass percentage obtained by measuring the mass before and after firing the particles at a temperature of 800 ° C. or higher in an oxidizing atmosphere such as air.
  • the ratio of the number of carbon atoms to the number of carbon atoms (surface atom number ratio (C / Si)) obtained by photoelectron spectroscopy is 1.0 to 1; it is OX 10 4 are preferable from the viewpoint of excellent adhesion with the resin when used in blending a resin. If the above surface atom number ratio (C / Si) is less than 1.0, the adhesiveness with the resin may be lowered.
  • the composite particles may be arbitrarily adjusted by appropriately changing the ratio of the polysiloxane skeleton portion or the organic polymer skeleton portion with respect to the hardness, fracture strength, and the like! Can do.
  • the polysiloxane skeleton in the composite particles is preferably obtained by a hydrolytic condensation reaction of a silicon compound having a hydrolyzable group.
  • the hydrolyzable silicon compound is not particularly limited.
  • R ′ represents at least one group selected from the group consisting of an alkyl group, an aryl group, an aralkyl group and an unsaturated aliphatic group which may have a substituent
  • X is a hydroxyl group.
  • m is an integer of 0 to 3.
  • the silicon compound represented by the general formula (3) is not particularly limited.
  • m is a silane compound having a structure of 1, X being a methoxy group or an ethoxy group, and a refractive index of 1.30 to 1.60.
  • X being a methoxy group or an ethoxy group
  • refractive index of 1.30 to 1.60.
  • organic-inorganic composite particles having a refractive index suitable for optical applications can be obtained.
  • the derivative of the silicon compound represented by the general formula (3) is not particularly limited.
  • a part of X is substituted with a group capable of forming a chelate compound such as a carboxyl group and a ⁇ -dicarbonyl group.
  • a chelate compound such as a carboxyl group and a ⁇ -dicarbonyl group.
  • low condensates obtained by partially hydrolyzing the silane compound are not particularly limited.
  • a part of X is substituted with a group capable of forming a chelate compound such as a carboxyl group and a ⁇ -dicarbonyl group.
  • the hydrolyzable silicon compound may be used alone or in a suitable combination of two or more.
  • the composite particle has a polysiloxane skeleton force S and an organic key atom in which a key atom is directly bonded to at least one carbon atom in the organic polymer skeleton.
  • the hydrolyzable silicon compound it is necessary to use one having an organic group containing a polymerizable reactive group capable of forming an organic polymer skeleton.
  • the reactive group include a radical polymerizable group, Examples thereof include an epoxy group, a hydroxyl group, and an amino group.
  • Examples of the organic group containing the radical polymerizable group include the following general formulas (4), (5) and (6):
  • R a represents a hydrogen atom or a methyl group
  • R b represents an optionally substituted carbon number;! To 20 divalent organic group.
  • CH C (— R c ) — (5)
  • R d represents a hydrogen atom or a methyl group, represents a carbon number which may have a substituent;! To 20 represents a divalent organic group.
  • Examples of the radical-polymerizable group-containing organic group of the general formula (4) include an attaoxy group and a methacryloxy group.
  • Examples of the silicon compound of the general formula (3) having the organic group include For example, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, ⁇ attaryloxypropyl trimethoxysilane, ⁇ -acryloxypropyltriethoxysilane, ⁇ -methacryloxypropyltriacetoxysilane , ⁇ -methacryloxyethoxypropyltrimethoxysilane (or ⁇ -trimethoxysilyl pill / 3-methacryloxychetyl ether), ⁇ -methacryloxypropylmethyoxypropylmethyldimethoxysilane, etc. . These may be used alone or in combination of two or more.
  • Examples of the radical-polymerizable group-containing organic group of the general formula (5) include a bur group and an isopropenyl group.
  • the silicon compound of the general formula (3) having the organic group and Examples thereof include butyltrimethoxysilane, butyltriethoxysilane, butyltrimethoxysilane, vinylino methinoresin methoxysilane, vinino methinolegetoxy silane, and vinino methino resin acetyloxy silane. These may be used alone or in combination of two or more.
  • Examples of the radical-polymerizable group-containing organic group represented by the general formula (1) include 1 alkenyl group or butylphenyl group, isoalkenyl group or isopropenyl phenyl group, and the general formula (3) having the organic group.
  • Examples of the silicon compound include 1-hexenyltrimethoxysilane, 1-hexenyltriethoxysilane, 1-octenyltrimethoxysilane, 1-decenyltrimethoxysilane, and ⁇ -trimethoxysilinolepropylbutyl ether.
  • ⁇ -trimethoxysilylundecanoic acid butyl ester, ⁇ -tri Silane, 1-hexenylmethyljetoxysilane and the like can be mentioned. These can be used alone or in combination of two or more.
  • Examples of the silicon compound having an organic group containing an epoxy group include 3 glycyglycidoxypropynoletriethoxysilane, ⁇ - (3,4 epoxycyclohexenole) ethynoletrimethoxysilane, and the like. Can be mentioned. These may be used alone or in combination of two or more. Examples of the silicon compound having an organic group containing a hydroxyl group include 3-hydroxypropyltrimethoxysilane. These may be used alone or in combination of two or more.
  • Examples of the silicon compound having an organic group containing an amino group include ⁇ - ⁇ (aminoethyl) y-aminopropylmethyldimethoxysilane, ⁇ - ⁇ (aminoethyl) ⁇ - aminopropyltrimethoxysilane, ⁇ - ⁇ (aminoethyl) ⁇ - aminopropyltriethoxysilane, ⁇ -aminopropyl trimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ phenyl ⁇ -aminopropyltrimethoxysilane, etc. be able to. These can be used alone or in combination of two or more.
  • the organic polymer skeleton contained in the composite particle is, for example, 1)
  • the silicon compound can form an organic polymer skeleton such as a radical polymerizable group or an epoxy group together with a hydrolyzable group.
  • an organic group containing a polymerizable reactive group 1 1) a method of polymerizing after the hydrolysis condensation reaction of the silicon compound, or 1 2) a polysiloxane skeleton obtained by the hydrolysis condensation reaction of the silicon compound is used.
  • a polymerizable monomer having a polymerizable reactive group such as a radically polymerizable monomer, a monomer having an epoxy group, a monomer having a hydroxyl group, and a monomer having an amino group, and then polymerizing the particles. can get.
  • a polymerizable monomer having a polymerizable reactive group such as a radically polymerizable monomer, a monomer having an epoxy group, a monomer having a hydroxyl group, and a monomer having an amino group.
  • Particles having a polysiloxane skeleton obtained by hydrolytic condensation reaction have radical polymerizable monomers, monomers having epoxy groups, and hydroxyl groups. Having a polymerizable reactive group such as a monomer and a monomer having an amino group It can also be obtained by causing a polymerization reaction after absorbing a polymerizable monomer.
  • the composite particles as described above have a) an organic silicon atom in which a polysiloxane skeleton is directly chemically bonded to at least one carbon atom in the organic polymer skeleton in the molecule. / !, or even a form (chemical bond type)! /, And b) such a form (IPN type) that does not have an organic key atom in the molecule.
  • a polysiloxane skeleton as in 1
  • composite particles having the form of a) can be obtained, as in 2) above.
  • composite particles having the form b) are obtained.
  • composite particles having a form having both the above a) and) forms are obtained.
  • the radical polymerizable monomer that can be absorbed by the particles having a polysiloxane skeleton is preferably a monomer component that essentially requires a radical polymerizable butyl monomer.
  • the radical polymerizable butyl monomer include, but are not particularly limited to, as long as it is a compound containing at least one ethylenically unsaturated group in the molecule, depending on the desired physical properties of the composite particles. Can be selected appropriately. These can be used alone or in combination of two or more.
  • a hydrophobic radically polymerizable bur monomer is preferable because a stable emulsion in which the monomer component is emulsified and dispersed can be generated when the monomer component is absorbed into particles having a polysiloxane skeleton.
  • a crosslinkable monomer which may be a crosslinkable monomer, is used as the radical polymerizable bull monomer, the mechanical properties of the resulting composite particles can be easily adjusted, and the solvent resistance of the composite fine particles can be adjusted. It can also improve the performance.
  • ethylene glycol dimetatalylate trimethylol-propyl pantrimethylolaretalylate, 1,6 xanthinoregiophthalate, divininolevene and the like. These may be used alone or in combination of two or more.
  • Preferred examples of the method for producing the composite particles include a production method including a hydrolysis and condensation step, which will be described later, and a polymerization step. Further, if necessary, an absorption step for absorbing the polymerizable monomer may be included after the hydrolysis and condensation step and before the polymerization step (in the case of the above 1 2) and 2)). Note that the strength of the silicon compound used in the hydrolysis and condensation processes If it does not have an element that constitutes the siloxane structure together with an element that constitutes the organic polymer skeleton (in the case of 2), the absorption step is essential, and the organic polymer skeleton is used in the polymerization step that follows this absorption step. Is formed.
  • the hydrolysis and condensation step is a step in which the above-described silicon compound is hydrolyzed in a solvent containing water to undergo condensation polymerization. By this step, particles having a polysiloxane skeleton (polysiloxane particles) can be obtained.
  • Hydrolysis and polycondensation can employ any method such as batch, split or continuous.
  • a basic catalyst such as ammonia, urea, ethanolamine, tetramethylammonium hydroxide, alkali metal hydroxide, alkaline earth metal hydroxide or the like is used as a catalyst.
  • a basic catalyst such as ammonia, urea, ethanolamine, tetramethylammonium hydroxide, alkali metal hydroxide, alkaline earth metal hydroxide or the like is used as a catalyst.
  • the solvent containing water may contain an organic solvent in addition to water and the catalyst.
  • organic solvents include alcohols such as methanol, ethanol, isopropanol, n butanol, isobutanol, sec butanol, t-butanol, pentanol, ethylene glycol, propylene glycol, and 1,4 butanediol; acetone, methyl ethyl ketone, and the like.
  • Examples thereof include ketones; esters such as ethyl acetate; (cyclo) paraffins such as isooctane and cyclohexane; aromatic hydrocarbons such as benzene and toluene. These can be used alone or in combination of two or more.
  • anionic, cationic, and nonionic surfactants, and polymer dispersants such as polybulal alcohol and polybulylpyrrolidone can also be used in combination. These can be used alone or in combination of two or more.
  • Hydrolysis and condensation are performed by mixing the silicon compound as a raw material with a solvent containing a catalyst, water, and an organic solvent, and then at a temperature of 0 to 100 ° C, preferably 0 to 70 ° C, for 30 minutes. Can be done by stirring for ⁇ 100 hours.
  • particles may be produced by hydrolysis and condensation reactions to a desired degree, and then used as seed particles to add silicon compounds to the reaction system and grow the seed particles. Les.
  • the polysiloxane particles preferably have a weight average molecular weight of 250 to 10,000, more preferably 250 to 5,000. If the weight average molecular weight is within the above range, polymerization that remains without being absorbed in the system in which the absorption rate of the polymerizable monomer in the absorption process is high. The generation of coarse particles derived from functional monomers is suppressed, and as a result, the composite particles (used for dry classification) have a coarse particle content that is at least twice the average particle size or a low content of fine particles. Body particles are obtained. Further, by subjecting the composite particles to wet classification and dry classification processes, the content of coarse particles is extremely low and particles can be obtained in high yield and yield.
  • the absorption process may be an essential process or may be an optional process depending on the silicon compound to be used.
  • the absorption step is not particularly limited as long as it proceeds in the presence of a polymerizable monomer in the presence of polysiloxane particles. Therefore, the polymerizable monomer may be added to the solvent in which the polysiloxane particles are dispersed, or the polysiloxane particles may be added to the solvent containing the polymerizable monomer.
  • a polymerizable monomer in a solvent in which polysiloxane particles are dispersed in advance.Furthermore, the polysiloxane particles obtained in the hydrolysis and condensation step are reacted with a reaction solution (polyester).
  • a reaction solution polyyester
  • a method of adding a polymerizable monomer to the reaction liquid without taking it out from the siloxane particle dispersion liquid is preferable because the process is not complicated and the productivity is excellent.
  • the polymerizable monomer is absorbed in the structure of the polysiloxane particle, but each of the polysiloxane particle and the polymerizable monomer is absorbed so that the absorption of the polymerizable monomer proceeds promptly.
  • concentration, mixing ratio of the above polysiloxane and polymerizable monomer, mixing treatment method and means, temperature and time during mixing, treatment method and means after mixing, etc. are set and performed under the conditions. preferable. The necessity of these conditions may be taken into consideration as appropriate depending on the type of polysiloxane particles and polymerizable monomers used. These conditions may be applied alone or in combination of two or more.
  • the addition amount of the polymerizable monomer in the absorption step is preferably 0.01 times to 100 times the mass of the silicon compound used as the raw material for the polysiloxane particles. . More preferably, it is 0.5 to 50 times, still more preferably 0.5 to 30 times, and particularly preferably 1 to 15 times.
  • the addition amount is less than the above range, the amount of the polymerizable monomer of the polysiloxane particles absorbed is reduced, and it is difficult to obtain the mechanical properties of the composite particles to be produced. However, it tends to be difficult to completely absorb the added polymerizable monomer in the polysiloxane particles. Since the polymer remains, aggregation between particles may occur in the subsequent polymerization step, or coarse particles derived from unabsorbed polymerizable monomers may be easily generated.
  • the timing of addition of the polymerizable monomer is not particularly limited in the absorption step, and the polymerizable monomer may be added all at once or may be added in several times. You may feed at any speed.
  • the polymerizable monomer it may be added only with the polymerizable monomer, or a solution of the polymerizable monomer may be added. It is preferable to add to the particles because absorption into the polysiloxane particles is more efficiently performed.
  • the emulsifier is not particularly limited! /, But, for example, a cationic surfactant, a cationic surfactant, a nonionic surfactant, an amphoteric surfactant, a polymer surfactant, And polymerizable surfactants having one or more polymerizable carbon-carbon unsaturated bonds.
  • a cationic surfactant, a cationic surfactant, a nonionic surfactant, an amphoteric surfactant, a polymer surfactant, And polymerizable surfactants having one or more polymerizable carbon-carbon unsaturated bonds Among these, an anionic surfactant and a nonionic surfactant are preferable because they can stabilize the dispersion state of polysiloxane particles, polysiloxane particles having absorbed a polymerizable monomer, and polymer fine particles.
  • These emulsifiers may be used alone or in combination of two or more.
  • the amount of the emulsifier used is not particularly limited. Specifically, it is preferably 0.01 to 10% by mass based on the total mass of the polymerizable monomer, more preferably 0.0 5 to 8% by mass, more preferably 1 to 5% by mass. When the amount of the emulsifier used is less than 0.01% by mass, an emulsion dispersion of a stable polymerizable monomer may not be obtained. When the amount exceeds 10% by mass, emulsion polymerization or the like occurs as a side reaction. There is a risk of it. Regarding the above emulsification dispersion, it is usually preferable that the polymerizable monomer is emulsified in water using a homomixer, an ultrasonic homogenizer, or the like together with an emulsifier.
  • the polymerizable monomer is emulsified and dispersed with an emulsifier, it is preferable to use 0.3 to 10 times as much water or a water-soluble organic solvent as the mass of the polymerizable monomer.
  • the water-soluble organic solvent include alcohols such as methanol, ethanol, isopropanol, ⁇ -butanol, isobutanol, sec-butanol, t-butanol, pentanonole, ethylene glycolanol, propylene glycol, and 1,4-butanediol.
  • Ketones such as acetone and methyl ethyl ketone; esters such as ethyl acetate and the like.
  • the absorption step is preferably performed in the temperature range of 0 to 60 ° C with stirring for 5 minutes to 720 minutes. These conditions may be set as appropriate depending on the types of polysiloxane particles and polymerizable monomers to be used. These conditions may be used alone or in combination of two or more.
  • the particles are observed with a microscope, and the particles are absorbed by the absorption of the monomer component. It can be easily judged by confirming that the diameter has increased.
  • the polymerization step is a step of obtaining particles having an organic polymer skeleton by polymerizing a polymerizable reactive group. Specifically, when a silicon compound having a polymerizable reactive group-containing organic group is used, it is a step of polymerizing a polymerizable reactive group of the organic group to form an organic polymer skeleton, and an absorption step is performed. If this is the case, the force that is the process of forming an organic polymer skeleton by polymerizing a polymerizable monomer having a polymerizable reactive group that has been absorbed corresponds to both of the processes, and the process forms an organic polymer skeleton by either reaction. obtain.
  • the polymerization reaction may be performed in the middle of the hydrolysis-condensation step or the absorption step, and may be performed after either or both of the steps, but is not particularly limited. Start later (after the absorption process if the absorption process is performed).
  • the polymerization reaction is not particularly limited, and for example, any of a method using a radical polymerization initiator, a method of irradiating with ultraviolet rays or radiation, a method of applying heat, etc. can be adopted.
  • the radical polymerization initiator is not particularly limited, and examples thereof include persulfates such as potassium persulfate, hydrogen peroxide, peracetic acid, benzoyl peroxide, lauroyl peroxide, orthochloroperoxybenzoyl peroxide, and orthomethoxyperoxide.
  • the amount of the radical polymerization initiator used is 0.
  • the content is 001% by mass to 20% by mass, more preferably 0.01% by mass to 10% by mass, and still more preferably 0.1% by mass to 5% by mass.
  • the amount of the radical polymerization initiator used is less than 0.001% by mass, the polymerization degree of the polymerizable monomer may not increase.
  • the method of charging the radical polymerization initiator into the solvent is not particularly limited.
  • the whole amount is charged (before the start of the reaction) (a mode in which the radical polymerization initiator is emulsified and dispersed together with the polymerizable monomer, the polymerizable monomer is A mode in which a radical polymerization initiator is charged after absorption); a method in which a part is charged first, and the rest is continuously fed, a pulse is added intermittently, or a combination of these methods
  • the conventionally known method can also adopt the force!
  • the reaction temperature for the radical polymerization is preferably 40 to 100 ° C, more preferably 50 to 80 ° C. If the reaction temperature is too low, the degree of polymerization will not increase sufficiently, and the mechanical properties of the polymer fine particles will tend to be difficult to obtain, whereas if the reaction temperature is too high, aggregation between particles will occur during the polymerization. Tends to occur.
  • the reaction time for the radical polymerization may be appropriately changed according to the type of polymerization initiator used, but usually 5 to 600 minutes is preferable, and 10 to 300 minutes is more preferable. When the reaction time is too short, the degree of polymerization may not be sufficiently increased, and when the reaction time is too long, aggregation tends to occur between particles.
  • the obtained preparation liquid containing the polymer fine particles is used as it is or after the organic solvent is distilled and replaced with a dispersion medium containing water and / or alcohol,
  • the polymer fine particles produced may be isolated and dried, dispersed in water and / or an organic solvent, and then supplied to the wet classification step.
  • the fine particles of the present invention have a reduced content of coarse particles and fine particles and a narrow particle size distribution
  • the light diffusion sheet or light guide plate used in optical applications such as LCDs
  • it is useful as an additive such as a light diffusing agent or an antiblocking agent contained in an optical resin used for PDP, EL display, touch panel and the like.
  • it is also suitably used as an antiblocking agent for various films other than these optical uses.
  • the resin composition according to the present invention is a resin composition containing the fine particles of the present invention and a transparent binder resin.
  • the fine particles of the present invention are suitably used for optical applications because the content of not only coarse particles but also fine particles is suppressed to an extremely low level.
  • the content of the fine particles in the resin composition may be appropriately determined according to the use and desired optical properties, but in the case of use for optical uses, the binder resin composition is contained in 100 parts by mass.
  • the amount is preferably 1 part by mass or more and 300 parts by mass or less. More preferably, it is 2 parts by mass or more, further preferably 5 parts by mass or more, more preferably 200 parts by mass or less, and further preferably 150 parts by mass or less. If the content of the fine particles is too large, the strength of the optical component may be reduced. If the content is too small, it is difficult to obtain the expected effects (such as light diffusibility) by adding fine particles! / There is.
  • the transparent binder resin contained in the resin composition of the present invention is not particularly limited, and any of those used as a binder resin in this field can be used.
  • transparent resin includes polyester resin such as polyethylene terephthalate and polyethylene naphthalate, acrylic resin, polystyrene resin, polycarbonate resin, polyethersal Polyolefin resins such as phon resin, polyurethane resin, polysulfone resin, polyether resin, polymethylpentene resin, polyether ketone resin, (meth) acrylonitrile resin, polypropylene resin, norbornene resin, amorphous polyolefin resin, polyamide Resin, polyimide resin, and triaceti Cellulose resins.
  • (II) a member formed by laminating (coating, laminating, etc.) the resin composition of the present invention on a previously prepared substrate surface such as a plate or sheet.
  • the same transparent binder resin as the above binder resin can be used. Examples thereof include acrylic resin, polypropylene resin, polybutyl alcohol resin, polyvinyl acetate resin, polystyrene resin, polychlorinated bur resin, silicon resin, polyurethane resin, and polyester resin.
  • the resin composition of the present invention does not impair the effects of the present invention in addition to the fine particles and the transparent binder resin! /, And if necessary, contains other components as required! /, Moyo! / ⁇ .
  • other components include a curing agent, a crosslinking agent, various additives and stabilizers, a flame retardant, an antioxidant, and an ultraviolet absorber in order to enhance physical properties such as light resistance and UV resistance. These may use only 1 type and may use 2 or more types together.
  • the molded product obtained from the resin composition of the present invention is a molded product in which the fine particles of the present invention are dispersed and fixed in the binder resin, it has excellent optical properties such as light diffusibility and light transmittance. It comprises. Therefore, the resin composition of the present invention is suitably used as a raw material for constituent members of various optical products. From the viewpoint of effectively utilizing the excellent light diffusibility and light transmittance derived from the fine particles of the present invention described above, it is installed on the front surface of various image display devices so that it can be used for outside light and indoors.
  • An anti-glare anti-glare film that prevents the reflection of lighting equipment and makes the image display clear, and a light diffusion film and light that uniformly diffuses the light from the light source to the image display surface in the image display device. It is suitably used for optical members such as a diffusion plate.
  • the shape of the optical member is not limited to a film shape (sheet shape) or a plate shape, and may be formed into a desired shape such as a column, a cone, or a sphere.
  • the surface of the optical member is derived from the fine particles of the present invention described above. It is preferable that irregularities to be formed are formed.
  • optical film a film-like molded body
  • optical film such as a light diffusing film or an antireflection antiglare film
  • the form thereof is planar.
  • configuration (optical functional layer) in which the light diffusing particles are fixed by a transparent binder resin in which the light diffusing particles are fixed by a transparent binder resin.
  • a transparent binder resin itself constituting the ⁇ resin composition is used as a base resin such as a plate or sheet, and is formed into a plate or film (such as a light diffusing plate) (i) prepared in advance Plate or sheet A layer composed of the above resin composition is laminated (coating, laminating) on a part of or the entire surface of the base material, and is integrated (surface uneven film such as light diffusion film and antiglare film, light diffusion plate) Etc.).
  • the particles S are dispersed and fixed in the transparent binder resin.
  • the above-mentioned "having a planar portion” generally means that the optical member is substantially flat with a certain area spread, such as a plate shape, a sheet shape, or a film shape.
  • the present invention is not limited to such an embodiment, and the main component is not limited to such an aspect (including the case where fine irregularities are formed on the surface). If not, it is sufficient that at least a part of the shape has a substantially flat surface portion.
  • the resin composition of the present invention is extruded into a sheet, plate, and film by extrusion while melting and kneading with a known extruder. The method of doing is mentioned. At this time, if necessary, in order to enhance physical properties such as light resistance and UV resistance, various additives, additives such as a stabilizer and a flame retardant may be added to the resin composition. In order to obtain a molded article having uniform optical properties, the resin composition is preferably mixed and dispersed in advance with the fine particles of the present invention in a transparent binder resin. Similarly, the additive may be mixed with the resin composition.
  • Examples of the method for obtaining the optical member of the form (ii) include a method of laminating a layer made of the resin composition of the present invention on a previously prepared base material surface.
  • the lamination method is not particularly limited, and preferred examples include a coating method and a casting method.
  • a coating method a coating composition containing the resin composition may be applied to a substrate.
  • the resin composition of the present invention can be used as a coating composition as it is.
  • the above resin composition is mixed with water or an organic solvent (for example, alcohol solvent such as methanol, ethanol, isopropanol, ethylene glycol, propylene, etc.).
  • a coating composition prepared by dispersing and dissolving in a ketone solvent such as glycol, an ester solvent such as ethyl acetate, and an aromatic hydrocarbon such as toluene and xylene.
  • the substrate is not particularly limited. 1S
  • Specific coating methods include known laminating methods such as reverse roll coating, gravure coating, die coating, comma coating, and spray coating.
  • the solvent contained in the coating film is dried, and then the coating film is solidified to form a resin composition layer.
  • the layer made of the resin composition is preferably cured or crosslinked with the binder resin contained in the resin composition.
  • the thickness of the layer made of the resin composition (or coating composition) of the present invention formed by the above-described method is not particularly limited, but in the case of the light diffusion film, the layer made of the resin composition (light The thickness of the diffusion layer is 30 11 m or less. In the case of an anti-glare film, the layer made of the resin composition (anti-glare layer) is 20 am or less, and the thickness of the light diffusion plate is 2000 ⁇ m or less. Preferably there is. Conventionally, when the thickness is thin, it has been difficult to develop sufficient light diffusibility and light transmission, and if the fine particles or resin composition of the present invention is used, the thickness is extremely small. Excellent light diffusibility and light transmittance can be exhibited.
  • the value of the said light-diffusion film and anti-glare film film thickness represents the thickness of the layer (namely, light-diffusion layer, anti-glare layer) containing the resin composition laminated
  • the thickness of is not included.
  • the fine particles of the present invention have an extremely low content of coarse particles, and in addition to a sharp particle size distribution, the coating composition also undergoes alterations such as swelling. Since the particles are difficult and chemically stable, uniform and fine irregularities can be formed on the above-described optical member (light diffusion film, antiglare film, light diffusion plate, etc.). Therefore, optical members such as a light diffusing film, an antiglare film, and a light diffusing plate obtained by using the fine particles of the present invention have local glare from coarse particles, and appearance defects. It is hard to produce the optical foreign material which becomes. Further, since the optical characteristics can be adjusted by controlling the average particle diameter of the fine particles of the present invention, it is suitably used for optical applications.
  • the average particle size of the polymer particles dispersed in the dispersion is 10.1 am
  • the B-type viscosity of the dispersion (B-type viscometer, manufactured by Tokyo Keiki Co., Ltd.) is 3.8 mPa's
  • the solid content concentration is 10 It was mass%.
  • a polymer particle dispersion was prepared in the same manner as in Production Example 1, except that the polysiloxane particle raw material, the radical polymerizable monomer species, and the amount used were changed as shown in Table 1.
  • the amounts of ion-exchanged water, methanol, and surfactant used for the preparation of the suspension of the polysiloxane particles and emulsion were appropriately adjusted according to the conditions of each production example.
  • the polymer particle dispersion obtained in the above production example was subjected to solid-liquid separation and dried polymer particles. Disperse 5 g in ion-exchanged water lOOg to prepare a polymer particle dispersion, and use a precision particle size distribution measuring device (product name ⁇ Multisizer II '', manufactured by Beckman Coulter Co., Ltd.) The particle diameter was measured, and the average particle diameter was calculated on a volume basis.
  • Polymer particles lg were calcined at 800 ° C. (in the atmosphere) in a calcining furnace, and the ratio of SiO to the mass of the polymer particles used was calculated with the generated ash as SiO.
  • the solid content concentration of the polymer particles was determined by drying 0.5 g of the polymer particle dispersion solution at 120 ° CX for 20 minutes (in vacuum), and measuring the ratio of the remaining solid content to the mass of the polymer particle dispersion. The partial concentration was used.
  • Solid content concentration (%) [residual solid content mass / polymer particle dispersion mass] X 100
  • Karl Fischer moisture meter manufactured by Hiranuma Sangyo Co., Ltd.
  • 0.5 g of pulverized particles As a measurement sample It measured using.
  • the weight average molecular weight was measured using gel permeation chromatography (GPC, “HLC-812GPC”, manufactured by Tosohichi Corporation) under the following measurement conditions.
  • the measurement sample was prepared by diluting the sample with tetrahydrofuran (THF) so that the solid content concentration was 0.8%.
  • Production Example 4 150 parts of methacrylate 15% by mass 3.8 mPa-s> 10000 units> 200 units 3.7 / m 3 Poor amount 3 ⁇ 4
  • the polymer particle dispersion obtained in Production Example 1 was classified using a stainless steel wire mesh having an opening of 20 ⁇ m (wet classification process). Next, the polymer particle dispersion after wet classification was subjected to solid-liquid separation by natural precipitation. The obtained cake was washed with ion-exchanged water and methanol, and then vacuum-dried at 100 ° C. for 5 hours to obtain a dried product in which particles aggregated. The dried product was pulverized to obtain pulverized particles (recovery rate 99% by mass).
  • the pulverized particles obtained at this time had a bulk specific gravity of 0.7 g / cm 3 , a particle size of 10. 1 ⁇ m, and a water content of 0.5% by mass or less.
  • the obtained pulverized particles were put into a high-precision airflow classifier ("DFX5 type” manufactured by Nippon Pneumatic Industrial Co., Ltd.), and the centrifugal force applied to the pulverized particles by a high-speed swirling airflow and a suction blower
  • the particles were classified by adjusting the balance with the drag, and fine particles were obtained at a recovery rate of 85% by mass with respect to the supplied pulverized particles (dry classification step). At this time, the recovery rate of fine particles from the polymer particle dispersion was 84% by mass.
  • the polymer particle-dispersed solution force pulverized particles obtained in Production Example 2 were prepared by the same steps as in Example 1 (recovery rate 99% by mass).
  • the pulverized particles obtained at this time had a bulk specific gravity of 0.7 g / cm 3 , a particle diameter of 10.1 m, and a water content of 0.5% by mass or less.
  • the obtained pulverized particles were put into a rotating rotor type classifier ("Taropplex 100ATP", manufactured by Hosokawa Micron Corporation), and given to the pulverized particles by the rotation speed of the classifying rotor and the supply of air from the intake port.
  • the fine particles were obtained by adjusting the balance between the centrifugal force and the potency, and the fine particles were obtained at a recovery rate of 85% by mass with respect to the supplied pulverized particles (dry classification step).
  • the recovery rate of the fine particles from the polymer particle dispersion at this time was 84% by mass.
  • pulverized particles were prepared from the polymer particle dispersion obtained in Production Example 3 (bulk specific gravity 0.7 g / cm 3 , particle size 10.1 111, water content 0.5 mass). %, Recovery rate 99% by mass).
  • the pulverized particles were mixed with a rotary rotor airflow classifier ("Turbo Classifier TC_15", The product is classified by adjusting the balance between the rotational speed of the classification rotor and the centrifugal force and the effect applied to the pulverized particles by the supply of air from the intake port. Fine particles were obtained at a mass% (dry classification step). The recovery rate of fine particles from the polymer particle dispersion at this time was 84% by mass.
  • pulverized particles were prepared from the polymer particle dispersion obtained in Production Example 3 (bulk specific gravity 0.7 g / cm 3 , particle size 10.1 111, water content 0.5 mass). % Or less, recovery rate 99%).
  • the pulverized particles are put into a Coanda airflow classifier ("Elbow Jet EJ-15", manufactured by Nippon Steel Mining Co., Ltd., feed air: 5kgf, using a slim edge), and the inertia given to the fine particles Classification was performed by adjusting the balance between the force and the effectiveness of the suction blower, and fine particles were obtained at a recovery rate of 85% by mass with respect to the supplied ground particles. At this time, the recovery rate of fine particles from the polymer particle dispersion was 84% by mass.
  • the polymer particle-dispersed solution force pulverized particles obtained in Production Example 4 were prepared by the same steps as in Example 1 (bulk specific gravity 0.7 g / cm 3 , particle diameter 3.7 11, water content 0.5 Mass% or less, recovery rate 99 mass%).
  • the polymer particle dispersion solution force pulverized particles obtained in Production Example 5 were prepared by the same steps as in Example 1 (bulk specific gravity 0.7 g / cm 3 , particle diameter 25.2 m, water content 0.5 (Mass% or less, recovery rate 99 mass%).
  • the obtained pulverized particles were put into a rotating rotor type classifier ("Tarpoplex 100AT P", manufactured by Hosokawa Micron Corporation), and the rotational speed of the classifying rotor and the intake port Classification was performed by adjusting the balance between the centrifugal force applied to the pulverized particles by the supply of air and the effect, and fine particles were obtained at a recovery rate of 85% by mass with respect to the supplied pulverized particles (dry classification step).
  • the recovery rate of the fine particles from the polymer particle dispersion at this time was 84% by mass.
  • the polymer particle-dispersed solution force pulverized particles obtained in Production Example 6 were prepared by the same process as in Example 1 (bulk specific gravity 0.7 g / cm 3 , particle diameter 4.2 111, water content 0.5 Mass% or less, recovery rate 99 mass%).
  • the pulverized particles are put into a rotating rotor type air classifier ("Turbo Classifier TC_15", manufactured by Nissin Engineering Co., Ltd.), and given to the pulverized particles by the rotation speed of the classifying rotor and the supply of air from the intake port.
  • Classification was performed by adjusting the balance between centrifugal force and efficacy, and fine particles were obtained at a recovery rate of 86% by mass with respect to the supplied pulverized particles (dry classification process). At this time, the recovery rate of the fine particles from the polymer particle dispersion was 85% by mass.
  • the polymer particle dispersion solution force pulverized particles obtained in Production Example 7 were prepared by the same steps as in Example 1 (bulk specific gravity 0.7 g / cm 3 , particle size 12.5 111, water content 0.5 (Mass% or less, recovery rate 99 mass%).
  • the pulverized particles are put into a Coanda airflow classifier ("Elbow Jet EJ-15", manufactured by Nippon Steel Mining Co., Ltd., feed air: 5kgf, using a slim edge), and the inertia given to the fine particles Classification was performed by adjusting the balance between the force and the effectiveness of the suction blower, and fine particles were obtained at a recovery rate of 85% by mass with respect to the supplied ground particles. At this time, the recovery rate of fine particles from the polymer particle dispersion was 84% by mass.
  • the polymer particle dispersion obtained in Production Example 1 was classified using a stainless steel wire mesh having an opening of 20 ⁇ m (wet classification process). Next, the polymer particle dispersion after wet classification was separated into individual liquids by natural sedimentation. The obtained cake was washed with ion-exchanged water and methanol, and then vacuum-dried at 100 ° C. for 5 hours to obtain a dried product in which particles aggregated. The dried product was pulverized to obtain pulverized particles. [0201] Comparative Example 2
  • the polymer particle dispersion obtained in Production Example 5 was classified using a stainless steel wire mesh having an opening of 40 ⁇ m (wet classification process). Next, polymer particles were separated, washed and dried in the same manner as in Comparative Example 1, and the resulting dried product was pulverized to obtain pulverized particles.
  • Table 2 shows the contents of the classification treatment in Examples;! To 8 and Comparative Examples;! To 3, and evaluation results on the obtained fine particles and powder particles.
  • Each evaluation method is as follows.
  • a fine particle size distribution measuring device (product name “Multisizer II”, Beckman Coulter Co., Ltd.) was prepared by dispersing 0.5 g of the fine particles obtained in the above Examples and Comparative Examples in 100 g of methanol. Was used to measure the particle size, and the average particle size was calculated on a volume basis.
  • the amount of coarse particles 1 was measured as follows.
  • a fine particle dispersion (viscosity: 3 mPa's, solid content concentration: 0.5% by mass) prepared in the same manner as the above average particle size measurement was used to create a mesh with an opening of 1.75 to 2 times the average particle size ( Filtration was performed under reduced pressure using a nickel filtration, Tokyo Process Service Co., Ltd.) and a suction filtration device equipped with a Buchner funnel in the filtration bell.
  • Fine particles obtained in Examples and Comparative Examples were dispersed in 0.5 g of ion-exchanged water to prepare a fine particle dispersion, and a precision particle size distribution analyzer (product name “Multisizer II”, Beckman Coulter Co., Ltd.) Were used to measure the particle diameter and average particle diameter (volume basis). Based on the measurement results, the volume percentage of fine particles having a particle diameter of 1/2 or less of the numerical value obtained by rounding off the first decimal place of the average particle diameter was calculated, and the obtained value was defined as the amount of fine particles.
  • a precision particle size distribution analyzer product name “Multisizer II”, Beckman Coulter Co., Ltd.
  • “Rotating rotor type air classifier 1” used “Turboplex 100ATP” manufactured by Hosokawa Micron Co., Ltd., and “Rotating rotor type air classifier 2” manufactured by Nissin Engineering Co., Ltd. Indicates that “Turbo Classifier TC_15” was used.
  • “Coarse particles 1” is the number of particles (particles / 0.5 g) having a particle size more than twice the average particle size, and “Coarse particles 2” is more than 2.5 times the average particle size.
  • a reaction kettle equipped with a cooling line, thermometer and dripping port was charged with 75 parts of melamine, 75 parts of benzoguanamine, 290 parts of formalin with a concentration of 37% and 1.16 parts of an aqueous sodium carbonate solution with a concentration of 10%.
  • a precursor forming mixture was prepared. The mixture was heated to 85 ° C. with stirring and then kept at the temperature for 1.5 hours to obtain an initial condensate.
  • a nonionic surfactant Emulgen (registered trademark) 430 (Kao Corporation, polyoxyethylene oleyl ether) 7.5
  • a surfactant solution prepared by dissolving 5 parts in 2455 parts of ion-exchanged water The initial condensate was added thereto while stirring at a temperature of ° C to obtain an emulsion of an amino resin precursor.
  • 90 parts of a 5% dodecylbenzenesulfonic acid aqueous solution was added and condensed and cured at a temperature of 70 to 90 ° C. to obtain a suspension containing the amino resin crosslinked particles.
  • a suspension containing the amino resin crosslinked particles was prepared in the same manner as in Production Example 8, except that the amounts of amino compound and formalin used were changed to those shown in Table 3.
  • the dispersion was subjected to solid-liquid separation by natural sedimentation, and the cake obtained was washed with ion-exchanged water and methanol, and then vacuum-dried at 100 ° C for 5 hours, so that the particles did not aggregate. A dried product was obtained. The dried product was pulverized to obtain particles.
  • the pulverized fine particles obtained at this time had a bulk specific gravity of 0.7 g / cm 3 , a particle size of 6.9 m, a water content of 0.5 mass% or less, and a recovery rate of 97 mass%.
  • the polymer dispersion solution force pulverized particles obtained in Production Example 8 were prepared by the same steps as in Example 9 (bulk specific gravity 0.6 g / cm 3 , particle size 8.5 111, water content 1.0 mass). % Or less, recovery rate 96 mass%).
  • the pulverized particles are put into a high-precision airflow classifier (DFX5 type, manufactured by Nippon Pneumatic Industrial Co., Ltd.), and the centrifugal force applied to the pulverized particles by the high-speed swirling airflow and the drag by the suction blower
  • the fine particles were classified by adjusting the balance and classified at a recovery rate of 85% by mass with respect to the supplied pulverized particles (dry classification step).
  • the polymer dispersion solution force pulverized fine particles obtained in Production Example 11 were prepared by the same steps as in Example 9 (bulk specific gravity 0.7 g / cm 3 , particle size 4. O ⁇ rn, water content 0. 5 mass% or less, recovery rate 97 mass%).
  • the pulverized particles are put into a rotary rotor type airflow classifier (Turbo Classifier TC-15, manufactured by Nissin Engineering Co., Ltd.) and given to the pulverized particles by the rotation speed of the classifying rotor and supply of air from the intake port.
  • a rotary rotor type airflow classifier Teurbo Classifier TC-15, manufactured by Nissin Engineering Co., Ltd.
  • Classification by adjusting the balance between centrifugal force and efficacy And fine particles classified at a recovery rate of 85% by mass with respect to the supplied pulverized particles were obtained (dry classification step).
  • pulverized fine particles were prepared from the polymer particle dispersion obtained in Production Example 10 (bulk specific gravity 0.6 g / cm 3 , particle size 13. l rn, water content 1. 0% by mass or less, recovery rate 99% by mass).
  • the pulverized fine particles thus obtained were put into a Coanda airflow classifier (Elbow Jet EJ-15, manufactured by Nippon Steel Mining Co., Ltd., feed air: 5 kgf, using a slim edge), and from the rotational speed of the classification rotor and the intake port
  • the fine particles were classified by adjusting the centrifugal force applied to the pulverized particles and the tolerance of the effect by supplying the air, and the fine particles classified at a recovery rate of 85% by mass with respect to the supplied pulverized particles (dry classification step).
  • pulverized fine particles were prepared from the polymer particle dispersion obtained in Production Example 9 (bulk specific gravity 0.6 g / cm 3 , particle diameter 2. O ⁇ m, water content 1. 0 mass% or less, recovery rate 99 mass%).
  • the obtained pulverized fine particles were put into a high-precision airflow classifier (DFX5 type, manufactured by Nippon Pneumatic Industrial Co., Ltd.), and the centrifugal force applied to the pulverized particles by the high-speed swirling airflow and the drag force by the suction probe By adjusting the balance, fine particles classified at a recovery rate of 80% by mass with respect to the supplied ground particles were obtained.
  • DFX5 type manufactured by Nippon Pneumatic Industrial Co., Ltd.
  • pulverized fine particles were prepared from the polymer particle dispersion obtained in Production Example 12 (bulk specific gravity 0.7 g / cm 3 , particle diameter 6.5 111, water content 0. 5 mass% or less, recovery rate 99 mass%).
  • pulverized fine particles were prepared from the polymer particle dispersion obtained in Production Example 13 (bulk specific gravity 0.7 g / cm 3 , particle size 9.3 m, water content 0. 5 mass% or less, recovery rate 99 mass%).
  • the obtained pulverized fine particles are fed into a rotary rotor type airflow classifier (Turbo Classifier TC 15, manufactured by Nissin Engineering Co., Ltd.) and given to the pulverized particles by the rotation speed of the classification rotor and the supply of air from the intake port.
  • Classification was performed by adjusting the balance between centrifugal force and efficacy, and fine particles classified at a recovery rate of 83% by mass with respect to the supplied ground particles were obtained.
  • pulverized fine particles were prepared from the polymer particle dispersion obtained in Production Example 12 (bulk specific gravity 0.7 g / cm 3 , particle diameter 6.5 111, water content 0. 5 mass% or less, recovery rate 99 mass%).
  • the obtained pulverized fine particles were put into a Coanda airflow classifier (Elbow Jet EJ-15, manufactured by Nippon Steel Mining Co., Ltd., feed air: 5 kgf, using a slim edge), and the rotation speed of the classification rotor and the intake port
  • the fine particles were classified by adjusting the centrifugal force applied to the pulverized particles and the tolerance of the effect by supplying the air, and the recovery rate of 75% by mass with respect to the supplied pulverized particles.
  • a fine powder was prepared from the polymer particle dispersion obtained in Production Example 3 (bulk specific gravity 0.7 g / cm 3 , particle size) in the same manner as in Example 1, except that the power for wet classification was not used. 6.9, water content 0.5 mass% or less).
  • the obtained pulverized fine particles are fed into a rotary rotor type airflow classifier (Turbo Classifier TC 15 manufactured by Nissin Engineering) and given to the pulverized particles by the rotation speed of the classification rotor and the supply of air from the intake port.
  • Classification was performed by adjusting the balance between centrifugal force and efficacy, and fine particles classified at a recovery rate of 90% by mass with respect to the supplied ground particles were obtained (first dry classification). Thereafter, the same dry classification process was repeated to obtain fine particles classified at a recovery rate of 90% by mass with respect to the supplied pulverized particles (the second dry classification).
  • Table 5 shows the evaluation results for body particles. Each evaluation method is as described above.
  • Comparative Example 5 is an example in which dry classification was repeated twice as a classification step. Coarse particles were not sufficiently removed only by repeated dry classification. In addition, it can be seen that the product recovery rate tends to decrease by repeating dry classification, and it is difficult to obtain industrial product yields only by dry classification.
  • the coating solution was applied to one side of an 80 m thick triacetyl cellulose film ("Fujitac (registered trademark)" manufactured by Fuji Photo Film Co., Ltd.) using a bar coater.
  • the obtained coating film was dried with a dryer at 80 ° C., and then an antiglare film was produced by irradiating 300 mJ / cm 2 of ultraviolet rays with a high pressure mercury lamp to cure the resin component.
  • the fluorescent lamp outline can be clearly identified.
  • each anti-glare film is connected to a personal computer on a liquid crystal monitor (15 inch XGA, TFT-TN system, front brightness: 350 cd / m 2 , front contrast: 300 to 1, surface AG: none) It was bonded to the surface, and the character blur was evaluated according to the following criteria. The results are shown in Table 6.
  • The outline of the character is completely out of focus!
  • X The outline of the character is blurred and a strong sense of incongruity is felt.
  • the antiglare films obtained using the particles of Examples 1, 9 and 10 all have excellent antiglare properties and visibility (no blurring of characters). Met .
  • the antiglare film produced using the particles of Comparative Example 4 having a large amount of coarse particles exceeding twice the average particle diameter has antiglare properties, the coarse particles contained in the antiglare film are like lenses. It is thought that the film surface was damaged due to the action of the coarse particles, and as a result, it was difficult to visually recognize the characters.
  • the fine particles of the present invention are those in which the content of coarse particles and fine particles that deviate from the preferred range of particle size is reduced to a low level. Therefore, various optical films or sheets (anti-glare sheet, light diffusion film, etc.) produced using force and fine particles have disadvantages derived from coarse particles and reduced transparency derived from fine particles. This is considered to be difficult to occur. In addition, since unevenness is uniformly formed in the surface, it is considered that excellent optical properties (for example, antiglare property and light diffusibility) are exhibited.

Abstract

Microparticles having the content of coarse particles exceeding the average particle diameter reduced to a low level; a process for producing such microparticles; and a resin composition containing the microparticles. The microparticles are characterized in that the content of coarse particles with a diameter of twice or more the average particle diameter is 1000 particles/0.5g or less. The process for producing the microparticles comprises the steps of wet classification of a microparticle dispersion liquid of 0.5 to 50 mass% solid content and 0.5 to 20 mass B-viscosity; drying and pulverization of the microparticles after the wet classification to thereby obtain powdery microparticles of 0.05 to 2 mass% water content; and dry classification of the powdery microparticles.

Description

明 細 書  Specification
微粒子、微粒子の製造方法、この微粒子を含む樹脂組成物および光学 フイノレム  Fine particle, method for producing fine particle, resin composition containing the fine particle, and optical finem
技術分野  Technical field
[0001] 本発明は、粒子径が高度にコントロールされた微粒子、および、これを用いた樹脂 組成物に関する。  The present invention relates to fine particles whose particle diameter is highly controlled, and a resin composition using the same.
背景技術  Background art
[0002] 従来、各種用途に用いる樹脂や樹脂組成物中に微粒子を含有させ、該樹脂や樹 脂組成物の物性あるいは有用性等を向上させる試みがある。力、かる試みは、液晶デ イスプレイ(LCD)、プラズマディスプレイパネル(PDP)、エレクト口ルミネッセンスディ スプレイ (ELD)、透過型スクリーンおよびタツチパネル等の光学用途に用いられる光 学樹脂材料でも同様に行われており、例えば、光拡散性,反射防止防眩性を付与す る光学用樹脂フィルム (シート、板)には、有機質材料または無機質材料からなる微 粒子を含む光学用樹脂組成物が原料として用いられて!/、る。  Conventionally, there have been attempts to improve the physical properties or usefulness of resins and resin compositions by incorporating fine particles into resins and resin compositions used for various applications. Similar efforts are made for optical resin materials used in optical applications such as liquid crystal displays (LCDs), plasma display panels (PDPs), electoric luminescence displays (ELDs), transmissive screens and touch panels. For example, optical resin compositions containing fine particles made of organic materials or inorganic materials are used as raw materials for optical resin films (sheets, plates) that impart light diffusibility and antireflection antiglare properties. Being! /
[0003] ところで、近年、上述のような画像表示装置の分野では、大画面化や高精細化がま すます進む傾向にあり、周辺技術に対する要求も高まっており、微粒子についても、 他の材料 (樹脂やその他の添加物)との親和性の向上、微粒子自体の機械的特性 および光学特性の向上など様々な検討が重ねられている。また、これらの光学用樹 脂フィルムや液晶表示素子用のスぺーサ一として用いられる微粒子に対しては、上 記要求特性に加えて、粒子径分布が狭いこと、粗大な粒子の含有量が少ないことも 望まれている。これは、粒子径分布が広いと、液晶表示素子のスぺーサ一として使用 した場合、液晶の膜厚を均一、一定に保持し難いためと、粗大な粒子は、フィルム表 面に傷を発生させたり、あるいは、当該微粒子が直接視認されて、画像表示装置の 表示品位を低下させる原因となるからである。  [0003] By the way, in recent years, in the field of image display devices as described above, there has been a trend toward larger screens and higher definition, and the demand for peripheral technologies has increased. Various studies have been made such as improving the affinity with (resin and other additives) and improving the mechanical and optical properties of the fine particles themselves. In addition to the above required properties, the fine particles used as spacers for optical resin films and liquid crystal display elements have a narrow particle size distribution and a coarse particle content. Less is also desired. This is because when the particle size distribution is wide, it is difficult to maintain a uniform and constant liquid crystal film thickness when used as a spacer for a liquid crystal display device. Coarse particles cause scratches on the film surface. This is because the fine particles may be directly visually recognized and cause the display quality of the image display device to deteriorate.
[0004] 例えば、光学用途に用いられる微粒子を開示する特許文献 1には、当該微粒子の 製造法によれば、所望の用途に応じた粒径のものを極めて粒度分布がシャープな状 態で得られる旨記載されている。また、特許文献 2〜4では、粗大粒子が表示装置の 表示品位低下、光学フィルムの欠点の原因となるとの観点から、平均粒径に対して 所定のサイズを超える粒径を有する粒子の含有量を低減させた微粒子の製造方法( 特許文献 2)、微粒子の使用前に、ェマルジヨンまたは分散液状態の微粒子に濾過 処理を行って粗大粒子を除去する方法(特許文献 3および 4)が提案されて!/、る。 特許文献 1 :特開 2004-307644号公報、など [0004] For example, in Patent Document 1 that discloses fine particles used for optical applications, according to the method for producing the fine particles, particles having a particle size corresponding to a desired application can be obtained with a very sharp particle size distribution. It is stated that In Patent Documents 2 to 4, coarse particles are From the viewpoint of deteriorating display quality and causing defects in the optical film, a method for producing fine particles in which the content of particles having a particle size exceeding a predetermined size with respect to the average particle size is reduced (Patent Document 2), fine particles Prior to use, a method of removing coarse particles by subjecting the fine particles in the emulsion or dispersion state to filtration is proposed (Patent Documents 3 and 4). Patent Document 1: JP 2004-307644 A, etc.
特許文献 2:特開 2002- 166228号公報、特許請求の範囲など  Patent Document 2: JP-A-2002-166228, claims, etc.
特許文献 3:特開 2005-309399号公報、特許請求の範囲など  Patent Document 3: JP-A-2005-309399, claims, etc.
特許文献 4:特開 2004 - 191956号公報、特許請求の範囲など  Patent Document 4: Japanese Patent Application Laid-Open No. 2004-191956, Claims, etc.
発明の開示  Disclosure of the invention
[0005] しかしながら、特許文献 1のように、微粒子の合成段階において、粒子径分布を高 度にコントロールすることは現実には困難であり、また、特許文献 2〜4でも指摘され ている様に、粒子径分布が好適範囲に管理されていても、平均粒子径から大きく逸 脱する粗大粒子が存在する場合には、表示品位の低下や、光学フィルムに欠点が 生じる。したがって、粗大粒子量の低減に対する要求は、視認性および生産性の向 上といった観点から一層高まる傾向にあり、上記特許文献 2〜4の技術をもってしても 、かかる要求を十分に満足する微粒子を得ることは困難であった。  [0005] However, as in Patent Document 1, it is actually difficult to control the particle size distribution at a high level in the fine particle synthesis stage, and as pointed out in Patent Documents 2 to 4. Even if the particle size distribution is controlled within a suitable range, if there are coarse particles that greatly deviate from the average particle size, the display quality is deteriorated and the optical film has a defect. Therefore, the demand for reducing the amount of coarse particles tends to increase further from the viewpoint of improving visibility and productivity, and even with the techniques of Patent Documents 2 to 4, fine particles that sufficiently satisfy such a demand can be obtained. It was difficult to get.
[0006] 本発明は、上記事情に着目してなされたものであって、その目的は、好適な粒子径 を逸脱する粗大な粒子の含有量が低レベルに低減された微粒子、および、かかる微 粒子の製造方法、並びにこの微粒子を含む樹脂組成物を提供することにある。  [0006] The present invention has been made paying attention to the above circumstances, and its object is to provide fine particles in which the content of coarse particles deviating from a suitable particle size is reduced to a low level, and such fine particles. It is in providing the manufacturing method of particle | grains, and the resin composition containing this microparticles | fine-particles.
[0007] 上記課題を解決した本発明の微粒子とは、平均粒子径の 2倍以上の粒子径を有す る粗大粒子が 1000個 /0. 5g以下であるところに要旨を有するものである。  [0007] The fine particles of the present invention that have solved the above problems are summarized in that the number of coarse particles having a particle size of twice or more the average particle size is 1000 particles / 0.5 g or less.
[0008] 上記微粒子は、有機ポリマー骨格とポリシロキサン骨格とを含む有機質無機質複合 体であるのが好ましい。  [0008] The fine particles are preferably an organic-inorganic composite including an organic polymer skeleton and a polysiloxane skeleton.
[0009] 本発明の微粒子の製造方法とは、固形分濃度 0. 5〜50質量%、 B型粘度 0. 5〜2 OmPa ' sの微粒子分散液を湿式分級する工程、湿式分級後の微粒子を、乾燥、粉 砕して、水分含量 0. 05〜2質量%の粉体微粒子とする工程、上記粉体微粒子を乾 式分級する工程を含むところに特徴を有する。このように、特定の物性を有する原料 (微粒子分散液、粉体)を、湿式分級と乾式分級とを組み合わせた方法により処理す ることで、粒径の好適範囲から逸脱する粗大粒子や微小粒子を一層効率よく低減で きる。 [0009] The method for producing fine particles of the present invention includes a step of wet-classifying a fine particle dispersion having a solid content concentration of 0.5 to 50% by mass and a B-type viscosity of 0.5 to 2 OmPa's, and fine particles after wet classification It is characterized in that it comprises a step of drying and pulverizing to form fine powder particles having a water content of 0.05-2 mass%, and a step of dry classification of the fine powder particles. In this way, raw materials (particulate dispersion, powder) having specific physical properties are treated by a method combining wet classification and dry classification. As a result, coarse particles and fine particles deviating from the preferred range of particle size can be reduced more efficiently.
[0010] 組成物、該塗布用組成物を基材上に塗布して得られる光学フィルム(光拡散フィノレ ム、防眩フィルムなど、表面に凹凸形状を有するフィルム)も含まれる。  [0010] Also included are compositions and optical films obtained by applying the coating composition on a substrate (films having an uneven shape on the surface, such as a light diffusion film and an antiglare film).
[0011] 本発明の微粒子は、粒径の好適範囲を逸脱する粗大な粒子の含有量が低レベル に低減されたものである。また、本発明法によれば、粒径の好適範囲を逸脱する粗大 粒子とともに微小粒子の含有量も低減することができる。したがって、本発明の粒子 を含む樹脂組成物から得られる成形品は、粗大粒子に由来する欠点が生じ難いもの と考えられる。また、微小な粒子の含有量も低減されているので、樹脂自体の透明性 も害し難いと考えられる。本発明の微粒子は、特に、光学用樹脂組成物に好適であり 、力、かる樹脂組成物から得られる光拡散フィルム、防眩性フィルム、そして、本発明の 微粒子を含む光拡散板は、優れた光学特性を示すものと考えられる。  [0011] The fine particles of the present invention are those in which the content of coarse particles that deviate from the preferred range of particle size is reduced to a low level. Further, according to the method of the present invention, the content of fine particles can be reduced together with coarse particles that deviate from the preferred range of particle size. Therefore, it is considered that a molded product obtained from the resin composition containing the particles of the present invention is less prone to defects due to coarse particles. In addition, since the content of fine particles is reduced, it is considered that the transparency of the resin itself is hardly damaged. The fine particles of the present invention are particularly suitable for optical resin compositions, and the light diffusion film, antiglare film obtained from such resin composition, and the light diffusion plate containing the fine particles of the present invention are excellent. It is considered that the optical characteristics are exhibited.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明の微粒子とは、平均粒子径の 2倍以上の粒子径を有する粗大粒子が 1000 個 /0. 5g以下であるところに特徴を有するものである。  [0012] The fine particles of the present invention are characterized in that the number of coarse particles having a particle size of at least twice the average particle size is 1000 particles / 0.5 g or less.
[0013] 上述のように、光学分野に用いられる微粒子に、粒径の好適範囲を逸脱する粗大 な粒子が含まれるとフィルム表面に傷を生じたり、当該微粒子が視認され易くなる虞 がある。特に、本発明者らの検討により、使用する微粒子の平均粒子径の 2倍以上の 粒子径を有する微粒子が存在 (増加)する際に、上記現象が顕著になることが確認さ れている。好ましくは、平均粒子径の 2倍以上の粒子径を有する粗大粒子が 500個 /0. 5g以下であり、より好ましくは 200固 /0. 5g以下であり、さらに好ましくは 100 個 /0. 5g以下、最も好ましくは 50個 /0. 5g以下である。  [0013] As described above, if the fine particles used in the optical field include coarse particles that deviate from the preferred range of the particle size, there is a possibility that the film surface may be scratched or the fine particles are likely to be visually recognized. In particular, the present inventors have confirmed that the above phenomenon becomes remarkable when fine particles having a particle size of twice or more the average particle size of the fine particles used are present (increased). Preferably, 500 particles / 0.5 g or less of coarse particles having a particle size twice or more the average particle size, more preferably 200 solids / 0.5 g or less, and even more preferably 100 particles / 0.5 g Hereinafter, it is most preferably 50 pieces / 0.5 g or less.
[0014] さらに、粗大粒子量が上記範囲内であると共に、平均粒子径の 2. 5倍以上の粒子 径を有する粗大粒子数が 50個 /0. 5g以下であるものは、光学用途に用いた際に、 粗大粒子に由来する不良が一層生じ難いものとなるため好ましい。より好ましくは 30 個 /0. 5g以下であり、さらに好ましくは 10個 /0. 5g以下である。  [0014] Further, the amount of coarse particles within the above range and the number of coarse particles having a particle size of 2.5 times or more of the average particle size is 50 particles / 0.5 g or less is used for optical applications. In that case, it is preferable because defects due to coarse particles are less likely to occur. More preferably, it is 30 pieces / 0.5 g or less, and further preferably 10 pieces / 0.5 g or less.
[0015] また、本発明の微粒子は、平均粒子径の 1/2以下の粒子径を有する微小粒子数 が低減されたものであるのが好まし!/、。力、かる微小な微粒子が多量に含まれて!/、ると 、当該微粒子を光学用途 (例えば各種画像表示装置の画像表示面に設けられる光 拡散フィルム、反射防止防眩性フィルムなど)に用いた場合に、透明性や輝度を低下 させる虞がある。したがって、平均粒子径の 1/2以下の粒子径を有する微小粒子は 10体積%以下であるのが好ましぐより好ましくは 7体積%以下である。 [0015] In addition, the fine particles of the present invention preferably have a reduced number of fine particles having a particle size of 1/2 or less of the average particle size! /. It contains a lot of power and fine fine particles! When the fine particles are used for optical purposes (for example, a light diffusing film or an anti-glare anti-glare film provided on the image display surface of various image display devices), there is a possibility that transparency and luminance are lowered. Therefore, the fine particles having a particle size of 1/2 or less of the average particle size is preferably 10% by volume or less, more preferably 7% by volume or less.
[0016] なお、本発明の微粒子の平均粒子径は、特に限定されるわけではないが、 0. ;!〜  [0016] The average particle size of the fine particles of the present invention is not particularly limited.
50 μ mであること力 S好ましく、より好ましくは;!〜 30 μ m、さらに好ましくは 2〜20 μ m である。平均粒子径が上記範囲内である場合は、例えば、光学用途に用いた際に、 優れた光拡散性や面発光性 (輝度)を発揮させることができる等の有利な効果が得ら れる。平均粒子径が小さすぎる場合には、媒体となる樹脂への分散性が低下するお それがあり、大きすぎる場合は、十分な光拡散効果が得られない虞がある。なお、粒 度分布測定、平均粒子径、並びに、前記微小粒子の含有量は、コールター原理を利 用した精密粒度分布測定装置 (例えば、ベックマン'コールター社製の「マルチサイ ザ一 11」)を使用して測定し、体積基準で算出した。  The force is preferably 50 μm S, more preferably;! To 30 μm, and even more preferably 2 to 20 μm. When the average particle diameter is within the above range, for example, when used in optical applications, advantageous effects such as excellent light diffusibility and surface light emission (brightness) can be obtained. If the average particle size is too small, the dispersibility of the resin serving as a medium may be reduced, and if it is too large, a sufficient light diffusion effect may not be obtained. In addition, the particle size distribution measurement, average particle diameter, and the content of the fine particles are determined using a precision particle size distribution measurement apparatus (for example, “Multisizer 11” manufactured by Beckman Coulter, Inc.) using the Coulter principle. And measured on a volume basis.
[0017] 本発明の微粒子の形状は、特に限定はされないが、例えば、球状、針状、板状、鱗 片状、粉砕状、偏状、まゆ状およびこんぺい糖状などが挙げられる。特に、光学用途 に用いる場合(光学用樹脂組成物などに用いる場合)は、真球状かほぼ真球に近い 形状であって、その短粒子径に対する長粒子径の比率が 1. 0〜; 1. 2の範囲にあり、 かつ、粒子径の変動係数が 10%以下であることが好ましい。  [0017] The shape of the fine particles of the present invention is not particularly limited, and examples thereof include a spherical shape, a needle shape, a plate shape, a scale shape, a pulverized shape, an uneven shape, an eyebrows shape, and a candy sugar shape. In particular, when used for optical applications (when used for optical resin compositions, etc.), the shape is a perfect sphere or nearly a perfect sphere, and the ratio of the long particle diameter to the short particle diameter is 1.0 to 1; 2 and the coefficient of variation of the particle diameter is preferably 10% or less.
[0018] 上記本発明の微粒子は、所定の水分含量、真比重、嵩比重、および粒子径を有す る粉体微粒子を乾式分級して得られるものである。  [0018] The fine particles of the present invention are obtained by dry classification of fine powder particles having a predetermined water content, true specific gravity, bulk specific gravity, and particle diameter.
[0019] 上記乾式分級に供される粉体粒子は、水分含量 0. 05〜2質量%である。含水量 が多すぎる場合には、分級時に、力、かる水分が結着剤として働いて粒子同士が凝集 し、一方、含水量が少なすぎる場合には、静電気により粒子同士が凝集するため、い ずれの場合にも分級精度が低くなり粗大粒子が増加する傾向がある。水分含量が上 記範囲であれば、粒子が凝集し難いため、分級操作を円滑に進めることができる。ま た、真比重は 1〜; 1. 25g/ml、嵩比重は 0. ;!〜 lg/ml、平均粒子径は 1〜50 m であるのが好ましい。粉体微粒子の真比重が小さ過ぎる場合には、粒子径の大小に よる遠心力や風力による抵抗に差が生じ難いために分級精度が低くなる場合がある 。真比重が大きすぎる場合には、大きな設備と動力が必要となるため好ましくない。ま た、嵩比重が大きすぎる場合には、大きな設備と動力が必要となるため好ましくなぐ 一方、小さすぎる場合には粒子径の大小による差が生じ難いため、分級精度が低く なる場合がある。粒子径が小さすぎる場合には、粉体同士の凝集が強ぐ良好な分 散状態が得られず分級精度が低下する場合があり、大きすぎる場合には大きな設備 と動力が必要と成るため好ましくない。 [0019] The powder particles subjected to the dry classification have a water content of 0.05 to 2% by mass. If the water content is too high, the force and moisture will act as a binder during classification and the particles will aggregate.On the other hand, if the water content is too low, the particles will aggregate due to static electricity. Even in the case of deviation, classification accuracy tends to be low and coarse particles tend to increase. If the water content is in the above range, the particles are difficult to aggregate, so that the classification operation can proceed smoothly. In addition, the true specific gravity is preferably 1 to; 1.25 g / ml, the bulk specific gravity is 0. !! to lg / ml, and the average particle size is preferably 1 to 50 m. If the true specific gravity of the powder particles is too small, the classification accuracy may be low because differences in centrifugal force and wind resistance due to the size of the particles are unlikely to occur. . If the true specific gravity is too large, large equipment and power are required, which is not preferable. On the other hand, when the bulk specific gravity is too large, large equipment and power are required, which is not preferable. On the other hand, when the bulk specific gravity is too small, a difference due to the size of the particle diameter hardly occurs, and classification accuracy may be lowered. If the particle size is too small, a good dispersion state in which the powders are strongly agglomerated may not be obtained, and the classification accuracy may decrease.If the particle size is too large, large equipment and power are required. Absent.
[0020] 湿式分級により、乾式分級に供される粉体粒子、および、湿式分級により得られる 分散溶液における平均粒子径の 2倍以上の粗大粒子の含有量を、 0. 5gあたり 20万 個以下とするのが好ましい。より好ましくは 10万個 /0. 5g以下であり、さらに好ましく は 5万個 /0. 5g以下である。乾式分級に供される粉体粒子、および、湿式分級によ り得られる分散溶液に含まれる特定サイズの粗大粒子数が上記範囲内であれば、乾 式分級を行うことにより、高い収率および/又は高い分級処理速度で粗大粒子の含 有量の少なレ、微粒子が得られ易いので好まし!/、。  [0020] The content of coarse particles more than twice the average particle diameter in the powder particles subjected to dry classification by wet classification and in the dispersion obtained by wet classification is 200,000 or less per 0.5 g Is preferable. More preferably, it is 100,000 pieces / 0.5 g or less, and further preferably 50,000 pieces / 0.5 g or less. If the number of coarse particles of a specific size contained in the powder particles subjected to dry classification and the dispersion obtained by wet classification is within the above range, high yield and high yield can be achieved by performing dry classification. / Or preferred because it is easy to obtain fine particles with a small content of coarse particles at a high classification processing speed!
[0021] したがって、水分含量、真比重、嵩比重および粒子径は上記範囲であるのが好まし ぐより好ましくは、粉体微粒子の水分含量は 0. ;!〜 0. 5質量%であるのが好ましぐ 真比重は;!〜 1. 5g/mlであるのが好ましぐ嵩比重は 0. 3〜0. 8g/mlであるのが 好ましぐ平均粒子径は 2〜20 mであるのが好ましい。  [0021] Therefore, the water content, true specific gravity, bulk specific gravity and particle diameter are preferably in the above ranges, more preferably the fine particles have a water content of 0 .;! To 0.5% by mass. The true specific gravity is;! ~ 1.5g / ml is preferred The bulk specific gravity is 0.3 ~ 0.8g / ml The preferred average particle diameter is 2 ~ 20m Preferably there is.
[0022] なお、上記「含水量」とは、カールフィッシャー水分計 (例えば平沼産業株式会社製 、水分測定装置)により測定される値である。上記「嵩密度」とは、粉体を一定容積の 容器中に、一定状態で入れたときに容器内に入る粉末の量を単位体積当たりの質量 で表したもので、上記嵩密度の値は、パウダーテスター(ホソカワミクロン社製)で測 定されたものである。粉体微粒子の「真比重」とは、粉体微粒子を一定容積の容器中 に充填し、さらに、試料の空隙を完全に液体で置換し、このとき要した液体の体積を 容器の容積力 減じた値と、容器内に充填した粉体微粒子の質量との関係から算出 される値で、真比重測定機 (例えば、株式会社セイシン企業製)により測定されたもの である。上記粒子径の値は、前記精密粒度分布測定装置 (例えば、ベックマン 'コ一 ルター社製の「マルチサイザ一 Π」 )により測定される体積基準の値である。  The “water content” is a value measured by a Karl Fischer moisture meter (for example, a moisture measuring device manufactured by Hiranuma Sangyo Co., Ltd.). The “bulk density” is the amount of powder that enters the container when the powder is placed in a constant volume container in a constant state, expressed as mass per unit volume. Measured with a powder tester (manufactured by Hosokawa Micron). The “true specific gravity” of fine powder particles means that fine powder particles are filled into a container of a certain volume, and the sample voids are completely replaced with liquid, and the volume of liquid required at this time is reduced by the volume capacity of the container. It is a value calculated from the relationship between the measured value and the mass of the fine powder particles filled in the container, and is measured by a true specific gravity measuring machine (for example, manufactured by Seishin Enterprise Co., Ltd.). The value of the particle size is a volume-based value measured by the precision particle size distribution measuring apparatus (for example, “Multisizer 1” manufactured by Beckman Coulter, Inc.).
[0023] 上記粉体微粒子の乾式分級には、風力を利用した気流分級装置を用いるのが好 ましい。気流分級装置とは、気流を利用して、微粒子 (粉粒体層)を粒度 (粉粒体の 粒径、質量)に応じて分離する装置である (すなわち、粒子の持つ慣性と、気流から 受ける抗力のバランスによって飛距離が定まり分級される)。通常、篩やフィルタのみ を使用する分級装置では、回収される粒子の物性は、使用する篩の目開きやフィル タの濾過効率に依存するため、所望の物性、たとえば粒子径が特定の範囲に含まれ る粒子のみを得るためには、複数の分級操作を行う必要がある。これに対して、気流 分級装置を使用すれば、粗大な粒子と微小な粒子を同時に除去することができる。 [0023] For the dry classification of the fine powder particles, it is preferable to use an air classifier using wind power. Good. An air classifier is an apparatus that separates fine particles (powder layer) according to the particle size (particle size, mass) of the particles (ie, from the inertia of the particles and the air flow). The flying distance is determined and classified by the balance of drag force). Normally, in a classifier that uses only a sieve or a filter, the physical properties of the recovered particles depend on the sieve opening used and the filtration efficiency of the filter, so that the desired physical properties such as the particle diameter are within a specific range. In order to obtain only the contained particles, it is necessary to perform a plurality of classification operations. On the other hand, if an airflow classifier is used, coarse particles and fine particles can be removed simultaneously.
[0024] 上記気流分級装置の分級メカニズムは特に限定されない。したがって、気流のみを 利用するもの、気流に推進力を与える回転ローターや、風を導くためのガイドべーン を備え、これらが複合的に作用して生じる気流を利用するもの、さらに、これらとその 他の分級手段(篩やメッシュ)を組み合わせたものであっても良レ、。  [0024] The classification mechanism of the airflow classifier is not particularly limited. Therefore, those that use only the airflow, those that have a rotating rotor that gives propulsive force to the airflow, and guide vanes that guide the wind, and that use the airflow generated by the combined action of these, and It can be combined with other classification means (sieves and meshes).
[0025] 具体的な気流分級装置としては、 DXF型(日本ニューマチック工業社製)などの高 精度気流分級装置;ターボクラシファイア(日清エンジニアリング社製)、クラッシーノレ (セイシン社製)、ターポプレックス(登録商標、ホソカワミクロン社製)などの分級ロー ターを有する回転ローター式気流分級装置;エルボージェット(日鉄鉱業社製)など のコアンダ効果を利用した気流分級装置 (エルボージェット型分級機);乾式篩ハイ ボルタ一(東洋ハイテック社製)、乾式篩ブロワーシフタ一(ユーグロップ社製)などの 網の目開きを利用した気流分級装置が挙げられる。これらの中でも、高精度気流分 級装置、回転ローター式気流分級装置およびコアンダ効果を利用した気流分級装 置は、粗大な粒子を効率的に除去できるので好まし!/、。  [0025] Specific airflow classifiers include high-precision airflow classifiers such as the DXF type (manufactured by Nippon Pneumatic Kogyo Co., Ltd.); (Registered trademark, manufactured by Hosokawa Micron Co., Ltd.) Rotary rotor type air classifier with classification rotor; Elbow Jet (manufactured by Nittetsu Mining Co.) etc. Coanda effect using Coanda effect (Elbow jet type classifier); Dry type Examples include air classifiers that use mesh openings such as Sieve High Volta (Toyo Hitec) and Dry Sieve Blower Shifter (Yugrop). Among these, a high-precision air classifier, a rotary rotor type air classifier, and an air classifier using the Coanda effect are preferable because they can remove coarse particles efficiently! /.
[0026] 上記高精度気流分級装置とは、ムービングパーツ(可動可能な部材)がなぐ分散 ゾーンおよび分級ゾーンへの流入エアーにより、高速旋回気流を発生させて、装置 内に供給した粒子に遠心力を与えると共に、粒子に与えられた遠心力の抗カとなる ように吸引ブロワ一により分級ゾーンから空気を排気させ、この遠心力と抗力とのバラ ンスにより粒子から粗粉と微粉とを分級する装置である。回転ローター式気流分級装 置とは、回転自由な円筒(分級ローター)と、装置外部から装置内へ空気を取り込む 吸気口を備え、上記ローターの高速回転により装置内に渦流を発生させて、装置内 に供給した粒子に渦流による遠心力を与え、一方、吸気口からは、遠心力の抗力と なるように空気を取り込み、この遠心力と抗力とのバランスにより、粒子から粗粉と微 粉とを分級する装置である。コアンダ効果を利用した気流分級装置とは、噴流は、そ の一方の側にだけ壁面を置くと、この壁面に沿って流れるというコアンダ効果を利用 するものであり、当該装置は、粒子を気流 (フィードエアー)と共に装置内に噴出する ェジェクタ一部と、分級室内にまで噴流 (粒子を含む)を導くコアンダブロックと、粒子 を性状 (粗粉、細粉(目的物)、微粉など)に応じて隔離する分級エッジを任意の位置 に備えている。上記ェジェクタ一部から噴出された噴流 (粒子を含む)は、コアンダブ ロックに沿って流れようとする。このとき粒子に働く慣性力と (微小粒子と粗大粒子とで は働く慣性力に差があり、粗大な粒子はより遠くへと飛行しょうとする)、流体抵抗の ノ ランスにより、粗大粒子と微小粒子が分級される。 [0026] The high-accuracy air classifier is a dispersion zone formed by moving parts (movable members) and air flowing into the classification zone to generate a high-speed swirling air current, and centrifugal force is applied to the particles supplied into the apparatus. In addition, the air is exhausted from the classification zone by a suction blower so as to resist the centrifugal force applied to the particles, and the coarse and fine particles are classified from the particles by the balance between the centrifugal force and the drag. Device. Rotating rotor type airflow classification device is equipped with a freely rotating cylinder (classification rotor) and an intake port that takes air into the device from outside the device. Centrifugal force due to eddy currents is applied to the particles supplied inside, while the drag force of the centrifugal force is This is a device that takes in air to classify the coarse powder and fine powder from the particles based on the balance between centrifugal force and drag force. An air classifier that uses the Coanda effect is a Coanda effect that uses a Coanda effect in which a jet flows along a wall when a wall is placed only on one side. Depending on the properties (coarse powder, fine powder (target product), fine powder, etc.), a part of the ejector ejected into the device together with the feed air), a Coanda block that guides the jet (including particles) into the classification chamber Separating classification edge is provided at any position. The jet (including particles) ejected from a part of the ejector tends to flow along the Coanda block. At this time, the inertial force acting on the particles (there is a difference in the inertial force acting on the fine particles and coarse particles, and the coarse particles try to fly further), Particles are classified.
[0027] 上記気流式分級装置の中でも、コアンダー効果を利用した気流分級装置 (エルボ 一ジェット型分級機)が好ましレ、。このエルボージェット型分級機を用いる場合には、 分級精度を上げるために、フィードエアーを推奨エアー圧の最大値にまで上げること が好ましい。なお、通常、フィードエアーは、 0. ;!〜 lOkgfで運転される力 分級精度 向上の観点からは;!〜 5kgfとすることが推奨される。一般に、フィードエアーを高めす ぎると、粗大粒子の飛行距離が長くなり、正面の壁に当たって跳ね返った粗大粒子 が細粉に混入する可能性が高い。し力、しながら、本発明に係る微粒子は、後述する ように湿式分級工程を経た後、乾式分級を経て得られるものであり、粗大粒子は上記 湿式分級工程である程度除去されているため、跳ね返りによる粗大粒子の細粉への 混入がない。したがって、フィードエアーを上げることにより分級精度を向上させること が出来る。 [0027] Among the airflow classifiers, an airflow classifier (elbow, one-jet type classifier) using the Counder effect is preferred. When this elbow jet classifier is used, it is preferable to raise the feed air to the maximum recommended air pressure in order to improve the classification accuracy. In general, it is recommended that the feed air be set to 0!;! ~ LOkgf;! ~ 5kgf from the viewpoint of improving the accuracy of force classification. In general, if the feed air is increased too much, the flying distance of coarse particles increases, and there is a high possibility that coarse particles that bounce off the front wall will be mixed into the fine powder. However, the fine particles according to the present invention are obtained through a wet classification process and then a dry classification process, as will be described later, and since the coarse particles are removed to some extent by the wet classification process, they rebound. There is no mixing of coarse particles into fine powder. Therefore, classification accuracy can be improved by raising the feed air.
[0028] また、分級エッジとしてスリムエッジを用いることも、分級精度を向上させるためには 好ましい。上述のように、分級エッジとは、性状に応じて粒子を隔離するために用いら れるもので、その一端 (粒子進入側)は薄ぐ他端に至るにしたがって厚くなるくさび 型の形状を有している。また、その底断面(くさび型において厚みを有する一端)は 略長方形であり、特定の幅を有している。なお、分級エッジの幅は、通常、粒子を含 む噴流の流れる流路の幅に略等しく設計される。ここで、上記スリムエッジは、通常用 いられる標準エッジに比べて、くさび型の斜面間の距離が短 特に、底断面部分に おいては標準エッジの約半分)形成されている。スリムエッジは、通常、強く帯電した 粒子を処理する場合、エッジの先端に粒子が堆積し、分級精度が低下してしまうのを 防ぐために用いられている。スリムエッジを用いることで、分級精度が向上する理由は 、上記スリムエッジの目的 (粒子の堆積による分級精度の低下抑制)に加えて、気流 の乱れが起こりにくいためと考えられる。 [0028] It is also preferable to use a slim edge as the classification edge in order to improve classification accuracy. As described above, the classification edge is used to isolate particles according to their properties, and one end (particle entry side) has a wedge-shaped shape that becomes thicker toward the other end. is doing. Further, the bottom cross section (one end having a thickness in the wedge shape) is substantially rectangular and has a specific width. Note that the width of the classification edge is usually designed to be approximately equal to the width of the flow path of the jet flow containing particles. Here, the slim edge has a shorter distance between the wedge-shaped slopes than the standard edge that is usually used. About half of the standard edge). The slim edge is usually used to prevent particles from accumulating at the tip of the edge and reducing classification accuracy when processing highly charged particles. The reason why the classification accuracy is improved by using the slim edge is considered to be that the disturbance of the air flow hardly occurs in addition to the purpose of the slim edge (suppressing the reduction of the classification accuracy due to the accumulation of particles).
[0029] 上記乾式分級に供される粉体微粒子は、固形分濃度 0. 5〜50質量%、 B型粘度 0 . 5〜20mPa ' sの微粒子分散液を湿式分級した後、乾燥、粉砕して得られるものが 好ましい。微粒子分散液の固形分濃度は 0. 5〜20質量%であるのが好ましぐ B型 粘度は 0. 5〜; lOmPa ' sであるのが好ましい。  [0029] The fine powder particles subjected to the dry classification are wet-classified with a fine particle dispersion having a solid content concentration of 0.5 to 50% by mass and a B-type viscosity of 0.5 to 20 mPa's, and then dried and pulverized. What is obtained is preferable. The solid content concentration of the fine particle dispersion is preferably from 0.5 to 20% by mass. The B-type viscosity is preferably from 0.5 to; lOmPa's.
[0030] 湿式分級装置に供給する微粒子分散溶液の固形分濃度が高い場合や粘度が高 い場合には、分級に長時間要したり、メッシュへの負荷が増してメッシュの目開きが拡 げられて大きくなり、分級精度が低下する虞がある。また、固形分濃度が 0. 5質量% より少ない場合も、分級に長時間要することとなる。  [0030] When the solid content concentration of the fine particle dispersion solution supplied to the wet classifier is high or the viscosity is high, it takes a long time for classification, or the load on the mesh increases and the mesh opening increases. May increase the classification accuracy. In addition, when the solid content concentration is less than 0.5% by mass, the classification takes a long time.
[0031] また、湿式分級に供する粒子は、平均粒子径の 2倍の粒子径より大きな粗大粒子 の含有量が少ないものであるのが好ましい。具体的には、平均粒子径の 2倍の粒子 径より大きな粗大粒子の含有量力 0. 5gあたり 100万個以下であるのが好ましい。よ り好ましくは 50万個 /0. 5gであり、さらに好ましくは 20万個 /0. 5g以下である。  [0031] Further, it is preferable that the particles to be subjected to wet classification have a small content of coarse particles larger than a particle size twice the average particle size. Specifically, it is preferable that the content force of coarse particles larger than a particle size twice as large as the average particle size is 1 million or less per 0.5 g. More preferably, it is 500,000 pieces / 0.5 g, more preferably 200,000 pieces / 0.5 g or less.
[0032] 上記微粒子分散液は、予め製造された微粒子を分散媒体 (水、有機溶媒など)に 分散させたものでもよぐ微粒子が後述する有機重合体あるいは有機質無機質複合 体材料力もなる場合には、重合反応後の反応液をそのまま用いてもよい。また、湿式 プロセスで得た微粒子分散液をそのまま用いてもょレ、。  [0032] The fine particle dispersion may be prepared by dispersing fine particles prepared in advance in a dispersion medium (water, organic solvent, etc.). In the case where the fine particles have an organic polymer or organic-inorganic composite material strength described later. The reaction solution after the polymerization reaction may be used as it is. You can also use the fine particle dispersion obtained by the wet process.
[0033] 上記微粒子分散液の湿式分級に使用可能な装置は、特に限定されな!/、が、フィノレ タゃ篩を使用した濾過装置、遠心力、 '慣性力を利用した液体サイクロン装置などが 挙げられる。具体的な湿式分級装置としては、カートリッジフィルター(例えば、ロキテ タノ社製、 日本ボール社製)、遠心力を利用して分級を行う液体サイクロン (例えば、 ラサ工業社製、インダストリァ社製)が挙げられる。  [0033] Apparatuses that can be used for wet classification of the above-mentioned fine particle dispersion are not particularly limited! /, But include a filtration apparatus using a finoleta sieve, a centrifugal force, and a liquid cyclone apparatus using an inertial force. Can be mentioned. Specific wet classifiers include cartridge filters (for example, manufactured by Loki Tano Co., Ltd., Nippon Ball Co., Ltd.), and liquid cyclones (for example, manufactured by Rasa Industrial Co., Ltd., manufactured by Industry) that perform classification using centrifugal force. Can be mentioned.
[0034] 上記カートリッジフィルタ一は複数を組み合わせて用いてもよぐ例えば、長寿命化 によるランニングコストの低減を目的として、要求されるろ過精度を満たすファイナル フィルターと、ファイナルフィルターの延命に使用するプレフィルターとを組み合わせ て用いてもよい。ただし、ファイナルフィルターの選定基準は、平均粒子径の 2倍の粒 子を 50質量%以上除去できるタイプとするのが好ましい。たとえば、ロキテクノ社製の SLPタイプのカートリッジフィルタ一は、デプスフィルターの特徴である濾材の厚みと 、プリーツフィルターの特徴である広いろか面積を有するため、ファイナルフィルター として好ましい。プレフィルターの選定基準としては、平均粒子径の 3倍以上の粒子 を 50質量%以上ろ過できるタイプとするのが望ましい。 [0034] A plurality of cartridge filters may be used in combination. For example, a final filter that satisfies the required filtration accuracy for the purpose of reducing running costs by extending the service life. A combination of a filter and a prefilter used to extend the life of the final filter may be used. However, the final filter selection criteria is preferably a type that can remove 50% by mass or more of particles twice the average particle size. For example, an SLP type cartridge filter manufactured by Loki Techno Co., Ltd. is preferable as a final filter because it has a filter medium thickness that is a feature of a depth filter and a wide filter area that is a feature of a pleated filter. The pre-filter selection criterion is preferably a type that can filter 50% by mass or more of particles more than 3 times the average particle size.
[0035] 上記液体サイクロン装置とは、液体を媒体とし、当該液体中に分散している粒子を 遠心力により分級する装置である。例えば、円筒(あるいは円錐)部分を有する装置 の場合、当該装置円筒部の接線方向から微粒子分散液を供給し、この微粒子分散 液が旋回流として円筒部を下降する間に、粗大な粒子を遠心力の作用で半径方向 に移動させて円筒の内壁に衝突させ、当該内壁に沿って装置下部へと落下させた 後、装置下部から回収する。一方、微細な粒子は、中央付近に生じる上昇旋回流に のって装置上方へと移動するので、装置上部から微小な粒子を回収する。  The liquid cyclone device is a device that uses a liquid as a medium and classifies particles dispersed in the liquid by centrifugal force. For example, in the case of a device having a cylindrical (or conical) portion, fine particle dispersion is supplied from the tangential direction of the device cylindrical portion, and coarse particles are centrifuged while the fine particle dispersion descends the cylindrical portion as a swirling flow. It is moved in the radial direction by the action of force, collides with the inner wall of the cylinder, drops along the inner wall to the lower part of the device, and is recovered from the lower part of the device. On the other hand, the fine particles move upward along the upward swirling flow generated near the center, so that the fine particles are recovered from the upper part of the device.
[0036] 湿式分級後の粒子は、乾燥し、粉砕するのが好まし!/、。乾燥、粉砕時の条件は、上 述の粉体微粒子の物性 (水分含量 0. 05〜2質量%、真比重;!〜 1. 25g/ml、嵩比 重 0. ;!〜 lg/ml、粒子径 1〜50 111)を満足し得るものであれば良く特に限定はさ れなレ、。  [0036] The particles after wet classification are preferably dried and pulverized! /. The dry and pulverized conditions are the physical properties of the fine powder particles described above (moisture content 0.05 to 2 mass%, true specific gravity;! To 1.25 g / ml, bulk specific gravity 0.;! To lg / ml, The particle size is not particularly limited as long as it can satisfy 1 to 50 111).
[0037] 本発明の微粒子は、所定の物性を有する粉体微粒子を乾式分級して得られるもの であるが、必要に応じて、その他の分級手段を組み合わせてもよぐ特に、粉体微粒 子の調整に上述の湿式分級工程を採用することは、粗大な粒子や微細な粒子の含 有量を低レベルに低減させる観点からは推奨される。すなわち、本発明の微粒子を 得るための好まし!/、プロセスとしては、所定物性を有する微粒子分散液を湿式分級し 、湿式分級後の粒子を乾燥、粉砕した後、さらに乾式分級するプロセスが挙げられる 。かかるプロセスを経ることで、平均粒子径の 2倍以上の粒子径を有する粗大粒子が 1000個以上 /0. 5g以下である本発明の微粒子を一層効率よく得ることができる。  [0037] The fine particles of the present invention are obtained by dry-classifying fine powder particles having predetermined physical properties, and may be combined with other classification means as needed, in particular, fine powder particles. It is recommended that the wet classification process described above be used for the adjustment from the viewpoint of reducing the content of coarse particles and fine particles to a low level. That is, a preferred process for obtaining the fine particles of the present invention is a process of subjecting a fine particle dispersion having predetermined physical properties to wet classification, drying and pulverizing the particles after wet classification, and further subjecting to dry classification. Be By passing through such a process, the fine particles of the present invention in which the number of coarse particles having a particle size of twice or more the average particle size is 1000 or more / 0.5 g or less can be obtained more efficiently.
[0038] 次に、本発明に係る微粒子の構造および製造方法につ!/、て説明する。 [0038] Next, the structure and manufacturing method of the fine particles according to the present invention will be described.
[0039] 本発明に係る微粒子の形態は特に限定されず、有機重合体、無機質材料、有機 質無機質複合材料のいずれ力 なるものであっても良い。上記有機重合体としては 、ポリスチレン、ポリメチルメタタリレート、ポリエチレン、ポリプロピレン、ポリエチレンテ レフタレート、ポリブチレンテレフタレート、ポリスルホン、ポリカーボネート、ポリアミド 等の線状重合体;ジビュルベンゼン、へキサトリェン、ジビュルエーテル、ジビニルス ルホン、ジァリルカルビノール、アルキレンジアタリレート、オリゴ又はポリアルキレング リコールジアタリレート、オリゴ又はポリアルキレングリコールジメタタリレート、アルキレ ントリアタリレート、アルキレンテトラアタリレート、アルキレントリメタタリレート、アルキレ 両末端アクリル変性ポリブタジエンオリゴマー等を単独又は他の重合性モノマーと重 合させて得られる網状重合体;ァミノ化合物(例えば、ベンゾグアナミン、メラミンある いは尿素など)とホルムアルデヒドの重縮合反応により得られるァミノ樹脂からなる有 機重合体が挙げられる。 [0039] The form of the fine particles according to the present invention is not particularly limited, and an organic polymer, an inorganic material, an organic It may be any of the inorganic composite materials. Examples of the organic polymer include linear polymers such as polystyrene, polymethyl methacrylate, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polysulfone, polycarbonate, and polyamide; dibulebenzene, hexatriene, dibule ether, Divinylsulfone, diallyl carbinol, alkylene diatalylate, oligo or polyalkylene glycol diatalylate, oligo or polyalkylene glycol dimetatalylate, alkylene tritalylate, alkylene tetraatalylate, alkylene trimetatalylate, both Reticulated polymers obtained by polymerizing terminal acrylic-modified polybutadiene oligomers alone or with other polymerizable monomers; amino compounds (for example, benzogua Min, melamine there have can be mentioned organic polymer comprising Amino resin obtained by polycondensation reaction of urea, etc.) and formaldehyde.
[0040] 有機質無機質複合材料としては、(A)シリカ、アルミナ、チタニアなどの金属酸化物 、金属窒化物、金属硫化物、金属炭化物等の無機質微粒子が、有機樹脂中に分散 含有されてなる微粒子や、 (B) (オルガノ)ポリシロキサン、ポリチタノキサンなどのメタ ロキサン鎖(「金属 酸素 金属」結合を含む分子鎖)と有機分子が分子レベルで複 合してなる微粒子や、メチルトリメトキシシラン等のオルガノアルコキシシランの加水分 解、縮合反応の進行によって得られるポリメチルシルセスキォキサンなどのシリコン系 微粒子や、(C)加水分解性シリル基を有するシリコン化合物を原料とするポリシロキ サンと重合性基 (例えばビュル基、(メタ)アタリロイル基など)を有する重合性単量体 などと反応させて得られる有機ポリマー骨格と、ポリシロキサン骨格とを含む有機質無 機質複合材料が挙げられる。 [0040] Examples of the organic-inorganic inorganic composite material include (A) fine particles in which inorganic fine particles such as metal oxides such as silica, alumina, and titania, metal nitrides, metal sulfides, and metal carbides are dispersed and contained in an organic resin. And (B) fine particles formed by a metalloxane chain (molecular chain containing a “metal-oxygen-metal” bond) such as (organo) polysiloxane and polytitanoxane and organic molecules at the molecular level, methyltrimethoxysilane, etc. Polysiloxanes and polymerizable groups made from silicon fine particles such as polymethylsilsesquioxane obtained by hydrolysis and condensation reaction of organoalkoxysilanes, and (C) silicon compounds having hydrolyzable silyl groups. An organic polymer skeleton obtained by reacting with a polymerizable monomer having a butyl group (for example, a bur group, a (meth) ataryloyl group, etc.) Organic non-machine quality composite material comprising a polysiloxane skeleton.
[0041] 無機質材料としては、例えば、ガラス、シリカ、アルミナ等が挙げられる。 [0041] Examples of the inorganic material include glass, silica, and alumina.
[0042] 上記例示の中でも、有機重合体または有機質無機質複合材料からなる微粒子は、 微粒子の特性の設計が比較的自由に行え、また、シャープな粒子径分布を有する粒 子が得られ易いので好ましい。さらに、有機重合体からなる微粒子の中では、ァミノ 樹脂からなる有機重合体、並びにシード重合法により得られる有機重合体粒子(重 合性モノマー全量に対する架橋性モノマーの割合が 20質量%以上、より好ましくは 3 0質量%以上、さらに好ましくは 50質量%以上の粒子)が好ましぐ有機質無機質複 合材料から成る微粒子の中では特に(C)が好ましい。また、これらの粒子は、その合 成過程で硬化または架橋されており、有機溶剤により溶解、膨潤し難い。したがって 、後述する光拡散層、防眩層を形成する塗布用樹脂組成物に使用する場合、有機 溶剤などと同時に使用しても、粒子が変質したり、粒子径の変化が生じ難いので、粗 大粒子を上記範囲内に低減させた効果が十分に得られるため好ましい。 [0042] Among the above examples, fine particles made of an organic polymer or an organic-inorganic inorganic composite material are preferable because the characteristics of the fine particles can be designed relatively freely, and particles having a sharp particle size distribution can be easily obtained. . Further, among the fine particles made of an organic polymer, the organic polymer made of an amino resin, and the organic polymer particles obtained by the seed polymerization method (the ratio of the crosslinkable monomer to the total amount of the polymerizable monomer is 20% by mass or more, more Preferably 3 (C) is particularly preferable among fine particles made of an organic-inorganic composite material in which particles of 0% by mass or more, more preferably 50% by mass or more are preferred. Further, these particles are hardened or cross-linked during the synthesis process, and are hardly dissolved or swollen by an organic solvent. Therefore, when used in a coating resin composition for forming a light diffusing layer and an antiglare layer, which will be described later, even if used simultaneously with an organic solvent or the like, the particles are unlikely to change in quality or change in particle diameter. This is preferable because the effect of reducing the large particles within the above range can be sufficiently obtained.
[0043] これらの粒子は、各粒子の合成時に得られる粒子懸濁液の状態で湿式分級工程 に供するのが好まし!/、。すなわち平均粒子径の 2倍以上の粗大粒子の含有量が少な い(例えば、 100万個 /0. 5g未満)懸濁体が得られ易いからである。特に、以下に説 明する好ましい製法で得られる有機質無機質複合材料力 なる微粒子、ァミノ樹脂 力もなる有機重合体微粒子が好まし!/、。  [0043] These particles are preferably subjected to a wet classification process in the state of a particle suspension obtained at the time of synthesis of each particle! That is, a suspension with a small content of coarse particles more than twice the average particle size (for example, less than 1 million particles / 0.5 g) is easily obtained. Particularly preferred are fine particles having an organic-inorganic composite material strength and organic polymer fine particles having an amino resin strength, which can be obtained by a preferable production method described below!
[0044] また、上記粒子は、粒子径の変動係数 (体積基準で算出した粒度分布を基準とす る)が 20%以下であるのが好ましい。より好ましくは 10%以下である。粒子径の変動 係数の値は小さいほど、粒子径にバラツキが少ないことを示しており、上記範囲を満 足する場合には、湿式分級、乾式分級工程後の微粒子に含まれる粗大粒子量を低 減し易いので好ましい。なお、ここで、粒子径の変動係数とは、下記式より算出される 値である。  [0044] The particle preferably has a particle diameter variation coefficient (based on a particle size distribution calculated on a volume basis) of 20% or less. More preferably, it is 10% or less. The smaller the variation coefficient of the particle size, the smaller the variation in the particle size.If the above range is satisfied, the amount of coarse particles contained in the fine particles after the wet classification and dry classification processes is reduced. Since it is easy to reduce, it is preferable. Here, the variation coefficient of the particle diameter is a value calculated from the following formula.
[0045] 國  [0045] country
粒子径の変動係数 (%) = (σ ) χ 1 0 0  Coefficient of variation of particle size (%) = (σ) χ 1 0 0
ここで、 σは粒子径の標準偏差、 Xは平均粒子径を表す。  Here, σ is the standard deviation of the particle diameter, and X is the average particle diameter.
[0046] 本発明では、平均粒子径と粒子径の標準偏差は、前記した精密粒度分布測定装 置 (例えば、ベックマン'コールター社製の「マルチサイザ一 II」)を使用して測定し、体 積基準で算出した。 In the present invention, the average particle size and the standard deviation of the particle size are measured using the above-described precision particle size distribution measuring apparatus (for example, “Multisizer II” manufactured by Beckman Coulter, Inc.), and the volume is measured. Calculated by reference.
[0047] ここで、上記有機重合体からなる微粒子 (ァミノ樹脂)、および、有機質無機質複合 材料からなる微粒子(上記 (C) )の、その構造および製造方法につ!/、て説明する。  Here, the structure and manufacturing method of the fine particles (amino resin) composed of the organic polymer and the fine particles (organic (C)) composed of the organic-inorganic composite material will be described.
[0048] <ァミノ樹脂架橋粒子の製造方法〉  <Method for Producing Amino Resin Crosslinked Particles>
まず、上記有機重合体からなる微粒子であるアミノ樹脂 (ァミノ樹脂架橋粒子)の製 造方法について説明する。 [0049] ァミノ樹脂架橋粒子の製造方法としては、以下に説明する第 1の製造方法および第 2の製造方法が挙げられる。これら第 1および第 2の製造方法によれば、微粒子の合 成段階において、粒子径の制御が可能であるので、粗大な粒子の生成をいくらか抑 制できる。したがって、当該製造方法により得られたァミノ樹脂架橋粒子を、上述した 本発明に係る微粒子を得るためのプロセスに付すことで、粒径の好適範囲を逸脱す る粒子の含有量の低減がより容易に行えるため好ましい。まず、第 1の製造方法につ いて説明する。 First, a method for producing amino resins (amino resin crosslinked particles), which are fine particles made of the organic polymer, will be described. [0049] Examples of the production method of the amino resin crosslinked particles include a first production method and a second production method described below. According to these first and second production methods, since the particle diameter can be controlled in the fine particle synthesis stage, the production of coarse particles can be somewhat suppressed. Therefore, by subjecting the amino resin crosslinked particles obtained by the production method to the above-described process for obtaining the fine particles according to the present invention, it is easier to reduce the content of particles that deviate from the preferred range of the particle size. Therefore, it is preferable. First, the first manufacturing method will be described.
[0050] 第 1の製造方法  [0050] First manufacturing method
ァミノ樹脂架橋粒子の第 1の製造方法 (以下、単に「第 1の製造方法」と称すること がある。)は、アミノ系化合物とホルムアルデヒドとを反応させることによりァミノ樹脂前 駆体を得る樹脂化工程と、前記樹脂化工程で得られたァミノ樹脂前駆体を水系媒体 中で乳化してァミノ樹脂前駆体の乳濁液を得る乳化工程と、前記乳化工程で得られ た乳濁液に触媒を加えて乳化させたァミノ樹脂前駆体の硬化反応を行い、アミノ樹 脂架橋粒子を得る硬化工程、を含む。  The first production method of the crosslinked amino resin particles (hereinafter sometimes simply referred to as “first production method”) is a resinization method in which an amino compound and formaldehyde are reacted to obtain an amino resin precursor. A step of emulsifying the amino resin precursor obtained in the resinification step in an aqueous medium to obtain an emulsion of the amino resin precursor, and a catalyst in the emulsion obtained in the emulsification step. In addition, it includes a curing step of performing a curing reaction of the emulsified amino resin precursor to obtain amino resin crosslinked particles.
[0051] 上記樹脂化工程は、アミノ系化合物とホルムアルデヒドとを反応させて、初期縮合 反応物であるアミノ樹脂前駆体を生成させる工程である。アミノ系化合物とホルムァ ルデヒドとを反応させる際の溶媒としては、水が用いられる。この樹脂化工程の具体 的な実施方法としては、ホルムアルデヒドを水溶液 (ホルマリン)の状態にしたものに アミノ系化合物を添加して反応させる方法や、トリオキサンやパラホルムアルデヒドを 水に添加して水中でホルムアルデヒドが発生するように調整した水溶液にアミノ系化 合物を添加して反応させる方法等が好ましく挙げられる。なかでも、前者の方法は、 ホルムアルデヒド水溶液の調整槽が必要なぐまた、原料の入手が容易であるため、 経済性の点でより好ましい。また、いずれの方法を採用する場合であっても、樹脂化 工程は、公知の撹拌装置等による撹拌下で行うことが好ましい。  [0051] The resinification step is a step of reacting an amino compound with formaldehyde to produce an amino resin precursor that is an initial condensation reaction product. Water is used as a solvent for reacting the amino compound with formaldehyde. Specific methods for carrying out this resination step include a method in which an amino compound is added to formaldehyde in an aqueous solution (formalin) and reacted, or trioxane or paraformaldehyde is added to water to formaldehyde in water. Preferred examples include a method in which an amino compound is added to an aqueous solution prepared so as to cause the reaction. In particular, the former method is more preferable in terms of economy because it requires a preparation tank for an aqueous formaldehyde solution and it is easy to obtain raw materials. In addition, regardless of which method is employed, the resinification step is preferably performed with stirring by a known stirring device or the like.
[0052] 樹脂化工程において、出発原料として用いられるアミノ系化合物は、特に限定はさ れないが、例えば、ベンゾグアナミン(2, 4 ジァミノ一 6 フエニル一 sym. —トリア ジン)、シクロへキサンカルボグアナミン、シクロへキセンカルボグアナミンおよびメラミ ン等が挙げられる。これらの中でも、トリアジン環を有するアミノ系化合物がより好まし い。特に、ベンゾグアナミンは、ベンゼン環と 2個の反応基とを有することから、ベンゾ グアナミンをァミノ系化合物として含む場合には、生成するァミノ樹脂架橋粒子は可 橈性 (硬度)、耐汚染性、耐熱性、耐溶剤性、耐薬品性に優れるため特に好ましい。 上記アミノ系化合物は、単独で用いても 2種類以上を併用してもよ!/、。 [0052] The amino compound used as a starting material in the resinification step is not particularly limited. For example, benzoguanamine (2,4 diamine-6 phenyl sym. —Triazine), cyclohexanecarboguanamine And cyclohexenecarboguanamine and melamine. Of these, amino compounds having a triazine ring are more preferred. Yes. In particular, since benzoguanamine has a benzene ring and two reactive groups, when benzoguanamine is included as an amino compound, the resulting amino resin crosslinked particles are flexible (hardness), stain resistant, and heat resistant. It is particularly preferable because of its excellent properties, solvent resistance and chemical resistance. The above amino compounds may be used alone or in combination of two or more.
[0053] 使用するァミノ系化合物の全量中において、上述したアミノ系化合物(ベンゾグアナ ミン、シクロへキサンカルボグアナミン、シクロへキセンカルボグアナミンおよびメラミン )の占める割合は、合計で 40質量%以上であることが好ましぐより好ましくは 60質量 %以上、さらに好ましくは 80質量%以上、最も好ましくは 100質量%である。上述の アミノ系化合物の含有量が 40質量%以上である場合には、生成するァミノ樹脂架橋 粒子が、耐熱性および耐溶剤性に優れたものとなる。  [0053] The total proportion of the amino compounds (benzoguanamine, cyclohexanecarboguanamine, cyclohexenecarboguanamine, and melamine) in the total amount of the amino compounds to be used should be 40% by mass or more. Is more preferably 60% by mass or more, still more preferably 80% by mass or more, and most preferably 100% by mass. When the content of the amino compound is 40% by mass or more, the resulting amino resin crosslinked particles are excellent in heat resistance and solvent resistance.
[0054] 樹脂化工程にお!/、て反応させるアミノ系化合物とホルムアルデヒドとのモル比(アミ ノ系化合物(モル)/ホルムアルデヒド(モル))は、 1/3· 5〜1/1· 5であることが好 ましぐ 1/3. 5〜; 1/1· 8であること力 Sより好ましく、 1/3· 2〜; 1/2であることがさら により好ましい。上記モル比が 1/3. 5未満であると、ホルムアルデヒドの未反応物が 多くなるおそれがあり、 1/1. 5を超える場合は、アミノ系化合物の未反応物が多くな るおそれがある。  [0054] The molar ratio (amino compound (mole) / formaldehyde (mole)) of amino compound and formaldehyde to be reacted in the resination process is 1/3 · 5 to 1/1 · 5. 1 / 3.5 ~; 1/1 · 8 is more preferable than force S, and 1/3 · 2 ~; 1/2 is more preferable. If the above molar ratio is less than 1/3. 5, there is a risk of increasing the amount of unreacted formaldehyde, and if it exceeds 1 / 1.5, there may be an increase in the amount of unreacted amino compound. .
[0055] なお、樹脂化工程の仕込み時点におけるアミノ系化合物およびホルムアルデヒドの 濃度は、反応に支障の無い限りにおいて、より高濃度であることが望ましい。具体的 には、反応生成物であるアミノ樹脂前駆体を含む反応液の 95〜98°Cの温度範囲内 での粘度を、 2X10— 2〜5. 5X10— 2Pa's(20〜55cP)の範囲内に調節 '制御できる 濃度であることが好ましい。より好ましくは、後述する乳化工程において、乳濁液中の ァミノ樹脂前駆体の濃度が 30〜60質量%の範囲内となるように、反応液を乳化剤の 水溶液に添加する若しくは反応液に乳化剤や乳化剤の水溶液を添加することができ る濃度であればよい。 [0055] Note that the concentration of the amino compound and formaldehyde at the time of preparation of the resinification step is desirably higher as long as the reaction is not hindered. Specifically, the viscosity at the temperature range of 95-98 ° C of the reaction solution containing the amino resin precursor is the reaction product, 2X10- 2 ~5. 5X10- 2 Pa range's (20~55cP) It is preferable to adjust the concentration within a controllable range. More preferably, in the emulsification step described later, the reaction solution is added to an aqueous solution of an emulsifier or an emulsifier or an emulsifier is added to the reaction solution so that the concentration of the amino resin precursor in the emulsion is within a range of 30 to 60% by mass. Any concentration may be used as long as an aqueous solution of the emulsifier can be added.
[0056] したがって、樹脂化工程において得られるァミノ樹脂前駆体を含む反応液の 95〜9 8°Cの温度範囲内での粘度は、 2X10— 2〜5. 5X10— 2Pa's(20〜55cP)であること カ好ましく、より好ましくは 2· 5X10— 2〜5. 5X10— 2Pa's(25〜55cP)、さらにより好 ましくは 3.0X10— 2〜5. 5X10— 2Pa's (30〜55cP)である。上記粘度の測定方法と しては、反応の進行状態を即時的に(リアルタイムで)把握でき、且つ、該反応の終点 を正確に見極められる、粘度測定機を用いる方法が最適である。このような粘度測定 機としては、振動式粘度計 (MIVIITSジャパン社製、製品名: MIVI6001)が使用で きる。この粘度計は、常時振動している振動部を備えており、該振動部を反応液に浸 漬させておくことで、該反応液の粘性が増加して振動部に負荷が掛かると、その負荷 を粘度に即時的に換算して表示するようになっている。 [0056] Accordingly, the viscosity within the temperature range of 95 to 9 8 ° C of the reaction solution containing the Amino resin precursor obtained in resinification process, 2X10- 2 ~5. 5X10- 2 Pa 's (20~55cP) it mosquito preferably, more preferably 2 · 5X10- 2 ~5. 5X10- 2 Pa's (25~55cP), even more favorable Mashiku 3.0X10- 2 ~5. 5X10- 2 Pa's (30~55cP) is there. Method for measuring the viscosity and Therefore, a method using a viscometer that can grasp the progress of the reaction immediately (in real time) and accurately determine the end point of the reaction is optimal. As such a viscometer, a vibration viscometer (manufactured by MIVIITS Japan, product name: MIVI6001) can be used. This viscometer has a vibrating part that vibrates at all times. By immersing the vibrating part in the reaction liquid, the viscosity of the reaction liquid increases and a load is applied to the vibrating part. The load is immediately converted into viscosity and displayed.
[0057] アミノ系化合物とホルムアルデヒドとを水中で(水系媒体中で)反応させることにより 、いわゆる初期縮合物であるアミノ樹脂前駆体が得られる。反応温度は、反応の進行 状態を即時的に把握でき、該反応の終点を正確に見極められるように、 95〜98°Cの 温度範囲内とするのが望ましい。そして、アミノ系化合物とホルムアルデヒドとの反応 は、反応液の粘度が 2 X 10— 2〜5. 5 X 10— 2Pa ' sの範囲内となった時点で、該反応液 を冷却する等の操作を行うことにより終了すればよい。これにより、ァミノ樹脂前駆体 を含む反応液が得られる。なお、反応時間は、特に限定されるものではない。 [0057] By reacting an amino compound and formaldehyde in water (in an aqueous medium), an amino resin precursor which is a so-called initial condensate can be obtained. The reaction temperature is preferably within a temperature range of 95 to 98 ° C. so that the progress of the reaction can be immediately grasped and the end point of the reaction can be accurately determined. The reaction of the amino compound and formaldehyde, when the viscosity of the reaction solution becomes within a range of 2 X 10- 2 ~5. 5 X 10- 2 Pa 's, such as cooling the reaction mixture What is necessary is just to complete | finish by operating. Thereby, a reaction liquid containing an amino resin precursor is obtained. The reaction time is not particularly limited.
[0058] 樹脂化工程で得られるァミノ樹脂前駆体は、該ァミノ樹脂前駆体を構成するァミノ 系化合物由来の構造単位とホルムアルデヒド由来の構造単位とのモル比(アミノ系化 合物由来の構造単位 (モル) /ホルムアルデヒド由来の構造単位 (モル))が、 1/3. 5〜; 1/1 · 5であること力 S好ましく、 1/3· 5〜; 1/1 · 8であること力 Sより好ましく、 1/3 . 2〜1/2であることがさらに好ましい。上記モル比が上記範囲内であれば、粒度分 布の狭!/、粒子を得ること力 Sできる。  [0058] The amino resin precursor obtained in the resinification step is a molar ratio of the structural unit derived from the amino compound and the structural unit derived from formaldehyde constituting the amino resin precursor (the structural unit derived from the amino compound). (Mol) / formaldehyde-derived structural unit (mol)) is 1 / 3.5 ~; 1/1 · 5 force S, preferably 1/3 · 5 ~; 1/1 · 8 force More preferably, it is more preferably 1/3. If the molar ratio is within the above range, the particle size distribution is narrow! / And the ability to obtain particles can be obtained.
[0059] ァミノ樹脂前駆体は、通常、アセトンやジォキサン、メチルアルコール、ェチルアル コール、イソプロピルアルコール、ブチルアルコール、酢酸ェチル、酢酸ブチル、メチ ノレセロソルブ、ェチルセ口ソルブ、メチルェチルケトン、トルエン、キシレン等の有機溶 媒に対して可溶である力 水に対して実質的に不溶である。  [0059] The amino resin precursor is usually acetone, dioxane, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethyl acetate, butyl acetate, methineless cellosolve, ethyl acetate solve, methyl ethyl ketone, toluene, xylene, etc. Forces that are soluble in other organic solvents are substantially insoluble in water.
[0060] 第 1の製造方法では、上記アミノ樹脂前駆体を含む反応液を調製する樹脂化工程 における反応液の粘度を低くすることにより、最終的に得られるァミノ樹脂架橋粒子 の粒子径を小さくすることができる。し力もながら、反応液の粘度が 2 X 10— 2Pa ' s未満 である場合、或いは 5. 5 X 10— 2Pa ' sを超える場合には、最終的に粒子径がほぼ揃つ た (粒度分布が狭い)ァミノ樹脂架橋粒子を得ることが困難な場合がある。すなわち、 反応液の粘度が 2 X 10— 2Pa ' s (20cP)未満であると、後述する乳化工程で得られる 乳濁液の安定性が乏しくなる。このため、硬化工程においてァミノ樹脂前駆体を硬化 させる際に、得られるァミノ樹脂架橋粒子が肥大化したり、粒子同士が凝集するおそ れがあり、ァミノ樹脂架橋粒子の粒子径を制御することができず、粒度分布の広いァ ミノ樹脂架橋粒子となるおそれがある。また、乳濁液の安定性が乏しい場合には、製 造する毎に (バッチ毎に)、ァミノ樹脂架橋粒子の粒子径(平均粒子径)が変化してし まい、製品にバラツキを生じるおそれもある。一方、反応液の粘度が 5. 5 X 10— 2Pa ' s (55cP)を超えると、後述する乳化工程で用いる高速撹拌機等にかかる負荷が大き すぎて、その剪断力が低下するため、反応液を充分に撹拌する(乳濁させる)ことが できなくなるおそれがある。このため、最終的に得られるァミノ樹脂架橋粒子の粒子 径を制御するのが困難になり、粒度分布の広いアミノ樹脂架橋粒子となる場合がある 。よって、樹脂化工程において、予め反応液を上記粘度範囲に調整しておくのが好 ましい。 [0060] In the first production method, the particle diameter of the finally obtained amino resin crosslinked particles is reduced by reducing the viscosity of the reaction solution in the resinification step of preparing the reaction solution containing the amino resin precursor. can do. While also force 'is less than s, or 5. 5 X 10- 2 Pa' viscosity of the reaction solution 2 X 10- 2 Pa when exceeding s eventually particle diameter was approximately Soroitsu ( In some cases, it is difficult to obtain crosslinked amino resin particles having a narrow particle size distribution. That is, When the viscosity of the reaction solution is less than 2 × 10−2 Pa ′ s (20 cP), the stability of the emulsion obtained in the emulsification step described later becomes poor. For this reason, when the amino resin precursor is cured in the curing step, the resulting amino resin crosslinked particles may be enlarged or the particles may be aggregated, and the particle diameter of the amino resin crosslinked particles can be controlled. Therefore, there is a possibility that amino resin crosslinked particles having a wide particle size distribution may be obtained. Also, if the stability of the emulsion is poor, the particle size (average particle size) of the amino resin cross-linked particles may change each time it is manufactured (each batch), which may cause variations in the product. There is also. On the other hand, if the viscosity of the reaction solution is greater than 5. 5 X 10- 2 Pa 's (55cP), too large a load applied to the high-speed stirrer or the like to be used in the emulsion step described later, since the shearing force decreases, The reaction solution may not be sufficiently stirred (emulsified). For this reason, it is difficult to control the particle diameter of the finally obtained amino resin crosslinked particles, which may result in amino resin crosslinked particles having a wide particle size distribution. Therefore, it is preferable to adjust the reaction solution in the above viscosity range in advance in the resinification step.
[0061] 乳化工程は、樹脂化工程により得られたァミノ樹脂前駆体を乳化してァミノ樹脂前 駆体の乳濁液を調製する工程である。ァミノ樹脂前駆体の乳化にあたっては、例え ば、保護コロイドを構成し得る乳化剤を用いることが好ましぐ特に、保護コロイドを構 成し得る水溶性重合体からなる乳化剤を用いるのが好まし!/、。  [0061] The emulsification step is a step of preparing an emulsion of the amino resin precursor by emulsifying the amino resin precursor obtained in the resinification step. For emulsification of the amino resin precursor, for example, it is preferable to use an emulsifier that can form a protective colloid, and in particular, it is preferable to use an emulsifier made of a water-soluble polymer that can form a protective colloid! / ,.
[0062] 上記乳化剤としては、例えば、ポリビュルアルコール、カルボキシメチルセルロース 、アルギン酸ナトリウム、ポリアクリル酸、水溶性ポリアクリル酸塩、ポリビュルピロリドン などを用いることができる。これら乳化剤は、全量を水に溶解させて水溶液の状態で 用いてもよいし、その一部を水溶液の状態で用い、残りをそのままの状態(例えば粉 体状、顆粒状、液状など)で用いてもよい。上に例示した乳化剤のなかでも、乳濁液 の安定性、触媒との相互作用等を考慮すると、ポリビュルアルコールがより好ましい。 ポリビュルアルコールは、完全ケン化物であってもよぐ部分ケン化物であってもよい 。また、ポリビュルアルコールの重合度は、特に限定されるものではない。  [0062] Examples of the emulsifier include polybulal alcohol, carboxymethylcellulose, sodium alginate, polyacrylic acid, water-soluble polyacrylic acid salt, and polybulurpyrrolidone. These emulsifiers may be used in the form of an aqueous solution in which the entire amount is dissolved in water, or a part of the emulsifier is used in the form of an aqueous solution and the rest is used as it is (for example, powder, granule, liquid, etc.). May be. Among the emulsifiers exemplified above, polybulal alcohol is more preferable in consideration of the stability of the emulsion, interaction with the catalyst, and the like. The polybulal alcohol may be a completely saponified product or a partially saponified product. Further, the degree of polymerization of polybulal alcohol is not particularly limited.
[0063] 乳化剤の使用量は、上記樹脂化工程で得られたァミノ樹脂前駆体 100質量部に対 して、 1〜30質量部であることが好ましぐ;!〜 5質量部であることがより好ましい。該 使用量が上記範囲を外れると、乳濁液の安定性が乏しくなるおそれがある。また、ァ ミノ樹脂前駆体に対する乳化剤の使用量が多!/、程、生成する粒子の粒子径は小さく なる傾向がある。 [0063] The amount of the emulsifier used is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the amino resin precursor obtained in the resinification step;! To 5 parts by mass Is more preferable. If the amount used is outside the above range, the stability of the emulsion may be poor. Also, As the amount of emulsifier used relative to the mino resin precursor increases, the particle size of the resulting particles tends to decrease.
[0064] 乳化工程では、例えば、乳化剤の水溶液に、ァミノ樹脂前駆体の濃度(つまり、固 形分濃度)が 30〜60質量%の範囲内となるように上記樹脂化工程で得られた反応 液を添加した後、 50〜100°Cの温度範囲内で乳濁させることが好ましい。より好まし くは 60〜; 100°C、さらにより好ましくは 70〜95°Cである。乳化剤の水溶液の濃度は、 特に限定されるものではなぐァミノ樹脂前駆体の濃度を上記範囲内に調節できる濃 度であればよい。ァミノ樹脂前駆体の濃度が 30質量%未満では、ァミノ樹脂架橋粒 子の生産性が低下するおそれがあり、 60質量%を超えると、得られるァミノ樹脂架橋 粒子が肥大化したり、粒子同士が凝集してしまうおそれがあり、ァミノ樹脂架橋粒子 の粒子径の制御が困難になり、得られるァミノ樹脂架橋粒子の粒度分布が広くなる おそれがある。  [0064] In the emulsification step, for example, the reaction obtained in the resinification step so that the concentration of the amino resin precursor (that is, the solid content concentration) is in the range of 30 to 60% by mass in the aqueous solution of the emulsifier. After adding the liquid, it is preferable to make the emulsion within a temperature range of 50 to 100 ° C. More preferably, the temperature is 60 to 100 ° C, and still more preferably 70 to 95 ° C. The concentration of the aqueous solution of the emulsifier is not particularly limited as long as the concentration of the amino resin precursor can be adjusted within the above range. If the concentration of the amino resin precursor is less than 30% by mass, the productivity of the amino resin crosslinked particles may be lowered. If the concentration exceeds 60% by mass, the resulting amino resin crosslinked particles may be enlarged or the particles may aggregate. Control of the particle diameter of the crosslinked amino resin particles may be difficult, and the particle size distribution of the resulting crosslinked amino resin particles may be widened.
[0065] 乳化工程においては、撹拌手段として、上記アミノ樹脂前駆体と乳化剤の水溶液と をより強力に撹拌できる装置(高せん断力を有する装置)を用いるのが好まし!/、。具 体的な撹拌装置としては、例えば、いわゆる高速撹拌機、ホモミキサー、 TKホモミキ サー(特殊機化工業 (株)製)、高速ディスパー、ェバラマイルザ一((株)荏原製作所 製)、高圧ホモジナイザー( (株)ィズミフードマシナリ製)、スタティックミキサー( (株)ノ リタケカンパニーリミテッド製)などが挙げられる。  [0065] In the emulsification step, it is preferable to use an apparatus (an apparatus having a high shearing force) that can more strongly stir the amino resin precursor and the aqueous solution of the emulsifier as the stirring means! Specific examples of the stirrer include, for example, a so-called high-speed stirrer, homomixer, TK homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.), high-speed disperser, Ebara Milezaichi (manufactured by Ebara Corporation), Izumi Food Machinery Co., Ltd.), static mixer (manufactured by Noritake Company Limited), etc.
[0066] 乳化工程では、樹脂化工程で得られたァミノ樹脂前駆体が、所定の粒子径となるま で乳化を促進させることが好ましい。なお、所定の粒子径は、最終的に所望の粒子 径のァミノ樹脂架橋粒子が得られるよう適宜設定すればよい。具体的には、容器や 撹拌翼の種類、撹拌速度、撹拌時間、乳化温度などを適宜考慮することにより、乳化 したアミノ樹脂前駆体の平均粒子径が 0. ;!〜 20 mとなるよう乳化を行うことが好ま しく、より好ましくは 0. 5〜20〃111、さらにより好ましくは l〜5〃mである。このようにァ ミノ樹脂前駆体を上記粒子径範囲となるよう乳化させることによって、ァミノ樹脂架橋 粒子の粒子径を所望の範囲に制御することができる。  [0066] In the emulsification step, it is preferable to promote emulsification until the amino resin precursor obtained in the resinification step has a predetermined particle size. It should be noted that the predetermined particle diameter may be appropriately set so that finally the amino resin crosslinked particles having a desired particle diameter can be obtained. Specifically, the emulsification is carried out so that the average particle size of the emulsified amino resin precursor becomes 0.; Is preferably 0.5 to 20 mm 111, and more preferably 1 to 5 mm. By emulsifying the amino resin precursor so as to be in the above particle size range as described above, the particle size of the amino resin crosslinked particles can be controlled within a desired range.
[0067] 第 1の製造方法においては、最終的に得られるァミノ樹脂架橋粒子が強固に凝集 することをより確実に防止するために、必要に応じて、上記乳化工程後に得られた乳 濁液に無機粒子を添加しておくことができる。無機粒子としては、具体的には、例え ば、シリカ微粒子、ジルコユア微粒子、アルミニウム粉、アルミナゾル、セリエゾル等が 好ましく挙げられ、なかでも、入手が容易であるといった点で、シリカ微粒子がより好 ましい。無機粒子の比表面積は 10〜400m2/gであることが好ましぐより好ましくは 20〜350m2/g、さらにより好ましくは 30〜300m2/gである。無機粒子の粒子径は 0. 2 in以下であることがより好ましぐより好ましくは 0. 以下、さらにより好まし くは 0. 05 111以下である。比表面積や粒子径が上記範囲内であれば、最終的に得 られるァミノ樹脂架橋粒子が強固に凝集することを防止するのに、より一層優れた効 果を発揮することができる。 [0067] In the first production method, the milk obtained after the above emulsification step is, if necessary, to more reliably prevent the finally obtained amino resin crosslinked particles from agglomerating firmly. Inorganic particles can be added to the suspension. Specific examples of the inorganic particles include silica fine particles, zirconium fine particles, aluminum powder, alumina sol, and serie sol. Silica fine particles are more preferable because they are easily available. . The specific surface area of the inorganic particles is preferably from it preferably tool is 10~400m 2 / g 20~350m 2 / g , even more preferably 30~300m 2 / g. The particle size of the inorganic particles is more preferably 0.2 in or less, more preferably 0. or less, and still more preferably 0.05 05 or less. If the specific surface area and the particle diameter are within the above ranges, it is possible to exhibit a more excellent effect in preventing the finally obtained amino resin crosslinked particles from being strongly aggregated.
[0068] 乳濁液に無機粒子を添加する方法は、特に限定はされないが、具体的には、例え ば、無機粒子をそのままの状態 (粒子状)で添加する方法や、無機粒子を水に分散さ せた分散液の状態で添加する方法などが挙げられる。乳濁液に対する無機粒子の 添加量は、乳濁液に含まれるァミノ樹脂前駆体 100質量部に対して、;!〜 30質量部 であること力 S好ましく、より好ましくは 2〜28質量部、さらにより好ましくは 3〜25質量 部である。 1質量部未満であると、最終的に得られるァミノ樹脂架橋粒子が強固に凝 集することを十分防止することができないおそれがあり、 30質量部を超える場合は、 無機粒子のみの凝集物が発生するおそれがある。また、無機粒子を添加する際の撹 拌方法としては、前述の高せん断力を有する装置を用いる方法が無機粒子をァミノ 樹脂粒子に強固に固着させるという点で好ましい。  [0068] The method of adding the inorganic particles to the emulsion is not particularly limited. Specifically, for example, the method of adding the inorganic particles as they are (particulate), or the inorganic particles to water. The method of adding in the state of the disperse | distributed liquid etc. is mentioned. The amount of inorganic particles added to the emulsion is preferably from! To 30 parts by mass, more preferably from 2 to 28 parts by mass, based on 100 parts by mass of the amino resin precursor contained in the emulsion. Even more preferably, it is 3 to 25 parts by mass. If the amount is less than 1 part by mass, it may not be possible to sufficiently prevent the finally obtained amino resin crosslinked particles from agglomerating firmly. If the amount exceeds 30 parts by mass, an aggregate of only inorganic particles may be present. May occur. Moreover, as a stirring method at the time of adding inorganic particles, the method using the above-mentioned apparatus having a high shearing force is preferable in that the inorganic particles are firmly fixed to the amino resin particles.
[0069] 硬化工程では、上記乳化工程で調整した乳濁液に触媒 (詳しくは硬化触媒)を加え 、乳化させたァミノ樹脂前駆体の硬化反応を行う(ァミノ樹脂前駆体を乳濁状態で硬 化させる)ことによりァミノ樹脂架橋粒子 (詳しくは、ァミノ樹脂架橋粒子の懸濁液)を 生成させる。  [0069] In the curing step, a catalyst (specifically a curing catalyst) is added to the emulsion prepared in the emulsification step, and the emulsified amino resin precursor is cured (the amino resin precursor is hardened in an emulsion state). ) To produce amino resin crosslinked particles (specifically, suspension of amino resin crosslinked particles).
[0070] 上記触媒 (硬化触媒)としては酸触媒が好適である。酸触媒としては、塩酸、硫酸、 リン酸等の鉱酸;これら鉱酸のアンモニゥム塩;スルファミン酸;ベンゼンスルホン酸、 パラトルエンスルホン酸、ドデシルベンゼンスルホン酸等のスルホン酸類;フタル酸、 安息香酸、酢酸、プロピオン酸、サリチル酸等の有機酸;が使用できる。上記例示の 酸触媒のうち、硬化速度の点では鉱酸が好ましぐさらに、装置への腐食性、鉱酸使 用時の安全性等の点では、硫酸がより好ましい。また、上記触媒として硫酸を用いる 場合は、例えば、ドデシルベンゼンスルホン酸を用いる場合と比べて、最終的に得ら れるァミノ樹脂架橋粒子が変色し難ぐまた、耐溶剤性が高いため好ましい。これらの 酸触媒は 1種のみ用いても 2種以上を併用してもよい。 [0070] As the catalyst (curing catalyst), an acid catalyst is suitable. Acid catalysts include mineral acids such as hydrochloric acid, sulfuric acid and phosphoric acid; ammonium salts of these mineral acids; sulfamic acids; sulfonic acids such as benzenesulfonic acid, paratoluenesulfonic acid and dodecylbenzenesulfonic acid; phthalic acid, benzoic acid, Organic acids such as acetic acid, propionic acid, salicylic acid and the like can be used. Of the acid catalysts illustrated above, mineral acids are preferred in terms of cure speed. Furthermore, they are corrosive to equipment and use mineral acids. In terms of safety during use, sulfuric acid is more preferable. In addition, when sulfuric acid is used as the catalyst, for example, compared with the case where dodecylbenzenesulfonic acid is used, the finally obtained amino resin cross-linked particles are less likely to be discolored and are preferable because of high solvent resistance. These acid catalysts may be used alone or in combination of two or more.
[0071] 上記触媒の使用量は、上記乳化工程により得られる乳濁液中のアミノ樹脂前駆体 1 00質量部に対して、 0. ;!〜 5質量部であることが好ましぐより好ましくは 0. 3〜4. 5 質量部、さらにより好ましくは 0. 5〜4. 0質量部である。触媒の使用量が 5質量部を 超えると、乳濁状態が破壊され、粒子同士が凝集してしまうおそれがあり、 0. 1質量 部未満であると、反応に長時間を要したり、硬化が不十分となるおそれがある。また、 同様に、上記触媒の使用量は、原料化合物として用いたアミノ系化合物 1モルに対し て 0· 002モル以上であることが好ましぐより好ましくは 0. 005モル以上、さらに好ま しくは 0. 01 -0. 1モルである。触媒の使用量がアミノ系化合物 1モルに対して 0. 00 2モル未満であると、反応に長時間を要したり、硬化が不十分となるおそれがある。  [0071] The amount of the catalyst used is preferably 0.;! To 5 parts by mass with respect to 100 parts by mass of the amino resin precursor in the emulsion obtained by the emulsification step. Is 0.3 to 4.5 parts by mass, and still more preferably 0.5 to 4.0 parts by mass. If the amount of the catalyst used exceeds 5 parts by mass, the emulsion state may be destroyed and the particles may agglomerate. If the amount is less than 0.1 parts by mass, the reaction may take a long time or be cured. May become insufficient. Similarly, the amount of the catalyst used is preferably 0.002 mol or more, more preferably 0.005 mol or more, and still more preferably based on 1 mol of the amino compound used as the raw material compound. 0. 01 -0. 1 mole. If the amount of the catalyst used is less than 0.002 mol with respect to 1 mol of the amino compound, the reaction may take a long time or the curing may be insufficient.
[0072] 硬化工程における硬化反応は、反応溶液 (乳濁液)を、好ましくは 15 (常温)〜 80 °C、より好ましくは 20〜70°C、さらに好ましくは 30〜60°Cで、少なくとも 1時間保持し た後、常圧または加圧下で好ましくは 60〜; 150°C、より好ましくは 60〜; 130°C、さら に好ましくは 60〜; 100°Cの範囲の温度で行うことが好ましい。硬化反応の反応温度 1S 60°C未満であると、硬化が十分に進行せず、得られるァミノ樹脂架橋粒子の耐 溶剤性や耐熱性が低下するおそれがある。一方、反応温度が 150°Cを超える場合は 、強固な加圧反応器が必要となり、経済的でない。硬化反応の終点は、サンプリング または目視によって判断すればよい。また、硬化反応の反応時間は、特に限定され ない。  [0072] In the curing reaction in the curing step, the reaction solution (emulsion) is preferably at 15 (room temperature) to 80 ° C, more preferably 20 to 70 ° C, still more preferably 30 to 60 ° C, and at least After holding for 1 hour, it is preferably carried out at a temperature in the range of 60 to 150 ° C, more preferably 60 to 130 ° C, more preferably 60 to 100 ° C under normal or elevated pressure. preferable. If the reaction temperature of the curing reaction is less than 1S 60 ° C, curing may not proceed sufficiently, and the solvent resistance and heat resistance of the resulting amino resin crosslinked particles may be reduced. On the other hand, when the reaction temperature exceeds 150 ° C, a strong pressure reactor is required, which is not economical. The end point of the curing reaction may be judged by sampling or visual observation. Further, the reaction time of the curing reaction is not particularly limited.
[0073] 硬化工程は、撹拌下で行うことが好ましぐ撹拌手段としては、公知の撹拌装置を 用いればよい。硬化工程において、乳濁状態のァミノ樹脂前駆体を硬化させて得ら れるァミノ樹脂架橋粒子の平均粒子径を、 0. ;!〜 20 mとすることが好ましぐより好 ましくは 0. 5〜20 111、さらにより好ましくは;!〜 5 mである。  [0073] A known stirring device may be used as the stirring means that is preferably performed under stirring in the curing step. In the curing step, the average particle diameter of the crosslinked amino resin particles obtained by curing the emulsion of the amino resin precursor in the emulsion state is preferably 0.;! To 20 m, more preferably 0. 5 to 20 111, even more preferably;! To 5 m.
[0074] 第 1の製造方法においては、ァミノ樹脂前駆体の乳濁液ゃァミノ樹脂架橋粒子の 懸濁液に、染料を水に溶解してなる水溶液を添加する着色工程を含むことができる。 [0075] 第 1の製造方法においては、上記硬化工程により得られたァミノ樹脂架橋粒子を含 む懸濁液の中和を行う中和工程を設けてもよい。中和工程は、上記硬化工程におい て、硬化触媒として硫酸等の酸触媒を用いた場合に行うことが好ましい。中和工程を 行うことにより、上記酸触媒を取り除くこと(具体的には酸触媒を中和すること)ができ 、例えば、後述する加熱工程などにおいて、ァミノ樹脂架橋粒子を加熱した場合のァ ミノ樹脂架橋粒子の変色(例えば、黄色に変色)を抑制すること力 Sできる。 [0074] The first production method may include a coloring step of adding an aqueous solution obtained by dissolving a dye in water to a suspension of an emulsion of an amino resin precursor and an amino resin crosslinked particle. [0075] In the first production method, a neutralization step of neutralizing the suspension containing the amino resin crosslinked particles obtained by the curing step may be provided. The neutralization step is preferably performed when an acid catalyst such as sulfuric acid is used as the curing catalyst in the curing step. By performing the neutralization step, the acid catalyst can be removed (specifically, the acid catalyst can be neutralized). For example, in the heating step described later, the amino acid when the amino resin crosslinked particles are heated is used. It is possible to suppress the discoloration of the resin crosslinked particles (for example, discoloration to yellow).
[0076] 中和工程でいう「中和」とは、ァミノ樹脂架橋粒子を含む懸濁液の pHを 5以上とする ことであり、より好ましくは pHを 5〜9にすることである。該懸濁液の pHが 5未満である 場合には、酸触媒が残っているので後述する加熱工程などにおいて、ァミノ樹脂架 橋粒子が変色する場合がある。上記中和により該懸濁液の pHを上記範囲内に調節 することで、硬度が高ぐ耐溶剤性や耐熱性に優れ、かつ、変色のないアミノ樹脂架 橋粒子が得られる。中和工程において用いることのできる中和剤としては、例えば、 アルカリ性物質が好適である。該アルカリ性物質としては、例えば、炭酸ナトリウムや 水酸化ナトリウム、水酸化カリウム、アンモニアが挙げられる力 S、なかでも取り扱いが 容易である点で、水酸化ナトリウムが好ましぐ水酸化ナトリウム水溶液が好適に用い られる。これらは 1種のみ用いても 2種以上を併用してもよレ、。  “Neutralization” as used in the neutralization step means that the pH of the suspension containing the amino resin crosslinked particles is 5 or more, and more preferably 5-9. If the pH of the suspension is less than 5, since the acid catalyst remains, the amino resin bridge particles may be discolored in the heating step described later. By adjusting the pH of the suspension within the above range by neutralization, amino resin bridge particles having high hardness, excellent solvent resistance and heat resistance, and no discoloration can be obtained. As a neutralizing agent that can be used in the neutralization step, for example, an alkaline substance is suitable. Examples of the alkaline substance include sodium carbonate, sodium hydroxide, potassium hydroxide, and ammonia S. Among them, an aqueous sodium hydroxide solution that sodium hydroxide is preferable is preferable because it is easy to handle. Used. These can be used alone or in combination of two or more.
[0077] 第 1の製造方法においては、硬化工程後あるいは中和工程後に得られるァミノ樹脂 架橋粒子の懸濁液から、該ァミノ樹脂架橋粒子を取り出す分離工程を設けてもよ!/、。  [0077] In the first production method, a separation step of taking out the amino resin crosslinked particles from the suspension of the amino resin crosslinked particles obtained after the curing step or after the neutralization step may be provided.
[0078] ァミノ樹脂架橋粒子を懸濁液から取り出す方法 (分離方法)としては、濾別する方法 や遠心分離機等の分離機を用いる方法が簡便な方法として挙げられるが、特に限定 されるわけではなぐ通常公知の分離方法はいずれも用いることができる。  [0078] Examples of a method (separation method) for taking out the amino resin crosslinked particles from the suspension include a filtration method and a method using a separator such as a centrifuge, but the method is particularly limited. Any of the conventionally known separation methods can be used.
[0079] なお、懸濁液から取り出した後のアミノ樹脂架橋粒子は、必要に応じて、水等で洗 浄してもよい。  [0079] The amino resin crosslinked particles taken out from the suspension may be washed with water or the like, if necessary.
[0080] 第 1の製造方法においては、分離工程を経て取り出したァミノ樹脂架橋粒子を、 13 0〜190°Cの温度で加熱する加熱工程を行うことが好ましい。加熱工程を行うことによ つて、ァミノ樹脂架橋粒子に付着している水分および残存しているフリーな(未反応 の)ホルムアルデヒドを除去でき、かつ、ァミノ樹脂架橋粒子内の縮合 (架橋)をさらに 促進させること力 Sできる。上記加熱温度が 130°Cより低い場合には、ァミノ樹脂架橋 粒子内の縮合 (架橋)を十分に促進させることができず、ァミノ樹脂架橋粒子の硬度、 耐溶剤性および耐熱性を向上させることができないおそれがあり、 190°Cを越える場 合は、得られるァミノ樹脂架橋粒子が変色するおそれがある。上述の中和工程を行 つた場合であっても、加熱温度が上記温度範囲外である場合の影響は同様である。 得られるァミノ樹脂架橋粒子の諸特性 (硬度、耐溶剤性、耐熱性、耐変色性)を向上 させる観点からは、中和工程を行った上で、ァミノ樹脂架橋粒子の加熱温度を上記 範囲内とするのが好ましい。 [0080] In the first production method, it is preferable to perform a heating step of heating the amino resin crosslinked particles taken out through the separation step at a temperature of 130 to 190 ° C. By performing the heating process, moisture adhering to the amino resin crosslinked particles and remaining free (unreacted) formaldehyde can be removed, and condensation (crosslinking) in the amino resin crosslinked particles can be further reduced. Power to promote S If the heating temperature is lower than 130 ° C, the amino resin cross-links Condensation (crosslinking) within the particles cannot be sufficiently promoted, and the hardness, solvent resistance and heat resistance of the crosslinked amino resin particles may not be improved. The resulting amino resin crosslinked particles may be discolored. Even when the neutralization step described above is performed, the effect when the heating temperature is outside the above temperature range is the same. From the viewpoint of improving various properties (hardness, solvent resistance, heat resistance, and discoloration resistance) of the resulting crosslinked amino resin particles, the heating temperature of the crosslinked amino resin particles is within the above range after performing the neutralization step. Is preferable.
[0081] 加熱工程における加熱方法は、特に限定されるものではなぐ通常公知の加熱方 法を用いればよい。加熱工程は、例えば、ァミノ樹脂架橋粒子の含水率が 3質量% 以下はり好ましくは 2質量%以下)となった段階で終了すればよい。また、加熱時間 は、特に限定はされない。  [0081] The heating method in the heating step is not particularly limited, and a generally known heating method may be used. The heating step may be completed when, for example, the moisture content of the amino resin crosslinked particles reaches 3% by mass or less, preferably 2% by mass or less. Further, the heating time is not particularly limited.
[0082] 第 1の製造方法で得られたァミノ樹脂架橋粒子は、これを前記乳化時における水系 媒体から分離して乾燥、粉砕した後、得られた粉砕物を溶媒に分散させて懸濁液と したものを、湿式および乾式分級工程へと供給することもできる。また、硬化工程後の 懸濁液 (硬化工程後、中和工程を介して得られた懸濁液など、分離工程に供するま での任意の懸濁液を含む)を湿式分級に供することも本発明法の好まし!/、態様であ る。湿式分級後の懸濁液を、上述した分離工程、必要に応じて行う加熱工程の後、 乾燥、粉砕することで、水分含量 0. 05〜2質量%の粉体微粒子を得、これを乾式分 級工程に供することが好ましレ、。  [0082] The amino resin crosslinked particles obtained by the first production method are separated from the aqueous medium at the time of emulsification, dried and pulverized, and then the obtained pulverized product is dispersed in a solvent and suspended. This can be supplied to wet and dry classification processes. In addition, the suspension after the curing step (including any suspension until the separation step such as the suspension obtained through the neutralization step after the curing step) may be subjected to wet classification. This is a preferred embodiment of the method of the present invention. The suspension after the wet classification is dried and pulverized after the above-described separation step and heating step as necessary, to obtain fine powder particles having a moisture content of 0.05 to 2% by mass. It is preferable to use it for the classification process.
[0083] 次に、ァミノ樹脂架橋粒子の第 2の製造方法について説明する。  [0083] Next, a second method for producing an amino resin crosslinked particle will be described.
[0084] 第 2の製造方法  [0084] Second manufacturing method
ァミノ樹脂架橋粒子の第 2の製造方法 (以下、単に「第 2の製造方法」と称すること がある。)とは、アミノ系化合物とホルムアルデヒドとを反応させることによって得られた ァミノ樹脂前駆体を、水系媒体中で界面活性剤と混合し、この混合液に触媒を添カロ することで前記アミノ樹脂前駆体を前記水系媒体中で粒子化し析出させた後、前記 ァミノ樹脂架橋粒子を前記水系媒体力 分離して乾燥し、得られた乾燥物を粉砕す る方法である。  The second production method of the crosslinked amino resin particles (hereinafter sometimes simply referred to as “second production method”) refers to an amino resin precursor obtained by reacting an amino compound with formaldehyde. The amino resin precursor is granulated and precipitated in the aqueous medium by mixing with a surfactant in an aqueous medium and adding a catalyst to the mixed solution, and then the amino resin crosslinked particles are added to the aqueous medium. This is a method of separating the force and drying, and then crushing the resulting dried product.
[0085] 第 2の製造方法でも、第 1の製造方法と同様、樹脂化工程を採用し、当該樹脂化工 程においてアミノ系化合物とホルムアルデヒドとを反応させてァミノ樹脂前駆体を生成 させる力 第 2の製造方法では、樹脂化工程により得られたァミノ樹脂前駆体を水系 媒体中で界面活性剤と混合する混合工程を採用し、このアミノ樹脂前駆体と界面活 性剤を含む混合液に触媒を加えてァミノ樹脂前駆体の硬化による粒子化および析出 を行い、ァミノ樹脂架橋粒子を得る硬化 ·粒子化工程を採用する点で、第 1の製造方 法とは異なる。 [0085] In the second manufacturing method, as in the first manufacturing method, the resin conversion step is adopted and the resin conversion process is performed. In this process, the amino compound precursor and formaldehyde are reacted to form an amino resin precursor. In the second production method, the amino resin precursor obtained in the resinification step is mixed with a surfactant in an aqueous medium. A curing process to obtain amino resin crosslinked particles by adding a catalyst to the mixed solution containing the amino resin precursor and the surfactant to form particles by precipitation and precipitation of the amino resin precursor. It differs from the first manufacturing method in adopting it.
[0086] 第 2の製造方法では、水溶液状態にお!/、てァミノ樹脂前駆体の硬化を開始させるこ とにより粒子径の小さいァミノ樹脂架橋粒子の調製が容易となる(例えば、平均粒子 径が 0· 1~50 ^ 111) 0 [0086] In the second production method, it is easy to prepare crosslinked amino acid particles having a small particle diameter by initiating curing of the amino resin precursor in an aqueous solution state (for example, average particle diameter). 0 · 1 ~ 50 ^ 111) 0
[0087] なお、第 2の製造方法で用いるアミノ系化合物としては、後述する水混和性の程度 を満たすようにその種類および組成比を適宜設定することが好ましい。例えば、ホル マリンと反応して水溶性のァミノ樹脂前駆体を生成し得るアミノ系化合物を必須とする ことがより好ましい。  [0087] It is preferable that the type and composition ratio of the amino compound used in the second production method are appropriately set so as to satisfy the degree of water miscibility described later. For example, it is more preferable to use an amino compound that can react with formalin to produce a water-soluble amino resin precursor.
[0088] また、樹脂化工程で得られるァミノ樹脂前駆体は水溶性であることが好ましい。第 2 の製造方法にお!/、て用いる界面活性剤は、ァミノ樹脂前駆体の水系媒体に水親和 性を付与するために使用するものであり、当該界面活性剤には、第 1の製造方法で 用いる乳化剤は含まれない。  [0088] The amino resin precursor obtained in the resinification step is preferably water-soluble. The surfactant used in the second production method is used for imparting water affinity to the aqueous medium of the amino resin precursor, and the surfactant is used for the first production. The emulsifier used in the method is not included.
[0089] 本発明において、上記水親和性は、 15°Cで、初期縮合物たるァミノ樹脂前駆体に 水を滴下して白濁を生じるまでの水の滴下量の初期縮合物に対する質量% (以下、 これを水混和度という。)で表され、その値が大きいほど、水親和性が高いことを意味 する。なお、第 2の製造方法において好適なァミノ樹脂前駆体の水混和度は 100% 以上である。水混和度が 100%未満のァミノ樹脂前駆体では、界面活性剤を含んだ 水性液中に、いかに分散させても、粒子径が比較的大きい不均一な懸濁液しか形成 せず、最終的に得られる球状微粒子は均一な粒子径のものとはなりにくい (粒度分布 が広い)。  [0089] In the present invention, the water affinity is 15% by mass% of the amount of water added to the initial condensate until water is dropped to the amino resin precursor that is the initial condensate to cause white turbidity (hereinafter referred to as "%"). This is called water miscibility.) The higher the value, the higher the water affinity. Note that the water miscibility of the amino resin precursor suitable for the second production method is 100% or more. In the case of an amino resin precursor having a water miscibility of less than 100%, no matter how it is dispersed in an aqueous liquid containing a surfactant, only a non-uniform suspension having a relatively large particle size is formed. The spherical fine particles obtained in this way are unlikely to have a uniform particle size (wide particle size distribution).
[0090] 混合工程においては、樹脂化工程により得られたァミノ樹脂前駆体を水系媒体中 で撹拌等により界面活性剤と混合し、混合液を調製する。  [0090] In the mixing step, the amino resin precursor obtained in the resinification step is mixed with a surfactant in an aqueous medium by stirring or the like to prepare a mixed solution.
上記界面活性剤としては、例えば、ァユオン性界面活性剤、カチオン性界面活性 剤、非イオン性界面活性剤、両性界面活性剤など全ての界面活性剤が使用できるが 、特にァニオン性界面活性剤または非イオン性界面活性剤あるいはそれらの混合物 が好ましい。 Examples of the surfactant include ayu surfactant and cationic surfactant. Any surfactant such as an agent, a nonionic surfactant, and an amphoteric surfactant can be used, but an anionic surfactant, a nonionic surfactant, or a mixture thereof is particularly preferable.
[0091] ァニオン性界面活性剤としては、ナトリウムドデシルサルフェート、カリウムドデシル サルフェートなどの如きアルカリ金属アルキルサルフェート;アンモニゥムドデシルサ ノレフェートなどの如きアンモニゥムアルキルサルフェート;ナトリウムドデシルポリグリコ ールエーテルサルフェート;ナトリウムスルホリシノエート;スルホン化パラフィンのアル カリ金属塩、スルホン化パラフィンのアンモニゥム塩などの如きアルキルスルホン酸塩 ;ナトリウムラウレート、トリエタノールアミンォレエート、トリエタノールァミンアビェテー トなどの如き脂肪酸塩;ナトリウムドデシルベンゼンスルホネート、アルカリフエノールヒ ドロキシエチレンのアルカリ金属サルフェートなどの如きアルキルァリールスルホン酸 塩;高アルキルナフタレンスルホン酸塩;ナフタレンスルホン酸ホルマリン縮合物;ジ アルキルスルホコハク酸塩;ポリオキシエチレンアルキルサルフェート塩;ポリオキシェ チレンアルキルァリールサルフェート塩などが使用でき、非イオン性界面活性剤とし ては、ポリオキシエチレンアルキルエーテル;ポリオキシエチレンアルキルァリールェ 一テル;ソルビタン脂肪酸エステル;ポリオキシエチレンソルビタン脂肪酸エステル;グ リセロールのモノラウレートなどの脂肪酸モノダリセライド;ポリオキシエチレンォキシプ ロピレン共重合体;エチレンオキサイドと脂肪属ァミン、アミドまたは酸との縮合生成 物などが使用できる。  [0091] Examples of the anionic surfactant include alkali metal alkyl sulfates such as sodium dodecyl sulfate and potassium dodecyl sulfate; ammonium alkyl sulfates such as ammonium dodecyl san sulfate; sodium dodecyl polyglycol ether sulfate; sodium Sulfolicinoates; Alkyl sulfonates such as alkali metal salts of sulfonated paraffins, ammonium salts of sulfonated paraffins; Fatty acids such as sodium laurate, triethanolamine oleate, triethanolamine abiate, etc. Salts: Alkyl aryl sulfonic acid salts such as sodium dodecylbenzenesulfonate, alkali metal sulfate of alkali phenolic ethylene; Lunaphthalene sulfonate; naphthalene sulfonate formalin condensate; dialkyl sulfosuccinate; polyoxyethylene alkyl sulfate salt; polyoxyethylene alkyl aryl sulfate salt can be used. Polyoxyethylene alkyl aryl ester; Sorbitan fatty acid ester; Polyoxyethylene sorbitan fatty acid ester; Fatty acid monodalides such as monolaurate of glycerol; Polyoxyethylene oxypropylene copolymer; Ethylene oxide A condensation product with an aliphatic amine, amide or acid can be used.
[0092] 界面活性剤の使用量は、上記樹脂化工程で得られたァミノ樹脂前駆体 100質量部 に対して、 0. 01〜; 10質量部の範囲が好ましい。 0. 01質量部未満ではァミノ樹脂架 橋粒子の安定な懸濁液が得られないことがあり、また、 10質量部を超えると、上記懸 濁液に不必要な泡立ちが生じたり、最終的に得られるァミノ樹脂架橋粒子の物性に 悪影響を与えることがある。  [0092] The amount of the surfactant used is preferably in the range of 0.01 to 10 parts by mass with respect to 100 parts by mass of the amino resin precursor obtained in the resinification step. If the amount is less than 01 parts by mass, a stable suspension of the amino resin bridge particles may not be obtained. If the amount exceeds 10 parts by mass, unnecessary foaming may occur in the suspension, or the final suspension may be lost. It may adversely affect the physical properties of the resulting amino resin crosslinked particles.
[0093] 混合工程では、例えば、界面活性剤の水溶液に、ァミノ樹脂前駆体の濃度(つまり 、固形分濃度)が 3〜25質量%の範囲内となるように、上記樹脂化工程で得られた反 応液を添加した後、混合することが好ましい。この場合、界面活性剤の水溶液の濃度 は、特に限定されるものではなぐァミノ樹脂前駆体の濃度を上記範囲内に調節でき る濃度であればよい。上記アミノ樹脂前駆体の濃度が 3質量%未満であると、アミノ樹 脂架橋粒子の生産性が低下するおそれがあり、 25質量%を超えると、得られるァミノ 樹脂架橋粒子が肥大化したり、粒子同士が凝集したりしてしまうおそれがあり、ァミノ 樹脂架橋粒子の粒子径を制御することができなくなるため、粒度分布の広レ、アミノ樹 脂架橋粒子となるおそれがある。 [0093] In the mixing step, for example, in the aqueous solution of the surfactant, the concentration of the amino resin precursor (that is, the solid content concentration) is obtained in the above resination step so as to be in the range of 3 to 25% by mass. It is preferable to mix after adding the reaction solution. In this case, the concentration of the aqueous surfactant solution is not particularly limited, and the concentration of the amino resin precursor can be adjusted within the above range. Any concentration can be used. If the concentration of the amino resin precursor is less than 3% by mass, the productivity of the amino resin crosslinked particles may be reduced. If the concentration exceeds 25% by mass, the resulting amino resin crosslinked particles may be enlarged or particles may be produced. There is a possibility that they may aggregate with each other, and the particle diameter of the amino resin crosslinked particles cannot be controlled, so that there is a possibility that the particles have a wide particle size distribution and amino resin crosslinked particles.
[0094] 混合工程における撹拌方法としては、一般的な撹拌方法を採用すればよぐ例え ば、ディスクタービン、ファンタービン、ファウドラー型、プロペラ型および多段翼など の撹拌翼を使用して撹拌する方法等が好ましい。  [0094] As a stirring method in the mixing step, a general stirring method may be employed. For example, a stirring method using stirring blades such as a disk turbine, a fan turbine, a Faudler type, a propeller type, and a multistage blade is used. Etc. are preferred.
[0095] 第 2の製造方法においては、最終的に得られるァミノ樹脂架橋粒子が強固に凝集 することを防止するためには、必要に応じて、混合工程後に得られた混合液に無機 粒子を添加しておいてもよい。無機粒子およびその添加方法等については、前述し た第 1の製造方法での説明が同様に適用できる。  [0095] In the second production method, in order to prevent the finally obtained amino resin crosslinked particles from agglomerating firmly, if necessary, inorganic particles are added to the mixed liquid obtained after the mixing step. It may be added. Regarding the inorganic particles and the addition method thereof, the description in the first production method described above can be similarly applied.
[0096] 硬化 ·粒子化工程においては、上記混合工程で調製した混合液に触媒 (詳しくは 硬化触媒)を加え、ァミノ樹脂前駆体の硬化反応およびその粒子化を行!、ァミノ樹脂 架橋粒子(詳しくは、ァミノ樹脂架橋粒子の懸濁液)を生成させる。  [0096] In the curing and granulating step, a catalyst (specifically a curing catalyst) is added to the mixed solution prepared in the above mixing step to carry out the curing reaction and particle formation of the amino resin precursor. Specifically, a suspension of amino resin crosslinked particles) is produced.
[0097] 上記触媒 (硬化触媒)としては、酸触媒が好適である。酸触媒としては、第 1の製造 方法において例示したものと同様のものが好ましく用いられる力 S、第 2製造方法にお いては、特に、炭素数 10〜18のアルキル基を有するアルキルベンゼンスルホン酸を 用いることが好ましい。炭素数 10〜; 18のアルキル基を有するアルキルベンゼンスル ホン酸は、前記初期縮合物たるァミノ樹脂前駆体の水性液中で、特異な界面活性能 を発揮し、硬化樹脂の安定な懸濁液を生成する。具体的には、例えばデシルペンゼ ンスルホン酸、ドデシルベンゼンスルホン酸、テトラデシルベンゼンスルホン酸、へキ サデシルベンゼンスルホン酸、ォクタデシルベンゼンスルホン酸などが挙げられる。こ れらは 1種のみ用いても 2種以上を併用してもよレ、。  [0097] As the catalyst (curing catalyst), an acid catalyst is suitable. As the acid catalyst, the same force S as exemplified in the first production method is preferably used, and in the second production method, alkylbenzenesulfonic acid having an alkyl group having 10 to 18 carbon atoms is used. It is preferable to use it. Alkylbenzenesulfonic acid having an alkyl group having 10 to 18 carbon atoms exhibits a unique surface activity in the aqueous liquid of the amino resin precursor as the initial condensate, and forms a stable suspension of the cured resin. Generate. Specific examples include decyl benzene sulfonic acid, dodecyl benzene sulfonic acid, tetradecyl benzene sulfonic acid, hexadecyl benzene sulfonic acid, and octadecyl benzene sulfonic acid. These can be used alone or in combination of two or more.
[0098] 上記触媒の使用量は、上記混合工程により得られた混合液中のアミノ樹脂前駆体 100質量部に対して、 0. ;!〜 20質量部であることが好ましぐより好ましくは 0. 5〜1 0質量部、さらにより好ましくは;!〜 10質量部である。上記触媒の使用量が、上記範 囲を下回る少量では、縮合硬化に長時間を要し、また、ァミノ樹脂架橋粒子の安定な 懸濁液が得られず、最終的に凝集粗大化した粒子を多量に含む状態でしか得られ ないおそれがある。また、上記範囲を上回る多量では、生成した懸濁液中のアミノ樹 脂架橋粒子中に、上記アルキルベンゼンスルホン酸等の触媒が必要以上に分配さ れることになり、その結果、ァミノ樹脂架橋粒子が可塑化されて縮合硬化中に粒子間 の凝集ゃ融着が生じやすくなり、最終的に均一な粒子径を有するァミノ樹脂架橋粒 子が得られな!/、おそれがある。 [0098] The amount of the catalyst used is preferably 0.;! To 20 parts by mass with respect to 100 parts by mass of the amino resin precursor in the mixed solution obtained by the mixing step. 0.5 to 10 parts by mass, even more preferably;! To 10 parts by mass. When the amount of the catalyst used is less than the above range, it takes a long time for condensation and curing, and the stable crosslinking of the amino resin crosslinked particles. There is a possibility that a suspension cannot be obtained, and can only be obtained in a state containing a large amount of particles that are finally agglomerated and coarsened. On the other hand, if the amount exceeds the above range, the catalyst such as alkylbenzene sulfonic acid is distributed more than necessary in the amino resin crosslinked particles in the generated suspension, and as a result, the amino resin crosslinked particles are dispersed. If the particles are agglomerated and condensed between the particles during condensation curing, fusion is likely to occur, and finally an amino resin crosslinked particle having a uniform particle size may not be obtained!
[0099] また、同様に、上記触媒の使用量としては、原料化合物として用いたアミノ系化合 物 1モルに対して 0· 0005モル以上であることが好ましぐより好ましくは 0· 002モル 以上、さらに好ましくは 0. 005-0. 05モルである。触媒の使用量がアミノ系化合物 1 モルに対して 0. 0005モル未満であると、反応に長時間を要したり、硬化が不十分と なるおそれがある。 [0099] Similarly, the amount of the catalyst used is preferably 0.005 mol or more, more preferably 0.002 mol or more with respect to 1 mol of the amino compound used as the raw material compound. More preferably, it is 0.005-0.05 mol. If the amount of the catalyst used is less than 0.0005 mol with respect to 1 mol of the amino compound, the reaction may take a long time or the curing may be insufficient.
[0100] 硬化 ·粒子化工程における硬化反応および粒子化は、ァミノ樹脂前駆体の混合液 に上記触媒を加えて、撹拌下、 0°Cの低温から加圧下 100°C以上の高温までの中の 適切な温度で保持すればよい。上記触媒の添加方法には特に制限はなぐ適宜選 択できる。硬化反応の終点は、サンプリングまたは目視によって判断すればよい。ま た、硬化反応の反応時間は、特に限定されない。硬化反応は、一般には、 90°Cある いはそれ以上の温度に昇温して一定時間保持することにより完結する力 必ずしも 高温での硬化は必要なぐ低温短時間であっても、得られる懸濁液中のアミノ樹脂架 橋粒子がメタノールやアセトンで膨潤しなくなる程度まで硬化されていれば充分であ  [0100] Curing · The curing reaction and particle formation in the particle formation process are carried out by adding the above catalyst to the mixture of the amino resin precursor and stirring the solution from a low temperature of 0 ° C to a high temperature of 100 ° C or higher under pressure. It is sufficient to keep at an appropriate temperature. The method for adding the catalyst is not particularly limited and can be appropriately selected. The end point of the curing reaction may be judged by sampling or visual observation. Moreover, the reaction time of the curing reaction is not particularly limited. The curing reaction is generally a force that can be completed by raising the temperature to 90 ° C or higher and holding it for a certain period of time. It is sufficient if the amino resin bridge particles in the suspension are cured to such an extent that they do not swell with methanol or acetone.
[0101] 硬化'粒子化工程は、通常公知の撹拌装置などによる撹拌下で行うことが好ましい 。好ましいァミノ樹脂架橋粒子の平均粒子径は、第 1の製造方法の硬化工程におけ るァミノ樹脂架橋粒子の平均粒子径のそれと同様である。 [0101] It is preferable that the curing and particle formation step be performed under stirring by a generally known stirring device or the like. The average particle size of the preferred amino resin crosslinked particles is the same as that of the average particle size of the amino resin crosslinked particles in the curing step of the first production method.
[0102] 第 2の製造方法においては、上記硬化工程により得られたァミノ樹脂架橋粒子を含 む懸濁液の中和を行う中和工程を含むことができる。中和工程における pHの範囲や 中和剤の種類等の詳細については、第 1の製造方法での説明が同様に適用できる。  [0102] The second production method may include a neutralization step of neutralizing the suspension containing the amino resin crosslinked particles obtained by the curing step. For details such as the pH range and the type of neutralizing agent in the neutralization step, the explanation in the first production method can be applied in the same way.
[0103] 第 2の製造方法においては、硬化'粒子化工程後あるいは中和工程後に得られる ァミノ樹脂架橋粒子の懸濁液から、該ァミノ樹脂架橋粒子を取り出す分離工程を設 けてもよい。なお、第 2の製造方法において、ァミノ樹脂架橋粒子を懸濁液から分離 して取り出すこととは、硬化によって得られたァミノ樹脂架橋粒子を混合工程におけ る水系媒体から分離して取り出すことである。ァミノ樹脂架橋粒子を懸濁液から取り出 す方法(分離方法)については、第 1の製造方法と同様の方法を適用できる。 [0103] In the second production method, there is provided a separation step of taking out the amino resin crosslinked particles from the suspension of the amino resin crosslinked particles obtained after the curing and particle forming step or after the neutralization step. You may choose. In the second production method, the separation of the amino resin crosslinked particles from the suspension means that the amino resin crosslinked particles obtained by curing are separated and removed from the aqueous medium in the mixing step. is there. As a method (separation method) for taking out the amino resin crosslinked particles from the suspension, a method similar to the first production method can be applied.
[0104] 第 2の製造方法においては、分離工程を経て取り出したァミノ樹脂架橋粒子を、 13 0〜190°Cの温度で加熱する加熱工程を行うことが好ましい。加熱工程の条件として は、第 1の製造方法の加熱工程と同様の条件が適用できる。  [0104] In the second production method, it is preferable to perform a heating step in which the amino resin crosslinked particles taken out through the separation step are heated at a temperature of 130 to 190 ° C. As conditions for the heating step, the same conditions as those for the heating step of the first manufacturing method can be applied.
[0105] 第 2の製造方法で得られたァミノ樹脂架橋粒子は、これを前記混合工程時あるいは 硬化 ·粒子化工程時の水系媒体から分離して乾燥、粉砕した後、得られた粉砕物を 溶媒と混合して懸濁液とし、これを湿式分級、分離、乾燥した後、乾式分級するのが 好ましい。上記硬化、粒子化工程後の懸濁液、または、中和工程/水洗工程を経た 懸濁液を、湿式および乾式分級に供給することが好ましい。湿式分級後、粒子を分 離し、必要に応じて加熱工程を介して乾燥、粉砕して、水分含量 0. 05〜2質量%の 粉体微粒子とした後、乾式分級することが好ましい。  [0105] The amino resin crosslinked particles obtained by the second production method are separated from the aqueous medium at the time of the mixing step or the curing and granulating step, dried and pulverized. It is preferable to mix with a solvent to form a suspension, which is subjected to wet classification, separation and drying, and then dry classification. It is preferable to supply the suspension after the curing and granulating step or the suspension after the neutralization step / water washing step to wet and dry classification. After wet classification, it is preferable to separate the particles, and if necessary, dry and pulverize them through a heating step to form fine powder particles having a water content of 0.05 to 2% by mass, and then dry classification.
[0106] 次に、有機質無機質複合材料からなる微粒子(上記 (C) )の、その構造および製造 方法について説明する。上記有機質無機質複合材料の微粒子の重合方法に特に 限定はなぐ乳化重合、懸濁重合、シード重合、ゾルゲル重合などの公知の重合方 法が適用できる。  [0106] Next, the structure and manufacturing method of the fine particles (the above (C)) made of an organic-inorganic composite material will be described. Known polymerization methods such as emulsion polymerization, suspension polymerization, seed polymerization, and sol-gel polymerization are applicable without particular limitation to the method for polymerizing fine particles of the organic-inorganic composite material.
[0107] 上述のように、有機質無機質複合材料力 なる微粒子(以下、複合体粒子という。 ) は、有機質部分としての有機ポリマー骨格と、無機質部分としてのポリシロキサン骨 格とを含んでなる粒子である。該複合体粒子は、有機ポリマー骨格中の少なくとも 1 個の炭素原子に、ポリシロキサン骨格中のケィ素原子が直接化学結合した有機ケィ 素原子を分子内に有してレ、る形態(化学結合タイプ)であるのが好ましレ、。具体的な 形態としては、ポリシロキサン骨格中のケィ素原子と有機ポリマー骨格中の炭素原子 とが結合していることにより、ポリシロキサン骨格と有機ポリマー骨格とが 3次元的なネ ットワーク構造を構成して!/、る形態が好まし!/、。  [0107] As described above, fine particles (hereinafter referred to as composite particles) that are organic-inorganic composite material force are particles including an organic polymer skeleton as an organic part and a polysiloxane skeleton as an inorganic part. is there. The composite particle has an organic carbon atom in which a chemical atom in the polysiloxane skeleton is directly chemically bonded to at least one carbon atom in the organic polymer skeleton (chemical bond). Type). As a specific form, the polysiloxane skeleton and the organic polymer skeleton form a three-dimensional network structure by bonding the carbon atom in the polysiloxane skeleton and the carbon atom in the organic polymer skeleton. And I like the form!
[0108] 上記有機ポリマー骨格は、側鎖を有するもの、分岐構造を有するもの、さらには架 橋構造を有するものであってもよい。該骨格を形成する有機ポリマーの分子量、組成 、構造および官能基の有無などは、特に限定はされない。上記有機ポリマーとしては 、例えば、(メタ)アクリル樹脂、ポリスチレンおよびポリオレフイン等のビュルポリマー、 ナイロン等のポリアミド、ポリイミド、ポリエステル、ポリエーテル、ポリウレタン、ポリ尿素[0108] The organic polymer skeleton may have a side chain, a branched structure, or a bridge structure. Molecular weight and composition of organic polymer forming the skeleton The structure and the presence / absence of a functional group are not particularly limited. Examples of the organic polymer include (meth) acrylic resins, bully polymers such as polystyrene and polyolefin, polyamide such as nylon, polyimide, polyester, polyether, polyurethane, and polyurea.
、ポリカーボネート、フエノール樹脂、メラミン樹脂、ならびに、尿素樹脂からなる群より , Polycarbonate, phenolic resin, melamine resin, and urea resin
[0109] 有機ポリマー骨格の形態としては、複合体粒子の硬度を適度に制御できるという理 由から、下記式(1):  [0109] The form of the organic polymer skeleton is represented by the following formula (1) because the hardness of the composite particles can be appropriately controlled:
[0110] [化 1] [0110] [Chemical 1]
で表される繰り返し単位により構成される主鎖を有するポリマー(いわゆるビュル系ポ リマー)であることが好ましい。  A polymer having a main chain composed of repeating units represented by the formula (so-called bull polymers) is preferable.
[0111] ポリシロキサン骨格は、下記式(2): [0111] The polysiloxane skeleton has the following formula (2):
[0112] [化 2] [0112] [Chemical 2]
で表されるシロキサン単位が連続的に化学結合して、網目構造のネットワークを構成 した化合物と定義される。ポリシロキサン骨格を構成する SiO の量は、複合体粒子 の重量に対して 0. ;!〜 25質量%であるのが好ましぐより好ましくは 1〜; 10質量であ る。ポリシロキサン骨格中の SiO の量が上記範囲であれば、複合体粒子の硬度の制 御が容易となる。また、 0. 1質量%未満であると、粒子の柔軟性や弾力性が低下し、 樹脂組成物に外部応力が加わった場合に粒子内部が破壊する等の不具合が生じる おそれがあり、上記範囲を超える場合は、粒子と樹脂との密着性が低下し、樹脂組 成物中の粒子が脱落しやすくなるおそれがある。なお、ポリシロキサン骨格を構成す る SiOの量は、粒子を空気などの酸化性雰囲気中で 800°C以上の温度で焼成した 前後の質量を測定することにより求めた質量百分率である。 [0113] 上記複合体粒子は、光電子分光法により求められる該粒子表面の炭素原子数とケ ィ素原子数との比(表面原子数比(C/Si) )が 1. 0〜; 1. O X 104であることが、樹脂 に配合して用いる場合の該樹脂との密着性に優れる点で好ましい。上記表面原子数 比(C/Si)が 1. 0未満であると、樹脂との密着性が低下するおそれがあり、 1. 0 X 1Is defined as a compound in which a network having a network structure is formed by continuous chemical bonding of siloxane units represented by The amount of SiO constituting the polysiloxane skeleton is preferably from 0.;! To 25% by mass, more preferably from 1 to 10%, based on the weight of the composite particles. If the amount of SiO 2 in the polysiloxane skeleton is in the above range, the hardness of the composite particles can be easily controlled. Further, if it is less than 0.1% by mass, the flexibility and elasticity of the particles are lowered, and there is a possibility that the inside of the particles may be broken when external stress is applied to the resin composition. If it exceeds 1, the adhesion between the particles and the resin is lowered, and the particles in the resin composition may easily fall off. The amount of SiO constituting the polysiloxane skeleton is a mass percentage obtained by measuring the mass before and after firing the particles at a temperature of 800 ° C. or higher in an oxidizing atmosphere such as air. [0113] In the composite particles, the ratio of the number of carbon atoms to the number of carbon atoms (surface atom number ratio (C / Si)) obtained by photoelectron spectroscopy is 1.0 to 1; it is OX 10 4 are preferable from the viewpoint of excellent adhesion with the resin when used in blending a resin. If the above surface atom number ratio (C / Si) is less than 1.0, the adhesiveness with the resin may be lowered.
04を超える場合は、粒子の柔軟性や弾力性が低下し、樹脂組成物に外部応力が加 わった場合に粒子内部が破壊する等の不具合が生じるおそれがある。 0 4 if it exceeds, the reduced flexibility and elasticity of the particles, there are problems will be caused a fear such that the external stress to the resin composition to destroy the particle interior when Cor pressure.
[0114] 上記複合体粒子は、その硬度や破壊強度などと!/、つた機械的特性それぞれにつ いて、ポリシロキサン骨格部分や有機ポリマー骨格部分の割合を適宜変化させること により任意に調節することができる。  [0114] The composite particles may be arbitrarily adjusted by appropriately changing the ratio of the polysiloxane skeleton portion or the organic polymer skeleton portion with respect to the hardness, fracture strength, and the like! Can do.
[0115] 上記複合体粒子におけるポリシロキサン骨格は、加水分解性基を有するシリコン化 合物の加水分解縮合反応により得られることが好ましい。 [0115] The polysiloxane skeleton in the composite particles is preferably obtained by a hydrolytic condensation reaction of a silicon compound having a hydrolyzable group.
[0116] 加水分解性を有するシリコン化合物としては、特に限定はされないが、例えば、下 記一般式 (3) : [0116] The hydrolyzable silicon compound is not particularly limited. For example, the following general formula (3):
R' mSiX (3)  R 'mSiX (3)
(ここで、 R'は置換基を有していてもよぐアルキル基、ァリール基、ァラルキル基およ び不飽和脂肪族基からなる群より選ばれる少なくとも 1種の基を表し、 Xは水酸基、ァ ルコキシ基およびァシロキシ基からなる群より選ばれる少なくとも 1種の基を表し、 m は 0から 3までの整数である。 )で表されるシリコン化合物およびその誘導体などが挙 げられる。  (Where R ′ represents at least one group selected from the group consisting of an alkyl group, an aryl group, an aralkyl group and an unsaturated aliphatic group which may have a substituent, and X is a hydroxyl group. , Represents at least one group selected from the group consisting of an alkoxy group and an acyloxy group, and m is an integer of 0 to 3.
[0117] 上記一般式(3)で表されるシリコン化合物としては、特に限定はされないが、例えば 、 m=0のものとしては、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキ シシラン、テトラブトキシシラン等の 4官能性シラン; m= lのものとしては、メチルトリメ トキシシラン、メチノレトリエトキシシラン、ェチノレトリメトキシシラン、ェチノレトリエトキシシ ラン、へキシルトリメトキシシラン、デシルトリメトキシシラン、フエニルトリメトキシシラン、 一(3, 4—エポキシシクロへキシノレ)ェチノレトリメトキシシラン、 3—グリシドキシプロピ ルトリメトキシシラン、ビュルトリメトキシシラン、 3— (メタ)アタリロキシプロピルトリメトキ シシラン、 3, 3, 3—トリフルォロプロピルトリメトキシシラン等の 3官能性シラン; m= 2 のものとしては、ジメチノレジメトキシシラン、ジメチノレジェトキシシラン、ジァセトキシジメ チルシラン、ジフエニルシランジオール等の 2官能性シラン; m = 3のものとしては、トリ メチルメトキシシラン、トリメチルエトキシシラン、トリメチルシラノール等の 1官能性シラ ン等が挙げられる。 [0117] The silicon compound represented by the general formula (3) is not particularly limited. For example, those having m = 0 include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, and tetrabutoxysilane. Tetrafunctional silanes such as m = l include methyltrimethyoxysilane, methinoretriethoxysilane, ethinoretrimethoxysilane, ethinoretriethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, phenyl Trimethoxysilane, mono (3,4-epoxycyclohexenole) ethinoretrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, butyltrimethoxysilane, 3- (meth) attaryloxypropyltrimethoxysilane, 3, 3, 3—Trifunctional such as trifluoropropyltrimethoxysilane Silane; m = 2 Difunctional methoxy silane, dimethyl retoxy silane, diacetoxy dimethyl silane, diphenyl silane diol and other bifunctional silanes; m = 3 are trimethyl methoxy silane, trimethyl ethoxy silane, trimethyl silanol, etc. And monofunctional silanes.
[0118] これらの中でも、上記一般式(3)中、 mが 1の構造を有し、 Xがメトキシ基またはエト キシ基であり、屈折率が 1. 30〜; 1. 60であるシラン化合物は、光学用途に好適な屈 折率の有機質無機質複合体粒子を得ることができるため好ましい。具体的には、メチ ルトリメトキシシラン、フエニルトリメトキシシラン、 3— (メタ)アタリロキシプロピルトリメト キシシラン、 β 一(3, 4—エポキシシクロへキシノレ)ェチノレトリメトキシシラン、 3, 3, 3  [0118] Among these, in the above general formula (3), m is a silane compound having a structure of 1, X being a methoxy group or an ethoxy group, and a refractive index of 1.30 to 1.60. Is preferable because organic-inorganic composite particles having a refractive index suitable for optical applications can be obtained. Specifically, methyltrimethoxysilane, phenyltrimethoxysilane, 3- (meth) atalyloxypropyltrimethyoxysilane, β- (3,4-epoxycyclohexyleno) ethinoretrimethoxysilane, 3, 3, Three
[0119] 上記一般式(3)で表されるシリコン化合物の誘導体としては、特に限定はされない 力 例えば、 Xの一部がカルボキシル基、 βージカルボニル基等のキレート化合物を 形成し得る基で置換された化合物や、上記シラン化合物を部分的に加水分解して得 られる低縮合物等が挙げられる。 [0119] The derivative of the silicon compound represented by the general formula (3) is not particularly limited. For example, a part of X is substituted with a group capable of forming a chelate compound such as a carboxyl group and a β-dicarbonyl group. And low condensates obtained by partially hydrolyzing the silane compound.
[0120] 加水分解性を有するシリコン化合物は、 1種のみ用いても 2種以上を適宜組み合わ せて使用してもよい。上記一般式(3)において、 m = 3であるシラン化合物およびそ の誘導体のみを原料として使用する場合は、複合体粒子は得られなレ、。  [0120] The hydrolyzable silicon compound may be used alone or in a suitable combination of two or more. In the above general formula (3), when only the silane compound and its derivative with m = 3 are used as raw materials, composite particles cannot be obtained.
[0121] 上記複合体粒子が、ポリシロキサン骨格力 S、有機ポリマー骨格中の少なくとも 1個の 炭素原子にケィ素原子が直接結合した有機ケィ素原子を分子内に有する形態の場 合は、上記加水分解性を有するシリコン化合物としては、有機ポリマー骨格を形成し 得る重合性反応基を含有する有機基を有するものを用いる必要があり、該反応基と しては、例えば、ラジカル重合性基、エポキシ基、水酸基およびアミノ基などが挙げら れる。  [0121] In the case where the composite particle has a polysiloxane skeleton force S and an organic key atom in which a key atom is directly bonded to at least one carbon atom in the organic polymer skeleton, As the hydrolyzable silicon compound, it is necessary to use one having an organic group containing a polymerizable reactive group capable of forming an organic polymer skeleton. Examples of the reactive group include a radical polymerizable group, Examples thereof include an epoxy group, a hydroxyl group, and an amino group.
[0122] 上記ラジカル重合性基を含有する有機基としては、例えば、下記一般式 (4)、 (5) および(6):  [0122] Examples of the organic group containing the radical polymerizable group include the following general formulas (4), (5) and (6):
CH =C (-Ra) -COORb- (4) CH = C (-R a ) -COOR b- (4)
(ここで、 Raは水素原子またはメチル基を表し、 Rbは置換基を有していてもよい炭素 数;!〜 20の 2価の有機基を表す。 ) CH =C (— Rc)— (5) (Here, R a represents a hydrogen atom or a methyl group, R b represents an optionally substituted carbon number;! To 20 divalent organic group.) CH = C (— R c ) — (5)
(ここで、 は水素原子またはメチル基を表す。 )  (Here, represents a hydrogen atom or a methyl group.)
CH =C (-Rd) -Re- (6) CH = C (-R d ) -R e- (6)
(ここで、 Rdは水素原子またはメチル基を表し、 は置換基を有していてもよい炭素 数;!〜 20の 2価の有機基を表す。 ) (Here, R d represents a hydrogen atom or a methyl group, represents a carbon number which may have a substituent;! To 20 represents a divalent organic group.)
で表されるラジカル重合性基などを挙げることができる。  And the like, and the like.
[0123] 上記一般式 (4)のラジカル重合性基含有有機基としては、例えば、アタリ口キシ基 およびメタクリロキシ基などが挙げられ、該有機基を有する上記一般式(3)のシリコン 化合物としては、例えば、 Ί—メタクリロキシプロピルトリメトキシシラン、 γ—メタクリロ キシプロピルトリエトキシシラン、 γ アタリロキシプロビルトリメトキシシラン、 γ—ァク リロキシプロピルトリエトキシシラン、 γ—メタクリロキシプロピルトリァセトキシシラン、 γ—メタクリロキシエトキシプロピルトリメトキシシラン(または、 Ί—トリメトキシシリルプ 口ピル /3—メタクリロキシェチルエーテルともいう)、 γーメタクリロキシプロピルメチ キシプロピルメチルジメトキシシラン等を挙げることができる。これらは 1種のみ用いて も 2種以上を併用してもよい。 [0123] Examples of the radical-polymerizable group-containing organic group of the general formula (4) include an attaoxy group and a methacryloxy group. Examples of the silicon compound of the general formula (3) having the organic group include For example, Ί-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ attaryloxypropyl trimethoxysilane, γ-acryloxypropyltriethoxysilane, γ -methacryloxypropyltriacetoxysilane , Γ-methacryloxyethoxypropyltrimethoxysilane (or Ί -trimethoxysilyl pill / 3-methacryloxychetyl ether), γ-methacryloxypropylmethyoxypropylmethyldimethoxysilane, etc. . These may be used alone or in combination of two or more.
[0124] 上記一般式(5)のラジカル重合性基含有有機基としては、例えば、ビュル基、イソ プロぺニル基などが挙げられ、該有機基を有する上記一般式(3)のシリコン化合物と しては、例えば、ビュルトリメトキシシラン、ビュルトリエトキシシラン、ビュルトリァセトキ シシラン、ビニノレメチノレジメトキシシラン、ビニノレメチノレジェトキシシラン、ビニノレメチノレ ジァセトキシシラン等を挙げることができる。これらは 1種のみ用いても 2種以上を併 用してもよい。上記一般式 ½)のラジカル重合性基含有有機基としては、例えば、 1 アルケニル基もしくはビュルフエニル基、イソアルケニル基もしくはイソプロぺニル フエニル基などが挙げられ、該有機基を有する上記一般式(3)のシリコン化合物とし ては、例えば、 1—へキセニルトリメトキシシラン、 1—へキセニルトリエトキシシラン、 1 —オタテュルトリメトキシシラン、 1—デセニルトリメトキシシラン、 γ—トリメトキシシリノレ プロピルビュルエーテル、 ω—トリメトキシシリルゥンデカン酸ビュルエステル、 ρ—トリ シラン、 1—へキセニルメチルジェトキシシラン等を挙げることができる。これらは 1種 のみ用いても 2種以上を併用してもよレ、。 [0124] Examples of the radical-polymerizable group-containing organic group of the general formula (5) include a bur group and an isopropenyl group. The silicon compound of the general formula (3) having the organic group and Examples thereof include butyltrimethoxysilane, butyltriethoxysilane, butyltrimethoxysilane, vinylino methinoresin methoxysilane, vinino methinolegetoxy silane, and vinino methino resin acetyloxy silane. These may be used alone or in combination of two or more. Examples of the radical-polymerizable group-containing organic group represented by the general formula (1) include 1 alkenyl group or butylphenyl group, isoalkenyl group or isopropenyl phenyl group, and the general formula (3) having the organic group. Examples of the silicon compound include 1-hexenyltrimethoxysilane, 1-hexenyltriethoxysilane, 1-octenyltrimethoxysilane, 1-decenyltrimethoxysilane, and γ -trimethoxysilinolepropylbutyl ether. Ω-trimethoxysilylundecanoic acid butyl ester, ρ-tri Silane, 1-hexenylmethyljetoxysilane and the like can be mentioned. These can be used alone or in combination of two or more.
[0125] エポキシ基を含有する有機基を有するシリコン化合物としては、例えば、 3 グリシ ーグリシドキシプロピノレトリエトキシシラン、 β —(3 , 4 エポキシシクロへキシノレ)ェチ ノレトリメトキシシラン等を挙げることができる。これらは 1種のみ用いても 2種以上を併 用してもよい。水酸基を含有する有機基を有するシリコン化合物としては、例えば、 3 ーヒドロキシプロピルトリメトキシシラン等を挙げることができる。これらは 1種のみ用い ても 2種以上を併用してもよい。 [0125] Examples of the silicon compound having an organic group containing an epoxy group include 3 glycyglycidoxypropynoletriethoxysilane, β- (3,4 epoxycyclohexenole) ethynoletrimethoxysilane, and the like. Can be mentioned. These may be used alone or in combination of two or more. Examples of the silicon compound having an organic group containing a hydroxyl group include 3-hydroxypropyltrimethoxysilane. These may be used alone or in combination of two or more.
[0126] アミノ基を含有する有機基を有するシリコン化合物としては、例えば、 Ν— β (ァミノ ェチル) yーァミノプロピルメチルジメトキシシラン、 Ν— β (アミノエチル) γ—ァミノ プロピルトリメトキシシラン、 Ν— β (アミノエチル) γ—ァミノプロピルトリエトキシシラン 、 γ—ァミノプロビルトリメトキシシラン、 γ—ァミノプロピルトリエトキシシラン、 Ν フエ ニル一 γ—ァミノプロピルトリメトキシシラン等を挙げることができる。これらは 1種のみ 用いても 2種以上を併用してもよレ、。 [0126] Examples of the silicon compound having an organic group containing an amino group include Ν-β (aminoethyl) y-aminopropylmethyldimethoxysilane, Ν-β (aminoethyl) γ- aminopropyltrimethoxysilane, Ν-β (aminoethyl) γ- aminopropyltriethoxysilane, γ-aminopropyl trimethoxysilane, γ-aminopropyltriethoxysilane, 一 phenyl γ-aminopropyltrimethoxysilane, etc. be able to. These can be used alone or in combination of two or more.
[0127] また、上記複合体粒子に含まれる有機ポリマー骨格は、例えば、 1 )上記シリコン化 合物が、加水分解性基とともに、ラジカル重合性基やエポキシ基等の有機ポリマー 骨格を形成し得る重合性反応基を含有する有機基を有する場合には、 1 1 )シリコ ン化合物の加水分解縮合反応後に重合する方法や、 1 2)シリコン化合物の加水 分解縮合反応により得られたポリシロキサン骨格を有する粒子に、ラジカル重合性モ ノマー、エポキシ基を有するモノマー、水酸基を有するモノマーおよびアミノ基を有す るモノマー等の重合性反応基を有する重合性モノマーを吸収させた後、重合させる 方法によっても得られる。また、 2)上記シリコン化合物力 S、ラジカル重合性基、ェポキ シ基、水酸基、アミノ基等の有機ポリマー骨格を形成し得る重合性反応基を含有する 有機基を有しない場合には、シリコン化合物の加水分解縮合反応により得られたポリ シロキサン骨格を有する粒子(ポリシロキサン粒子からなるシード粒子、以下ポリシ口 キサン粒子とも言う)に、ラジカル重合性モノマー、エポキシ基を有するモノマー、水 酸基を有するモノマーおよびアミノ基を有するモノマー等の重合性反応基を有する 重合性モノマーを吸収させた後、重合反応させることでも得られる。 [0127] The organic polymer skeleton contained in the composite particle is, for example, 1) The silicon compound can form an organic polymer skeleton such as a radical polymerizable group or an epoxy group together with a hydrolyzable group. In the case of having an organic group containing a polymerizable reactive group, 1 1) a method of polymerizing after the hydrolysis condensation reaction of the silicon compound, or 1 2) a polysiloxane skeleton obtained by the hydrolysis condensation reaction of the silicon compound is used. It is also possible to absorb a polymerizable monomer having a polymerizable reactive group such as a radically polymerizable monomer, a monomer having an epoxy group, a monomer having a hydroxyl group, and a monomer having an amino group, and then polymerizing the particles. can get. 2) When there is no organic group containing a polymerizable reactive group capable of forming an organic polymer skeleton such as the above-mentioned silicon compound strength S, radical polymerizable group, epoxy group, hydroxyl group, amino group, etc. Particles having a polysiloxane skeleton obtained by hydrolytic condensation reaction (seed particles made of polysiloxane particles, hereinafter also referred to as polysiloxane particles) have radical polymerizable monomers, monomers having epoxy groups, and hydroxyl groups. Having a polymerizable reactive group such as a monomer and a monomer having an amino group It can also be obtained by causing a polymerization reaction after absorbing a polymerizable monomer.
[0128] 前述のごとぐ複合体粒子は、 a)ポリシロキサン骨格が有機ポリマー骨格中の少な くとも 1個の炭素原子にケィ素原子が直接化学結合した有機ケィ素原子を分子内に 有して!/、る形態(化学結合タイプ)であってもよ!/、し、 b)このような有機ケィ素原子を 分子内に有していない形態(IPNタイプ)であってもよぐ特に限定はされないが、例 えば、上記 1 1)のようにしてポリシロキサン骨格とともに有機ポリマー骨格を得た場 合は、 a)の形態を有する複合体粒子を得られ、上記 2)のようにした場合は、 b)の形 態を有する複合体粒子が得られる。また、上記 1 2)のようにしてポリシロキサン骨格 とともに有機ポリマー骨格を得た場合は、上記 a)と )の形態を併せ持った形態を有 する複合体粒子が得られる。 [0128] The composite particles as described above have a) an organic silicon atom in which a polysiloxane skeleton is directly chemically bonded to at least one carbon atom in the organic polymer skeleton in the molecule. / !, or even a form (chemical bond type)! /, And b) such a form (IPN type) that does not have an organic key atom in the molecule. Although not limited, for example, when an organic polymer skeleton is obtained together with a polysiloxane skeleton as in 1) above, composite particles having the form of a) can be obtained, as in 2) above. In this case, composite particles having the form b) are obtained. Further, when the organic polymer skeleton is obtained together with the polysiloxane skeleton as in the above 12), composite particles having a form having both the above a) and) forms are obtained.
[0129] 上記 1 2)や 2)の方法において、ポリシロキサン骨格を有する粒子に吸収させるこ とのできるラジカル重合性モノマーは、ラジカル重合性ビュルモノマーを必須とする モノマー成分であることが好ましい。上記ラジカル重合性ビュルモノマーとしては、例 えば、分子内に少なくとも 1個以上のエチレン性不飽和基を含有する化合物であれ ばその種類等は特に限定されず、所望する複合体粒子の物性に応じて適宜選択す ること力 Sできる。これらは 1種のみ用いても 2種以上を併用してもよレ、。 [0129] In the above methods 1 2) and 2), the radical polymerizable monomer that can be absorbed by the particles having a polysiloxane skeleton is preferably a monomer component that essentially requires a radical polymerizable butyl monomer. Examples of the radical polymerizable butyl monomer include, but are not particularly limited to, as long as it is a compound containing at least one ethylenically unsaturated group in the molecule, depending on the desired physical properties of the composite particles. Can be selected appropriately. These can be used alone or in combination of two or more.
[0130] 例えば、疎水性のラジカル重合性ビュルモノマーは、ポリシロキサン骨格を有する 粒子に上記モノマー成分を吸収させる際に、上記モノマー成分を乳化分散させた安 定なエマルシヨンを生成させ得るので好ましい。また、ラジカル重合性ビュルモノマー として、架橋性モノマーを用いてもよぐ架橋性モノマーを使用すれば、得られる複合 体粒子の機械的特性の調節が容易にでき、また、複合体微粒子の耐溶剤性を向上 させることもできる。具体的には、エチレングリコールジメタタリレート、トリメチロールプ 口パントリメチノレアタリレート、 1 , 6 キサンジォーノレジアタリレート、ジビニノレべンゼ ンなどが挙げられる。これらは単独で用いても 2種類以上を併用してもよい。 [0130] For example, a hydrophobic radically polymerizable bur monomer is preferable because a stable emulsion in which the monomer component is emulsified and dispersed can be generated when the monomer component is absorbed into particles having a polysiloxane skeleton. In addition, if a crosslinkable monomer, which may be a crosslinkable monomer, is used as the radical polymerizable bull monomer, the mechanical properties of the resulting composite particles can be easily adjusted, and the solvent resistance of the composite fine particles can be adjusted. It can also improve the performance. Specific examples include ethylene glycol dimetatalylate, trimethylol-propyl pantrimethylolaretalylate, 1,6 xanthinoregiophthalate, divininolevene and the like. These may be used alone or in combination of two or more.
[0131] 上記複合体粒子を製造する方法としては、後述する加水分解、縮合工程と、重合 工程とを含む製造方法が好ましく挙げられる。さらに必要に応じて、加水分解、縮合 工程後、重合工程前に、重合性モノマーを吸収させる吸収工程を含めてもよい(上記 1 2)および 2)の場合)。なお、加水分解、縮合工程に用いるシリコン化合物力 ポ リシロキサン骨格構造を構成し得る要素とともに有機ポリマー骨格を構成する要素を 併せ持つたものでない場合は(上記 2)の場合)、上記吸収工程を必須とし、この吸収 工程に続く重合工程において有機ポリマー骨格が形成される。 [0131] Preferred examples of the method for producing the composite particles include a production method including a hydrolysis and condensation step, which will be described later, and a polymerization step. Further, if necessary, an absorption step for absorbing the polymerizable monomer may be included after the hydrolysis and condensation step and before the polymerization step (in the case of the above 1 2) and 2)). Note that the strength of the silicon compound used in the hydrolysis and condensation processes If it does not have an element that constitutes the siloxane structure together with an element that constitutes the organic polymer skeleton (in the case of 2), the absorption step is essential, and the organic polymer skeleton is used in the polymerization step that follows this absorption step. Is formed.
[0132] 上記加水分解、縮合工程は、前述したシリコン化合物を、水を含む溶媒中で加水 分解して縮重合させる反応を行う工程である。該工程により、ポリシロキサン骨格を有 する粒子 (ポリシロキサン粒子)を得ることができる。加水分解と縮重合は、一括、分割 、連続など、任意の方法を採用できる。加水分解し、縮重合させるにあたっては、触 媒としてアンモニア、尿素、エタノールァミン、テトラメチルアンモニゥムハイド口ォキサ イド、アルカリ金属水酸化物、アルカリ土類金属水酸化物等の塩基性触媒を好ましく 用いること力 Sでさる。 [0132] The hydrolysis and condensation step is a step in which the above-described silicon compound is hydrolyzed in a solvent containing water to undergo condensation polymerization. By this step, particles having a polysiloxane skeleton (polysiloxane particles) can be obtained. Hydrolysis and polycondensation can employ any method such as batch, split or continuous. In the hydrolysis and condensation polymerization, a basic catalyst such as ammonia, urea, ethanolamine, tetramethylammonium hydroxide, alkali metal hydroxide, alkaline earth metal hydroxide or the like is used as a catalyst. Use with power S
[0133] 上記水を含む溶媒中には、水や触媒以外に有機溶剤を含めることができる。有機 溶剤としては、例えば、メタノール、エタノール、イソプロパノール、 n ブタノール、ィ ソブタノール、 sec ブタノール、 tーブタノール、ペンタノール、エチレングリコール、 プロピレングリコール、 1 , 4 ブタンジオール等のアルコール類;アセトン、メチルェ チルケトン等のケトン類;酢酸ェチル等のエステル類;イソオクタン、シクロへキサン等 の(シクロ)パラフィン類;ベンゼン、トルエン等の芳香族炭化水素類などを挙げること ができる。これらは単独で用いても 2種以上を併用してもよレ、。  [0133] The solvent containing water may contain an organic solvent in addition to water and the catalyst. Examples of organic solvents include alcohols such as methanol, ethanol, isopropanol, n butanol, isobutanol, sec butanol, t-butanol, pentanol, ethylene glycol, propylene glycol, and 1,4 butanediol; acetone, methyl ethyl ketone, and the like. Examples thereof include ketones; esters such as ethyl acetate; (cyclo) paraffins such as isooctane and cyclohexane; aromatic hydrocarbons such as benzene and toluene. These can be used alone or in combination of two or more.
[0134] 加水分解、縮合工程ではまた、ァニオン性、カチオン性、非イオン性の界面活性剤 や、ポリビュルアルコール、ポリビュルピロリドン等の高分子分散剤を併用することも できる。これらは単独で用いても 2種以上を併用してもよレ、。  [0134] In the hydrolysis and condensation processes, anionic, cationic, and nonionic surfactants, and polymer dispersants such as polybulal alcohol and polybulylpyrrolidone can also be used in combination. These can be used alone or in combination of two or more.
[0135] 加水分解および縮合は、原料となる上記シリコン化合物と、触媒や水および有機溶 剤を含む溶媒を混合した後、温度 0〜100°C、好ましくは 0〜70°Cで、 30分〜 100 時間撹拌することにより行うこと力できる。また、所望の程度まで加水分解、縮合反応 を行って粒子を製造した後、これをシード (種)粒子として、反応系にさらにシリコン化 合物を添加して該シード粒子を成長させてもょレ、。  [0135] Hydrolysis and condensation are performed by mixing the silicon compound as a raw material with a solvent containing a catalyst, water, and an organic solvent, and then at a temperature of 0 to 100 ° C, preferably 0 to 70 ° C, for 30 minutes. Can be done by stirring for ~ 100 hours. In addition, particles may be produced by hydrolysis and condensation reactions to a desired degree, and then used as seed particles to add silicon compounds to the reaction system and grow the seed particles. Les.
[0136] ポリシロキサン粒子は、その重量平均分子量が 250〜10000であるのが好ましく、 より好ましくは 250〜5000である。重量平均分子量が上記範囲内であれば、吸収ェ 程における重合性モノマーの吸収速度が高ぐ系内で、吸収されずに残存した重合 性モノマーに由来する粗大粒子の発生が抑えられ、その結果、複合体粒子(乾式分 級に供する)における平均粒子径 2倍以上の粗大粒子含有量、または、微小粒子含 有量が、低い複合体粒子が得られる。さらに、この複合体粒子を湿式分級、乾式分 級工程に供することで、粗大粒子含有量が極めて低!/、粒子を高レ、収率で得られるこ とになる。 [0136] The polysiloxane particles preferably have a weight average molecular weight of 250 to 10,000, more preferably 250 to 5,000. If the weight average molecular weight is within the above range, polymerization that remains without being absorbed in the system in which the absorption rate of the polymerizable monomer in the absorption process is high. The generation of coarse particles derived from functional monomers is suppressed, and as a result, the composite particles (used for dry classification) have a coarse particle content that is at least twice the average particle size or a low content of fine particles. Body particles are obtained. Further, by subjecting the composite particles to wet classification and dry classification processes, the content of coarse particles is extremely low and particles can be obtained in high yield and yield.
[0137] 吸収工程は、前述したように、用いるシリコン化合物に応じて必須工程にすべき場 合と、任意工程にしてもよい場合とがある。上記吸収工程は、ポリシロキサン粒子の 存在下に、重合性モノマーを存在させた状態で進行するものであれば特に限定され ない。したがって、ポリシロキサン粒子を分散させた溶媒中に重合性モノマーを加え てもよいし、重合性モノマーを含む溶媒中にポリシロキサン粒子を加えてもよい。なか でも、前者のように、予めポリシロキサン粒子を分散させた溶媒中に、重合性モノマー を加えるのが好ましぐさらには、加水分解、縮合工程で得られたポリシロキサン粒子 を反応液 (ポリシロキサン粒子分散液)から取り出すことなぐ該反応液に重合性モノ マーを加える方法は、工程が複雑にならず、生産性に優れるため好ましい。  [0137] As described above, the absorption process may be an essential process or may be an optional process depending on the silicon compound to be used. The absorption step is not particularly limited as long as it proceeds in the presence of a polymerizable monomer in the presence of polysiloxane particles. Therefore, the polymerizable monomer may be added to the solvent in which the polysiloxane particles are dispersed, or the polysiloxane particles may be added to the solvent containing the polymerizable monomer. In particular, as in the former case, it is preferable to add a polymerizable monomer in a solvent in which polysiloxane particles are dispersed in advance.Furthermore, the polysiloxane particles obtained in the hydrolysis and condensation step are reacted with a reaction solution (polyester). A method of adding a polymerizable monomer to the reaction liquid without taking it out from the siloxane particle dispersion liquid is preferable because the process is not complicated and the productivity is excellent.
[0138] なお、吸収工程においては、上記ポリシロキサン粒子の構造中に上記重合性モノ マーを吸収させるが、重合性モノマーの吸収が速やかに進行するように、ポリシロキ サン粒子および重合性モノマーそれぞれの濃度や、上記ポリシロキサンと重合性モノ マーの混合比、混合の処理方法、手段、混合時の温度や時間、混合後の処理方法 、手段などを設定し、その条件のもとで行うのが好ましい。 これら条件は、用いるポリ シロキサン粒子や重合性モノマーの種類などによって、適宜その必要性を考慮すれ ばよい。また、これら条件は 1種のみ適用しても 2種以上を合わせて適用してもよい。  [0138] In the absorption step, the polymerizable monomer is absorbed in the structure of the polysiloxane particle, but each of the polysiloxane particle and the polymerizable monomer is absorbed so that the absorption of the polymerizable monomer proceeds promptly. The concentration, mixing ratio of the above polysiloxane and polymerizable monomer, mixing treatment method and means, temperature and time during mixing, treatment method and means after mixing, etc. are set and performed under the conditions. preferable. The necessity of these conditions may be taken into consideration as appropriate depending on the type of polysiloxane particles and polymerizable monomers used. These conditions may be applied alone or in combination of two or more.
[0139] 上記吸収工程における、重合性モノマーの添加量は、ポリシロキサン粒子の原料と して使用したシリコン化合物の質量に対して、質量で 0. 01倍〜 100倍とするのが好 ましい。より好ましくは 0. 5〜50倍であり、さらに好ましくは 0. 5〜30倍であり、特に 好ましくは 1〜; 15倍である。添加量が上記範囲に満たない場合は、ポリシロキサン粒 子の重合性モノマーの吸収量が少なくなり、生成する複合体粒子の機械的特性が得 られ難くなること力あり、上記範囲を超える場合は、添加した重合性モノマーをポリシ ロキサン粒子に完全に吸収させることが困難となる傾向があり、未吸収の重合性モノ マーが残存するため後の重合段階において粒子間の凝集が生じたり、未吸収の重 合性モノマーに由来する粗大粒子が発生しやすくなるおそれがある。 [0139] The addition amount of the polymerizable monomer in the absorption step is preferably 0.01 times to 100 times the mass of the silicon compound used as the raw material for the polysiloxane particles. . More preferably, it is 0.5 to 50 times, still more preferably 0.5 to 30 times, and particularly preferably 1 to 15 times. When the addition amount is less than the above range, the amount of the polymerizable monomer of the polysiloxane particles absorbed is reduced, and it is difficult to obtain the mechanical properties of the composite particles to be produced. However, it tends to be difficult to completely absorb the added polymerizable monomer in the polysiloxane particles. Since the polymer remains, aggregation between particles may occur in the subsequent polymerization step, or coarse particles derived from unabsorbed polymerizable monomers may be easily generated.
[0140] 上記吸収工程にぉレ、て、重合性モノマーの添加のタイミングは特に限定されず、該 重合性モノマーを一括で加えておいてもよいし、数回に分けて加えてもよいし、任意 の速度でフィードしてもよい。また、重合性モノマーを加えるにあたっては、重合性モ ノマーのみで添加しても、重合性モノマーの溶液を添加してもよいが、重合性モノマ 一を予め乳化剤で乳化分散させた状態でポリシロキサン粒子に加えておくことが、ポ リシロキサン粒子への吸収がより効率よく行われるため好ましい。 [0140] The timing of addition of the polymerizable monomer is not particularly limited in the absorption step, and the polymerizable monomer may be added all at once or may be added in several times. You may feed at any speed. In addition, when adding the polymerizable monomer, it may be added only with the polymerizable monomer, or a solution of the polymerizable monomer may be added. It is preferable to add to the particles because absorption into the polysiloxane particles is more efficiently performed.
[0141] 上記乳化剤は特に限定されな!/、が、例えば、ァユオン性界面活性剤、カチオン性 界面活性剤、非イオン性界面活性剤、両性界面活性剤、高分子界面活性剤、分子 中に 1個以上の重合可能な炭素-炭素不飽和結合を有する重合性界面活性剤等が ある。なかでも、ァニオン性界面活性剤、非イオン性界面活性剤は、ポリシロキサン粒 子や、重合性モノマーを吸収したポリシロキサン粒子、重合体微粒子の分散状態を 安定化させることもできるので好ましい。これら乳化剤は、 1種のみを使用しても 2種 以上を併用してもよい。  [0141] The emulsifier is not particularly limited! /, But, for example, a cationic surfactant, a cationic surfactant, a nonionic surfactant, an amphoteric surfactant, a polymer surfactant, And polymerizable surfactants having one or more polymerizable carbon-carbon unsaturated bonds. Among these, an anionic surfactant and a nonionic surfactant are preferable because they can stabilize the dispersion state of polysiloxane particles, polysiloxane particles having absorbed a polymerizable monomer, and polymer fine particles. These emulsifiers may be used alone or in combination of two or more.
[0142] 上記乳化剤の使用量は特に限定されるものではなぐ具体的には、上記重合性モ ノマーの総質量に対して 0. 01〜; 10質量%であることが好ましぐより好ましくは 0. 0 5〜8質量%、さらに好ましくは 1〜5質量%である。上記乳化剤の使用量が、 0. 01 質量%未満の場合は、安定な重合性モノマーの乳化分散物が得られないことがあり 、 10質量%を超える場合は、乳化重合等が副反応として併発してしまうおそれがある 。上記乳化分散については通常、上記重合性モノマーを乳化剤とともにホモミキサー や超音波ホモジナイザー等を用いて水中で乳濁状態とすることが好ましい。  [0142] The amount of the emulsifier used is not particularly limited. Specifically, it is preferably 0.01 to 10% by mass based on the total mass of the polymerizable monomer, more preferably 0.0 5 to 8% by mass, more preferably 1 to 5% by mass. When the amount of the emulsifier used is less than 0.01% by mass, an emulsion dispersion of a stable polymerizable monomer may not be obtained. When the amount exceeds 10% by mass, emulsion polymerization or the like occurs as a side reaction. There is a risk of it. Regarding the above emulsification dispersion, it is usually preferable that the polymerizable monomer is emulsified in water using a homomixer, an ultrasonic homogenizer, or the like together with an emulsifier.
[0143] また、重合性モノマーを乳化剤で乳化分散させる際には、重合性モノマーの質量 に対して 0. 3〜; 10倍の水や水溶性有機溶剤を使用するのが好ましい。上記水溶性 有機溶剤としては、メタノール、エタノール、イソプロパノール、 η-ブタノール、イソブタ ノーノレ、 sec -ブタノーノレ、 t-ブタノーノレ、ペンタノ一ノレ、エチレングリコーノレ、プロピレ ングリコール、 1 , 4-ブタンジオール等のアルコール類;アセトン、メチルェチルケトン 等のケトン類;酢酸ェチル等のエステル類などが挙げられる。 [0144] 上記吸収工程は、 0〜60°Cの温度範囲で、 5分〜 720分間、攪拌しながら行うのが 好ましい。これらの条件は、用いるポリシロキサン粒子や重合性モノマーの種類など によって、適宜設定すればよぐこれらの条件は 1種のみ、あるいは 2種以上を合わせ て採用してもよい。 [0143] When the polymerizable monomer is emulsified and dispersed with an emulsifier, it is preferable to use 0.3 to 10 times as much water or a water-soluble organic solvent as the mass of the polymerizable monomer. Examples of the water-soluble organic solvent include alcohols such as methanol, ethanol, isopropanol, η-butanol, isobutanol, sec-butanol, t-butanol, pentanonole, ethylene glycolanol, propylene glycol, and 1,4-butanediol. Ketones such as acetone and methyl ethyl ketone; esters such as ethyl acetate and the like. [0144] The absorption step is preferably performed in the temperature range of 0 to 60 ° C with stirring for 5 minutes to 720 minutes. These conditions may be set as appropriate depending on the types of polysiloxane particles and polymerizable monomers to be used. These conditions may be used alone or in combination of two or more.
[0145] 吸収工程において、モノマー成分がポリシロキサン粒子に吸収されたかどうかの判 断については、例えば、モノマー成分を加える前および吸収段階終了後に、顕微鏡 により粒子を観察し、モノマー成分の吸収により粒子径が大きくなつていることを確認 することで容易に判断できる。  [0145] In the absorption process, for determining whether the monomer component is absorbed by the polysiloxane particles, for example, before adding the monomer component and after completion of the absorption step, the particles are observed with a microscope, and the particles are absorbed by the absorption of the monomer component. It can be easily judged by confirming that the diameter has increased.
[0146] 重合工程は、重合性反応基を重合反応させて、有機ポリマー骨格を有する粒子を 得る工程である。具体的には、シリコン化合物として重合性反応基含有有機基を有 するものを用いた場合は、該有機基の重合性反応基を重合させて有機ポリマー骨格 を形成する工程であり、吸収工程を経た場合は、吸収させた重合性反応基を有する 重合性モノマーを重合させて有機ポリマー骨格を形成する工程である力 両方に該 当する場合はどちらの反応によっても有機ポリマー骨格を形成する工程となり得る。  [0146] The polymerization step is a step of obtaining particles having an organic polymer skeleton by polymerizing a polymerizable reactive group. Specifically, when a silicon compound having a polymerizable reactive group-containing organic group is used, it is a step of polymerizing a polymerizable reactive group of the organic group to form an organic polymer skeleton, and an absorption step is performed. If this is the case, the force that is the process of forming an organic polymer skeleton by polymerizing a polymerizable monomer having a polymerizable reactive group that has been absorbed corresponds to both of the processes, and the process forms an organic polymer skeleton by either reaction. obtain.
[0147] 重合反応は、加水分解縮合工程や吸収工程の途中で行ってもよいし、いずれか又 は両方の工程後に行ってもよぐ特に限定はされないが、通常は、加水分解縮合ェ 程後(吸収工程を行った場合は吸収工程後)に開始するようにする。 [0147] The polymerization reaction may be performed in the middle of the hydrolysis-condensation step or the absorption step, and may be performed after either or both of the steps, but is not particularly limited. Start later (after the absorption process if the absorption process is performed).
[0148] 重合反応は特に限定されないが、例えば、ラジカル重合開始剤を用いる方法、紫 外線や放射線を照射する方法、熱を加える方法など、いずれも採用可能である。上 記ラジカル重合開始剤としては、特に限定されないが、例えば、過硫酸カリウム等の 過硫酸塩、過酸化水素、過酢酸、過酸化べンゾィル、過酸化ラウロイル、オルソクロロ 過酸化ベンゾィル、オルソメトキシ過酸化べンゾィル、 3, 5, 5-トリメチルへキサノィル パーオキサイド、 t-ブチルパーォキシ -2-ェチルへキサノエート、ジ -t-ブチルバーオ キサイド、ベンゾィルパーオキサイド、 1 , 1 -ビス(t-ブチルパーォキシ)-3, 3, 5-トリ メチルシクロへキサン、 t-プチルノヽイド口パーオキサイド等の過酸化物系開始剤類; ァゾビスイソブチロニトリル、ァゾビスシクロへキサカルボ二トリル、ァゾビス(2, 4-ジメ チルバレロニトリル)、 2' -ァゾビスイソブチロニトリル、 2, 2' -ァゾビス(2-アミジノプロ パン)'二塩酸塩、 4, 4' -ァゾビス(4-シァノペンタン酸)、 2, 2' -ァゾビス-(2-メチル ブチロニトリル)、 2, 2' -ァゾビスイソブチロニトリル、 2, 2' -ァゾビス(2, 4-ジメチル バレロ二トリル)等のァゾ系化合物類;などを好ましく挙げることができる。これらラジカ ル重合開始剤は、単独で用いても 2種以上を併用してもよ!/、。 [0148] The polymerization reaction is not particularly limited, and for example, any of a method using a radical polymerization initiator, a method of irradiating with ultraviolet rays or radiation, a method of applying heat, etc. can be adopted. The radical polymerization initiator is not particularly limited, and examples thereof include persulfates such as potassium persulfate, hydrogen peroxide, peracetic acid, benzoyl peroxide, lauroyl peroxide, orthochloroperoxybenzoyl peroxide, and orthomethoxyperoxide. Benzoyl, 3, 5, 5-trimethylhexanoyl peroxide, t-butylperoxy-2-ethylhexanoate, di-t-butyl peroxide, benzoyl peroxide, 1,1-bis (t-butylperoxy) -3, Peroxide-based initiators such as 3,5-trimethylcyclohexane, t-ptylnoide mouth peroxide, etc .; azobisisobutyronitrile, azobiscyclohexacarboxynitryl, azobis (2,4-dimethylvalero) Nitrile), 2'-azobisisobutyronitrile, 2, 2'-azobis (2-amidinopropane) 'dihydrochloride, 4, 4'-azobis (4- Cyanpentanoic acid), 2, 2'-azobis- (2-methyl) Preferred examples include azo compounds such as butyronitrile), 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitryl), and the like. These radical polymerization initiators may be used alone or in combination of two or more! /.
[0149] 上記ラジカル重合開始剤の使用量は、上記重合性モノマーの総質量に対して、 0.  [0149] The amount of the radical polymerization initiator used is 0.
001質量%〜20質量%であることが好ましぐより好ましくは 0. 01質量%〜; 10質量 %、さらに好ましくは 0. 1質量%〜5質量%である。上記ラジカル重合開始剤の使用 量力 0. 001質量%未満の場合は、重合性モノマーの重合度が上がらない場合が ある。上記ラジカル重合開始剤の上記溶媒に対する仕込み方については、特に限定 はなぐ最初 (反応開始前)に全量仕込む方法 (ラジカル重合開始剤を重合性モノマ 一と共に乳化分散させておく態様、重合性モノマーが吸収された後にラジカル重合 開始剤を仕込む態様);最初に一部を仕込んでおき、残りを連続フィード添加する方 法、または、断続的にパルス添加する方法、あるいは、これらを組み合わせた手法な ど、従来公知の手法は!/ヽずれも採用すること力 Sできる。  More preferably, the content is 001% by mass to 20% by mass, more preferably 0.01% by mass to 10% by mass, and still more preferably 0.1% by mass to 5% by mass. When the amount of the radical polymerization initiator used is less than 0.001% by mass, the polymerization degree of the polymerizable monomer may not increase. The method of charging the radical polymerization initiator into the solvent is not particularly limited. First, the whole amount is charged (before the start of the reaction) (a mode in which the radical polymerization initiator is emulsified and dispersed together with the polymerizable monomer, the polymerizable monomer is A mode in which a radical polymerization initiator is charged after absorption); a method in which a part is charged first, and the rest is continuously fed, a pulse is added intermittently, or a combination of these methods The conventionally known method can also adopt the force!
[0150] 上記ラジカル重合する際の反応温度は 40〜; 100°Cであることが好ましぐ 50〜80 °Cがより好ましい。反応温度が低すぎる場合には、重合度が十分に上がらず重合体 微粒子の機械的特性が得られ難くなる傾向があり、一方、反応温度が高すぎる場合 には、重合中に粒子間の凝集が起こりやすくなる傾向がある。尚、上記ラジカル重合 する際の反応時間は用いる重合開始剤の種類に応じて適宜変更すればよいが、通 常、 5〜600分が好ましぐ 10〜300分がより好ましい。反応時間が短すぎる場合に は、重合度が十分に上がらない場合があり、反応時間が長すぎる場合には、粒子間 で凝集が起こり易くなる傾向がある。  [0150] The reaction temperature for the radical polymerization is preferably 40 to 100 ° C, more preferably 50 to 80 ° C. If the reaction temperature is too low, the degree of polymerization will not increase sufficiently, and the mechanical properties of the polymer fine particles will tend to be difficult to obtain, whereas if the reaction temperature is too high, aggregation between particles will occur during the polymerization. Tends to occur. The reaction time for the radical polymerization may be appropriately changed according to the type of polymerization initiator used, but usually 5 to 600 minutes is preferable, and 10 to 300 minutes is more preferable. When the reaction time is too short, the degree of polymerization may not be sufficiently increased, and when the reaction time is too long, aggregation tends to occur between particles.
[0151] 本発明では、重合工程後、得られた重合体微粒子を含む調製液をそのまま、ある いは、有機溶剤を蒸留して水および/またはアルコールを含む分散媒に置換した後 、上述の湿式分級工程に供給してもよぐまた、生成した重合体微粒子を単離し、乾 燥させた後、水および/または有機溶剤に分散させた後、湿式分級工程へと供給し てもよい。  [0151] In the present invention, after the polymerization step, the obtained preparation liquid containing the polymer fine particles is used as it is or after the organic solvent is distilled and replaced with a dispersion medium containing water and / or alcohol, The polymer fine particles produced may be isolated and dried, dispersed in water and / or an organic solvent, and then supplied to the wet classification step.
[0152] 本発明の微粒子は、粗大粒子および微小粒子の含有量が低減され、粒度分布が 狭いものであるため、光学用途、例えば、 LCD等に用いる光拡散シートや導光板、 あるいは、 PDP、 ELディスプレイおよびタツチパネル等に用いる光学用樹脂に含有 させる光拡散剤やアンチブロッキング剤などの添加剤などとして有用である。もちろん 、これらの光学用途以外の各種フィルム用のアンチブロッキング剤などとしても好適 に用いられる。 [0152] Since the fine particles of the present invention have a reduced content of coarse particles and fine particles and a narrow particle size distribution, the light diffusion sheet or light guide plate used in optical applications such as LCDs, Alternatively, it is useful as an additive such as a light diffusing agent or an antiblocking agent contained in an optical resin used for PDP, EL display, touch panel and the like. Of course, it is also suitably used as an antiblocking agent for various films other than these optical uses.
[0153] 本発明に係る樹脂組成物は、本発明の微粒子と透明バインダー樹脂とを含む樹脂 組成物である。上述のように本発明の微粒子は、粗大粒子のみならず微小粒子の含 有量も極低レベルに抑えられているため、光学用途に好適に用いられる。  [0153] The resin composition according to the present invention is a resin composition containing the fine particles of the present invention and a transparent binder resin. As described above, the fine particles of the present invention are suitably used for optical applications because the content of not only coarse particles but also fine particles is suppressed to an extremely low level.
[0154] 上記樹脂組成物中の微粒子の含有量は、用途や所望の光学特性に応じて適宜決 定すれば良いが、光学用途に用いる場合であれば、バインダー樹脂組成物 100質 量部に対して 1質量部以上、 300質量部以下とするのが好ましい。より好ましくは 2質 量部以上、さらに好ましくは 5質量部以上であり、より好ましくは 200質量部以下、さら に好ましくは 150質量部以下である。微粒子の含有量が多すぎる場合は、光学用部 材の強度が低下する虞があり、少なすぎる場合には、微粒子の添加により期待する 効果 (光拡散性など)が得られ難!/、場合がある。  [0154] The content of the fine particles in the resin composition may be appropriately determined according to the use and desired optical properties, but in the case of use for optical uses, the binder resin composition is contained in 100 parts by mass. On the other hand, the amount is preferably 1 part by mass or more and 300 parts by mass or less. More preferably, it is 2 parts by mass or more, further preferably 5 parts by mass or more, more preferably 200 parts by mass or less, and further preferably 150 parts by mass or less. If the content of the fine particles is too large, the strength of the optical component may be reduced. If the content is too small, it is difficult to obtain the expected effects (such as light diffusibility) by adding fine particles! / There is.
[0155] 本発明樹脂組成物に含まれる透明バインダー樹脂は、特に限定されず、当該分野 においてバインダー樹脂として使用されるものはいずれも用いることができる。例えば 、 (I)本発明の樹脂組成物を用いて形成される部材が、本発明の樹脂組成物そのも のを板状、シート状等の所望の形状に成形されるものである場合 (すなわち、バイン ダー樹脂を板状、シート状成形体の基材樹脂とする場合)、透明樹脂としては、ポリ エチレンテレフタレートやポリエチレンナフタレートなどのポリエステル樹脂、アクリル 樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、ポリエーテルサルホン樹脂、ポリウレ タン系樹脂、ポリスルホン樹脂、ポリエーテル樹脂、ポリメチルペンテン樹脂、ポリエ ーテルケトン樹脂、(メタ)アクリロニトリル系樹脂、ポリプロピレン樹脂などのポリオレフ イン樹脂、ノルボルネン系樹脂、非晶質ポリオレフイン樹脂、ポリアミド樹脂、ポリイミド 樹脂、および、トリァセチルセルロース樹脂などが挙げられる。  [0155] The transparent binder resin contained in the resin composition of the present invention is not particularly limited, and any of those used as a binder resin in this field can be used. For example, (I) When the member formed using the resin composition of the present invention is formed into a desired shape such as a plate shape or a sheet shape of the resin composition of the present invention itself (that is, In case of using binder resin as base resin for plate-like or sheet-like molded products), transparent resin includes polyester resin such as polyethylene terephthalate and polyethylene naphthalate, acrylic resin, polystyrene resin, polycarbonate resin, polyethersal Polyolefin resins such as phon resin, polyurethane resin, polysulfone resin, polyether resin, polymethylpentene resin, polyether ketone resin, (meth) acrylonitrile resin, polypropylene resin, norbornene resin, amorphous polyolefin resin, polyamide Resin, polyimide resin, and triaceti Cellulose resins.
[0156] また、(II)部材カ 予め準備された板状やシート状などの基材表面に、本発明の樹 脂組成物を積層(コーティング、ラミネートなど)等して一体化させてなるものである場 合、透明バインダー樹脂としては、上記バインダー樹脂と同様のものが使用できるが 、例えば、アクリル樹脂、ポリプロピレン樹脂、ポリビュルアルコール樹脂、ポリ酢酸ビ ニル樹脂、ポリスチレン樹脂、ポリ塩化ビュル樹脂、シリコン樹脂、およびポリウレタン 樹脂、ポリエステル樹脂などが挙げられる。 [0156] Also, (II) a member formed by laminating (coating, laminating, etc.) the resin composition of the present invention on a previously prepared substrate surface such as a plate or sheet. In this case, the same transparent binder resin as the above binder resin can be used. Examples thereof include acrylic resin, polypropylene resin, polybutyl alcohol resin, polyvinyl acetate resin, polystyrene resin, polychlorinated bur resin, silicon resin, polyurethane resin, and polyester resin.
[0157] 本発明の樹脂組成物は、上記微粒子および透明バインダー樹脂以外にも、本発明 の効果を損なわな!/、範囲であれば、必要に応じてその他の成分を含んで!/、てもよ!/ヽ 。その他の成分としては、例えば、耐光性ゃ耐 UV性などの物性を高めるため、硬化 剤、架橋剤、各種添加剤や安定剤および難燃剤、酸化防止剤、紫外線吸収剤が挙 げられる。これらは 1種のみを用いてもよいし、 2種以上を併用してもよい。  [0157] The resin composition of the present invention does not impair the effects of the present invention in addition to the fine particles and the transparent binder resin! /, And if necessary, contains other components as required! /, Moyo! / ヽ. Examples of other components include a curing agent, a crosslinking agent, various additives and stabilizers, a flame retardant, an antioxidant, and an ultraviolet absorber in order to enhance physical properties such as light resistance and UV resistance. These may use only 1 type and may use 2 or more types together.
[0158] 本発明の樹脂組成物から得られる成形体は、上記バインダー樹脂中に本発明の微 粒子が分散、固定された成形体であるため、光拡散性や光透過性など優れた光学 特性を具備するものである。したがって、本発明の樹脂組成物は、各種光学製品の 構成部材の原料として好適に用いられる。なお、上述した本発明の微粒子に由来す る優れた光拡散性や光透過性を有効に活用すると!/、う観点からは、各種画像表示装 置の前面に設置して、外光や室内照明機器の映り込みを防止して画像の表示を鮮 明にする反射防止防眩性フィルムや、画像表示装置内において、光源からの光を画 像表示面に均一に拡散させる光拡散フィルムや光拡散板などの光学用部材に好適 に用いられる。  [0158] Since the molded product obtained from the resin composition of the present invention is a molded product in which the fine particles of the present invention are dispersed and fixed in the binder resin, it has excellent optical properties such as light diffusibility and light transmittance. It comprises. Therefore, the resin composition of the present invention is suitably used as a raw material for constituent members of various optical products. From the viewpoint of effectively utilizing the excellent light diffusibility and light transmittance derived from the fine particles of the present invention described above, it is installed on the front surface of various image display devices so that it can be used for outside light and indoors. An anti-glare anti-glare film that prevents the reflection of lighting equipment and makes the image display clear, and a light diffusion film and light that uniformly diffuses the light from the light source to the image display surface in the image display device. It is suitably used for optical members such as a diffusion plate.
[0159] 上記光学用部材の形状は、フィルム状 (シート状)や板状に限られず、柱体、錐体、 球など、所望の形状に成形したものであってもよい。なお、優れた光拡散効果、防眩 効果 (光の正反射を抑制し、拡散することによる防眩効果)を確保する観点からは、 光学用部材の表面に、上述の本発明の微粒子に由来する凹凸が形成されているこ とが好ましい。  [0159] The shape of the optical member is not limited to a film shape (sheet shape) or a plate shape, and may be formed into a desired shape such as a column, a cone, or a sphere. From the viewpoint of securing an excellent light diffusion effect and antiglare effect (antiglare effect by suppressing and diffusing regular reflection of light), the surface of the optical member is derived from the fine particles of the present invention described above. It is preferable that irregularities to be formed are formed.
[0160] 例えば、上記光学用部材が、光拡散フィルムや、反射防止防眩フィルムのようなフ イルム状(以下、「光学フィルム」という)の成形体である場合、その形態としては、面状 部分を有し、透明バインダー樹脂により光拡散粒子が固定されてなる構成 (光学機 能層)を少なくとも一部に有している形態が挙げられる。例えば、 ω樹脂組成物を構 成する透明バインダー樹脂そのものを板状やシート状などの基材樹脂とし、板状また はフィルム状に形成した形態(光拡散板など)、 (ϋ)予め準備した板状やシート状の 基材表面の一部または全体に、上記樹脂組成物からなる層を積層(コーティング、ラ ミネート)し、一体化した形態(光拡散フィルム、防眩性フィルムなどの表面凹凸フィル ム、光拡散板など)、等が挙げられる。上記 (i)、 (ii)のいずれの形態の場合も、透明 ノ インダー樹脂中に粒子が分散、固定されているため、優れた光学特性を発揮する こと力 Sでさる。 [0160] For example, when the optical member is a film-like molded body (hereinafter referred to as "optical film") such as a light diffusing film or an antireflection antiglare film, the form thereof is planar. And a configuration (optical functional layer) in which the light diffusing particles are fixed by a transparent binder resin. For example, a transparent binder resin itself constituting the ω resin composition is used as a base resin such as a plate or sheet, and is formed into a plate or film (such as a light diffusing plate) (i) prepared in advance Plate or sheet A layer composed of the above resin composition is laminated (coating, laminating) on a part of or the entire surface of the base material, and is integrated (surface uneven film such as light diffusion film and antiglare film, light diffusion plate) Etc.). In any of the above forms (i) and (ii), the particles S are dispersed and fixed in the transparent binder resin.
[0161] なお、上記「面状部分を有する」とは、一般的には、光学部材の形状が板状、シート 状あるいはフィルム状のように、一定の面積の広がりを持った実質的に平らな表面部 分 (表面に微細な凹凸が形成されている場合を含む)がその形状の主たる構成要素 となっていることを言うが、本発明ではかかる態様には限られず、主たる構成要素で はなくても、その形状の少なくとも一部に実質的に平らな表面部分を有していればよ い。  [0161] Note that the above-mentioned "having a planar portion" generally means that the optical member is substantially flat with a certain area spread, such as a plate shape, a sheet shape, or a film shape. However, in the present invention, the present invention is not limited to such an embodiment, and the main component is not limited to such an aspect (including the case where fine irregularities are formed on the surface). If not, it is sufficient that at least a part of the shape has a substantially flat surface portion.
[0162] 上記 (i)の形態の光学部材を製造する方法としては、本発明の樹脂組成物を、公 知の押出機により溶融混練しながら押し出してシート状、板状およびフィルム状に成 形する方法が挙げられる。このとき、必要に応じて、耐光性ゃ耐 UV性などの物性を 高めるため、上記樹脂組成物に各種添加剤や安定剤および難燃剤などの添加物を 加えて成形してもよい。光学特性の均一な成形体を得るためには、上記樹脂組成物 は、予め、透明バインダー樹脂中に本発明の微粒子を混合し、分散させておくことが 好ましい。また同様に、上記添加物も樹脂組成物と混合しておいてもよい。  [0162] As a method for producing the optical member of the above form (i), the resin composition of the present invention is extruded into a sheet, plate, and film by extrusion while melting and kneading with a known extruder. The method of doing is mentioned. At this time, if necessary, in order to enhance physical properties such as light resistance and UV resistance, various additives, additives such as a stabilizer and a flame retardant may be added to the resin composition. In order to obtain a molded article having uniform optical properties, the resin composition is preferably mixed and dispersed in advance with the fine particles of the present invention in a transparent binder resin. Similarly, the additive may be mixed with the resin composition.
[0163] 上記 (ii)の形態の光学部材を得る方法としては、予め準備した基材表面に、本発 明の樹脂組成物からなる層を積層する方法が挙げられる。積層方法は特に限定され ず、塗布法や、キャスト方などが好ましく例示される。塗布法としては、上記樹脂組成 物を含んでなる塗布用組成物を基材に塗布すればよい。本発明の樹脂組成物は、 そのまま塗布用組成物として用いることもできる力 上記樹脂組成物を、水、または、 有機溶剤(例えば、メタノール,エタノール,イソプロパノールなどのアルコール系溶 媒、エチレングリコール,プロピレングリコールなどのケトン系溶媒、酢酸ェチルなど のエステル系溶媒、および、トルエン,キシレンなどの芳香族炭化水素など)に分散、 溶解させて調製した塗布用組成物を用いるのが好ましレ、。基材は特に限定されなレ、 1S 例えば、ポリオレフイン系樹脂フィルム、ポリエステル系樹脂フィルム、ポリカーボ ネート系樹脂フィルムなど、従来公知の無色透明な樹脂フィルムが好ましく用いられ る。具体的な塗布方法としては、リバースロールコート法、グラビアコート法、ダイコー ト法、コンマコート法、およびスプレーコート法等の公知の積層方法が挙げられる。 [0163] Examples of the method for obtaining the optical member of the form (ii) include a method of laminating a layer made of the resin composition of the present invention on a previously prepared base material surface. The lamination method is not particularly limited, and preferred examples include a coating method and a casting method. As a coating method, a coating composition containing the resin composition may be applied to a substrate. The resin composition of the present invention can be used as a coating composition as it is. The above resin composition is mixed with water or an organic solvent (for example, alcohol solvent such as methanol, ethanol, isopropanol, ethylene glycol, propylene, etc.). It is preferable to use a coating composition prepared by dispersing and dissolving in a ketone solvent such as glycol, an ester solvent such as ethyl acetate, and an aromatic hydrocarbon such as toluene and xylene. The substrate is not particularly limited. 1S For example, polyolefin resin film, polyester resin film, polycarbonate Conventionally known colorless and transparent resin films such as nate resin films are preferably used. Specific coating methods include known laminating methods such as reverse roll coating, gravure coating, die coating, comma coating, and spray coating.
[0164] 塗布後、必要に応じて塗布膜中に含まれる溶媒を乾燥した後、塗布膜を固化させ て樹脂組成物層を形成する。なお、耐熱性、耐候性を確保する観点からは、樹脂組 成物からなる層は、この樹脂組成物に含まれるバインダー樹脂を硬化あるいは架橋 させることが好ましい。 [0164] After coating, if necessary, the solvent contained in the coating film is dried, and then the coating film is solidified to form a resin composition layer. From the viewpoint of ensuring heat resistance and weather resistance, the layer made of the resin composition is preferably cured or crosslinked with the binder resin contained in the resin composition.
[0165] 上述した方法により形成された本発明の樹脂組成物(あるいは塗布用組成物)から なる層の膜厚は特に限定されないが、上記光拡散フィルムの場合、樹脂組成物から なる層(光拡散層)の膜厚は 30 11 m以下、防眩性フィルムの場合、樹脂組成物から なる層(防眩層層)の膜厚は 20 a m以下、光拡散板の厚みは 2000 μ m以下である のが好ましい。従来、厚みが薄い場合には、十分な光拡散性や光透過性を発現させ ることが困難であった力 S、本発明の微粒子あるいは樹脂組成物を使用すれば、厚み が薄くても極めて優れた光拡散性および光透過性を発揮できる。なお、上記光拡散 フィルムおよび防眩性フィルム膜厚の値は、基材上に積層された樹脂組成物を含む 層(すなわち、光拡散層、防眩層)の厚みを表すもので、基材の厚みは含まれない。  [0165] The thickness of the layer made of the resin composition (or coating composition) of the present invention formed by the above-described method is not particularly limited, but in the case of the light diffusion film, the layer made of the resin composition (light The thickness of the diffusion layer is 30 11 m or less. In the case of an anti-glare film, the layer made of the resin composition (anti-glare layer) is 20 am or less, and the thickness of the light diffusion plate is 2000 μm or less. Preferably there is. Conventionally, when the thickness is thin, it has been difficult to develop sufficient light diffusibility and light transmission, and if the fine particles or resin composition of the present invention is used, the thickness is extremely small. Excellent light diffusibility and light transmittance can be exhibited. In addition, the value of the said light-diffusion film and anti-glare film film thickness represents the thickness of the layer (namely, light-diffusion layer, anti-glare layer) containing the resin composition laminated | stacked on the base material. The thickness of is not included.
[0166] 本発明の微粒子は、粗大な粒子の含有量が極低レベルに抑えられており、また、 粒度分布がシャープであることに加え、塗布用組成物中においても膨潤などの変質 を起こし難い化学的に安定な微粒子であるので、上述のような光学部材 (光拡散フィ ルム、防眩性フィルム、光拡散板など)に、均一で、微細な凹凸を形成できる。したが つて、本発明の微粒子を用いて得られる光拡散フィルム、防眩性フィルムおよび光拡 散板などの光学部材は、粗大粒子に由来する局所的な光り抜けや、外観状の不具 合となる光学的異物が生じ難い。また、本発明の微粒子の平均粒子径の制御によつ て、光学特性の調整もできるので、光学用途に好適に用いられる。  [0166] The fine particles of the present invention have an extremely low content of coarse particles, and in addition to a sharp particle size distribution, the coating composition also undergoes alterations such as swelling. Since the particles are difficult and chemically stable, uniform and fine irregularities can be formed on the above-described optical member (light diffusion film, antiglare film, light diffusion plate, etc.). Therefore, optical members such as a light diffusing film, an antiglare film, and a light diffusing plate obtained by using the fine particles of the present invention have local glare from coarse particles, and appearance defects. It is hard to produce the optical foreign material which becomes. Further, since the optical characteristics can be adjusted by controlling the average particle diameter of the fine particles of the present invention, it is suitably used for optical applications.
実施例  Example
[0167] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実 施例により制限を受けるものではなぐ前 ·後記の趣旨に適合し得る範囲で適当に変 更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含ま れる。なお、特に断らない限り、質量部を「部」、質量%を「%」と表すことがぁる。 [0167] Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples as well as the present invention. It is also possible to carry out with addition, and they are all included in the technical scope of the present invention. It is. Unless otherwise specified, mass parts may be expressed as “parts” and mass% as “%”.
[0168] 微粒子の製造 [0168] Production of fine particles
製造例 1 (ポリシロキサン微粒子)  Production Example 1 (Polysiloxane fine particles)
冷却装置、温度計および滴下口を備えた反応釜に、イオン交換水 280部、 25%ァ ンモユア水 5部およびメタノール 120部の混合溶液を入れ、混合溶液の攪拌下、滴 下口から、 γ -メタクリロキシプロピルトリメトキシシラン 40部を投入して、温度 30°Cで 2 時間、 Ί -メタクリロキシプロピルトリメトキシシランの加水分解、縮合反応を行って、ポ リシロキサン微粒子の懸濁液を調整した。なお、このとき得られたポリシロキサン粒子 の重量平均分子量は 1800であった(用いたシリコン化合物の約 7量体に相当 )。  Put a mixed solution of 280 parts of ion-exchanged water, 5 parts of 25% ammonia water and 120 parts of methanol into a reaction kettle equipped with a cooling device, thermometer and dropping port. -Add 40 parts of methacryloxypropyltrimethoxysilane and heat and condense -methacryloxypropyltrimethoxysilane for 2 hours at 30 ° C to prepare polysiloxane fine particle suspension. did. The polysiloxane particles obtained at this time had a weight average molecular weight of 1800 (corresponding to about a 7-mer of the silicon compound used).
[0169] 別途、上述のものとは異なる反応釜 2で、スチレン 400部、 2, 2' -ァゾビス(2, 4— ジメチルバレロニトリル)(和光純薬工業社製、 V-65) 3部、ァニオン性界面活性剤(L A- 10、第一工業社製) 1. 5部およびイオン交換水 400部をホモミキサーにより、室 温下(25°C)で 15分間乳化分散させ、エマルシヨンを調整した (モノマー溶液)。  [0169] Separately, in a reaction vessel 2 different from the above, 400 parts of styrene, 3 parts of 2,2'-azobis (2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd., V-65), Anionic surfactant (LA-10, manufactured by Daiichi Kogyo Co., Ltd.) 1. Emulsions were prepared by emulsifying and dispersing 5 parts and 400 parts of ion-exchanged water with a homomixer at room temperature (25 ° C) for 15 minutes. (Monomer solution).
[0170] 前記ポリシロキサン粒子の懸濁液の調製開始から 2時間後( γ -メタクリロキシプロピ ルトリメトキシシラン添加から 2時間後)、反応釜 1の滴下口より上記エマルシヨンを添 カロした。 1時間攪拌を継続し、ポリシロキサン粒子がモノマー成分を吸収していること を確認した後、ここにイオン交換水 3500部を添加し、窒素雰囲気下、反応溶液を 65 °Cまで昇温させて、 65 ± 2°Cで 2時間保持し、ラジカル重合反応を行い、重合体粒子 (有機質無機質複合体粒子)分散液を得た。分散液中に分散する重合体粒子の平 均粒子径は 10. 1 a m、分散液の B型粘度 (B型粘度計、株式会社東京計器製)は 3 . 8mPa ' s、固形分濃度は 10質量%であった。  [0170] Two hours after the start of the preparation of the polysiloxane particle suspension (two hours after the addition of γ-methacryloxypropyltrimethoxysilane), the emulsion was added from the dropping port of the reaction vessel 1. After stirring for 1 hour and confirming that the polysiloxane particles have absorbed the monomer components, 3500 parts of ion-exchanged water is added thereto, and the reaction solution is heated to 65 ° C under a nitrogen atmosphere. The mixture was held at 65 ± 2 ° C. for 2 hours, and a radical polymerization reaction was performed to obtain a polymer particle (organic-inorganic composite particle) dispersion. The average particle size of the polymer particles dispersed in the dispersion is 10.1 am, the B-type viscosity of the dispersion (B-type viscometer, manufactured by Tokyo Keiki Co., Ltd.) is 3.8 mPa's, and the solid content concentration is 10 It was mass%.
[0171] 製造例 2〜7 (ポリシロキサン粒子)  [0171] Production Examples 2 to 7 (polysiloxane particles)
ポリシロキサン粒子原料、ラジカル重合性モノマー種、及び、使用量を表 1のように 変更した以外は、製造例 1と同様にして、重合体粒子分散液を調整した。尚、ポリシ ロキサン粒子懸濁液、エマルシヨンの調整に用いたイオン交換水、メタノール、界面 活性剤の量は、各製造例の条件に応じて適宜調整した。  A polymer particle dispersion was prepared in the same manner as in Production Example 1, except that the polysiloxane particle raw material, the radical polymerizable monomer species, and the amount used were changed as shown in Table 1. The amounts of ion-exchanged water, methanol, and surfactant used for the preparation of the suspension of the polysiloxane particles and emulsion were appropriately adjusted according to the conditions of each production example.
[0172] [重合体粒子の平均粒子径、粗大粒子量の測定]  [Measurement of average particle size and amount of coarse particles of polymer particles]
上記製造例で得られた重合体粒子分散液を固液分離し、乾燥した重合体粒子 0. 5gをイオン交換水 lOOgに分散させて重合体粒子分散液を調整し、精密粒度分布測 定装置 (製品名「マルチサイザ一 II」、ベックマン'コールター株式会社製)を使用して 、重合体粒子の粒子径の測定を行い、体積基準で平均粒子径を算出した。 The polymer particle dispersion obtained in the above production example was subjected to solid-liquid separation and dried polymer particles. Disperse 5 g in ion-exchanged water lOOg to prepare a polymer particle dispersion, and use a precision particle size distribution measuring device (product name `` Multisizer II '', manufactured by Beckman Coulter Co., Ltd.) The particle diameter was measured, and the average particle diameter was calculated on a volume basis.
[0173] なお、重合体粒子分散液中に含まれる粗大粒子(平均粒子径の 2倍以上の粒子径 を有する粗大粒子)の量の測定は、以下のようにして行った。  [0173] Measurement of the amount of coarse particles (coarse particles having a particle size of at least twice the average particle size) contained in the polymer particle dispersion was performed as follows.
[0174] 乾燥させた重合体粒子 0. 5gをメタノール lOOgに分散させた重合体粒子分散溶液  [0174] Polymer particle dispersion in which 0.5 g of dried polymer particles is dispersed in methanol lOOg
(粘度:3mPa ' S、固形分濃度:0. 5質量%)を調整し、平均粒子径の 1. 75〜2倍の 目開きを有するメッシュ(ニッケル製、東京プロセスサービス株式会社製)と、濾過鐘 にブフナーロートを備えた吸引濾過装置を使用して、減圧下で濾過を行った。 次い で、メッシュ上に残留した粒子を走査型電子顕微鏡(SEM、「S_3500N」、 日立製作所 製、加速電圧: 25kV)で観察し、 目視で平均粒子径の 2倍以上の粗大粒子の個数を 数えた。尚、観察は、倍率 200倍で、全視野を観察した。結果は、表 1中、「〉平均径 X 2」で示す。 (Viscosity: 3 mPa 'S, solid concentration:. 0 5 wt%) was adjusted to a mesh having 1.75 to 2 times the mesh of average particle size (nickel, Tokyo Process Service Co., Ltd.), Filtration was performed under reduced pressure using a suction filtration device equipped with a Buchner funnel on the filter bell. Next, the particles remaining on the mesh were observed with a scanning electron microscope (SEM, “S_3500N”, manufactured by Hitachi, accelerating voltage: 25 kV), and the number of coarse particles more than twice the average particle diameter was visually observed. I counted. The observation was performed at a magnification of 200 times and the entire visual field was observed. The results are shown in Table 1 as “> average diameter X 2”.
[0175] また、平均粒子径 2. 5倍以上の粒子径を有する粗大粒子量の場合は、平均粒子 径の 2. 25-2. 5倍の目開きを有するメッシュを用いたこと以外は、上述の手順と同 様にして行った。結果は、表 1中、「〉平均径 X 2. 5」で示す。  [0175] Further, in the case of the amount of coarse particles having an average particle size of 2.5 times or more, except that a mesh having an opening of 2.25-2.5 times the average particle size is used, The procedure was the same as described above. The results are shown in Table 1 as “> Average diameter X 2.5”.
[0176] [SiO含有量] [0176] [SiO content]
焼成炉装置中で、重合体粒子 lgを 800°C (大気雰囲気下)で焼成し、生成した灰 分を SiOとして、使用した重合体粒子の質量に対する SiOの割合を算出した。  Polymer particles lg were calcined at 800 ° C. (in the atmosphere) in a calcining furnace, and the ratio of SiO to the mass of the polymer particles used was calculated with the generated ash as SiO.
[0177] [固形分濃度] [0177] [Solid concentration]
重合体粒子の固形分濃度は、重合体粒子分散溶液 0. 5gを、 120°C X 20分 (真空 中)で乾燥し、残留した固形分の質量の重合体粒子分散液の質量に対する割合を 固形分濃度とした。  The solid content concentration of the polymer particles was determined by drying 0.5 g of the polymer particle dispersion solution at 120 ° CX for 20 minutes (in vacuum), and measuring the ratio of the remaining solid content to the mass of the polymer particle dispersion. The partial concentration was used.
固形分濃度(%) = [残留した固形分質量/重合体粒子分散液質量] X 100  Solid content concentration (%) = [residual solid content mass / polymer particle dispersion mass] X 100
[0178] [かさ比重] [0178] [bulk specific gravity]
パウダーテスター(ホソカワミクロン社製)にて測定した。  It measured with the powder tester (made by Hosokawa Micron Corporation).
[0179] [水分含量] [0179] [Moisture content]
粉砕粒子 0. 5gを測定試料とし、カールフィッシャー水分計 (平沼産業株式会社製) を用いて測定した。 Karl Fischer moisture meter (manufactured by Hiranuma Sangyo Co., Ltd.) using 0.5 g of pulverized particles as a measurement sample It measured using.
[0180] [重量平均分子量] [0180] [weight average molecular weight]
重量平均分子量は、ゲルパーミエーシヨンクロマトグラフィー(GPC、「HLC— 812 0GPC」、東ソ一株式会社製)を使用して、以下の測定条件により測定した。尚、測定 試料は、固形分濃度が 0. 8%となるように試料をテトラヒドロフラン (THF)により希釈 して調整した。  The weight average molecular weight was measured using gel permeation chromatography (GPC, “HLC-812GPC”, manufactured by Tosohichi Corporation) under the following measurement conditions. The measurement sample was prepared by diluting the sample with tetrahydrofuran (THF) so that the solid content concentration was 0.8%.
[0181] カラム : TSKgelG5000HXL— TSKgel2000HXL (東ソ一株式会社製)  [0181] Column: TSKgelG5000HXL— TSKgel2000HXL (Tosohichi Corporation)
カラム温度: 25°C  Column temperature: 25 ° C
溶離液 : THF  Eluent: THF
ポンプ : L6000 (株式会社 日立製作所製)  Pump: L6000 (manufactured by Hitachi, Ltd.)
流量 : 1. Oml/min  Flow rate: 1. Oml / min
検出 : Rl Model 504 (GLサイエンス株式会社製)  Detection: Rl Model 504 (GL Science Co., Ltd.)
試料濃度: 0. 8%  Sample concentration: 0.8%
標準試料'校正曲線:標準ポリスチレン (TSK標準ポリスチレン、東ソー株式会社製 )、 Mw=500〜 000000までの 13サンプノレ ίこよる校正曲泉を使用した。  Standard sample 'calibration curve: Standard polystyrene (TSK standard polystyrene, manufactured by Tosoh Corporation), calibration fountain with 13 samples from Mw = 500 to 000000 was used.
[0182] [表 1] [0182] [Table 1]
重合体粒子分散液 重合 1 t*粒子 ラジカル重合性 Polymer particle dispersion Polymerization 1 t * particles Radical polymerization
ポリシロキサン粒子原料 粗大粒子含量 (個 /0.5g) Si02 ビニルモノマ一 固形分 Raw material for polysiloxane particles Coarse particle content (pieces / 0.5g) Si0 2 vinyl monomer Solid content
B型粘度 平均  B type viscosity average
;¾度 >平均径 x2 >平均径 X 2.5 粒子径 含有量 製造例 r  ; ¾ degree> average diameter x2> average diameter X 2.5 Particle diameter Content Production example r
1 -メタクリロキジプロピル スチレン 400部 10質量% 3.5mPa-s > 10000個 >200個 10.1 (I m 3質量% トリメトキシシラン 4QS|i 1-methacryloxydipropyl styrene 400 parts 10% by mass 3.5mPa-s> 10000 units> 200 units 10.1 (I m 3% by mass trimethoxysilane 4QS | i
ブチルメタクリレート 70部  70 parts butyl methacrylate
製造例 r- 2 ァクリロキシプロピル Αηώ)1 個 6.1 μ m 5質量% トリエトキシシラン 4QSP 1. 6—へキサンジオール ι η 20質量% 3.8mPa-s > 10000個 >200 Production example r-2 acryloxypropylΑηώ ) 1 unit 6.1 μm 5% by mass Triethoxysilane 4QSP 1. 6-hexanediol ι η 20% by mass 3.8mPa-s> 10000 units> 200
ジァクリレート 15035 製造例 3 に P ス リノレ—、 100部 ジビニルベンゼン 250部 3質量% 3.1mPa-s > 10000個 >200個 6.9 ju m 10質量% Diacrylate 15035 Production Example 3 with P -Sinole, 100 parts Divinylbenzene 250 parts 3% by mass 3.1 mPa-s> 10000 units> 200 units 6.9 jum 10% by mass
トリメトキソンフン  Trimethoxon Hoon
シクロへキシル  Cyclohexyl
r -メタクリロキシプロピノレ  r-methacryloxypropinole
製造例 4 メタクリレート 150部 15質量% 3.8mPa-s > 10000個 >200個 3.7 / m 3貧量 ¾ Production Example 4 150 parts of methacrylate 15% by mass 3.8 mPa-s> 10000 units> 200 units 3.7 / m 3 Poor amount ¾
Wエトキシシラン 4QS|i W ethoxysilane 4QS | i
ジビニルベンゼン 150部 製造例 5 r—メ^^ 、口ピル 100部 ブチルメタクリレート 400部 3質量% 3.1mPa-s 〉10000個 >200個 25.2 jU m 6質量% 150 parts of divinylbenzene Production example 5 r -me ^^, 100 parts of mouth pills 400 parts of butyl methacrylate 3% by mass 3.1 mPa-s> 10000 pcs> 200 pcs 25.2 jU m 6% by mass
卜リメ卜キンンフン 製造例 6 , . Ρ'^'^. 100部 メチルメタクリレート 60部 20質量% 3.8mPa-s > 10000個 〉200個 4.2fim 24質量%  卜 Limekinkin production example 6,. Ρ '^' ^. 100 parts methyl methacrylate 60 parts 20 parts by mass 3.8 mPa-s> 10000 units> 200 units 4.2 fim 24% by mass
トリメト千ンンフン  Trimet Thousands
シクロへキシル  Cyclohexyl
r -メタクリロキシプロピル メタクリレート 300 300 parts of r-methacryloxypropyl methacrylate
製造例 7 10質量% 3.4mPa«s > 10000個 >200個 12.5 m 1.5質量% トリエトキシシラン 31 エチレングリコ一ル Production Example 7 10% by mass 3.4mPa «s> 10000 units> 200 units 12.5m 1.5% by mass Triethoxysilane 31 ethylene glycol
ジメタクリレート U511 Dimethacrylate U 511
[0183] 実施例 1 [0183] Example 1
製造例 1で得られた重合体粒子分散液を、 目開き 20 μ mのステンレス鋼製金網で 分級した (湿式分級工程)。次いで、湿式分級後の重合体粒子分散液を自然沈降に より固液分離した。得られたケーキをイオン交換水およびメタノールで洗浄した後、 1 00°Cで 5時間真空乾燥することにより、粒子が凝集してなる乾燥物を得た。該乾燥物 を粉砕することにより、粉砕粒子を得た(回収率 99質量%)。  The polymer particle dispersion obtained in Production Example 1 was classified using a stainless steel wire mesh having an opening of 20 μm (wet classification process). Next, the polymer particle dispersion after wet classification was subjected to solid-liquid separation by natural precipitation. The obtained cake was washed with ion-exchanged water and methanol, and then vacuum-dried at 100 ° C. for 5 hours to obtain a dried product in which particles aggregated. The dried product was pulverized to obtain pulverized particles (recovery rate 99% by mass).
[0184] このとき得られた粉砕粒子は、かさ比重 0. 7g/cm3、粒子径 10. 1 μ m、水分含量 0. 5質量%以下であった。 The pulverized particles obtained at this time had a bulk specific gravity of 0.7 g / cm 3 , a particle size of 10. 1 μm, and a water content of 0.5% by mass or less.
[0185] 得られた粉砕粒子を高精度気流分級機(「DFX5型」、 日本ニューマチック工業株 式会社製)に投入し、高速旋回気流および吸引ブロワ一により粉砕粒子に与えられ る遠心力と抗力とのバランスを調節することにより分級し、供給した粉砕粒子に対する 回収率 85質量%で微粒子を得た(乾式分級工程)。尚、このときの重合体粒子分散 液からの微粒子の回収率は 84質量%であった。  [0185] The obtained pulverized particles were put into a high-precision airflow classifier ("DFX5 type" manufactured by Nippon Pneumatic Industrial Co., Ltd.), and the centrifugal force applied to the pulverized particles by a high-speed swirling airflow and a suction blower The particles were classified by adjusting the balance with the drag, and fine particles were obtained at a recovery rate of 85% by mass with respect to the supplied pulverized particles (dry classification step). At this time, the recovery rate of fine particles from the polymer particle dispersion was 84% by mass.
[0186] 実施例 2  [0186] Example 2
実施例 1と同様の工程により、製造例 2で得られた重合体粒子分散溶液力 粉砕粒 子を調整した(回収率 99質量%)。このとき得られた粉砕粒子は、かさ比重 0. 7g/c m3、粒子径 10. 1 m、水分含量 0. 5質量%以下であった。 The polymer particle-dispersed solution force pulverized particles obtained in Production Example 2 were prepared by the same steps as in Example 1 (recovery rate 99% by mass). The pulverized particles obtained at this time had a bulk specific gravity of 0.7 g / cm 3 , a particle diameter of 10.1 m, and a water content of 0.5% by mass or less.
[0187] 次いで、得られた粉砕粒子を回転ローター式分級装置(「ターポプレックス 100ATP 」、ホソカワミクロン株式会社製)に投入し、分級ローターの回転速度と吸気口からの 空気の供給により粉砕粒子に与えられる遠心力と効力のバランスを調節することによ り分級を行い、供給した粉砕粒子に対する回収率 85質量%で微粒子を得た(乾式 分級工程)。尚、このときの重合体粒子分散液からの微粒子の回収率は 84質量%で あった。  [0187] Next, the obtained pulverized particles were put into a rotating rotor type classifier ("Taropplex 100ATP", manufactured by Hosokawa Micron Corporation), and given to the pulverized particles by the rotation speed of the classifying rotor and the supply of air from the intake port. The fine particles were obtained by adjusting the balance between the centrifugal force and the potency, and the fine particles were obtained at a recovery rate of 85% by mass with respect to the supplied pulverized particles (dry classification step). The recovery rate of the fine particles from the polymer particle dispersion at this time was 84% by mass.
[0188] 実施例 3  [0188] Example 3
実施例 1と同様にして、製造例 3で得られた重合体粒子分散液から粉砕粒子を調 整した(かさ比重 0. 7g/cm3、粒子径 10. 1 111、水分含量0. 5質量%以下、回収 率 99質量%)。 In the same manner as in Example 1, pulverized particles were prepared from the polymer particle dispersion obtained in Production Example 3 (bulk specific gravity 0.7 g / cm 3 , particle size 10.1 111, water content 0.5 mass). %, Recovery rate 99% by mass).
[0189] この粉砕粒子を、回転ローター式気流分級装置(「ターボクラシファイア TC_15」、 日 清エンジニアリング社製)に投入し、分級ローターの回転速度と吸気口からの空気の 供給により粉砕粒子に与えられる遠心力と効力のバランスを調節することにより分級 を行い、供給粉砕粒子に対する回収率 85質量%で微粒子を得た(乾式分級工程)。 尚、このときの重合体粒子分散液からの微粒子の回収率は 84質量%であった。 [0189] The pulverized particles were mixed with a rotary rotor airflow classifier ("Turbo Classifier TC_15", The product is classified by adjusting the balance between the rotational speed of the classification rotor and the centrifugal force and the effect applied to the pulverized particles by the supply of air from the intake port. Fine particles were obtained at a mass% (dry classification step). The recovery rate of fine particles from the polymer particle dispersion at this time was 84% by mass.
[0190] 実施例 4 [0190] Example 4
実施例 1と同様にして、製造例 3で得られた重合体粒子分散液から粉砕粒子を調 整した(かさ比重 0. 7g/cm3、粒子径 10. 1 111、水分含量0. 5質量%以下、回収 率 99%)。 In the same manner as in Example 1, pulverized particles were prepared from the polymer particle dispersion obtained in Production Example 3 (bulk specific gravity 0.7 g / cm 3 , particle size 10.1 111, water content 0.5 mass). % Or less, recovery rate 99%).
[0191] この粉砕粒子を、コアンダ式気流分級装置(「エルボージェット EJ-15」、 日鉄鉱業株 式会社製、フィードエアー: 5kgf、スリムエッジを使用)に投入し、微粒子に与えられ る慣性力と吸引ブロワ一による効力のバランスを調節することにより分級を行い、供給 粉砕粒子に対する回収率 85質量%で微粒子を得た。尚、このときの重合体粒子分 散液からの微粒子の回収率は 84質量%であった。  [0191] The pulverized particles are put into a Coanda airflow classifier ("Elbow Jet EJ-15", manufactured by Nippon Steel Mining Co., Ltd., feed air: 5kgf, using a slim edge), and the inertia given to the fine particles Classification was performed by adjusting the balance between the force and the effectiveness of the suction blower, and fine particles were obtained at a recovery rate of 85% by mass with respect to the supplied ground particles. At this time, the recovery rate of fine particles from the polymer particle dispersion was 84% by mass.
[0192] 実施例 5  [0192] Example 5
実施例 1と同様の工程により、製造例 4で得られた重合体粒子分散溶液力 粉砕粒 子を調整した(かさ比重 0. 7g/cm3、粒子径 3. 7 111、水分含量 0. 5質量%以下、 回収率 99質量%)。 The polymer particle-dispersed solution force pulverized particles obtained in Production Example 4 were prepared by the same steps as in Example 1 (bulk specific gravity 0.7 g / cm 3 , particle diameter 3.7 11, water content 0.5 Mass% or less, recovery rate 99 mass%).
[0193] 次!/、で、得られた粉砕粒子を高精度気流分級機(「DFX5型」、 日本ニューマチック 工業株式会社製)に投入し、高速旋回気流および吸引ブロワ一により粉砕粒子に与 えられる遠心力と抗力とのバランスを調節することにより分級し、供給した粉砕粒子に 対する回収率 88質量%で微粒子を得た(乾式分級工程)。尚、このときの重合体粒 子分散液からの微粒子の回収率は 87質量%であった。  [0193] Next! /, Put the pulverized particles obtained into a high-precision airflow classifier (“DFX5”, manufactured by Nippon Pneumatic Industry Co., Ltd.) The fine particles were obtained by adjusting the balance between the resultant centrifugal force and drag force, and fine particles were obtained at a recovery rate of 88% by mass with respect to the supplied pulverized particles (dry classification step). At this time, the recovery rate of fine particles from the polymer particle dispersion was 87% by mass.
[0194] 実施例 6  [0194] Example 6
実施例 1と同様の工程により、製造例 5で得られた重合体粒子分散溶液力 粉砕粒 子を調整した(かさ比重 0. 7g/cm3、粒子径 25. 2 m、水分含量 0. 5質量%以下 、回収率 99質量%)。 The polymer particle dispersion solution force pulverized particles obtained in Production Example 5 were prepared by the same steps as in Example 1 (bulk specific gravity 0.7 g / cm 3 , particle diameter 25.2 m, water content 0.5 (Mass% or less, recovery rate 99 mass%).
[0195] 次いで、得られた粉砕粒子を回転ローター式分級装置(「ターポプレックス 100AT P」、ホソカワミクロン株式会社製)に投入し、分級ローターの回転速度と吸気口からの 空気の供給により粉砕粒子に与えられる遠心力と効力のバランスを調節することによ り分級を行い、供給した粉砕粒子に対する回収率 85質量%で微粒子を得た(乾式 分級工程)。尚、このときの重合体粒子分散液からの微粒子の回収率は 84質量%で あった。 [0195] Next, the obtained pulverized particles were put into a rotating rotor type classifier ("Tarpoplex 100AT P", manufactured by Hosokawa Micron Corporation), and the rotational speed of the classifying rotor and the intake port Classification was performed by adjusting the balance between the centrifugal force applied to the pulverized particles by the supply of air and the effect, and fine particles were obtained at a recovery rate of 85% by mass with respect to the supplied pulverized particles (dry classification step). The recovery rate of the fine particles from the polymer particle dispersion at this time was 84% by mass.
[0196] 実施例 7 [0196] Example 7
実施例 1と同様の工程により、製造例 6で得られた重合体粒子分散溶液力 粉砕粒 子を調整した(かさ比重 0. 7g/cm3、粒子径 4. 2 111、水分含量 0. 5質量%以下、 回収率 99質量%)。 The polymer particle-dispersed solution force pulverized particles obtained in Production Example 6 were prepared by the same process as in Example 1 (bulk specific gravity 0.7 g / cm 3 , particle diameter 4.2 111, water content 0.5 Mass% or less, recovery rate 99 mass%).
[0197] この粉砕粒子を、回転ローター式気流分級装置(「ターボクラシファイア TC_15」、 日 清エンジニアリング社製)に投入し、分級ローターの回転速度と吸気口からの空気の 供給により粉砕粒子に与えられる遠心力と効力のバランスを調節することにより分級 を行い、供給粉砕粒子に対する回収率 86質量%で微粒子を得た(乾式分級工程)。 尚、このときの重合体粒子分散液からの微粒子の回収率は 85質量%であった。  [0197] The pulverized particles are put into a rotating rotor type air classifier ("Turbo Classifier TC_15", manufactured by Nissin Engineering Co., Ltd.), and given to the pulverized particles by the rotation speed of the classifying rotor and the supply of air from the intake port. Classification was performed by adjusting the balance between centrifugal force and efficacy, and fine particles were obtained at a recovery rate of 86% by mass with respect to the supplied pulverized particles (dry classification process). At this time, the recovery rate of the fine particles from the polymer particle dispersion was 85% by mass.
[0198] 実施例 8  [0198] Example 8
実施例 1と同様の工程により、製造例 7で得られた重合体粒子分散溶液力 粉砕粒 子を調整した(かさ比重 0. 7g/cm3、粒子径 12. 5 111、水分含量 0. 5質量%以下 、回収率 99質量%)。 The polymer particle dispersion solution force pulverized particles obtained in Production Example 7 were prepared by the same steps as in Example 1 (bulk specific gravity 0.7 g / cm 3 , particle size 12.5 111, water content 0.5 (Mass% or less, recovery rate 99 mass%).
[0199] この粉砕粒子を、コアンダ式気流分級装置(「エルボージェット EJ-15」、 日鉄鉱業株 式会社製、フィードエアー: 5kgf、スリムエッジを使用)に投入し、微粒子に与えられ る慣性力と吸引ブロワ一による効力のバランスを調節することにより分級を行い、供給 粉砕粒子に対する回収率 85質量%で微粒子を得た。尚、このときの重合体粒子分 散液からの微粒子の回収率は 84質量%であった。  [0199] The pulverized particles are put into a Coanda airflow classifier ("Elbow Jet EJ-15", manufactured by Nippon Steel Mining Co., Ltd., feed air: 5kgf, using a slim edge), and the inertia given to the fine particles Classification was performed by adjusting the balance between the force and the effectiveness of the suction blower, and fine particles were obtained at a recovery rate of 85% by mass with respect to the supplied ground particles. At this time, the recovery rate of fine particles from the polymer particle dispersion was 84% by mass.
[0200] 比較例 1  [0200] Comparative Example 1
製造例 1で得られた重合体粒子分散液を、 目開き 20 μ mのステンレス鋼製金網で 分級した (湿式分級工程)。次いで、湿式分級後の重合体粒子分散液を自然沈降に より個液分離した。得られたケーキをイオン交換水およびメタノールで洗浄した後、 1 00°Cで 5時間真空乾燥することにより、粒子が凝集してなる乾燥物を得た。該乾燥物 を粉砕することにより粉砕粒子を得た。 [0201] 比較例 2 The polymer particle dispersion obtained in Production Example 1 was classified using a stainless steel wire mesh having an opening of 20 μm (wet classification process). Next, the polymer particle dispersion after wet classification was separated into individual liquids by natural sedimentation. The obtained cake was washed with ion-exchanged water and methanol, and then vacuum-dried at 100 ° C. for 5 hours to obtain a dried product in which particles aggregated. The dried product was pulverized to obtain pulverized particles. [0201] Comparative Example 2
製造例 2で得られた重合体粒子分散液を、 目開き 20 μ mのステンレス鋼製金網で 分級した後、さらに、カートリッジフィルター(日本ポール社製、商品名「ウルチプリー ッ.プロファイル PUY1UY500」)で 1パス処理した(湿式分級工程)。次いで、比較例 1と同様手順で重合体粒子の分離、洗浄、乾燥を行い、得られた乾燥物を粉砕する ことにより粉砕粒子を得た。  After the polymer particle dispersion obtained in Production Example 2 was classified with a stainless steel wire mesh with an opening of 20 μm, it was further filtered with a cartridge filter (trade name “Ultiple. Profile PUY1UY500” manufactured by Nihon Pall Co., Ltd.). 1 pass treatment (wet classification process). Next, the polymer particles were separated, washed and dried in the same manner as in Comparative Example 1, and the resulting dried product was pulverized to obtain pulverized particles.
[0202] 比較例 3 [0202] Comparative Example 3
製造例 5で得られた重合体粒子分散液を、 目開き 40 μ mのステンレス鋼製金網で 分級した(湿式分級工程)。次いで、次いで、比較例 1と同様手順で重合体粒子の分 離、洗浄、乾燥を行い、得られた乾燥物を粉砕することにより粉砕粒子を得た。  The polymer particle dispersion obtained in Production Example 5 was classified using a stainless steel wire mesh having an opening of 40 μm (wet classification process). Next, polymer particles were separated, washed and dried in the same manner as in Comparative Example 1, and the resulting dried product was pulverized to obtain pulverized particles.
[0203] 実施例;!〜 8および比較例;!〜 3における分級処理の内容、得られた微粒子および 粉体粒子関する評価結果を表 2に示す。尚、各評価方法は、以下の通りである。 [0203] Table 2 shows the contents of the classification treatment in Examples;! To 8 and Comparative Examples;! To 3, and evaluation results on the obtained fine particles and powder particles. Each evaluation method is as follows.
[0204] [微粒子の平均粒子径、粗大粒子量の測定] [0204] [Measurement of average particle size and amount of coarse particles]
上記実施例、比較例で得られた微粒子 0. 5gをメタノール 100gに分散させて重合 体粒子分散液を調整し、精密粒度分布測定装置 (製品名「マルチサイザ一 II」、べッ クマン'コールター株式会社製)を使用して、粒子径の測定を行い、体積基準で平均 粒子径を算出した。  A fine particle size distribution measuring device (product name “Multisizer II”, Beckman Coulter Co., Ltd.) was prepared by dispersing 0.5 g of the fine particles obtained in the above Examples and Comparative Examples in 100 g of methanol. Was used to measure the particle size, and the average particle size was calculated on a volume basis.
[0205] 粗大粒子 1 (平均粒子径の 2倍以上の粒子径を有する粗大粒子)の量の測定は、 次のようにして行った。上記平均粒子径測定と同様にして調整した微粒子分散溶液( 粘度: 3mPa ' s、固形分濃度: 0. 5質量%)を、平均粒子径の 1. 75〜2倍の目開きを 有するメッシュ (ニッケル製、東京プロセスサービス株式会社)と、濾過鐘にブフナー ロートを備えた吸引濾過装置を使用して、減圧下で濾過を行った。  [0205] The amount of coarse particles 1 (coarse particles having a particle size of twice or more the average particle size) was measured as follows. A fine particle dispersion (viscosity: 3 mPa's, solid content concentration: 0.5% by mass) prepared in the same manner as the above average particle size measurement was used to create a mesh with an opening of 1.75 to 2 times the average particle size ( Filtration was performed under reduced pressure using a nickel filtration, Tokyo Process Service Co., Ltd.) and a suction filtration device equipped with a Buchner funnel in the filtration bell.
[0206] 次!/、で、メッシュ上に残留した粒子を走査型電子顕微鏡(SEM、「S_3500N」、 日立 製作所製、加速電圧: 25kV)を使用して、 200倍で全視野観察し、 目視で平均粒子 径の 2倍以上の粗大粒子の個数 (個 /0. 5g)を数えた。  [0206] Next! /, Use a scanning electron microscope (SEM, "S_3500N", manufactured by Hitachi, acceleration voltage: 25kV) to observe the entire field at 200x and visually The number of coarse particles (number / 0.5 g) more than twice the average particle size was counted.
[0207] なお、平均粒子径 2. 5倍以上の粒子径を有する粗大粒子量 (粗大粒子 2)の場合 は、平均粒子径の 2. 25-2. 5倍の目開きを有するメッシュを用いたこと以外は、上 述の手順と同様にして行った。 [0208] [微小粒子量の測定] [0207] In the case of the amount of coarse particles having an average particle size of 2.5 times or more (coarse particles 2), a mesh having an opening of 2.25-2.5 times the average particle size is used. The procedure was the same as above, except that it was. [0208] [Measurement of the amount of fine particles]
実施例および比較例で得られた微粒子 0. 5gをイオン交換水 100gに分散させて 微粒子分散液を調整し、精密粒度分布測定装置 (製品名「マルチサイザ一 II」、べッ クマン'コールター株式会社製)を使用して、粒子径および平均粒子径の測定を行つ た(体積基準)。測定結果を基に、平均粒子径の小数点 1桁を四捨五入して得られる 数値の 1 /2以下の粒子径を有する微粒子の体積%を算出し、得られた値を微小粒 子量とした。  Fine particles obtained in Examples and Comparative Examples were dispersed in 0.5 g of ion-exchanged water to prepare a fine particle dispersion, and a precision particle size distribution analyzer (product name “Multisizer II”, Beckman Coulter Co., Ltd.) Were used to measure the particle diameter and average particle diameter (volume basis). Based on the measurement results, the volume percentage of fine particles having a particle diameter of 1/2 or less of the numerical value obtained by rounding off the first decimal place of the average particle diameter was calculated, and the obtained value was defined as the amount of fine particles.
[0209] [表 2] [0209] [Table 2]
[0210] 表 2中、「回転ローター式気流分級装置 1」はホソカワミクロン株式会社製の「ターボ プレックス 100ATP」を用いたことを、「回転ローター式気流分級装置 2」は日清ェンジ ニアリング社製の「ターボクラシファイア TC_15」を用いたことを示す。また、「粗大粒子 1」は、平均粒子径の 2倍以上の粒子径を有する粒子の個数 (個 /0. 5g)、「粗大粒 子 2」は、平均粒子径の 2. 5倍以上の粒子径を有する粒子の個数 (個 /0. 5g)を意 味し、「製品回収率」は、実施例および比較例で分級工程に供給した粒子の総質量 に対して、分級工程を経て回収された微粒子の合計質量の割合を意味する。 [0210] In Table 2, “Rotating rotor type air classifier 1” used “Turboplex 100ATP” manufactured by Hosokawa Micron Co., Ltd., and “Rotating rotor type air classifier 2” manufactured by Nissin Engineering Co., Ltd. Indicates that “Turbo Classifier TC_15” was used. “Coarse particles 1” is the number of particles (particles / 0.5 g) having a particle size more than twice the average particle size, and “Coarse particles 2” is more than 2.5 times the average particle size. This means the number of particles having a particle size (pieces / 0.5 g), and the `` product recovery rate '' means that the total mass of particles supplied to the classification process in Examples and Comparative Examples is recovered through the classification process. It means the ratio of the total mass of the formed fine particles.
[0211] 製造例 8 (ァミノ樹脂架橋粒子)  [0211] Production Example 8 (Amino resin crosslinked particles)
冷却ライン、温度計、および、滴下口を供えた反応釜に、メラミン 75部、ベンゾグァ ナミン 75部、濃度 37%のホルマリン 290部および濃度 10%の炭酸ナトリウム水溶液 1. 16部を仕込み、ァミノ樹脂前駆体形成用混合物を調整した。この混合物を撹拌し ながら 85°Cに昇温した後、該温度で 1. 5時間保持し、初期縮合物を得た。別途、ノ 二オン系界面活性剤のェマルゲン (登録商標) 430 (花王株式会社、ポリオキシェチ レンォレイルエーテル) 7. 5部をイオン交換水 2455部に溶解させて調製した界面活 性剤溶液を 50°Cで保持し、撹拌下、ここに前記初期縮合物を投入し、ァミノ樹脂前 駆体の乳濁液を得た。この乳濁液に 5 %ドデシルベンゼンスルホン酸水溶液 90部を 投入し、 70〜90°Cの温度で縮合、硬化させ、ァミノ樹脂架橋粒子を含む懸濁液を得 た。  A reaction kettle equipped with a cooling line, thermometer and dripping port was charged with 75 parts of melamine, 75 parts of benzoguanamine, 290 parts of formalin with a concentration of 37% and 1.16 parts of an aqueous sodium carbonate solution with a concentration of 10%. A precursor forming mixture was prepared. The mixture was heated to 85 ° C. with stirring and then kept at the temperature for 1.5 hours to obtain an initial condensate. Separately, a nonionic surfactant, Emulgen (registered trademark) 430 (Kao Corporation, polyoxyethylene oleyl ether) 7.5 A surfactant solution prepared by dissolving 5 parts in 2455 parts of ion-exchanged water The initial condensate was added thereto while stirring at a temperature of ° C to obtain an emulsion of an amino resin precursor. To this emulsion, 90 parts of a 5% dodecylbenzenesulfonic acid aqueous solution was added and condensed and cured at a temperature of 70 to 90 ° C. to obtain a suspension containing the amino resin crosslinked particles.
[0212] 製造例 9, 10 (ァミノ樹脂架橋粒子)  [0212] Production Examples 9, 10 (Amino resin crosslinked particles)
アミノ系化合物、ホルマリンの使用量を表 3に示す量に変更したこと以外は製造例 8 と同様にして、ァミノ樹脂架橋粒子を含む懸濁液を調製した。  A suspension containing the amino resin crosslinked particles was prepared in the same manner as in Production Example 8, except that the amounts of amino compound and formalin used were changed to those shown in Table 3.
[0213] [表 3] [0213] [Table 3]
[0214] 製造例 11 (ポリスチレン粒子) [0214] Production Example 11 (polystyrene particles)
スチレン 50部、エチレングリコールジメタタリレート 50部、ァゾ系重合開始剤(V— 6 5、和光純薬工業社製) 5部、 t—プチルノヽイドロキノン 0. 5部、ラウリル硫酸ナトリウム 0. 5部およびイオン交換水 100部を混合、撹拌して乳化させ、重合性単量体の水分 散液を得た。  50 parts of styrene, 50 parts of ethylene glycol dimetatalylate, 5 parts of an azo polymerization initiator (V-6 65, manufactured by Wako Pure Chemical Industries, Ltd.), 0.5 part of t-ptylnohydroquinone, 0.5 part of sodium lauryl sulfate And 100 parts of ion-exchanged water were mixed, stirred and emulsified to obtain a water dispersion of a polymerizable monomer.
[0215] 冷却ライン、温度計および滴下口を備えた反応釜に、粒子径 1 μ mの単分散ポリス チレンラテックス(固形分濃度 5%) 40部をイオン交換水 200部に添加し分散させ、こ のシード粒子の水分散体を 65°Cに昇温し、上記重合性単量体の水分散液の全量、 およびポリビュルアルコールの 2%水溶液 200部を 5時間かけて連続的に滴下した。 滴下終了後、 85°Cに昇温して、さらに 3時間この温度に保ち、ポリスチレン粒子を含 む懸濁液を得た。  [0215] In a reaction kettle equipped with a cooling line, a thermometer, and a dripping port, 40 parts of monodispersed polystyrene latex (solid content concentration 5%) with a particle size of 1 μm was added and dispersed in 200 parts of ion-exchanged water. The aqueous dispersion of the seed particles was heated to 65 ° C., and the total amount of the polymerizable monomer aqueous dispersion and 200 parts of a 2% aqueous solution of polybulu alcohol were continuously added dropwise over 5 hours. . After completion of the dropping, the temperature was raised to 85 ° C. and maintained at this temperature for another 3 hours to obtain a suspension containing polystyrene particles.
[0216] 製造例 12 (ポリスチレン粒子)  [0216] Production Example 12 (polystyrene particles)
表 4に示すように、ラジカル重合性モノマーの組み合わせを変更し、単分散ポリスチ レンラテックス (粒子径: 0· 6 111 (製造例12)、0. 7 m (製造例 13) )の添加量を適 宜調整した以外は、製造例 11と同様にして、ポリスチレンラテックス微粒子分散溶液 を調整した。 As shown in Table 4, the combination of radical polymerizable monomers was changed, and the amount of monodisperse polystyrene latex (particle size: 0 · 6 111 (Production Example 1 2 ), 0.7 m (Production Example 13)) was added. A polystyrene latex fine particle dispersion solution was prepared in the same manner as in Production Example 11, except that was adjusted appropriately.
[0217] [表 4] [0217] [Table 4]
[0218] 実施例 9 [0218] Example 9
製造例 3で得られた重合体分散液を、カートリッジフィルターを複数組み合わせた 構成(プレフィルター 1 : HC— 75、プレフィルター 2 : HC— 25、ファイナルフィルター : SLP300、 V、ずれもロキテクノ社製)でろ過処理を行った (湿式分級工程)。  A configuration in which the polymer dispersion obtained in Production Example 3 is combined with multiple cartridge filters (Pre-filter 1: HC-75, Pre-filter 2: HC-25, Final filter: SLP300, V, Deviation is also manufactured by Loki Techno) Filtration treatment was performed at (wet classification step).
[0219] 次に、分散液を自然沈降により固液分離し、得られたケーキをイオン交換水および メタノールで洗浄した後、 100°Cで 5時間真空乾燥することにより、粒子が凝集してな る乾燥物を得た。該乾燥物を粉砕することにより粒子を得た。  [0219] Next, the dispersion was subjected to solid-liquid separation by natural sedimentation, and the cake obtained was washed with ion-exchanged water and methanol, and then vacuum-dried at 100 ° C for 5 hours, so that the particles did not aggregate. A dried product was obtained. The dried product was pulverized to obtain particles.
[0220] このとき得られた粉砕微粒子は、かさ比重 0. 7g/cm3、粒子径 6. 9 m、水分含 有量 0. 5質量%以下、回収率 97質量%であった。 [0220] The pulverized fine particles obtained at this time had a bulk specific gravity of 0.7 g / cm 3 , a particle size of 6.9 m, a water content of 0.5 mass% or less, and a recovery rate of 97 mass%.
[0221] これをコアンダ式気流分級装置 (エルボージェット EJ— 15、 日鉄鉱業株式会社製、 フィードエアー: 5kgf、スリムエッジ使用)に投入し、微粒子に与える慣性力と吸引ブ ロアーによる抗力のバランスを調節することにより分級し、供給した粉砕粒子に対する 回収率 89質量%で分級した微粒子を得た(乾式分級工程)。  [0221] This is put into a Coanda airflow classifier (Elbow Jet EJ-15, manufactured by Nippon Steel Mining Co., Ltd., feed air: 5kgf, using a slim edge) to balance the inertial force applied to the fine particles and the drag by the suction blower. The fine particles were obtained by classification with a recovery rate of 89% by mass with respect to the supplied pulverized particles (dry classification step).
[0222] 実施例 10  [0222] Example 10
実施例 9と同様の工程により、製造例 8で得られた重合体分散溶液力 粉砕粒子を 調整した(かさ比重 0. 6g/cm3、粒子径 8. 5 111、水分含有量 1. 0質量%以下、回 収率 96質量%)。 The polymer dispersion solution force pulverized particles obtained in Production Example 8 were prepared by the same steps as in Example 9 (bulk specific gravity 0.6 g / cm 3 , particle size 8.5 111, water content 1.0 mass). % Or less, recovery rate 96 mass%).
[0223] この粉砕粒子を、高精度気流分級機 (DFX5型、 日本ニューマチック工業株式会 社製)に投入し、高速旋回気流により粉砕粒子に与えられる遠心力と吸引ブロア一に よる抗力とのバランスを調節することにより分級し、供給した粉砕粒子に対する回収 率 85質量%で分級した微粒子を得た(乾式分級工程)。  [0223] The pulverized particles are put into a high-precision airflow classifier (DFX5 type, manufactured by Nippon Pneumatic Industrial Co., Ltd.), and the centrifugal force applied to the pulverized particles by the high-speed swirling airflow and the drag by the suction blower The fine particles were classified by adjusting the balance and classified at a recovery rate of 85% by mass with respect to the supplied pulverized particles (dry classification step).
[0224] 実施例 11  [0224] Example 11
実施例 9と同様の工程により、製造例 11で得られた重合体分散溶液力 粉砕微粒 子を調製した(かさ比重 0. 7g/cm3、粒子径 4. O ^ rn、水分含有量 0. 5質量%以下 、回収率 97質量%)。 The polymer dispersion solution force pulverized fine particles obtained in Production Example 11 were prepared by the same steps as in Example 9 (bulk specific gravity 0.7 g / cm 3 , particle size 4. O ^ rn, water content 0. 5 mass% or less, recovery rate 97 mass%).
[0225] この粉砕粒子を、回転ローター式気流分級装置 (ターボクラシファイア TC— 15、 日 清エンジニアリング製)に投入し、分級ローターの回転速度と吸気口からの空気の供 給により粉砕粒子に与えられる遠心力と効力のバランスを調節することにより分級を 行い、供給粉砕粒子に対する回収率 85質量%で分級した微粒子を得た(乾式分級 工程)。 [0225] The pulverized particles are put into a rotary rotor type airflow classifier (Turbo Classifier TC-15, manufactured by Nissin Engineering Co., Ltd.) and given to the pulverized particles by the rotation speed of the classifying rotor and supply of air from the intake port. Classification by adjusting the balance between centrifugal force and efficacy And fine particles classified at a recovery rate of 85% by mass with respect to the supplied pulverized particles were obtained (dry classification step).
[0226] 実施例 12 [0226] Example 12
実施例 1と同様の方法で、製造例 10で得られた重合体粒子分散液から粉砕微粒 子を調製した(かさ比重 0. 6g/cm3、粒子径 13. l rn、水分含有量 1. 0質量%以 下、回収率 99質量%)。 In the same manner as in Example 1, pulverized fine particles were prepared from the polymer particle dispersion obtained in Production Example 10 (bulk specific gravity 0.6 g / cm 3 , particle size 13. l rn, water content 1. 0% by mass or less, recovery rate 99% by mass).
[0227] 得られた粉砕微粒子をコアンダ式気流分級装置 (エルボージェット EJ— 15、 日鉄 鉱業株式会社製、フィードエアー: 5kgf、スリムエッジ使用)に投入し、分級ローター の回転速度と吸気口からの空気の供給により粉砕粒子に与えられる遠心力と効力の ノ ランスを調節することにより分級を行い、供給粉砕粒子に対する回収率 85質量% で分級した微粒子を得た(乾式分級工程)。 [0227] The pulverized fine particles thus obtained were put into a Coanda airflow classifier (Elbow Jet EJ-15, manufactured by Nippon Steel Mining Co., Ltd., feed air: 5 kgf, using a slim edge), and from the rotational speed of the classification rotor and the intake port The fine particles were classified by adjusting the centrifugal force applied to the pulverized particles and the tolerance of the effect by supplying the air, and the fine particles classified at a recovery rate of 85% by mass with respect to the supplied pulverized particles (dry classification step).
[0228] 実施例 13 [0228] Example 13
実施例 1と同様の方法で、製造例 9で得られた重合体粒子分散液から粉砕微粒子 を調製した(かさ比重 0. 6g/cm3、粒子径 2. O ^ m、水分含有量 1. 0質量%以下、 回収率 99質量%)。 In the same manner as in Example 1, pulverized fine particles were prepared from the polymer particle dispersion obtained in Production Example 9 (bulk specific gravity 0.6 g / cm 3 , particle diameter 2. O ^ m, water content 1. 0 mass% or less, recovery rate 99 mass%).
[0229] 得られた粉砕微粒子を高精度気流分級機 (DFX5型、 日本ニューマチック工業株 式会社製)に投入し、高速旋回気流により粉砕粒子に与えられる遠心力と吸引プロ ァ一による抗力とのバランスを調節することにより分級を行い、供給粉砕粒子に対す る回収率 80質量%で分級した微粒子を得た。  [0229] The obtained pulverized fine particles were put into a high-precision airflow classifier (DFX5 type, manufactured by Nippon Pneumatic Industrial Co., Ltd.), and the centrifugal force applied to the pulverized particles by the high-speed swirling airflow and the drag force by the suction probe By adjusting the balance, fine particles classified at a recovery rate of 80% by mass with respect to the supplied ground particles were obtained.
[0230] 実施例 14  [0230] Example 14
実施例 1と同様の方法で、製造例 12で得られた重合体粒子分散液から粉砕微粒 子を調製した(かさ比重 0. 7g/cm3、粒子径 6. 5 111、水分含有量 0. 5質量%以下 、回収率 99質量%)。 In the same manner as in Example 1, pulverized fine particles were prepared from the polymer particle dispersion obtained in Production Example 12 (bulk specific gravity 0.7 g / cm 3 , particle diameter 6.5 111, water content 0. 5 mass% or less, recovery rate 99 mass%).
[0231] 得られた粉砕微粒子をコアンダ式気流分級装置 (エルボージェット EJ— 15、 日鉄 鉱業株式会社製、フィードエアー: 5kgf、スリムエッジ使用)に投入し、分級ローター の回転速度と吸気口からの空気の供給により粉砕粒子に与えられる遠心力と効力の ノ ランスを調節することにより分級を行い、供給粉砕粒子に対する回収率 87質量% で分級した微粒子を得た。 [0232] 実施例 15 [0231] The obtained pulverized fine particles were put into a Coanda airflow classifier (Elbow Jet EJ-15, manufactured by Nippon Steel Mining Co., Ltd., feed air: 5kgf, using a slim edge), and the rotation speed of the classification rotor and the intake port Classification was performed by adjusting the centrifugal force applied to the pulverized particles and the tolerance of the effect by supplying air, and fine particles classified at a recovery rate of 87 mass% with respect to the supplied pulverized particles were obtained. [0232] Example 15
実施例 1と同様の方法で、製造例 13で得られた重合体粒子分散液から粉砕微粒 子を調製した(かさ比重 0. 7g/cm3、粒子径 9. 3 m、水分含有量 0. 5質量%以下 、回収率 99質量%)。 In the same manner as in Example 1, pulverized fine particles were prepared from the polymer particle dispersion obtained in Production Example 13 (bulk specific gravity 0.7 g / cm 3 , particle size 9.3 m, water content 0. 5 mass% or less, recovery rate 99 mass%).
[0233] 得られた粉砕微粒子を回転ローター式気流分級装置 (ターボクラシファイア TC 1 5、 日清エンジニアリング製)に投入し、分級ローターの回転速度と吸気口からの空気 の供給により粉砕粒子に与えられる遠心力と効力のバランスを調節することにより分 級を行い、供給粉砕粒子に対する回収率 83質量%で分級した微粒子を得た。  [0233] The obtained pulverized fine particles are fed into a rotary rotor type airflow classifier (Turbo Classifier TC 15, manufactured by Nissin Engineering Co., Ltd.) and given to the pulverized particles by the rotation speed of the classification rotor and the supply of air from the intake port. Classification was performed by adjusting the balance between centrifugal force and efficacy, and fine particles classified at a recovery rate of 83% by mass with respect to the supplied ground particles were obtained.
[0234] 比較例 4  [0234] Comparative Example 4
実施例 1と同様の方法で、製造例 12で得られた重合体粒子分散液から粉砕微粒 子を調製した(かさ比重 0. 7g/cm3、粒子径 6. 5 111、水分含有量 0. 5質量%以下 、回収率 99質量%)。 In the same manner as in Example 1, pulverized fine particles were prepared from the polymer particle dispersion obtained in Production Example 12 (bulk specific gravity 0.7 g / cm 3 , particle diameter 6.5 111, water content 0. 5 mass% or less, recovery rate 99 mass%).
[0235] 得られた粉砕微粒子をコアンダ式気流分級装置 (エルボージェット EJ— 15、 日鉄 鉱業株式会社製、フィードエアー: 5kgf、スリムエッジ使用)に投入し、分級ローター の回転速度と吸気口からの空気の供給により粉砕粒子に与えられる遠心力と効力の ノ ランスを調節することにより分級を行い、供給粉砕粒子に対する回収率 75質量% で分級した微粒子を得た。  [0235] The obtained pulverized fine particles were put into a Coanda airflow classifier (Elbow Jet EJ-15, manufactured by Nippon Steel Mining Co., Ltd., feed air: 5 kgf, using a slim edge), and the rotation speed of the classification rotor and the intake port The fine particles were classified by adjusting the centrifugal force applied to the pulverized particles and the tolerance of the effect by supplying the air, and the recovery rate of 75% by mass with respect to the supplied pulverized particles.
[0236] 比較例 5  [0236] Comparative Example 5
湿式分級を行わな力、つたこと以外は実施例 1と同様の方法で、製造例 3で得られた 重合体粒子分散液から粉砕微粒子を調製した (かさ比重 0. 7g/cm3、粒子径 6. 9 、水分含有量 0. 5質量%以下)。 A fine powder was prepared from the polymer particle dispersion obtained in Production Example 3 (bulk specific gravity 0.7 g / cm 3 , particle size) in the same manner as in Example 1, except that the power for wet classification was not used. 6.9, water content 0.5 mass% or less).
[0237] 得られた粉砕微粒子を回転ローター式気流分級装置 (ターボクラシファイア TC 1 5、 日清エンジニアリング製)に投入し、分級ローターの回転速度と吸気口からの空気 の供給により粉砕粒子に与えられる遠心力と効力のバランスを調節することにより分 級を行い、供給粉砕粒子に対する回収率 90質量%で分級した微粒子を得た(乾式 分級 1回目)。その後、同様の乾式分級工程を繰返して、供給粉砕粒子に対する回 収率 90質量%で分級した微粒子を得た(乾式分級 2回目 )。  [0237] The obtained pulverized fine particles are fed into a rotary rotor type airflow classifier (Turbo Classifier TC 15 manufactured by Nissin Engineering) and given to the pulverized particles by the rotation speed of the classification rotor and the supply of air from the intake port. Classification was performed by adjusting the balance between centrifugal force and efficacy, and fine particles classified at a recovery rate of 90% by mass with respect to the supplied ground particles were obtained (first dry classification). Thereafter, the same dry classification process was repeated to obtain fine particles classified at a recovery rate of 90% by mass with respect to the supplied pulverized particles (the second dry classification).
[0238] 実施例 9〜; 13および比較例 4における分級処理の内容、得られた微粒子および粉 体粒子に関する評価結果を表 5に示す。尚、各評価方法は、上記の通りである。 Contents of classification treatment in Examples 9 to 13 and Comparative Example 4, fine particles and powder obtained Table 5 shows the evaluation results for body particles. Each evaluation method is as described above.
[表 5] [Table 5]
[0240] なお、比較例 5は、分級工程として乾式分級を 2回繰返した例である。乾式分級を 繰返しただけでは、粗大粒子が十分に除去されなかった。また、乾式分級を繰り返す ことで、製品回収率が低下する傾向が見られ、乾式分級のみでは工業的な製品収率 が得られ難いことが分かる。 [0240] Note that Comparative Example 5 is an example in which dry classification was repeated twice as a classification step. Coarse particles were not sufficiently removed only by repeated dry classification. In addition, it can be seen that the product recovery rate tends to decrease by repeating dry classification, and it is difficult to obtain industrial product yields only by dry classification.
[0241] 実施例 16 防眩フィルムの製造  [0241] Example 16 Production of antiglare film
実施例 1 , 9, 10および比較例 4で得た各樹脂粒子 3質量部とトルエン 20質量部と を十分に撹拌混合した。当該混合液に、アクリル系電離放射線硬化樹脂 40質量部、 光重合開始剤(チバスペシャルティケミカル社製、「ィルガキュア(登録商標) 907」 ) 2 質量部、メチルェチルケトン 23質量部、エチレングリコールモノブチルエーテル 2質 量部、およびレべリング剤(ビックケミ一社製、 BYK320)を加え、十分に撹拌して塗 ェ液を調製した。  3 parts by mass of each resin particle obtained in Examples 1, 9, 10 and Comparative Example 4 and 20 parts by mass of toluene were sufficiently stirred and mixed. In the mixed solution, 40 parts by mass of an acrylic ionizing radiation curable resin, 2 parts by mass of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals, “Irgacure (registered trademark) 907”), 23 parts by mass of methyl ethyl ketone, ethylene glycol mono Two parts by weight of butyl ether and a leveling agent (BYK320, manufactured by BYK-Chem Co., Ltd.) were added, and the mixture was sufficiently stirred to prepare a coating solution.
[0242] 厚さ 80 mのトリァセチルセルロースフィルム(富士写真フィルム社製、「フジタック( 登録商標)」)の片面に、当該塗工液をバーコータにより塗布した。得られた塗布膜を 80°Cのドライヤーで乾燥させた後、高圧水銀ランプを用いて 300mJ/cm2の紫外線 を照射して樹脂成分を硬化させることにより防眩フィルムを製造した。 [0242] The coating solution was applied to one side of an 80 m thick triacetyl cellulose film ("Fujitac (registered trademark)" manufactured by Fuji Photo Film Co., Ltd.) using a bar coater. The obtained coating film was dried with a dryer at 80 ° C., and then an antiglare film was produced by irradiating 300 mJ / cm 2 of ultraviolet rays with a high pressure mercury lamp to cure the resin component.
[0243] 各防眩フィルムの裏面に黒色のフィルムを貼り合わせ、当該フィルムから 2m離れた 位置より lOOOOcd/m2の蛍光灯を映し、その反射像のボケの程度を下記基準により 評価した。結果を表 6に示す。 [0243] attaching a black film on the back surface of the antiglare film, it reflects the fluorescent lamp lOOOOcd / m 2 from the position apart 2m from the film, and evaluate the degree of blurring of the reflected image on the following criteria. The results are shown in Table 6.
〇:蛍光灯の輪郭が判別できなレ、。  ○: The outline of the fluorescent lamp cannot be identified.
X:蛍光灯の輪郭が明確に判別できる。  X: The fluorescent lamp outline can be clearly identified.
[0244] また、各防眩フィルムについて、写像測定器 (スガ試験機株式会社製、 ICB-IDD )と、0· 5mm幅の光学櫛を用いて、 JIS K7105に従って透過鮮明度(像鮮明度)を 測定した。  [0244] For each anti-glare film, using a mapping measuring instrument (ICB-IDD, manufactured by Suga Test Instruments Co., Ltd.) and an optical comb with a width of 0.5 mm, transmission sharpness (image sharpness) according to JIS K7105 Was measured.
[0245] さらに各防眩フィルムを、パーソナルコンピューターに接続した液晶モニター(15ィ ンチ XGA、 TFT— TN方式、正面輝度: 350cd/m2、正面コントラスト: 300対 1、表 面 AG :なし)の表面に貼り合わせ、文字のボケ具合を下記の基準により評価した。結 果を表 6に示す。 [0245] In addition, each anti-glare film is connected to a personal computer on a liquid crystal monitor (15 inch XGA, TFT-TN system, front brightness: 350 cd / m 2 , front contrast: 300 to 1, surface AG: none) It was bonded to the surface, and the character blur was evaluated according to the following criteria. The results are shown in Table 6.
〇:文字の輪郭はまったくボケて!/、なレ、。 X:文字の輪郭がボケており、強い違和感が感じられる。 〇: The outline of the character is completely out of focus! X: The outline of the character is blurred and a strong sense of incongruity is felt.
[0246] [表 6]  [0246] [Table 6]
[0247] 表 6から分かるように、実施例 1 , 9および 10の粒子を用いて得られた防眩フィルム は、いずれも優れた防眩性、並びに視認性(文字ボケがない)を有するものであった 。一方、平均粒子径の 2倍を超える粗大粒子量の多い比較例 4の粒子を用いて製造 した防眩フィルムは、防眩性は有するものの、防眩フィルムに含まれる粗大粒子がレ ンズのように作用したり、当該粗大粒子に起因してフィルム表面に傷が生じ、その結 果、文字が視認しづらくなつたものと考えられる。 [0247] As can be seen from Table 6, the antiglare films obtained using the particles of Examples 1, 9 and 10 all have excellent antiglare properties and visibility (no blurring of characters). Met . On the other hand, although the antiglare film produced using the particles of Comparative Example 4 having a large amount of coarse particles exceeding twice the average particle diameter has antiglare properties, the coarse particles contained in the antiglare film are like lenses. It is thought that the film surface was damaged due to the action of the coarse particles, and as a result, it was difficult to visually recognize the characters.
産業上の利用可能性  Industrial applicability
[0248] 本発明の微粒子は、粒径の好適範囲を逸脱する粗大な粒子や微小な粒子の含有 量が低レベルに低減されたものである。したがって、力、かる微粒子を用いて製造され た各種光学用フィルム或いはシート(防眩性シート、光拡散フィルムなど)は、粗大粒 子に由来する欠点や、微小な粒子に由来する透明性の低下が生じ難くいものと考え られる。また、面内に均一に凹凸が形成されるので、優れた光学特性 (例えば防眩性 や光拡散性)を発揮するものと考えられる。 [0248] The fine particles of the present invention are those in which the content of coarse particles and fine particles that deviate from the preferred range of particle size is reduced to a low level. Therefore, various optical films or sheets (anti-glare sheet, light diffusion film, etc.) produced using force and fine particles have disadvantages derived from coarse particles and reduced transparency derived from fine particles. This is considered to be difficult to occur. In addition, since unevenness is uniformly formed in the surface, it is considered that excellent optical properties (for example, antiglare property and light diffusibility) are exhibited.

Claims

請求の範囲 The scope of the claims
[1] 平均粒子径の 2倍以上の粒子径を有する粗大粒子が 1000個 /0. 5g以下である ことを特徴とする微粒子。  [1] Fine particles characterized in that the number of coarse particles having a particle size of 2 or more times the average particle size is 1,000 particles / 0.5 g or less.
[2] 上記微粒子が、有機ポリマー骨格とポリシロキサン骨格とを含む有機質無機質複合 体である請求項 1に記載の微粒子。 [2] The fine particle according to claim 1, wherein the fine particle is an organic-inorganic composite containing an organic polymer skeleton and a polysiloxane skeleton.
[3] 請求項 1または 2に記載の微粒子の製造方法であって、 [3] The method for producing fine particles according to claim 1 or 2,
固形分濃度 0. 5〜50質量%、B型粘度 0. 5〜20mPa * sの微粒子分散液を湿式 分級する工程、  A step of wet-classifying a fine particle dispersion having a solid content concentration of 0.5 to 50 mass% and a B-type viscosity of 0.5 to 20 mPa * s,
湿式分級後の微粒子を、乾燥、粉砕して、水分含量 0. 05〜2質量%の粉体微粒 子とする工程、  A step of drying and pulverizing the fine particles after wet classification to form powder fine particles having a moisture content of 0.05 to 2% by mass;
上記粉体微粒子を乾式分級する工程を含むことを特徴とする微粒子の製造方法。  A method for producing fine particles, comprising a step of dry-classifying the powder fine particles.
[4] 請求項 1または 2に記載の微粒子を含むことを特徴とする樹脂組成物。 [4] A resin composition comprising the fine particles according to claim 1 or 2.
[5] 請求項 4に記載の樹脂組成物を含むことを特徴とする塗布用組成物。 [5] A coating composition comprising the resin composition according to claim 4.
[6] 請求項 5に記載の塗布用組成物を、基材上に塗布して得られることを特徴とする光 学フィルム。 [6] An optical film obtained by applying the coating composition according to claim 5 on a substrate.
[7] 光拡散フィルムとして用いられるものである請求項 6に記載の光学フィルム。  7. The optical film according to claim 6, which is used as a light diffusion film.
[8] 防眩フィルムとして用いられるものである請求項 6に記載の光学フィルム。 8. The optical film according to claim 6, which is used as an antiglare film.
PCT/JP2007/066053 2006-08-21 2007-08-17 Microparticle, process for producing microparticle, and, loaded with the microparticle, resin composition and optical film WO2008023648A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117028715A KR101382369B1 (en) 2006-08-21 2007-08-17 Microparticle, process for producing microparticle, and, loaded with the microparticle, resin composition and optical film
CN2007800275144A CN101490138B (en) 2006-08-21 2007-08-17 Microparticle, process for producing microparticle, resin composition loaded with the microparticle and optical film
JP2008530887A JP5478066B2 (en) 2006-08-21 2007-08-17 Fine particles, method for producing fine particles, resin composition containing the fine particles, and optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-224695 2006-08-21
JP2006224695 2006-08-21

Publications (1)

Publication Number Publication Date
WO2008023648A1 true WO2008023648A1 (en) 2008-02-28

Family

ID=39106733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066053 WO2008023648A1 (en) 2006-08-21 2007-08-17 Microparticle, process for producing microparticle, and, loaded with the microparticle, resin composition and optical film

Country Status (5)

Country Link
JP (1) JP5478066B2 (en)
KR (2) KR20090033251A (en)
CN (1) CN101490138B (en)
TW (1) TW200819470A (en)
WO (1) WO2008023648A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254938A (en) * 2008-04-14 2009-11-05 Nippon Shokubai Co Ltd Method of classifying particle and particle obtained by this method
JP2011046894A (en) * 2009-08-28 2011-03-10 Sumitomo Chemical Co Ltd Matted resin film
JP2011168632A (en) * 2010-02-16 2011-09-01 Toagosei Co Ltd Crosslinked polymer fine particle and method for producing the same
JP2012057177A (en) * 2011-12-20 2012-03-22 Nippon Shokubai Co Ltd Organic particle for light diffusing medium
JP2012215867A (en) * 2011-03-31 2012-11-08 Sumitomo Chemical Co Ltd Light-diffusing film, manufacturing method therefor, coating liquid therefor, polarizing plate using the same, and liquid crystal display device
WO2013047687A1 (en) * 2011-09-29 2013-04-04 株式会社日本触媒 Vinyl polymer microparticles, method for producing same, resin composition, and optical material
KR20140085312A (en) * 2012-12-27 2014-07-07 니끼 쇼꾸바이 카세이 가부시키가이샤 Substrate with hard coating film and coating solution for hard coating film
JP2014208761A (en) * 2013-03-29 2014-11-06 積水化成品工業株式会社 Crosslinked acrylic resin and method for producing the same, and resin composition and packaged product
WO2015029483A1 (en) * 2013-08-30 2015-03-05 積水化成品工業株式会社 Resin particle group and method for manufacturing same
JP2015071146A (en) * 2013-10-03 2015-04-16 独立行政法人産業技術総合研究所 Classification method for minute material
JP2016069621A (en) * 2014-09-30 2016-05-09 積水化成品工業株式会社 Polymer particle and application thereof
EP4043497A4 (en) * 2020-10-15 2023-01-11 LG Chem, Ltd. Polymerization reactor for preparing highly absorbent polymer

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010026222A (en) * 2008-07-18 2010-02-04 Jiroo Corporate Plan:Kk Base sheet for optical sheet
JP2010026231A (en) * 2008-07-18 2010-02-04 Jiroo Corporate Plan:Kk Optical sheet and backlight unit using the same
WO2011004898A1 (en) * 2009-07-08 2011-01-13 住友化学株式会社 Light diffusion film and liquid crystal display device comprising same
US8202334B2 (en) * 2010-11-12 2012-06-19 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of forming silicate polishing pad
JP5785261B2 (en) * 2011-08-31 2015-09-24 積水化成品工業株式会社 Resin particle aggregate, method for producing the same, and use thereof
KR101596254B1 (en) * 2014-01-28 2016-02-22 세키스이가세이힝코교가부시키가이샤 Cross-linked acrylic particles, method for the production thereof, resin composition and packaging articles
CN105461847A (en) * 2014-09-30 2016-04-06 积水化成品工业株式会社 Polymer particles and use thereof
JP6650857B2 (en) * 2016-03-29 2020-02-19 積水化成品工業株式会社 Polymer particles, production method and use thereof
KR102402639B1 (en) 2017-11-24 2022-05-26 삼성전자주식회사 Electronic device and method for communicating thereof
CN110204637B (en) * 2019-06-21 2021-08-17 中国神华煤制油化工有限公司 Method for preparing low-crystalline-point polyethylene under high pressure by tubular method and low-crystalline-point polyethylene

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166228A (en) * 1999-11-09 2002-06-11 Sekisui Chem Co Ltd Manufacturing method of particle, particle, spacer for liquid crystal display element, liquid crystal display element, electrically conductive particle and electrically conductive sheet
JP2004191956A (en) * 2002-11-25 2004-07-08 Fuji Photo Film Co Ltd Antireflection film, polarizing plate, and liquid crystal display
JP2004204164A (en) * 2002-12-26 2004-07-22 Tosoh Corp Method for manufacturing vinyl chloride based resin for paste technique
JP2004307644A (en) * 2003-04-07 2004-11-04 Nippon Shokubai Co Ltd Additive for optical resin and optical resin composition
JP2005309399A (en) * 2004-03-26 2005-11-04 Fuji Photo Film Co Ltd Method for manufacturing light diffusing film, antireflection film, and polarizing plate using the same, and liquid crystal display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4002541B2 (en) * 2002-07-19 2007-11-07 株式会社日本触媒 Light diffusing agent
TWI305782B (en) * 2002-07-19 2009-02-01 Nippon Catalytic Chem Ind Amino resin crosslinked particle and method for producing it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166228A (en) * 1999-11-09 2002-06-11 Sekisui Chem Co Ltd Manufacturing method of particle, particle, spacer for liquid crystal display element, liquid crystal display element, electrically conductive particle and electrically conductive sheet
JP2004191956A (en) * 2002-11-25 2004-07-08 Fuji Photo Film Co Ltd Antireflection film, polarizing plate, and liquid crystal display
JP2004204164A (en) * 2002-12-26 2004-07-22 Tosoh Corp Method for manufacturing vinyl chloride based resin for paste technique
JP2004307644A (en) * 2003-04-07 2004-11-04 Nippon Shokubai Co Ltd Additive for optical resin and optical resin composition
JP2005309399A (en) * 2004-03-26 2005-11-04 Fuji Photo Film Co Ltd Method for manufacturing light diffusing film, antireflection film, and polarizing plate using the same, and liquid crystal display device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254938A (en) * 2008-04-14 2009-11-05 Nippon Shokubai Co Ltd Method of classifying particle and particle obtained by this method
JP2011046894A (en) * 2009-08-28 2011-03-10 Sumitomo Chemical Co Ltd Matted resin film
JP2011168632A (en) * 2010-02-16 2011-09-01 Toagosei Co Ltd Crosslinked polymer fine particle and method for producing the same
JP2012215867A (en) * 2011-03-31 2012-11-08 Sumitomo Chemical Co Ltd Light-diffusing film, manufacturing method therefor, coating liquid therefor, polarizing plate using the same, and liquid crystal display device
WO2013047687A1 (en) * 2011-09-29 2013-04-04 株式会社日本触媒 Vinyl polymer microparticles, method for producing same, resin composition, and optical material
JP2012057177A (en) * 2011-12-20 2012-03-22 Nippon Shokubai Co Ltd Organic particle for light diffusing medium
KR20140085312A (en) * 2012-12-27 2014-07-07 니끼 쇼꾸바이 카세이 가부시키가이샤 Substrate with hard coating film and coating solution for hard coating film
KR102158662B1 (en) 2012-12-27 2020-09-22 니끼 쇼꾸바이 카세이 가부시키가이샤 Substrate with hard coating film and coating solution for hard coating film
JP2014208761A (en) * 2013-03-29 2014-11-06 積水化成品工業株式会社 Crosslinked acrylic resin and method for producing the same, and resin composition and packaged product
WO2015029483A1 (en) * 2013-08-30 2015-03-05 積水化成品工業株式会社 Resin particle group and method for manufacturing same
JPWO2015029483A1 (en) * 2013-08-30 2017-03-02 積水化成品工業株式会社 Resin particle group and method for producing the same
KR20210025731A (en) 2013-08-30 2021-03-09 세키스이가세이힝코교가부시키가이샤 Resin particle group
KR20180095142A (en) 2013-08-30 2018-08-24 세키스이가세이힝코교가부시키가이샤 Resin particle group and method for manufacturing same
JP2018172691A (en) * 2013-08-30 2018-11-08 積水化成品工業株式会社 Resin particle group and production method thereof
KR20200031710A (en) 2013-08-30 2020-03-24 세키스이가세이힝코교가부시키가이샤 Resin particle group
JP2015071146A (en) * 2013-10-03 2015-04-16 独立行政法人産業技術総合研究所 Classification method for minute material
JP2016069621A (en) * 2014-09-30 2016-05-09 積水化成品工業株式会社 Polymer particle and application thereof
JP2019035097A (en) * 2014-09-30 2019-03-07 積水化成品工業株式会社 Polymer particle and application thereof
JPWO2016051814A1 (en) * 2014-09-30 2017-07-13 積水化成品工業株式会社 POLYMER PARTICLE, METHOD FOR PRODUCING THE SAME, AND USE THEREOF
EP4043497A4 (en) * 2020-10-15 2023-01-11 LG Chem, Ltd. Polymerization reactor for preparing highly absorbent polymer

Also Published As

Publication number Publication date
KR101382369B1 (en) 2014-04-08
TW200819470A (en) 2008-05-01
CN101490138A (en) 2009-07-22
JP5478066B2 (en) 2014-04-23
CN101490138B (en) 2012-07-18
KR20090033251A (en) 2009-04-01
KR20110133638A (en) 2011-12-13
JPWO2008023648A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
WO2008023648A1 (en) Microparticle, process for producing microparticle, and, loaded with the microparticle, resin composition and optical film
JP5167582B2 (en) Zirconia transparent dispersion, transparent composite, and method for producing transparent composite
JP5000613B2 (en) Organic particle-containing composition
JP6483822B2 (en) Coating
JP5964507B2 (en) Metal oxide porous particles, production method thereof, and use thereof
CN108699392B (en) High-durability antifogging coating film and coating composition
JP5634031B2 (en) POLYMER PARTICLE AND POLYMER PARTICLE-CONTAINING COMPOSITION USING THE SAME
JP2014203006A (en) Optical coating film, method for producing the same, and antireflection film
JPH05209149A (en) Coating composition
JP2020050808A (en) Coating composition
JPH0586295A (en) Synthetic resin composition
JP6270444B2 (en) Coating composition and antireflection film
JP5860689B2 (en) Organic particles for light diffusion media
JP6426975B2 (en) Coating composition and method for producing optical coating film
JPH11199671A (en) Production of organic and inorganic composite particle
JP4283026B2 (en) Optical resin additive, process for producing the same, and optical resin composition
WO2007129748A1 (en) Transparent polymeric material with nanoparticle dispersed and process for producing the same
JP2009254938A (en) Method of classifying particle and particle obtained by this method
JP6651283B2 (en) Flame-retardant method
JP2016219545A (en) Coating film for solar cell
JP2016184023A (en) Coating film for solar cell cover glass and method for producing the same
JP6708692B2 (en) Spherical gap agent
JP6457866B2 (en) Coating film for solar cell and method for producing the same
CN101479306A (en) Alkoxysilyl functional oligomers and particles surface-modified therewith
JP2015072364A (en) Spherical gap agent

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780027514.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792669

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008530887

Country of ref document: JP

Ref document number: 1020097001551

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792669

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020117028715

Country of ref document: KR