WO2008017699A1 - Dispositif d'amplification large bande - Google Patents
Dispositif d'amplification large bande Download PDFInfo
- Publication number
- WO2008017699A1 WO2008017699A1 PCT/EP2007/058256 EP2007058256W WO2008017699A1 WO 2008017699 A1 WO2008017699 A1 WO 2008017699A1 EP 2007058256 W EP2007058256 W EP 2007058256W WO 2008017699 A1 WO2008017699 A1 WO 2008017699A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amplifiers
- channels
- frequency bands
- amplification
- transmission channels
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18515—Transmission equipment in satellites or space-based relays
Definitions
- the present invention relates to a satellite amplification device adapted to flexibly distribute a plurality of received transmission channels to an output beam signal.
- the evolution of satellite transmissions to users equipped with small capacity capacitive transmit / receive terminals implies an increase in the quality of reception of the onboard segment as well as an increase in power of signals retransmitted to the ground.
- These increases in performance are achieved by increasing aerial gains, which can only be achieved by reducing the size of their ground covers.
- These coverage reductions require, in order to cover a particular geographic area of ground cover, to generate several beams or spots in order to sample the geographical area.
- Such multibeam or multispots coverage makes possible connections with small ground terminals but they pose the problem of the management of on-board capabilities and more particularly of the allocation of the received channels to the transmitted beams according to:
- a satellite receives two signals each corresponding to a transmission channel and provides an output beam.
- the two channels are processed by an input section 2 which performs: a low noise reception, a suitable frequency conversion and a suitable filtering for each of the two transmission channels,
- a transmission channel corresponds to a transmission frequency band and may correspond to a single carrier or a set of carriers or subchannels.
- Each transmission channel is amplified by the amplifier 3, which is associated with it.
- Amplifiers 3 are high power amplifiers and are generally made by traveling wave tubes or solid state amplifiers.
- the output multiplexer 4 or OMUX provided at the output of each amplifier, known to those skilled in the art, comprises filters and a common guide which is intended to combine the transmission channels after amplification.
- the output multiplexer 4 receives two transmission channels and provides a beam signal.
- the beam signal is then sent to an unrepresented source such as a horn that radiates to an unrepresented reflector for forming the beam.
- an unrepresented source such as a horn that radiates to an unrepresented reflector for forming the beam.
- this architecture is not flexible and combines a channelized amplification (an amplifier per channel and recombination of the channels through the OMUX) to a passive antenna.
- This solution imposes a frozen frequency plan (which defines the OMUX solution) without possibility of modification in orbit.
- the operators do not always have a very clear visibility on the future distribution of traffic (and therefore power) on the addressed covers and therefore need to have some flexibility to adapt for the duration of satellite life to the traffic requirements resulting from the demand and success of services in different geographical areas.
- the architecture as represented in FIG. 1 does not allow any flexibility in terms of the number of channels allocated per beam and requires a number of amplifiers which is imposed by the number of channels to be amplified. It is not possible in the state of the exposed technique, to be able to generate any channel in a possible set of channels or to be able to change the frequency plans during the life of the satellite.
- the channels are combined before amplification, the amplification is common to all the channels and directly feeds the antenna. It is therefore no longer necessary to use OMUXs and therefore, by nature, the solution is compatible with the amplification of any frequency distribution of the channels (the only constraint being that the number of amplified channels is limited by the number of amplifiers involved).
- Figure 2 illustrates this last solution for paralleling the amplifiers.
- the two received channels, after filtering and amplification, are first summed by a channel combiner 5.
- the resulting signal is divided into power by divisors 6 to supply all the active amplifiers 71 of the amplification blocks 7.
- divisors 6 There are as many divisor outputs as there are active amplifiers participating in the distributed amplification. In this case, it is used twice 4 active amplifiers, the number of implanted amplifiers including redundancy in case of failure (twice 6 inactive amplifiers installed, or 12 tubes for 8 active).
- Phase shifters and attenuators 72 for "alignment” of the amplifiers in phase and in amplitude are placed before the amplifiers: there is therefore a single adjustment per amplifier. The adjustment is typically made at the center frequency of the band to be processed. "which limits the correction that can be achieved.
- figures 3 and 4 illustrate the result of the correction between four tubes made according to this principle and mode of Figure 2.
- Figure 3 illustrates the frequency response in amplitude or phase of the amplifiers before alignment
- Figure 4 illustrates the amplitude or phase frequency response of the amplifiers after alignment. If, in principle, the distributed amplification answers the problem posed, in practice it poses the problem of the parallelization of amplifiers on the total transmission band occupied by the channels: the alignment of the amplifiers must be performing on a wide frequency band.
- Figure 5 illustrates the limitation in terms of bandwidth of the paralleling thus performed. The "acceptable" dispersion (function of the resulting power loss) defines the resulting bandwidth.
- the present invention therefore aims to provide a satellite device adapted to amplify and flexibly distribute a plurality n of input transmission channels to an output corresponding to a beam, with a performance of the amplitude and phase adjustment of the amplifiers on a band wide frequency.
- the subject of the invention is a satellite amplification device for amplifying a plurality of n transmission channels to an output corresponding to a beam, the device comprising:
- frequency band combining means comprising n inputs for receiving the n transmission channels and q outputs for respectively providing the channels grouped together in q frequency bands,
- power amplification means including p active amplifiers in parallel for the distributed amplification of the n channels,
- gain and phase adjustment means corresponding to the power amplifiers on the frequency bands.
- the invention there are as many settings as frequency bands, allowing a specific adjustment by frequency band. Since the adjustment is made at the center frequency of each frequency band, a wideband setting is finally obtained.
- the advantage of the solution is to allow amplifiers to be aligned over a wide frequency band, enabling the use of a paralleled amplifier architecture in multi-frequency applications. channels, a solution that opens up many perspectives for flexible payloads.
- FIG. 1 schematically represents a transmission channel amplification architecture according to the state of the art
- FIG. 2 schematically represents an amplification device and flexible allocation of transmission channels by paralleling amplifiers; according to the state of the art
- FIG. 3 illustrates the amplitude or phase frequency response of the amplifiers of FIG. 2 before alignment
- FIG. 4 illustrates the amplitude or phase frequency response of the amplifiers of FIG. 2 after alignment
- FIG. 5 illustrates the limitation in terms of bandwidth of the paralleling thus performed in the state of the art
- FIG. 6 schematically represents an amplification device according to one embodiment of the invention
- FIG. 7 schematically represents the amplitude or phase frequency response of the amplifiers according to the embodiment of FIG. 6.
- FIG. 6 represents a device 8 adapted to amplify and flexibly distribute n C1 (CanaH) signals at Cn (Channel n) from input channels to an output signal corresponding to a beam.
- a block 12 for the amplification of power a transmitting antenna 13.
- the input section 9 receives the n upstream transmission channels C1 to Cn each corresponding to a transmission channel. The input section 9 then performs the following operations:
- the combiner 10 comprises low-level couplers (ie operating at very low power): the combiner forms between them all the signals belonging to each of the q frequency bands, and thus restores on each of its q outputs a set of channels belonging to the appropriate frequency band.
- the output signals ⁇ Bandi - Band4 ⁇ of the combiner 10 which can thus correspond to several signals of transmission channels are then sent to the q inputs of the amplifier amplitude / phase amplifier unit 11.
- each frequency band signal ⁇ Bandi - Band4 ⁇ is divided into 8 frequency band signals leaving the set 111.
- Each of the 4 * 8 band signals of divided frequency are received respectively by a phase shifter / attenuator gain 113.
- the distribution of the transmission channels according to four frequency bands and the use of 8 active amplifiers induces the need to use phase shifters 32 / attenuators. More generally, we can consider that the allocation of the transmission channels according q frequency bands and the use of p 'active amplifiers induces the need to use q * p' phase shifter / attenuator.
- Adjusting amplitude and phase alignment of the amplifiers is performed for each subband and for each amplifier, 32 independent adjustments according to the embodiment of Figure 6.
- phase-shifters / attenuators are followed by a block 114 of 8 summators 115 of type 4 to 1.
- Each of the summators 115 has four inputs, each receiving respectively an output signal of a phase-shifter / attenuator corresponding to a band signal of natural frequency.
- Each of the summers provides on its output the combination of four different frequency band signals to one of the active power amplifiers of an amplification unit 121 explained below.
- Each of the power amplifiers of the unit 121 is generally a traveling wave amplifier tube ("Linearized
- Traveling Wave Tube Amplifier or LTWTA in English
- SSPA Solid State Power Amplifier
- FIG. 7 schematically represents the amplitude or phase frequency response of the amplifiers of the unit 121 according to the embodiment of FIG. 6.
- the maximum dispersion for each band is limited whereas the total band of operation is wide and is not confined by the resulting power loss.
- the advantage of the solution is to allow an alignment between amplifiers over a wide frequency band, which makes it possible to use Parallel amplifiers in multi-channel applications, a solution that opens up many perspectives for flexible payloads.
- phase shifters and attenuators causes impact in terms of weight, consumption and cost which remains perfectly acceptable.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- Amplifiers (AREA)
- Microwave Amplifiers (AREA)
- Radio Relay Systems (AREA)
- Transmitters (AREA)
- Paper (AREA)
- Container Filling Or Packaging Operations (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT07788324T ATE456201T1 (de) | 2006-08-10 | 2007-08-09 | Breitband-verstärkungseinrichtung |
CA2660617A CA2660617C (fr) | 2006-08-10 | 2007-08-09 | Dispositif d'amplification large bande |
CN2007800297139A CN101502023B (zh) | 2006-08-10 | 2007-08-09 | 宽带放大设备 |
DE602007004499T DE602007004499D1 (de) | 2006-08-10 | 2007-08-09 | Breitband-verstärkungseinrichtung |
EP07788324A EP2050207B1 (fr) | 2006-08-10 | 2007-08-09 | Dispositif d'amplification large bande |
JP2009523293A JP2010500802A (ja) | 2006-08-10 | 2007-08-09 | 広帯域増幅装置 |
US12/376,819 US7884669B2 (en) | 2006-08-10 | 2007-08-09 | Broadband amplifying device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0653344 | 2006-08-10 | ||
FR0653344A FR2904897B1 (fr) | 2006-08-10 | 2006-08-10 | Dispositif d'amplification large bande |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008017699A1 true WO2008017699A1 (fr) | 2008-02-14 |
Family
ID=37808390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/058256 WO2008017699A1 (fr) | 2006-08-10 | 2007-08-09 | Dispositif d'amplification large bande |
Country Status (11)
Country | Link |
---|---|
US (1) | US7884669B2 (fr) |
EP (1) | EP2050207B1 (fr) |
JP (1) | JP2010500802A (fr) |
CN (1) | CN101502023B (fr) |
AT (1) | ATE456201T1 (fr) |
CA (1) | CA2660617C (fr) |
DE (1) | DE602007004499D1 (fr) |
ES (1) | ES2339296T3 (fr) |
FR (1) | FR2904897B1 (fr) |
RU (1) | RU2439807C2 (fr) |
WO (1) | WO2008017699A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011146812A (ja) * | 2010-01-12 | 2011-07-28 | Nippon Telegr & Teleph Corp <Ntt> | フィルタ装置及びフィルタ方法 |
FR3019956A1 (fr) * | 2014-04-11 | 2015-10-16 | Thales Sa | Systeme et procede de telecommunication par satellite a couverture multispots comportant des moyens de repartition de capacite variable |
EP3154192A1 (fr) | 2015-10-09 | 2017-04-12 | Thales | Architecture d'un dispositif d'amplification repartie large bande |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2954634B1 (fr) * | 2009-12-18 | 2012-02-24 | Thales Sa | Systeme d'emission et de reception multi-spots d'un satellite et satellite comportant un tel systeme |
US9571042B2 (en) * | 2012-07-26 | 2017-02-14 | Telefonaktiebolaget L M Ericsson (Publ) | Digital upconversion for multi-band multi-order power amplifiers |
US9893684B2 (en) | 2015-02-15 | 2018-02-13 | Skyworks Solutions, Inc. | Radio-frequency power amplifiers driven by boost converter |
JP2016149743A (ja) | 2015-02-15 | 2016-08-18 | スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. | 整合ネットワークの排除によりサイズが低減された電力増幅器 |
US20200358170A1 (en) * | 2018-02-23 | 2020-11-12 | Commscope Technologies Llc | Base station antennas with mechanical linkages having flexible drive shafts |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0584012A1 (fr) * | 1992-08-14 | 1994-02-23 | Alcatel Espace | Dispositif de commutation transparente, notamment pour le domaine spatial, architectures de charge utile utilisant un tel dispositif, et procédés de mise en oeuvre du dispositif et des architectures |
FR2783378A1 (fr) * | 1998-09-14 | 2000-03-17 | Loral Space Systems Inc | Systeme de communications par satellite ameliore utilisant un partage de la puissance hf pour des sources primaires ou des faisceaux multiples dans des liaisons |
EP1499013A1 (fr) * | 2003-07-11 | 2005-01-19 | Alcatel | Dispositif d'amplification pour satellite |
WO2006060114A1 (fr) * | 2004-12-01 | 2006-06-08 | The Boeing Company | Stabilisateur de gain et de phase d'amplificateurs |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5568818U (fr) * | 1978-11-06 | 1980-05-12 | ||
JPS61212922A (ja) * | 1985-03-18 | 1986-09-20 | Nippon Telegr & Teleph Corp <Ntt> | 大電力増幅装置制御方式 |
JPH0787317B2 (ja) * | 1987-07-17 | 1995-09-20 | 日本電信電話株式会社 | 電力合成形電力増幅装置 |
US5206604A (en) * | 1991-12-20 | 1993-04-27 | Harris Corporation | Broadband high power amplifier |
US5422647A (en) * | 1993-05-07 | 1995-06-06 | Space Systems/Loral, Inc. | Mobile communication satellite payload |
TW280064B (fr) * | 1994-09-29 | 1996-07-01 | Radio Frequency Systems Inc | |
JP3345767B2 (ja) * | 1996-02-21 | 2002-11-18 | 日本電信電話株式会社 | マルチビームアンテナ給電回路 |
JPH10336145A (ja) * | 1997-05-30 | 1998-12-18 | Toshiba Corp | 衛星放送システムおよび放送衛星 |
US6006111A (en) * | 1997-10-08 | 1999-12-21 | Nortel Networks Corporation | Self-balancing matrix amplifier |
JP2001203540A (ja) * | 2000-01-19 | 2001-07-27 | Hitachi Ltd | 高周波電力増幅器 |
JP2002043873A (ja) * | 2000-07-26 | 2002-02-08 | Hitachi Shonan Denshi Co Ltd | 広帯域電力増幅回路 |
JP4867146B2 (ja) * | 2004-08-30 | 2012-02-01 | 三菱電機株式会社 | マイクロ波分配回路 |
KR100737944B1 (ko) * | 2004-11-11 | 2007-07-13 | 인티그런트 테크놀로지즈(주) | 디지털 멀티미디어 방송용 직접 변환 수신기 |
-
2006
- 2006-08-10 FR FR0653344A patent/FR2904897B1/fr not_active Expired - Fee Related
-
2007
- 2007-08-09 AT AT07788324T patent/ATE456201T1/de not_active IP Right Cessation
- 2007-08-09 CA CA2660617A patent/CA2660617C/fr not_active Expired - Fee Related
- 2007-08-09 RU RU2009108281/08A patent/RU2439807C2/ru active
- 2007-08-09 CN CN2007800297139A patent/CN101502023B/zh not_active Expired - Fee Related
- 2007-08-09 EP EP07788324A patent/EP2050207B1/fr not_active Not-in-force
- 2007-08-09 DE DE602007004499T patent/DE602007004499D1/de active Active
- 2007-08-09 ES ES07788324T patent/ES2339296T3/es active Active
- 2007-08-09 JP JP2009523293A patent/JP2010500802A/ja active Pending
- 2007-08-09 WO PCT/EP2007/058256 patent/WO2008017699A1/fr active Application Filing
- 2007-08-09 US US12/376,819 patent/US7884669B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0584012A1 (fr) * | 1992-08-14 | 1994-02-23 | Alcatel Espace | Dispositif de commutation transparente, notamment pour le domaine spatial, architectures de charge utile utilisant un tel dispositif, et procédés de mise en oeuvre du dispositif et des architectures |
FR2783378A1 (fr) * | 1998-09-14 | 2000-03-17 | Loral Space Systems Inc | Systeme de communications par satellite ameliore utilisant un partage de la puissance hf pour des sources primaires ou des faisceaux multiples dans des liaisons |
EP1499013A1 (fr) * | 2003-07-11 | 2005-01-19 | Alcatel | Dispositif d'amplification pour satellite |
WO2006060114A1 (fr) * | 2004-12-01 | 2006-06-08 | The Boeing Company | Stabilisateur de gain et de phase d'amplificateurs |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011146812A (ja) * | 2010-01-12 | 2011-07-28 | Nippon Telegr & Teleph Corp <Ntt> | フィルタ装置及びフィルタ方法 |
FR3019956A1 (fr) * | 2014-04-11 | 2015-10-16 | Thales Sa | Systeme et procede de telecommunication par satellite a couverture multispots comportant des moyens de repartition de capacite variable |
EP2930862A3 (fr) * | 2014-04-11 | 2015-11-11 | Thales | Système et procédé de télécommunication par satellite à couverture terrestre avec des pinceaux d'antenne multiples comportant des moyens de répartition de capacité variable entre les pinceaux d'antenne. |
US9667339B2 (en) | 2014-04-11 | 2017-05-30 | Thales | Satellite telecommunication system and method with multispot coverage and with variable capacity distribution |
EP3154192A1 (fr) | 2015-10-09 | 2017-04-12 | Thales | Architecture d'un dispositif d'amplification repartie large bande |
US10027296B2 (en) | 2015-10-09 | 2018-07-17 | Thales | Architecture of a wideband distributed amplification device |
Also Published As
Publication number | Publication date |
---|---|
EP2050207A1 (fr) | 2009-04-22 |
EP2050207B1 (fr) | 2010-01-20 |
JP2010500802A (ja) | 2010-01-07 |
DE602007004499D1 (de) | 2010-03-11 |
FR2904897B1 (fr) | 2008-09-26 |
CA2660617C (fr) | 2015-05-12 |
CA2660617A1 (fr) | 2008-02-14 |
ES2339296T3 (es) | 2010-05-18 |
CN101502023B (zh) | 2013-07-24 |
RU2439807C2 (ru) | 2012-01-10 |
RU2009108281A (ru) | 2010-09-20 |
US20090243719A1 (en) | 2009-10-01 |
FR2904897A1 (fr) | 2008-02-15 |
ATE456201T1 (de) | 2010-02-15 |
CN101502023A (zh) | 2009-08-05 |
US7884669B2 (en) | 2011-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2050207B1 (fr) | Dispositif d'amplification large bande | |
EP2723002B1 (fr) | Système de télécommunication par satellite permettant d'assurer un trafic en étoile et un trafic maillé | |
EP0714179A1 (fr) | Charge utile de satellite à canaux transparents intégrés | |
FR2783379A1 (fr) | Systeme de communications par satellite ameliore utilisant une conception d'antenne a faisceau ponctuel unique | |
EP2693659A2 (fr) | Satellite à haut rendement | |
EP2930862B1 (fr) | Système et procédé de télécommunication par satellite à couverture terrestre avec des pinceaux d'antenne multiples comportant des moyens de répartition de capacité variable entre les pinceaux d'antenne. | |
EP2337238B1 (fr) | Système d'émission et de réception multi-spots à bord d'un satellite | |
EP1170823B1 (fr) | Antenne de télécommunication destinée à couvrir une large zone terrestre | |
FR2793631A1 (fr) | Terminal de communication bidirectionnel multmedia | |
EP3154192A1 (fr) | Architecture d'un dispositif d'amplification repartie large bande | |
EP0992128B1 (fr) | Systeme de telecommunication | |
FR2783376A1 (fr) | Systeme de communications par satellite ameliore utilisant une commande de puissance hf de stations terrestres multiples dans un seul faisceau de liaison descendante | |
EP2055633B1 (fr) | Procédé d'optimisation de la charge utile d'un satellite de télécommunication multifaisceaux | |
EP1499013B1 (fr) | Dispositif d'amplification pour satellite | |
FR2783378A1 (fr) | Systeme de communications par satellite ameliore utilisant un partage de la puissance hf pour des sources primaires ou des faisceaux multiples dans des liaisons | |
FR2950497A1 (fr) | Charge utile pour satellite multifaisceaux | |
FR2751494A1 (fr) | Systeme de satellite de telecommunications geosynchrone dont l'aire de desserte peut etre reconfiguree | |
EP2876814B1 (fr) | Dispositif d'émission et de réception par satellite à fort taux d'atténuation des multi-trajets, répéteur et satellite équipés d'un tel dispositif | |
EP1104124B1 (fr) | Système de routage de télécommunication par satellite | |
EP4207631B1 (fr) | Procédé de configuration d'une constellation de satellites défilants et procédé de communication, gestionnaire et système de communication associés | |
FR3062267A1 (fr) | Architecture de charge utile d’un satellite de telecommunications | |
EP3424156B1 (fr) | Procede de telecommunication dans un systeme a couverture geographique multi-spots, station terrestre et dispositif relais correspondants | |
EP3739770A1 (fr) | Système de telecommunication par satellites a processeur numérique transparent et saut de faisceaux | |
EP3754866A1 (fr) | Charge utile de télécommunications à flexibilite de couverture et de capacité | |
FR2783377A1 (fr) | Systeme de communications par satellite ameliore utilisant des multiplexeurs d'entree hf depuis une pluralite de faisceaux ponctuels vers un recepteur |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780029713.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07788324 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007788324 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009523293 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2660617 Country of ref document: CA Ref document number: 971/DELNP/2009 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2009108281 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12376819 Country of ref document: US |