WO2008017699A1 - Dispositif d'amplification large bande - Google Patents

Dispositif d'amplification large bande Download PDF

Info

Publication number
WO2008017699A1
WO2008017699A1 PCT/EP2007/058256 EP2007058256W WO2008017699A1 WO 2008017699 A1 WO2008017699 A1 WO 2008017699A1 EP 2007058256 W EP2007058256 W EP 2007058256W WO 2008017699 A1 WO2008017699 A1 WO 2008017699A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifiers
channels
frequency bands
amplification
transmission channels
Prior art date
Application number
PCT/EP2007/058256
Other languages
English (en)
Inventor
Philippe Voisin
Jacques Belmont
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to AT07788324T priority Critical patent/ATE456201T1/de
Priority to CA2660617A priority patent/CA2660617C/fr
Priority to CN2007800297139A priority patent/CN101502023B/zh
Priority to DE602007004499T priority patent/DE602007004499D1/de
Priority to EP07788324A priority patent/EP2050207B1/fr
Priority to JP2009523293A priority patent/JP2010500802A/ja
Priority to US12/376,819 priority patent/US7884669B2/en
Publication of WO2008017699A1 publication Critical patent/WO2008017699A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18515Transmission equipment in satellites or space-based relays

Definitions

  • the present invention relates to a satellite amplification device adapted to flexibly distribute a plurality of received transmission channels to an output beam signal.
  • the evolution of satellite transmissions to users equipped with small capacity capacitive transmit / receive terminals implies an increase in the quality of reception of the onboard segment as well as an increase in power of signals retransmitted to the ground.
  • These increases in performance are achieved by increasing aerial gains, which can only be achieved by reducing the size of their ground covers.
  • These coverage reductions require, in order to cover a particular geographic area of ground cover, to generate several beams or spots in order to sample the geographical area.
  • Such multibeam or multispots coverage makes possible connections with small ground terminals but they pose the problem of the management of on-board capabilities and more particularly of the allocation of the received channels to the transmitted beams according to:
  • a satellite receives two signals each corresponding to a transmission channel and provides an output beam.
  • the two channels are processed by an input section 2 which performs: a low noise reception, a suitable frequency conversion and a suitable filtering for each of the two transmission channels,
  • a transmission channel corresponds to a transmission frequency band and may correspond to a single carrier or a set of carriers or subchannels.
  • Each transmission channel is amplified by the amplifier 3, which is associated with it.
  • Amplifiers 3 are high power amplifiers and are generally made by traveling wave tubes or solid state amplifiers.
  • the output multiplexer 4 or OMUX provided at the output of each amplifier, known to those skilled in the art, comprises filters and a common guide which is intended to combine the transmission channels after amplification.
  • the output multiplexer 4 receives two transmission channels and provides a beam signal.
  • the beam signal is then sent to an unrepresented source such as a horn that radiates to an unrepresented reflector for forming the beam.
  • an unrepresented source such as a horn that radiates to an unrepresented reflector for forming the beam.
  • this architecture is not flexible and combines a channelized amplification (an amplifier per channel and recombination of the channels through the OMUX) to a passive antenna.
  • This solution imposes a frozen frequency plan (which defines the OMUX solution) without possibility of modification in orbit.
  • the operators do not always have a very clear visibility on the future distribution of traffic (and therefore power) on the addressed covers and therefore need to have some flexibility to adapt for the duration of satellite life to the traffic requirements resulting from the demand and success of services in different geographical areas.
  • the architecture as represented in FIG. 1 does not allow any flexibility in terms of the number of channels allocated per beam and requires a number of amplifiers which is imposed by the number of channels to be amplified. It is not possible in the state of the exposed technique, to be able to generate any channel in a possible set of channels or to be able to change the frequency plans during the life of the satellite.
  • the channels are combined before amplification, the amplification is common to all the channels and directly feeds the antenna. It is therefore no longer necessary to use OMUXs and therefore, by nature, the solution is compatible with the amplification of any frequency distribution of the channels (the only constraint being that the number of amplified channels is limited by the number of amplifiers involved).
  • Figure 2 illustrates this last solution for paralleling the amplifiers.
  • the two received channels, after filtering and amplification, are first summed by a channel combiner 5.
  • the resulting signal is divided into power by divisors 6 to supply all the active amplifiers 71 of the amplification blocks 7.
  • divisors 6 There are as many divisor outputs as there are active amplifiers participating in the distributed amplification. In this case, it is used twice 4 active amplifiers, the number of implanted amplifiers including redundancy in case of failure (twice 6 inactive amplifiers installed, or 12 tubes for 8 active).
  • Phase shifters and attenuators 72 for "alignment” of the amplifiers in phase and in amplitude are placed before the amplifiers: there is therefore a single adjustment per amplifier. The adjustment is typically made at the center frequency of the band to be processed. "which limits the correction that can be achieved.
  • figures 3 and 4 illustrate the result of the correction between four tubes made according to this principle and mode of Figure 2.
  • Figure 3 illustrates the frequency response in amplitude or phase of the amplifiers before alignment
  • Figure 4 illustrates the amplitude or phase frequency response of the amplifiers after alignment. If, in principle, the distributed amplification answers the problem posed, in practice it poses the problem of the parallelization of amplifiers on the total transmission band occupied by the channels: the alignment of the amplifiers must be performing on a wide frequency band.
  • Figure 5 illustrates the limitation in terms of bandwidth of the paralleling thus performed. The "acceptable" dispersion (function of the resulting power loss) defines the resulting bandwidth.
  • the present invention therefore aims to provide a satellite device adapted to amplify and flexibly distribute a plurality n of input transmission channels to an output corresponding to a beam, with a performance of the amplitude and phase adjustment of the amplifiers on a band wide frequency.
  • the subject of the invention is a satellite amplification device for amplifying a plurality of n transmission channels to an output corresponding to a beam, the device comprising:
  • frequency band combining means comprising n inputs for receiving the n transmission channels and q outputs for respectively providing the channels grouped together in q frequency bands,
  • power amplification means including p active amplifiers in parallel for the distributed amplification of the n channels,
  • gain and phase adjustment means corresponding to the power amplifiers on the frequency bands.
  • the invention there are as many settings as frequency bands, allowing a specific adjustment by frequency band. Since the adjustment is made at the center frequency of each frequency band, a wideband setting is finally obtained.
  • the advantage of the solution is to allow amplifiers to be aligned over a wide frequency band, enabling the use of a paralleled amplifier architecture in multi-frequency applications. channels, a solution that opens up many perspectives for flexible payloads.
  • FIG. 1 schematically represents a transmission channel amplification architecture according to the state of the art
  • FIG. 2 schematically represents an amplification device and flexible allocation of transmission channels by paralleling amplifiers; according to the state of the art
  • FIG. 3 illustrates the amplitude or phase frequency response of the amplifiers of FIG. 2 before alignment
  • FIG. 4 illustrates the amplitude or phase frequency response of the amplifiers of FIG. 2 after alignment
  • FIG. 5 illustrates the limitation in terms of bandwidth of the paralleling thus performed in the state of the art
  • FIG. 6 schematically represents an amplification device according to one embodiment of the invention
  • FIG. 7 schematically represents the amplitude or phase frequency response of the amplifiers according to the embodiment of FIG. 6.
  • FIG. 6 represents a device 8 adapted to amplify and flexibly distribute n C1 (CanaH) signals at Cn (Channel n) from input channels to an output signal corresponding to a beam.
  • a block 12 for the amplification of power a transmitting antenna 13.
  • the input section 9 receives the n upstream transmission channels C1 to Cn each corresponding to a transmission channel. The input section 9 then performs the following operations:
  • the combiner 10 comprises low-level couplers (ie operating at very low power): the combiner forms between them all the signals belonging to each of the q frequency bands, and thus restores on each of its q outputs a set of channels belonging to the appropriate frequency band.
  • the output signals ⁇ Bandi - Band4 ⁇ of the combiner 10 which can thus correspond to several signals of transmission channels are then sent to the q inputs of the amplifier amplitude / phase amplifier unit 11.
  • each frequency band signal ⁇ Bandi - Band4 ⁇ is divided into 8 frequency band signals leaving the set 111.
  • Each of the 4 * 8 band signals of divided frequency are received respectively by a phase shifter / attenuator gain 113.
  • the distribution of the transmission channels according to four frequency bands and the use of 8 active amplifiers induces the need to use phase shifters 32 / attenuators. More generally, we can consider that the allocation of the transmission channels according q frequency bands and the use of p 'active amplifiers induces the need to use q * p' phase shifter / attenuator.
  • Adjusting amplitude and phase alignment of the amplifiers is performed for each subband and for each amplifier, 32 independent adjustments according to the embodiment of Figure 6.
  • phase-shifters / attenuators are followed by a block 114 of 8 summators 115 of type 4 to 1.
  • Each of the summators 115 has four inputs, each receiving respectively an output signal of a phase-shifter / attenuator corresponding to a band signal of natural frequency.
  • Each of the summers provides on its output the combination of four different frequency band signals to one of the active power amplifiers of an amplification unit 121 explained below.
  • Each of the power amplifiers of the unit 121 is generally a traveling wave amplifier tube ("Linearized
  • Traveling Wave Tube Amplifier or LTWTA in English
  • SSPA Solid State Power Amplifier
  • FIG. 7 schematically represents the amplitude or phase frequency response of the amplifiers of the unit 121 according to the embodiment of FIG. 6.
  • the maximum dispersion for each band is limited whereas the total band of operation is wide and is not confined by the resulting power loss.
  • the advantage of the solution is to allow an alignment between amplifiers over a wide frequency band, which makes it possible to use Parallel amplifiers in multi-channel applications, a solution that opens up many perspectives for flexible payloads.
  • phase shifters and attenuators causes impact in terms of weight, consumption and cost which remains perfectly acceptable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Amplifiers (AREA)
  • Microwave Amplifiers (AREA)
  • Radio Relay Systems (AREA)
  • Transmitters (AREA)
  • Paper (AREA)
  • Container Filling Or Packaging Operations (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

La présente invention concerne un dispositif d'amplification pour satellite pour amplifier une pluralité de n canaux de transmission vers une sortie correspondant à un faisceau, le dispositif comportant : - des moyens de combinaison de bandes de fréquences comprenant n entrées pour recevoir les n canaux de transmission et q sorties pour fournir respectivement les canaux regroupés au sein de q bandes de fréquences, - une unité d'amplification de puissance incluant p amplificateurs actifs en parallèle pour l'amplification répartie des n canaux - des moyens de réglage du gain et de la phase correspondant aux p amplificateurs de puissance sur les q bandes de fréquence.

Description

DISPOSITIF D'AMPLIFICATION LARGE BANDE
La présente invention concerne un dispositif d'amplification pour satellite adapté pour répartir flexiblement une pluralité de canaux de transmission reçus vers un signal de faisceau de sortie. Dans le cas général des missions spatiales, l'évolution des transmissions satellites vers des utilisateurs équipés de terminaux d'émission/réception à capacité réduite et de petite dimension implique une augmentation de la qualité de réception du segment embarqué ainsi qu'une augmentation de la puissance des signaux retransmis au sol. Ces augmentations de performance sont obtenues par l'accroissement des gains antenne à bord, ce qui ne peut être obtenu qu'en réduisant les dimensions de leurs couvertures au sol. Ces réductions de couverture nécessitent, pour couvrir une zone géographique de couverture particulière au sol, de générer plusieurs faisceaux ou spots afin d'échantillonner la zone géographique. De telles couvertures multifaisceaux ou multispots rendent possibles des liaisons avec des petits terminaux sol mais elles posent le problème de la gestion des capacités bord et plus particulièrement de l'allocation des canaux reçus vers les faisceaux transmis en fonction :
- des densités différentes de trafic, - d'évolutions dans le temps des densités de trafic.
Ainsi, de manière connue et comme représenté schématiquement sur l'architecture 1 de la figure 1 , un satellite reçoit deux signaux correspondant chacun à un canal de transmission et fournit un faisceau en sortie. Les deux canaux sont traités par une section d'entrée 2 qui effectue : - une réception faible bruit, une conversion de fréquence adéquate et un filtrage adapté pour chacun des deux canaux de transmission,
- une restitution de chacun des deux canaux vers un amplificateur 3.
Un canal de transmission correspond à une bande de fréquence de transmission et peut correspondre à une porteuse unique ou un ensemble de porteuses ou sous-canaux. Chaque canal de transmission est amplifié par l'amplificateur 3 qui lui est associé. Les amplificateurs 3 sont des amplificateurs haute puissance et sont généralement réalisés par des tubes à ondes progressives ou des amplificateurs à état solide. Afin de disposer de plusieurs canaux par faisceau, il faut combiner les canaux au travers de multiplexeurs de sortie 4. Le multiplexeur de sortie 4 ou OMUX (Output MUItipleXer), prévu en sortie de chaque amplificateur, connu de l'Homme du Métier, comprend des filtres et un guide commun qui est destiné à combiner les canaux de transmission après leur amplification. Dans le cas de la figure 1 , le multiplexeur de sortie 4 reçoit deux canaux de transmission et fournit un signal de faisceau. Le signal de faisceau est ensuite envoyé sur une source non représentée tel qu'un cornet qui rayonne vers un réflecteur non représenté pour la formation du faisceau. Ainsi, une telle architecture permet d'avoir deux canaux de transmission par faisceau à la descente. Cependant, cette architecture n'est pas flexible et associe une amplification canalisée (un amplificateur par canal et recombinaison des canaux au travers de l'OMUX) à une antenne passive. Cette solution impose un plan de fréquence figé (qui définit la solution OMUX) sans possibilité de modification en orbite. Or, les opérateurs n'ont pas toujours une visibilité très nette sur la répartition future du trafic (et donc de la puissance) sur les couvertures adressées et ont donc besoin de disposer d'une certaine flexibilité permettant de s'adapter pendant la durée de vie du satellite aux besoins en trafic résultant de la demande et du succès de services sur différentes zones géographiques. Il est donc important de pouvoir router les canaux de transmission de manière flexible vers les faisceaux, c'est à dire de telle manière que le nombre total de canaux traités par la charge utile puisse être réparti vers les différents faisceaux conformément à la demande de trafic et ce durant la durée de vie du satellite. En ce sens, l'architecture telle que représentée en figure 1 ne permet aucune flexibilité en terme de nombre de canaux alloués par faisceau et requiert un nombre d'amplificateurs qui est imposé par le nombre de canaux à amplifier. Il n'est pas possible, dans l'état de la technique exposé, de pouvoir générer n'importe quel canal dans un jeu possible de canaux ou encore de pouvoir faire évoluer les plans de fréquence pendant la durée de vie du satellite.
Cette dernière contrainte a imposé aux équipes de recherche de la Demanderesse de remplacer l'amplification canalisée par une amplification répartie dans laquelle tous les amplificateurs amplifieraient tous les canaux.
Selon cette solution, les canaux sont combinés avant amplification, l'amplification est commune à tous les canaux et alimente directement l'antenne. Il n'est donc plus nécessaire d'utiliser des OMUX et donc, par nature, la solution est compatible de l'amplification de n'importe quelle distribution fréquentielle des canaux (la seule contrainte étant que le nombre de canaux amplifiés est limité par le nombre d'amplificateurs mis en jeu).
La figure 2 illustre cette dernière solution pour la mise en parallèle des amplificateurs. Les deux canaux reçus, après filtrage et amplification, sont d'abord sommés par un combineur 5 de canaux. Le signal résultant est divisé en puissance par des diviseurs 6 pour alimenter tous les amplificateurs actifs 71 des blocs d'amplification 7. Il y a autant de sorties de diviseurs que d'amplificateurs actifs participant à l'amplification répartie. En l'espèce, il est utilisé deux fois 4 amplificateurs actifs, le nombre d'amplificateurs implantés incluant de la redondance en cas de panne (deux fois 6 amplificateurs inactifs installés, soit 12 tubes pour 8 actifs).
Des déphaseurs et atténuateurs 72 de réglage de ('"alignement" des amplificateurs en phase et en amplitude sont placés avant les amplificateurs : il y a donc un réglage unique par amplificateur. Le réglage est typiquement effectué à la fréquence centrale de la bande à traiter» ce qui limite la correction qui peut être réalisée. Les figures 3 et 4 illustrent le résultat de la correction entre quatre tubes effectuée selon ce principe et le mode de la figure 2. La figure 3 illustre la réponse fréquentielle en amplitude ou phase des amplificateurs avant alignement alors que la figure 4 illustre la réponse fréquentielle en amplitude ou phase des amplificateurs après alignement. Si, dans Ie principe, l'amplification répartie répond au problème posée, dans la pratique elle pose Ie problème de la mise en parallèle d'amplificateurs sur la bande de transmission totale occupée par les canaux : il faut que l'alignement des amplificateurs soit performant sur une bande de fréquence large. En effet, la figure 5 illustre la limitation en terme de bande passante de la mise en parallèle ainsi réalisée. La dispersion "acceptable" (fonction de la perte de puissance résultante) définit Ia bande passante résultante.
La présente invention vise donc à fournir un dispositif pour satellite adapté pour amplifier et répartir flexiblement une pluralité n de canaux de transmission d'entrée vers une sortie correspondant à un faisceau, avec une performance du réglage en amplitude et en phase des amplificateurs sur une bande de fréquence large. A cet effet, l'invention a pour objet un dispositif d'amplification pour satellite pour amplifier une pluralité de n canaux de transmission vers une sortie correspondant à un faisceau, le dispositif comportant :
- des moyens de combinaison de bandes de fréquences comprenant n entrées pour recevoir les n canaux de transmission et q sorties pour fournir respectivement les canaux regroupés au sein de q bandes de fréquences,
- des moyens d'amplification de puissance incluant p amplificateurs actifs en parallèle pour l'amplification répartie des n canaux,
- des moyens de réglage du gain et de la phase correspondant aux p amplificateurs de puissance sur les q bandes de fréquence.
Grâce à l'invention, il y a autant de réglages que de bandes de fréquence, permettant de réaliser un réglage spécifique par bande de fréquence. Le réglage étant effectué à la fréquence centrale de chaque bande de fréquence, on obtient au final un réglage large bande. L'avantage de la solution est de permettre un alignement entre amplificateurs sur une bande de fréquence large, ce qui permet d'utiliser une architecture d'amplificateurs mis en parallèle dans des applications multi- canaux, solution qui ouvre de nombreuses perspectives pour des charges utiles flexibles.
D'autres caractéristiques et avantages de la présente invention apparaîtront dans la description suivante de modes de réalisation de l'invention, donnés à titre illustratif et nullement limitatif. Dans les figures suivantes :
La figure 1 représente schématiquement une architecture d'amplification de canaux de transmission selon l'état de la technique, - La figure 2 représente schématiquement un dispositif d'amplification et d'allocation flexible de canaux de transmission par la mise en parallèle d'amplificateurs selon l'état de la technique,
- La figure 3 illustre la réponse fréquentielle en amplitude ou phase des amplificateurs de la figure 2 avant alignement, - La figure 4 illustre la réponse fréquentielle en amplitude ou phase des amplificateurs de la figure 2 après alignement,
- la figure 5 illustre la limitation en terme de bande passante de la mise en parallèle ainsi réalisée dans l'état de la technique,
La figure 6 représente schématiquement un dispositif d'amplification selon un mode de réalisation de l'invention,
La figure 7 représente schématiquement la réponse fréquentielle en amplitude ou phase des amplificateurs selon le mode de réalisation de la figure 6.
Les figures 1 , 2, 3, 4 et 5 ont déjà été décrites en relation avec l'état de la technique.
La figure 6 représente un dispositif 8 adapté pour amplifier et répartir flexiblement n signaux C1 (CanaH ) à Cn (Canal n) de canaux d'entrée vers un signal de sortie correspondant à un faisceau.
Le dispositif 8 comporte : une section 9 d'entrée à n entrées et n sorties, - un combineur 10 à n entrées et q sorties (q=4 dans le présent mode de réalisation), une unité 11 de réglage d'amplitude/phase d'amplificateurs,
- un bloc 12 pour l'amplification de puissance, - une antenne d'émission 13.
La section d'entrée 9 reçoit les n canaux de transmission montants C1 à Cn correspondant chacun à un canal de transmission. La section d'entrée 9 effectue alors les opérations suivantes :
- conversion de fréquence adéquate de chacun des n canaux de transmission C1 à Cn, filtrage, et contrôle de gain, restitution des n canaux de transmission sur les n entrées respectives du combineur 10 de bandes de fréquence.
Le combineur 10 comprend des coupleurs bas niveau (c'est à dire fonctionnant à très faible puissance) : le combineur somme entre eux tous les signaux appartenant à chacune des q bandes de fréquence, et restitue ainsi sur chacune de ses q sorties un ensemble de canaux appartenant à la bande de fréquence appropriée.
Les signaux de sorties {Bandi - Band4} du combineur 10 qui peuvent donc correspondre à plusieurs signaux de canaux de transmission sont alors envoyés sur les q entrées de l'unité 11 de réglage d'amplitude/phase d'amplificateurs.
Les q=4 entrées de l'unité 11 sont reliées d'abord à un ensemble 111 de diviseurs qui ont pour fonction de diviser en puissance les signaux {Bandi - Band4}, appelés par la suite signaux de bandes de fréquence, de manière à pouvoir alimenter tous les amplificateurs. Ainsi, dans le cas présent de la présence de 8 amplificateurs actifs, chaque signal de bande de fréquence {Bandi - Band4} est divisé en 8 signaux de bande de fréquence sortant de l'ensemble 111. Chacun des 4*8 signaux de bande de fréquence divisés sont reçus respectivement par un déphaseur/atténuateur de gain 113. La répartition des canaux de transmission selon 4 bandes de fréquence et l'utilisation de 8 amplificateurs actifs a induit la nécessité d'utiliser 32 déphaseurs/atténuateurs. De façon plus générale, on peut considérer que la répartition des canaux de transmission selon q' bandes de fréquence et l'utilisation de p' amplificateurs actifs induit la nécessité d'utiliser q'*p' déphaseurs/atténuateur.
Le réglage en amplitude et phase pour l'alignement des amplificateurs est réalisé pour chaque sous-bande et pour chaque amplificateur, soit 32 réglages indépendants selon le mode de réalisation de la figure 6.
Les 32 déphaseurs/atténuateurs sont suivis d'un bloc 114 de 8 sommateurs 115 de type 4 vers 1. Chacun des sommateurs 115 comporte quatre entrées, chacune recevant respectivement un signal de sortie d'un déphaseur/atténuateur correspondant à un signal de bande de fréquence propre. Chacun des sommateurs fournit sur sa sortie la combinaison des quatre différents signaux de bande de fréquence à destination de l'un des amplificateurs actifs de puissance d'une unité d'amplification 121 explicitée dans la suite.
Chacun des amplificateurs de puissance de l'unité 121 est généralement un tube amplificateur à ondes progressives ("Linearized
Traveling Wave Tube Amplifier" ou LTWTA en anglais) mais il peut également s'agir d'un amplificateur à semi-conducteur SSPA ("Solid State Power Amplifier" en anglais).
Les amplificateurs de l'unité 121 sont suivis par un sommateur 122 de type 8 vers 1 , à l'issue duquel le signal de sortie est filtré par un filtre 123 et ensuite envoyé sur une source 13 qui rayonne pour la formation du faisceau. La figure 7 représente schématiquement la réponse fréquentielle en amplitude ou phase des amplificateurs de l'unité 121 selon le mode de réalisation de la figure 6. La dispersion maximum pour chaque bande est limitée alors que la bande totale d Opération est large et n est pas cantonnée par la perte de puissance résultante. L'avantage de la solution est de permettre un alignement entre amplificateurs sur une bande de fréquence large ce qui permet d'utiliser des amplificateurs mis en parallèle dans des applications multi-canaux, solution qui ouvre de nombreuses perspectives pour des charges utiles flexibles.
En outre, l'emploi d'un nombre plus important de déphaseurs et atténuateurs entraîne un impact en terme de masse, de consommation, et coûts qui demeure parfaitement acceptable.

Claims

REVENDICATIONS
1. Dispositif (8) d'amplification pour satellite pour amplifier une pluralité de p canaux de transmission vers une sortie correspondant à un faisceau, le dispositif comportant :
- des moyens (10) de combinaison de bandes de fréquences comprenant n entrées pour recevoir les n canaux de transmission et q sorties pour fournir respectivement les canaux regroupés au sein de q bandes de fréquences (Bandi - Band4), - des moyens (121 ) d'amplification de puissance incluant p amplificateurs en parallèle pour l'amplification répartie des n canaux,
- des moyens (113) de réglage du gain et de la phase correspondant aux p amplificateurs de puissance sur les q bandes de fréquence.
2. Dispositif selon, la revendication 1 , caractérisé en ce que la répartition des canaux de transmission selon q bandes de fréquence et l'utilisation de p amplificateurs actifs induit la nécessité d'utiliser au moins q*p déphaseurs/atténuateur pour leur réglage individuel.
PCT/EP2007/058256 2006-08-10 2007-08-09 Dispositif d'amplification large bande WO2008017699A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT07788324T ATE456201T1 (de) 2006-08-10 2007-08-09 Breitband-verstärkungseinrichtung
CA2660617A CA2660617C (fr) 2006-08-10 2007-08-09 Dispositif d'amplification large bande
CN2007800297139A CN101502023B (zh) 2006-08-10 2007-08-09 宽带放大设备
DE602007004499T DE602007004499D1 (de) 2006-08-10 2007-08-09 Breitband-verstärkungseinrichtung
EP07788324A EP2050207B1 (fr) 2006-08-10 2007-08-09 Dispositif d'amplification large bande
JP2009523293A JP2010500802A (ja) 2006-08-10 2007-08-09 広帯域増幅装置
US12/376,819 US7884669B2 (en) 2006-08-10 2007-08-09 Broadband amplifying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0653344 2006-08-10
FR0653344A FR2904897B1 (fr) 2006-08-10 2006-08-10 Dispositif d'amplification large bande

Publications (1)

Publication Number Publication Date
WO2008017699A1 true WO2008017699A1 (fr) 2008-02-14

Family

ID=37808390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/058256 WO2008017699A1 (fr) 2006-08-10 2007-08-09 Dispositif d'amplification large bande

Country Status (11)

Country Link
US (1) US7884669B2 (fr)
EP (1) EP2050207B1 (fr)
JP (1) JP2010500802A (fr)
CN (1) CN101502023B (fr)
AT (1) ATE456201T1 (fr)
CA (1) CA2660617C (fr)
DE (1) DE602007004499D1 (fr)
ES (1) ES2339296T3 (fr)
FR (1) FR2904897B1 (fr)
RU (1) RU2439807C2 (fr)
WO (1) WO2008017699A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146812A (ja) * 2010-01-12 2011-07-28 Nippon Telegr & Teleph Corp <Ntt> フィルタ装置及びフィルタ方法
FR3019956A1 (fr) * 2014-04-11 2015-10-16 Thales Sa Systeme et procede de telecommunication par satellite a couverture multispots comportant des moyens de repartition de capacite variable
EP3154192A1 (fr) 2015-10-09 2017-04-12 Thales Architecture d'un dispositif d'amplification repartie large bande

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2954634B1 (fr) * 2009-12-18 2012-02-24 Thales Sa Systeme d'emission et de reception multi-spots d'un satellite et satellite comportant un tel systeme
US9571042B2 (en) * 2012-07-26 2017-02-14 Telefonaktiebolaget L M Ericsson (Publ) Digital upconversion for multi-band multi-order power amplifiers
US9893684B2 (en) 2015-02-15 2018-02-13 Skyworks Solutions, Inc. Radio-frequency power amplifiers driven by boost converter
JP2016149743A (ja) 2015-02-15 2016-08-18 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 整合ネットワークの排除によりサイズが低減された電力増幅器
US20200358170A1 (en) * 2018-02-23 2020-11-12 Commscope Technologies Llc Base station antennas with mechanical linkages having flexible drive shafts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0584012A1 (fr) * 1992-08-14 1994-02-23 Alcatel Espace Dispositif de commutation transparente, notamment pour le domaine spatial, architectures de charge utile utilisant un tel dispositif, et procédés de mise en oeuvre du dispositif et des architectures
FR2783378A1 (fr) * 1998-09-14 2000-03-17 Loral Space Systems Inc Systeme de communications par satellite ameliore utilisant un partage de la puissance hf pour des sources primaires ou des faisceaux multiples dans des liaisons
EP1499013A1 (fr) * 2003-07-11 2005-01-19 Alcatel Dispositif d'amplification pour satellite
WO2006060114A1 (fr) * 2004-12-01 2006-06-08 The Boeing Company Stabilisateur de gain et de phase d'amplificateurs

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568818U (fr) * 1978-11-06 1980-05-12
JPS61212922A (ja) * 1985-03-18 1986-09-20 Nippon Telegr & Teleph Corp <Ntt> 大電力増幅装置制御方式
JPH0787317B2 (ja) * 1987-07-17 1995-09-20 日本電信電話株式会社 電力合成形電力増幅装置
US5206604A (en) * 1991-12-20 1993-04-27 Harris Corporation Broadband high power amplifier
US5422647A (en) * 1993-05-07 1995-06-06 Space Systems/Loral, Inc. Mobile communication satellite payload
TW280064B (fr) * 1994-09-29 1996-07-01 Radio Frequency Systems Inc
JP3345767B2 (ja) * 1996-02-21 2002-11-18 日本電信電話株式会社 マルチビームアンテナ給電回路
JPH10336145A (ja) * 1997-05-30 1998-12-18 Toshiba Corp 衛星放送システムおよび放送衛星
US6006111A (en) * 1997-10-08 1999-12-21 Nortel Networks Corporation Self-balancing matrix amplifier
JP2001203540A (ja) * 2000-01-19 2001-07-27 Hitachi Ltd 高周波電力増幅器
JP2002043873A (ja) * 2000-07-26 2002-02-08 Hitachi Shonan Denshi Co Ltd 広帯域電力増幅回路
JP4867146B2 (ja) * 2004-08-30 2012-02-01 三菱電機株式会社 マイクロ波分配回路
KR100737944B1 (ko) * 2004-11-11 2007-07-13 인티그런트 테크놀로지즈(주) 디지털 멀티미디어 방송용 직접 변환 수신기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0584012A1 (fr) * 1992-08-14 1994-02-23 Alcatel Espace Dispositif de commutation transparente, notamment pour le domaine spatial, architectures de charge utile utilisant un tel dispositif, et procédés de mise en oeuvre du dispositif et des architectures
FR2783378A1 (fr) * 1998-09-14 2000-03-17 Loral Space Systems Inc Systeme de communications par satellite ameliore utilisant un partage de la puissance hf pour des sources primaires ou des faisceaux multiples dans des liaisons
EP1499013A1 (fr) * 2003-07-11 2005-01-19 Alcatel Dispositif d'amplification pour satellite
WO2006060114A1 (fr) * 2004-12-01 2006-06-08 The Boeing Company Stabilisateur de gain et de phase d'amplificateurs

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146812A (ja) * 2010-01-12 2011-07-28 Nippon Telegr & Teleph Corp <Ntt> フィルタ装置及びフィルタ方法
FR3019956A1 (fr) * 2014-04-11 2015-10-16 Thales Sa Systeme et procede de telecommunication par satellite a couverture multispots comportant des moyens de repartition de capacite variable
EP2930862A3 (fr) * 2014-04-11 2015-11-11 Thales Système et procédé de télécommunication par satellite à couverture terrestre avec des pinceaux d'antenne multiples comportant des moyens de répartition de capacité variable entre les pinceaux d'antenne.
US9667339B2 (en) 2014-04-11 2017-05-30 Thales Satellite telecommunication system and method with multispot coverage and with variable capacity distribution
EP3154192A1 (fr) 2015-10-09 2017-04-12 Thales Architecture d'un dispositif d'amplification repartie large bande
US10027296B2 (en) 2015-10-09 2018-07-17 Thales Architecture of a wideband distributed amplification device

Also Published As

Publication number Publication date
EP2050207A1 (fr) 2009-04-22
EP2050207B1 (fr) 2010-01-20
JP2010500802A (ja) 2010-01-07
DE602007004499D1 (de) 2010-03-11
FR2904897B1 (fr) 2008-09-26
CA2660617C (fr) 2015-05-12
CA2660617A1 (fr) 2008-02-14
ES2339296T3 (es) 2010-05-18
CN101502023B (zh) 2013-07-24
RU2439807C2 (ru) 2012-01-10
RU2009108281A (ru) 2010-09-20
US20090243719A1 (en) 2009-10-01
FR2904897A1 (fr) 2008-02-15
ATE456201T1 (de) 2010-02-15
CN101502023A (zh) 2009-08-05
US7884669B2 (en) 2011-02-08

Similar Documents

Publication Publication Date Title
EP2050207B1 (fr) Dispositif d&#39;amplification large bande
EP2723002B1 (fr) Système de télécommunication par satellite permettant d&#39;assurer un trafic en étoile et un trafic maillé
EP0714179A1 (fr) Charge utile de satellite à canaux transparents intégrés
FR2783379A1 (fr) Systeme de communications par satellite ameliore utilisant une conception d&#39;antenne a faisceau ponctuel unique
EP2693659A2 (fr) Satellite à haut rendement
EP2930862B1 (fr) Système et procédé de télécommunication par satellite à couverture terrestre avec des pinceaux d&#39;antenne multiples comportant des moyens de répartition de capacité variable entre les pinceaux d&#39;antenne.
EP2337238B1 (fr) Système d&#39;émission et de réception multi-spots à bord d&#39;un satellite
EP1170823B1 (fr) Antenne de télécommunication destinée à couvrir une large zone terrestre
FR2793631A1 (fr) Terminal de communication bidirectionnel multmedia
EP3154192A1 (fr) Architecture d&#39;un dispositif d&#39;amplification repartie large bande
EP0992128B1 (fr) Systeme de telecommunication
FR2783376A1 (fr) Systeme de communications par satellite ameliore utilisant une commande de puissance hf de stations terrestres multiples dans un seul faisceau de liaison descendante
EP2055633B1 (fr) Procédé d&#39;optimisation de la charge utile d&#39;un satellite de télécommunication multifaisceaux
EP1499013B1 (fr) Dispositif d&#39;amplification pour satellite
FR2783378A1 (fr) Systeme de communications par satellite ameliore utilisant un partage de la puissance hf pour des sources primaires ou des faisceaux multiples dans des liaisons
FR2950497A1 (fr) Charge utile pour satellite multifaisceaux
FR2751494A1 (fr) Systeme de satellite de telecommunications geosynchrone dont l&#39;aire de desserte peut etre reconfiguree
EP2876814B1 (fr) Dispositif d&#39;émission et de réception par satellite à fort taux d&#39;atténuation des multi-trajets, répéteur et satellite équipés d&#39;un tel dispositif
EP1104124B1 (fr) Système de routage de télécommunication par satellite
EP4207631B1 (fr) Procédé de configuration d&#39;une constellation de satellites défilants et procédé de communication, gestionnaire et système de communication associés
FR3062267A1 (fr) Architecture de charge utile d’un satellite de telecommunications
EP3424156B1 (fr) Procede de telecommunication dans un systeme a couverture geographique multi-spots, station terrestre et dispositif relais correspondants
EP3739770A1 (fr) Système de telecommunication par satellites a processeur numérique transparent et saut de faisceaux
EP3754866A1 (fr) Charge utile de télécommunications à flexibilite de couverture et de capacité
FR2783377A1 (fr) Systeme de communications par satellite ameliore utilisant des multiplexeurs d&#39;entree hf depuis une pluralite de faisceaux ponctuels vers un recepteur

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780029713.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07788324

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007788324

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009523293

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2660617

Country of ref document: CA

Ref document number: 971/DELNP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009108281

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12376819

Country of ref document: US