WO2008013092A1 - Heat source unit and air conditioner with the same - Google Patents

Heat source unit and air conditioner with the same Download PDF

Info

Publication number
WO2008013092A1
WO2008013092A1 PCT/JP2007/064234 JP2007064234W WO2008013092A1 WO 2008013092 A1 WO2008013092 A1 WO 2008013092A1 JP 2007064234 W JP2007064234 W JP 2007064234W WO 2008013092 A1 WO2008013092 A1 WO 2008013092A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
source unit
refrigerant
compression element
motor
Prior art date
Application number
PCT/JP2007/064234
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromune Matsuoka
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2008013092A1 publication Critical patent/WO2008013092A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/322Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/261Carbon dioxide (CO2)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor

Definitions

  • the present invention relates to a heat source unit and an air conditioner including the heat source unit, and in particular, to a heat source unit that forms a refrigerant circuit that uses carbon dioxide as a refrigerant by connecting a utilization unit and the same.
  • the present invention relates to an air conditioner.
  • a high-viscosity refrigerating machine oil is used to ensure lubrication in the compressor because the refrigeration cycle has a high pressure.
  • a refrigerating machine oil suitable for this is polyalkylene glycolenoles (hereinafter referred to as PAG).
  • the leakage current from the motor built in the compressor will increase.
  • the problem of becoming will arise.
  • a heat source unit that includes a plurality of hermetic compressors and constitutes an air conditioner that uses carbon dioxide as a refrigerant.
  • An object of the present invention is to realize a heat source unit that constitutes an air conditioner that includes a plurality of hermetic compressors and uses carbon dioxide as a refrigerant.
  • a heat source unit is a heat source unit that constitutes a refrigerant circuit that uses carbon dioxide and carbon dioxide as a refrigerant by connecting a utilization unit. And a plurality of hermetic compressors in which a motor for driving the compression element is arranged, polyalkylene glycol as refrigeration oil, and a current canceling device that cancels leakage current from the motor.
  • this heat source unit in the case of using carbon dioxide as a refrigerant, polyalkylene glycol (hereinafter referred to as PAG) is used as a refrigerating machine oil to ensure lubrication in the compressor, and a plurality of compression
  • PAG polyalkylene glycol
  • the sealing performance inside the compressor can be secured, and an increase in leakage current from the motor can be suppressed by providing a current canceling device.
  • a heat source unit that includes a plurality of hermetic compressors and constitutes an air conditioner that uses carbon dioxide as a refrigerant can be realized.
  • the heat source unit according to the second invention is the heat source unit of the air conditioner according to the first invention, wherein an oil reservoir portion for storing refrigerator oil is formed in the casing. Yes.
  • the motor is arranged so that there is no immersion force in the refrigerating machine oil collected in the oil reservoir.
  • this heat source unit since the motor is arranged so that there is no immersion force in the refrigeration machine oil accumulated in the oil reservoir, an increase in leakage current from the motor can be further suppressed.
  • a heat source unit according to the third aspect of the present invention is the heat source unit of the air conditioner according to the second aspect of the present invention, wherein the motor is disposed above the compression element.
  • a heat source unit is the heat source unit of an air conditioner according to any of the first to third aspects of the invention, wherein the compression element is a cylinder having a cylinder chamber formed therein. And a piston formed by a roller and a blade formed integrally with the roller. The piston divides the cylinder chamber into a suction chamber and a discharge chamber, and a bush sandwiching the blade. The piston is revolved in the cylinder chamber by a motor. It is configured to exercise.
  • the compression element constitutes a so-called swing compressor having a cylinder, a piston in which a roller and a blade are integrally formed, and a bush.
  • this compression element is suitable for incorporating a plurality of small compressors in a unit in which friction loss and power loss are relatively small compared to other types of positive displacement compression elements.
  • the roller and the blade are integrally formed, and this is due to the high pressure caused by the use of carbon dioxide with a large sliding between the piston and the bush as the refrigerant. Therefore, problems such as an increase in sliding load between the piston and the bush and seizure tend to occur.
  • a heat source unit is the heat source unit of the air conditioner according to any of the first to fourth aspects of the present invention, further comprising an inverter device for controlling the motor, and a current canceling device. Cancels the high-frequency leakage current caused by the inverter device. Since this heat source unit is controlled by the motor force S inverter device built in the hermetic compressor, high frequency leakage current is generated due to the voltage output to this inverter device force motor. . For this reason, when a plurality of hermetic compressors are provided as in this heat source unit, the leakage current from the motor increases remarkably.
  • this heat source unit includes a current cancellation device, an increase in leakage current due to the high-frequency leakage current can be suppressed.
  • a plurality of hermetic compressors with built-in motors controlled by the inverter device are provided, and a heat source unit that constitutes an air conditioner that uses carbon dioxide as a refrigerant can be realized. .
  • An air conditioner according to a sixth invention includes the heat source unit according to any one of the first to fifth inventions. Since this air conditioner includes the heat source unit according to any of the first to fifth inventions, a large-capacity refrigerant that uses carbon dioxide as a refrigerant by connecting a plurality of utilization units. A circuit can be constructed.
  • FIG. 1 is a schematic configuration diagram of a heat source unit and an air conditioner equipped with the heat source unit according to an embodiment of the present invention.
  • FIG. 2 is a schematic longitudinal sectional view of a compressor.
  • FIG. 3 is a schematic cross-sectional view of the compressor, corresponding to the AA cross section of FIG.
  • FIG. 4 is a schematic cross-sectional view of the compressor, corresponding to the BB cross section of FIG.
  • FIG. 5 is a control block diagram of the air conditioner.
  • FIG. 6 is a schematic electric circuit diagram of an inverter device including a current canceling device.
  • FIG. 7 is a modification of the schematic electric circuit diagram of the inverter device including the current canceling device.
  • FIG. 8 is a modification of the schematic electric circuit diagram of the inverter device including the current canceling device. Explanation of symbols
  • FIG. 1 is a schematic configuration diagram of a heat source unit and an air-conditioning apparatus 1 including the heat source unit according to an embodiment of the present invention.
  • the air conditioner 1 is an apparatus used for indoor cooling, and mainly includes one heat source unit 2, a plurality (two in this case) of utilization units 4 and 5, and a heat source.
  • This is a so-called multi-type air conditioner including refrigerant communication pipes 6 and 7 that connect the unit 2 and the utilization units 4 and 5.
  • the refrigerant circuit 10 of the air conditioner 1 of the present embodiment is configured by connecting the heat source unit 2 and the utilization units 4 and 5 via the refrigerant communication tubes 6 and 7.
  • carbon dioxide is sealed as a refrigerant.
  • the refrigeration cycle operation is performed by compressing the carbon dioxide as a cooling medium until the critical pressure or higher is reached.
  • the utilization units 4 and 5 are connected to the heat source unit 2 via the refrigerant communication pipe 6 and the refrigerant communication pipe 7 and constitute a part of the refrigerant circuit 10.
  • the configuration of the usage units 4 and 5 will be described. Since the usage unit 4 and the usage unit 5 have the same configuration, only the configuration of the usage unit 4 will be described here, and the configuration of the usage unit 5 indicates each part of the usage unit 4. Instead of the 40's code, the 50's code is used, and the description of each part is omitted.
  • the usage unit 4 mainly includes a usage-side refrigerant circuit 10b that constitutes a part of the refrigerant circuit 10.
  • the use side refrigerant circuit 10b mainly includes a use side expansion mechanism 41 that depressurizes the refrigerant, and a use side heat exchange 42.
  • the use side expansion mechanism 41 is an electric expansion valve that adjusts the flow rate of the refrigerant flowing in the use side refrigerant circuit 10b, one end of which is connected to the refrigerant communication pipe 6, The end is connected to the heat exchanger 42 on the user side.
  • the use-side heat exchanger 42 is a heat exchanger that functions as a refrigerant heater.
  • One end of the use side heat exchanger 42 is connected to the refrigerant communication pipe 7, and the other end is connected to the use side expansion mechanism 41.
  • the usage unit 4 includes an indoor fan 43 for sucking indoor air into the unit, exchanging heat, and supplying the indoor air to the room, and a refrigerant flowing between the indoor air and the usage-side heat exchanger. It is possible to exchange heat.
  • the indoor fan 43 is rotationally driven by a fan motor 43a.
  • the usage unit 4 includes a usage-side control unit 44 that controls the operation of each unit constituting the usage unit 4.
  • the usage-side control unit 44 includes a microcomputer, a memory, and the like provided for controlling the usage unit 4, and a remote controller (not shown) for operating the usage unit 4 individually. Control signals and the like can be exchanged between them, and control signals and the like can be exchanged with the heat source side control unit 28 (described later) of the heat source unit 2.
  • the heat source unit 2 is connected to the usage units 4 and 5 via the refrigerant communication pipe 6 and the refrigerant communication pipe 7, and a refrigerant circuit 10 is configured between the usage units 4 and 5.
  • the heat source unit 2 mainly has a heat source side refrigerant circuit 10 a that constitutes a part of the refrigerant circuit 10.
  • the heat source side refrigerant circuit 10a mainly includes a plurality of (here, two) compressors 21 and 22, a heat source side heat exchange 23, and a heat source side expansion mechanism 24 as an expansion mechanism that depressurizes the refrigerant.
  • shut-off valves 25, 26 With shut-off valves 25, 26
  • the heat source side heat exchanger 23 is a heat exchanger that functions as a refrigerant cooler. One end of the heat source side heat exchanger 23 is connected to the discharge side of the compressors 21 and 22. The other end is connected to the heat source side expansion mechanism 24.
  • the heat source side expansion mechanism 24 is an electric expansion valve, one end of which is connected to the other end of the heat source side heat exchange, and the other end is connected to the closing valve 25.
  • the heat source unit 2 includes an outdoor fan 27 for sucking outdoor air into the unit, exchanging heat, and then discharging the air to the outside, and flows through the heat exchange 23 on the heat source side with the outdoor air. It is possible to exchange heat with the refrigerant.
  • the outdoor fan 27 is rotationally driven by a fan motor 27a.
  • the shut-off valves 25 and 26 are valves provided at connection ports with external equipment 'piping (specifically, refrigerant communication pipes 6 and 7).
  • the closing valve 25 is connected to the heat source side expansion mechanism 24.
  • the shut-off valve 26 is connected to the suction side of the compressors 21 and 22.
  • the compressors 21 and 22 are compressors for compressing a low-pressure gas refrigerant to a critical pressure (the critical pressure of carbon dioxide is 7.38 MPa) or higher.
  • the force provided by the two compressors 21 and 22 in the heat source unit 2 is not limited to this. Three or more units are used depending on the number of connected units, etc.
  • the compressor may be connected in parallel.
  • FIG. 2 is a schematic longitudinal sectional view of the compressor 21.
  • FIG. 3 is a schematic transverse cross-sectional view of the compressor 21, and corresponds to the AA cross section of FIG.
  • FIG. 4 is a schematic cross-sectional view of the compressor 21, which corresponds to the BB cross section of FIG.
  • the compressor 21 is a hermetic compressor in which a compression element 62 and a compressor motor 63 are incorporated in a casing 61 that is a vertical cylindrical container.
  • the casing 61 includes a substantially cylindrical body plate 61a, an upper end plate 61b welded and fixed to the upper end of the body plate 61a, and a lower end plate 61c fixed to the lower end of the body plate 61a by welding.
  • the compression element 62 is mainly arrange
  • the compressor motor 63 is arrange
  • the compression element 62 and the compressor motor 63 are connected by a crankshaft 64 arranged so as to extend in the vertical direction in the casing 61. It is.
  • an oil reservoir 61d is formed in the lower part of the casing 61 for storing the refrigerating machine oil necessary for lubricating the compressor 21 (particularly, the compression element 62).
  • a refrigerating machine oil polyalkylene glycol (hereinafter referred to as PAG) having a high viscosity characteristic is used in consideration of using carbon dioxide as a refrigerant.
  • the compression element 62 is a compression element that constitutes a swing compressor.
  • the compression element 62 mainly includes a crankshaft 64, a front head 65, a first compression element 66, an intermediate head 67, and a second head.
  • a compression element 68 and a rear head 69 are included.
  • the first compression element 66 is disposed so as to be sandwiched between the front head 65 and the intermediate head 67 in the vertical direction, and mainly includes the first piston 70, the first bush 71, and the first cylinder 72. It consists of and.
  • the second compression element 68 is disposed so as to be sandwiched between the intermediate head 67 and the rear head 69 in the vertical direction, and mainly includes the second piston 73, the second bush 74, and the second cylinder 75. They are organized.
  • the front head 65, the first cylinder 72, the intermediate head 67, the second cylinder 75, and the rear head 69 are fastened together by a plurality of bolts (not shown) and joined together.
  • the compression element constituting the swing compressor is selected as the compression element 62 because the friction loss and the power loss are relatively small compared to other types of positive displacement compression elements. It is also suitable for incorporating multiple small compressors (here, two compressors 21 and 22).
  • the first cylinder 72 has a cylinder hole 72a, a suction hole 72b, a discharge passage 72c, and a blade accommodation hole 72d.
  • the cylinder hole 72a is a cylindrical hole penetrating along the rotation axis O.
  • the suction hole 72b penetrates from the outer peripheral surface 72e to the cylinder hole 72a.
  • the discharge path 72c is formed by cutting out a part of the inner peripheral side of the cylindrical portion forming the cylinder hole 72a.
  • the blade accommodation hole 72d is a hole for accommodating a blade portion 70b (described later) of the first piston 70, and penetrates along the thickness direction of the first cylinder 72.
  • the portion of the blade accommodation hole 72d on the rotation axis O side accommodates the first bush 71 and slides with the first bush 71.
  • a first eccentric shaft portion 64a of the crankshaft 64 and a roller 70a (described later) of the first piston 70 are accommodated in the cylinder hole 72a of the first cylinder 72, and the first eccentric shaft portion 64a is accommodated in the blade accommodation hole 72d.
  • the discharge path 72c is sandwiched between the front head 65 and the intermediate head 67 so as to face the front head 65 side.
  • a cylinder chamber 76 is formed in the first compression element 62.
  • the cylinder chamber 76 includes a suction chamber 76a that communicates with the suction hole 72b by the first piston 70, and a discharge chamber 76b that communicates with the discharge passage 72c. It will be divided into.
  • the first piston 70 has a cylindrical roller 70a and a blade 70b that is formed integrally with the roller 70a and protrudes radially outward of the roller 70a.
  • the roller 70 a is inserted into the cylinder hole 72 a of the first cylinder 72 in a state of being fitted to the first eccentric shaft portion 64 a of the crank shaft 64.
  • the roller 70a performs a revolving motion around the rotation axis O of the crankshaft 64.
  • the blade 70b is accommodated in the blade accommodation hole 72d. As a result, the blade 70b swings and moves forward and backward along the longitudinal direction with respect to the first bush 71 and the blade accommodation hole 72d.
  • the first bush 71 is a pair of substantially semi-cylindrical members, and is accommodated in the blade accommodation hole 72d so as to sandwich the blade 7 Ob of the first piston 70.
  • the front head 65 is a member that covers the discharge path 72c side of the first cylinder 72, and is fitted to the casing 61.
  • the front head 65 is formed with a bearing portion 65a, and a crankshaft 64 is inserted into the bearing portion 65a.
  • the front head 65 is formed with an opening 65b for guiding the gas refrigerant flowing through the discharge passage 72c formed in the first cylinder 72 to a discharge pipe 85 (described later).
  • the opening 65b is closed or opened by a discharge valve (not shown) for preventing the backflow of the gas refrigerant.
  • the intermediate head 67 is a member that faces the front head 65 with the first cylinder 72 interposed therebetween, and covers the lower portion of the first cylinder 72.
  • the intermediate head 67 is formed with a bearing portion 67a, and a crankshaft 64 is inserted into the bearing portion 67a.
  • the second cylinder 75 has a cylinder hole 75a, a suction hole 75b, a discharge passage 75c, and a blade accommodation hole 75d.
  • the cylinder hole 75a is a cylindrical hole penetrating along the rotation axis O.
  • the suction hole 75b extends from the outer peripheral surface 75e to the cylinder hole 75a.
  • the discharge path 75c is a part of the inner peripheral side of the cylindrical part that forms the cylinder hole 75a. Is formed by notching.
  • the blade accommodation hole 75d is a hole for accommodating a blade portion 73b (described later) of the second piston 73, and penetrates along the thickness direction of the second cylinder 75.
  • the portion on the rotation axis O side of the blade accommodation hole 75d accommodates the second bush 74 and slides with the second bush 74.
  • a second eccentric shaft portion 64b of the crankshaft 64 and a roller 73a (described later) of the second piston 73 are accommodated in the cylinder hole 75a of the second cylinder 75, and the second piston is accommodated in the blade accommodation hole 75d.
  • the discharge path 75c is sandwiched between the rear head 69 and the intermediate head 67 so that the discharge path 75c faces the rear head 69 side.
  • a cylinder chamber 77 is formed in the second compression element 68.
  • the cylinder chamber 77 is connected to a suction chamber 77a that communicates with the suction hole 75b by the second piston 73, and a discharge chamber 77b that communicates with the discharge passage 75c. It will be divided into.
  • the second eccentric shaft portion 64b and the first eccentric shaft portion 64a are provided with a phase difference of 180 degrees.
  • the second piston 73 has a cylindrical roller 73a and a blade 73b that is formed integrally with the roller 73a and protrudes radially outward of the roller 73a.
  • the roller 73a is inserted into the cylinder hole 75a of the second cylinder 75 while being fitted to the second eccentric shaft portion 64b of the crankshaft 64.
  • the roller 73a performs a revolving motion around the rotation axis O of the crankshaft 64.
  • the blade 73b is accommodated in the blade accommodation hole 75d.
  • the blade 73b swings and simultaneously moves forward and backward with respect to the second bush 74 and the blade accommodation hole 75d along the longitudinal direction. Since the second eccentric shaft portion 64b and the first eccentric shaft portion 64a are 180 degrees out of phase as described above, for example, the blade 70b of the first piston 70 is inserted into the blade receiving hole of the first cylinder 72. When the blade 72b is inserted into the deepest position 72d, the blade 73b of the second piston 73 is inserted into the blade receiving hole 75d of the second cylinder 75 at the shallowest depth.
  • the second bush 74 is a pair of substantially semi-cylindrical members, and is accommodated in the blade accommodation hole 75d so as to sandwich the blade 73b of the second piston 73.
  • 69 is a member that covers the discharge path 75c side of the second cylinder 75, and is fitted in the casing 61.
  • the rear head 69 is formed with a bearing portion 69a.
  • a crankshaft 64 is inserted into 9a.
  • the rear head 69 is formed with an opening 69b for guiding the gas refrigerant flowing in through the discharge passage 75c formed in the second cylinder 75 to a discharge pipe 85 (described later).
  • the opening 69b is closed or opened by a discharge valve (not shown) for preventing the backflow of the gas refrigerant.
  • the crankshaft 64 is provided with the above-described eccentric shaft portions 64a and 64b at the lower portion thereof, and the upper portion where the eccentric shaft portions 64a and 64b are not provided is the rotor 80 ( (Described later).
  • the crankshaft 64 is formed with an oil passage 64c that opens to the oil reservoir 61d and communicates with the cylinder chambers 76 and 77.
  • a pump element 78 is provided at the lower end of the oil passage 64c. The pump element 78 supplies the cylinder chambers 76 and 77 via the oil passage 64c accumulated in the oil reservoir 61d.
  • the compressor motor 63 is a direct current motor, and is mainly housed in an annular stator 79 fixed to the inner surface of the casing 61 and rotatably inside the stator 79 with a slight gap therebetween. It consists of a rotor 80. A copper wire is wound around the stator 79, and a coil end 79a is formed above and below. A crankshaft 64 is fixed at the center of the rotor 80 along the rotation axis O. The copper wire wound around the stator 79 of the compressor motor 63 is connected to a terminal 86 provided on the casing 61 and supplied with power. The casing 61 is grounded to an earth E (see FIGS. 6, 7 and 8) not shown in FIGS.
  • the casing 61 is provided with first and second suction pipes 81 and 82 so as to penetrate the body plate 61a.
  • One end of the first suction pipe 81 communicates with the suction hole 72b of the first cylinder 72, and the other end communicates with an accumulator 83 attached to the outside of the casing 61.
  • One end of the second suction pipe 82 communicates with the suction hole 75 b of the second cylinder 75, and the other end communicates with an accumulator 83 attached to the outside of the casing 61.
  • the accumulator 83 is provided with a suction pipe 84.
  • the casing 61 is provided with a discharge pipe 85 so as to penetrate the upper end plate 61b.
  • the compressors 21 and 22 are two-cylinder hermetic swing compressors having the two compression elements 66 and 68 constituting the swing compressor in the present embodiment. Then, in the compressors 21 and 22, the piston motors 63 and 68 are fixed by the compressor motor 63. 70, 73 (more specifically, rollers 70a, 73a) revolves in the cylinder chambers 76, 77, the low-pressure gas refrigerant passes through the suction pipe 84, the accumulator 83, and the suction pipes 81, 82. Then, the suction force 72b, 75b force flows into the cylinder chambers 76, 77 and is compressed by the rollers 70a, 73a.
  • the high-pressure gas refrigerant compressed by the roller 70a of the first compression element 66 passes from the opening 65b of the front head 65 to the space inside the casing 61 outside the compression element 62 via the discharge path 72c of the first cylinder 72. Discharged. Further, the high-pressure gas refrigerant compressed by the inlet 73a of the second compression element 68 passes through the discharge passage 75c of the second cylinder 75 and opens in the space in the casing 61 outside the compression element 62 from the opening 69b of the rear head 69. Discharged.
  • the high-pressure gas refrigerant discharged from the first compression element 66 to the space in the casing 61 outside the compression element 62 and the second compression element 68 to the space in the casing 61 outside the compression element 62 were discharged.
  • the high-pressure gas refrigerant merges into the space in the casing 61 and is discharged from the discharge pipe 85.
  • the heat source unit 2 includes a heat source side control unit 28 that controls the operation of each unit constituting the heat source unit 2.
  • the heat source side control unit 28 includes a microcomputer, a memory, and the like provided for controlling the heat source unit 2, and transmits data to and from the usage side control units 44 and 54 of the usage units 4 and 5. Control signals etc. can be exchanged via the line 8a.
  • the use side control units 44 and 54 and the heat source side control unit 28 constitute a control unit 8 as operation control means for performing operation control of the air conditioner 1.
  • the control unit 8 is connected so as to control various devices and valves 21, 22, 27, 43, 53.
  • FIG. 5 is a control block diagram of the air-conditioning apparatus 1 according to the present embodiment.
  • the compressor motor 63 of each of the compressors 21 and 22 is controlled by an inverter device 91 as shown in FIG. Therefore, the operating capacity of both the compressors 21 and 22 can be varied.
  • FIG. 6 is a schematic electric circuit diagram of an inverter device 91 including a current canceling device 95 (described later).
  • the inverter device 91 mainly includes a rectifier circuit 92 and a switching circuit 93 connected to the output side of the rectifier circuit 92.
  • the rectifier circuit 92 is connected to an AC power source 94. It has the function of converting the AC voltage of the AC power supply 94 to DC voltage.
  • the switching circuit 93 has a function of converting the DC voltage supplied from the rectifier circuit 92 into a three-phase high-frequency voltage and outputting it to the compressor motor 63.
  • each compressor 21 and 22 is connected to the ground E, and there is a stray capacity C between the compressor motor 63 and the casing 61.
  • a zero-phase voltage is generated through the stray capacitance C, and a high-frequency leakage current il flows from the stray capacitance C to the ground E.
  • This high-frequency leakage current il varies depending on the conductivity of the refrigerant in the compressors 21 and 22 and the refrigerating machine oil. For this reason, when the PAG is used as a refrigerating machine oil as in this embodiment, the high-frequency leakage current il tends to increase.
  • a current cancellation device 95 and a leakage current signal are provided in the inverter device 91.
  • a detector 96 is further provided.
  • the leakage current signal detector 96 is for detecting the high frequency leakage current il, and is provided between the AC power supply 94 and the rectifier circuit 92 in FIG.
  • the current cancellation device 95 is an amplifier circuit that generates a cancellation current i2 having a waveform similar to the high-frequency leakage current il detected by the leakage current signal detector 96.
  • the cancellation current i2 is converted into a rectifier circuit 92 and a switching circuit 93.
  • FIG. 6 the leakage current signal detector 96 is provided between the AC power supply 94 and the rectifier circuit 92, and as shown in FIG. 7, the switching circuit 93 and the compressor motor 63 Or between the rectifier circuit 92 and the switching circuit 93 as shown in FIG.
  • FIG. 7 and FIG. 8 are modifications of the schematic electric circuit diagram of the inverter device including the current cancellation device 95.
  • Refrigerant communication pipes 6 and 7 are refrigerant pipes installed on site when the air conditioner 1 is installed at the installation site.
  • the refrigerant circuit 10a of the air conditioner 1 using the heat source side refrigerant circuit 10a having 2 and the refrigerant communication pipes 6 and 7 as the refrigerant and using PAG as the refrigerating machine oil is configured.
  • the air conditioner 1 of the present embodiment includes each of the heat source unit 2 and the usage units 4 and 5 by the control unit 8 including the usage side control units 44 and 54, the heat source side control unit 28, and the transmission line 8a. Control the equipment to perform the cooling operation, that is, the refrigeration cycle operation in which the heat source side heat exchange 23 functions as a refrigerant cooler and the use side heat exchange 42, 52 functions as a refrigerant heater. Now that you can!
  • the compressor motor 63 of the compressors 21 and 22, the fan motor 27a of the outdoor fan 27, the fan motor 43a of the indoor fans 43 and 53, 53a is activated. Then, the low-pressure gas refrigerant is sucked into the compressors 21 and 22 and compressed until the pressure becomes equal to or higher than the critical pressure, and becomes a high-pressure gas refrigerant.
  • the high-pressure gas refrigerant discharged from the compressors 21 and 22 is merged and then sent to the heat source side heat exchanger 23, where it is cooled by exchanging heat with the outdoor air supplied by the outdoor fan 27.
  • the high-pressure refrigerant cooled in the heat source side heat exchanger 23 is sent to the utilization units 4 and 5 via the heat source side expansion mechanism 24, the closing valve 25 and the refrigerant communication pipe 6.
  • the high-pressure refrigerant sent to the utilization units 4 and 5 is depressurized by the utilization-side expansion mechanisms 41 and 51 to near the suction pressure of the compressor 21 (that is, the pressure of the low-pressure gas refrigerant described above).
  • the refrigerant After being converted to a low-pressure gas-liquid two-phase refrigerant, the refrigerant is sent to each use-side heat exchanger 42, 52, where it is heated and evaporated by exchanging heat with room air in each use-side heat exchanger 42, 52. Thus, it becomes a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant is sent to the heat source unit 2 through the refrigerant communication pipe 7 and is again sucked into the compressors 21 and 22 through the closing valve 26.
  • the pistons 70 and 73 (more specifically, rollers 70a and 73a) of the compression elements 66 and 68 are revolving in the cylinder chambers 76 and 77 by the compressor motor 63. Therefore, the low-pressure gas refrigerant flowing into the cylinder chambers 76 and 77 from the suction holes 72b and 75b through the suction pipe 84, the accumulator 83 and the suction pipes 81 and 82 is compressed by the rollers 70a and 73a. Has been.
  • the high-pressure gas refrigerant compressed by the roller 70a of the first compression element 66 passes through the discharge path 72c of the first cylinder 72 and passes through the opening 65b of the front head 65 to the space in the casing 61 outside the compression element 62. Has been discharged.
  • the high-pressure gas refrigerant compressed by the roller 73a of the second compression element 68 passes through the discharge path 75c of the second cylinder 75 and opens from the opening 69b of the rear head 69 in the casing 61 outside the compression element 62. It is discharged in the middle.
  • This gas refrigerant joins the air in the casing 61 and is discharged from the discharge pipe 85.
  • the temperature at which the temperature of the refrigerant also rises as it is compressed As in this embodiment, when carbon dioxide is used as the refrigerant, a CFC refrigerant, an HCFC refrigerant, or an HFC refrigerant is used. Since the difference between the suction pressure and the discharge pressure is larger than that, the degree of the temperature rise is also large, and not only the discharge pressure but also the discharge temperature becomes high.
  • the first piston 70 More specifically, carbon dioxide having a large sliding between the blade 70b
  • the second piston 73 More specifically, the blade 73b
  • the second bush 74 is used as the refrigerant. Due to the increased pressure due to the use, the problems such as increased sliding load and seizure between the piston and bushing tend to occur.
  • PAG having a high viscosity at high temperature is used as refrigeration oil
  • the pump element 78 passes through the oil passage 64c from the oil reservoir 61d at the lower part of the casing 61 to the cylinder chambers 76 and 77.
  • the first piston 70 more specifically, the blade 70b
  • the first bush 71 and the second piston 73 more specifically, the blade
  • 73b) and the second bushing 74 can be lubricated, and problems such as increased sliding load and seizure between the piston and bushing, which are a concern due to the use of a swing compressor, occur. It is now possible to suppress!
  • the use of PAG as the refrigerating machine oil has the advantage that lubrication in the compressors 21 and 22 can be ensured, but the conductivity of the PAG is high.
  • it has a plurality of hermetic compressors 21 and 22, and the compressor motor 63 built in each compressor 21 and 22 is controlled by an inverter device 91, respectively.
  • the high-frequency leakage current il due to the high-frequency voltage output from the inverter device 91 to the compressor motor 63 tends to increase.
  • the inverter device 91 is provided with the current canceling device 95, and the high-frequency leakage current il that flows toward the ground E also tends to increase the stray capacitance C force. Regardless, ultimately, the leakage current i3 leaking from the ground E force is prevented from increasing.
  • the use of PAG as the refrigerating machine oil ensures lubrication in the compressors 21 and 22, and the plurality of compressors 21 and 22 uses a hermetic compressor.
  • the sealing performance in the compressors 21 and 22 can be secured, and the increase of the leakage current i3 from the compressor motor 63 can be suppressed by providing the current canceling device 95.
  • the compressor motor 63 is arranged so that the compressor motor 63 is not immersed in the refrigeration oil accumulated in the oil reservoir 61d in the casing 61, and the compressor motor 63 is also compressed by the compression element 62. Since the high frequency leakage current il itself can be reduced, the increase in the leakage current i3 from the compressor motor 63 can be further suppressed.
  • the air conditioner 1 of the present embodiment has the following features.
  • the heat source unit 2 of the present embodiment in the case where carbon dioxide is used as a refrigerant, lubrication in the compressors 21 and 22 is ensured by using PAG as refrigeration oil, and a plurality of compressors 21 By using a hermetic compressor as 22, the sealing performance in the compressors 21 and 22 is secured, and the current canceling device 95 is provided to suppress the increase in leakage current i3 from the compressor motor 63. Can do.
  • This realizes a heat source unit that has multiple hermetic compressors and constitutes an air conditioner that uses carbon dioxide as a refrigerant. You can do it! /
  • the air conditioner 1 of the present embodiment includes the heat source unit 2 as described above, by connecting a plurality of utilization units 4 and 5, a large capacity that uses carbon dioxide as a refrigerant.
  • the refrigerant circuit 10 can be configured.
  • the compressor motor 63 is arranged so that there is no immersion force in the refrigeration machine oil accumulated in the oil reservoir 6 Id. Because it is arranged on the upper side, the increase in leakage current due to the compressor motor power can be further suppressed! /.
  • the compression element 62 includes cylinders 72 and 75, rollers 70a and 73a, blades 70b and 73b, pistons 70 and 73 formed in a force body, and bushes 71 and 74.
  • this compression element 62 has a relatively small friction loss and power loss compared to other types of positive displacement compression elements, and a small compressor (here, compressors 21 and 22) in the heat source unit 2. It is recommended to install multiple devices.
  • the compressor motor 63 built in the compressors 21 and 22 that are hermetic compressors is controlled by the inverter device 91, A high-frequency leakage current il due to the voltage output from the barter device 91 to the compressor motor 63 is generated. For this reason, when the compressors 21 and 22 that are a plurality of hermetic compressors are provided as in the heat source unit 2, the leakage current i3 from the compressor motor 63 increases remarkably. However, since the heat source unit 2 includes the current cancellation device 95, an increase in the high-frequency leakage current il can be suppressed. As a result, a plurality of hermetic compressors with a compressor motor controlled by an inverter device are provided, and a heat source unit constituting an air conditioner that uses carbon dioxide as a refrigerant can be realized. It can be done.
  • the present invention is applied to the air conditioner 1 in which a plurality of usage units 4 are connected to one heat source unit 2 .
  • the present invention is not limited to this.
  • the present invention is applied to an air conditioner in which a utilization unit and a heat source unit are connected under various connection conditions, such as application of the present invention to an air conditioner in which a plurality of utilization units are connected to a single heat source unit.
  • the invention may be applied.
  • the present invention is not limited to this, and the cooling operation and the heating operation are performed.
  • the present invention can be applied to a cooling / heating switching machine that can be switched between, and a cooling / heating simultaneous machine that can simultaneously perform cooling operation and heating operation.
  • the invention may be applied.
  • a heat source unit that includes a plurality of hermetic compressors and constitutes an air conditioner that uses carbon dioxide as a refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A heat source unit having sealed compressors and forming an air conditioner using carbon dioxide as the refrigerant. The heat source unit (2) forms a refrigerant circuit (10) using the carbon dioxide as the refrigerant, and utilization units (4, 5) are connected to the heat source unit (2). The heat source unit (2) has the sealed compressors (21, 22) each having, installed in a casing (61), a compression element (62) and a compressor motor (63) for driving the compression element (62), polyalkylene glycol as a refrigeration machine oil, and an electric current cancellation device (95) for canceling a leakage current from the compressor motor (63).

Description

明 細 書  Specification
熱源ユニット及びそれを備えた空気調和装置  Heat source unit and air conditioner equipped with the same
技術分野  Technical field
[0001] 本発明は、熱源ユニット及びそれを備えた空気調和装置、特に、利用ユニットが接 続されることによって、冷媒として二酸化炭素を使用する冷媒回路を構成する熱源ュ ニット及びそれを備えた空気調和装置に関する。  The present invention relates to a heat source unit and an air conditioner including the heat source unit, and in particular, to a heat source unit that forms a refrigerant circuit that uses carbon dioxide as a refrigerant by connecting a utilization unit and the same. The present invention relates to an air conditioner.
背景技術  Background art
[0002] 利用ユニットと熱源ユニットとを接続することにより冷媒回路を構成する、いわゆるセ パレート型の空気調和装置においては、冷媒回路内に封入される冷媒として、 CFC 系冷媒、 HCFC系冷媒、 HFC系冷媒が使用されている。しかし、環境問題の観点か ら、セパレート型の空気調和装置においても、環境への影響の小さい自然冷媒の使 用が検討されており、特に、不燃性でかつ毒性のない二酸ィ匕炭素の使用が有望視さ れている。  [0002] In a so-called separate type air conditioner in which a refrigerant circuit is configured by connecting a utilization unit and a heat source unit, CFC-based refrigerant, HCFC-based refrigerant, HFC are used as the refrigerant enclosed in the refrigerant circuit. System refrigerant is used. However, from the viewpoint of environmental problems, the use of natural refrigerants that have a small impact on the environment is also being considered for separate air conditioners, especially non-combustible and non-toxic carbon dioxide. Promising to use.
発明の開示  Disclosure of the invention
[0003] 上述のセパレート型の空気調和装置において、二酸化炭素を冷媒として使用する 場合には、冷凍サイクルが高圧化するため、圧縮機内の潤滑を確保するために高粘 性の冷凍機油を使用することが望ましぐこれに適した冷凍機油として、ポリアルキレ ングリコーノレ(以下、 PAGとする)がある。  [0003] In the above-described separate type air conditioner, when carbon dioxide is used as a refrigerant, a high-viscosity refrigerating machine oil is used to ensure lubrication in the compressor because the refrigeration cycle has a high pressure. A refrigerating machine oil suitable for this is polyalkylene glycolenoles (hereinafter referred to as PAG).
一方、 PAGは、導電性が高いため、熱源ユニットに内蔵される圧縮機が密閉式圧 縮機である場合には、漏れ電流が大きくなり不向きであるが、二酸化炭素を冷媒とし て使用する場合には、冷凍サイクルの高圧化に伴い圧縮機内のシール性が要求さ れるため、密閉式圧縮機を使用することが望ましい。  On the other hand, since PAG is highly conductive, if the compressor built in the heat source unit is a hermetic compressor, the leakage current increases and is unsuitable. However, when carbon dioxide is used as the refrigerant. Therefore, it is desirable to use a hermetic compressor because the high pressure in the refrigeration cycle requires sealing performance in the compressor.
そして、圧縮機内の潤滑及びシール性の確保を重視して、密閉式圧縮機が内蔵さ れた熱源ユニットにおいて、冷凍機油として PAGを使用すると、圧縮機内に内蔵され たモータからの漏れ電流が大きくなるという問題が生じることになる。特に、複数の利 用ユニットが接続されることを想定した大容量の熱源ユニットを構成する際には、複 数の圧縮機がユニット内に内蔵されることになるため、モータ力もの漏れ電流が過大 になってしまい、運転そのものが困難になるおそれがある。このため、複数の密閉式 圧縮機を備えており、冷媒として二酸化炭素を使用する空気調和装置を構成する熱 源ユニットを実現することが困難である。 If the PAG is used as refrigeration oil in a heat source unit with a built-in hermetic compressor, focusing on ensuring lubrication and sealing performance in the compressor, the leakage current from the motor built in the compressor will increase. The problem of becoming will arise. In particular, when configuring a large-capacity heat source unit that assumes that multiple units are connected, multiple compressors are built in the unit, so leakage current with motor power Excessive The driving itself may become difficult. For this reason, it is difficult to realize a heat source unit that includes a plurality of hermetic compressors and constitutes an air conditioner that uses carbon dioxide as a refrigerant.
本発明の課題は、複数の密閉式圧縮機を備えており、冷媒として二酸化炭素を使 用する空気調和装置を構成する熱源ユニットを実現することにある。  An object of the present invention is to realize a heat source unit that constitutes an air conditioner that includes a plurality of hermetic compressors and uses carbon dioxide as a refrigerant.
[0004] 第 1の発明にかかる熱源ユニットは、利用ユニットが接続されることによって、冷媒と して二酸ィ匕炭素を使用する冷媒回路を構成する熱源ユニットであって、ケーシング内 に圧縮要素と圧縮要素を駆動するモータとが配置された複数の密閉式圧縮機と、冷 凍機油としてのポリアルキレングリコールと、モータからの漏れ電流を打ち消す電流 打消装置とを備えている。  [0004] A heat source unit according to a first aspect of the present invention is a heat source unit that constitutes a refrigerant circuit that uses carbon dioxide and carbon dioxide as a refrigerant by connecting a utilization unit. And a plurality of hermetic compressors in which a motor for driving the compression element is arranged, polyalkylene glycol as refrigeration oil, and a current canceling device that cancels leakage current from the motor.
この熱源ユニットでは、冷媒として二酸ィ匕炭素を使用する場合において、冷凍機油 としてポリアルキレングリコール (以下、 PAGとする)を使用することで圧縮機内の潤 滑を確保し、そして、複数の圧縮機として密閉式圧縮機を使用することで圧縮機内の シール性を確保するとともに、電流打消装置を設けることでモータからの漏れ電流の 増加を抑えることができる。これにより、複数の密閉式圧縮機を備えており、冷媒とし て二酸ィ匕炭素を使用する空気調和装置を構成する熱源ユニットを実現することがで きる。  In this heat source unit, in the case of using carbon dioxide as a refrigerant, polyalkylene glycol (hereinafter referred to as PAG) is used as a refrigerating machine oil to ensure lubrication in the compressor, and a plurality of compression By using a hermetic compressor as a compressor, the sealing performance inside the compressor can be secured, and an increase in leakage current from the motor can be suppressed by providing a current canceling device. Thus, a heat source unit that includes a plurality of hermetic compressors and constitutes an air conditioner that uses carbon dioxide as a refrigerant can be realized.
[0005] 第 2の発明に力かる熱源ユニットは、第 1の発明に力かる空気調和装置の熱源ュ- ットにおいて、ケーシング内には、冷凍機油を溜めるための油溜まり部が形成されて いる。モータは、油溜まり部に溜まった冷凍機油に浸力もないように配置されている。 この熱源ユニットでは、モータが油溜まり部に溜まった冷凍機油に浸力もないように 配置されているため、モータからの漏れ電流の増加をさらに抑えることができる。  [0005] The heat source unit according to the second invention is the heat source unit of the air conditioner according to the first invention, wherein an oil reservoir portion for storing refrigerator oil is formed in the casing. Yes. The motor is arranged so that there is no immersion force in the refrigerating machine oil collected in the oil reservoir. In this heat source unit, since the motor is arranged so that there is no immersion force in the refrigeration machine oil accumulated in the oil reservoir, an increase in leakage current from the motor can be further suppressed.
[0006] 第 3の発明に力かる熱源ユニットは、第 2の発明に力かる空気調和装置の熱源ュ- ットにおいて、モータは、圧縮要素よりも上側に配置されている。  [0006] A heat source unit according to the third aspect of the present invention is the heat source unit of the air conditioner according to the second aspect of the present invention, wherein the motor is disposed above the compression element.
この熱源ユニットでは、モータが圧縮要素よりも上側に配置されているため、モータ 力もの漏れ電流の増加をさらに抑えることができる。  In this heat source unit, since the motor is arranged above the compression element, it is possible to further suppress an increase in leakage current due to the motor power.
[0007] 第 4の発明にかかる熱源ユニットは、第 1〜第 3の発明のいずれかにかかる空気調 和装置の熱源ユニットにおいて、圧縮要素は、内部にシリンダ室が形成されたシリン ダと、ローラとローラに一体に形成されたブレードとからなりシリンダ室内を吸入室と吐 出室とに区画するピストンと、ブレードを挟むブッシュとを有し、モータによってピスト ンがシリンダ室内で公転運動するように構成されて 、る。 [0007] A heat source unit according to a fourth aspect of the present invention is the heat source unit of an air conditioner according to any of the first to third aspects of the invention, wherein the compression element is a cylinder having a cylinder chamber formed therein. And a piston formed by a roller and a blade formed integrally with the roller. The piston divides the cylinder chamber into a suction chamber and a discharge chamber, and a bush sandwiching the blade. The piston is revolved in the cylinder chamber by a motor. It is configured to exercise.
この熱源ユニットでは、圧縮要素がシリンダと、ローラとブレードとが一体に形成され たピストンと、ブッシュとを有する、いわゆるスイング圧縮機を構成するものである。こ のため、この圧縮要素は、摩擦損失や動力損失が他の型式の容積式の圧縮要素に 比べて比較的小さぐユニット内に小型の圧縮機を複数内蔵させるのに向いている。 一方、この圧縮要素では、ローラとブレードとが一体に形成されていることから、ピスト ンとブッシュとの間の摺動が大きぐ二酸ィ匕炭素を冷媒として使用することによる高圧 化に起因して、ピストンとブッシュとの間の摺動負荷の増加や焼き付き等の問題が発 生しやすくなる傾向にある。しかし、この熱源ユニットでは、冷凍機油として PAGを使 用しており、ピストンとブッシュとの間の潤滑を十分に確保できるようになっているため 、スイング圧縮機の採用によって複数の圧縮機をユニット内に内蔵させるのを容易に しつつ、スイング圧縮機の採用により懸念されるピストンとブッシュとの間の摺動負荷 の増加や焼き付き等の問題が発生するのを抑えることができる。  In this heat source unit, the compression element constitutes a so-called swing compressor having a cylinder, a piston in which a roller and a blade are integrally formed, and a bush. For this reason, this compression element is suitable for incorporating a plurality of small compressors in a unit in which friction loss and power loss are relatively small compared to other types of positive displacement compression elements. On the other hand, in this compression element, the roller and the blade are integrally formed, and this is due to the high pressure caused by the use of carbon dioxide with a large sliding between the piston and the bush as the refrigerant. Therefore, problems such as an increase in sliding load between the piston and the bush and seizure tend to occur. However, in this heat source unit, PAG is used as refrigeration oil, so that sufficient lubrication between the piston and bushing can be secured, so multiple compressors can be unitized by adopting a swing compressor. While facilitating the incorporation into the inside, it is possible to suppress the occurrence of problems such as an increase in the sliding load between the piston and the bush and the occurrence of seizure, which are feared by the adoption of the swing compressor.
[0008] 第 5の発明にかかる熱源ユニットは、第 1〜第 4の発明のいずれかにかかる空気調 和装置の熱源ユニットにおいて、モータを制御するインバータ装置をさらに備えてお り、電流打消装置は、インバータ装置に起因する高周波漏れ電流を打ち消す。 この熱源ユニットでは、密閉式圧縮機に内蔵されたモータ力 Sインバータ装置によつ て制御されるものであるため、このインバータ装置力 モータに出力される電圧に起 因する高周波漏れ電流が発生する。このため、この熱源ユニットのように、複数の密 閉式圧縮機を備える場合には、モータからの漏れ電流の増加が著しくなる。しかし、 この熱源ユニットでは、電流打消装置を備えているため、この高周波漏れ電流に起 因する漏れ電流の増加を抑えることができる。これにより、インバータ装置によって制 御されるモータが内蔵された複数の密閉式圧縮機を備えており、冷媒として二酸ィ匕 炭素を使用する空気調和装置を構成する熱源ユニットを実現することができる。 [0008] A heat source unit according to a fifth aspect of the present invention is the heat source unit of the air conditioner according to any of the first to fourth aspects of the present invention, further comprising an inverter device for controlling the motor, and a current canceling device. Cancels the high-frequency leakage current caused by the inverter device. Since this heat source unit is controlled by the motor force S inverter device built in the hermetic compressor, high frequency leakage current is generated due to the voltage output to this inverter device force motor. . For this reason, when a plurality of hermetic compressors are provided as in this heat source unit, the leakage current from the motor increases remarkably. However, since this heat source unit includes a current cancellation device, an increase in leakage current due to the high-frequency leakage current can be suppressed. As a result, a plurality of hermetic compressors with built-in motors controlled by the inverter device are provided, and a heat source unit that constitutes an air conditioner that uses carbon dioxide as a refrigerant can be realized. .
[0009] 第 6の発明にかかる空気調和装置は、第 1〜第 5の発明のいずれかにかかる熱源 ユニットを備えている。 この空気調和装置では、第 1〜第 5の発明のいずれかにかかる熱源ユニットを備え ているため、複数の利用ユニットを接続することにより、冷媒として二酸ィ匕炭素を使用 する大容量の冷媒回路を構成することができる。 [0009] An air conditioner according to a sixth invention includes the heat source unit according to any one of the first to fifth inventions. Since this air conditioner includes the heat source unit according to any of the first to fifth inventions, a large-capacity refrigerant that uses carbon dioxide as a refrigerant by connecting a plurality of utilization units. A circuit can be constructed.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]本発明の一実施形態に力かる熱源ユニット及びそれを備えた空気調和装置の 概略構成図である。  FIG. 1 is a schematic configuration diagram of a heat source unit and an air conditioner equipped with the heat source unit according to an embodiment of the present invention.
[図 2]圧縮機の概略縦断面図である。  FIG. 2 is a schematic longitudinal sectional view of a compressor.
[図 3]圧縮機の概略横断面図であって、図 2の A— A断面に相当する図である。  FIG. 3 is a schematic cross-sectional view of the compressor, corresponding to the AA cross section of FIG.
[図 4]圧縮機の概略横断面図であって、図 2の B— B断面に相当する図である。  4 is a schematic cross-sectional view of the compressor, corresponding to the BB cross section of FIG.
[図 5]空気調和装置の制御ブロック図である。  FIG. 5 is a control block diagram of the air conditioner.
[図 6]電流打消装置を含むインバータ装置の概略電気回路図である。  FIG. 6 is a schematic electric circuit diagram of an inverter device including a current canceling device.
[図 7]電流打消装置を含むインバータ装置の概略電気回路図の変形例である。  FIG. 7 is a modification of the schematic electric circuit diagram of the inverter device including the current canceling device.
[図 8]電流打消装置を含むインバータ装置の概略電気回路図の変形例である。 符号の説明  FIG. 8 is a modification of the schematic electric circuit diagram of the inverter device including the current canceling device. Explanation of symbols
[0011] 1 空気調和装置 [0011] 1 Air conditioner
2 熱源ユニット  2 Heat source unit
4、 5 利用ユニット  4, 5 Usage unit
10 冷媒回路  10 Refrigerant circuit
21、 22 圧縮機 (密閉式圧縮機)  21, 22 Compressor (closed compressor)
61 ケーシング  61 Casing
61d 油溜まり部  61d Oil reservoir
62 圧縮要素  62 compression elements
63 圧縮機モータ(モータ)  63 Compressor motor (motor)
70、 73 ピス卜ン  70, 73 Pissun
70a, 73a ローラ  70a, 73a roller
70b、 73b ブレード  70b, 73b blade
71、 74 ブッシュ  71, 74 bush
72、 75 シリンダ 76、 77 シリンダ室 72, 75 cylinders 76, 77 Cylinder chamber
76a, 77a 吸入室  76a, 77a Suction chamber
76b、 77b 吐出室  76b, 77b Discharge chamber
91 インバータ装置  91 Inverter device
95 電流打消装置  95 Current canceling device
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、図面に基づいて、本発明にかかる熱源ユニット及びそれを備えた空気調和 装置の実施形態について説明する。 Hereinafter, an embodiment of a heat source unit according to the present invention and an air conditioner including the heat source unit will be described with reference to the drawings.
(1)空気調和装置の構成  (1) Configuration of air conditioner
<空気調和装置の全体構成 >  <Overall configuration of air conditioner>
図 1は、本発明の一実施形態に力かる熱源ユニット及びそれを備えた空気調和装 置 1の概略構成図である。本実施形態において、空気調和装置 1は、室内の冷房に 使用される装置であり、主として、 1台の熱源ユニット 2と、複数 (ここでは、 2台)の利 用ユニット 4、 5と、熱源ユニット 2と利用ユニット 4、 5とを接続する冷媒連絡管 6、 7とを 備えた、いわゆるマルチ型の空気調和装置である。そして、本実施形態の空気調和 装置 1の冷媒回路 10は、熱源ユニット 2と、利用ユニット 4、 5とが冷媒連絡管 6、 7を 介して接続されることによって構成されている。そして、冷媒回路 10内には、二酸ィ匕 炭素が冷媒として封入されている。このため、本実施形態の空気調和装置 1では、冷 媒としての二酸ィ匕炭素を臨界圧力以上になるまで圧縮して冷凍サイクル運転が行わ れる。  FIG. 1 is a schematic configuration diagram of a heat source unit and an air-conditioning apparatus 1 including the heat source unit according to an embodiment of the present invention. In the present embodiment, the air conditioner 1 is an apparatus used for indoor cooling, and mainly includes one heat source unit 2, a plurality (two in this case) of utilization units 4 and 5, and a heat source. This is a so-called multi-type air conditioner including refrigerant communication pipes 6 and 7 that connect the unit 2 and the utilization units 4 and 5. The refrigerant circuit 10 of the air conditioner 1 of the present embodiment is configured by connecting the heat source unit 2 and the utilization units 4 and 5 via the refrigerant communication tubes 6 and 7. In the refrigerant circuit 10, carbon dioxide is sealed as a refrigerant. For this reason, in the air conditioning apparatus 1 of the present embodiment, the refrigeration cycle operation is performed by compressing the carbon dioxide as a cooling medium until the critical pressure or higher is reached.
[0013] <利用ユニット >  [0013] <Usage unit>
利用ユニット 4、 5は、冷媒連絡管 6及び冷媒連絡管 7を介して熱源ユニット 2に接続 されており、冷媒回路 10の一部を構成している。  The utilization units 4 and 5 are connected to the heat source unit 2 via the refrigerant communication pipe 6 and the refrigerant communication pipe 7 and constitute a part of the refrigerant circuit 10.
次に、利用ユニット 4、 5の構成について説明する。尚、利用ユニット 4と利用ユニット 5とは同様の構成であるため、ここでは、利用ユニット 4の構成のみ説明し、利用ュ- ット 5の構成については、それぞれ、利用ユニット 4の各部を示す 40番台の符号の代 わりに 50番台の符号を付して、各部の説明を省略する。  Next, the configuration of the usage units 4 and 5 will be described. Since the usage unit 4 and the usage unit 5 have the same configuration, only the configuration of the usage unit 4 will be described here, and the configuration of the usage unit 5 indicates each part of the usage unit 4. Instead of the 40's code, the 50's code is used, and the description of each part is omitted.
利用ユニット 4は、主として、冷媒回路 10の一部を構成する利用側冷媒回路 10bを 有している。この利用側冷媒回路 10bは、主として、冷媒を減圧する利用側膨張機構 41と、利用側熱交翻42とを有している。 The usage unit 4 mainly includes a usage-side refrigerant circuit 10b that constitutes a part of the refrigerant circuit 10. Have. The use side refrigerant circuit 10b mainly includes a use side expansion mechanism 41 that depressurizes the refrigerant, and a use side heat exchange 42.
[0014] 本実施形態において、利用側膨張機構 41は、利用側冷媒回路 10b内を流れる冷 媒の流量の調節等を行う電動膨張弁であり、その一端が冷媒連絡管 6に接続され、 その他端が利用側熱交 42に接続されている。 [0014] In the present embodiment, the use side expansion mechanism 41 is an electric expansion valve that adjusts the flow rate of the refrigerant flowing in the use side refrigerant circuit 10b, one end of which is connected to the refrigerant communication pipe 6, The end is connected to the heat exchanger 42 on the user side.
本実施形態において、利用側熱交換器 42は、冷媒の加熱器として機能する熱交 換器である。利用側熱交換器 42は、その一端が冷媒連絡管 7に接続され、その他端 が利用側膨張機構 41に接続されて ヽる。  In the present embodiment, the use-side heat exchanger 42 is a heat exchanger that functions as a refrigerant heater. One end of the use side heat exchanger 42 is connected to the refrigerant communication pipe 7, and the other end is connected to the use side expansion mechanism 41.
利用ユニット 4は、本実施形態において、ユニット内に室内空気を吸入して、熱交換 した後に、室内に供給するための室内ファン 43を備えており、室内空気と利用側熱 交 を流れる冷媒とを熱交換させることが可能である。室内ファン 43は、ファン モータ 43aによって回転駆動されるようになって 、る。  In the present embodiment, the usage unit 4 includes an indoor fan 43 for sucking indoor air into the unit, exchanging heat, and supplying the indoor air to the room, and a refrigerant flowing between the indoor air and the usage-side heat exchanger. It is possible to exchange heat. The indoor fan 43 is rotationally driven by a fan motor 43a.
[0015] また、利用ユニット 4は、利用ユニット 4を構成する各部の動作を制御する利用側制 御部 44を備えている。そして、利用側制御部 44は、利用ユニット 4の制御を行うため に設けられたマイクロコンピュータやメモリ等を有しており、利用ユニット 4を個別に操 作するためのリモコン(図示せず)との間で制御信号等のやりとりを行ったり、熱源ュ ニット 2の熱源側制御部 28 (後述)との間で制御信号等のやりとりを行うことができるよ うになつている。 In addition, the usage unit 4 includes a usage-side control unit 44 that controls the operation of each unit constituting the usage unit 4. The usage-side control unit 44 includes a microcomputer, a memory, and the like provided for controlling the usage unit 4, and a remote controller (not shown) for operating the usage unit 4 individually. Control signals and the like can be exchanged between them, and control signals and the like can be exchanged with the heat source side control unit 28 (described later) of the heat source unit 2.
<熱源ユニット >  <Heat source unit>
熱源ユニット 2は、冷媒連絡管 6及び冷媒連絡管 7を介して利用ユニット 4、 5に接続 されており、利用ユニット 4、 5の間で冷媒回路 10を構成している。  The heat source unit 2 is connected to the usage units 4 and 5 via the refrigerant communication pipe 6 and the refrigerant communication pipe 7, and a refrigerant circuit 10 is configured between the usage units 4 and 5.
次に、熱源ユニット 2の構成について説明する。熱源ユニット 2は、主として、冷媒回 路 10の一部を構成する熱源側冷媒回路 10aを有している。この熱源側冷媒回路 10 aは、主として、複数 (ここでは、 2台)の圧縮機 21、 22と、熱源側熱交翻 23と、冷 媒を減圧する膨張機構としての熱源側膨張機構 24と、閉鎖弁 25、 26とを有している  Next, the configuration of the heat source unit 2 will be described. The heat source unit 2 mainly has a heat source side refrigerant circuit 10 a that constitutes a part of the refrigerant circuit 10. The heat source side refrigerant circuit 10a mainly includes a plurality of (here, two) compressors 21 and 22, a heat source side heat exchange 23, and a heat source side expansion mechanism 24 as an expansion mechanism that depressurizes the refrigerant. , With shut-off valves 25, 26
[0016] 本実施形態において、熱源側熱交換器 23は、冷媒の冷却器として機能する熱交 換器である。熱源側熱交換器 23は、その一端が圧縮機 21、 22の吐出側に接続され 、その他端が熱源側膨張機構 24に接続されている。 In the present embodiment, the heat source side heat exchanger 23 is a heat exchanger that functions as a refrigerant cooler. One end of the heat source side heat exchanger 23 is connected to the discharge side of the compressors 21 and 22. The other end is connected to the heat source side expansion mechanism 24.
本実施形態において、熱源側膨張機構 24は、電動膨張弁であり、その一端が熱源 側熱交 の他端に接続され、その他端が閉鎖弁 25に接続されている。  In the present embodiment, the heat source side expansion mechanism 24 is an electric expansion valve, one end of which is connected to the other end of the heat source side heat exchange, and the other end is connected to the closing valve 25.
熱源ユニット 2は、本実施形態において、ユニット内に室外空気を吸入して、熱交換 した後に、室外に排出するための室外ファン 27を備えており、室外空気と熱源側熱 交翻 23を流れる冷媒とを熱交換させることが可能である。室外ファン 27は、ファン モータ 27aによって回転駆動されるようになって 、る。  In this embodiment, the heat source unit 2 includes an outdoor fan 27 for sucking outdoor air into the unit, exchanging heat, and then discharging the air to the outside, and flows through the heat exchange 23 on the heat source side with the outdoor air. It is possible to exchange heat with the refrigerant. The outdoor fan 27 is rotationally driven by a fan motor 27a.
閉鎖弁 25、 26は、外部の機器'配管 (具体的には、冷媒連絡管 6、 7)との接続口 に設けられた弁である。閉鎖弁 25は、熱源側膨張機構 24に接続されている。閉鎖弁 26は、圧縮機 21、 22の吸入側に接続されている。  The shut-off valves 25 and 26 are valves provided at connection ports with external equipment 'piping (specifically, refrigerant communication pipes 6 and 7). The closing valve 25 is connected to the heat source side expansion mechanism 24. The shut-off valve 26 is connected to the suction side of the compressors 21 and 22.
[0017] 圧縮機 21、 22は、低圧のガス冷媒を臨界圧力(二酸化炭素の臨界圧力は、 7. 38 MPa)以上になるまで圧縮するための圧縮機である。尚、本実施形態では、熱源ュ ニット 2内に 2台の圧縮機 21、 22が設けられている力 これに限定されず、利用ュ- ットの接続台数等に応じて、 3台以上の圧縮機が並列に接続されていてもよい。 次に、圧縮機 21、 22の構成について、図 2〜図 4を用いて説明する。尚、圧縮機 2 1と圧縮機 22とは同様の構成であるため、ここでは、圧縮機 21の構成のみ説明し、 圧縮機 22の構成については、それぞれ、圧縮機 22の各部を示す符号と同じ符号が 付されるものとして、各部の説明を省略する。ここで、図 2は、圧縮機 21の概略縦断 面図である。図 3は、圧縮機 21の概略横断面図であって、図 2の A— A断面に相当 する図である。図 4は、圧縮機 21の概略横断面図であって、図 2の B— B断面に相当 する図である。 The compressors 21 and 22 are compressors for compressing a low-pressure gas refrigerant to a critical pressure (the critical pressure of carbon dioxide is 7.38 MPa) or higher. In the present embodiment, the force provided by the two compressors 21 and 22 in the heat source unit 2 is not limited to this. Three or more units are used depending on the number of connected units, etc. The compressor may be connected in parallel. Next, the configuration of the compressors 21 and 22 will be described with reference to FIGS. Note that since the compressor 21 and the compressor 22 have the same configuration, only the configuration of the compressor 21 will be described here, and the configuration of the compressor 22 will be denoted by a reference numeral indicating each part of the compressor 22, respectively. The description of each part is abbreviate | omitted as the same code | symbol is attached | subjected. Here, FIG. 2 is a schematic longitudinal sectional view of the compressor 21. FIG. 3 is a schematic transverse cross-sectional view of the compressor 21, and corresponds to the AA cross section of FIG. FIG. 4 is a schematic cross-sectional view of the compressor 21, which corresponds to the BB cross section of FIG.
[0018] 圧縮機 21は、本実施形態において、縦型円筒形状の容器であるケーシング 61内 に、圧縮要素 62及び圧縮機モータ 63が内蔵された密閉式圧縮機である。  [0018] In the present embodiment, the compressor 21 is a hermetic compressor in which a compression element 62 and a compressor motor 63 are incorporated in a casing 61 that is a vertical cylindrical container.
ケーシング 61は、略円筒形状の胴板 61aと、胴板 61aの上端に溶接固定された上 部鏡板 61bと、胴板 61aの下端に溶接固定された下部鏡板 61cとを有している。そし て、このケーシング 61内には、主として、下部に圧縮要素 62が配置され、圧縮要素 よりも上側に圧縮機モータ 63が配置されている。圧縮要素 62と圧縮機モータ 63とは 、ケーシング 61内を上下方向に延びるように配置されるクランク軸 64によって連結さ れている。また、本実施形態において、ケーシング 61の下部には、圧縮機 21内(特 に、圧縮要素 62)の潤滑に必要な冷凍機油を溜めるための油溜まり部 61dが形成さ れている。そして、冷凍機油としては、二酸ィ匕炭素を冷媒として使用することを考慮し て、高粘性の特性を有するポリアルキレングリコール (以下、 PAGとする)が使用され ている。 The casing 61 includes a substantially cylindrical body plate 61a, an upper end plate 61b welded and fixed to the upper end of the body plate 61a, and a lower end plate 61c fixed to the lower end of the body plate 61a by welding. And in this casing 61, the compression element 62 is mainly arrange | positioned at the lower part, and the compressor motor 63 is arrange | positioned above the compression element. The compression element 62 and the compressor motor 63 are connected by a crankshaft 64 arranged so as to extend in the vertical direction in the casing 61. It is. In the present embodiment, an oil reservoir 61d is formed in the lower part of the casing 61 for storing the refrigerating machine oil necessary for lubricating the compressor 21 (particularly, the compression element 62). As a refrigerating machine oil, polyalkylene glycol (hereinafter referred to as PAG) having a high viscosity characteristic is used in consideration of using carbon dioxide as a refrigerant.
[0019] 圧縮要素 62は、スイング圧縮機を構成する圧縮要素であり、本実施形態において 、主として、クランク軸 64と、フロントヘッド 65と、第 1圧縮要素 66と、中間ヘッド 67と、 第 2圧縮要素 68と、リアヘッド 69とを有している。ここで、第 1圧縮要素 66は、フロント ヘッド 65と中間ヘッド 67との上下方向間に挟まれるように配置されており、主として、 第 1ピストン 70と、第 1ブッシュ 71と、第 1シリンダ 72とから構成されている。また、第 2 圧縮要素 68は、中間ヘッド 67とリアヘッド 69との上下方向間に挟まれるように配置さ れており、主として、第 2ピストン 73と、第 2ブッシュ 74と、第 2シリンダ 75とカゝら構成さ れている。本実施形態において、フロントヘッド 65と第 1シリンダ 72と中間ヘッド 67と 第 2シリンダ 75とリアヘッド 69とは、複数のボルト(図示せず)によって締結されて一体 ィ匕されている。尚、本実施形態において、圧縮要素 62としてスイング圧縮機を構成 する圧縮要素を選択するのは、摩擦損失や動力損失が他の型式の容積式の圧縮要 素に比べて比較的小さぐ熱源ユニット 2内に小型の圧縮機を複数台(ここでは、圧 縮機 21、 22の 2台)内蔵させるのに向いている力もである。  The compression element 62 is a compression element that constitutes a swing compressor. In the present embodiment, the compression element 62 mainly includes a crankshaft 64, a front head 65, a first compression element 66, an intermediate head 67, and a second head. A compression element 68 and a rear head 69 are included. Here, the first compression element 66 is disposed so as to be sandwiched between the front head 65 and the intermediate head 67 in the vertical direction, and mainly includes the first piston 70, the first bush 71, and the first cylinder 72. It consists of and. The second compression element 68 is disposed so as to be sandwiched between the intermediate head 67 and the rear head 69 in the vertical direction, and mainly includes the second piston 73, the second bush 74, and the second cylinder 75. They are organized. In the present embodiment, the front head 65, the first cylinder 72, the intermediate head 67, the second cylinder 75, and the rear head 69 are fastened together by a plurality of bolts (not shown) and joined together. In this embodiment, the compression element constituting the swing compressor is selected as the compression element 62 because the friction loss and the power loss are relatively small compared to other types of positive displacement compression elements. It is also suitable for incorporating multiple small compressors (here, two compressors 21 and 22).
[0020] 第 1シリンダ 72には、シリンダ孔 72a、吸入孔 72b、吐出路 72cおよびブレード収容 孔 72dが形成されている。シリンダ孔 72aは、回転軸線 Oに沿って貫通する円柱状の 孔である。吸入孔 72bは、外周面 72eからシリンダ孔 72aに貫通している。吐出路 72 cは、シリンダ孔 72aを形成する円筒部の内周側の一部が切り欠かれることによって 形成されている。ブレード収容孔 72dは、第 1ピストン 70のブレード部 70b (後述)を 収容するための孔であり、第 1シリンダ 72の板厚方向に沿って貫通している。ブレー ド収容孔 72dの回転軸線 O側の部分は、第 1ブッシュ 71を収容しており、第 1ブッシュ 71と摺動する。そして、第 1シリンダ 72のシリンダ孔 72aには、クランク軸 64の第 1偏 心軸部 64a及び第 1ピストン 70のローラ 70a (後述)が収容されており、ブレード収容 孔 72dには、第 1ピストン 70のブレード部 70b及び第 1ブッシュ 71が収容された状態 で、吐出路 72cがフロントヘッド 65側を向くようにしてフロントヘッド 65と中間ヘッド 67 との間に挟まれている。これにより、第 1圧縮要素 62には、シリンダ室 76が形成され、 このシリンダ室 76は、第 1ピストン 70によって吸入孔 72bと連通する吸入室 76aと、吐 出路 72cと連通する吐出室 76bとに区画されることになる。 [0020] The first cylinder 72 has a cylinder hole 72a, a suction hole 72b, a discharge passage 72c, and a blade accommodation hole 72d. The cylinder hole 72a is a cylindrical hole penetrating along the rotation axis O. The suction hole 72b penetrates from the outer peripheral surface 72e to the cylinder hole 72a. The discharge path 72c is formed by cutting out a part of the inner peripheral side of the cylindrical portion forming the cylinder hole 72a. The blade accommodation hole 72d is a hole for accommodating a blade portion 70b (described later) of the first piston 70, and penetrates along the thickness direction of the first cylinder 72. The portion of the blade accommodation hole 72d on the rotation axis O side accommodates the first bush 71 and slides with the first bush 71. A first eccentric shaft portion 64a of the crankshaft 64 and a roller 70a (described later) of the first piston 70 are accommodated in the cylinder hole 72a of the first cylinder 72, and the first eccentric shaft portion 64a is accommodated in the blade accommodation hole 72d. The state where the blade portion 70b of the piston 70 and the first bush 71 are accommodated. Thus, the discharge path 72c is sandwiched between the front head 65 and the intermediate head 67 so as to face the front head 65 side. Thus, a cylinder chamber 76 is formed in the first compression element 62. The cylinder chamber 76 includes a suction chamber 76a that communicates with the suction hole 72b by the first piston 70, and a discharge chamber 76b that communicates with the discharge passage 72c. It will be divided into.
[0021] 第 1ピストン 70は、円筒状のローラ 70aと、ローラ 70aに一体に形成されておりロー ラ 70aの径方向外側に突出するブレード 70bとを有している。このローラ 70aは、クラ ンク軸 64の第 1偏心軸部 64aに嵌合された状態で第 1シリンダ 72のシリンダ孔 72aに 挿入されている。これにより、ローラ 70aは、クランク軸 64が回転すると、クランク軸 64 の回転軸線 Oを中心とした公転運動を行うことになる。また、ブレード 70bは、ブレー ド収容孔 72dに収容されている。これにより、ブレード 70bは、揺動すると同時に長手 方向に沿って第 1ブッシュ 71及びブレード収容孔 72dに対して進退運動を行うことに なる。 [0021] The first piston 70 has a cylindrical roller 70a and a blade 70b that is formed integrally with the roller 70a and protrudes radially outward of the roller 70a. The roller 70 a is inserted into the cylinder hole 72 a of the first cylinder 72 in a state of being fitted to the first eccentric shaft portion 64 a of the crank shaft 64. As a result, when the crankshaft 64 rotates, the roller 70a performs a revolving motion around the rotation axis O of the crankshaft 64. The blade 70b is accommodated in the blade accommodation hole 72d. As a result, the blade 70b swings and moves forward and backward along the longitudinal direction with respect to the first bush 71 and the blade accommodation hole 72d.
第 1ブッシュ 71は、略半円柱状の一対の部材であって、第 1ピストン 70のブレード 7 Obを挟むようにしてブレード収容孔 72dに収容されて 、る。  The first bush 71 is a pair of substantially semi-cylindrical members, and is accommodated in the blade accommodation hole 72d so as to sandwich the blade 7 Ob of the first piston 70.
[0022] フロントヘッド 65は、第 1シリンダ 72の吐出路 72c側を覆う部材であって、ケーシン グ 61に嵌合されている。このフロントヘッド 65には軸受部 65aが形成されており、この 軸受部 65aにはクランク軸 64が挿入されている。また、このフロントヘッド 65には、第 1シリンダ 72に形成された吐出路 72cを通って流入するガス冷媒を吐出管 85 (後述) に導くための開口 65bが形成されている。そして、この開口 65bは、ガス冷媒の逆流 を防止するための吐出弁(図示せず)により閉塞されたり開放されたりするようになつ ている。 The front head 65 is a member that covers the discharge path 72c side of the first cylinder 72, and is fitted to the casing 61. The front head 65 is formed with a bearing portion 65a, and a crankshaft 64 is inserted into the bearing portion 65a. Further, the front head 65 is formed with an opening 65b for guiding the gas refrigerant flowing through the discharge passage 72c formed in the first cylinder 72 to a discharge pipe 85 (described later). The opening 65b is closed or opened by a discharge valve (not shown) for preventing the backflow of the gas refrigerant.
中間ヘッド 67は、第 1シリンダ 72を挟んでフロントヘッド 65と対向する部材であり、 第 1シリンダ 72の下方を覆っている。この中間ヘッド 67には、軸受部 67aが形成され ており、この軸受部 67aにはクランク軸 64が挿入されている。  The intermediate head 67 is a member that faces the front head 65 with the first cylinder 72 interposed therebetween, and covers the lower portion of the first cylinder 72. The intermediate head 67 is formed with a bearing portion 67a, and a crankshaft 64 is inserted into the bearing portion 67a.
[0023] 第 2シリンダ 75には、第 1シリンダ 72と同様に、シリンダ孔 75a、吸入孔 75b、吐出 路 75cおよびブレード収容孔 75dが形成されている。シリンダ孔 75aは、回転軸線 O に沿って貫通する円柱状の孔である。吸入孔 75bは、外周面 75eからシリンダ孔 75a に貫通している。吐出路 75cは、シリンダ孔 75aを形成する円筒部の内周側の一部 が切り欠かれることによって形成されている。ブレード収容孔 75dは、第 2ピストン 73 のブレード部 73b (後述)を収容するための孔であり、第 2シリンダ 75の板厚方向に沿 つて貫通している。ブレード収容孔 75dの回転軸線 O側の部分は、第 2ブッシュ 74を 収容しており、第 2ブッシュ 74と摺動する。そして、第 2シリンダ 75のシリンダ孔 75aに は、クランク軸 64の第 2偏心軸部 64b及び第 2ピストン 73のローラ 73a (後述)が収容 されており、ブレード収容孔 75dには、第 2ピストン 73のブレード部 73b及び第 2ブッ シュ 74が収容された状態で、吐出路 75cがリアヘッド 69側を向くようにしてリアヘッド 69と中間ヘッド 67との間に挟まれている。これにより、第 2圧縮要素 68には、シリンダ 室 77が形成され、このシリンダ室 77は、第 2ピストン 73によって吸入孔 75bと連通す る吸入室 77aと、吐出路 75cと連通する吐出室 77bとに区画されることになる。尚、第 2偏心軸部 64bと第 1偏心軸部 64aとは、 180度位相をずらして設けられている。 [0023] Similar to the first cylinder 72, the second cylinder 75 has a cylinder hole 75a, a suction hole 75b, a discharge passage 75c, and a blade accommodation hole 75d. The cylinder hole 75a is a cylindrical hole penetrating along the rotation axis O. The suction hole 75b extends from the outer peripheral surface 75e to the cylinder hole 75a. The discharge path 75c is a part of the inner peripheral side of the cylindrical part that forms the cylinder hole 75a. Is formed by notching. The blade accommodation hole 75d is a hole for accommodating a blade portion 73b (described later) of the second piston 73, and penetrates along the thickness direction of the second cylinder 75. The portion on the rotation axis O side of the blade accommodation hole 75d accommodates the second bush 74 and slides with the second bush 74. A second eccentric shaft portion 64b of the crankshaft 64 and a roller 73a (described later) of the second piston 73 are accommodated in the cylinder hole 75a of the second cylinder 75, and the second piston is accommodated in the blade accommodation hole 75d. In a state where the blade portion 73b and the second bush 74 of 73 are accommodated, the discharge path 75c is sandwiched between the rear head 69 and the intermediate head 67 so that the discharge path 75c faces the rear head 69 side. As a result, a cylinder chamber 77 is formed in the second compression element 68. The cylinder chamber 77 is connected to a suction chamber 77a that communicates with the suction hole 75b by the second piston 73, and a discharge chamber 77b that communicates with the discharge passage 75c. It will be divided into. The second eccentric shaft portion 64b and the first eccentric shaft portion 64a are provided with a phase difference of 180 degrees.
[0024] 第 2ピストン 73は、第 1ピストン 70と同様に、円筒状のローラ 73aと、ローラ 73aに一 体に形成されておりローラ 73aの径方向外側に突出するブレード 73bとを有している 。このローラ 73aは、クランク軸 64の第 2偏心軸部 64bに嵌合された状態で第 2シリン ダ 75のシリンダ孔 75aに挿入されている。これにより、ローラ 73aは、クランク軸 64が 回転すると、クランク軸 64の回転軸線 Oを中心とした公転運動を行うことになる。また 、ブレード 73bは、ブレード収容孔 75dに収容されている。これにより、ブレード 73bは 、揺動すると同時に長手方向に沿って第 2ブッシュ 74及びブレード収容孔 75dに対 して進退運動を行うことになる。尚、上述のように、第 2偏心軸部 64bと第 1偏心軸部 6 4aとは 180度位相がずれているため、例えば、第 1ピストン 70のブレード 70bが第 1 シリンダ 72のブレード収容孔 72dに最も深く挿入された状態になる場合には、第 2ピ ストン 73のブレード 73bが第 2シリンダ 75のブレード収容孔 75dに最も浅く挿入され た状態になることになる。  [0024] Like the first piston 70, the second piston 73 has a cylindrical roller 73a and a blade 73b that is formed integrally with the roller 73a and protrudes radially outward of the roller 73a. Yes. The roller 73a is inserted into the cylinder hole 75a of the second cylinder 75 while being fitted to the second eccentric shaft portion 64b of the crankshaft 64. As a result, when the crankshaft 64 rotates, the roller 73a performs a revolving motion around the rotation axis O of the crankshaft 64. The blade 73b is accommodated in the blade accommodation hole 75d. As a result, the blade 73b swings and simultaneously moves forward and backward with respect to the second bush 74 and the blade accommodation hole 75d along the longitudinal direction. Since the second eccentric shaft portion 64b and the first eccentric shaft portion 64a are 180 degrees out of phase as described above, for example, the blade 70b of the first piston 70 is inserted into the blade receiving hole of the first cylinder 72. When the blade 72b is inserted into the deepest position 72d, the blade 73b of the second piston 73 is inserted into the blade receiving hole 75d of the second cylinder 75 at the shallowest depth.
[0025] 第 2ブッシュ 74は、第 1ブッシュ 71と同様に、略半円柱状の一対の部材であって、 第 2ピストン 73のブレード 73bを挟むようにしてブレード収容孔 75dに収容されて 、る リアヘッド 69は、第 2シリンダ 75の吐出路 75c側を覆う部材であって、ケーシング 61 に嵌合されている。このリアヘッド 69には軸受部 69aが形成されており、この軸受部 6 9aにはクランク軸 64が挿入されている。また、このリアヘッド 69には、第 2シリンダ 75 に形成された吐出路 75cを通って流入するガス冷媒を吐出管 85 (後述)に導くため の開口 69bが形成されている。そして、この開口 69bは、ガス冷媒の逆流を防止する ための吐出弁(図示せず)により閉塞されたり開放されたりするようになっている。 Similarly to the first bush 71, the second bush 74 is a pair of substantially semi-cylindrical members, and is accommodated in the blade accommodation hole 75d so as to sandwich the blade 73b of the second piston 73. 69 is a member that covers the discharge path 75c side of the second cylinder 75, and is fitted in the casing 61. The rear head 69 is formed with a bearing portion 69a. A crankshaft 64 is inserted into 9a. Further, the rear head 69 is formed with an opening 69b for guiding the gas refrigerant flowing in through the discharge passage 75c formed in the second cylinder 75 to a discharge pipe 85 (described later). The opening 69b is closed or opened by a discharge valve (not shown) for preventing the backflow of the gas refrigerant.
[0026] クランク軸 64には、その下部に、上述の偏心軸部 64a、 64bが設けられており、偏 心軸部 64a、 64bが設けられていない上部は、圧縮機モータ 63のロータ 80 (後述)に 固定されている。また、クランク軸 64には、油溜まり部 61dに開口するとともに、各シリ ンダ室 76、 77に連通する油路 64cが形成されている。そして、油路 64cの下端には 、油溜まり部 61dに溜まった油路 64cを介して各シリンダ室 76、 77に供給するポンプ 要素 78が設けられている。  The crankshaft 64 is provided with the above-described eccentric shaft portions 64a and 64b at the lower portion thereof, and the upper portion where the eccentric shaft portions 64a and 64b are not provided is the rotor 80 ( (Described later). The crankshaft 64 is formed with an oil passage 64c that opens to the oil reservoir 61d and communicates with the cylinder chambers 76 and 77. A pump element 78 is provided at the lower end of the oil passage 64c. The pump element 78 supplies the cylinder chambers 76 and 77 via the oil passage 64c accumulated in the oil reservoir 61d.
圧縮機モータ 63は、本実施形態において、直流モータであり、主として、ケーシン グ 61の内面に固定された環状のステータ 79と、ステータ 79の内側に僅かな隙間を 空けて回転自在に収容されたロータ 80とから構成されている。ステータ 79には、銅 線が卷回されており、上方および下方にコイルエンド 79aが形成されている。ロータ 8 0の中央には、回転軸線 Oに沿うようにクランク軸 64が固定されている。圧縮機モー タ 63のステータ 79に卷回されている銅線は、ケーシング 61に設けられたターミナル 8 6に接続され電源供給されるようになっている。また、ケーシング 61は、図 2〜図 4に は図示しないアース E (図 6、 7及び 8参照)に接地されている。  In this embodiment, the compressor motor 63 is a direct current motor, and is mainly housed in an annular stator 79 fixed to the inner surface of the casing 61 and rotatably inside the stator 79 with a slight gap therebetween. It consists of a rotor 80. A copper wire is wound around the stator 79, and a coil end 79a is formed above and below. A crankshaft 64 is fixed at the center of the rotor 80 along the rotation axis O. The copper wire wound around the stator 79 of the compressor motor 63 is connected to a terminal 86 provided on the casing 61 and supplied with power. The casing 61 is grounded to an earth E (see FIGS. 6, 7 and 8) not shown in FIGS.
[0027] また、ケーシング 61には、胴板 61aを貫通するように第 1及び第 2吸入管 81、 82が 設けられている。第 1吸入管 81は、その一端が第 1シリンダ 72の吸入孔 72bに連通し ており、その他端がケーシング 61の外部に取り付けられたアキュムレータ 83内に連 通している。第 2吸入管 82は、その一端が第 2シリンダ 75の吸入孔 75bに連通してお り、その他端がケーシング 61の外部に取り付けられたアキュムレータ 83内に連通して いる。また、アキュムレータ 83には、吸入管 84が設けられている。さらに、ケーシング 61には、上部鏡板 61bを貫通するように吐出管 85が設けられている。  In addition, the casing 61 is provided with first and second suction pipes 81 and 82 so as to penetrate the body plate 61a. One end of the first suction pipe 81 communicates with the suction hole 72b of the first cylinder 72, and the other end communicates with an accumulator 83 attached to the outside of the casing 61. One end of the second suction pipe 82 communicates with the suction hole 75 b of the second cylinder 75, and the other end communicates with an accumulator 83 attached to the outside of the casing 61. The accumulator 83 is provided with a suction pipe 84. Further, the casing 61 is provided with a discharge pipe 85 so as to penetrate the upper end plate 61b.
このように、圧縮機 21、 22は、本実施形態において、スイング圧縮機を構成する 2 つの圧縮要素 66、 68を有する 2シリンダ型の密閉式スイング圧縮機である。そして、 この圧縮機 21、 22において、圧縮機モータ 63によって各圧縮要素 66、 68のピスト ン 70、 73 (より具体的には、ローラ 70a、 73a)をシリンダ室 76、 77内で公転運動させ ると、低圧のガス冷媒は、吸入管 84、アキュムレータ 83及び各吸入管 81、 82を介し て、各吸人孑し 72b、 75b力らシリンダ室 76、 77内に流人し、各ローラ 70a、 73aによつ て圧縮される。そして、第 1圧縮要素 66のローラ 70aによって圧縮された高圧のガス 冷媒は、第 1シリンダ 72の吐出路 72cを介してフロントヘッド 65の開口 65bから圧縮 要素 62の外部のケーシング 61内の空間に吐出される。また、第 2圧縮要素 68の口 ーラ 73aによって圧縮された高圧のガス冷媒は、第 2シリンダ 75の吐出路 75cを介し てリアヘッド 69の開口 69bから圧縮要素 62の外部のケーシング 61内の空間に吐出 される。さらに、第 1圧縮要素 66から圧縮要素 62の外部のケーシング 61内の空間に 吐出された高圧のガス冷媒と第 2圧縮要素 68から圧縮要素 62の外部のケーシング 6 1内の空間に吐出された高圧のガス冷媒とは、ケーシング 61内の空間にお 、て合流 して吐出管 85から吐出されるようになって 、る。 As described above, the compressors 21 and 22 are two-cylinder hermetic swing compressors having the two compression elements 66 and 68 constituting the swing compressor in the present embodiment. Then, in the compressors 21 and 22, the piston motors 63 and 68 are fixed by the compressor motor 63. 70, 73 (more specifically, rollers 70a, 73a) revolves in the cylinder chambers 76, 77, the low-pressure gas refrigerant passes through the suction pipe 84, the accumulator 83, and the suction pipes 81, 82. Then, the suction force 72b, 75b force flows into the cylinder chambers 76, 77 and is compressed by the rollers 70a, 73a. Then, the high-pressure gas refrigerant compressed by the roller 70a of the first compression element 66 passes from the opening 65b of the front head 65 to the space inside the casing 61 outside the compression element 62 via the discharge path 72c of the first cylinder 72. Discharged. Further, the high-pressure gas refrigerant compressed by the inlet 73a of the second compression element 68 passes through the discharge passage 75c of the second cylinder 75 and opens in the space in the casing 61 outside the compression element 62 from the opening 69b of the rear head 69. Discharged. Further, the high-pressure gas refrigerant discharged from the first compression element 66 to the space in the casing 61 outside the compression element 62 and the second compression element 68 to the space in the casing 61 outside the compression element 62 were discharged. The high-pressure gas refrigerant merges into the space in the casing 61 and is discharged from the discharge pipe 85.
[0028] また、熱源ユニット 2は、熱源ユニット 2を構成する各部の動作を制御する熱源側制 御部 28を備えている。そして、熱源側制御部 28は、熱源ユニット 2の制御を行うため に設けられたマイクロコンピュータやメモリ等を有しており、利用ユニット 4、 5の利用側 制御部 44、 54との間で伝送線 8aを介して制御信号等のやりとりを行うことができるよ うになつている。すなわち、利用側制御部 44、 54と熱源側制御部 28とによって、空 気調和装置 1の運転制御を行う運転制御手段としての制御部 8が構成されている。 制御部 8は、図 5に示されるように、各種機器及び弁 21、 22、 27、 43、 53を制御す ることができるように接続されている。ここで、図 5は、本実施形態に力かる空気調和 装置 1の制御ブロック図である。 The heat source unit 2 includes a heat source side control unit 28 that controls the operation of each unit constituting the heat source unit 2. The heat source side control unit 28 includes a microcomputer, a memory, and the like provided for controlling the heat source unit 2, and transmits data to and from the usage side control units 44 and 54 of the usage units 4 and 5. Control signals etc. can be exchanged via the line 8a. In other words, the use side control units 44 and 54 and the heat source side control unit 28 constitute a control unit 8 as operation control means for performing operation control of the air conditioner 1. As shown in FIG. 5, the control unit 8 is connected so as to control various devices and valves 21, 22, 27, 43, 53. Here, FIG. 5 is a control block diagram of the air-conditioning apparatus 1 according to the present embodiment.
また、本実施形態において、各圧縮機 21、 22の圧縮機モータ 63は、図 5に示され るように、インバータ装置 91によって制御されるようになっている。このため、両圧縮 機 21、 22は、運転容量を可変することが可能である。  In the present embodiment, the compressor motor 63 of each of the compressors 21 and 22 is controlled by an inverter device 91 as shown in FIG. Therefore, the operating capacity of both the compressors 21 and 22 can be varied.
[0029] 次に、インバータ装置 91について、図 6を用いて説明する。ここで、図 6は、電流打 消装置 95 (後述)を含むインバータ装置 91の概略電気回路図である。 Next, the inverter device 91 will be described with reference to FIG. Here, FIG. 6 is a schematic electric circuit diagram of an inverter device 91 including a current canceling device 95 (described later).
インバータ装置 91は、主に、整流回路 92と、整流回路 92の出力側に接続されたス イッチング回路 93とを有している。整流回路 92は、交流電源 94に接続されており、 交流電源 94の交流電圧を直流電圧に変換する機能を有して ヽる。スイッチング回路 93は、整流回路 92から供給される直流電圧を三相の高周波電圧に変換し、圧縮機 モータ 63に出力する機能を有している。 The inverter device 91 mainly includes a rectifier circuit 92 and a switching circuit 93 connected to the output side of the rectifier circuit 92. The rectifier circuit 92 is connected to an AC power source 94. It has the function of converting the AC voltage of the AC power supply 94 to DC voltage. The switching circuit 93 has a function of converting the DC voltage supplied from the rectifier circuit 92 into a three-phase high-frequency voltage and outputting it to the compressor motor 63.
一方、各圧縮機 21、 22のケーシング 61はアース Eに接続されており、圧縮機モー タ 63とケーシング 61との間には浮遊容量 Cが存在する力 圧縮機 21、 22の運転中 には、この浮遊容量 Cを介して零相電圧が発生し、これにより、浮遊容量 Cからアース Eに向力つて高周波漏れ電流 ilが流れることになる。この高周波漏れ電流 ilは、圧 縮機 21、 22内の冷媒ゃ冷凍機油の導電性に応じて変化するものである。このため、 本実施形態のように、導電性の高 、PAGを冷凍機油として使用して ヽる場合には、 高周波漏れ電流 ilが大きくなる傾向にある。  On the other hand, the casing 61 of each compressor 21 and 22 is connected to the ground E, and there is a stray capacity C between the compressor motor 63 and the casing 61. During operation of the compressors 21 and 22, A zero-phase voltage is generated through the stray capacitance C, and a high-frequency leakage current il flows from the stray capacitance C to the ground E. This high-frequency leakage current il varies depending on the conductivity of the refrigerant in the compressors 21 and 22 and the refrigerating machine oil. For this reason, when the PAG is used as a refrigerating machine oil as in this embodiment, the high-frequency leakage current il tends to increase.
[0030] そこで、インバータ装置 91には、このような高周波漏れ電流 ilに起因して圧縮機モ ータ 63からの漏れ電流が大きくなるのを抑えるために、電流打消装置 95及び漏れ電 流信号検出器 96がさらに設けられている。漏れ電流信号検出器 96は、高周波漏れ 電流 ilを検出するためのものであり、図 6においては、交流電源 94と整流回路 92と の間に設けられている。電流打消装置 95は、漏れ電流信号検出器 96で検出される 高周波漏れ電流 ilに相似する波形の打ち消し電流 i2を発生する増幅回路であり、打 ち消し電流 i2を整流回路 92とスイッチング回路 93との間に出力する機能を有してい る。この電流打消装置 95は、アース Eにも接続されているため、結果的に、高周波漏 れ電流 ilから打ち消し電流 i2分だけ相殺して、浮遊容量 C力 アース Eに流れる漏 れ電流 i3を小さくすることができる。尚、漏れ電流信号検出器 96は、図 6に示すよう に、交流電源 94と整流回路 92との間に設ける場合の他、図 7に示されるように、スィ ツチング回路 93と圧縮機モータ 63との間に設けたり、図 8に示されるように、整流回 路 92とスイッチング回路 93との間に設けてもよい。ここで、図 7及び図 8は、電流打消 装置 95を含むインバータ装置の概略電気回路図の変形例である。 [0030] Therefore, in the inverter device 91, in order to suppress an increase in the leakage current from the compressor motor 63 due to such a high-frequency leakage current il, a current cancellation device 95 and a leakage current signal are provided. A detector 96 is further provided. The leakage current signal detector 96 is for detecting the high frequency leakage current il, and is provided between the AC power supply 94 and the rectifier circuit 92 in FIG. The current cancellation device 95 is an amplifier circuit that generates a cancellation current i2 having a waveform similar to the high-frequency leakage current il detected by the leakage current signal detector 96. The cancellation current i2 is converted into a rectifier circuit 92 and a switching circuit 93. It has a function to output during Since this current canceling device 95 is also connected to the ground E, as a result, the canceling current i2 is canceled out from the high-frequency leakage current il, and the leakage current i3 flowing through the stray capacitance C force ground E is reduced. can do. As shown in FIG. 6, the leakage current signal detector 96 is provided between the AC power supply 94 and the rectifier circuit 92, and as shown in FIG. 7, the switching circuit 93 and the compressor motor 63 Or between the rectifier circuit 92 and the switching circuit 93 as shown in FIG. Here, FIG. 7 and FIG. 8 are modifications of the schematic electric circuit diagram of the inverter device including the current cancellation device 95.
[0031] <冷媒連絡管 > [0031] <Refrigerant tube>
冷媒連絡管 6、 7は、空気調和装置 1を設置場所に設置する際に、現地にて施工さ れる冷媒配管である。  Refrigerant communication pipes 6 and 7 are refrigerant pipes installed on site when the air conditioner 1 is installed at the installation site.
以上のように、利用側冷媒回路 10b、 10cと、複数 (ここでは、 2台)の圧縮機 21、 2 2を有する熱源側冷媒回路 10aと、冷媒連絡管 6、 7とが接続されて、冷媒として二酸 化炭素として使用しかつ冷凍機油として PAGを使用する空気調和装置 1の冷媒回 路 10が構成されている。そして、本実施形態の空気調和装置 1は、利用側制御部 44 、 54と熱源側制御部 28と伝送線 8aとから構成される制御部 8によって、熱源ユニット 2及び利用ユニット 4、 5の各機器の制御を行って、冷房運転、すなわち、熱源側熱交 23を冷媒の冷却器として機能させ、かつ、利用側熱交 42、 52を冷媒の加 熱器として機能させる冷凍サイクル運転を行うことができるようになって!/、る。 As described above, the use-side refrigerant circuits 10b and 10c and the plural (here, two) compressors 21 and 2 The refrigerant circuit 10a of the air conditioner 1 using the heat source side refrigerant circuit 10a having 2 and the refrigerant communication pipes 6 and 7 as the refrigerant and using PAG as the refrigerating machine oil is configured. Has been. The air conditioner 1 of the present embodiment includes each of the heat source unit 2 and the usage units 4 and 5 by the control unit 8 including the usage side control units 44 and 54, the heat source side control unit 28, and the transmission line 8a. Control the equipment to perform the cooling operation, that is, the refrigeration cycle operation in which the heat source side heat exchange 23 functions as a refrigerant cooler and the use side heat exchange 42, 52 functions as a refrigerant heater. Now that you can!
[0032] (2)空気調和装置の動作 [0032] (2) Operation of the air conditioner
次に、本実施形態の空気調和装置 1の動作について説明する。  Next, the operation of the air conditioner 1 of the present embodiment will be described.
<全体的な動作 >  <Overall behavior>
まず、閉鎖弁 25、 26を全開状態として、リモコン等力も運転指令がされると、圧縮 機 21、 22の圧縮機モータ 63、室外ファン 27のファンモータ 27a、室内ファン 43、 53 のファンモータ 43a、 53aが起動する。すると、低圧のガス冷媒は、圧縮機 21、 22に 吸入されて臨界圧力以上になるまで圧縮されて高圧のガス冷媒となる。  First, when the shut-off valves 25 and 26 are fully opened and an operation command is issued from the remote control, etc., the compressor motor 63 of the compressors 21 and 22, the fan motor 27a of the outdoor fan 27, the fan motor 43a of the indoor fans 43 and 53, 53a is activated. Then, the low-pressure gas refrigerant is sucked into the compressors 21 and 22 and compressed until the pressure becomes equal to or higher than the critical pressure, and becomes a high-pressure gas refrigerant.
その後、各圧縮機 21、 22から吐出された高圧のガス冷媒は、合流した後に熱源側 熱交換器 23に送られて、室外ファン 27によって供給される室外空気と熱交換を行つ て冷却される。そして、熱源側熱交換器 23において冷却された高圧の冷媒は、熱源 側膨張機構 24、閉鎖弁 25及び冷媒連絡管 6を介して、利用ユニット 4、 5に送られる 。この利用ユニット 4、 5に送られた高圧の冷媒は、各利用側膨張機構 41、 51によつ て圧縮機 21の吸入圧力(すなわち、上述の低圧のガス冷媒の圧力)近くまで減圧さ れて低圧の気液二相状態の冷媒となった後に、各利用側熱交換器 42、 52に送られ 、各利用側熱交換器 42、 52において室内空気と熱交換を行って加熱されて蒸発し て低圧のガス冷媒となる。この低圧のガス冷媒は、冷媒連絡管 7を介して熱源ュ-ッ ト 2に送られ、閉鎖弁 26を介して、再び、各圧縮機 21、 22に吸入される。  After that, the high-pressure gas refrigerant discharged from the compressors 21 and 22 is merged and then sent to the heat source side heat exchanger 23, where it is cooled by exchanging heat with the outdoor air supplied by the outdoor fan 27. The Then, the high-pressure refrigerant cooled in the heat source side heat exchanger 23 is sent to the utilization units 4 and 5 via the heat source side expansion mechanism 24, the closing valve 25 and the refrigerant communication pipe 6. The high-pressure refrigerant sent to the utilization units 4 and 5 is depressurized by the utilization-side expansion mechanisms 41 and 51 to near the suction pressure of the compressor 21 (that is, the pressure of the low-pressure gas refrigerant described above). After being converted to a low-pressure gas-liquid two-phase refrigerant, the refrigerant is sent to each use-side heat exchanger 42, 52, where it is heated and evaporated by exchanging heat with room air in each use-side heat exchanger 42, 52. Thus, it becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant is sent to the heat source unit 2 through the refrigerant communication pipe 7 and is again sucked into the compressors 21 and 22 through the closing valve 26.
[0033] <圧縮機の動作 > [0033] <Compressor operation>
次に、上述の運転中における圧縮機 21、 22の動作について詳述する。 圧縮機 21、 22においては、圧縮機モータ 63によって各圧縮要素 66、 68のピストン 70、 73 (より具体的には、ローラ 70a、 73a)がシリンダ室 76、 77内で公転運動してい るため、吸入管 84、アキュムレータ 83及び各吸入管 81、 82を介して各吸入孔 72b、 75bからシリンダ室 76、 77内に流入した低圧のガス冷媒は、各ローラ 70a、 73aによ つて圧縮されている。そして、第 1圧縮要素 66のローラ 70aによって圧縮された高圧 のガス冷媒は、第 1シリンダ 72の吐出路 72cを介してフロントヘッド 65の開口 65bか ら圧縮要素 62の外部のケーシング 61内の空間に吐出されている。また、第 2圧縮要 素 68のローラ 73aによって圧縮された高圧のガス冷媒は、第 2シリンダ 75の吐出路 7 5cを介してリアヘッド 69の開口 69bから圧縮要素 62の外部のケーシング 61内の空 間に吐出されている。さらに、第 1圧縮要素 66から圧縮要素 62の外部のケーシング 61内の空間に吐出された高圧のガス冷媒と第 2圧縮要素 68から圧縮要素 62の外部 のケーシング 61内の空間に吐出された高圧のガス冷媒とは、ケーシング 61内の空 間にお 、て合流して吐出管 85から吐出されて 、る。 Next, the operation of the compressors 21 and 22 during the above operation will be described in detail. In the compressors 21 and 22, the pistons 70 and 73 (more specifically, rollers 70a and 73a) of the compression elements 66 and 68 are revolving in the cylinder chambers 76 and 77 by the compressor motor 63. Therefore, the low-pressure gas refrigerant flowing into the cylinder chambers 76 and 77 from the suction holes 72b and 75b through the suction pipe 84, the accumulator 83 and the suction pipes 81 and 82 is compressed by the rollers 70a and 73a. Has been. Then, the high-pressure gas refrigerant compressed by the roller 70a of the first compression element 66 passes through the discharge path 72c of the first cylinder 72 and passes through the opening 65b of the front head 65 to the space in the casing 61 outside the compression element 62. Has been discharged. In addition, the high-pressure gas refrigerant compressed by the roller 73a of the second compression element 68 passes through the discharge path 75c of the second cylinder 75 and opens from the opening 69b of the rear head 69 in the casing 61 outside the compression element 62. It is discharged in the middle. Further, the high-pressure gas refrigerant discharged from the first compression element 66 into the space inside the casing 61 outside the compression element 62 and the high-pressure gas refrigerant discharged from the second compression element 68 into the space inside the casing 61 outside the compression element 62. This gas refrigerant joins the air in the casing 61 and is discharged from the discharge pipe 85.
このとき、冷媒の温度も圧縮に伴って上昇することになる力 本実施形態のように、 冷媒として二酸化炭素を使用する場合には、 CFC系冷媒、 HCFC系冷媒ゃ HFC系 冷媒を使用する場合に比べて吸入圧力と吐出圧力との差が大きくなることから、その 温度上昇の程度も大きくなり、吐出圧力だけでなく吐出温度も高温になる。一方、本 実施形態の圧縮機 21、 22として採用されているスイング圧縮機においては、ローラと ブレードとが一体に形成されたピストンを圧縮要素として使用していることから、第 1ピ ストン 70 (より具体的には、ブレード 70b)と第 1ブッシュ 71との間及び第 2ピストン 73 ( より具体的には、ブレード 73b)と第 2ブッシュ 74との間の摺動が大きぐ二酸化炭素 を冷媒として使用することによる高圧化に起因して、ピストンとブッシュとの間の摺動 負荷の増加や焼き付き等の問題が発生しやすくなる傾向にある。しかし、本実施形 態では、高温における粘性が高い PAGを冷凍機油として使用しており、ポンプ要素 78によって油路 64cを介してケーシング 61の下部の油溜まり部 61dから各シリンダ 室 76、 77内に冷凍機油を供給して潤滑を行うだけで、第 1ピストン 70 (より具体的に は、ブレード 70b)と第 1ブッシュ 71との間及び第 2ピストン 73 (より具体的には、ブレ ード 73b)と第 2ブッシュ 74との間の潤滑を行うことができるため、スイング圧縮機の採 用により懸念されるピストンとブッシュとの間の摺動負荷の増加や焼き付き等の問題 が発生するのを抑えることができるようになって!/、る。 [0035] しかし、本実施形態においては、冷凍機油として PAGを使用することによって圧縮 機 21、 22内の潤滑を確保できるというメリットが得られる反面で、 PAGの導電性が高 ぐまた、本実施形態のように、複数の密閉式の圧縮機 21、 22を有するとともに、各 圧縮機 21、 22に内蔵される圧縮機モータ 63がそれぞれインバータ装置 91によって 制御されるようになっていることから、インバータ装置 91から圧縮機モータ 63に出力 される高周波電圧に起因する高周波漏れ電流 ilが増加する傾向にある。 At this time, the temperature at which the temperature of the refrigerant also rises as it is compressed. As in this embodiment, when carbon dioxide is used as the refrigerant, a CFC refrigerant, an HCFC refrigerant, or an HFC refrigerant is used. Since the difference between the suction pressure and the discharge pressure is larger than that, the degree of the temperature rise is also large, and not only the discharge pressure but also the discharge temperature becomes high. On the other hand, in the swing compressors employed as the compressors 21 and 22 of the present embodiment, since the piston formed integrally with the roller and the blade is used as the compression element, the first piston 70 ( More specifically, carbon dioxide having a large sliding between the blade 70b) and the first bush 71 and between the second piston 73 (more specifically, the blade 73b) and the second bush 74 is used as the refrigerant. Due to the increased pressure due to the use, the problems such as increased sliding load and seizure between the piston and bushing tend to occur. However, in this embodiment, PAG having a high viscosity at high temperature is used as refrigeration oil, and the pump element 78 passes through the oil passage 64c from the oil reservoir 61d at the lower part of the casing 61 to the cylinder chambers 76 and 77. Just by supplying refrigeration oil to the first piston 70 (more specifically, the blade 70b) and the first bush 71 and the second piston 73 (more specifically, the blade). 73b) and the second bushing 74 can be lubricated, and problems such as increased sliding load and seizure between the piston and bushing, which are a concern due to the use of a swing compressor, occur. It is now possible to suppress! [0035] However, in the present embodiment, the use of PAG as the refrigerating machine oil has the advantage that lubrication in the compressors 21 and 22 can be ensured, but the conductivity of the PAG is high. As shown in the figure, it has a plurality of hermetic compressors 21 and 22, and the compressor motor 63 built in each compressor 21 and 22 is controlled by an inverter device 91, respectively. The high-frequency leakage current il due to the high-frequency voltage output from the inverter device 91 to the compressor motor 63 tends to increase.
このため、本実施形態の熱源ユニット 2では、インバータ装置 91に電流打消装置 9 5が設けられており、浮遊容量 C力もアース Eに向力つて流れる高周波漏れ電流 ilが 増加する傾向にあるにもかかわらず、最終的に、アース E力 漏れる漏れ電流 i3が増 加しないようにしている。  For this reason, in the heat source unit 2 of the present embodiment, the inverter device 91 is provided with the current canceling device 95, and the high-frequency leakage current il that flows toward the ground E also tends to increase the stray capacitance C force. Regardless, ultimately, the leakage current i3 leaking from the ground E force is prevented from increasing.
[0036] これにより、本実施形態では、冷凍機油として PAGを使用することで圧縮機 21、 22 内の潤滑を確保し、そして、複数の圧縮機 21、 22として密閉式圧縮機を使用するこ とで圧縮機 21、 22内のシール性を確保するとともに、電流打消装置 95を設けること で圧縮機モータ 63からの漏れ電流 i3の増加を抑えることができるようになって 、る。 し力も、本実施形態では、圧縮機モータ 63がケーシング 61内の油溜まり部 61dに 溜まった冷凍機油に浸力 ないように配置されており、し力も、圧縮機モータ 63が圧 縮要素 62よりも上側に配置されているため、高周波漏れ電流 il自体を小さくすること ができ、圧縮機モータ 63からの漏れ電流 i3の増加をさらに抑えることができるように なっている。  [0036] Thus, in the present embodiment, the use of PAG as the refrigerating machine oil ensures lubrication in the compressors 21 and 22, and the plurality of compressors 21 and 22 uses a hermetic compressor. As a result, the sealing performance in the compressors 21 and 22 can be secured, and the increase of the leakage current i3 from the compressor motor 63 can be suppressed by providing the current canceling device 95. In this embodiment, the compressor motor 63 is arranged so that the compressor motor 63 is not immersed in the refrigeration oil accumulated in the oil reservoir 61d in the casing 61, and the compressor motor 63 is also compressed by the compression element 62. Since the high frequency leakage current il itself can be reduced, the increase in the leakage current i3 from the compressor motor 63 can be further suppressed.
(3)空気調和装置の特徴  (3) Features of the air conditioner
本実施形態の空気調和装置 1には、以下のような特徴がある。  The air conditioner 1 of the present embodiment has the following features.
[0037] (A) [0037] (A)
本実施形態の熱源ユニット 2では、冷媒として二酸ィ匕炭素を使用する場合において 、冷凍機油として PAGを使用することで圧縮機 21、 22内の潤滑を確保し、そして、 複数の圧縮機 21、 22として密閉式圧縮機を使用することで圧縮機 21、 22内のシー ル性を確保するとともに、電流打消装置 95を設けることで圧縮機モータ 63からの漏 れ電流 i3の増加を抑えることができる。これにより、複数の密閉式圧縮機を備えてお り、冷媒として二酸ィ匕炭素を使用する空気調和装置を構成する熱源ユニットを実現 することができるようになって!/、る。 In the heat source unit 2 of the present embodiment, in the case where carbon dioxide is used as a refrigerant, lubrication in the compressors 21 and 22 is ensured by using PAG as refrigeration oil, and a plurality of compressors 21 By using a hermetic compressor as 22, the sealing performance in the compressors 21 and 22 is secured, and the current canceling device 95 is provided to suppress the increase in leakage current i3 from the compressor motor 63. Can do. This realizes a heat source unit that has multiple hermetic compressors and constitutes an air conditioner that uses carbon dioxide as a refrigerant. You can do it! /
そして、本実施形態の空気調和装置 1では、上述のような熱源ユニット 2を備えてい るため、複数の利用ユニット 4、 5を接続することにより、冷媒として二酸ィ匕炭素を使用 する大容量の冷媒回路 10を構成することができるようになって 、る。  Since the air conditioner 1 of the present embodiment includes the heat source unit 2 as described above, by connecting a plurality of utilization units 4 and 5, a large capacity that uses carbon dioxide as a refrigerant. The refrigerant circuit 10 can be configured.
[0038] (B) [0038] (B)
本実施形態の熱源ユニット 2では、圧縮機モータ 63が油溜まり部 6 Idに溜まった冷 凍機油に浸力もないように配置されており、し力も、圧縮機モータ 63が圧縮要素 62よ りも上側に配置されているため、圧縮機モータ力もの漏れ電流の増加をさらに抑える ことができるようになって!/、る。  In the heat source unit 2 of the present embodiment, the compressor motor 63 is arranged so that there is no immersion force in the refrigeration machine oil accumulated in the oil reservoir 6 Id. Because it is arranged on the upper side, the increase in leakage current due to the compressor motor power can be further suppressed! /.
(C)  (C)
本実施形態の熱源ユニット 2では、圧縮要素 62がシリンダ 72、 75と、ローラ 70a、 7 3aとブレード 70b、 73bと力—体に形成されたピストン 70、 73と、ブッシュ 71、 74とを 有する、いわゆるスイング圧縮機を構成するものである。このため、この圧縮要素 62 は、摩擦損失や動力損失が他の型式の容積式の圧縮要素に比べて比較的小さく、 熱源ユニット 2内に小型の圧縮機 (ここでは、圧縮機 21、 22)を複数内蔵させるのに 向 ヽて ヽる。一方、この圧縮要素 62では、ローラ 70a、 73aとブレード 70b、 73bと力 S 一体に形成されていることから、ピストン 70、 73とブッシュ 71、 74との間の摺動が大 きぐ二酸ィ匕炭素を冷媒として使用することによる高圧化に起因して、ピストン 70、 73 とブッシュ 71、 74との間の摺動負荷の増加や焼き付き等の問題が発生しやすくなる 傾向にある。しかし、この熱源ユニット 2では、冷凍機油として PAGを使用しており、ピ ストン 70、 73とブッシュ 71、 74との間の潤滑を十分に確保できるようになっているた め、スイング圧縮機の採用によって複数の圧縮機を熱源ユニット内に内蔵させるのを 容易にしつつ、スイング圧縮機の採用により懸念されるピストンとブッシュとの間の摺 動負荷の増加や焼き付き等の問題が発生するのを抑えることができるようになつてい る。  In the heat source unit 2 of the present embodiment, the compression element 62 includes cylinders 72 and 75, rollers 70a and 73a, blades 70b and 73b, pistons 70 and 73 formed in a force body, and bushes 71 and 74. This constitutes a so-called swing compressor. For this reason, this compression element 62 has a relatively small friction loss and power loss compared to other types of positive displacement compression elements, and a small compressor (here, compressors 21 and 22) in the heat source unit 2. It is recommended to install multiple devices. On the other hand, in this compression element 62, since the rollers 70a and 73a and the blades 70b and 73b are formed integrally with the force S, the sliding between the pistons 70 and 73 and the bushes 71 and 74 is large.起因 Due to the high pressure caused by using carbon as a refrigerant, problems such as increased sliding load and seizure between the pistons 70 and 73 and the bushes 71 and 74 tend to occur. However, in this heat source unit 2, PAG is used as refrigeration oil, and sufficient lubrication between the pistons 70, 73 and the bushes 71, 74 can be secured. This makes it easier to incorporate multiple compressors in the heat source unit, while the use of a swing compressor causes problems such as increased sliding load between the piston and bushing and seizure. It has become possible to suppress it.
[0039] (D)  [0039] (D)
本実施形態の熱源ユニット 2では、密閉式圧縮機である圧縮機 21、 22に内蔵され た圧縮機モータ 63がインバータ装置 91によって制御されるものであるため、このイン バータ装置 91から圧縮機モータ 63に出力される電圧に起因する高周波漏れ電流 il が発生する。このため、この熱源ユニット 2のように、複数の密閉式圧縮機である圧縮 機 21、 22を備える場合には、圧縮機モータ 63からの漏れ電流 i3の増加が著しくなる 。しかし、この熱源ユニット 2では、電流打消装置 95を備えているため、この高周波漏 れ電流 ilの増加を抑えることができる。これにより、インバータ装置によって制御され る圧縮機モータが内蔵された複数の密閉式圧縮機を備えており、冷媒として二酸ィ匕 炭素を使用する空気調和装置を構成する熱源ユニットを実現することができるように なっている。 In the heat source unit 2 of the present embodiment, since the compressor motor 63 built in the compressors 21 and 22 that are hermetic compressors is controlled by the inverter device 91, A high-frequency leakage current il due to the voltage output from the barter device 91 to the compressor motor 63 is generated. For this reason, when the compressors 21 and 22 that are a plurality of hermetic compressors are provided as in the heat source unit 2, the leakage current i3 from the compressor motor 63 increases remarkably. However, since the heat source unit 2 includes the current cancellation device 95, an increase in the high-frequency leakage current il can be suppressed. As a result, a plurality of hermetic compressors with a compressor motor controlled by an inverter device are provided, and a heat source unit constituting an air conditioner that uses carbon dioxide as a refrigerant can be realized. It can be done.
[0040] (4)他の実施形態 [0040] (4) Other embodiments
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、 これらの実施形態に限られるものではなぐ発明の要旨を逸脱しない範囲で変更可 能である。  As mentioned above, although embodiment of this invention was described based on drawing, specific structure can be changed in the range which does not deviate from the summary of this invention which is not restricted to these embodiment.
例えば、上述の実施形態では、 1台の熱源ユニット 2に複数の利用ユニット 4が接続 された空気調和装置 1に本発明を適用した例を説明したが、これに限定されず、例え ば、複数台の熱源ユニットに複数台の利用ユニットが接続された空気調和装置に本 発明を適用する等のように、種々の接続条件にて利用ユニットと熱源ユニットとが接 続された空気調和装置に本発明を適用してもよい。  For example, in the above-described embodiment, the example in which the present invention is applied to the air conditioner 1 in which a plurality of usage units 4 are connected to one heat source unit 2 has been described. However, the present invention is not limited to this. The present invention is applied to an air conditioner in which a utilization unit and a heat source unit are connected under various connection conditions, such as application of the present invention to an air conditioner in which a plurality of utilization units are connected to a single heat source unit. The invention may be applied.
また、上述の実施形態では、冷房運転を行うことが可能な、いわゆる冷房専用機で ある空気調和装置 1に本発明を適用した例を説明したが、これに限定されず、冷房 運転と暖房運転とを切り換えて行うことが可能な冷暖切換機や、冷房運転と暖房運 転とを同時に行うことが可能な冷暖同時機に本発明を適用する等のように、種々の運 転形態を有する本発明を適用してもよい。  In the above-described embodiment, the example in which the present invention is applied to the air conditioner 1 that is a so-called cooling-only machine capable of performing the cooling operation has been described. However, the present invention is not limited to this, and the cooling operation and the heating operation are performed. The present invention can be applied to a cooling / heating switching machine that can be switched between, and a cooling / heating simultaneous machine that can simultaneously perform cooling operation and heating operation. The invention may be applied.
産業上の利用可能性  Industrial applicability
[0041] 本発明を利用すれば、複数の密閉式圧縮機を備えており、冷媒として二酸化炭素 を使用する空気調和装置を構成する熱源ユニットを実現することができる。 [0041] By using the present invention, it is possible to realize a heat source unit that includes a plurality of hermetic compressors and constitutes an air conditioner that uses carbon dioxide as a refrigerant.

Claims

請求の範囲 The scope of the claims
[1] 利用ユニット (4、 5)が接続されることによって、冷媒として二酸化炭素を使用する冷 媒回路(10)を構成する熱源ユニットであって、  [1] A heat source unit constituting a refrigerant circuit (10) using carbon dioxide as a refrigerant by connecting utilization units (4, 5),
ケーシング (61)内に圧縮要素(62)と前記圧縮要素を駆動するモータ (63)とが配 置された複数の密閉式圧縮機 (21、 22)と、  A plurality of hermetic compressors (21, 22) in which a compression element (62) and a motor (63) for driving the compression element are arranged in a casing (61);
冷凍機油としてのポリアルキレングリコールと、  Polyalkylene glycol as refrigerating machine oil,
前記モータからの漏れ電流を打ち消す電流打消装置(95)と、  A current canceling device (95) for canceling the leakage current from the motor;
を備えた熱源ユニット (2)。  Heat source unit with (2).
[2] 前記ケーシング (61)内には、前記冷凍機油を溜めるための油溜まり部(61d)が形 成されており、 [2] An oil reservoir (61d) for storing the refrigerator oil is formed in the casing (61),
前記モータ(63)は、前記油溜まり部に溜まった前記冷凍機油に浸力 ないように 配置されている、  The motor (63) is disposed so as not to immerse in the refrigerating machine oil accumulated in the oil reservoir.
請求項 1に記載の熱源ユニット(2)。  The heat source unit (2) according to claim 1.
[3] 前記モータ(63)は、前記圧縮要素(62)よりも上側に配置されている、請求項 2に 記載の熱源ユニット(2)。  [3] The heat source unit (2) according to claim 2, wherein the motor (63) is disposed above the compression element (62).
[4] 前記圧縮要素(62)は、内部にシリンダ室(76、 77)が形成されたシリンダ(72、 75) と、ローラ(70a、 73a)と前記ローラに一体に形成されたブレード(70b、 73b)とから なり前記シリンダ室内を吸入室(76a、 77a)と吐出室(76b、 77b)とに区画するピスト ン(70、 73)と、前記ブレードを挟むブッシュ(71、 74)とを有し、前記モータ(63)によ つて前記ピストンが前記シリンダ室内で公転運動するように構成されている、請求項 1 〜3の!、ずれかに記載の熱源ユニット(1)。  [4] The compression element (62) includes a cylinder (72, 75) having a cylinder chamber (76, 77) formed therein, a roller (70a, 73a), and a blade (70b) integrally formed with the roller. 73b) and a piston (70, 73) that divides the cylinder chamber into a suction chamber (76a, 77a) and a discharge chamber (76b, 77b), and a bush (71, 74) that sandwiches the blade. The heat source unit (1) according to any one of claims 1 to 3, wherein the piston is configured to revolve in the cylinder chamber by the motor (63).
[5] 前記モータ(63)を制御するインバータ装置(91)をさらに備えており、  [5] It further comprises an inverter device (91) for controlling the motor (63),
前記電流打消装置(95)は、前記インバータ装置に起因する高周波漏れ電流を打 ち消す、  The current canceling device (95) cancels the high-frequency leakage current caused by the inverter device;
請求項 1〜4の 、ずれかに記載の熱源ユニット(2)。  The heat source unit (2) according to any one of claims 1 to 4.
[6] 請求項 1〜5の!、ずれかに記載の熱源ユニット(2)を備えた空気調和装置(1)。 [6] Claims 1-5! An air conditioner (1) comprising the heat source unit (2) according to any one of the above.
PCT/JP2007/064234 2006-07-24 2007-07-19 Heat source unit and air conditioner with the same WO2008013092A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-200633 2006-07-24
JP2006200633A JP2008025939A (en) 2006-07-24 2006-07-24 Heat source unit and air conditioning device comprising the same

Publications (1)

Publication Number Publication Date
WO2008013092A1 true WO2008013092A1 (en) 2008-01-31

Family

ID=38981404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064234 WO2008013092A1 (en) 2006-07-24 2007-07-19 Heat source unit and air conditioner with the same

Country Status (2)

Country Link
JP (1) JP2008025939A (en)
WO (1) WO2008013092A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147682A (en) * 1996-11-18 1998-06-02 Idemitsu Kosan Co Ltd Refrigeration unit and refrigerant compressor
JPH11311456A (en) * 1998-04-30 1999-11-09 Toshiba Corp Refrigeration cycle system
JP2004239447A (en) * 2003-02-03 2004-08-26 Daikin Ind Ltd Air conditioning system renewing method and air conditioning system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147682A (en) * 1996-11-18 1998-06-02 Idemitsu Kosan Co Ltd Refrigeration unit and refrigerant compressor
JPH11311456A (en) * 1998-04-30 1999-11-09 Toshiba Corp Refrigeration cycle system
JP2004239447A (en) * 2003-02-03 2004-08-26 Daikin Ind Ltd Air conditioning system renewing method and air conditioning system

Also Published As

Publication number Publication date
JP2008025939A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP6291533B2 (en) High-pressure compressor and refrigeration cycle apparatus including the same
WO2006035935A1 (en) Displacement type expander
EP2123996A1 (en) Refrigerating device
JP2011012629A (en) Scroll compressor
WO2013005568A1 (en) Multi-cylinder rotary compressor and refrigeration cycle device
JP4219198B2 (en) Refrigerant cycle equipment
JP2008209036A (en) Refrigeration device
JP2004137979A (en) Expansion machine
US6385995B1 (en) Apparatus having a refrigeration circuit
JP2007146747A (en) Refrigerating cycle device
JP4696530B2 (en) Fluid machinery
JPH07318179A (en) Sealed compressor, and freezer and air conditioner including the compressor
JP2011012630A (en) Scroll compressor
JP2010156498A (en) Refrigerating device
JP3619657B2 (en) Multistage compression refrigeration equipment
WO2008013092A1 (en) Heat source unit and air conditioner with the same
JP3291470B2 (en) Rotary compressor
JP4617822B2 (en) Rotary expander
JP3695963B2 (en) Rotary compressor
KR100677527B1 (en) Rotary compressor
JP2010156499A (en) Refrigerating device
JP5925136B2 (en) Refrigerant compressor and heat pump equipment
JP2008223651A (en) Fluid machine
JP5278203B2 (en) Scroll compressor and air conditioner equipped with scroll compressor
JP2009133319A (en) Displacement type expansion machine and fluid machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790988

Country of ref document: EP

Kind code of ref document: A1