WO2008010573A1 - Microimplement, process for manufacturing the same, and method of assembling sugar material part - Google Patents

Microimplement, process for manufacturing the same, and method of assembling sugar material part Download PDF

Info

Publication number
WO2008010573A1
WO2008010573A1 PCT/JP2007/064346 JP2007064346W WO2008010573A1 WO 2008010573 A1 WO2008010573 A1 WO 2008010573A1 JP 2007064346 W JP2007064346 W JP 2007064346W WO 2008010573 A1 WO2008010573 A1 WO 2008010573A1
Authority
WO
WIPO (PCT)
Prior art keywords
cantilever
micro
substrate
skin
chip
Prior art date
Application number
PCT/JP2007/064346
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshikazu Tobinaga
Tomoya Kitagawa
Kentaro Ohshima
Original Assignee
Elegaphy, Inc.
Maruho Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elegaphy, Inc., Maruho Co., Ltd. filed Critical Elegaphy, Inc.
Publication of WO2008010573A1 publication Critical patent/WO2008010573A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles

Definitions

  • the present invention relates to a technique for inserting a pharmaceutical agent for the purpose of treatment or health into a human skin surface, that is, a transdermal dosage technology, and a functional material for beauty in the human skin surface.
  • Technology for the introduction of skin care materials that is, transdermal nutritional supplements and supplemental administration technology, skin cosmetics and modification technology, and in-vivo information extraction and individual identification signals within the human skin surface.
  • TECHNICAL FIELD The present invention relates to a technique for inserting a functional chip for sensing, that is, a technique for mounting a functional chip in the skin surface, and relates to a micro-implement for insertion in the skin surface to be used for the technique and a manufacturing method thereof.
  • the present invention provides a sugar material for bringing a sugar material part into contact with each other or bringing a sugar material part into contact with each other or a substrate or a substrate sheet composed of pullulan or a composite sugar material of pullulan and maltose. It relates to the parts assembly method.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-238347
  • a micro-perforator including a needle based on a water-soluble polymer such as polybutyl alcohol (PVA) and sodium carboxymethylcellulose (CMC-Na) for example, see Patent Document 2
  • PVA polybutyl alcohol
  • CMC-Na sodium carboxymethylcellulose
  • Patent Document 2 Japanese Translation of Special Publication 2006—500973
  • the degree of freedom of nutrients, etc. is limited when it is in a liquid state, and when it is in a liquid state, its use is almost limited to a low-concentration water-soluble lysate. There was a problem. Furthermore, in the case of a technique for mounting a skin-embedded functional chip used for in-vivo information extraction or the like, the chip is pushed out of the body as the skin surface is healed, and the functional chip is removed from the skin in a stable state. There was a problem that it was difficult to keep it inside.
  • an injection molding method or the like has been used as a method for producing microneedles using sugar as a base material, but due to the characteristics of the production method and the properties of the sugar to be used, the processing accuracy is high.
  • the problem is that it is almost impossible to mold microneedles with high strength. It was a title.
  • the base material is a polymer material
  • the base material is a polymer material
  • the shape of the molding was shaped on the bottom of the mold.
  • the accuracy of the needle tip is limited to about 30 m due to limitations due to fluid phenomena during molding (not flowing into details, turbulence or vortex phenomenon, ie, vortex phenomenon), which was a problem.
  • injection molding and casting cannot be performed with fine protrusions due to mechanical blurring at the time of release, which is also a problem.
  • the present invention is a structure having a fine cantilever made of a soluble material in the skin at the upper end of the side surface of the substrate or the surface of the substrate sheet.
  • Micro-implement for insertion, micro-implement for insertion in skin surface with functional chip mounted on fine cantilever, and functional materials such as pharmaceutical agents, nutrients and their supplements, cosmetic materials, color materials, etc. It is an object of the present invention to provide a microimplement for penetration into the skin surface and a method for producing the same. It is another object of the present invention to provide a simple assembling method for sugar material parts such as micro-implements composed of these sugars as a base material.
  • the present invention provides a means for solving the problem to achieve the above-described object
  • the cantilever has a substantially truncated cone shape,
  • the long width of the fine tip of the cantilever is 0.1 m to 100 ⁇ m
  • a microimplement for insertion into the skin surface characterized in that the length from the tip to the end of the cantilever is 50 m to 5 mm, and
  • the length of the fine tip of the cantilever is 0.1 ⁇ m to 100 ⁇ m, and the length from the tip to the end of the cantilever is 50,1 m to 5 mm.
  • the base material of the substrate is one or more selected from saccharides, cellulose, solid starch, paper, wood, plastic, metal, force, etc. Kano's micro-implement for penetration into the skin surface,
  • the cantilever contains one or more selected from protein, DNA, pharmaceutical agent, nutritional agent, nutritional supplement, cosmetic material, color material, metal, metal oxide, microcapsule, force. (1) to (7) the microimplement for insertion into the skin surface, and
  • the microimplement for insertion into the skin surface according to any one of (1) to (8), wherein the cantilever has a structure in which a functional chip is mounted; and (11)
  • the functional chip is a semiconductor chip, integrated circuit chip, temperature sensor chip, protein chip, DNA-containing chip, pharmaceutical agent-containing chip, nutrient-containing chip, nutritional supplement-containing chip, cosmetic material-containing chip, color material (9) or (10) the micro-implement for insertion into the skin surface, characterized in that it is 1 or 2 or more selected from a containing chip, a metal-containing chip, a micro-power chip, a force, and the like, and
  • the surface of the functional chip is covered with a composite sugar material of maltose, maltose and pullulan, polyethylene, polypropylene, and one material of which force is also selected.
  • micro-implement which consists of a cantilever micro mold head having one or two or more fine cantilever inversion-shaped recesses on the upper surface end and a substrate mold having a substrate inversion-shaped recess
  • the micro-implement mold has a temperature control mechanism, and the micro-mold head for the cantilever and the mechanism for allowing the substrate mold to move independently.
  • the micro mold head for a cantilever having a reversal-shaped concave portion of one or more fine cantilevers at an upper end, the micro mold head has a temperature control mechanism and is on the surface of the substrate sheet.
  • the method for producing a microimplement for insertion into the skin surface wherein the microimplement head is manufactured using a micro mold head having a vertically movable mechanism, and
  • the sugar material component is a substrate or a substrate sheet, and the other sugar material component is brought into contact with and welded to the upper end of the side surface of the substrate or the surface of the substrate sheet.
  • the other sugar material part is the cantilever of (3), and the soluble material in the skin of the cantilever is anhydrous amorphous maltose or a complex sugar material of anhydrous amorphous maltose and pullulan (16) Sugar material parts assembly method,
  • the fine cantilever inserted into the skin surface is based on the soluble material in the skin, it is dissolved quickly within the skin surface. Is painless, easy to use, and can contain functional materials such as pharmaceutical agents, beauty agents, nutritional supplements and adjuvants, and color materials in a fine cantilever. There are few kind restrictions and quantitative limits in these agents and materials, and the cantilever has a constricted shape part, so that when the microimplement is inserted into the skin surface, the cantilever easily breaks in the constricted shape part. It has the characteristic effect that it is possible to easily and safely insert the microimplement into the skin surface.
  • the functional chip can be easily and painlessly attached to the skin surface in a stable state, and the skin solubilizer, which is the base material of the cantilever, is anhydrous and amorphous.
  • the skin solubilizer which is the base material of the cantilever, is anhydrous and amorphous.
  • the safety of the human body is high, the strength as a structure without crystal grain boundaries is high, the processing accuracy is high, and the stability is high.
  • the substrate of the substrate or the substrate sheet into saccharides the water-solubility of the substrate can be used to reduce the environmental impact due to the waste treatment! /, And! / Has a positive effect.
  • the cantilever since the cantilever has a substantially pyramid-shaped split shape, it is easy to mount a functional chip on a split surface that forms a horizontal plane at room temperature. Furthermore, the heat resistance of the functional chip is not so required because it is mounted at room temperature, and further, the functional chip is covered with a composite sugar material of maltose, maltose and pullulan, polyethylene, etc. This has the effect of strengthening the adhesion between the cantilever and the one-sided surface of the cantilever (the mounting surface of the functional chip).
  • the cantilever is encapsulated with a functional chip, thereby It is possible to reduce the penetration resistance of the chiller into the skin surface.
  • the heat resistance of the functional chip is required, the surface of the functional chip described above is combined with maltose, maltose and pullulan. Heat protection is possible by coating with sugar material, polyethylene, etc.
  • the functional chip since the functional chip is contained in the cantilever, it has a characteristic effect that it is hardly damaged.
  • the microimplement mold constituted by the micromold head for cantilever and the substrate mold having the concave portion having the inverted shape of the substrate, Has a temperature control mechanism, and has a mechanism that allows the parenthesis micro mold head and substrate mold to move independently, making it easy to manufacture substrate-type micro-implements with high processing accuracy and high structural strength.
  • the micro mold head for cantilever having a temperature control mechanism has a mechanism that can move vertically with respect to the surface of the substrate sheet, so that the processing accuracy is high and the substrate sheet has high structural strength. This has the effect that the micro-implement of the mold can be easily manufactured.
  • the bottom of the casting mold is not used, the limit of the fluid is avoided, and the protrusion is opened using the end (surface part) of the mold so that the fluid can flow.
  • the projection (needle part) and the base part are separated, the mechanical mold is eliminated, the fine part is formed in advance (release), and the separation mold is used to release the base part.
  • the sugar material part is composed of at least one of the two sugar material parts, or a complex sugar material of pullulan and maltose, and therefore uses the adhesiveness of pullulan.
  • these sugar material parts can be brought into contact with each other and welded, and the sugar material parts having a high structural strength can be easily assembled.
  • the sugar material component is a substrate or a substrate sheet made of pullulan or the like, so that the other sugar material component is brought into contact with the upper end portion of the substrate side surface or the substrate sheet surface. It has the effect that it can be welded and a sugar material part having a high structural strength can be easily assembled.
  • the other sugar material part is a cantilever
  • the soluble material in the skin of this cantilever is anhydrous amorphous maltose.
  • a complex sugar material of anhydrous amorphous maltose and pullulan it is possible to easily assemble a microimplement for insertion into the skin surface with high structural accuracy and high processing accuracy! It also has a characteristic effect.
  • FIG. 6 Schematic diagram showing a cross section of a substrate type micro-implement having a constricted portion. 7] Schematic diagram showing a cross section of a substrate type micro implement having a functional chip. 8] Functional chip mounting type.
  • FIG. 3 is a schematic diagram when the microimplement is inserted into the skin surface.
  • FIG. 13 is a schematic diagram showing a combination of a micro mold head for a cantilever and a mold for a substrate.
  • FIG. 14 is a schematic diagram showing a driving micro mold head and a cantilever on a substrate sheet. Explanation of symbols
  • the cantilever means structurally a cantilever, and the tip of the cantilever is a free end, and the end where the cantilever is in contact with the substrate or the substrate sheet is a fixed end.
  • the shape of the cantilever is a half of a pyramid that is close to a quadrangular pyramid, polygonal pyramid, cone, etc. (that is, a substantially pyramid) cut by a plane that passes through a perpendicular extending from the apex of the cone to the bottom of the cone. It is in the form of a single-sided crack, which is referred to as a substantially conical piece in the present invention.
  • the cutting of the substantially cone in the plane is cut so that its volume is almost halved, in other words, the plane is divided so that the bottom of the cone is divided almost in half of its bottom area.
  • the bottom of the cone is almost circular.
  • its half-cracked shape (the cantilever shape at this time is shown in Fig. 3). (Shown) is about half the volume of the cone.
  • the substantially pyramid is a substantially quadrangular pyramid
  • the bottom surface of the cone is almost rectangular, and if the above plane passes through the diagonal of the square, its half-broken shape (the cantilever shape at this time is shown in FIG.
  • the volume is almost half that of the pyramid. However, if the cone bottom area and cone volume are halved, the above plane can pass through any line other than the diagonal line of the cone base. Good. Therefore, since the one-side crack surface of the one-sided shape of the substantially pyramid is horizontal, it is possible to easily mount a functional chip on the one-side crack surface.
  • the size of the cantilever in the present invention is the longest diameter in the shape (substantially polygonal or substantially circular) of the long width of the fine tip of the cantilever, that is, when the apex of the approximate cone is viewed directly in front. However, it is preferably in the range of 0.1 ⁇ 111 to 100 ⁇ 111, but this is physically impossible at less than 0.1 l ⁇ m, and physically into the skin surface at more than 100 in. This is because there is a great deal of resistance and a stinging sensation. Also, the length from the tip to the end of the cantilever ( In other words, the length of the above normal line) is preferably in the range of 50 mm to 5 mm.
  • the insertion of the micro-implement into the skin surface substantially means that the cantilever is inserted into the skin from the skin surface, and the skin (keratin) located on the surface of the skin is called the skin. Layer)), the underlying dermis, and the underlying subcutaneous tissue.
  • the insertion site in the skin is identified according to the insertion purpose, and the cantilever tip force is adjusted accordingly. If you decide the length of
  • the substrate and the substrate sheet refer to a force that is necessary for the above-mentioned cantilever to fix the end portion thereof.
  • the cantilever fixes the end portion to the upper end portion of the side surface of the substrate, (Shown in Fig. 1) and the cantilever that fixes the end of the substrate sheet surface (shown in Fig. 2).
  • This is called a micro-implement for penetration into the skin surface.
  • Fig. 3 shows an enlarged perspective view of a part of the cantilever in the substrate type micro-implement shown in Fig. 1. This is a case where the cantilever is almost in the shape of a half piece of a cone, and its bottom surface is almost the same. Shows a semicircle.
  • FIG. 4 shows an enlarged perspective view of a part of the cantilever in the substrate sheet type micro-implement shown in Fig. 2. This is a case where the cantilever has a substantially half-pyramidal shape, and its bottom surface. Indicates a triangle.
  • the cross-section of the cantilever shown in FIG. 3 is the force S shown in FIG. 5, particularly in the case of a substrate type microimplement, the cantilever's half-break surface 7 and the substrate top surface 8 are connected with almost no step as shown in FIG.
  • the surface is normally parallel. By tilting this parallel contact surface with respect to the substrate sheet surface, it is possible to make the one-side crack surface of the cantilever stand at an angle other than perpendicular to the substrate sheet surface.
  • the shape and size of the substrate and the substrate sheet are not particularly limited, and the shape and size may be specified according to the intended use of the micro-implement for insertion into the skin surface. Further, the micro-implement of the present invention can be mounted on the cantilever according to the purpose of use.
  • the term “implement” is used to mean mounting and mounting in the design field of a semiconductor integrated circuit, but in the present invention, a tool (that is, a tool used for mounting a cantilever on a skin surface) In other words, it means wearing equipment).
  • the cantilever according to the present invention preferably has a constriction-shaped portion between its distal end portion and the distal end portion.
  • the constricted part between the tip and the end of the cantilever This is to make the cantilever easy to break at this shape.
  • This constriction shape has a stepped constriction or a curved constriction. The constriction shape is not particularly limited.
  • the substrate sheet in the present invention refers to a substrate in the form of a sheet, and therefore the base material which is the material thereof is the same as the substrate.
  • the substrate in the present invention and the substrate in the substrate sheet are preferably one or more selected from saccharides, cellulose, solid starch, paper, wood, plastic, metal, force and the like.
  • saccharide include glucose, fructose, galactose for monosaccharides, and maltose, sucrose, ratatoose, cellobiose, trehalose for disaccharides, and other oligosaccharides such as trisaccharides and tetrasaccharides.
  • the substrate sheet is preferably composed of pullulan or a complex sugar material of pullulan and maltose among saccharides! /, But it is preferable to use the adhesiveness of pullulan. This is because the cantilever can be firmly fixed. The reason for using maltose is that it is easy to make a complex sugar material by mixing with pullulan, and it is cheap and easily available. In this case, the mixing ratio of pullulan and maltose is not particularly limited.
  • the skin-soluble material in the present invention literally means a material that can be dissolved in the skin.
  • biocompatible materials such as saccharides, chitin and chitosan, and biodegradation of polylactic acid and the like.
  • saccharides having the highest dissolution rate in vivo are preferable.
  • anhydrous amorphous maltose or a complex sugar material of anhydrous amorphous maltose and pullulan is preferred in terms of safety to the human body and immediate solubility in the skin, and there is no grain boundary. Therefore, it is preferable because a cantilever with high processing accuracy can be obtained.
  • anhydrous amorphous maltose refers to maltose from which water of crystallization has been removed and it is amorphous (amorphous), but this anhydrous amorphous maltose is low molecular weight and anhydrous. It is easy to mix with polysaccharide aqueous solutions such as pullulan, that is, when anhydrous amorphous maltose and pullulan aqueous solution are mixed, pullulan hydrated molecules are easily taken into maltose, and a complex sugar material with a good mixing state is obtained. It is easy to be done.
  • the pullulan adhesiveness makes it extremely easy to bond the bottom surface of the cantilever to the side surface of the substrate or the surface of the substrate sheet.
  • the mixing ratio of anhydrous amorphous maltose and pullulan is not particularly limited, but 1: 0 to; 1: 9 is preferred, and in order to emphasize the characteristics of pullulan, 1: 1 or more is preferable.
  • the immediate solubility in the skin means that the dissolution in the skin is extremely fast. From the viewpoint of safety and convenience after inserting a cantilever made of a soluble material in the skin into the skin surface, The cantilever is preferably dissolved in about 60 seconds at the latest, and more preferably in about 30 seconds at the latest.
  • the cantilever in the present invention preferably contains one or more selected from protein, DNA, pharmaceutical agent, nutrient, nutritional supplement, cosmetic material, color material, metal, metal oxide, and microcapsule.
  • proteins there are general proteins such as albumin, actin, and myosin, and pharmaceutical proteins for treatment, etc.
  • DNA there are cells that are not encapsulated! /, Pure DNA, etc.
  • transdermal administration! / An effective analgesic agent, insulin effective in treating diabetes, lidocaine as a local anesthetic, chlorhexine dalconate effective in periodontal disease, etc.
  • a force that is not particularly limited.
  • FIG. 10 is a schematic diagram showing a state in which a normal cantilever 18 and a cantilever 19 having a constricted portion are inserted into the skin surface of a substrate-type microimplement containing a functional material.
  • the direction force of the cantilever 19 having the constricted portion is easier to penetrate into the skin surface than the normal cantilever 18 because the resistance of the constricted portion is less.
  • FIG. 11 is a schematic diagram showing the state after insertion of both cantilevers.
  • a cantilever having a constricted portion is naturally used.
  • the cantilever remains deeper in the skin surface than when a normal cantilever is used, that is, the cantilever 21 remains deeper in the skin surface than the cantilever 20.
  • the functional material diffuses and permeates, but the area is naturally proportional to the insertion position of the cantilever, and the diffusion permeation area 23 is more than the diffusion permeation area 22.
  • There are two types of cantilevers according to the present invention which have a structure in which a functional chip is mounted on the surface (see FIG. 7) and a structure in which a functional chip is mounted inside.
  • the functional chip In the case of the former, it is easy to mount the functional chip on one side that forms a horizontal plane at room temperature, and the thermal resistance of the functional chip is not so required for mounting at normal temperature.
  • the heat resistance of the functional chip is required, it is possible to take heat countermeasures by coating the surface of the functional chip with maltose, maltose and pullulan complex sugar material, polyethylene, etc.
  • the functional chip in the present invention includes a semiconductor chip, an integrated circuit chip, a temperature sensor chip, a protein chip, a DNA-containing chip, a medicine-containing chip, a nutrient-containing chip, a nutritional supplement-containing chip, a cosmetic material-containing chip, and a color material-containing chip.
  • a chip, a metal-containing chip, a microcapsule-containing chip, or one or more functional chips selected is preferable.
  • the surface force of the functional chip is preferably coated with one material selected from maltose, maltose and pullulan complex sugar materials, polyethylene, polypropylene, and force.
  • the base material of the above chip is not particularly limited, but from the viewpoint of the affinity of the base material used in the present invention, a saccharide is used as a base and it contains a pharmaceutical agent, a functional material and the like.
  • a saccharide is used as a base and it contains a pharmaceutical agent, a functional material and the like.
  • sugars that can be used for example, maltose, anhydrous amorphous maltose, and complex sugar materials thereof with pullulan can be used.
  • FIG. 8 is a schematic diagram showing a state in which a normal force cantilever 12 and a cantilever 13 having a constricted portion are inserted into the skin surface of a substrate-type microimplement. A cantilever 13 having a force constricted portion 13 is shown.
  • FIG. 9 is a schematic diagram showing the state after insertion of both cantilevers. Both cantilevers dissolve and disappear in the skin, and then leave their chips. Of these tips, when a cantilever having a constricted part is used, the tip remains naturally at a deeper position in the skin surface than when a normal cantilever is used. Also remains deep within the skin surface.
  • a micro mold head for a cantilever having a concave portion of a fine cantilever at the upper surface end in a micro cantilever manufacturing method is an anhydrous amorphous maltose or a composite of anhydrous amorphous maltose and pullulan.
  • a substrate mold having a concave portion with an inverted shape of the substrate is a substrate mold that can be formed into a substrate that can support a cantilever and can be incorporated into a micro mold head.
  • the temperature control mechanism of the micro-implement mold is a temperature control mechanism capable of rapidly heating and melting the above-mentioned base material formed by the micro-mold head and cooling and solidifying it.
  • the micro-mold head for cantilever and the substrate The mechanism that can move the mold independently can prioritize the molding of the fine cantilever shape and drive only the micro mold head in advance. After the cantilever is released and molded, the substrate can be released by separate drive. This is the mechanism. As a result, the substrate type micro-implement can be manufactured.
  • the mechanism that the micro mold head for cantilevers can move vertically with respect to the surface of the substrate sheet means that one or more cantilevers are provided perpendicularly to the surface of the substrate sheet.
  • the method of moving to the formation of the next cantilever is a mechanism in which the micro mold head is once retracted in the direction perpendicular to the sheet and then moved to the position of the next cantilever.
  • FIG. 14 shows a schematic diagram of a micro mold head and a substrate sheet.
  • a temperature control heater is used as the temperature control mechanism
  • a drive stage is used as the movable mechanism.
  • the substrate sheet type micro-implement can be manufactured.
  • the temperature control mechanism in the present invention is not particularly limited, any temperature control mechanism can be used as long as it can control the temperature from 50 ° C. to about 200 ° C. and can maintain a constant temperature, for example. it can.
  • the cantilever can be manufactured and assembled separately from the substrate or the substrate sheet, the tip can be sharp! /,
  • the cantilever can be manufactured with high accuracy, and the shape of the sword mountain shape. It becomes possible to easily manufacture a micro implement having a large number of cantilevers within a certain area. Also, the material of the cantilever and the material of the substrate or the substrate sheet can be different.
  • the materials of the substrate and the fine needle are always the same, and even when a plurality of fine needles are provided, the drug that can be mixed with the fine needles is monolithic, which is limited to a single item.
  • fine needles cannot be formed on the surface of the sheet-like base material, and a very large restriction is imposed on the shape of the microimplement.
  • the method of the present invention it is possible to introduce an assembly method in which the substrate is manufactured in advance and only the cantilever-shaped microneedles can be manufactured later, which is different from the case where the substrate and the microneedles are integrally formed.
  • the needle tip accuracy can be maintained without being affected by the substrate. This makes it possible to manufacture cantilevers with a fine tip of less than 10 m, and it is possible to accurately manufacture even cantilevers with a fine tip length of 2 to 3 m. For this reason, it was possible to reduce the pressure applied when the cantilever was inserted into the skin, and to achieve sufficient pain-freeness.
  • a mechanism which is adapted to drive the mold cantilever as Heddode device enables ideal sword mountain shape fabrication as shown in FIG. 2, a high density of needle (cantilever such 1 cm 2 per 100 or more Even a micro-implement with) can be manufactured. Furthermore, since the cantilever can be formed regardless of the shape of the substrate, it is possible to use a sheet-like substrate or the like that is only a plate-like substrate, and the degree of freedom of the shape of the micro-implement is increased. In addition, since the cantilever is assembled on the substrate, the base material and the fine needle material can be made different, and different cantilevers can be incorporated in each cantilever.
  • the sugar material part assembling method of the present invention comprises at least one of the two sugar material parts, S, pullulan, or a composite sugar material of pullulan and maltose. Force to contact and weld S is suitable. Further, the sugar material component composed of pullulan, or a composite sugar material of pullulan and manoletose is a substrate or a substrate sheet, and the other sugar material component is brought into contact with the upper end of the side surface of the substrate or the surface of the substrate sheet for welding. It is preferable to let this occur.
  • the other sugar material component is a fine cantilever
  • the soluble material in the skin of the cantilever is anhydrous amorphous maltose, or anhydrous amorphous maltose and pullulan. of A complex sugar material is preferred.
  • the bottom surface has a diameter of 200 ⁇ m, and the perpendicular length from the apex to the bottom surface is 550 ⁇ m.
  • a stainless steel plate vertical length: 15 mm, horizontal length: 5 mm, thickness: 1 mm
  • the four inverted concavities of the above-mentioned substantially conical cracked shape are dug by machining so that the shape of the fine tip of the cantilever is almost circular (diameter 0.
  • a mold head for a cantilever was produced.
  • a substrate mold having a concave portion having a reverse shape of the above-mentioned substrate is manufactured.
  • a combination of cantilever mold head and substrate mold having the shape shown in Fig. 13 was produced. If you look directly at the substrate mold with the mold head removed, you will see a U-shape.
  • this U-shaped mold substrate was combined with the above-mentioned cantilever mold head to form a concave-shaped substrate mold.
  • the substrate material a mixture of saccharide maltose and pullulan (50% by weight maltose and 50% by weight pullulan dissolved in 105 ° C) was used, and the above-mentioned mouth shape maintained at 105 ° C.
  • the substrate raw material was poured into a substrate mold until the substrate had a thickness force of S lmm, and was slowly cooled to 80 ° C. to produce a substrate.
  • anhydrous amorphous maltose dissolved at 105 ° C was poured into the recess of the mold head to produce a cantilever, and then slowly cooled to room temperature to produce the microimplement shown in FIG.
  • the length of the vertical line from the apex to the bottom is 550 m at the top of the side of the substrate, which is 10 mm long, 50 mm wide, and 1 mm thick, at the top of the side of the substrate, with a bottom diameter of 200 m.
  • a cantilever with a roughly conical piece (its bottom is a semicircle with a diameter of 200 m), and its fine tip A cantilever force S having a substantially circular shape (diameter 0.3 m), and four substrate-type micro-implements arranged in the longitudinal direction of the substrate were assembled and manufactured.
  • FIG. 1 is a schematic diagram, the size of the cantilever and the substrate are not relatively matched.
  • the force used by dissolving the substrate and the cantilever raw material at 105 ° C was put into the mold and die head held at 105 ° C in the above-mentioned state in the state of particles. It's okay.
  • the cantilever mold head and substrate mold having the shape shown in FIG. 13 are used, and these are held at 105 ° C., and the raw material is poured into the cantilever mold and substrate.
  • the cantilever and the substrate are made of the same material.
  • the substrate sheet type micro-implement with the shape shown in Fig. 2, first, 30% by weight of pullulan and 30% by weight of maltose were mixed together, and then 40% of water was added to create a viscous state. Furthermore, it is stretched into a sheet shape and dried. A substrate sheet of 10 mm in length, 10 mm in width, and 0.5 mm in thickness (with a composition ratio of 50% by weight of pullulan and 50% by weight of maltose, the substrate sheet is square when viewed from directly above. ) was produced. Next, it is a rhombus that is a combination of two equilateral triangles with a bottom of 150 m on one side, and the vertical length from the apex to the bottom is 500 m.
  • the mold head held at 80 ° C was brought into contact with the substrate sheet surface, and anhydrous amorphous maltose dissolved at 105 ° C and A composite sugar material with pullulan (anhydrous amorphous 50% by weight, pullulan 50% by weight composition ratio) is poured into the mold head, and after forming the cantilever, the mold head is retracted in a direction perpendicular to the substrate sheet surface. Then, a cantilever was fabricated on the surface of the substrate sheet as shown in FIG. Next, the mold head is moved laterally at a pitch interval of 250 ⁇ m, and this mold head is placed on the substrate sheet surface.
  • the mold head is moved forward and brought into contact, the above complex sugar material dissolved at 105 ° C is poured into the mold head, and after the cantilever is formed, the mold head is moved backward in a direction perpendicular to the substrate sheet surface, A second cantilever was fabricated on the substrate sheet surface.
  • the cantilever for a total of 30 on the surface of the substrate sheet with a total pitch of 5 and 6 with a pitch interval of 250 m (having the above-mentioned substantially quadrangular pyramid piece shape)
  • a substrate sheet type micro-implement having the structure shown in Fig. 2 and a structure in which cantilevers were arranged was assembled and manufactured. However, since FIG.
  • FIG. 2 is a schematic diagram, the size of the cantilever and the substrate sheet are not relatively matched.
  • the force S that required the above-mentioned repetitive operation 30 times using a die head for producing one cantilever was used, and six cantilevers for the die head in the vertical direction.
  • an inversion-shaped concave part it is only necessary to repeat the operation five times, and it is possible to produce a micro-implement very efficiently.
  • Example 1 When the substrate-type microimplement of Example 1 was inserted into the skin surface of the back of the hand, it was painless, and it was confirmed by observation with a microscope that the cantilever melted and disappeared in about 1 minute. Furthermore, when the surface of the skin was observed with a microscope, it was confirmed that four almost semicircular holes with a diameter of about 150 m were opened in the skin surface. When a finger was pressed near the hole, a small amount of blood came out of the hole, so it was possible to measure the blood glucose level by collecting a few mg of the blood.
  • Example 2 When the substrate sheet type microimplement of Example 2 was inserted into the skin surface of the back of the hand, it was confirmed that the cantilever melted and disappeared in about 1 minute by observation with a microscope. Furthermore, when the skin surface was observed with a microscope, it was confirmed that approximately ellipsoidal holes with a diameter of about 100 m were opened at 30 locations on the skin surface. After pressing these points with your finger and wiping the blood that has come out with absorbent cotton, applying an aqueous solution of sodium ascorbate phosphate 1% to the skin surface of those locations, the aqueous solution quickly spills into those holes. Was able to penetrate the aqueous solution into the skin surface.
  • the cantilever The force used for opening this is because vitamin C, which is easily decomposed by heating, such as sodium ascorbate phosphate, cannot be included in cantilevers formed by overheating. As a result, vitamin C was able to penetrate into the skin more effectively.
  • a substrate-type microimplement was produced in the same manner as in Example 1 using anhydrous amorphous maltose containing 1% by weight of lidocaine, which is a kind of local anesthetic, as a base material of the cantilever.
  • This microimplement was inserted into the skin surface of the abdomen of the rat, and as a result of plasma analysis, it was found that lidocaine was present in the plasma, which confirmed the penetration of lidocaine into the whole body of the rat.
  • a substrate sheet type micro-implement was prepared in the same manner as in Example 2 using a composite sugar material with anhydrous amorphous maltose containing 0.3% by weight of ⁇ -arbutin as a whitening cosmetic material and pullulan as a base material. Produced. However, each of the 30 cantilevers has a constricted portion at a position 150 m from the fine tip, and the cantilever is easily broken at the constricted portion. This micro-implementation was conducted once a day in a series of experiments in which the skin surface with brown spots on the face (within 200 m from the skin surface) was inserted. It was confirmed by visual observation that the thickness was thin.
  • Example 8 The complex sugar material with whitening cosmetic material in which vitamin C kind Asukorubin magnesium phosphate 1wt 0/0 containing anhydrous amorphous maltose and pullulan as a substrate material, in the same manner as in Example 2, A substrate sheet type micro-implement was produced. However, each of the 30 cantilevers has a constricted portion at a position 150 inches from the fine tip, and the cantilever is easily broken at the constricted portion. As a result of conducting an experiment in which the microimpregnation was inserted into the skin surface (within 200 m from the skin surface) with brown spots on the face once a day, about one month passed as in Example 7. As a result, the brownish stain on the face faded and was confirmed.
  • Example 11 As a result of lightly applying the substrate sheet type microimplement of Example 2 to the skin surface of the back of the hand five times, it was confirmed by observation with a microscope that a large number of holes were opened on the skin surface. At a place open these holes have a whitening effect, a relatively unstable chemicals aqueous solution containing 1 weight 0/0 Asukorubin magnesium phosphate is more applied to the glass rod, using a glass rod By imprinting the liquid onto the skin, ascorbic acid magnesium phosphate was able to penetrate into the stratum corneum as in Example 9.
  • Example 11 Example 11
  • Example 12 Using anhydrous amorphous maltose containing 5% by weight of a mixture of titanium oxide and oxidative iron (1: 1 composition ratio), which is a skin-colored cosmetic material, as a base material, in the same manner as in Example 2, A substrate sheet type micro-implement was produced. However, each of the 30 cantilevers has a constricted portion at a position 150 m from the fine tip, and the cantilever is easily broken at the constricted portion. This micro-implement is brown on the face As a result of experiments conducted within the surface of the skin where there was a stain (within 200 m from the surface of the skin), it was confirmed by visual observation that the brown stain on the face had faded and the skin color was strengthened.
  • Example 12
  • a substrate-type microimplement was produced in the same manner as in Example 1 using anhydrous amorphous maltose containing 5% by weight of a natural gardenia red pigment, which is a pigment specified in the body.
  • each of the four cantilevers similarly has a constricted portion at a location 100 inches from the fine tip, and the cantilever is easily bent at the constricted portion.
  • this microimplement was inserted into the skin surface of the back of the hand, it was confirmed by visual observation that a pigment was left in the skin stratum corneum.
  • simple and safe tattooing became possible. Arbitrary notation within the stratum corneum became possible.
  • a substrate type microimplement was produced in the same manner as in Example 1 using anhydrous amorphous maltose containing 1% by weight of orange dye tartardin as a base material. After inserting the microimplement into the skin surface of the abdomen of the rat, the cross section of the skin was observed with a microscope, and it was confirmed that the tartardin dye penetrated deep into the skin.
  • a substrate-type micro-implement was prepared in the same manner as in Example 1, using anhydrous amorphous maltose containing 1% by weight of Coomassie brilliant blue (CBB), a blue pigment with strong adhesiveness to proteins. did. After inserting this microimplement into the skin surface of the abdomen of the rat, the cross-section of the skin was observed with a microscope, and it was confirmed that the CBB color reflected the cross-sectional shape of the microcantilever insertion. .
  • CBB Coomassie brilliant blue
  • Albumin which is a kind of protein, is contained in 3% by weight of a disk-shaped chip (diameter 50 m, thickness 5 111) of pullulan and anhydrous amorphous maltose (1: 1 composition ratio).
  • Substrate type micro-implementation of Example 1 (however, three of the four cantilevers were removed A microchip with a functional chip mounted type was fabricated by bonding it at room temperature on the one side of the chip. When the microimplement was inserted into the skin surface of the back of the hand, as a result of microscopic observation and chemical analysis of the extracted corneocytes, albumin remained in the stratum corneum! .
  • Insulin effective in treating diabetes is contained in 1% by weight of a disk-shaped chip (diameter 50 m, thickness 5 111) of pullulan and anhydrous amorphous maltose (1: 1 composition ratio).
  • a disk-shaped chip (diameter 50 m, thickness 5 111) of pullulan and anhydrous amorphous maltose (1: 1 composition ratio).
  • Example 1 but three of the four cantilevers were removed) to produce a micro-implement with a functional chip.
  • the micro-implement was inserted into the skin surface of the back of the hand, it was confirmed that the insulin remained in the stratum corneum as a result of observation with a microscope and chemical analysis of the extracted corneocytes.
  • Carotenoid a type of vitamin A, a nutritional supplement
  • a disc-shaped chip (diameter 50 m, thickness 5 m) of pullulan and anhydrous amorphous maltose (1: 1 composition).
  • the chip is bonded to one side of the cracked surface of the substrate type micro-implement in Example 1 (however, three of the four cantilevers are removed) at room temperature, so that the functional chip mounted type A micro-implement was made.
  • the microimplement was inserted into the skin surface of the back of the hand, observations using a microscope and chemical analysis of the extracted corneocytes confirmed that the carotenoid remained in the stratum corneum.
  • Hyaluronic acid as a humectant is contained in 3% by weight of a disk-shaped chip (diameter 50 m, thickness 5 m) of pullulan and anhydrous amorphous maltose (1: 1 composition ratio).
  • a microchip (with a functional chip mounted type) in which the above chip is mounted inside the cantilever in the same manner as in Example 1 except that it is inserted into one recess of the mold head for the cantilever in Example 1. And only one cantilever).
  • hyaluronic acid which was decomposed by heating as a result of observation with a microscope and chemical analysis of the extracted corneocytes, was found. It was confirmed that it stayed in the stratum corneum and was able to administer hyaluronic acid easily into the skin surface.
  • Adhesive consisting of a composite sugar material (1: 1 composition ratio) of pullulan and anhydrous amorphous maltose on the back of a so-called IC tag, an IC chip with a side of 200 ⁇ m and a thickness of 10 ⁇ m Then, the back surface of the substrate-type microimplement of Example 1 was bonded to the one side of the substrate-type microimplement at room temperature to produce an IC tag-mounted microimplement. When the microimplement was inserted into the skin surface of the back of the hand, observation with a microscope confirmed that the IC chip remained in the stratum corneum 100 m below the skin surface.
  • a micro silicon substrate temperature sensor chip with a side of 150 ⁇ m and a thickness of 10 ⁇ m was covered with polyethylene and the lead wire was left on the substrate type micro-implementation of Example 1 (however, 4 (3 out of the cantilevers were removed) were bonded at room temperature to a micro-implement with a micro silicon substrate temperature sensor chip.
  • the microimplement was inserted into the skin surface of the back of the hand, as a result of observation with a microscope, it was confirmed that it remained in the stratum corneum 50 m below the skin surface, and the lead wire was externally exposed. In addition, the signal could be extracted through the lead wire, so that the temperature inside the body could be measured accurately.
  • Human IgG antibody a disk-shaped chip of pullulan and anhydrous amorphous maltose (1: 1 composition ratio) 0.25% by weight in a diameter of 50 111 and a thickness of 5 111), and the chip is divided into parts of the substrate type micro-implement of Example 1 (however, three of the four cantilevers are removed)
  • a human IgG antibody-containing micro-implement was fabricated by bonding it at room temperature. After conducting an in-vivo experiment in which the microimplement was administered to the skin of the abdomen of the rat, the cross-section of the rat skin was observed with a microscope, and the presence of human IgG in the rat skin was confirmed.
  • the DNA portion is contained in a disk-shaped chip (diameter 50 111, thickness 5 m) of pullulan and anhydrous amorphous maltose (1: 1 composition ratio), and the chip is used as the substrate type of Example 1
  • a micro-implement with a DNA-containing chip mounted was fabricated by bonding the micro-implant (however, three of the four cantilevers were removed) to one side of the cracked surface at room temperature. When the microimplement was inserted into the skin surface of the back of the hand, it was confirmed by observation with a microscope that the DNA part remained in the stratum corneum!
  • a substrate-type microimplement was produced in the same manner as in Example 1 using anhydrous amorphous maltose containing 2 wt% of iron particles having a diameter of 25 Hm or less as a base material of the cantilever. After inserting this micro-implement into the skin surface of the back of the hand, the high-sensitivity time sensor can count the iron particles in the skin surface, and the number correspondence can be taken. Application of this method suggests the possibility of convenient use for inpatient numbering.
  • a micro-force psell (particle size: 1 ⁇ m) containing 1% by weight of lidocaine and the base material is anhydrous amorphous maltose, a disk of pullulan and anhydrous amorphous maltose (1: 1 composition ratio)
  • a chip-shaped chip (diameter 50 m, thickness 5 111) containing 5% by weight, and the chip is a single-sided surface of the board-type micro-implement of Example 1 (however, three of the four cantilevers are removed)
  • the microcapsule-mounted microimplement was fabricated by bonding it at room temperature. After the microimplement was inserted into the skin surface of the abdomen of the rat, the cross-section of the skin was observed with a microscope, and as a result, lidocaine was present on the skin surface. Was confirmed.
  • the skin surface microimplement and the method for producing the same of the present invention have the above-mentioned various characteristic effects.
  • the medical field the field of nutrients and supplements, the field of beauty, the field of cosmetics, the field of application of various functional materials. It can be used in application fields of microcapsules and functional chips.
  • the sugar material parts assembling method can easily and efficiently assemble sugar material parts, it can be used in the application fields of various sugar material parts.

Abstract

A microimplement for insertion in skin surface that ensures high safety, no pain and easy use, and that is less in the quantitative limitation or variety restriction as to functional material, etc., realizing high structure strength, high stability and high machining precision, and that in disposal thereof, is very low in environmental load; a process for manufacturing the microimplement; and a relevant method of assembling sugar material parts. There is provided a microimplement for insertion in skin surface having minute cantilevers of a material soluble into the skin, disposed on an upper edge portion of side face of substrate or on a surface of substrate sheet, wherein each of the cantilevers has roughly a half-split cone configuration and has a given dimension. Further, there are provided a process for manufacturing the above microimplement and a relevant method of assembling sugar material parts.

Description

明 細 書  Specification
マイクロインプリメント、その製造方法及び糖材部品組立方法  Micro-implement, manufacturing method thereof, and sugar material component assembling method
技術分野  Technical field
[0001] 本発明は、人の皮膚表面内に治療又は健康を目的とした医薬剤を揷入する技術、 すなわち経皮系投薬技術に関し、そして人の皮膚表面内に美容のために機能性材 料を揷入する技術、すなわち経皮系の栄養剤及びその補助剤投与技術、並びに皮 膚の美容、修飾技術に関し、さらには、人の皮膚表面内に体内情報の抽出や個体識 別の信号のセンシングのために機能性チップを揷入する技術、すなわち皮膚表面内 機能性チップ装着技術に関し、それら技術に供する皮膚表面内揷入用マイクロイン プリメント及びその製造方法に関するものである。また、本発明は、プルラン、又はプ ルラン及びマルトースの複合糖材で構成される基板又は基板シートと糖材部品を接 触させて溶着させる、又はそれら糖材部品同士を接触、溶着させる糖材部品組立方 法に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a technique for inserting a pharmaceutical agent for the purpose of treatment or health into a human skin surface, that is, a transdermal dosage technology, and a functional material for beauty in the human skin surface. Technology for the introduction of skin care materials, that is, transdermal nutritional supplements and supplemental administration technology, skin cosmetics and modification technology, and in-vivo information extraction and individual identification signals within the human skin surface. TECHNICAL FIELD The present invention relates to a technique for inserting a functional chip for sensing, that is, a technique for mounting a functional chip in the skin surface, and relates to a micro-implement for insertion in the skin surface to be used for the technique and a manufacturing method thereof. In addition, the present invention provides a sugar material for bringing a sugar material part into contact with each other or bringing a sugar material part into contact with each other or a substrate or a substrate sheet composed of pullulan or a composite sugar material of pullulan and maltose. It relates to the parts assembly method.
背景技術  Background art
[0002] 経皮系投薬については、従来より、金属あるいはプラスティック製のマイクロニード ル (以下、「微細針」と同じ意味)の表面に薬剤を塗布し、そのマイクロニードルを皮膚 表面内に挿入し、塗布薬剤を皮膚内に浸透させる方法をとつてきた。しかしながら、 金属あるいはブラスティックのような皮膚内不可溶材からなる工業用材料を基材とす る微細針では、投薬時の不注意等により、生体内に微細針が残留するという事故が 少なからず発生しており、憂慮すべき問題となっていた。また、微細針に医薬剤や機 能性材料を塗布する、又はそれらを混在させるにしても、物理的に微細針に搭載で きる医薬剤や機能性材料には量的限界があり、それ故に皮膚内に十分な量の医薬 剤や機能性材料を浸透させることも限界があった。更には、医療器具の廃棄問題に 代表されるように、微細針の廃棄処理にも多大な環境負荷力 Sかかるという問題があつ た。  [0002] Conventionally, for transdermal administration, a drug is applied to the surface of a metal or plastic microneedle (hereinafter referred to as "fine needle"), and the microneedle is inserted into the skin surface. The method of penetrating the applied drug into the skin has been followed. However, in the case of microneedles based on industrial materials made of insoluble materials in the skin such as metal or blast, there are not a few accidents in which microneedles remain in the body due to carelessness during administration. It was a worrisome problem. Even if a pharmaceutical agent or a functional material is applied to a fine needle or a mixture thereof is mixed, there are quantitative limits on the pharmaceutical agent or functional material that can be physically mounted on the fine needle. There was a limit to the penetration of a sufficient amount of pharmaceutical agents and functional materials into the skin. Furthermore, as represented by the problem of disposal of medical instruments, there is a problem that disposal of fine needles takes a large environmental load.
[0003] また、美容技術については、従来、皮膚表面への美容剤 (機能性材料)の塗布、そ の経皮投与を促進させるための超音波補助、さらには電気泳動による経皮投与等々 の技術があつたが、いずれにしても皮膚の保護特性のため、十分な量の美容剤の投 与ができておらず、重要な課題となっていた。また、皮膚表面の修飾技術については 、古来より、上腕外側や眉毛部位等における皮膚表面内への針による色材投与があ つたが、この施術には大きな痛みを伴い、また針を使用するので熟練した技術を要し 、さらには安全上の問題もあった。そして、栄養剤や栄養補助剤の体内への投与技 術では、投与は経口に限られていたので、味覚、咀嚼、胃腸での消化吸収の問題か ら、それらが固体状である場合には糖衣加工や細粒化するために栄養剤等の自由 度が制限され、また液体状である場合には低濃度の水溶性溶解物に使用がほぼ限 定され、広範囲で、かつ十分な量の栄養剤、栄養補助剤の投入ができないという問 題があった。 [0003] In addition, with regard to cosmetic techniques, conventionally, the application of a cosmetic agent (functional material) to the skin surface, ultrasonic assistance for promoting the transdermal administration, and transdermal administration by electrophoresis, etc. However, in any case, due to the protective properties of the skin, a sufficient amount of cosmetics could not be applied, which was an important issue. As for skin surface modification technology, coloring materials have been administered to the surface of the skin on the outer side of the upper arm or the eyebrows since ancient times. However, this treatment is very painful and uses a needle. It required skilled skills and there were also safety issues. In addition, in the technique of administration of nutrients and nutritional supplements into the body, administration was limited to oral administration, so if they are solid due to problems with taste, chewing, gastrointestinal digestion and absorption, etc. The degree of freedom of nutrients, etc. is limited due to sugar coating and fine granulation, and when it is in liquid form, its use is almost limited to low-concentration water-soluble solubilizers. There was a problem that nutrients and nutritional supplements could not be added.
[0004] さらには、体内情報の抽出や個体識別の信号のセンシングのために使用する、皮 膚埋め込み電子チップ、いわゆる機能性チップは、従来より、メス等の医療器具を使 い皮膚を開表することによって揷入していたので、皮膚開表部の治癒とともにチップ が体外に押し出され、安定状態で機能性チップを皮膚内に装着させておくことが困 難であり、重要な問題となっていた。  [0004] Furthermore, skin-embedded electronic chips, so-called functional chips, that are used to extract in-vivo information and sense individual identification signals, have conventionally used a medical instrument such as a scalpel to open the skin. As a result, the tip is pushed out of the body as the skin surface is healed, making it difficult to keep the functional tip in the skin in a stable state. It was.
[0005] 他方、人体に安全で環境にも優し!/、材料である糖を基材とした微細針にお!/、ては、 その製造方法として、樹脂加工によく利用される射出成形方法や製糸に利用される 引き上げ方法を使用していたので、製造方法の特性、並びに使用する糖の結晶度 や物理、化学的性質に起因して、加工精度が高ぐかつ強度の大きい微細針の成形 はほとんど不可能であり、これが大きな問題であった。なお、ここで言及する強度とは 、微細針を人体に使用する際に必要な強度であり、それは人体に使用する金属又は ブラスティック製微細針に要求される強度と同程度である。  [0005] On the other hand, it is safe for the human body and environmentally friendly! / For fine needles based on sugar, which is a material! / Injection molding method often used for resin processing as its manufacturing method Because of the characteristics of the manufacturing method and the crystallinity, physical, and chemical properties of the sugar used, the fine needles with high processing accuracy and high strength were used. Molding was almost impossible and this was a big problem. The strength mentioned here is the strength required when the fine needle is used on the human body, which is comparable to the strength required for the metal or plastic fine needle used for the human body.
[0006] このような開発状況下、開発事例として、マルトースのような糖質のみを主成分素材 とした皮膚用微細針を集合化させたマイクロパイル及びその製造方法がある(例えば 、特許文献 1参照)。このマイクロパイルは、確かに廃棄処理が容易で、かつ安全性 の高レ、微細針ではある力 一般のマルトースのような糖質のみを主成分素材にして いるため、結晶粒界に起因して構造体としての強度が小さぐ安定性に欠け、加工精 度も低!/、と!/、う点で問題があった。 特許文献 1 :特開 2003— 238347号公報 [0006] Under such a development situation, as a development example, there is a micropile in which fine needles for skin mainly composed of a carbohydrate such as maltose are assembled and a manufacturing method thereof (for example, Patent Document 1). reference). This micropile is certainly easy to dispose of, and has a high level of safety, a force that is a fine needle. Since it is composed mainly of carbohydrates such as general maltose, it is caused by grain boundaries. There was a problem in that the strength of the structure was small and the stability was poor and the processing accuracy was low! / And! /. Patent Document 1: Japanese Patent Laid-Open No. 2003-238347
[0007] 他の開発事例として、ポリビュルアルコール(PVA)、カルボキシメチルセルロース ナトリウム(CMC— Na)等の水溶性高分子を基材とした針等を含む微小穿孔器 (例 えば、特許文献 2参照)があるが、この経皮用の微細針では高分子材料に起因して 針先を直径 300 m以下に収めるための微細加工を施すことはほとんど不可能であ り、そのような太い先端では加圧なくしては皮膚表面内に挿入させることは困難であり 、例え加圧によって痛みをこらえて揷入できても、基材が高分子材料であるために皮 膚表面内での溶解に相当時間を要すると!/、う点で問題があった。 [0007] As another development example, a micro-perforator including a needle based on a water-soluble polymer such as polybutyl alcohol (PVA) and sodium carboxymethylcellulose (CMC-Na) (for example, see Patent Document 2) However, it is almost impossible to perform micro-processing to keep the needle tip to a diameter of 300 m or less due to the polymer material. Without pressurization, it is difficult to insert into the skin surface. Even if it can be painfully inserted by pressurization, it is equivalent to dissolution in the skin surface because the base material is a polymer material. If it took time!
特許文献 2:特表 2006— 500973号公報  Patent Document 2: Japanese Translation of Special Publication 2006—500973
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 以上の従来技術では、経皮系投薬技術の場合には金属、ブラスティックのような皮 膚内不可溶材からなる微細針では生体内に微細針が残留するという安全上重大な 問題や、微細針に搭載できる医薬剤や機能性材料について量的限界があるという問 題、及びその廃棄処理には多大な環境負荷力 Sかかるという問題があった。また、美容 技術の場合には、皮膚への塗布等によっても皮膚の保護特性に起因して十分な量 の美容剤の皮膚への投与ができないという問題、そして皮膚表面の修飾技術の場合 には、熟練した技術を要求した上でも激痛感及び安全上の問題、さらに栄養剤ゃ栄 養補助剤の体内への投与技術の場合には、投与は経口に限られていたので、それ らが固体状のときには栄養剤等の自由度が制限され、液体状のときには低濃度の水 溶性溶解物に使用がほぼ限定され、広範囲で、かつ十分な量の栄養剤、栄養補助 剤の投入ができないという問題があった。また更には、体内情報の抽出等に使用す る皮膚埋め込み機能性チップの装着技術の場合には、皮膚開表部の治癒とともにチ ップが体外に押し出され、安定状態で機能性チップを皮膚内に装着させておくことが 困難であるという問題があった。  [0008] In the above prior art, in the case of the transdermal dosage technique, there is a serious safety problem that a fine needle made of an insoluble material such as metal or blast material remains in the living body. However, there is a problem that there are quantitative limits on the pharmaceutical agents and functional materials that can be mounted on the fine needles, and there is a problem that a large environmental load is required for the disposal process. Also, in the case of cosmetic technology, there is a problem that a sufficient amount of cosmetic agent cannot be administered to the skin due to the protective properties of the skin even by application to the skin, and in the case of skin surface modification technology However, in the case of a technique for administration of nutrient supplements and nutritional supplements into the body, administration was limited to oral administration, even though demanding skilled techniques, and these were solid. The degree of freedom of nutrients, etc. is limited when it is in a liquid state, and when it is in a liquid state, its use is almost limited to a low-concentration water-soluble lysate. There was a problem. Furthermore, in the case of a technique for mounting a skin-embedded functional chip used for in-vivo information extraction or the like, the chip is pushed out of the body as the skin surface is healed, and the functional chip is removed from the skin in a stable state. There was a problem that it was difficult to keep it inside.
[0009] 他方、糖を基材として使用したマイクロニードルの製造方法として射出成形方法等 を使用していたが、製造方法の特性並びに使用する糖の性質等に起因して、加工精 度が高ぐかつ強度の大きいマイクロニードルの成形はほとんど不可能という点が問 題であった。また、マルトースのような糖質のみを主成分素材とした皮膚用微細針を 集合化させたマイクロパイルがある力 これは一般のマルトースのような糖質のみを主 成分素材にしているため、結晶粒界に起因して構造体としての強度が小さぐ加工精 度も低ぐ安定性にも欠けるという問題があった。さらには、水溶性高分子を利用した 経皮用の微細針があるが、これは微細加工がほとんど不可能で、皮膚への針揷入が 困難であり、加圧による痛みをこらえて揷入しても基材が高分子材料であるために皮 膚表面内での溶解に相当時間を要するという点で問題があった。そして、従来の金 型は、射出成形用で、針に対して反転の針穴に押し込んで成形した。また、キャステ イング (流し込み方法)においても、金型の底面に成形の形状がかたどつていた。い ずれにしても、成形時の流体現象による限界(細部に流れ込まない、タビュランスある いはボーテックスの現象すなわち渦巻きの現象)から、針先の精度 30 m程度に限 界があり、問題であった。さらに、通常は、 1個の金型であるため、射出成形もキャス ティングも離形時に機械的ブレ(あそび)によって、微細な突起を有する成形は不可 能であり、これが問題点でもあった。 On the other hand, an injection molding method or the like has been used as a method for producing microneedles using sugar as a base material, but due to the characteristics of the production method and the properties of the sugar to be used, the processing accuracy is high. The problem is that it is almost impossible to mold microneedles with high strength. It was a title. In addition, there is a micropile that is a collection of microneedles for skin that contains only carbohydrates such as maltose as the main ingredient. This is because the main ingredient is only carbohydrates such as general maltose. Due to the grain boundaries, there was a problem that the strength as a structure was low and the processing accuracy was low and the stability was low. Furthermore, there are fine needles for transcutaneous using water-soluble polymers, but this is almost impossible and fine needle insertion is difficult. However, since the base material is a polymer material, there is a problem in that considerable time is required for dissolution within the skin surface. The conventional mold was for injection molding, and was molded by pushing it into a needle hole that was reversed with respect to the needle. Also in casting (casting method), the shape of the molding was shaped on the bottom of the mold. In any case, the accuracy of the needle tip is limited to about 30 m due to limitations due to fluid phenomena during molding (not flowing into details, turbulence or vortex phenomenon, ie, vortex phenomenon), which was a problem. . Furthermore, since it is usually a single mold, injection molding and casting cannot be performed with fine protrusions due to mechanical blurring at the time of release, which is also a problem.
[0010] 本発明は、このような従来技術が抱えていた様々な問題を、基板側面の上端部又 は基板シート表面に、皮膚内可溶材からなる微細カンチレバーを有した構造である 皮膚表面内揷入用マイクロインプリメント、また機能性チップを微細カンチレバーに搭 載させた皮膚表面内揷入用マイクロインプリメント、さらには医薬剤、栄養剤及びその 補助剤、化粧材、色素材等の機能性材料を含有させた皮膚表面内揷入用マイクロイ ンプリメント、により解決を図るものであり、力、かる皮膚表面内揷入用マイクロインプリメ ント及びその製造方法を提供することを目的とする。そして、これら糖を基材として構 成されるマイクロインプリメントのような糖材部品について、その簡便な組立方法をも 提供することを目的とする。 [0010] The present invention is a structure having a fine cantilever made of a soluble material in the skin at the upper end of the side surface of the substrate or the surface of the substrate sheet. Micro-implement for insertion, micro-implement for insertion in skin surface with functional chip mounted on fine cantilever, and functional materials such as pharmaceutical agents, nutrients and their supplements, cosmetic materials, color materials, etc. It is an object of the present invention to provide a microimplement for penetration into the skin surface and a method for producing the same. It is another object of the present invention to provide a simple assembling method for sugar material parts such as micro-implements composed of these sugars as a base material.
課題を解決するための手段  Means for solving the problem
[0011] 本発明は、上記の目的を達成すベぐ課題を解決するための手段として、  [0011] The present invention provides a means for solving the problem to achieve the above-described object,
(1)基板側面の上端部に、皮膚内可溶材からなる微細カンチレバーを 1又は 2以上 有した構造であるマイクロインプリメントにおレ、て、前記カンチレバーが略錐体の片割 れ形状であり、前記カンチレバーの微細先端部の長幅が 0. 1 m〜100 μ mであり 、前記カンチレバーの先端から末端までの長さが 50 m〜5mmであることを特徴と する皮膚表面内揷入用マイクロインプリメント、並びに、 (1) In a micro-implement having a structure having one or more fine cantilevers made of a soluble material in the skin at the upper end of the side surface of the substrate, the cantilever has a substantially truncated cone shape, The long width of the fine tip of the cantilever is 0.1 m to 100 μm A microimplement for insertion into the skin surface, characterized in that the length from the tip to the end of the cantilever is 50 m to 5 mm, and
(2)基板シート表面に、皮膚内可溶材からなる微細カンチレバーを 1又は 2以上有し た構造であるマイクロインプリメントにおレ、て、前記カンチレバーが略錐体の片割れ形 状であり、前記カンチレバーの微細先端部の長幅が 0. 1 μ m〜100 μ mであり、前 記カンチレバーの先端から末端までの長さが 50 ,1 m〜5mmであることを特徴とする 皮膚表面内揷入用マイクロインプリメント、並びに、  (2) A micro-implement having a structure in which one or more fine cantilevers made of a soluble material in the skin are provided on the surface of the substrate sheet. The length of the fine tip of the cantilever is 0.1 μm to 100 μm, and the length from the tip to the end of the cantilever is 50,1 m to 5 mm. Micro-implementation, and
(3)前記カンチレバーがくびれ形状部を有することを特徴とする前記(1)又は(2)の 皮膚表面内揷入用マイクロインプリメント、並びに、  (3) The microimplement for insertion into the skin surface according to (1) or (2), wherein the cantilever has a constricted shape part, and
(4)前記基板の基材が、糖類、セルロース、固形でんぷん、紙、木、プラスティック、 金属、力、ら選ばれる 1又は 2以上であることを特徴とする前記(1 )から(3)いずれかの 皮膚表面内揷入用マイクロインプリメント、並びに、  (4) Any of (1) to (3) above, wherein the base material of the substrate is one or more selected from saccharides, cellulose, solid starch, paper, wood, plastic, metal, force, etc. Kano's micro-implement for penetration into the skin surface,
(5)前記基板シートの基材が、プルラン、又はプルラン及びマルトースの複合糖材で あることを特徴とする前記(2)又は(3)の皮膚表面内揷入用マイクロインプリメント、並 びに、  (5) The microimplement for insertion into the skin surface of (2) or (3) above, wherein the base material of the substrate sheet is pullulan or a complex sugar material of pullulan and maltose, and
(6)前記皮膚内可溶材力 S、無水非結晶マルトースであることを特徴とする前記(1)か ら(5)いずれかの皮膚表面内揷入用マイクロインプリメント、並びに、  (6) The microimplement for insertion into the skin surface according to any one of (1) to (5) above, wherein the soluble material strength S in the skin is anhydrous amorphous maltose, and
(7)前記皮膚内可溶材が、無水非結晶マルトース及びプルランの複合糖材であるこ とを特徴とする前記(1)から(5)いずれかの皮膚表面内揷入用マイクロインプリメント 、並びに、  (7) The microimplement for insertion into the skin surface according to any one of (1) to (5) above, wherein the soluble material in the skin is a complex sugar material of anhydrous amorphous maltose and pullulan, and
(8)前記カンチレバーが、蛋白質、 DNA、医薬剤、栄養剤、栄養補助剤、化粧材、 色素材、金属、金属酸化物、マイクロカプセル、力 選ばれる 1又は 2以上を含有す ることを特徴とする前記(1)から(7)いずれかの皮膚表面内揷入用マイクロインプリメ ント、並びに、  (8) The cantilever contains one or more selected from protein, DNA, pharmaceutical agent, nutritional agent, nutritional supplement, cosmetic material, color material, metal, metal oxide, microcapsule, force. (1) to (7) the microimplement for insertion into the skin surface, and
(9)前記カンチレバーの表面に、機能性チップを搭載した構造であることを特徴とす る前記(1)から(8)いずれかの皮膚表面内揷入用マイクロインプリメント、並びに、 (9) The microimplement for insertion into the skin surface according to any one of (1) to (8) above, wherein a functional chip is mounted on the surface of the cantilever, and
(10)前記カンチレバーの内部に、機能性チップを搭載した構造であることを特徴と する前記(1)から(8)いずれかの皮膚表面内揷入用マイクロインプリメント、並びに、 (11 )前記機能性チップが、半導体チップ、集積回路チップ、温度センサーチップ、 蛋白質チップ、 DNA含有チップ、医薬剤含有チップ、栄養剤含有チップ、栄養補助 剤含有チップ、化粧材含有チップ、色素材含有チップ、金属含有チップ、マイクロ力 プセル含有チップ、力、ら選ばれる 1又は 2以上であることを特徴とする前記(9)又は( 10)の皮膚表面内揷入用マイクロインプリメント、並びに、 (10) The microimplement for insertion into the skin surface according to any one of (1) to (8), wherein the cantilever has a structure in which a functional chip is mounted; and (11) The functional chip is a semiconductor chip, integrated circuit chip, temperature sensor chip, protein chip, DNA-containing chip, pharmaceutical agent-containing chip, nutrient-containing chip, nutritional supplement-containing chip, cosmetic material-containing chip, color material (9) or (10) the micro-implement for insertion into the skin surface, characterized in that it is 1 or 2 or more selected from a containing chip, a metal-containing chip, a micro-power chip, a force, and the like, and
(12)前記機能性チップの表面が、マルトース、マルトース及びプルランの複合糖材、 ポリエチレン、ポリプロピレン、力も選ばれる一材料により被覆されていることを特徴と する前記(11)の皮膚表面内揷入用マイクロインプリメント、並びに、  (12) The surface of the functional chip is covered with a composite sugar material of maltose, maltose and pullulan, polyethylene, polypropylene, and one material of which force is also selected. Micro-implementation, and
(13) 1又は 2以上の微細カンチレバーの反転形状の凹部を上面端部に有するカン チレバー用マイクロ金型ヘッドと、基板の反転形状の凹部を有する基板用金型より構 成されるマイクロインプリメント用金型にお!/、て、前記マイクロインプリメント用金型は 温度制御機構を有し、かつ前記カンチレバー用マイクロ金型ヘッド及び前記基板用 金型が独立に可動できる機構を有するマイクロインプリメント用金型を用いて作製す ることを特徴とする前記(1)又は(3)の皮膚表面内揷入用マイクロインプリメントの製 造方法、並びに、  (13) For micro-implement, which consists of a cantilever micro mold head having one or two or more fine cantilever inversion-shaped recesses on the upper surface end and a substrate mold having a substrate inversion-shaped recess The micro-implement mold has a temperature control mechanism, and the micro-mold head for the cantilever and the mechanism for allowing the substrate mold to move independently. (1) or (3), a method for producing a microimplement for insertion into the skin surface, and
(14) 1又は 2以上の微細カンチレバーの反転形状の凹部を上面端部に有するカン チレバー用マイクロ金型ヘッドにおいて、前記マイクロ金型ヘッドは温度制御機構を 有し、かつ基板シート表面に対して垂直に可動できる機構を有するマイクロ金型へッ ドを用いて作製することを特徴とする前記(2)又は(3)の皮膚表面内揷入用マイクロ インプリメントの製造方法、並びに、  (14) In a micro mold head for a cantilever having a reversal-shaped concave portion of one or more fine cantilevers at an upper end, the micro mold head has a temperature control mechanism and is on the surface of the substrate sheet. (2) or (3) the method for producing a microimplement for insertion into the skin surface, wherein the microimplement head is manufactured using a micro mold head having a vertically movable mechanism, and
(15) 2体の糖材部品のうちの少なくとも一方力 S、プルラン、又はプルラン及びマルト ースの複合糖材で構成されており、前記 2体の糖材部品同士を接触させ、溶着させ ることを特徴とする糖材部品組立方法、並びに、  (15) It is composed of at least one of the two sugar material parts S, pullulan, or a composite sugar material of pullulan and maltose, and the two sugar material parts are brought into contact with each other and welded together. A method for assembling sugar material parts, and
(16)前記(15)のプルラン、又はプルラン及びマルトースの複合糖材で構成されて (16) The pullulan of (15) or a complex sugar material of pullulan and maltose
V、る前記糖材部品が基板又は基板シートであり、基板側面の上端部又は基板シート 表面に他方の糖材部品を接触させ、溶着させることを特徴とする糖材部品組立方法 他方の糖材部品が前記(3)のカンチレバーであり、前記カンチレバーにおける皮膚 内可溶材が無水非結晶マルトース、又は無水非結晶マルトース及びプルランの複合 糖材であることを特徴とする前記(16)の糖材部品組立方法、 V. The sugar material component is a substrate or a substrate sheet, and the other sugar material component is brought into contact with and welded to the upper end of the side surface of the substrate or the surface of the substrate sheet. The other sugar material part is the cantilever of (3), and the soluble material in the skin of the cantilever is anhydrous amorphous maltose or a complex sugar material of anhydrous amorphous maltose and pullulan (16) Sugar material parts assembly method,
としたものである。  It is what.
発明の効果  The invention's effect
[0012] 本発明の皮膚表面内揷入用マイクロインプリメントでは、皮膚表面内に挿入される 微細カンチレバーが皮膚内可溶材を基材とするために、皮膚表面内で速やかに溶 解するので安全性が高ぐ無痛であり、使用方法が簡便であり、そして微細カンチレ バーに医薬剤、美容剤、栄養剤及びその補助剤、色素材等の機能性材料を自由に 含有させることができるために、それらの剤及び材における種類制約や量的限界が 少なぐまたカンチレバーがくびれ形状部を有することにより、マイクロインプリメントの 皮膚表面内揷入時に、そのくびれ形状部においてカンチレバーが容易に折れ易くな り、簡便にかつ安全にマイクロインプリメントの皮膚表面内揷入を行うことが可能であ るという特徴的効果を有する。そして、機能性チップを搭載したカンチレバーを使用 すれば、安定状態にて皮膚表面内に機能性チップを簡便に無痛で装着可能であり 、またカンチレバーの基材である皮膚内可溶剤を無水非結晶マルトース、又は無水 非結晶マルトース及びプルランの複合糖材とすることにより、人体への安全性が高く 、結晶粒界がなぐ構造体としての強度が大きぐ加工精度が高い、安定性の高い力 ンチレバーが得られ、更には、基板又は基板シートの基材をも糖類とすることで、基 材の水溶性を利用して、廃棄処理にぉレ、て環境負荷が極めて少な!/、と!/、う効果を有 する。  [0012] In the micro-implement for insertion into the skin surface of the present invention, since the fine cantilever inserted into the skin surface is based on the soluble material in the skin, it is dissolved quickly within the skin surface. Is painless, easy to use, and can contain functional materials such as pharmaceutical agents, beauty agents, nutritional supplements and adjuvants, and color materials in a fine cantilever. There are few kind restrictions and quantitative limits in these agents and materials, and the cantilever has a constricted shape part, so that when the microimplement is inserted into the skin surface, the cantilever easily breaks in the constricted shape part. It has the characteristic effect that it is possible to easily and safely insert the microimplement into the skin surface. If a cantilever equipped with a functional chip is used, the functional chip can be easily and painlessly attached to the skin surface in a stable state, and the skin solubilizer, which is the base material of the cantilever, is anhydrous and amorphous. By using a complex sugar material of maltose or anhydrous amorphous maltose and pullulan, the safety of the human body is high, the strength as a structure without crystal grain boundaries is high, the processing accuracy is high, and the stability is high. Furthermore, by making the substrate of the substrate or the substrate sheet into saccharides, the water-solubility of the substrate can be used to reduce the environmental impact due to the waste treatment! /, And! / Has a positive effect.
[0013] 上記効果に加えて、本発明のマイクロインプリメントでは、カンチレバーが略錐体の 片割れ形状をしているために、常温にて、水平面をなす片割れ面に機能性チップの 搭載が容易であり、また、常温搭載のために機能性チップの耐熱性はそれほど要求 されず、さらには、機能性チップの表面をマルトース、マルトース及びプルランの複合 糖材、ポリエチレン等で被覆することにより、機能性チップとカンチレバーの片割れ面 (機能性チップの搭載面)との接着が強くなるという効果を有する。また、本発明のマ イク口インプリメントでは、カンチレバー内に機能性チップを内包させることにより、カン チレバーの皮膚表面内への揷入抵抗を減らすことが可能であり、この場合には機能 性チップの耐熱性が要求されるものの、先述の機能性チップの表面をマルトース、マ ルトース及びプルランの複合糖材、ポリエチレン等で被覆することにより熱対策が可 能であり、さらには、機能性チップがカンチレバーに内包されているので物理的損傷 を受けにくいという特徴的効果をも有する。 [0013] In addition to the above effects, in the micro-implement of the present invention, since the cantilever has a substantially pyramid-shaped split shape, it is easy to mount a functional chip on a split surface that forms a horizontal plane at room temperature. Furthermore, the heat resistance of the functional chip is not so required because it is mounted at room temperature, and further, the functional chip is covered with a composite sugar material of maltose, maltose and pullulan, polyethylene, etc. This has the effect of strengthening the adhesion between the cantilever and the one-sided surface of the cantilever (the mounting surface of the functional chip). Further, in the microphone mouth implementation of the present invention, the cantilever is encapsulated with a functional chip, thereby It is possible to reduce the penetration resistance of the chiller into the skin surface. In this case, although the heat resistance of the functional chip is required, the surface of the functional chip described above is combined with maltose, maltose and pullulan. Heat protection is possible by coating with sugar material, polyethylene, etc. Furthermore, since the functional chip is contained in the cantilever, it has a characteristic effect that it is hardly damaged.
[0014] 本発明のマイクロインプリメントの製造方法では、カンチレバー用マイクロ金型ヘッド と基板の反転形状の凹部を有する基板用金型より構成されるマイクロインプリメント用 金型において、このマイクロインプリメント用金型が温度制御機構を有し、かっこの力 ンチレバー用マイクロ金型ヘッド及び基板用金型が独立に可動できる機構を有する ので、加工精度が高ぐ構造上強度が大きい基板型のマイクロインプリメントを簡便に 製造することが可能である。また、本製造方法では、温度制御機構を有するカンチレ バー用マイクロ金型ヘッドが、基板シート表面に対して垂直に可動できる機構を有す るので、加工精度が高ぐ構造上強度が大きい基板シート型のマイクロインプリメント を簡便に製造することが可能であるという効果を有する。さらに、本発明においては、 キャスティングの金型の底面を使わず、流体の限界を避け、金型の端 (表面部)を利 用して突起部を開放し、流体の流れ込みが可能にした。また、突起部 (針部)と基盤 部を分け、機械的ブレをなくして微細な部分を先行して成形 (離形)し、その基盤部を 離形する方法である分離金型を採用することで、従来の金型の問題を克服するという 特徴的効果を有する。 [0014] In the microimplement manufacturing method of the present invention, in the microimplement mold constituted by the micromold head for cantilever and the substrate mold having the concave portion having the inverted shape of the substrate, Has a temperature control mechanism, and has a mechanism that allows the parenthesis micro mold head and substrate mold to move independently, making it easy to manufacture substrate-type micro-implements with high processing accuracy and high structural strength. Is possible. Further, in this manufacturing method, the micro mold head for cantilever having a temperature control mechanism has a mechanism that can move vertically with respect to the surface of the substrate sheet, so that the processing accuracy is high and the substrate sheet has high structural strength. This has the effect that the micro-implement of the mold can be easily manufactured. Furthermore, in the present invention, the bottom of the casting mold is not used, the limit of the fluid is avoided, and the protrusion is opened using the end (surface part) of the mold so that the fluid can flow. In addition, the projection (needle part) and the base part are separated, the mechanical mold is eliminated, the fine part is formed in advance (release), and the separation mold is used to release the base part. This has the characteristic effect of overcoming the problems of conventional molds.
[0015] 本発明の糖材部品の組立方法では、 2体の糖材部品のうちの少なくとも一方力 プ ノレラン、又はプルラン及びマルトースの複合糖材で構成されているので、プルランの 粘着性を利用して、これらの糖材部品同士を接触させ、溶着させることが可能となり、 構造上強度が大きい糖材部品を簡便に組立てることができるという効果を有する。ま た、本発明の組立方法では、上記の糖材部品がプルラン等で構成される基板又は 基板シートとすることにより、基板側面の上端部又は基板シート表面に他方の糖材部 品を接触させ、溶着させることが可能であり、構造上強度が大きい糖材部品を簡便に 組立てることができるという効果を有する。さらに、本組立方法では、他方の糖材部品 をカンチレバーとし、このカンチレバーにおける皮膚内可溶材が無水非結晶マルトー ス、又は無水非結晶マルトース及びプルランの複合糖材とすれば、構造上強度が大 きぐ加工精度の高い、皮膚表面内揷入用マイクロインプリメントを簡便に組立てるこ と力 Sできると!/、う特徴的効果をも有する。 [0015] In the method for assembling a sugar material part of the present invention, the sugar material part is composed of at least one of the two sugar material parts, or a complex sugar material of pullulan and maltose, and therefore uses the adhesiveness of pullulan. Thus, these sugar material parts can be brought into contact with each other and welded, and the sugar material parts having a high structural strength can be easily assembled. In the assembling method of the present invention, the sugar material component is a substrate or a substrate sheet made of pullulan or the like, so that the other sugar material component is brought into contact with the upper end portion of the substrate side surface or the substrate sheet surface. It has the effect that it can be welded and a sugar material part having a high structural strength can be easily assembled. Furthermore, in this assembly method, the other sugar material part is a cantilever, and the soluble material in the skin of this cantilever is anhydrous amorphous maltose. Or a complex sugar material of anhydrous amorphous maltose and pullulan, it is possible to easily assemble a microimplement for insertion into the skin surface with high structural accuracy and high processing accuracy! It also has a characteristic effect.
図面の簡単な説明 Brief Description of Drawings
園 1]本発明の基板型マイクロインプリメントを示す外形図である。 1] It is an outline drawing showing a substrate type micro-implement of the present invention.
園 2]本発明の基板シート型マイクロインプリメントを示す外形図である。 2] An outline view showing a substrate sheet type micro-implement of the present invention.
園 3]本発明における円錐体の片割れ形状を有するカンチレバーの拡大透視図であ 園 4]本発明における四角錐体の片割れ形状を有するカンチレバーの拡大透視図で ある。 Garden 3] An enlarged perspective view of a cantilever having a half-conical shape of a cone in the present invention. 4) An enlarged perspective view of a cantilever having a half-shaped shape of a quadrangular pyramid in the present invention.
園 5]基板型マイクロインプリメントの断面を示す概略図である。 5] It is a schematic diagram showing a cross section of a substrate type micro-implement.
[図 6]くびれ形状部を有する基板型マイクロインプリメントの断面を示す概略図である 園 7]機能性チップを搭載した基板型マイクロインプリメントの断面を示す概略図であ 園 8]機能性チップ搭載型マイクロインプリメントの皮膚表面内挿入時の概略模式図 である。  [Fig. 6] Schematic diagram showing a cross section of a substrate type micro-implement having a constricted portion. 7] Schematic diagram showing a cross section of a substrate type micro implement having a functional chip. 8] Functional chip mounting type. FIG. 3 is a schematic diagram when the microimplement is inserted into the skin surface.
園 9]機能性チップ搭載型マイクロインプリメントの皮膚表面内挿入後の概略模式図 である。 9] It is a schematic diagram after insertion of a functional-chip-mounted microimplement into the skin surface.
園 10]機能性材料混合型マイクロインプリメントの皮膚表面内揷入時の概略模式図 である。 10] This is a schematic diagram of the functional material mixed type micro-implement when it is inserted into the skin surface.
園 11]機能性材料混合型マイクロインプリメントの皮膚表面内挿入後の概略模式図 である。 11] This is a schematic diagram of the functional material mixed type micro-implement after insertion into the skin surface.
園 12]機能性材料の皮膚内拡散浸透の様子を示す概略模式図である。 12] It is a schematic diagram showing the state of functional material diffusion and penetration into the skin.
[図 13]カンチレバー用マイクロ金型ヘッドと基板用金型の組合せを示す概略模式図 である。  FIG. 13 is a schematic diagram showing a combination of a micro mold head for a cantilever and a mold for a substrate.
[図 14]駆動式マイクロ金型ヘッドと基板シート上のカンチレバーを示す概略模式図で ある。 符号の説明 FIG. 14 is a schematic diagram showing a driving micro mold head and a cantilever on a substrate sheet. Explanation of symbols
1 カンチレバー 1 Cantilever
2 基板 2 Board
3 基板側面 3 Side of the board
4 基板シート 4 Board sheet
5 円錐体の片割れ形状のカンチレバー  5 Cantilever with half-cut shape of cone
6 四角錐体の片割れ形状のカンチレバー 6 Cantilever with a half-cut shape of a quadrangular pyramid
7 カンチレバーの片割れ面 7 One side of cantilever
8 基板上面 8 Board top surface
9 くびれ形状部を有するカンチレバー  9 Cantilever with constricted shape
10 機能性チップ 10 Functional chips
11 皮膚表面 11 Skin surface
12 機能性チップを搭載した基板型マイクロインプリメント  12 Substrate type micro-implement with functional chip
13 機能性チップを搭載したくびれ形状部を有する基板型マイクロインプリメント 14 皮膚表面内に残留した機能性チップ  13 Substrate-type micro-implement with a constricted part with a functional chip 14 Functional chip remaining in the skin surface
15 皮膚表面内に残留した機能性チップ (くびれ形状部を有したカンチレバー使用 の場合)  15 Functional chips remaining on the skin surface (when using a cantilever with a constricted part)
16 機能性材料含有カンチレバーの基板型マイクロインプリメント  16 Substrate-type micro-implement of functional material-containing cantilevers
17 機能性材料含有でくびれ形状部を有したカンチレバーの基板型マイクロインプリ メント  17 Cantilever substrate type micro-implement with functional material and constricted shape
18 機能性材料含有のカンチレバー  18 Cantilevers containing functional materials
19 機能性材料含有のくびれ形状部を有したカンチレバー  19 Cantilever with constricted shape containing functional material
20 皮膚内に残留した機能性材料含有のカンチレバー  20 Cantilevers containing functional materials remaining in the skin
21 皮膚内に残留した機能性材料含有のくびれ形状部を有したカンチレバー 21 Cantilevers with constricted shapes containing functional materials remaining in the skin
22 機能性材料の拡散浸透領域 22 Diffusion penetration area of functional materials
23 機能性材料の拡散浸透領域 (くびれ形状部を有したカンチレバー使用の場合) 24 マイクロ金型ヘッド  23 Diffusion penetration area for functional materials (when using cantilevers with constricted parts) 24 Micro mold head
25 基板用金型 26 温度制御用ヒーター 25 PCB mold 26 Heater for temperature control
27 駆動ステージ  27 Drive stage
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下に、本発明における皮膚表面内揷入用マイクロインプリメント、その製造方法 及び糖材部品組立方法の実施形態につ!、て説明するが、本発明は以下の実施形 態に何ら限定されるものではない。  [0018] In the following, embodiments of the micro-implement for insertion into the skin surface according to the present invention, a manufacturing method thereof, and a sugar material component assembling method will be described. However, the present invention is not limited to the following embodiments. Is not to be done.
[0019] 本発明において、カンチレバーとは、構造的には片持ち梁を意味し、カンチレバー の先端部が自由端で、カンチレバーが基板又は基板シートと接している末端部が固 定端である。カンチレバーの形状は、四角錐体、多角錐体、円錐体等に近いほぼ錐 体 (すなわち、略錐体という)を、錐の頂点から錐底面へ下ろした垂線を通る平面で 切り取った半分、すなわち片割れ形状をしており、これを本発明では略錐体の片割 れ形状と称する。但し、上記の平面での略錐体の切り取りは、その体積がほぼ半分 になるように切り取る、換言すれば、略錐体の底面をその底面積のほぼ半分に分ける ように上記平面を錐底面へ下ろせばよい。例えば、略錐体がほぼ円錐体の場合、そ の錐底面はほぼ円形であり、上記の平面がその円形の直径を示す線を通れば、その 片割れ形状 (このときのカンチレバー形状を図 3に示す)はその円錐体のほぼ半分の 体積となるのである。また例えば、略錐体がほぼ四角錐体の場合、その錐底面はほ ぼ四角形であり、上記の平面がその四角形の対角線を通れば、その片割れ形状 (こ のときのカンチレバー形状を図 4に示す)はその四角錐体のほぼ半分の体積となるが 、その錐底面積及びその錐体積を半分にするのであれば上記の平面は錐底面の対 角線以外の任意の線を通ってもよい。従って、略錐体の片割れ形状における片割れ 面は水平なために、その片割れ面に機能性チップを容易に搭載することが可能であ  In the present invention, the cantilever means structurally a cantilever, and the tip of the cantilever is a free end, and the end where the cantilever is in contact with the substrate or the substrate sheet is a fixed end. The shape of the cantilever is a half of a pyramid that is close to a quadrangular pyramid, polygonal pyramid, cone, etc. (that is, a substantially pyramid) cut by a plane that passes through a perpendicular extending from the apex of the cone to the bottom of the cone. It is in the form of a single-sided crack, which is referred to as a substantially conical piece in the present invention. However, the cutting of the substantially cone in the plane is cut so that its volume is almost halved, in other words, the plane is divided so that the bottom of the cone is divided almost in half of its bottom area. Just go down. For example, if the cone is almost a cone, the bottom of the cone is almost circular.If the plane passes through a line indicating the diameter of the circle, its half-cracked shape (the cantilever shape at this time is shown in Fig. 3). (Shown) is about half the volume of the cone. Also, for example, when the substantially pyramid is a substantially quadrangular pyramid, the bottom surface of the cone is almost rectangular, and if the above plane passes through the diagonal of the square, its half-broken shape (the cantilever shape at this time is shown in FIG. The volume is almost half that of the pyramid. However, if the cone bottom area and cone volume are halved, the above plane can pass through any line other than the diagonal line of the cone base. Good. Therefore, since the one-side crack surface of the one-sided shape of the substantially pyramid is horizontal, it is possible to easily mount a functional chip on the one-side crack surface.
[0020] 本発明におけるカンチレバーの大きさは、カンチレバーの微細先端部の長幅、すな わち略錐体の頂点部を真正面にみたときの形(略多角形又は略円形)における最長 の径、が 0. 1〃111〜100〃111の範囲が好ましぃが、これは0. l〃m以下ではその製 造が物理的に不可能であり、 100 in以上では皮膚表面内への物理的抵抗が大き ぐさらには刺痛を感じるからである。また、カンチレバーの先端から末端までの長さ( すなわち、上記の垂線の長さ)は 50〃 m〜5mmの範囲が好ましいが、これは 50〃 m 以下ではカンチレバーの皮膚表面内の深部への到達が不可能であり、 5mm以上で はカンチレバーが長すぎて構造上の強度を確保できないからである。尚、本発明に おけるマイクロインプリメントの皮膚表面内揷入とは、実質的には、皮膚表面からその 内部へカンチレバーを揷入するという意味であり、皮膚にはその表面に位置する表 皮(角質層を含む)、その下に在る真皮、さらに下に在る皮下組織がある力 その揷 入目的に応じて皮膚内の揷入部位を特定し、それに合わせてカンチレバーの先端 力、ら末端までの長さを決めればょレ、。 [0020] The size of the cantilever in the present invention is the longest diameter in the shape (substantially polygonal or substantially circular) of the long width of the fine tip of the cantilever, that is, when the apex of the approximate cone is viewed directly in front. However, it is preferably in the range of 0.1〃111 to 100、111, but this is physically impossible at less than 0.1 l 、 m, and physically into the skin surface at more than 100 in. This is because there is a great deal of resistance and a stinging sensation. Also, the length from the tip to the end of the cantilever ( In other words, the length of the above normal line) is preferably in the range of 50 mm to 5 mm. However, if it is 50 mm or less, the cantilever cannot reach the deep part of the skin surface. This is because it is too long to ensure structural strength. In the present invention, the insertion of the micro-implement into the skin surface substantially means that the cantilever is inserted into the skin from the skin surface, and the skin (keratin) located on the surface of the skin is called the skin. Layer)), the underlying dermis, and the underlying subcutaneous tissue. The insertion site in the skin is identified according to the insertion purpose, and the cantilever tip force is adjusted accordingly. If you decide the length of
本発明における基板、基板シートとは、上記のカンチレバーがその末端部を固定す るのに必要な支持体を指すものである力 カンチレバーが、基板側面の上端部にそ の末端部を固定する場合(図 1に示す)と、カンチレバーが基板シート表面にその末 端部を固定する場合(図 2に示す)とがあり、各々、基板型の皮膚表面内揷入用マイ クロインプリメント、基板シート型の皮膚表面内揷入用マイクロインプリメントと称する。 また、図 3には、図 1で示された基板型マイクロインプリメントにおける一部カンチレバ 一の拡大透視図を示すが、これはカンチレバーがほぼ円錐体の片割れ形状である 場合であり、その底面はほぼ半円を示している。そして、図 4には、図 2で示された基 板シート型マイクロインプリメントにおける一部カンチレバーの拡大透視図を示すが、 これはカンチレバーがほぼ四角錐体の片割れ形状である場合であり、その底面は三 角形を示している。図 3で示されたカンチレバーの断面を図 5に示す力 S、特に基板型 マイクロインプリメントではカンチレバーの片割れ面 7と基板上面 8は図 5に示されるよ うにほぼ段差なく連なっている。また、基板シート型マイクロインプリメントでは、カンチ レバーの片割れ面は基板シート表面に対して垂直に立てることが好適である力 S、さら にはカンチレバー用金型ヘッドにおける基板シートとの接触面と基板シート面は通常 は平行である力 この平行な接触面を基板シート面に対して傾けることにより、カンチ レバーの片割れ面を基板シート表面に対して垂直以外の角度で立てることも可能で ある。尚、基板及び基板シートの形状、大きさは特に限定されるものではなぐ皮膚表 面内揷入用マイクロインプリメントの使用目的に応じて形状、大きさを特定すればよい 。さらに、本発明のマイクロインプリメントは、使用目的に応じて、カンチレバーを基板 又は基板シートに 1又は 2以上有する構造であればよい。ここでインプリメントとは、半 導体集積回路の設計分野においては装着、実装という意味に使われるが、本発明に おいては、カンチレバーを皮膚表面内に装着するための装着に供するツール (すな わち、装着具)という意味である。 In the present invention, the substrate and the substrate sheet refer to a force that is necessary for the above-mentioned cantilever to fix the end portion thereof. When the cantilever fixes the end portion to the upper end portion of the side surface of the substrate, (Shown in Fig. 1) and the cantilever that fixes the end of the substrate sheet surface (shown in Fig. 2). This is called a micro-implement for penetration into the skin surface. Fig. 3 shows an enlarged perspective view of a part of the cantilever in the substrate type micro-implement shown in Fig. 1. This is a case where the cantilever is almost in the shape of a half piece of a cone, and its bottom surface is almost the same. Shows a semicircle. Fig. 4 shows an enlarged perspective view of a part of the cantilever in the substrate sheet type micro-implement shown in Fig. 2. This is a case where the cantilever has a substantially half-pyramidal shape, and its bottom surface. Indicates a triangle. The cross-section of the cantilever shown in FIG. 3 is the force S shown in FIG. 5, particularly in the case of a substrate type microimplement, the cantilever's half-break surface 7 and the substrate top surface 8 are connected with almost no step as shown in FIG. In addition, in the substrate sheet type micro-implement, the force S that is preferable to make the one side of the cantilever split vertically with respect to the surface of the substrate sheet, and the contact surface with the substrate sheet in the mold head for the cantilever and the substrate sheet The surface is normally parallel. By tilting this parallel contact surface with respect to the substrate sheet surface, it is possible to make the one-side crack surface of the cantilever stand at an angle other than perpendicular to the substrate sheet surface. It should be noted that the shape and size of the substrate and the substrate sheet are not particularly limited, and the shape and size may be specified according to the intended use of the micro-implement for insertion into the skin surface. Further, the micro-implement of the present invention can be mounted on the cantilever according to the purpose of use. Alternatively, it may be a structure having one or two or more in the substrate sheet. In the present invention, the term “implement” is used to mean mounting and mounting in the design field of a semiconductor integrated circuit, but in the present invention, a tool (that is, a tool used for mounting a cantilever on a skin surface) In other words, it means wearing equipment).
[0022] 本発明におけるカンチレバーは、図 6に示したように、その先端部から末端部まで の間にくびれ形状部を有するものであることが好適である力 S、これは皮膚表面内へマ イク口インプリメントを揷入した際、皮膚表面内に挿入されているカンチレバーをより容 易に、より安定して、皮膚内に残すために、カンチレバーの先端部から末端部までの 間にくびれ形状部をつくり、この形状部分においてカンチレバーを折れ易くするため である。これにより、簡便にかつ安全にマイクロインプリメントの皮膚表面内揷入を行う ことが可能であり、その後、皮膚内可溶剤であるカンチレバーは速やかに皮膚表面 内で溶解する。尚、このくびれ形状には、階段状のくびれや曲線をなすくびれ等があ る力 そのくびれの形状は特に限定されない。 [0022] As shown in Fig. 6, the cantilever according to the present invention preferably has a constriction-shaped portion between its distal end portion and the distal end portion. In order to leave the cantilever inserted in the skin surface more easily, more stably and in the skin when inserting the mouth implement, the constricted part between the tip and the end of the cantilever This is to make the cantilever easy to break at this shape. This makes it possible to insert the microimplement into the skin surface easily and safely, and then the cantilever, which is a solubilizing agent in the skin, quickly dissolves in the skin surface. This constriction shape has a stepped constriction or a curved constriction. The constriction shape is not particularly limited.
[0023] 本発明における基板シートは、基板をシート状にしたものを指し、従ってその材質 である基材は基板と同じものである。本発明における基板、及び基板シートにおける 基板は、糖類、セルロース、固形でんぷん、紙、木、プラスティック、金属、力、ら選ばれ る 1又は 2以上であることが好適である。上記の糖類としては、単糖類ではグルコース 、フルクトース、ガラクトース、二糖類では、マルトース、スクロース、ラタトース、セロビ オース、トレハロースなどがあげられ、その他には三糖類、四糖類などのオリゴ糖、さ らにはキシリトール、マルチトール、還元水飴などの糖アルコール、またプルランなど の多糖類等があげられ特に限定されないが、廃棄容易性の観点からは水溶性糖類 が好ましい。このうち、基板シートとしては、糖類の中でも、プルラン、又はプルラン及 びマルトースの複合糖材で構成されて!/、ることが好まし!/、が、これはプルランの粘着 性を利用して、カンチレバーを強く固定できるからである。また、マルトースを用いる 理由は、プルランとの混合による複合糖材化が容易であり、安価で入手しやすいから でもある。この場合、プルラン及びマルトースの混合割合は特に限定されない。  [0023] The substrate sheet in the present invention refers to a substrate in the form of a sheet, and therefore the base material which is the material thereof is the same as the substrate. The substrate in the present invention and the substrate in the substrate sheet are preferably one or more selected from saccharides, cellulose, solid starch, paper, wood, plastic, metal, force and the like. Examples of the saccharide include glucose, fructose, galactose for monosaccharides, and maltose, sucrose, ratatoose, cellobiose, trehalose for disaccharides, and other oligosaccharides such as trisaccharides and tetrasaccharides. Examples thereof include sugar alcohols such as xylitol, maltitol, and reduced starch syrup, and polysaccharides such as pullulan. However, water-soluble saccharides are preferable from the viewpoint of easy disposal. Of these, the substrate sheet is preferably composed of pullulan or a complex sugar material of pullulan and maltose among saccharides! /, But it is preferable to use the adhesiveness of pullulan. This is because the cantilever can be firmly fixed. The reason for using maltose is that it is easy to make a complex sugar material by mixing with pullulan, and it is cheap and easily available. In this case, the mixing ratio of pullulan and maltose is not particularly limited.
[0024] 本発明における皮膚内可溶材とは、文字通り、皮膚内で溶解可能な材料を意味し ており、例えば、糖類、キチン、キトサン等の生体親和性材料、ポリ乳酸等の生分解 性材料、等が挙げられる力 そのうちでは生体内での溶解速度が最も大きい糖類が 好ましい。また、糖類の中でも、無水非結晶マルトース、又は無水非結晶マルトース 及びプルランの複合糖材であることが、人体への安全性、皮膚内即溶解性の面で好 ましぐそして結晶粒界がないために加工精度の高いカンチレバーを得ることができ るので好ましい。ここで無水非結晶マルトースとは、結晶水を除去したマルトースであ り、かつそれが非結晶質(アモルファス)であるものをいうが、この無水非結晶マルトー スは低分子量かつ無水物であるのでプルランのような多糖類水溶物との混合がし易 く、すなわち無水非結晶マルトースとプルラン水溶物を混合するとプルラン水和分子 が容易にマルトース内に取り込まれ、混合状態の良い複合糖材が得られ易い。これ をカンチレバーの基材に使用した場合、無水非結晶マルトース単独使用の場合と同 様に、結晶粒界がないために加工精度の高いカンチレバーを得ることができるだけ でなぐ皮膚表面内での溶解性も向上し、さらにはプルランの粘着性により、カンチレ バーの錐底面と基板側面や基板シート表面との接着が極めて容易となる。この場合 、無水非結晶マルトース及びプルランの混合割合は特に限定されないが、 1 : 0〜; 1 : 9が好ましぐさらにプルランの特性を強調する場合には、 1 : 1以上が好ましい。尚、 上記の皮膚内即溶解性とは、皮膚内における溶解が極めて早いという意味であり、 皮膚内可溶材からなるカンチレバーを皮膚表面内に揷入後、安全性及び簡便性の 観点からは、そのカンチレバーが遅くとも 60秒程度で溶解することが好ましぐさらに は遅くとも 30秒程度で溶解することが好ましい。 [0024] The skin-soluble material in the present invention literally means a material that can be dissolved in the skin. For example, biocompatible materials such as saccharides, chitin and chitosan, and biodegradation of polylactic acid and the like. Among them, saccharides having the highest dissolution rate in vivo are preferable. Among saccharides, anhydrous amorphous maltose or a complex sugar material of anhydrous amorphous maltose and pullulan is preferred in terms of safety to the human body and immediate solubility in the skin, and there is no grain boundary. Therefore, it is preferable because a cantilever with high processing accuracy can be obtained. Here, anhydrous amorphous maltose refers to maltose from which water of crystallization has been removed and it is amorphous (amorphous), but this anhydrous amorphous maltose is low molecular weight and anhydrous. It is easy to mix with polysaccharide aqueous solutions such as pullulan, that is, when anhydrous amorphous maltose and pullulan aqueous solution are mixed, pullulan hydrated molecules are easily taken into maltose, and a complex sugar material with a good mixing state is obtained. It is easy to be done. When this is used as a base material for cantilevers, as in the case of using anhydrous amorphous maltose alone, there is no crystal grain boundary, so it is possible to obtain a cantilever with high processing accuracy and solubility within the skin surface. In addition, the pullulan adhesiveness makes it extremely easy to bond the bottom surface of the cantilever to the side surface of the substrate or the surface of the substrate sheet. In this case, the mixing ratio of anhydrous amorphous maltose and pullulan is not particularly limited, but 1: 0 to; 1: 9 is preferred, and in order to emphasize the characteristics of pullulan, 1: 1 or more is preferable. The immediate solubility in the skin means that the dissolution in the skin is extremely fast. From the viewpoint of safety and convenience after inserting a cantilever made of a soluble material in the skin into the skin surface, The cantilever is preferably dissolved in about 60 seconds at the latest, and more preferably in about 30 seconds at the latest.
本発明におけるカンチレバーは、蛋白質、 DNA、医薬剤、栄養剤、栄養補助剤、 化粧材、色素材、金属、金属酸化物、マイクロカプセル、から選ばれる 1又は 2以上を 含有することが好適である。ここで、蛋白質の場合にはアルブミン、ァクチン、ミオシン などの一般の蛋白質、治療用の医薬系蛋白質などがあり、 DNAの場合には細胞に 包まな!/、純粋な DNAなどがあり、医薬剤の場合には経皮投与にお!/、て効果的な鎮 痛剤、糖尿病治療に効果的なインスリン、局部麻酔剤であるリドカイン、歯周膿漏症 に効果的なダルコン酸クロルへキシンなどがある力 これらは特に限定されない。また 、栄養剤の場合にはブドウ糖、デキストリンのような各種糖類などがあり、栄養補助剤 の場合にはビタミン A、ビタミン B、ビタミン C、ビタミン D、ビタミン Eのようなビタミン類、 カルシウムを吸収促進効果のあるカゼインなどがあり、化粧材の場合にはヒアルロン 酸のような保湿剤、 αアルブチンのようなシミ防止剤、ァスコルビン酸リン酸マグネシ ゥム、エラグ酸、メラニン色素除去能を有するハイドロキノンのような美白効果剤など があり、色素材の場合には体内仕様の色素、タータルジン、化粧品用色素、クチナシ 赤色素、クチナシ黄色素などの各種天然系色素などがあり、金属の場合には磁性体 などがあり、金属酸化物の場合には、酸化チタン、酸化鉄、硫酸バリウムなどがあり、 マイクロカプセルの場合には各種医薬剤、各種栄養剤、各種色素材などを封入した マイクロカプセルなどがある力 S、これらは特に限定されない。尚、図 10は、機能性材 料を含有した場合の基板型マイクロインプリメントについて、通常のカンチレバー 18と くびれ形状部を有するカンチレバー 19が皮膚表面内に挿入したときの様子を示す概 略模式図であるが、くびれ形状部を有するカンチレバー 19の方力 くびれ形状部の 抵抗が少ない分だけ、通常のカンチレバー 18よりも深く皮膚表面内に入り込み易い 。また、図 11は、上記の両カンチレバー揷入後の様子を示す概略模式図であるが、 両カンチレバーは皮膚内で溶解する前は、くびれ形状部を有するカンチレバーを使 用した場合が、当然、通常のカンチレバーを使用した場合よりもカンチレバーは皮膚 表面内の深い位置で残留している、すなわちカンチレバー 21はカンチレバー 20より も皮膚表面内の深い位置で残留している。さらに、それらのカンチレバーが溶解して 消失した後は、機能性材料は拡散浸透していくが、その領域は当然カンチレバーの 揷入位置に比例し、拡散浸透領域 23の方が拡散浸透領域 22よりも深レ、位置にある 本発明におけるカンチレバーには、その表面に機能性チップを搭載した構造のも の(図 7参照)と、その内部に機能性チップを搭載した構造のものとがあり、前者の場 合、常温にて、水平面をなす片割れ面に機能性チップの搭載が容易であり、また、常 温搭載のために機能性チップの耐熱性はそれほど要求されず、さらには、機能性チ ップの表面をマルトース、マルトース及びプルランの複合糖材、ポリエチレン等で被 覆することにより、機能性チップとカンチレバーとの接着が強固となるという特徴を有 する。また、後者の場合、カンチレバー内に機能性チップを内包させることにより、力 ンチレバーの皮膚表面内への揷入抵抗を減らすことが可能であり、この場合には機 能性チップの耐熱性が要求されるものの、先述の機能性チップの表面をマルトース、 マルトース及びプルランの複合糖材、ポリエチレン等で被覆することにより熱対策が 可能であり、さらには、機能性チップがカンチレバーに内包されているので物理的損 傷を受けにくいという特徴的効果を有する。本発明における機能性チップは、半導体 チップ、集積回路チップ、温度センサーチップ、蛋白質チップ、 DNA含有チップ、医 薬剤含有チップ、栄養剤含有チップ、栄養補助剤含有チップ、化粧材含有チップ、 色素材含有チップ、金属含有チップ、マイクロカプセル含有チップ、力 選ばれる 1 又は 2以上の機能性チップであることが好適である。さらには、機能性チップの表面 力 マルトース、マルトース及びプルランの複合糖材、ポリエチレン、ポリプロピレン、 力、ら選ばれる一材料により被覆されていることが好ましい。尚、上記のチップの基材 は特に限定されないが、本発明で使用する基材の親和性の観点からは、糖類をべ一 スとして、それに医薬剤、機能性材料等を含有させたものを使用してもよぐ糖類には 、例えば、マルトース、無水非結晶マルトース、及びそれらのプルランとの複合糖材を 使用すること力できる。また、図 8は、基板型マイクロインプリメントについて、通常の力 ンチレバー 12及びくびれ形状部を有するカンチレバー 13が皮膚表面内に挿入した ときの様子を示す概略模式図である力 くびれ形状部を有するカンチレバー 13の方 1S くびれ形状部の抵抗が少ない分だけ、通常のカンチレバー 12よりも深く皮膚表 面内に入り込み易い。また、図 9は、上記の両カンチレバー揷入後の様子を示す概 略模式図であるが、両カンチレバーは皮膚内で溶解して消失した後、各々チップを 残すことになる。これらチップのうち、くびれ形状部を有するカンチレバーを使用した 場合が、当然、通常のカンチレバーを使用した場合よりもチップは皮膚表面内の深 い位置で残留している、すなわちチップ 15はチップ 14よりも皮膚表面内の深い位置 で残留している。 The cantilever in the present invention preferably contains one or more selected from protein, DNA, pharmaceutical agent, nutrient, nutritional supplement, cosmetic material, color material, metal, metal oxide, and microcapsule. . Here, in the case of proteins, there are general proteins such as albumin, actin, and myosin, and pharmaceutical proteins for treatment, etc. In the case of DNA, there are cells that are not encapsulated! /, Pure DNA, etc. In the case of transdermal administration! /, An effective analgesic agent, insulin effective in treating diabetes, lidocaine as a local anesthetic, chlorhexine dalconate effective in periodontal disease, etc. There is a force that is not particularly limited. In the case of nutritional supplements, there are various sugars such as glucose and dextrin. In the case of nutritional supplements, vitamins such as vitamin A, vitamin B, vitamin C, vitamin D, vitamin E, Casein has a calcium absorption promoting effect. In the case of cosmetics, moisturizer such as hyaluronic acid, anti-smudge agent such as α-arbutin, ascorbic acid phosphate phosphate, ellagic acid, and melanin pigment removal ability In the case of a color material, there are various natural pigments such as pigments for internal use, tartardin, cosmetic pigments, gardenia red pigments, gardenia yellow pigments, etc. In the case of metal oxides, there are titanium oxide, iron oxide, barium sulfate, etc. In the case of microcapsules, microcapsules containing various pharmaceutical agents, various nutrients, and various color materials are encapsulated. Force S with capsules, these are not particularly limited. FIG. 10 is a schematic diagram showing a state in which a normal cantilever 18 and a cantilever 19 having a constricted portion are inserted into the skin surface of a substrate-type microimplement containing a functional material. However, the direction force of the cantilever 19 having the constricted portion is easier to penetrate into the skin surface than the normal cantilever 18 because the resistance of the constricted portion is less. FIG. 11 is a schematic diagram showing the state after insertion of both cantilevers. However, before the cantilevers are dissolved in the skin, a cantilever having a constricted portion is naturally used. The cantilever remains deeper in the skin surface than when a normal cantilever is used, that is, the cantilever 21 remains deeper in the skin surface than the cantilever 20. Furthermore, after these cantilevers dissolve and disappear, the functional material diffuses and permeates, but the area is naturally proportional to the insertion position of the cantilever, and the diffusion permeation area 23 is more than the diffusion permeation area 22. There are two types of cantilevers according to the present invention, which have a structure in which a functional chip is mounted on the surface (see FIG. 7) and a structure in which a functional chip is mounted inside. In the case of the former, it is easy to mount the functional chip on one side that forms a horizontal plane at room temperature, and the thermal resistance of the functional chip is not so required for mounting at normal temperature. By covering the surface of the chip with maltose, maltose and pullulan complex sugar material, polyethylene, etc., there is a feature that the adhesion between the functional chip and the cantilever becomes strong. In the latter case, it is possible to reduce the insertion resistance of the force cantilever into the skin surface by enclosing the functional tip in the cantilever. Although the heat resistance of the functional chip is required, it is possible to take heat countermeasures by coating the surface of the functional chip with maltose, maltose and pullulan complex sugar material, polyethylene, etc. Since it is contained in the cantilever, it has a characteristic effect that it is less susceptible to physical damage. The functional chip in the present invention includes a semiconductor chip, an integrated circuit chip, a temperature sensor chip, a protein chip, a DNA-containing chip, a medicine-containing chip, a nutrient-containing chip, a nutritional supplement-containing chip, a cosmetic material-containing chip, and a color material-containing chip. A chip, a metal-containing chip, a microcapsule-containing chip, or one or more functional chips selected is preferable. Furthermore, the surface force of the functional chip is preferably coated with one material selected from maltose, maltose and pullulan complex sugar materials, polyethylene, polypropylene, and force. The base material of the above chip is not particularly limited, but from the viewpoint of the affinity of the base material used in the present invention, a saccharide is used as a base and it contains a pharmaceutical agent, a functional material and the like. As sugars that can be used, for example, maltose, anhydrous amorphous maltose, and complex sugar materials thereof with pullulan can be used. FIG. 8 is a schematic diagram showing a state in which a normal force cantilever 12 and a cantilever 13 having a constricted portion are inserted into the skin surface of a substrate-type microimplement. A cantilever 13 having a force constricted portion 13 is shown. 1S As the constriction-shaped part has less resistance, it is easier to penetrate the skin surface deeper than a normal cantilever 12. FIG. 9 is a schematic diagram showing the state after insertion of both cantilevers. Both cantilevers dissolve and disappear in the skin, and then leave their chips. Of these tips, when a cantilever having a constricted part is used, the tip remains naturally at a deeper position in the skin surface than when a normal cantilever is used. Also remains deep within the skin surface.
本発明のマイクロインプリメントの製造方法における微細カンチレバーの反転形状 の凹部を上面端部に有するカンチレバー用マイクロ金型ヘッドとは、カンチレバーの 基材を無水非結晶マルトース、又は無水非結晶マルトース及びプルランの複合糖材 としてカンチレバーを成形するための微細金型であり、カンチレバーを離形させるた めに微細駆動ができる機構をもつカンチレバーの微細形状の成形に適用できる金型 の機能をもつヘッドであり、基板の反転形状の凹部を有する基板用金型とは、カンチ レバーの支持体である基板が成形でき、マイクロ金型ヘッドに組み込むことができる 形状の基板用金型であり、図 13にカンチレバー用金型ヘッドと基板用金型の概略模 式図を示す。また、マイクロインプリメント用金型の温度制御機構とは、マイクロ金型 ヘッドによって成形する上記の基材を急速に昇温溶解し冷却凝固ができる温度制御 機構であり、カンチレバー用マイクロ金型ヘッド及び基板用金型が独立に可動できる 機構とは、微細なカンチレバー形状の成形を優先し先行してマイクロ金型ヘッドのみ を駆動でき、カンチレバーを離形し成形後、基板のみ別駆動で離形ができるような機 構である。これにより、基板型マイクロインプリメントが製造可能となる。さらには、カン チレバー用マイクロ金型ヘッドが有する、基板シート表面に対して垂直に可動できる 機構とは、基板シート表面に対して垂直に 1又は 2以上のカンチレバーを設けるため に、一個のカンチレバーを成形した後、次のカンチレバーの成形に移る方法として、 マイクロ金型ヘッドを一旦、シートに対して垂直方向に後退させてから次のカンチレ バーの位置に移動させる機構のことである。図 14にマイクロ金型ヘッドと基板シート の概略模式図を示すが、図では、温度制御機構として温度制御用ヒーターを、前記 の可動機構として駆動ステージを使用した場合を示している。これにより、基板シート 型マイクロインプリメントが製造可能となる。尚、本発明における温度制御機構は特に 限定されないが、 50°Cから 200°C程度まで温度制御でき、一定温度を保持できるも のであればよぐ例えば温度制御が可能なヒーターを使用することができる。 In the microimplement manufacturing method of the present invention, a micro mold head for a cantilever having a concave portion of a fine cantilever at the upper surface end in a micro cantilever manufacturing method is an anhydrous amorphous maltose or a composite of anhydrous amorphous maltose and pullulan. A fine mold for molding cantilevers as sugar materials, and a mold that can be used to mold fine cantilevers with a mechanism that can be finely driven to release cantilevers. A substrate mold having a concave portion with an inverted shape of the substrate is a substrate mold that can be formed into a substrate that can support a cantilever and can be incorporated into a micro mold head. FIG. 13 shows a schematic diagram of a cantilever mold head and a substrate mold. The temperature control mechanism of the micro-implement mold is a temperature control mechanism capable of rapidly heating and melting the above-mentioned base material formed by the micro-mold head and cooling and solidifying it. The micro-mold head for cantilever and the substrate The mechanism that can move the mold independently can prioritize the molding of the fine cantilever shape and drive only the micro mold head in advance. After the cantilever is released and molded, the substrate can be released by separate drive. This is the mechanism. As a result, the substrate type micro-implement can be manufactured. Furthermore, the mechanism that the micro mold head for cantilevers can move vertically with respect to the surface of the substrate sheet means that one or more cantilevers are provided perpendicularly to the surface of the substrate sheet. After forming, the method of moving to the formation of the next cantilever is a mechanism in which the micro mold head is once retracted in the direction perpendicular to the sheet and then moved to the position of the next cantilever. FIG. 14 shows a schematic diagram of a micro mold head and a substrate sheet. In the figure, a temperature control heater is used as the temperature control mechanism, and a drive stage is used as the movable mechanism. As a result, the substrate sheet type micro-implement can be manufactured. Although the temperature control mechanism in the present invention is not particularly limited, any temperature control mechanism can be used as long as it can control the temperature from 50 ° C. to about 200 ° C. and can maintain a constant temperature, for example. it can.
上述した本発明の方法によれば、カンチレバーを基板または基板シートと別々に製 作し組み立てることができるので、先端が鋭!/、カンチレバーを精度よく製造することが できるとともに、剣山形状のごとぐ一定の面積内に多数のカンチレバーを有するマイ クロインプリメントを容易に製造することが可能となる。また、カンチレバーの材質と基 板または基板シートの材質を異なる材質とすることも可能である。  According to the method of the present invention described above, since the cantilever can be manufactured and assembled separately from the substrate or the substrate sheet, the tip can be sharp! /, The cantilever can be manufactured with high accuracy, and the shape of the sword mountain shape. It becomes possible to easily manufacture a micro implement having a large number of cantilevers within a certain area. Also, the material of the cantilever and the material of the substrate or the substrate sheet can be different.
すなわち、マイクロパイルのように、針の型と基板の型を連通させた状態の金型に、 材料を流し込んで微細針と基板を一体形成しょうとすれば、どうしても表面張力、成 形時の素材(マルトース等)の流れ、等々の基板製作の条件が、高精度を要する針 製作条件に影響し、重要な針先精度を劣化させる傾向がある。すなわち、上記の連 通型の金型では、基板部の容積が大きいため、微細針先端部まで材料を充填する のには圧力の限界があり、微細針先端部の長幅の製造限界は 10〜20 mとなる。 また、基板と微細針の材質は常に同じとなり、微細針を複数設ける際も、微細針に混 在できる薬剤は単品に限定されるモノリシックとなる。またこの方法では、シート状の 基材の表面に微細針を形成することなどはできず、マイクロインプリメントの形状に非 常に大きな制限が課せられる。 In other words, if a material is poured into a mold in which the needle mold and the substrate mold are in communication like a micropile, and the fine needle and the substrate are integrally formed, the surface tension, the material at the time of molding will inevitably occur. The flow of (maltose, etc.) and other substrate manufacturing conditions affect needle manufacturing conditions that require high accuracy, and tend to degrade important needle tip accuracy. That is, the above In a conventional mold, the volume of the substrate is large, so there is a pressure limit for filling the material to the tip of the fine needle, and the manufacturing limit of the long width of the tip of the fine needle is 10 to 20 m. . In addition, the materials of the substrate and the fine needle are always the same, and even when a plurality of fine needles are provided, the drug that can be mixed with the fine needles is monolithic, which is limited to a single item. In this method, fine needles cannot be formed on the surface of the sheet-like base material, and a very large restriction is imposed on the shape of the microimplement.
これに対し、本発明の方法によれば、前もって基板を製作し、後から、カンチレバー 形状微細針のみを製作できる組立て方法を導入することができるので、基板と微細 針を一体形成する場合と異なり、基板の影響を受けず、針尖端の精度を保持するこ とができる。これによつて、 10 m未満の微細先端部を持つカンチレバーの製作が 可能となり、微細先端部の長幅が 2〜3 mのカンチレバーであっても精度良く製造 すること力 Sできる。このため、カンチレバーの皮膚揷入時の加圧を減らすことができ、 十分な無痛化を達成することが可能となった。また、カンチレバーの金型をヘッドデ バイスとして駆動できるようにした機構を設けることにより、図 2のような理想の剣山形 状の製作が可能となり、 1cm2あたり 100本以上といった高密度の針 (カンチレバー) を有するマイクロインプリメントであっても製造できるようになった。さらに、基板の形状 を問わずカンチレバーを形成できるため、板状の基板だけでなぐシート状の基板等 を用いることが可能となり、マイクロインプリメントの形状の自由度が高くなつた。また、 カンチレバーは、基板に組み立てる方法をとるので、基材と微細針材質を異ならせる ことができ、さらにカンチレバー毎に異なる薬剤を盛り込むことも可能である。 On the other hand, according to the method of the present invention, it is possible to introduce an assembly method in which the substrate is manufactured in advance and only the cantilever-shaped microneedles can be manufactured later, which is different from the case where the substrate and the microneedles are integrally formed. The needle tip accuracy can be maintained without being affected by the substrate. This makes it possible to manufacture cantilevers with a fine tip of less than 10 m, and it is possible to accurately manufacture even cantilevers with a fine tip length of 2 to 3 m. For this reason, it was possible to reduce the pressure applied when the cantilever was inserted into the skin, and to achieve sufficient pain-freeness. Further, by providing a mechanism which is adapted to drive the mold cantilever as Heddode device enables ideal sword mountain shape fabrication as shown in FIG. 2, a high density of needle (cantilever such 1 cm 2 per 100 or more Even a micro-implement with) can be manufactured. Furthermore, since the cantilever can be formed regardless of the shape of the substrate, it is possible to use a sheet-like substrate or the like that is only a plate-like substrate, and the degree of freedom of the shape of the micro-implement is increased. In addition, since the cantilever is assembled on the substrate, the base material and the fine needle material can be made different, and different cantilevers can be incorporated in each cantilever.
本発明の糖材部品組立方法は、 2体の糖材部品のうちの少なくとも一方力 S、プルラ ン、又はプルラン及びマルトースの複合糖材で構成されており、前記 2体の糖材部品 同士を接触させ、溶着させること力 S好適である。また、プルラン、又はプルラン及びマ ノレトースの複合糖材で構成されている前記糖材部品が基板又は基板シートであり、 基板側面の上端部又は基板シート表面に他方の糖材部品を接触させ、溶着させるこ とが好適である。さらには、皮膚表面内揷入用マイクロインプリメントの組立方法にお いて、前記他方の糖材部品が微細カンチレバーであり、前記カンチレバーにおける 皮膚内可溶材が無水非結晶マルトース、又は無水非結晶マルトース及びプルランの 複合糖材であることが好適である。 The sugar material part assembling method of the present invention comprises at least one of the two sugar material parts, S, pullulan, or a composite sugar material of pullulan and maltose. Force to contact and weld S is suitable. Further, the sugar material component composed of pullulan, or a composite sugar material of pullulan and manoletose is a substrate or a substrate sheet, and the other sugar material component is brought into contact with the upper end of the side surface of the substrate or the surface of the substrate sheet for welding. It is preferable to let this occur. Further, in the method of assembling the microimplement for insertion into the skin surface, the other sugar material component is a fine cantilever, and the soluble material in the skin of the cantilever is anhydrous amorphous maltose, or anhydrous amorphous maltose and pullulan. of A complex sugar material is preferred.
[0030] 以下に本発明について実施例により具体的に説明する。但し、本発明は以下の実 施例に何ら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.
実施例 1  Example 1
[0031] 図 1に示した形状の基板型マイクロインプリメントを製造するにつき、先ず、底面の 直径が 200 μ mである円形で、かつ頂点から底面までの垂線の長さが 550 μ mであ る略円錐体の片割れ形状 (その底面は直径 200 mの半円形)を有したカンチレバ 一を作製するべぐステンレス板(縦の長さ 15mm、横の長さ 5mm、厚さ lmm)の縦 辺に沿う上端部に、上記の略円錐体の片割れ形状の反転形状の凹部 4個分を機械 加工によって掘り込み、カンチレバーの微細先端部の形状が略円形(直径 0. S ^ m) となるように、掘り込み部分の最奥端を収束イオンビームを使って微細加工し、カンチ レバー用金型ヘッドを作製した。次に、縦 10mm、横 50mm、厚さ lmmである直方 体形状の基板を作製するべぐ所定のステンレス板をもとに上記の基板の反転形状 の凹部を有する基板用金型を作製し、図 13に示す形状のカンチレバー用金型へッ ド及び基板用金型の組合せを作製した。その金型ヘッドを外した基板用金型を真上 力、ら見ると、コの字型をしていることになる。次に、このコの字型の金型基板に、上記 カンチレバー用金型ヘッドで凹部のなレ、ものを組合せて、口の字型の基板用金型と した。基板原料には糖類であるマルトース及びプルランの混合物(マルトース 50重量 %、プルラン 50重量%の混合物を 105°Cで溶解させたもの)を用いて、 105°Cに保 つた上記の口の字型の基板用金型にこの基板原料を基板の厚さ力 S lmmになるまで 流し込み、 80°Cまで徐冷して基板を作製した。次に、上記の基板用金型から凹部の な!/、金型ヘッドを取り払い、上記のカンチレバー用金型ヘッドと基板を含む基板用金 型を組合せ、金型ヘッドのみを 105°Cに保持し、この金型ヘッドの凹部に 105°Cで溶 解させた無水非結晶マルトースを流し込みカンチレバーを作製し、その後室温まで 徐冷して図 1に示すマイクロインプリメントを作製した。以上により、縦 10mm、横 50m m、厚さ lmmの直方体形状である基板側面の上端部に、底面の直径が 200 mで ある円形で、かつ頂点から底面までの垂線の長さは 550 mである略円錐体の片割 れ形状(その底面は直径 200 mの半円)を有したカンチレバーで、その微細先端 部の形状が略円形(直径 0. 3 m)であるカンチレバー力 S、基板の縦辺方向に 4個並 んだ基板型マイクロインプリメントを組立てて、製造した。但し、図 1は概略模式図で あるので、カンチレバー及び基板の大きさは相対的に合っていない。尚、本製造に おいては、基板及びカンチレバー原料を 105°Cで溶解させて使用した力 それら原 料を粒子状態のままで上記の 105°Cに保持した金型及び金型ヘッドに投入してもよ い。また、最初から、図 13に示す形状のカンチレバー用金型ヘッド及び基板用金型 を用いて、これらを 105°Cに保持して、そこへ原料を流し込み、一度でカンチレバー 及び基板からなるマイクロインプリメントを作製してもよレ、が、この場合はカンチレバー と基板が同一材料となる。 [0031] In manufacturing the substrate-type micro-implement having the shape shown in FIG. 1, first, the bottom surface has a diameter of 200 μm, and the perpendicular length from the apex to the bottom surface is 550 μm. On the vertical side of a stainless steel plate (vertical length: 15 mm, horizontal length: 5 mm, thickness: 1 mm) that produces a cantilever with a semi-conical split shape (the bottom is a semicircle with a diameter of 200 m) At the upper end, the four inverted concavities of the above-mentioned substantially conical cracked shape are dug by machining so that the shape of the fine tip of the cantilever is almost circular (diameter 0. S ^ m) Then, the innermost end of the digging portion was finely processed using a focused ion beam, and a mold head for a cantilever was produced. Next, based on a predetermined stainless steel plate for producing a rectangular parallelepiped substrate having a length of 10 mm, a width of 50 mm, and a thickness of 1 mm, a substrate mold having a concave portion having a reverse shape of the above-mentioned substrate is manufactured. A combination of cantilever mold head and substrate mold having the shape shown in Fig. 13 was produced. If you look directly at the substrate mold with the mold head removed, you will see a U-shape. Next, this U-shaped mold substrate was combined with the above-mentioned cantilever mold head to form a concave-shaped substrate mold. As the substrate material, a mixture of saccharide maltose and pullulan (50% by weight maltose and 50% by weight pullulan dissolved in 105 ° C) was used, and the above-mentioned mouth shape maintained at 105 ° C. The substrate raw material was poured into a substrate mold until the substrate had a thickness force of S lmm, and was slowly cooled to 80 ° C. to produce a substrate. Next, remove the mold head from the substrate mold and remove the mold head. Combine the cantilever mold head with the substrate mold including the substrate, and hold only the mold head at 105 ° C. An anhydrous amorphous maltose dissolved at 105 ° C was poured into the recess of the mold head to produce a cantilever, and then slowly cooled to room temperature to produce the microimplement shown in FIG. As described above, the length of the vertical line from the apex to the bottom is 550 m at the top of the side of the substrate, which is 10 mm long, 50 mm wide, and 1 mm thick, at the top of the side of the substrate, with a bottom diameter of 200 m. A cantilever with a roughly conical piece (its bottom is a semicircle with a diameter of 200 m), and its fine tip A cantilever force S having a substantially circular shape (diameter 0.3 m), and four substrate-type micro-implements arranged in the longitudinal direction of the substrate were assembled and manufactured. However, since FIG. 1 is a schematic diagram, the size of the cantilever and the substrate are not relatively matched. In this production, the force used by dissolving the substrate and the cantilever raw material at 105 ° C was put into the mold and die head held at 105 ° C in the above-mentioned state in the state of particles. It's okay. From the beginning, the cantilever mold head and substrate mold having the shape shown in FIG. 13 are used, and these are held at 105 ° C., and the raw material is poured into the cantilever mold and substrate. In this case, the cantilever and the substrate are made of the same material.
実施例 2 Example 2
図 2に示した形状の基板シート型マイクロインプリメントを製造するにつき、先ず、プ ルラン 30重量%とマルトース 30重量%を一様に混在した後、水を 40%だけ加えて 粘性状態を作成し、さらにシート状に延ばして乾燥させ、縦 10mm、横 10mm、厚さ 0. 5mmの基板シート(プルラン 50重量%、マルトース 50重量%の組成比で、基板 シートを真上から見ると正方形状である)を作製した。次に、底面が一辺 150 mで ある正三角形を二つ組合せた菱形で、かつ頂点から底面までの垂線の長さは 500 mである略四角錐体の片割れ形状(その底面は一辺 150 mの正三角形)を有した カンチレバーを作製するべぐステンレス板(縦の長さ 5mm、横の長さ 5mm、厚さ lm m)の縦辺に沿う上端部に、上記の略四角錐体の片割れ形状の反転形状の凹部 1個 分を機械加工によって掘り込み、カンチレバーの微細先端部の形状が半円形(直径 0. 4 m)となるように、掘り込み部分の最奥端を収束イオンビームを使って微細加 ェし、カンチレバー用金型ヘッドを作製した。この金型ヘッドに所定の温度制御機構 及び可動機構を取付けて後、上記の基板シート面に 80°Cに保持した金型ヘッドを接 触させ、 105°Cで溶解させた無水非結晶マルトース及びプルランとの複合糖材(無水 非結晶 50重量%、プルラン 50重量%の組成比)をその金型ヘッドに流し込み、カン チレバー形成後速やかに基板シート表面に対して垂直方向に金型ヘッドを後退させ 、図 14に示すようにしてカンチレバーを基板シート表面に作製した。次に、この金型 ヘッドを 250 μ mのピッチ間隔で横方向に移動させ、上記の基板シート表面にこの金 型ヘッドを前進させて接触させ、 105°Cで溶解させた上記の複合糖材を金型ヘッド に流し込み、カンチレバー形成後速やかに基板シート表面に対して垂直方向に金型 ヘッドを後退させて、 2個目のカンチレバーを基板シート表面に作製した。以上の一 連の動作を繰り返して、最終的に基板シート表面上にピッチ間隔 250 mの縦 5個、 横 6個、合計 30個分のカンチレバー(上記の略四角錐体の片割れ形状を有したカン チレバー)が並んだ構造を有した、図 2に示した形状の基板シート型マイクロインプリ メントを組立てて、作製した。但し、図 2は概略模式図であるので、カンチレバー及び 基板シートの大きさは相対的に合っていない。尚、本製造例では、 1個分のカンチレ バー作製用の金型ヘッドを使用して上記の繰り返し動作が 30回必要であった力 S、金 型ヘッドに縦方向に 6個分のカンチレバーの反転形状の凹部を有したものを使用し た場合、繰り返し動作は 5回で済み、極めて効率よくマイクロインプリメントを作製する ことも可能である。 To manufacture the substrate sheet type micro-implement with the shape shown in Fig. 2, first, 30% by weight of pullulan and 30% by weight of maltose were mixed together, and then 40% of water was added to create a viscous state. Furthermore, it is stretched into a sheet shape and dried. A substrate sheet of 10 mm in length, 10 mm in width, and 0.5 mm in thickness (with a composition ratio of 50% by weight of pullulan and 50% by weight of maltose, the substrate sheet is square when viewed from directly above. ) Was produced. Next, it is a rhombus that is a combination of two equilateral triangles with a bottom of 150 m on one side, and the vertical length from the apex to the bottom is 500 m. On the upper end along the vertical side of a stainless steel plate (vertical length 5 mm, horizontal length 5 mm, thickness lm m) for producing a cantilever with a regular triangle) Using a focused ion beam at the deepest end of the digging part, the shape of the cantilever tip is semicircular (0.4 m in diameter). Then, a cantilever mold head was fabricated. After attaching a predetermined temperature control mechanism and a movable mechanism to the mold head, the mold head held at 80 ° C was brought into contact with the substrate sheet surface, and anhydrous amorphous maltose dissolved at 105 ° C and A composite sugar material with pullulan (anhydrous amorphous 50% by weight, pullulan 50% by weight composition ratio) is poured into the mold head, and after forming the cantilever, the mold head is retracted in a direction perpendicular to the substrate sheet surface. Then, a cantilever was fabricated on the surface of the substrate sheet as shown in FIG. Next, the mold head is moved laterally at a pitch interval of 250 μm, and this mold head is placed on the substrate sheet surface. The mold head is moved forward and brought into contact, the above complex sugar material dissolved at 105 ° C is poured into the mold head, and after the cantilever is formed, the mold head is moved backward in a direction perpendicular to the substrate sheet surface, A second cantilever was fabricated on the substrate sheet surface. By repeating the above series of operations, the cantilever for a total of 30 on the surface of the substrate sheet with a total pitch of 5 and 6 with a pitch interval of 250 m (having the above-mentioned substantially quadrangular pyramid piece shape) A substrate sheet type micro-implement having the structure shown in Fig. 2 and a structure in which cantilevers were arranged was assembled and manufactured. However, since FIG. 2 is a schematic diagram, the size of the cantilever and the substrate sheet are not relatively matched. In this manufacturing example, the force S that required the above-mentioned repetitive operation 30 times using a die head for producing one cantilever was used, and six cantilevers for the die head in the vertical direction. When using an inversion-shaped concave part, it is only necessary to repeat the operation five times, and it is possible to produce a micro-implement very efficiently.
実施例 3  Example 3
[0033] 実施例 1の基板型マイクロインプリメントを手の甲の皮膚表面内に挿入したところ、 無痛であり、マイクロスコープによる観察により、 1分程度でカンチレバーは溶けて消 失したことを確認した。さらに、マイクロスコープにより皮膚表面を観察すると、その皮 膚表面に直径 150 m程度のほぼ半円形状の穴が 4箇所で開いていることを確認し た。その穴の付近を指で押すと、その穴から血液がわずかに出てきたことから、その 血液を数 mgだけ採取して血糖値を測定することができた。  [0033] When the substrate-type microimplement of Example 1 was inserted into the skin surface of the back of the hand, it was painless, and it was confirmed by observation with a microscope that the cantilever melted and disappeared in about 1 minute. Furthermore, when the surface of the skin was observed with a microscope, it was confirmed that four almost semicircular holes with a diameter of about 150 m were opened in the skin surface. When a finger was pressed near the hole, a small amount of blood came out of the hole, so it was possible to measure the blood glucose level by collecting a few mg of the blood.
実施例 4  Example 4
[0034] 実施例 2の基板シート型マイクロインプリメントを手の甲の皮膚表面内に挿入したと ころ、無痛であり、マイクロスコープによる観察により、 1分程度でカンチレバーは溶け て消失したことを確認した。さらに、マイクロスコープにより皮膚表面を観察すると、そ の皮膚表面に直径 100 m程度のほぼ楕円形状の穴が 30箇所で開いていることを 確認した。それらの箇所を指で押し、出てきた血液を脱脂綿で拭き取った後、それら の箇所の皮膚表面にァスコルビン酸リン酸ナトリウム 1 %を溶解させた水溶液を塗布 すると、その水溶液が速やかにそれらの穴の中に取り込まれ、すなわち皮膚表面内 にその水溶液を浸透させることができた。このように、カンチレバーを皮膚表面の穴 開け用に使用した力 これはァスコルビン酸リン酸ナトリウムのような加熱分解しやす い特性のあるビタミン Cは、過熱溶解して形成するカンチレバーに含ませることができ ないからであり、この穴開け方法により効果的にビタミン Cを皮膚内に浸透させること ができた。 [0034] When the substrate sheet type microimplement of Example 2 was inserted into the skin surface of the back of the hand, it was confirmed that the cantilever melted and disappeared in about 1 minute by observation with a microscope. Furthermore, when the skin surface was observed with a microscope, it was confirmed that approximately ellipsoidal holes with a diameter of about 100 m were opened at 30 locations on the skin surface. After pressing these points with your finger and wiping the blood that has come out with absorbent cotton, applying an aqueous solution of sodium ascorbate phosphate 1% to the skin surface of those locations, the aqueous solution quickly spills into those holes. Was able to penetrate the aqueous solution into the skin surface. In this way, the cantilever The force used for opening this is because vitamin C, which is easily decomposed by heating, such as sodium ascorbate phosphate, cannot be included in cantilevers formed by overheating. As a result, vitamin C was able to penetrate into the skin more effectively.
実施例 5  Example 5
[0035] 局部麻酔剤の一種であるリドカインを 1重量%含む無水非結晶マルトースをカンチ レバーの基材原料として、実施例 1と同様にして、基板型マイクロインプリメントを作製 した。このマイクロインプリメントをラットの腹部の皮膚表面内への揷入実験を行い、血 漿分析の結果、血漿中にリドカインが存在することがわかり、これによりラット全身への リドカインの浸透が確認できた。  A substrate-type microimplement was produced in the same manner as in Example 1 using anhydrous amorphous maltose containing 1% by weight of lidocaine, which is a kind of local anesthetic, as a base material of the cantilever. This microimplement was inserted into the skin surface of the abdomen of the rat, and as a result of plasma analysis, it was found that lidocaine was present in the plasma, which confirmed the penetration of lidocaine into the whole body of the rat.
実施例 6  Example 6
[0036] 歯周膿漏症の治癒効果を有するダルコン酸クロルへキシンを 0. 03重量%含む無 水非結晶マルトースをカンチレバーの基材原料として、実施例 1と同様にして、基板 型マイクロインプリメントを 2個作製した。これらのマイクロインプリメントを歯周膿漏症 にかかっている歯茎付近の皮膚表面内、及び歯茎と歯の間に各々差し込み揷入実 験を行った結果、その歯周全域にダルコン酸クロルへキシンを浸透させることができ 、実験力も 24時間後に歯周膿漏症の改善が見られた。  [0036] Substrate-type microimplementation in the same manner as in Example 1, using non-aqueous amorphous maltose containing 0.03 wt% of chlorhexine dalconate having a healing effect on periodontal abscess as a base material of cantilever Two were produced. Insertion of these microimplements into the surface of the skin near the gums affected by periodontal disease and between the gums and the teeth results in insertion experiments. Periodontal leakage was improved after 24 hours.
実施例 7  Example 7
[0037] 美白用化粧材である αアルブチンを 0. 3重量%含む無水非結晶マルトース及びプ ルランとの複合糖材を基材原料として、実施例 2と同様にして、基板シート型マイクロ インプリメントを作製した。但し、 30個の各カンチレバーには、同様に、微細先端部か ら 150 mの箇所にくびれ形状部を有するようにしており、このくびれ形状部でカン チレバーが折れ易い構造とした。このマイクロインプリメントを顔面の褐色しみが存在 する皮膚表面内(皮膚表面より 200 m以内)に揷入した実験を毎日 1回、連続して 行った結果、 1ヶ月ほど経過して、顔面の褐色しみが薄まっていることが目視により確 認できた。  [0037] A substrate sheet type micro-implement was prepared in the same manner as in Example 2 using a composite sugar material with anhydrous amorphous maltose containing 0.3% by weight of α-arbutin as a whitening cosmetic material and pullulan as a base material. Produced. However, each of the 30 cantilevers has a constricted portion at a position 150 m from the fine tip, and the cantilever is easily broken at the constricted portion. This micro-implementation was conducted once a day in a series of experiments in which the skin surface with brown spots on the face (within 200 m from the skin surface) was inserted. It was confirmed by visual observation that the thickness was thin.
実施例 8 [0038] 美白用化粧材であるビタミン Cの一種ァスコルビン酸リン酸マグネシウムを 1重量0 /0 含む無水非結晶マルトース及びプルランとの複合糖材を基材原料として、実施例 2と 同様にして、基板シート型マイクロインプリメントを作製した。但し、 30個の各カンチレ バーには、同様に、微細先端部から 150 inの箇所にくびれ形状部を有するようにし ており、このくびれ形状部でカンチレバーが折れ易い構造とした。このマイクロインプ リメントを顔面の褐色しみが存在する皮膚表面内(皮膚表面より 200 m以内)に揷 入した実験を毎日 1回、連続して行った結果、実施例 7と同様に 1ヶ月ほど経過して、 顔面の褐色しみが薄まってレ、ること力 S目視により確認できた。 Example 8 [0038] The complex sugar material with whitening cosmetic material in which vitamin C kind Asukorubin magnesium phosphate 1wt 0/0 containing anhydrous amorphous maltose and pullulan as a substrate material, in the same manner as in Example 2, A substrate sheet type micro-implement was produced. However, each of the 30 cantilevers has a constricted portion at a position 150 inches from the fine tip, and the cantilever is easily broken at the constricted portion. As a result of conducting an experiment in which the microimpregnation was inserted into the skin surface (within 200 m from the skin surface) with brown spots on the face once a day, about one month passed as in Example 7. As a result, the brownish stain on the face faded and was confirmed.
実施例 9  Example 9
[0039] 実施例 2の基板シート型マイクロインプィリメントを手の甲の皮膚表面に軽く 5回あて た結果、マイクロスコープの観察により、その皮膚表面に多数の穴が開いていること が確認できた。これらの穴の開いた箇所に、比較的不安定な、メラニン色素除去能を 有する美白効果剤であるハイドロキノンを 1重量%含む水溶液をガラス棒により塗布 し、このガラス棒を用いて、その液を皮膚に刷り込むことによりハイドロキノンを角質層 内に浸透させることができた。  [0039] As a result of lightly applying the substrate sheet type microimplement of Example 2 to the skin surface of the back of the hand 5 times, it was confirmed by observation with a microscope that a large number of holes were opened on the skin surface. An aqueous solution containing 1% by weight of hydroquinone, a whitening effect agent having the ability to remove melanin pigment, is applied to these holes with a glass rod. Hydroquinone was able to penetrate into the stratum corneum by imprinting on the skin.
実施例 10  Example 10
[0040] 実施例 2の基板シート型マイクロインプィリメントを手の甲の皮膚表面に軽く 5回あて た結果、マイクロスコープの観察により、その皮膚表面に多数の穴が開いていること が確認できた。これらの穴の開いた箇所に、美白効果を有する、比較的不安定な化 学物質であるァスコルビン酸リン酸マグネシウムを 1重量0 /0含む水溶液をガラス棒に より塗布し、このガラス棒を用いて、その液を皮膚に刷り込むことにより、実施例 9と同 様に、ァスコルビン酸リン酸マグネシゥンを角質層内に浸透させることができた。 実施例 11 [0040] As a result of lightly applying the substrate sheet type microimplement of Example 2 to the skin surface of the back of the hand five times, it was confirmed by observation with a microscope that a large number of holes were opened on the skin surface. At a place open these holes have a whitening effect, a relatively unstable chemicals aqueous solution containing 1 weight 0/0 Asukorubin magnesium phosphate is more applied to the glass rod, using a glass rod By imprinting the liquid onto the skin, ascorbic acid magnesium phosphate was able to penetrate into the stratum corneum as in Example 9. Example 11
[0041] 肌色基調の化粧材である酸化チタンと酸化的鉄の混合材(1: 1の組成比)を 5重量 %含む無水非結晶マルトースを基材原料として、実施例 2と同様にして、基板シート 型マイクロインプリメントを作製した。但し、 30個の各カンチレバーには、同様に、微 細先端部から 150 mの箇所にくびれ形状部を有するようにしており、このくびれ形 状部でカンチレバーが折れ易い構造とした。このマイクロインプリメントを顔面の褐色 しみが存在する皮膚表面内(皮膚表面より 200 m以内)に揷入した実験を行った結 果、顔面の褐色しみが薄まり、肌色感が強まっていることが目視により確認できた。 実施例 12 [0041] Using anhydrous amorphous maltose containing 5% by weight of a mixture of titanium oxide and oxidative iron (1: 1 composition ratio), which is a skin-colored cosmetic material, as a base material, in the same manner as in Example 2, A substrate sheet type micro-implement was produced. However, each of the 30 cantilevers has a constricted portion at a position 150 m from the fine tip, and the cantilever is easily broken at the constricted portion. This micro-implement is brown on the face As a result of experiments conducted within the surface of the skin where there was a stain (within 200 m from the surface of the skin), it was confirmed by visual observation that the brown stain on the face had faded and the skin color was strengthened. Example 12
[0042] 体内仕様の色素である、天然系のクチナシ赤色素を 5重量%含む無水非結晶マル トースを基材原料として、実施例 1と同様にして、基板型マイクロインプリメントを作製 した。但し、 4個の各カンチレバーには、同様に、微細先端部から 100 inの箇所に くびれ形状部を有するようにしており、このくびれ形状部でカンチレバーが折れ易い 構造とした。このマイクロインプリメントを手の甲の皮膚表面内に挿入したところ、 目視 により皮膚角質層内に色素を残すことが確認され、このマイクロインプリメントの使用 により、簡易で安全な刺青が可能となり、種々の色素により皮膚角質層内の任意の表 記が可能となった。  [0042] A substrate-type microimplement was produced in the same manner as in Example 1 using anhydrous amorphous maltose containing 5% by weight of a natural gardenia red pigment, which is a pigment specified in the body. However, each of the four cantilevers similarly has a constricted portion at a location 100 inches from the fine tip, and the cantilever is easily bent at the constricted portion. When this microimplement was inserted into the skin surface of the back of the hand, it was confirmed by visual observation that a pigment was left in the skin stratum corneum. By using this microimplement, simple and safe tattooing became possible. Arbitrary notation within the stratum corneum became possible.
実施例 13  Example 13
[0043] 浸透性の強!/、オレンジ色素タータルジンを 1重量%含む無水非結晶マルトースを 基材原料として、実施例 1と同様にして、基板型マイクロインプリメントを作製した。こ のマイクロインプリメントをラットの腹部の皮膚表面内に挿入して後、その皮膚断面を マイクロスコープにより観察したところ、タータルジン色素が皮膚深く浸透していること が確認、できた。  [0043] A substrate type microimplement was produced in the same manner as in Example 1 using anhydrous amorphous maltose containing 1% by weight of orange dye tartardin as a base material. After inserting the microimplement into the skin surface of the abdomen of the rat, the cross section of the skin was observed with a microscope, and it was confirmed that the tartardin dye penetrated deep into the skin.
実施例 14  Example 14
[0044] 蛋白質に付着性の強い青色素であるクーマシーブリリアンブルー(CBB)を 1重量 %含む無水非結晶マルトースを基材原料として、実施例 1と同様にして、基板型マイ クロインプリメントを作製した。このマイクロインプリメントをラットの腹部の皮膚表面内 に揷入して後、その皮膚断面をマイクロスコープにより観察したところ、 CBB色がマイ クロカンチレバーの揷入部の断面形状を映し出していることが確認できた。  [0044] A substrate-type micro-implement was prepared in the same manner as in Example 1, using anhydrous amorphous maltose containing 1% by weight of Coomassie brilliant blue (CBB), a blue pigment with strong adhesiveness to proteins. did. After inserting this microimplement into the skin surface of the abdomen of the rat, the cross-section of the skin was observed with a microscope, and it was confirmed that the CBB color reflected the cross-sectional shape of the microcantilever insertion. .
実施例 15  Example 15
[0045] 蛋白質の一種であるアルブミンを、プルランと無水非結晶マルトース(1: 1の組成比 )の円板状チップ(直径 50 m、厚さ 5 111)に 3重量%含有させ、そのチップを実施 例 1の基板型マイクロインプリメント(但し、 4個のカンチレバーのうち 3個は取り外して いる)の片割れ面上に常温にて接着させて、機能性チップ搭載型のマイクロインプリ メントを作製した。そのマイクロインプリメントを手の甲の皮膚表面内に揷入すると、マ イクロスコープによる観察および角質細胞を抽出したものの化学分析の結果、アルブ ミンが角質層内に留まって!/、ること力 S確認できた。 [0045] Albumin, which is a kind of protein, is contained in 3% by weight of a disk-shaped chip (diameter 50 m, thickness 5 111) of pullulan and anhydrous amorphous maltose (1: 1 composition ratio). Substrate type micro-implementation of Example 1 (however, three of the four cantilevers were removed A microchip with a functional chip mounted type was fabricated by bonding it at room temperature on the one side of the chip. When the microimplement was inserted into the skin surface of the back of the hand, as a result of microscopic observation and chemical analysis of the extracted corneocytes, albumin remained in the stratum corneum! .
実施例 16  Example 16
[0046] 糖尿病治療に効果的なインスリンを、プルランと無水非結晶マルトース(1: 1の組成 比)の円板状チップ(直径 50 m、厚さ 5 111)に 1重量%含有させ、そのチップを実 施例 1の基板型マイクロインプリメント(但し、 4個のカンチレバーのうち 3個は取り外し ている)の片割れ面上に常温にて接着させて、機能性チップ搭載型のマイクロインプ リメントを作製した。そのマイクロインプリメントを手の甲の皮膚表面内に揷入すると、 マイクロスコープによる観察および角質細胞を抽出したものの化学分析の結果、イン スリンが角質層内に留まって!/、ること力 S確認できた。  [0046] Insulin effective in treating diabetes is contained in 1% by weight of a disk-shaped chip (diameter 50 m, thickness 5 111) of pullulan and anhydrous amorphous maltose (1: 1 composition ratio). Was bonded to one side of the cracked surface of the substrate-type micro-implement in Example 1 (but three of the four cantilevers were removed) to produce a micro-implement with a functional chip. . When the micro-implement was inserted into the skin surface of the back of the hand, it was confirmed that the insulin remained in the stratum corneum as a result of observation with a microscope and chemical analysis of the extracted corneocytes.
実施例 17  Example 17
[0047] 栄養補助剤であるビタミン Aの一種であるカロテノイドを、プルランと無水非結晶マ ルトース(1: 1の組成比)の円板状チップ(直径 50 m、厚さ 5 m)に 1重量%含有 させ、そのチップを実施例 1の基板型マイクロインプリメント(但し、 4個のカンチレバー のうち 3個は取り外している)の片割れ面上に常温にて接着させて、機能性チップ搭 載型のマイクロインプリメントを作製した。そのマイクロインプリメントを手の甲の皮膚表 面内に揷入すると、マイクロスコープによる観察および角質細胞を抽出したものの化 学分析の結果、カロテノイドが角質層内に留まっていることが確認できた。  [0047] Carotenoid, a type of vitamin A, a nutritional supplement, is added to a disc-shaped chip (diameter 50 m, thickness 5 m) of pullulan and anhydrous amorphous maltose (1: 1 composition). The chip is bonded to one side of the cracked surface of the substrate type micro-implement in Example 1 (however, three of the four cantilevers are removed) at room temperature, so that the functional chip mounted type A micro-implement was made. When the microimplement was inserted into the skin surface of the back of the hand, observations using a microscope and chemical analysis of the extracted corneocytes confirmed that the carotenoid remained in the stratum corneum.
実施例 18  Example 18
[0048] 保湿剤であるヒアルロン酸を、プルランと無水非結晶マルトース(1: 1の組成比)の 円板状チップ(直径 50 m、厚さ 5 m)に 3重量%含有させ、そのチップを実施例 1 のカンチレバー用金型ヘッドの凹部 1箇所に投入しておき、それ以外は実施例 1と同 様の方法により、カンチレバー内部に上記チップを搭載した機能性チップ搭載型の マイクロインプリメント(但し、カンチレバーは 1個分のみ)を作製した。そのマイクロイ ンプリメントを手の甲の皮膚表面内に揷入すると、マイクロスコープによる観察および 角質細胞を抽出したものの化学分析の結果、加熱による分解もなぐヒアルロン酸が 角質層内に留まってレ、ること力 S確認され、皮膚表面内に簡便にヒアルロン酸を投与で きた。 [0048] Hyaluronic acid as a humectant is contained in 3% by weight of a disk-shaped chip (diameter 50 m, thickness 5 m) of pullulan and anhydrous amorphous maltose (1: 1 composition ratio). A microchip (with a functional chip mounted type) in which the above chip is mounted inside the cantilever in the same manner as in Example 1 except that it is inserted into one recess of the mold head for the cantilever in Example 1. And only one cantilever). When the micro supplement was inserted into the skin surface of the back of the hand, hyaluronic acid, which was decomposed by heating as a result of observation with a microscope and chemical analysis of the extracted corneocytes, was found. It was confirmed that it stayed in the stratum corneum and was able to administer hyaluronic acid easily into the skin surface.
実施例 19  Example 19
[0049] 設計ルール 2 μ mの微細磁気コイル回路を内蔵した ICチップを、実施例 1の基板 型マイクロインプリメント(但し、 4個のカンチレバーのうち 3個は取り外して!/、る)の片 割れ面上に常温にて接着させて、 ICチップ搭載型のマイクロインプリメントを作製した 。そのマイクロインプリメントを手の甲の皮膚表面内に挿入したところ、マイクロスコー プによる観察の結果、その ICチップが皮膚表面下 50 mのところに残留していること が確認、できた。  [0049] Design rule An IC chip with a built-in 2 μm fine magnetic coil circuit is split into a substrate-type micro-implement of Example 1 (however, three of the four cantilevers are removed! /) An IC chip-mounted micro-implement was fabricated by bonding it to the surface at room temperature. When the microimplement was inserted into the skin surface of the back of the hand, it was confirmed by observation with a microscope that the IC chip remained 50 m below the skin surface.
実施例 20  Example 20
[0050] 1辺 200 μ mの正方形で厚さ 10 μ mの ICチップ、いわゆる ICタグの裏面に、プルラ ン及び無水非結晶マルトースの複合糖材(1: 1の組成比)からなる接着剤を塗布し、 実施例 1の基板型マイクロインプリメントの片割れ面上に常温にてその裏面を接着さ せて、 ICタグ搭載型のマイクロインプリメントを作製した。そのマイクロインプリメントを 手の甲の皮膚表面内に挿入したところ、マイクロスコープによる観察の結果、その IC チップが皮膚表面下 100 mの角質層に残留していることが確認できた。  [0050] Adhesive consisting of a composite sugar material (1: 1 composition ratio) of pullulan and anhydrous amorphous maltose on the back of a so-called IC tag, an IC chip with a side of 200 μm and a thickness of 10 μm Then, the back surface of the substrate-type microimplement of Example 1 was bonded to the one side of the substrate-type microimplement at room temperature to produce an IC tag-mounted microimplement. When the microimplement was inserted into the skin surface of the back of the hand, observation with a microscope confirmed that the IC chip remained in the stratum corneum 100 m below the skin surface.
実施例 21  Example 21
[0051] 1辺 150 μ mの正方形で厚さ 10 μ mの微小シリコン基板温度センサーチップをポリ エチレンで被覆し、リード線をつけたまま、実施例 1の基板型マイクロインプリメント (但 し、 4個のカンチレバーのうち 3個は取り外している)の片割れ面上に常温にて接着さ せて、微小シリコン基板温度センサーチップ搭載型のマイクロインプリメントを作製し た。そのマイクロインプリメントを手の甲の皮膚表面内に挿入したところ、マイクロスコ ープによる観察の結果、皮膚表面下 50 mのところの角質層内に残留していること が確認でき、またリード線を外部に導くこともでき、さらにリード線を通して信号を抽出 することができたので、体内の温度を正確に測ることが可能となった。  [0051] A micro silicon substrate temperature sensor chip with a side of 150 μm and a thickness of 10 μm was covered with polyethylene and the lead wire was left on the substrate type micro-implementation of Example 1 (however, 4 (3 out of the cantilevers were removed) were bonded at room temperature to a micro-implement with a micro silicon substrate temperature sensor chip. When the microimplement was inserted into the skin surface of the back of the hand, as a result of observation with a microscope, it was confirmed that it remained in the stratum corneum 50 m below the skin surface, and the lead wire was externally exposed. In addition, the signal could be extracted through the lead wire, so that the temperature inside the body could be measured accurately.
実施例 22  Example 22
[0052] 人 IgG抗体を、プルランと無水非結晶マルトース(1: 1の組成比)の円板状チップ( 直径 50 111、厚さ 5 111)に 0. 25重量%含有させ、そのチップを実施例 1の基板型 マイクロインプリメント(但し、 4個のカンチレバーのうち 3個は取り外している)の片割 れ面上に常温にて接着させて、人 IgG抗体含有チップ搭載型のマイクロインプリメン トを作製した。そのマイクロインプリメントをラットの腹部の皮膚に投与する In— Vivo実 験を行って後、ラット皮膚断面をマイクロスコープにより観察した結果、ラット皮膚内に 人 IgGの存在が確認できた。 [0052] Human IgG antibody, a disk-shaped chip of pullulan and anhydrous amorphous maltose (1: 1 composition ratio) 0.25% by weight in a diameter of 50 111 and a thickness of 5 111), and the chip is divided into parts of the substrate type micro-implement of Example 1 (however, three of the four cantilevers are removed) A human IgG antibody-containing micro-implement was fabricated by bonding it at room temperature. After conducting an in-vivo experiment in which the microimplement was administered to the skin of the abdomen of the rat, the cross-section of the rat skin was observed with a microscope, and the presence of human IgG in the rat skin was confirmed.
実施例 23  Example 23
[0053] DNA—部を、プルランと無水非結晶マルトース(1: 1の組成比)の円板状チップ( 直径 50 111、厚さ 5 m)に含有させ、そのチップを実施例 1の基板型マイクロインプ リメント(但し、 4個のカンチレバーのうち 3個は取り外している)の片割れ面上に常温 にて接着させて、 DNA—部含有チップ搭載型のマイクロインプリメントを作製した。そ のマイクロインプリメントを手の甲の皮膚表面内に揷入すると、マイクロスコープによる 観察の結果、その DNA—部が角質層内に留まって!/、ることを確認できた。  [0053] The DNA portion is contained in a disk-shaped chip (diameter 50 111, thickness 5 m) of pullulan and anhydrous amorphous maltose (1: 1 composition ratio), and the chip is used as the substrate type of Example 1 A micro-implement with a DNA-containing chip mounted was fabricated by bonding the micro-implant (however, three of the four cantilevers were removed) to one side of the cracked surface at room temperature. When the microimplement was inserted into the skin surface of the back of the hand, it was confirmed by observation with a microscope that the DNA part remained in the stratum corneum!
実施例 24  Example 24
[0054] 直径 25 H m以下の鉄粒子を 2重量%含む無水非結晶マルトースをカンチレバーの 基材原料として、実施例 1と同様にして、基板型マイクロインプリメントを作製した。こ のマイクロインプリメントを手の甲の皮膚表面内に挿入した後、高感度時期センサー により、その皮膚表面内にあある鉄粒子を数えることができ、番号対応がとることがで きた。この方法を応用すると、入院患者の番号付けに簡便に使用される可能性が示 唆された。  [0054] A substrate-type microimplement was produced in the same manner as in Example 1 using anhydrous amorphous maltose containing 2 wt% of iron particles having a diameter of 25 Hm or less as a base material of the cantilever. After inserting this micro-implement into the skin surface of the back of the hand, the high-sensitivity time sensor can count the iron particles in the skin surface, and the number correspondence can be taken. Application of this method suggests the possibility of convenient use for inpatient numbering.
実施例 25  Example 25
[0055] リドカインを 1重量%含有する、基材原料が無水非結晶マルトースであるマイクロ力 プセル(粒子径 1 μ m)を、プルランと無水非結晶マルトース(1: 1の組成比)の円板 状チップ(直径 50 m、厚さ 5 111)に 5重量%含有させ、そのチップを実施例 1の基 板型マイクロインプリメント(但し、 4個のカンチレバーのうち 3個は取り外している)の 片割れ面上に常温にて接着させて、マイクロカプセル搭載型のマイクロインプリメント を作製した。そのマイクロインプリメントをラットの腹部の皮膚表面内に挿入した後、マ イクロスコープによる皮膚断面の観察の結果、皮膚表面内にリドカインが存在すること を確認できた。 [0055] A micro-force psell (particle size: 1 μm) containing 1% by weight of lidocaine and the base material is anhydrous amorphous maltose, a disk of pullulan and anhydrous amorphous maltose (1: 1 composition ratio) A chip-shaped chip (diameter 50 m, thickness 5 111) containing 5% by weight, and the chip is a single-sided surface of the board-type micro-implement of Example 1 (however, three of the four cantilevers are removed) The microcapsule-mounted microimplement was fabricated by bonding it at room temperature. After the microimplement was inserted into the skin surface of the abdomen of the rat, the cross-section of the skin was observed with a microscope, and as a result, lidocaine was present on the skin surface. Was confirmed.
産業上の利用可能性 Industrial applicability
本発明の皮膚表面内マイクロインプリメント及びその製造方法は前述の様々な特徴 的効果を有するが、これらにより、医療分野、栄養剤やサプリメントの分野、美容分野 、化粧分野、各種機能性材料の応用分野、マイクロカプセルの応用分野、機能性チ ップの応用分野等において利用できる。また、糖材部品組立方法は糖材部品同士を 簡便に、効率よく組立てることができるので、各種糖材部品の応用分野において利 用可能である。  The skin surface microimplement and the method for producing the same of the present invention have the above-mentioned various characteristic effects. By these, the medical field, the field of nutrients and supplements, the field of beauty, the field of cosmetics, the field of application of various functional materials. It can be used in application fields of microcapsules and functional chips. In addition, since the sugar material parts assembling method can easily and efficiently assemble sugar material parts, it can be used in the application fields of various sugar material parts.

Claims

請求の範囲 The scope of the claims
[1] 基板側面の上端部に、皮膚内可溶材からなる微細カンチレバーを 1又は 2以上有 した構造であるマイクロインプリメントにおレ、て、前記カンチレバーが略錐体の片割れ 形状であり、前記カンチレバーの微細先端部の長幅が 0. 1 m〜100 μ mであり、 前記カンチレバーの先端から末端までの長さが 50 H m〜5mmであることを特徴とす る皮膚表面内揷入用マイクロインプリメント。  [1] A micro-implement having a structure in which one or more fine cantilevers made of a soluble material in the skin are provided at the upper end portion of the side surface of the substrate, and the cantilever has a substantially fractal shape of a cone, and the cantilever The length of the fine tip of the cantilever is 0.1 m to 100 μm, and the length from the tip to the end of the cantilever is 50 Hm to 5 mm. implement.
[2] 基板シート表面に、皮膚内可溶材からなる微細カンチレバーを 1又は 2以上有した 構造であるマイクロインプリメントにお!/、て、前記カンチレバーが略錐体の片割れ形 状であり、前記カンチレバーの微細先端部の長幅が 0. 1 μ m〜100 μ mであり、前 記カンチレバーの先端から末端までの長さが 50 ,1 m〜5mmであることを特徴とする 皮膚表面内揷入用マイクロインプリメント。  [2] In a micro-implement having a structure having one or more fine cantilevers made of a soluble material in the skin on the surface of the substrate sheet! /, The cantilever has a substantially conical half-divided shape, and the cantilever The length of the fine tip of the cantilever is 0.1 μm to 100 μm, and the length from the tip to the end of the cantilever is 50,1 m to 5 mm. Micro-implementation.
[3] 前記カンチレバーがくびれ形状部を有することを特徴とする請求項 1又は 2記載の 皮膚表面内揷入用マイクロインプリメント。  [3] The microimplement for insertion into the skin surface according to claim 1 or 2, wherein the cantilever has a constricted shape.
[4] 前記基板の基材が、糖類、セルロース、固形でんぷん、紙、木、プラスティック、金 属、力 選ばれる 1又は 2以上であることを特徴とする請求項 1から 3いずれか一項記 載の皮膚表面内揷入用マイクロインプリメント。  [4] The substrate according to any one of claims 1 to 3, wherein the base material of the substrate is one or more selected from sugar, cellulose, solid starch, paper, wood, plastic, metal, force. The micro-implement for insertion into the skin surface.
[5] 前記基板シートの基材が、プルラン、又はプルラン及びマルトースの複合糖材であ ることを特徴とする請求項 2又は 3記載の皮膚表面内揷入用マイクロインプリメント。  5. The microimplement for insertion into the skin surface according to claim 2 or 3, wherein the base material of the substrate sheet is pullulan or a complex sugar material of pullulan and maltose.
[6] 前記皮膚内可溶材が、無水非結晶マルトースであることを特徴とする請求項 1から 5いずれか一項記載の皮膚表面内揷入用マイクロインプリメント。  [6] The microimplement for insertion into the skin surface according to any one of [1] to [5], wherein the soluble material in the skin is anhydrous amorphous maltose.
[7] 前記皮膚内可溶材が、無水非結晶マルトース及びプルランの複合糖材であること を特徴とする請求項 1から 5いずれか一項記載の皮膚表面内揷入用マイクロインプリ メント。  [7] The microimplement for penetration into the skin surface according to any one of [1] to [5], wherein the soluble material in the skin is a complex sugar material of anhydrous amorphous maltose and pullulan.
[8] 前記カンチレバーが、蛋白質、 DNA、医薬剤、栄養剤、栄養補助剤、化粧材、色 素材、金属、金属酸化物、マイクロカプセル、力 選ばれる 1又は 2以上を含有するこ とを特徴とする請求項 1から 7いずれか一項記載の皮膚表面内揷入用マイクロインプ リメント。  [8] The cantilever contains one or more selected from proteins, DNA, pharmaceutical agents, nutrients, nutritional supplements, cosmetics, color materials, metals, metal oxides, microcapsules, and force. A micro-implement for insertion into the skin surface according to any one of claims 1 to 7.
[9] 前記カンチレバーの表面に、機能性チップを搭載した構造であることを特徴とする 請求項 1から 8いずれか一項記載の皮膚表面内揷入用マイクロインプリメント。 [9] A structure in which a functional chip is mounted on the surface of the cantilever. The micro-implement for insertion into the skin surface according to any one of claims 1 to 8.
[10] 前記カンチレバーの内部に、機能性チップを搭載した構造であることを特徴とする 請求項 1から 8いずれか一項記載の皮膚表面内揷入用マイクロインプリメント。 [10] The microimplement for insertion into the skin surface according to any one of [1] to [8], wherein a functional chip is mounted inside the cantilever.
[11] 前記機能性チップが、半導体チップ、集積回路チップ、温度センサーチップ、蛋白 質チップ、 DNA含有チップ、医薬剤含有チップ、栄養剤含有チップ、栄養補助剤含 有チップ、化粧材含有チップ、色素材含有チップ、金属含有チップ、マイクロカプセ ル含有チップ、力も選ばれる 1又は 2以上であることを特徴とする請求項 9又は 10記 載の皮膚表面内揷入用マイクロインプリメント。 [11] The functional chip is a semiconductor chip, an integrated circuit chip, a temperature sensor chip, a protein chip, a DNA-containing chip, a pharmaceutical agent-containing chip, a nutrient-containing chip, a nutritional supplement-containing chip, a cosmetic material-containing chip, The micro-implement for insertion into the skin surface according to claim 9 or 10, wherein the color material-containing chip, the metal-containing chip, the micro-capsule-containing chip, and the force are selected 1 or 2 or more.
[12] 前記機能性チップの表面が、マルトース、マルトース及びプルランの複合糖材、ポリ エチレン、ポリプロピレン、力も選ばれる一材料により被覆されていることを特徴とする 請求項 11記載の皮膚表面内揷入用マイクロインプリメント。 12. The surface of the skin according to claim 11, wherein the surface of the functional chip is covered with a maltose, maltose and pullulan complex sugar material, polyethylene, polypropylene, and a material of which force is also selected. Input micro-implementation.
[13] 1又は 2以上の微細カンチレバーの反転形状の凹部を上面端部に有するカンチレ バー用マイクロ金型ヘッドと、基板の反転形状の凹部を有する基板用金型より構成さ れるマイクロインプリメント用金型にぉレ、て、前記マイクロインプリメント用金型は温度 制御機構を有し、かつ前記カンチレバー用マイクロ金型ヘッド及び前記基板用金型 が独立に可動できる機構を有するマイクロインプリメント用金型を用いて作製すること を特徴とする請求項 1又は請求項 3記載の皮膚表面内揷入用マイクロインプリメント の製造方法。 [13] A micro-implement mold comprising a cantilever micro mold head having an inverted concave portion of one or two or more fine cantilevers at an upper surface end, and a substrate mold having an inverted concave portion of the substrate. The micro-implement mold has a temperature control mechanism, and the micro-implement mold has a mechanism that allows the cantilever micro-mold head and the substrate mold to move independently. The method for producing a microimplement for insertion into the skin surface according to claim 1 or claim 3, wherein
[14] 1又は 2以上の微細カンチレバーの反転形状の凹部を上面端部に有するカンチレ バー用マイクロ金型ヘッドにおいて、前記マイクロ金型ヘッドは温度制御機構を有し 、かつ基板シート表面に対して垂直に可動できる機構を有するマイクロ金型ヘッドを 用いて作製することを特徴とする請求項 2又は請求項 3記載の皮膚表面内揷入用マ イク口インプリメントの製造方法。  [14] In a micro mold head for a cantilever having a reversal-shaped concave portion of one or more fine cantilevers at the upper end, the micro mold head has a temperature control mechanism and is on the surface of the substrate sheet. 4. The method for producing a mic mouth implement for insertion into the skin surface according to claim 2 or 3, wherein the micro die head having a mechanism capable of moving vertically is used.
[15] 2体の糖材部品のうちの少なくとも一方力 S、プルラン、又はプルラン及びマルトース の複合糖材で構成されており、前記 2体の糖材部品同士を接触させ、溶着させること を特徴とする糖材部品組立方法。  [15] It is composed of at least one of two sugar material parts, S, pullulan, or a composite sugar material of pullulan and maltose, and the two sugar material parts are brought into contact with each other and welded together. The sugar material parts assembly method.
[16] 請求項 15記載のプルラン、又はプルラン及びマルトースの複合糖材で構成されて V、る前記糖材部品が基板又は基板シートであり、基板側面の上端部又は基板シート 表面に他方の糖材部品を接触させ、溶着させることを特徴とする糖材部品組立方法 請求項 3記載の皮膚表面内揷入用マイクロインプリメントの組立方法において、前 記他方の糖材部品が請求項 3記載のカンチレバーであり、前記カンチレバーにおけ る皮膚内可溶材が無水非結晶マルトース、又は無水非結晶マルトース及びプルラン の複合糖材であることを特徴とする請求項 16記載の糖材部品組立方法。 [16] The pullulan according to claim 15, or the sugar material component comprising a composite sugar material of pullulan and maltose is a substrate or a substrate sheet, and an upper end portion of the substrate side surface or the substrate sheet 4. A method for assembling a sugar material part, wherein the other sugar material part is brought into contact with and welded to the surface. 4. The method for assembling a microimplement for insertion into the skin surface according to claim 3, wherein the other sugar material part is charged. 17. The cantilever according to claim 3, wherein the soluble material in the skin of the cantilever is anhydrous amorphous maltose or a complex sugar material of anhydrous amorphous maltose and pullulan. Method.
PCT/JP2007/064346 2006-07-21 2007-07-20 Microimplement, process for manufacturing the same, and method of assembling sugar material part WO2008010573A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006222769A JP4821993B2 (en) 2006-07-21 2006-07-21 Micro-implement and manufacturing method thereof
JP2006-222769 2006-07-21

Publications (1)

Publication Number Publication Date
WO2008010573A1 true WO2008010573A1 (en) 2008-01-24

Family

ID=38956904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064346 WO2008010573A1 (en) 2006-07-21 2007-07-20 Microimplement, process for manufacturing the same, and method of assembling sugar material part

Country Status (2)

Country Link
JP (1) JP4821993B2 (en)
WO (1) WO2008010573A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178531A (en) * 2008-01-31 2009-08-13 Yoshiichi Tobinaga Carbohydrate microneedle, and method and device for manufacturing the same
JP2010069270A (en) * 2008-09-17 2010-04-02 Yoshiichi Tobinaga Device for administration of functional medicine and method and apparatus for manufacturing the same
JP2010141278A (en) * 2008-12-10 2010-06-24 Yoshiichi Tobinaga Polysaccharide wiring board and method of manufacturing the same
JP2010142472A (en) * 2008-12-19 2010-07-01 Toppan Printing Co Ltd Needle-like body with projection having constriction in body, and method of manufacturing the same
JP2010240281A (en) * 2009-04-09 2010-10-28 Toppan Printing Co Ltd Microneedle chip, method for manufacturing microneedle chip, history management system
EP2614854A1 (en) * 2012-01-13 2013-07-17 Technische Universität Berlin A device for the repeated piercing of an organic tissue, an application module and a method
JP2014079557A (en) * 2012-09-28 2014-05-08 Kosumedei Seiyaku Kk Microneedle holding medicament in step
JP2014147815A (en) * 2014-04-07 2014-08-21 Toppan Printing Co Ltd Microneedle chip history management system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2528540A4 (en) * 2010-01-29 2013-11-13 Icon Medical Corp Biodegradable protrusions on inflatable device
KR101195974B1 (en) 2011-08-08 2012-10-30 연세대학교 산학협력단 Hollow microneedle for minimally invasive blood extraction
KR101610598B1 (en) * 2015-09-21 2016-04-07 비엔엘바이오테크 주식회사 FLEXIBLE MICRONEEDLE FOR DENTAL MATERIAL DELIVERY AND THE MANUFACTURING METHOD Of THE SAME
JP7147289B2 (en) * 2018-06-26 2022-10-05 凸版印刷株式会社 microneedle device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238347A (en) * 2002-02-18 2003-08-27 Nano Device & System Research Inc Functional micropile and method for producing the same
JP2003246372A (en) * 2002-02-22 2003-09-02 Showa Denko Plastic Products Co Ltd Dehydrating container and manufacturing method therefor
JP2004520152A (en) * 2000-10-26 2004-07-08 アルザ・コーポレーシヨン Transdermal drug delivery device with coated microprojections
JP2005503210A (en) * 2001-09-14 2005-02-03 ザ プロクター アンド ギャンブル カンパニー Microstructure for delivering compositions to the skin through the skin using a rotatable structure
JP2005154321A (en) * 2003-11-25 2005-06-16 Nano Device & System Research Inc Microneedle for ascorbic acid administration

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246372A (en) * 2004-03-29 2004-09-02 Fuji Photo Film Co Ltd Image forming apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004520152A (en) * 2000-10-26 2004-07-08 アルザ・コーポレーシヨン Transdermal drug delivery device with coated microprojections
JP2005503210A (en) * 2001-09-14 2005-02-03 ザ プロクター アンド ギャンブル カンパニー Microstructure for delivering compositions to the skin through the skin using a rotatable structure
JP2003238347A (en) * 2002-02-18 2003-08-27 Nano Device & System Research Inc Functional micropile and method for producing the same
JP2003246372A (en) * 2002-02-22 2003-09-02 Showa Denko Plastic Products Co Ltd Dehydrating container and manufacturing method therefor
JP2005154321A (en) * 2003-11-25 2005-06-16 Nano Device & System Research Inc Microneedle for ascorbic acid administration

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178531A (en) * 2008-01-31 2009-08-13 Yoshiichi Tobinaga Carbohydrate microneedle, and method and device for manufacturing the same
JP2010069270A (en) * 2008-09-17 2010-04-02 Yoshiichi Tobinaga Device for administration of functional medicine and method and apparatus for manufacturing the same
JP2010141278A (en) * 2008-12-10 2010-06-24 Yoshiichi Tobinaga Polysaccharide wiring board and method of manufacturing the same
JP2010142472A (en) * 2008-12-19 2010-07-01 Toppan Printing Co Ltd Needle-like body with projection having constriction in body, and method of manufacturing the same
JP2010240281A (en) * 2009-04-09 2010-10-28 Toppan Printing Co Ltd Microneedle chip, method for manufacturing microneedle chip, history management system
EP2614854A1 (en) * 2012-01-13 2013-07-17 Technische Universität Berlin A device for the repeated piercing of an organic tissue, an application module and a method
US9808286B2 (en) 2012-01-13 2017-11-07 Technische Universitaet Berlin Device for the repeated piercing of an organic tissue, an application module and a method thereof
JP2014079557A (en) * 2012-09-28 2014-05-08 Kosumedei Seiyaku Kk Microneedle holding medicament in step
JP2014147815A (en) * 2014-04-07 2014-08-21 Toppan Printing Co Ltd Microneedle chip history management system

Also Published As

Publication number Publication date
JP2009232873A (en) 2009-10-15
JP4821993B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
WO2008010573A1 (en) Microimplement, process for manufacturing the same, and method of assembling sugar material part
US8043250B2 (en) High-aspect-ratio microdevices and methods for transdermal delivery and sampling of active substances
US8048017B2 (en) High-aspect-ratio microdevices and methods for transdermal delivery and sampling of active substances
Donnelly et al. Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety
JP4090018B2 (en) Functional micropile and manufacturing method thereof
JP5472673B2 (en) Microneedle array
AU2012203204B2 (en) Methods and devices for delivering agents across biological barriers
JP5553612B2 (en) Applicator for microneedle array
US20050261632A1 (en) High-Aspect-Ratio Microdevices and Methods for Transdermal Delivery and Sampling of Active Substances
ES2730735T3 (en) Microneedle and microneedle matrix
EP2056921B1 (en) High-aspect-ratio microdevices for transdermal delivery and sampling of active substances
US20100249560A1 (en) Oxygen sensor
WO2015147040A1 (en) Microneedle staying in stratum corneum
EP3021931B1 (en) Hollow microneedle array article
WO2015009531A1 (en) Article comprising a microneedle
JP2015205094A (en) Microimplement for dermal administration and manufacturing method thereof
CN110025883A (en) Metal drug storage microneedle patch and preparation method thereof
JP2008279237A (en) Cusp type skin surface inserting micro-needle
KR102249513B1 (en) A candle-typed microstructure for transdermal delivery and a method for manufacturing the same
More et al. Microneedle: an advanced technique in transdermal drug delivery system
JP7324448B2 (en) micro structure
Prausnitz et al. Microneedles for drug delivery
CN210494885U (en) Metal drug-storing micro-needle patch
JP5120624B2 (en) Fine sugar needle, manufacturing method and manufacturing apparatus
Stoeber et al. Microneedling in Clinical Practice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07791083

Country of ref document: EP

Kind code of ref document: A1