WO2008007298A2 - Device and method for addressing power to a load selected from a plurality of loads - Google Patents

Device and method for addressing power to a load selected from a plurality of loads Download PDF

Info

Publication number
WO2008007298A2
WO2008007298A2 PCT/IB2007/052581 IB2007052581W WO2008007298A2 WO 2008007298 A2 WO2008007298 A2 WO 2008007298A2 IB 2007052581 W IB2007052581 W IB 2007052581W WO 2008007298 A2 WO2008007298 A2 WO 2008007298A2
Authority
WO
WIPO (PCT)
Prior art keywords
clock signal
signal
timed
load
circuit according
Prior art date
Application number
PCT/IB2007/052581
Other languages
French (fr)
Other versions
WO2008007298A3 (en
Inventor
Alwin R. M. Verschueren
Original Assignee
Koninklijke Philips Electronics N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics N.V. filed Critical Koninklijke Philips Electronics N.V.
Priority to US12/306,736 priority Critical patent/US8212393B2/en
Priority to EP20070825879 priority patent/EP2042003B1/en
Priority to CN2007800257697A priority patent/CN101491159B/en
Publication of WO2008007298A2 publication Critical patent/WO2008007298A2/en
Publication of WO2008007298A3 publication Critical patent/WO2008007298A3/en
Priority to US13/487,305 priority patent/US8575786B2/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the invention relates to a device and method for addressing power to at least a selected load from a plurality of loads, and in particular the invention relates to driving individual light sources in solid state lighting applications, such as decorative indoor and outdoor illumination for buildings or cars.
  • the invention provides an electrical circuit for switching a load among a plurality of loads, the circuit comprising a plurality of cascaded subcircuits, matching the number of loads. When cascading the subcircuits, the total amount of wires remains constant.
  • the invention comprises an electrical circuit for addressing power to at least a selected load from a plurality of loads, the circuit comprising a plurality of cascaded subcircuits, each subcircuit for powering one of the loads, each subcircuit comprising a first input terminal for receiving a timed common power signal, a delay element for delaying a clock signal received on a second input terminal, the delay element for outputting a delayed clock signal on a output terminal, a switching element for switching the common timed power signal to the load, the switching under control of the delayed clock signal.
  • the invention relates to a method for independently controlling a single load among a plurality of loads, according to claim 10.
  • Fig. Ia shows a generic scheme of a subcircuit for forming a circuit according to the present invention.
  • Fig. Ib shows a scheme of a subcircuit for forming a circuit according to an embodiment of the present invention.
  • Fig. 2 shows an electrical circuit for switching a load among a plurality of loads.
  • Fig. 3 shows a graph with signal waveforms for switching a load in the circuit of fig. 2.
  • Fig. 4 shows a scheme of a subcircuit for forming a circuit according to a different embodiment of the present invention.
  • Fig. Ia shows a generic scheme of a subcircuit 100 for forming a circuit according to the present invention.
  • the subcircuit comprises a first input terminal 10 for receiving a timed common power signal and a second input terminal 20 for receiving a clock signal with frequency/
  • the clock signal is output with a predetermined phase delay by delay element 22 to output 30 which is also connected to switching element 40 for switching the load.
  • the switching element 40 is further coupled with the timed common power signal, and has a switching output 50 for being connected with a load.
  • a dashed load 60 not being part of a general embodiment of the invention, is drawn between switching output 50 and dashed power supply line 70, which also does not form a part of a general embodiment of the invention.
  • Subcircuit 100 is configured to couple the switching output 50 with input 10, when a low value of the timed common power signal on input 10 coincides with a high value of the delayed clock signal at output 30. At that coincidence the load is powered by the voltage difference of the power supply line and the timed common power signal.
  • Fig. Ib shows an embodiment of the subcircuit 100 of fig. Ia, in which electric components are shown.
  • Inductance 25 of L Henry is connected between input terminal 20 and output terminal 30, and capacitor 35 of C Farad is connected between output terminal 30 and ground line 80.
  • Switch 40 from Fig. Ia is embodied by FET 45, of which gate 46 is coupled with output terminal 30 of the subcircuit, and of which source 47 is coupled with input terminal 10.
  • Drain 48 forms switching output 50, to which a load, embodied by LED light source 65 is connected, which LED is further connected to power supply line 70.
  • FET 45 is chosen to be a JFET of type Philips BF 245C, supporting a channel current up to 25 mA, which matches the current required for driving the LED's.
  • Inductance 25 and capacitor 35 form a delay circuit that causes a delay
  • 2 ⁇ fy/ ⁇ C .
  • a preferred value for ⁇ is 2 ⁇ In , in which n is the number of subcircuits to be cascaded.
  • the clock signal received on terminal 20 is preferably a sinusoidal signal, while the timed common power signal is preferably a pulsed signal.
  • a subcircuit is followed by a subcircuit on its right side.
  • a sinusoidal clock signal applied to input terminal 20 will be output at output terminal 30 with a phase delay of ⁇ , as indicated on timeline 90.
  • a timed common power signal offered on input 10 of a subcircuit will be available on input 10' of an adjacent subcircuit without a delay.
  • the n-th LED can be powered by offering a low timed common power signal with a delay of n ⁇ with respect to the clock signal offered on input 20.
  • the cascade circuit is provided with an inductor 93 and a resistance 96 coupled to the last output terminal.
  • Resistance 96 is referred to as "terminal resistance" in the art.
  • the inductances of the subcircuits have a value of ImH
  • the capacitors of the subcircuits have a value of 10OpF.
  • Inductor 93 has a value of 503 ⁇ H
  • resistor 96 has a value of 3.1 k ⁇ .
  • the circuit is fed with a supply voltage of 10 Volts, and the timed common power signal has a duty cycle of 10%.
  • Fig. 3 shows a timing diagram in which the timed common power signal 320, the clock signal 330 and a LED power signal 340 are depicted for any LED in the circuit of fig. 2.
  • Dashed lines 310 are shown, which indicate moments on which the propagating clock signal has a maximum value at the output terminal of the subcircuit corresponding with said LED. It becomes clear from fig. 3 that only pulses 321 of the timed common power signal 320 that are coincident with any of the lines 310 lead to powering the LED.
  • Pulses 322, designated for a LED corresponding with an adjacent subcircuit are timed at instances ⁇ between lines 310, when the clock signal has a maximum value at the output terminal of the adjacent subcircuit.
  • Fig. 4 shows a scheme of a subcircuit 101 for forming a circuit according to a different embodiment of the present invention.
  • the subcircuit is essentially similar to the circuit 100 depicted in figure Ib, but additional input terminals 11 and 12 are present, as well as additional switches 45' and 45" with corresponding additional LED's 65' and 65".
  • LED's 65, 65' and 65" preferably have different property, like a color of light they are configured to generate. For example, LED 65 is configured to generate red light, LED 65' is configured to generate green light and LED 65" is generated to generate blue light.
  • a circuit composed of subcircuits 101 is especially advantageous for creating attractive dynamic color effects. It should, however, be understood that also circuits composed of subcircuits 100 can be implemented with LED's having mutually different properties, like a color of light they are configured to produce.

Abstract

The invention relates to a device and method for addressing power to at least a selected load from a plurality of loads, in particular light sources in solid state lighting applications, such as decorative indoor and outdoor illumination for buildings or cars, by timing a power signal such as to power a selected load when said common timed power signal is switched to said load under control of a delayed clock signal.

Description

Device and method for addressing power to a load selected from a plurality of loads
FIELD OF THE INVENTION
The invention relates to a device and method for addressing power to at least a selected load from a plurality of loads, and in particular the invention relates to driving individual light sources in solid state lighting applications, such as decorative indoor and outdoor illumination for buildings or cars.
BACKGROUND OF THE INVENTION
In solid state lighting applications, such as decorative indoor and outdoor illumination for buildings or cars, decorative effects are generated by using large amounts of small light sources to illuminate relatively large areas. Surprising effects can be obtained by controlling and especially varying the luminescence of individual light sources in time. For independent control of multiple electrical loads, such as light sources, several solutions are known in the art. A simple solution is to provide separate wiring to each load to be controlled. This solution has the disadvantage that it is complex and inconvenient to apply in the field of solid state lighting applications, since the number of wires grows proportionally with the amount of loads, i.e. light sources. Another solution is to add logic that enables addressing each individual load. This solution has the disadvantage of being very expensive, since the amount of logic needed is proportional with the amount of loads as well.
Furthermore it is known, for example from US 6 628 273 to address display elements by taking propagation delays of electrical signals in conductors into account. This method has the disadvantage that its use is restricted to nanosecond time ranges, which are too small for lighting applications.
OBJECT OF THE INVENTION It is an object of the present invention to provide a method and device for addressing power to at least a selected load from a plurality of loads, in particular light sources such as LED's or LED arrangements, without the requirement of large amounts of wires or logic. SUMMARY OF THE INVENTION
The invention provides an electrical circuit for switching a load among a plurality of loads, the circuit comprising a plurality of cascaded subcircuits, matching the number of loads. When cascading the subcircuits, the total amount of wires remains constant. In an aspect, the invention comprises an electrical circuit for addressing power to at least a selected load from a plurality of loads, the circuit comprising a plurality of cascaded subcircuits, each subcircuit for powering one of the loads, each subcircuit comprising a first input terminal for receiving a timed common power signal, a delay element for delaying a clock signal received on a second input terminal, the delay element for outputting a delayed clock signal on a output terminal, a switching element for switching the common timed power signal to the load, the switching under control of the delayed clock signal. In another aspect, the invention relates to a method for independently controlling a single load among a plurality of loads, according to claim 10.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. Ia shows a generic scheme of a subcircuit for forming a circuit according to the present invention.
Fig. Ib shows a scheme of a subcircuit for forming a circuit according to an embodiment of the present invention.
Fig. 2 shows an electrical circuit for switching a load among a plurality of loads. Fig. 3 shows a graph with signal waveforms for switching a load in the circuit of fig. 2.
Fig. 4 shows a scheme of a subcircuit for forming a circuit according to a different embodiment of the present invention.
DETAILED DESCRIPTION OF EXAMPLES
Fig. Ia shows a generic scheme of a subcircuit 100 for forming a circuit according to the present invention. The subcircuit comprises a first input terminal 10 for receiving a timed common power signal and a second input terminal 20 for receiving a clock signal with frequency/ The clock signal is output with a predetermined phase delay by delay element 22 to output 30 which is also connected to switching element 40 for switching the load. The switching element 40 is further coupled with the timed common power signal, and has a switching output 50 for being connected with a load. In fig. Ia a dashed load 60, not being part of a general embodiment of the invention, is drawn between switching output 50 and dashed power supply line 70, which also does not form a part of a general embodiment of the invention.
Subcircuit 100 is configured to couple the switching output 50 with input 10, when a low value of the timed common power signal on input 10 coincides with a high value of the delayed clock signal at output 30. At that coincidence the load is powered by the voltage difference of the power supply line and the timed common power signal.
Fig. Ib shows an embodiment of the subcircuit 100 of fig. Ia, in which electric components are shown. Inductance 25 of L Henry is connected between input terminal 20 and output terminal 30, and capacitor 35 of C Farad is connected between output terminal 30 and ground line 80. Switch 40 from Fig. Ia is embodied by FET 45, of which gate 46 is coupled with output terminal 30 of the subcircuit, and of which source 47 is coupled with input terminal 10. Drain 48 forms switching output 50, to which a load, embodied by LED light source 65 is connected, which LED is further connected to power supply line 70. In particular, FET 45 is chosen to be a JFET of type Philips BF 245C, supporting a channel current up to 25 mA, which matches the current required for driving the LED's. Inductance 25 and capacitor 35 form a delay circuit that causes a delay
Δφ = 2κfy/∑C . A preferred value for Δφ is 2π In , in which n is the number of subcircuits to be cascaded. The clock signal received on terminal 20 is preferably a sinusoidal signal, while the timed common power signal is preferably a pulsed signal.
Fig. 2 shows a circuit 200 formed by a plurality ofn = 10 cascaded subcircuits 100 according to fig Ib, in which the output terminal 30 of a subcircuit is coupled with the second input terminal 20 ' of a following subcircuit, i.e. a subcircuit which receives the clock signal with a larger delay. In this embodiment, a subcircuit is followed by a subcircuit on its right side. A sinusoidal clock signal applied to input terminal 20 will be output at output terminal 30 with a phase delay of Δφ , as indicated on timeline 90. A timed common power signal offered on input 10 of a subcircuit will be available on input 10' of an adjacent subcircuit without a delay. Since a LED is powered when a low value of the timed common power signal on input 10 of the corresponding subcircuit coincides with a high value of the delayed clock signal at output 30 of the same subcircuit, the n-th LED can be powered by offering a low timed common power signal with a delay of n Δφ with respect to the clock signal offered on input 20.
In order to avoid reflection of the clock signal, the cascade circuit is provided with an inductor 93 and a resistance 96 coupled to the last output terminal. Resistance 96 is referred to as "terminal resistance" in the art. In a practical embodiment of the circuit of fig. 2, the inductances of the subcircuits have a value of ImH, and the capacitors of the subcircuits have a value of 10OpF. Inductor 93 has a value of 503 μ H, and resistor 96 has a value of 3.1 kΩ . As a general rule, the value Zterm of the terminal resistance is chosen to be about Zterm = 4∑fC . The circuit is fed with a supply voltage of 10 Volts, and the timed common power signal has a duty cycle of 10%.
Fig. 3 shows a timing diagram in which the timed common power signal 320, the clock signal 330 and a LED power signal 340 are depicted for any LED in the circuit of fig. 2. Dashed lines 310 are shown, which indicate moments on which the propagating clock signal has a maximum value at the output terminal of the subcircuit corresponding with said LED. It becomes clear from fig. 3 that only pulses 321 of the timed common power signal 320 that are coincident with any of the lines 310 lead to powering the LED. Pulses 322, designated for a LED corresponding with an adjacent subcircuit are timed at instances Δφ between lines 310, when the clock signal has a maximum value at the output terminal of the adjacent subcircuit.
When the number of loads becomes large, for example about 50, it is also possible to use other than purely sinusoidal waveforms, for example square waves, which create pulses that rise steeper than the sinusoidals, enabling a more selective control of the switching element. These waveforms can be composed of multiple superimposed sinusoidals with different frequencies.
These waveforms, as well as the timing signals, can be accurately generated using simple electronics making use of the direct digital synthesis method. For generation of smooth waveforms, like sinusoidals, additional low-pass filters, such as RC filters.
Fig. 4 shows a scheme of a subcircuit 101 for forming a circuit according to a different embodiment of the present invention. The subcircuit is essentially similar to the circuit 100 depicted in figure Ib, but additional input terminals 11 and 12 are present, as well as additional switches 45' and 45" with corresponding additional LED's 65' and 65". Herein, LED's 65, 65' and 65" preferably have different property, like a color of light they are configured to generate. For example, LED 65 is configured to generate red light, LED 65' is configured to generate green light and LED 65" is generated to generate blue light. In that case, on input terminal 10, a common power signal for the red LED's is offered, while on input terminals 11 and 12 timed common power signals for the green and the blue LED's are offered. When the value of the clock signal at output terminal 30 has a high value, the LED's 65, 65' and 65" are simultaneously connected with the common power signals on respective terminals 10, 11 and 12. A circuit composed of subcircuits 101 is especially advantageous for creating attractive dynamic color effects. It should, however, be understood that also circuits composed of subcircuits 100 can be implemented with LED's having mutually different properties, like a color of light they are configured to produce.
As required, a detailed embodiment of the present invention is disclosed herein; however, it is to be understood that the disclosed embodiment is merely exemplary of the invention, which can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure. Further, the terms and phrases used herein are not intended to be limiting; but rather, to provide an understandable description of the invention. The terms "a" or "an", as used herein, are defined as one or more than one.

Claims

CLAIMS:
1. Electrical circuit for addressing power to at least a selected load from a plurality of loads, the circuit comprising a plurality of cascaded subcircuits, each subcircuit for powering one of the loads, each subcircuit comprising: a first input terminal for receiving a timed common power signal; - a delay element for delaying a clock signal received on a second input terminal, the delay element for outputting a delayed clock signal on a output terminal; a switching element for switching the common timed power signal to the load, the switching under control of the delayed clock signal.
2. Circuit according to claim 1, wherein the second input terminal of a subcircuit is coupled with the output terminal of a following subcircuit.
3. Circuit according to any of the preceding claims, further comprising a clock signal generator for generating the clock signal, and a power signal generator for generating the timed common power signal, the power signal generator being arranged for timing the power signal to power a selected load when the delayed clock signal switches on the switch corresponding said selected load.
4. Circuit according to any of the preceding claims, wherein the delay element comprises a LC resonance circuit formed by at least an inductor and a capacitor.
5. Circuit according to any of the preceding claims, wherein the switch comprises a JFET.
6. Circuit according to any of the preceding claims, wherein the load comprises at least a LED.
7. Circuit according to one of the preceding claims, further comprising means for preventing reflection of the clock signal after a last subcircuit.
8. Circuit according to any of the preceding claims, wherein the timed common power signal is an essentially rectangular pulse signal.
9. Circuit according to any of the preceding claims, wherein the clock signal is a sinusoidal signal.
10. Circuit according to any of the preceding claims, comprising at least a third input terminal, for receiving at least a second timed common power signal.
11. Circuit according to any of the preceding claims, comprising a first switching element for switching a first common timed power signal to a first load, the switching of the first switching element under control of the delayed clock signal, the circuit comprising at least a second switching element for switching a second common timed power signal to a second load, the switching of the at least second switching element under control of the delayed clock signal.
12. Circuit according to any of the preceding claims, further comprising means for generating the clock signal.
13. Circuit according to claim 12, wherein the means for generating the clock signal comprise electronics making use of the direct digital synthesis method.
14. Method for addressing power to at least a selected load from a plurality of loads, in a circuit comprising a plurality of cascaded subcircuits, each subcircuit for powering one of the loads, the method comprising the steps of: receiving a timed common power signal; receiving a clock signal; delaying the clock signal; - outputting the delayed clock signal; under control of the delayed clock signal, switching the common timed power signal to the load.
15. Method according to claim 14, further comprising the steps of: generating the clock signal; generating the timed common power signal; timing the power signal such as to power a selected load when the common timed power signal is switched to said load.
PCT/IB2007/052581 2006-07-07 2007-07-03 Device and method for addressing power to a load selected from a plurality of loads WO2008007298A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/306,736 US8212393B2 (en) 2006-07-07 2007-07-03 Device and method for addressing power to a load selected from a plurality of loads
EP20070825879 EP2042003B1 (en) 2006-07-07 2007-07-03 Device and method for addressing power to a load selected from a plurality of loads
CN2007800257697A CN101491159B (en) 2006-07-07 2007-07-03 Device and method for addressing power to a load selected from a plurality of loads
US13/487,305 US8575786B2 (en) 2006-07-07 2012-06-04 Device and method for addressing power to a load selected from a plurality of loads

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06116818 2006-07-07
EP06116818.3 2006-07-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/306,736 A-371-Of-International US8212393B2 (en) 2006-07-07 2007-07-03 Device and method for addressing power to a load selected from a plurality of loads
US13/487,305 Continuation US8575786B2 (en) 2006-07-07 2012-06-04 Device and method for addressing power to a load selected from a plurality of loads

Publications (2)

Publication Number Publication Date
WO2008007298A2 true WO2008007298A2 (en) 2008-01-17
WO2008007298A3 WO2008007298A3 (en) 2008-04-10

Family

ID=38923640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2007/052581 WO2008007298A2 (en) 2006-07-07 2007-07-03 Device and method for addressing power to a load selected from a plurality of loads

Country Status (5)

Country Link
US (2) US8212393B2 (en)
EP (1) EP2042003B1 (en)
CN (1) CN101491159B (en)
TW (1) TWI442818B (en)
WO (1) WO2008007298A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064183A1 (en) 2008-12-05 2010-06-10 Philips Intellectual Property & Standards Gmbh Circuit for and method of selectively powering a plurality of load elements
WO2013057654A1 (en) 2011-10-21 2013-04-25 Koninklijke Philips Electronics N.V. Light emitting diode driver controlled by pulse superimposed on power signal
WO2013088361A1 (en) 2011-12-15 2013-06-20 Koninklijke Philips Electronics N.V. Light emitting device and system

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050259424A1 (en) 2004-05-18 2005-11-24 Zampini Thomas L Ii Collimating and controlling light produced by light emitting diodes
US7766511B2 (en) 2006-04-24 2010-08-03 Integrated Illumination Systems LED light fixture
US7729941B2 (en) 2006-11-17 2010-06-01 Integrated Illumination Systems, Inc. Apparatus and method of using lighting systems to enhance brand recognition
US8013538B2 (en) 2007-01-26 2011-09-06 Integrated Illumination Systems, Inc. TRI-light
US8742686B2 (en) 2007-09-24 2014-06-03 Integrated Illumination Systems, Inc. Systems and methods for providing an OEM level networked lighting system
US8255487B2 (en) * 2008-05-16 2012-08-28 Integrated Illumination Systems, Inc. Systems and methods for communicating in a lighting network
US8585245B2 (en) 2009-04-23 2013-11-19 Integrated Illumination Systems, Inc. Systems and methods for sealing a lighting fixture
CN101932167B (en) * 2009-10-31 2013-10-16 鹤山丽得电子实业有限公司 Multiloop control circuit and control method thereof
US9066381B2 (en) 2011-03-16 2015-06-23 Integrated Illumination Systems, Inc. System and method for low level dimming
US9967940B2 (en) 2011-05-05 2018-05-08 Integrated Illumination Systems, Inc. Systems and methods for active thermal management
US11917740B2 (en) 2011-07-26 2024-02-27 Hunter Industries, Inc. Systems and methods for providing power and data to devices
US10874003B2 (en) 2011-07-26 2020-12-22 Hunter Industries, Inc. Systems and methods for providing power and data to devices
US9609720B2 (en) 2011-07-26 2017-03-28 Hunter Industries, Inc. Systems and methods for providing power and data to lighting devices
US8710770B2 (en) 2011-07-26 2014-04-29 Hunter Industries, Inc. Systems and methods for providing power and data to lighting devices
US9521725B2 (en) 2011-07-26 2016-12-13 Hunter Industries, Inc. Systems and methods for providing power and data to lighting devices
US20150237700A1 (en) 2011-07-26 2015-08-20 Hunter Industries, Inc. Systems and methods to control color and brightness of lighting devices
US9203121B2 (en) * 2011-10-12 2015-12-01 Texas Instruments Incorporated Inductor-based active balancing for batteries and other power supplies
US8894437B2 (en) 2012-07-19 2014-11-25 Integrated Illumination Systems, Inc. Systems and methods for connector enabling vertical removal
US9379578B2 (en) 2012-11-19 2016-06-28 Integrated Illumination Systems, Inc. Systems and methods for multi-state power management
US9420665B2 (en) 2012-12-28 2016-08-16 Integration Illumination Systems, Inc. Systems and methods for continuous adjustment of reference signal to control chip
US9485814B2 (en) 2013-01-04 2016-11-01 Integrated Illumination Systems, Inc. Systems and methods for a hysteresis based driver using a LED as a voltage reference
US9160330B2 (en) 2013-05-02 2015-10-13 Texas Instruments Incorporated Boost capacitor sharing architecture for power supply active balancing systems
US10918030B2 (en) 2015-05-26 2021-02-16 Hunter Industries, Inc. Decoder systems and methods for irrigation control
US10228711B2 (en) 2015-05-26 2019-03-12 Hunter Industries, Inc. Decoder systems and methods for irrigation control
US10060599B2 (en) 2015-05-29 2018-08-28 Integrated Illumination Systems, Inc. Systems, methods and apparatus for programmable light fixtures
US10030844B2 (en) 2015-05-29 2018-07-24 Integrated Illumination Systems, Inc. Systems, methods and apparatus for illumination using asymmetrical optics
US10801714B1 (en) 2019-10-03 2020-10-13 CarJamz, Inc. Lighting device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW324101B (en) * 1995-12-21 1998-01-01 Hitachi Ltd Semiconductor integrated circuit and its working method
US5854615A (en) * 1996-10-03 1998-12-29 Micron Display Technology, Inc. Matrix addressable display with delay locked loop controller
US6157375A (en) * 1998-06-30 2000-12-05 Sun Microsystems, Inc. Method and apparatus for selective enabling of addressable display elements
US6456281B1 (en) * 1999-04-02 2002-09-24 Sun Microsystems, Inc. Method and apparatus for selective enabling of Addressable display elements
TW591268B (en) 2001-03-27 2004-06-11 Sanyo Electric Co Active matrix type display device
US7295199B2 (en) 2003-08-25 2007-11-13 Motorola Inc Matrix display having addressable display elements and methods
US7180105B2 (en) * 2004-02-09 2007-02-20 International Rectifier Corporation Normally off JFET
US7138995B2 (en) 2004-03-09 2006-11-21 Harvatek Corporation Circuit for driving LED display
US7844650B2 (en) * 2006-05-26 2010-11-30 Pmc Sierra Inc. Pulse output direct digital synthesis circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064183A1 (en) 2008-12-05 2010-06-10 Philips Intellectual Property & Standards Gmbh Circuit for and method of selectively powering a plurality of load elements
WO2013057654A1 (en) 2011-10-21 2013-04-25 Koninklijke Philips Electronics N.V. Light emitting diode driver controlled by pulse superimposed on power signal
US9113522B2 (en) 2011-10-21 2015-08-18 Koninklijke Philips N.V. Pulse controlled light emitting diode driver
WO2013088361A1 (en) 2011-12-15 2013-06-20 Koninklijke Philips Electronics N.V. Light emitting device and system
US9089028B2 (en) 2011-12-15 2015-07-21 Koninklijke Philips N.V. Light emitting device and system

Also Published As

Publication number Publication date
WO2008007298A3 (en) 2008-04-10
US20120235590A1 (en) 2012-09-20
CN101491159B (en) 2011-04-06
TW200824499A (en) 2008-06-01
US8575786B2 (en) 2013-11-05
CN101491159A (en) 2009-07-22
US20090189448A1 (en) 2009-07-30
EP2042003A2 (en) 2009-04-01
TWI442818B (en) 2014-06-21
US8212393B2 (en) 2012-07-03
EP2042003B1 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
EP2042003B1 (en) Device and method for addressing power to a load selected from a plurality of loads
TW200419494A (en) Controller and driving method for power circuits, electrical circuit for supplying energy and display device having the electrical circuit
CN101589539B (en) Load driving circuit, integrated circuit, dc-dc converter and load driving method
JP6480184B2 (en) Power transistor gate driver
US9433066B2 (en) Music synchronized light modulator
CN101295971B (en) Clock frequency diffusing device
CN107027222B (en) Load current adjusting circuit and adjusting method
CA2628744C (en) An arrangement for driving led cells
TW201112868A (en) Driving apparatus of light emitted diode and driving method thereof
CN102055328A (en) Multi-stage power supply
US10367484B2 (en) Ramp based clock synchronization for stackable circuits
TWI392209B (en) Charge pump circuit and method thereof
WO2004010418A3 (en) Variable duty cycle clock generation circuits and methods and systems using the same
TW201026154A (en) Light source driving circuit
US7200012B1 (en) Circuit utilizing a push-pull pulse width modulator to control a full-bridge inverter
JP2015505236A (en) Device and method for controlling pulse output
CA2626087A1 (en) Power supply for 2-line dimmer
GB2535932A (en) Flyback boosted circuit, LED backlight drive circuit and liquid crystal display
CN104934012A (en) Multi-time-series generation circuit and liquid crystal display
KR20070077136A (en) Cold-cathode fluorescent lamp multiple lamp current matching circuit
KR970067328A (en) Boost circuit
JP2005168286A (en) Multiplexed high-voltage dc-ac driver
KR20070073532A (en) Dc ac converter
US7808216B2 (en) Phase shift circuit and backlight unit having the same
JP2015109146A (en) Lighting fixture

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780025769.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007825879

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12306736

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 126/CHENP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU