WO2008006886A1 - Time-dependent method of synchronizing of a radio communication system - Google Patents

Time-dependent method of synchronizing of a radio communication system Download PDF

Info

Publication number
WO2008006886A1
WO2008006886A1 PCT/EP2007/057205 EP2007057205W WO2008006886A1 WO 2008006886 A1 WO2008006886 A1 WO 2008006886A1 EP 2007057205 W EP2007057205 W EP 2007057205W WO 2008006886 A1 WO2008006886 A1 WO 2008006886A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
station
satellite
transit time
estimated
Prior art date
Application number
PCT/EP2007/057205
Other languages
French (fr)
Inventor
Patrick Bruas
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to EP07787476A priority Critical patent/EP2050208A1/en
Publication of WO2008006886A1 publication Critical patent/WO2008006886A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/212Time-division multiple access [TDMA]
    • H04B7/2125Synchronisation

Definitions

  • the invention relates to a method for temporally synchronizing an orthogonal frequency evasion waveform.
  • the invention further relates to a satellite radio system with decentralized transit time management.
  • the invention applies to satellite communications whose waveform implements spread spectrum and frequency hopping techniques in general, and more particularly to transparent geostationary satellite communications.
  • a satellite system comprises on the one hand one or more artificial satellites orbiting the Earth and on the other hand a set of ground station or earth station adapted to communicate with the satellites of said system.
  • the ground stations comprise all the equipment necessary to establish a satellite link and in particular one or more modems.
  • a satellite communication system must provide for each user a network capacity (that is, a portion of the bandwidth and the satellite power that is used to establish one or more communication channels) adapted to the needs and the constraints of each user with respect to system-wide and environment-related constraints. This includes canceling or minimizing network interference.
  • a satellite communication system must provide adequate protection against electromagnetic interference as needed.
  • a satellite communication system must still have high reliability and / or availability, especially for users.
  • a satellite communication system must avoid as much as possible to particularize a station vis-à-vis the waveform, the vulnerability of this station thus jeopardizing all communications network.
  • the design of a satellite communication system must meet economic constraints, and consequently optimize the simplicity of implementation and as far as possible allow at least partial re-use. of known waveforms. Among the other constraints, it is still possible to mention the security constraints.
  • ground station modems are not protected, even against a low level of interference or unplanned interference. In this case, even a low level of interference can cause a break in service and compromise the level of availability of the system.
  • the payload of the satellite has optimum performances, in particular in terms of quality factor (G / T) and operational gain, in a context of use without interference.
  • a protected communications satellite system ie a system whose ground stations include protected modems and whose satellites include protected repeaters
  • the links are protected against any jammer up to a certain level of maximum interference.
  • This type of system uses for this both a waveform protected against electromagnetic disturbances and repeaters protected against electromagnetic interference.
  • the minimum repeater protection is provided by a hard limiter device on board the repeater which closes any jammer too powerful and protects the power amplifier on board.
  • the protected waveform it may in particular be a spread spectrum waveform whose codes are orthogonal.
  • the orthogonality requires a very precise synchronization of all the carriers arriving in the same band of spreading at the level of the satellite, which implies the implementation of procedures of acquisition and maintenance of synchronization between the various stations on the ground which are complex and centralized compared to a time master.
  • the time master station is the vulnerable link in the network because its unavailability causes the communication network to stop.
  • the secure payload of the satellite is also an expensive investment.
  • the protection of the payload is at the expense of its performance.
  • the subject of the invention is in particular to overcome the aforementioned drawbacks.
  • the subject of the invention is in particular a time synchronization method for stations using an orthogonal frequency evasion waveform for satellite communications, characterized in that it comprises for each station:
  • the waveform comprises stages whose transmission instants and the instantaneous frequency band are determined by a pre-established coding law, the moment of transmission of a bearing by a station being determined. according to the pre-established coding law, the estimated time and the estimated transit time locally.
  • the transit time acquisition and maintenance step can be a local estimate at any instant of the transit time depending on the ephemeris of the satellite, the geographical position of the ground station and a common reference network hour.
  • the times of emission by said station can then correspond substantially to the common reference network time to which is subtracted the estimated Transit Time.
  • the invention also relates to a satellite radio system with decentralized transit time management. It comprises at least one radiocommunication satellite, a ground segment comprising a set of ground stations.
  • the ground segment implements a protected waveform with orthogonal frequency evasion.
  • Each ground station implements transit time management procedures between said ground station and the satellite and a necessary time management procedure. observing the orthogonality criterion of said waveform, the transit time of each station being determined locally and autonomously at each station.
  • each ground station implements a step of acquiring and maintaining the time, the time thus determined being a time estimated locally at each ground station and a step of acquisition and maintenance Transit time between the ground station and the satellite.
  • the transit time is estimated locally.
  • the times of emission by said ground station are determined according to the locally estimated time and the estimated transit time locally.
  • the waveform is for example used for links via a satellite between ground stations exchanging traffic.
  • the waveform may include steps whose transmission instants and the instantaneous frequency band are determined by a pre-established encoding law, said waveform being orthogonal.
  • the moment of emission of a landing by a ground station is then determined according to the pre-established law of coding, the time estimated locally and the transit time estimated locally.
  • the advantages of the invention include that it significantly improves the service availability of the system.
  • the invention makes it possible to reduce the time of entry into the network of ground stations and to reduce the bandwidth requirement of network management information.
  • the invention also makes it possible to obtain radio silence without losing the orthogonality of the waveform.
  • FIGS. 1a and 1b a satellite system protected against electromagnetic disturbances according to the state of the art, as well as an example of a frequency evasion spreading code and the associated time-frequency law implemented by said protected system; • Figure 2, by a block diagram, a satellite radio system with decentralized transit time management according to the invention;
  • FIG. 3 by a block diagram, a time synchronization method of an orthogonal frequency evasion waveform according to the invention.
  • FIGS. 1a and 1b illustrate a satellite system protected against electromagnetic disturbances according to the state of the art, as well as an example of a frequency evasion spreading code and the associated time-frequency law implemented by said system protected.
  • the satellite system according to the state of the art comprises a satellite 15.
  • the satellite 15 may be a geostationary satellite comprising one or more transparent repeaters. These transparent repeaters can also be protected against electromagnetic disturbances.
  • the satellite system according to the state of the art still comprises ground stations 10, 20.
  • the ground stations 10, 20 comprise in particular electromagnetic transmission and reception means and modems for generating and decoding forms of the signal.
  • Protected waves against electromagnetic disturbances It can especially be spread spectrum waveforms, such as the waveform designated by the acronym OFHMA for Orthogonal Frequency Hopping Multiple Access.
  • FIG. 1a shows a diagram showing a frequency-evading spreading code used by the waveform used to protect the links between the ground stations 10, 20.
  • the diagram comprises an axis of abscissae 1 representing the time while the ordinate axis 3 represents the frequency.
  • emissions from a first ground station 10, 20 may use the codes or landing 2a
  • emissions from a second ground station 10, 20 may use codes or 2b and 2c.
  • Each level 2a, 2b, 2c occupies at a given moment a band of a distinct frequency included in the set of an allocated frequency band called BE spreading band. At a given moment, there is no recovery of the frequency band used by the different pallies 2a, 2b, 2c.
  • the bearings 2a, 2b, 2c have a fixed duration depending on the characteristics desired for the waveform. At the end of this period, and after a duration TP called bearing hole, new levels 2a, 2b, 2c meeting the same criteria as those described above are assigned. However, each level 2a, 2b, 2c does not necessarily occupy the same instantaneous frequency band.
  • a pre-established encoding law is used to determine the instantaneous frequency band Bl occupied at each instant by the bearings 2a, 2b, 2c.
  • each ground station 10, 20 establishing a link via the satellite thus codes the signal comprising the traffic to be transmitted according to such a predetermined coding law.
  • Each ground station 10, 20 for which the traffic is intended must decode the signal received according to such a predetermined code-coding law. Therefore, since the coding law depends not only on the frequency but also the time it is absolutely necessary that all the ground stations 10, 20 sharing the same pre-established coding law be synchronized.
  • the orthogonality criterion of the waveform is a temporal accuracy criterion of the levels 2a, 2b, 2c.
  • the set of bearings 2a, 2b, 2c must be received by all the stations on the ground sharing the same preset coding law in a synchronous manner with a precision ⁇ h less than the duration TP of the bearing holes. Also, if it is desired to enhance the capacity of the waveform with respect to electromagnetic disturbances, it is desirable to increase the number of steps 2a, 2b, 2c per second, and reduce the duration TP of the holes of bearings. However, the shorter the TP duration of the bearing holes, the more difficult the orthogonality criterion to fulfill. Orthogonality requires very precise synchronization of all the carriers arriving in the same BE spreading frequency band at the satellite 15. This problem is solved in the satellite communication systems of the state of the satellite.
  • FIG. 2 illustrates a satellite radio system with decentralized transit time management according to the invention.
  • the system according to the invention comprises a constellation of radiocommunication satellites 30. In the description and in FIG. 2, only one satellite is represented. However, the invention applies to any satellite system having as many satellites as necessary.
  • the satellite 30 does not necessarily include a transparent repeater protected against electromagnetic interference.
  • the satellite 30 may be an ordinary geostationary radiocommunication satellite, operated for example by a telecommunication operator.
  • the ground segment comprises a ground station assembly 31.
  • the ground segment uses a protected waveform with an orthogonal frequency evasion. Frequency hopping speed can optionally be reduced with respect to the hopping rate of a protected system according to the state of the art.
  • each ground station 31 implements autonomously and therefore decentralized TT transit time management procedures between said ground station 31 and the satellite 30.
  • the time management procedure it is either decentralized or centralized .
  • the time management is decentralized.
  • each ground station 31 acquires and maintains its synchronization of time and transit time.
  • the time can then be obtained either locally, for example by means of a GPS / GNSS device or an atomic clock, or by radio at the initiative of the ground station 31 automatically and transparently for the operator who interrogates one of the stations of the network and obtains the time by radio by a bilateral procedure which compensates for the propagation time.
  • time management is centralized. This means that it is the responsibility of each ground station 31 to acquire and maintain its transit time synchronization but it is the responsibility of a master clock station 31 to guarantee the time synchronization of all the stations at the same time.
  • the time is broadcast by a master synchronously or asynchronously in the form of a permanent or periodic beacon.
  • the time master must compensate for his transit time to emit his beacon.
  • the stations on the ground 31 copy the time of the station to the master hourly ground, tainted with two biases: the estimation error of transit time amount and the estimation error of downstream transit time.
  • the transit time is calculated locally, for example by virtue of the three input parameters of an orbitography calculation algorithm known to those skilled in the art:
  • FIG. 3 illustrates a time synchronization method of an orthogonal frequency evasion waveform according to the invention.
  • the method according to the invention comprises, for each station on the ground 31, a step 40 for acquiring and maintaining the time and a step 41 for acquiring and maintaining the TT Transit Time between a ground station 31 and a satellite These steps are implemented continuously within each ground station 31 in order to permanently update said parameters.
  • Step 40 of the procedure for acquiring and maintaining time can be set by the means illustrated in FIG. 2.
  • the ground station 31 has an estimated time local to any time, however, suffering from some maximum uncertainty +/- ⁇ T compared to the reference time network (which is defined at the satellite level).
  • the ground station 31 has the locally estimated Transit Time between said station 31 and the satellite 30.
  • the locally estimated transit time at all times suffers from a certain maximum uncertainty +/- ⁇ compared to the real instantaneous transit time.
  • the value of these two maximum uncertainties ⁇ T and ⁇ is dimensioning to calculate the temporal dispersion tolerance +/- ⁇ of the arrival times of the bearings 2a, 2b, 2c uplinks of the network on the satellite. Indeed, this dispersion value 2 ⁇ must be increased by the duration of the bearing hole TP so as to cancel the self interference of the protected waveform.
  • each station can then transmit the local level 2a, 2b, 2c at the instant planned.
  • the step 41 for acquiring and maintaining the Transit Time TT is a local estimate at any instant of the transit time knowing the ephemeris of the satellite 30, the geographical position of the ground station 31 and one hour Href reference common network. This local estimate makes it possible to transmit the local level 2a, 2b, 2c at the instant Href-TT so that all the levels 2a, 2b, 2c arrive synchronously on the satellite 30 at the time
  • the tolerance ⁇ jnax is a function of the following 5 inaccuracies: i. local uncertainty about Href's knowledge; ii. local uncertainty about geographical position; iii. inaccuracy of the satellite ephemerides used to calculate the TT transit time; iv. bias introduced by the transit time calculation method TT which corresponds to a modeling of the trajectory of the orbit (it is often a Keplerian ellipse, whereas the true plane of the trajectory moves under the effect of the non-centripetal terrestrial gravitational field due to the flattened shape of the geoid); v. variation of the TT transit time since the last refresh time of the calculation up to the instant of use of the transit time estimate TT to transmit.
  • the first item i) of uncertainty depends on the type of time management, centralized or decentralized. For example, for decentralized time management based on GPS receiver or equivalent, an accuracy of +/- 1 ⁇ s can be achieved. If we want to get rid of GPS, we return to a time distribution by radio whose accuracy can vary from 1 microsecond to 10 microseconds depending on the procedure used.
  • the second item ii) of uncertainty is between 1 and 10 km, ie an uncertainty of 3.3 ⁇ s to 33 ⁇ s at the edge of the zone. For a fixed platform, the geographical accuracy of 1 km is easily reached, thanks to any method of localization.
  • the third item iii) of uncertainty is between 500 m and 4 km, ie an uncertainty of 1.6 ⁇ s at 13.2 ⁇ s.
  • the satellite ephemeris can predict the position of the satellite 30 at any time and with a Delta_distance uncertainty of a few km typically. This depends on the inclination of the satellite, the orbital parameter refresh period, the initial ephemeris bias, the presence or absence of a satellite station keeping maneuver by the SCS (Satellite Control Station) and the celestial mechanics calculation algorithm used to derive the satellite-earth station distance, all else being known (geographical position of the station in a given geodetic coordinate system, current UTC time).
  • the fifth position v) of uncertainty slides at a rate of 1 ns / s / degree of inclination / degree of latitude in the center of the "eight" of the satellite 30.
  • the maximum variation of the sinusoid of TT of period 24 hours is 81 ns / s for an inclination of 3 ° and for a maximum latitude of 81 ° is the limit of optical visibility in the meridian of the satellite. If one refreshes the TT transit time calculation which serves to enslave the time of emission Hemi, then the drift is worth to the maximum, in limit of overall cover and for 3 ° of inclination, 2 ⁇ s.
  • the orthogonality constraint requires that twice the sum of the above five positions does not exceed the duration of the bearing hole of the waveform.
  • the temporal synchronization method of a waveform according to the invention is used for the synchronization of a waveform that meets the ETSI DVB-RCS standard (according to the English expression). Digital Video Broadcast - Return Channel System).
  • the DVB-RCS standard defines a return path. This return path can then be supported by an orthogonal frequency evasion waveform, in order to share the rising capacity.

Abstract

The invention relates to a time-dependent method of synchronizing an orthogonal frequency evasion waveform. The method comprises for each station a step of acquiring and keeping the time, the time thus determined being a locally estimated time at each station, and a step of acquiring and keeping the Transit Time between the station and a satellite, the transit time being estimated locally. The moments of transmission by said station are determined as a function of the locally estimated time and the locally estimated transit time. A further object of the invention is a satellite radio communications system by decentralized transit time management. In particular, the invention applies to satellite communications wherein the waveform implements spread spectrum techniques and frequency hopping in general, and more particularly to transparent geostationary satellite communications.

Description

PROCEDE DE SYNCHRONISATION TEMPORELLE D' UN SYSTEME DE RADIOCOMMUNICATION TIME SYNCHRONIZATION METHOD OF A RADIO COMMUNICATION SYSTEM
L'invention concerne un procédé de synchronisation temporelle d'une forme d'onde à évasion de fréquence orthogonale. L'invention a encore pour objet un système de radiocommunications par satellite à gestion de temps de transit décentralisée. En particulier, l'invention s'applique aux communications par satellites dont la forme d'onde met en œuvre des techniques d'étalement de spectre et de sauts en fréquence en général, et plus particulièrement aux communications par satellite géostationnaire transparent.The invention relates to a method for temporally synchronizing an orthogonal frequency evasion waveform. The invention further relates to a satellite radio system with decentralized transit time management. In particular, the invention applies to satellite communications whose waveform implements spread spectrum and frequency hopping techniques in general, and more particularly to transparent geostationary satellite communications.
Un système satellite comporte d'une part un ou plusieurs satellites artificiels en orbite autour de la Terre et d'autre part un ensemble de station au sol ou station terrienne adaptée à communiquer avec les satellites dudit système. Les stations au sol comprennent l'ensemble des équipements nécessaires pour établir une liaison par satellite et notamment un ou plusieurs modems.A satellite system comprises on the one hand one or more artificial satellites orbiting the Earth and on the other hand a set of ground station or earth station adapted to communicate with the satellites of said system. The ground stations comprise all the equipment necessary to establish a satellite link and in particular one or more modems.
Un système de communication par satellite doit offrir pour chaque utilisateur, une capacité réseau (c'est-à-dire une partie de la bande passante et de la puissance du satellite qui est utilisée pour établir un ou plusieurs canaux de communication) adaptée aux besoins et aux contraintes de chaque utilisateur en regard des contraintes à l'échelle du système et de son environnement. Cela implique notamment d'annuler ou de minimiser l'auto- interférence du réseau. En outre, un système de communication par satellite doit offrir une protection adaptée au besoin contre les interférences électromagnétiques. Un système de communication par satellite doit encore présenter une grande fiabilité et/ou disponibilité, en particulier vu des utilisateurs. Aussi un système de communication par satellite doit éviter autant que possible de particulariser une station vis-à-vis de la forme d'onde, la vulnérabilité de cette station mettant alors en péril l'ensemble des communications du réseau. Conjointement à ces contraintes opérationnelles, la conception d'un système de communication par satellite doit répondre à des contraintes d'ordre économique, et en conséquence optimiser la simplicité de mise en œuvre et dans la mesure du possible permettre la ré-utilisation au moins partielle de formes d'onde connue. Parmi les autres contraintes, il est encore possible de citer les contraintes de sécurité.A satellite communication system must provide for each user a network capacity (that is, a portion of the bandwidth and the satellite power that is used to establish one or more communication channels) adapted to the needs and the constraints of each user with respect to system-wide and environment-related constraints. This includes canceling or minimizing network interference. In addition, a satellite communication system must provide adequate protection against electromagnetic interference as needed. A satellite communication system must still have high reliability and / or availability, especially for users. Also a satellite communication system must avoid as much as possible to particularize a station vis-à-vis the waveform, the vulnerability of this station thus jeopardizing all communications network. In conjunction with these operational constraints, the design of a satellite communication system must meet economic constraints, and consequently optimize the simplicity of implementation and as far as possible allow at least partial re-use. of known waveforms. Among the other constraints, it is still possible to mention the security constraints.
Dans un système satellite de communication commercial conventionnel, les modems des stations au sol ne sont pas protégés, même contre un faible niveau de brouillage ou d'interférence non planifiée. Dans ce cas de figure, même un faible niveau de brouillage peut provoquer une rupture de service et entacher le niveau de disponibilité du système. En revanche, la charge utile du satellite a des performances optimum, en terme notamment de facteur de qualité (G/T) et de gain opérationnel, dans un contexte d'emploi sans brouillage.In a conventional commercial communication satellite system, ground station modems are not protected, even against a low level of interference or unplanned interference. In this case, even a low level of interference can cause a break in service and compromise the level of availability of the system. On the other hand, the payload of the satellite has optimum performances, in particular in terms of quality factor (G / T) and operational gain, in a context of use without interference.
Dans un système satellite de communication protégé, c'est-à-dire un système dont les stations aux sols comportent des modems protégés et dont les satellites comportent des répéteurs protégés, les liaisons sont protégées contre tout brouilleur à concurrence d'un certain niveau de brouillage maximum. Ce type de système utilise pour cela à la fois une forme d'onde protégée contre les perturbations électromagnétiques et des répéteurs protégés contre les perturbations électromagnétiques. La protection minimum du répéteur est assurée par un dispositif limiteur dur à bord du répéteur qui écrête tout brouilleur trop puissant et protège l'amplificateur de puissance à bord. Quant à la forme d'onde protégée, il peut notamment s'agir de forme d'onde à étalement de spectre et dont les codes sont orthogonaux. En contrepartie, l'orthogonalité exige une synchronisation très précise de toutes les porteuses qui arrivent dans la même bande d'étalement au niveau du satellite, ce qui implique la mise en œuvre de procédures d'acquisition et de maintien de synchronisation entre les différentes stations au sol qui sont complexes et centralisées par rapport à un maître horaire. De surcroît, la station maître horaire constitue le maillon vulnérable du réseau car son indisponibilité entraîne l'arrêt du réseau de communication. La charge utile sécurisée du satellite constitue par ailleurs un investissement onéreux. En outre, la protection de la charge utile se fait au détriment de ses performances.In a protected communications satellite system, ie a system whose ground stations include protected modems and whose satellites include protected repeaters, the links are protected against any jammer up to a certain level of maximum interference. This type of system uses for this both a waveform protected against electromagnetic disturbances and repeaters protected against electromagnetic interference. The minimum repeater protection is provided by a hard limiter device on board the repeater which closes any jammer too powerful and protects the power amplifier on board. As for the protected waveform, it may in particular be a spread spectrum waveform whose codes are orthogonal. In return, the orthogonality requires a very precise synchronization of all the carriers arriving in the same band of spreading at the level of the satellite, which implies the implementation of procedures of acquisition and maintenance of synchronization between the various stations on the ground which are complex and centralized compared to a time master. In addition, the time master station is the vulnerable link in the network because its unavailability causes the communication network to stop. The secure payload of the satellite is also an expensive investment. In addition, the protection of the payload is at the expense of its performance.
L'invention a notamment pour but de pallier les inconvénients précités. A cet effet, l'invention a notamment pour objet un procédé de synchronisation temporelle de stations utilisant une forme d'onde à évasion de fréquence orthogonale pour des communications par satellites, caractérisé en ce qu'il comporte pour chaque station :The purpose of the invention is in particular to overcome the aforementioned drawbacks. For this purpose, the subject of the invention is in particular a time synchronization method for stations using an orthogonal frequency evasion waveform for satellite communications, characterized in that it comprises for each station:
• une étape d'acquisition et de maintien de l'heure ; • une étape d'acquisition et de maintien du Temps de Transit entre la station et un satellite, le temps de transit étant estimé localement et de manière autonome ; les instants d'émission par ladite station étant déterminés en fonction de l'heure et du temps de transit estimé localement• a step of acquiring and maintaining the time; A step of acquiring and maintaining the transit time between the station and a satellite, the transit time being estimated locally and autonomously; the times of transmission by said station being determined according to the time and transit time estimated locally
Dans un mode de réalisation, la forme d'onde comporte des paliers dont les instants d'émission et la bande de fréquence instantanée sont déterminés par une loi préétablie de codage, l'instant d'émission d'un palier par une station étant déterminé en fonction de la loi préétablie de codage, de l'heure estimée et du temps de transit estimé localement.In one embodiment, the waveform comprises stages whose transmission instants and the instantaneous frequency band are determined by a pre-established coding law, the moment of transmission of a bearing by a station being determined. according to the pre-established coding law, the estimated time and the estimated transit time locally.
L'étape d'acquisition et de maintien du Temps de Transit peut être une estimation locale à tout instant du temps de transit fonction des éphémérides du satellite, de la position géographique de la station au sol et d'une heure réseau commune de référence. Les instants d'émission par ladite station peuvent alors correspondre sensiblement à l'heure réseau commune de référence à laquelle est soustrait le Temps de Transit estimée.The transit time acquisition and maintenance step can be a local estimate at any instant of the transit time depending on the ephemeris of the satellite, the geographical position of the ground station and a common reference network hour. The times of emission by said station can then correspond substantially to the common reference network time to which is subtracted the estimated Transit Time.
L'invention a aussi pour objet un système de radiocommunications par satellite à gestion de temps de transit décentralisée. Celui-ci comporte au moins un satellite de radiocommunications, un segment sol comportant un ensemble de stations au sol. Le segment sol met en oeuvre une forme d'onde protégée à évasion de fréquence orthogonale. Chaque station au sol met en œuvre des procédures de gestion du temps de transit entre ladite station au sol et le satellite et une procédure de gestion d'heure, nécessaires au respect du critère d'orthogonalité de ladite forme d'onde, le temps de transit de chaque station étant déterminé localement et de manière autonome à chaque station.The invention also relates to a satellite radio system with decentralized transit time management. It comprises at least one radiocommunication satellite, a ground segment comprising a set of ground stations. The ground segment implements a protected waveform with orthogonal frequency evasion. Each ground station implements transit time management procedures between said ground station and the satellite and a necessary time management procedure. observing the orthogonality criterion of said waveform, the transit time of each station being determined locally and autonomously at each station.
Dans un mode de réalisation, chaque station au sol met en œuvre une étape d'acquisition et de maintien de l'heure, l'heure ainsi déterminée étant une heure estimée localement à chaque station au sol et une étape d'acquisition et de maintien du Temps de Transit entre la station au sol et le satellite. Le temps de transit est estimé localement. Les instants d'émission par ladite station au sol sont déterminés en fonction de l'heure estimée localement et du temps de transit estimé localement. La forme d'onde est par exemple utilisée pour des liaisons via un satellite entre des stations au sol échangeant du trafic. La forme d'onde peut comporter des paliers dont les instants d'émission et la bande de fréquence instantanée sont déterminés par une loi préétablie de codage, ladite forme d'onde étant orthogonale. L'instant d'émission d'un palier par une station au sol est alors déterminé en fonction de la loi préétablie de codage, de l'heure estimée localement et du temps de transit estimé localement.In one embodiment, each ground station implements a step of acquiring and maintaining the time, the time thus determined being a time estimated locally at each ground station and a step of acquisition and maintenance Transit time between the ground station and the satellite. The transit time is estimated locally. The times of emission by said ground station are determined according to the locally estimated time and the estimated transit time locally. The waveform is for example used for links via a satellite between ground stations exchanging traffic. The waveform may include steps whose transmission instants and the instantaneous frequency band are determined by a pre-established encoding law, said waveform being orthogonal. The moment of emission of a landing by a ground station is then determined according to the pre-established law of coding, the time estimated locally and the transit time estimated locally.
L'invention a notamment pour avantages qu'elle permet d'améliorer significativement la disponibilité de service du système. En outre, l'invention permet de réduire le temps d'entrée sur le réseau des stations au sol et de réduire le besoin en bande passante des informations de gestion du réseau. L'invention permet encore d'obtenir un silence radio sans perdre l'orthogonalité de la forme d'onde.The advantages of the invention include that it significantly improves the service availability of the system. In addition, the invention makes it possible to reduce the time of entry into the network of ground stations and to reduce the bandwidth requirement of network management information. The invention also makes it possible to obtain radio silence without losing the orthogonality of the waveform.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit, faite en regard des dessins annexés qui représentent :Other features and advantages of the invention will become apparent from the description which follows, given with reference to the appended drawings which represent:
• les figures 1 a et 1 b, un système satellite protégé contre les perturbations électromagnétiques selon l'état de l'art ainsi qu'un exemple de code d'étalement à évasion de fréquence et la loi temps fréquence associée mise en œuvre par ledit système protégé ; • la figure 2, par un synoptique, un système de radiocommunications par satellite à gestion de temps de transit décentralisée selon l'invention ;FIGS. 1a and 1b, a satellite system protected against electromagnetic disturbances according to the state of the art, as well as an example of a frequency evasion spreading code and the associated time-frequency law implemented by said protected system; • Figure 2, by a block diagram, a satellite radio system with decentralized transit time management according to the invention;
• la figure 3, par un synoptique, un procédé de synchronisation temporelle d'une forme d'onde à évasion de fréquence orthogonale selon l'invention.FIG. 3, by a block diagram, a time synchronization method of an orthogonal frequency evasion waveform according to the invention.
Les figures 1a et 1 b illustrent un système satellite protégé contre les perturbations électromagnétiques selon l'état de l'art ainsi qu'un exemple de code d'étalement à évasion de fréquence ainsi que la loi temps fréquence associée mise en œuvre par ledit système protégé. Le système satellite selon l'état de l'art comporte un satellite 15. Le satellite 15 peut être un satellite géostationnaire comportant un ou plusieurs répéteurs transparents. Ces répéteurs transparents peuvent en outre être protégés contre les perturbations électromagnétiques. Le système satellite selon l'état de l'art comporte encore des stations au sol 10, 20. Les stations au sol 10, 20 comportent notamment des moyens d'émission et de réception électromagnétique et des modems permettant de générer et décoder des formes d'ondes protégées contre les perturbations électromagnétiques. Il peut notamment s'agir de formes d'onde à étalement de spectre, comme par exemple la forme d'onde désignée par l'acronyme anglo-saxon OFHMA pour « Orthogonal Frequency Hopping Multiple Access ». Les stations au sol 10, 20 peuvent établir des liaisons de communication entre elles via le satellite 15 pour échanger du trafic. Sur la figure 1a est représenté un diagramme présentant un code d'étalement à évasion de fréquence utilisé par la forme d'onde employé pour protéger les liaisons entre les stations au sol 10, 20. Le diagramme comporte un axe des abscisses 1 représentant le temps alors que l'axe des ordonnées 3 représente la fréquence. Sur le diagramme tel que représenté, il existe trois porteuses de trafic. Ainsi, sont représentés trois codes différents, encore appelés paliers, 2a, 2b et 2c correspondant à trois porteuses de trafic différentes. Par exemple, les émissions d'une première station au sol 10, 20 peuvent utiliser les codes ou palier 2a, les émissions d'une seconde station au sol 10, 20 peuvent utiliser les codes ou palier 2b et 2c. Chaque palier 2a, 2b, 2c occupe à un instant donné une bande de fréquence distincte comprise dans l'ensemble d'une bande de fréquence allouée appelé bande d'étalement BE. A un instant donné, il n'y a pas recouvrement de la bande de fréquence utilisée par les différents pallies 2a, 2b, 2c. Les paliers 2a, 2b, 2c ont une certaine durée fixée en fonction des caractéristiques souhaitées pour la forme d'onde. A la fin de cette durée, et après une durée TP appelée trou de palier, de nouveaux paliers 2a, 2b, 2c répondant aux mêmes critères que ceux décrits précédemment sont attribués. Cependant, chaque palier 2a, 2b, 2c n'occupe plus nécessairement la même bande de fréquence instantanée. Une loi préétablie de codage est utilisée pour déterminer la bande de fréquence instantanée Bl occupée à chaque instant par les paliers 2a, 2b, 2c. Ainsi chaque station au sol 10, 20 établissant une liaison via le satellite code ainsi le signal comportant le trafic à émettre selon une telle loi préétablie de codage. Chaque station au sol 10, 20 à qui est destiné le trafic doit décoder le signal reçu selon une telle loi préétablie de codage. C'est pourquoi étant donné que la loi de codage dépend non seulement de la fréquence mais encore du temps il est absolument nécessaire que toutes les stations au sol 10, 20 partageant la même loi préétablie de codage soit synchronisées. Le critère d'orthogonalité de la forme d'onde est un critère de précision temporelle des paliers 2a, 2b, 2c. Aussi, l'ensemble de paliers 2a, 2b, 2c doivent être reçus par l'ensemble des stations au sol partageant la même loi préétablie de codage de manière synchrone avec une précision Δh inférieur à la durée TP des trous de paliers. Aussi, si l'on souhaite renforcer la capacité de la forme d'onde à l'égard des perturbations électromagnétiques, il est souhaitable d'augmenter le nombre de paliers 2a, 2b, 2c par seconde, et réduire la durée TP des trous de paliers. Or, plus la durée TP des trous de paliers est faible et plus le critère d'orthogonalité s'avère délicat à remplir. L'orthogonal ité exige une synchronisation très précise de toutes les porteuses qui arrivent dans la même bande de fréquence d'étalement BE au niveau du satellite 15. Ce problème est résolu, dans les systèmes de communication par satellites de l'état de l'art, par la mise en œuvre de procédures d'acquisition et de maintien de synchronisation entre les différentes stations au sol 10, 20. Ainsi une boucle longue supportée par des liaisons 11 , 12 asservit les systèmes horaires présents dans chaque station au sol dite esclave 10 à un système horaire de référence centralisé dans une station au sol dite maître 20. Il en résulte que, bien que ce système permet d'atteindre des performances de résistance vis à vis des perturbations électromagnétiques très élevée, les procédures de synchronisation temporelle par voie radio et les procédures opérationnelles d'entrée dans le réseau sont complexes ou longues à cause de la forme d'onde centralisée de type maître-esclave. De plus, cette solution est consommatrice de ressources spatiales.FIGS. 1a and 1b illustrate a satellite system protected against electromagnetic disturbances according to the state of the art, as well as an example of a frequency evasion spreading code and the associated time-frequency law implemented by said system protected. The satellite system according to the state of the art comprises a satellite 15. The satellite 15 may be a geostationary satellite comprising one or more transparent repeaters. These transparent repeaters can also be protected against electromagnetic disturbances. The satellite system according to the state of the art still comprises ground stations 10, 20. The ground stations 10, 20 comprise in particular electromagnetic transmission and reception means and modems for generating and decoding forms of the signal. Protected waves against electromagnetic disturbances. It can especially be spread spectrum waveforms, such as the waveform designated by the acronym OFHMA for Orthogonal Frequency Hopping Multiple Access. The ground stations 10, 20 can establish communication links between them via the satellite 15 to exchange traffic. FIG. 1a shows a diagram showing a frequency-evading spreading code used by the waveform used to protect the links between the ground stations 10, 20. The diagram comprises an axis of abscissae 1 representing the time while the ordinate axis 3 represents the frequency. In the diagram as shown, there are three traffic carriers. Thus, are represented three different codes, also called bearings, 2a, 2b and 2c corresponding to three different traffic carriers. For example, emissions from a first ground station 10, 20 may use the codes or landing 2a, emissions from a second ground station 10, 20 may use codes or 2b and 2c. Each level 2a, 2b, 2c occupies at a given moment a band of a distinct frequency included in the set of an allocated frequency band called BE spreading band. At a given moment, there is no recovery of the frequency band used by the different pallies 2a, 2b, 2c. The bearings 2a, 2b, 2c have a fixed duration depending on the characteristics desired for the waveform. At the end of this period, and after a duration TP called bearing hole, new levels 2a, 2b, 2c meeting the same criteria as those described above are assigned. However, each level 2a, 2b, 2c does not necessarily occupy the same instantaneous frequency band. A pre-established encoding law is used to determine the instantaneous frequency band Bl occupied at each instant by the bearings 2a, 2b, 2c. Thus, each ground station 10, 20 establishing a link via the satellite thus codes the signal comprising the traffic to be transmitted according to such a predetermined coding law. Each ground station 10, 20 for which the traffic is intended must decode the signal received according to such a predetermined code-coding law. Therefore, since the coding law depends not only on the frequency but also the time it is absolutely necessary that all the ground stations 10, 20 sharing the same pre-established coding law be synchronized. The orthogonality criterion of the waveform is a temporal accuracy criterion of the levels 2a, 2b, 2c. Also, the set of bearings 2a, 2b, 2c must be received by all the stations on the ground sharing the same preset coding law in a synchronous manner with a precision Δh less than the duration TP of the bearing holes. Also, if it is desired to enhance the capacity of the waveform with respect to electromagnetic disturbances, it is desirable to increase the number of steps 2a, 2b, 2c per second, and reduce the duration TP of the holes of bearings. However, the shorter the TP duration of the bearing holes, the more difficult the orthogonality criterion to fulfill. Orthogonality requires very precise synchronization of all the carriers arriving in the same BE spreading frequency band at the satellite 15. This problem is solved in the satellite communication systems of the state of the satellite. art, by the implementation of procedures for acquiring and maintaining synchronization between the different ground stations 10, 20. Thus a long loop supported by links 11, 12 slaves the time systems present in each ground station called slave 10 to a centralized reference time system in a so-called master ground station. As a result, although this system achieves very high resistance to electromagnetic interference, radio time synchronization procedures and network entry procedures are complex or time-consuming because of centralized waveform of master-slave type. In addition, this solution consumes space resources.
La figure 2 illustre un système de radiocommunications par satellite à gestion de temps de transit décentralisée selon l'invention. Le système selon l'invention comporte une constellation de satellites de radiocommunication 30. Dans la description et sur la figure 2, un seul satellite est représenté. Cependant, l'invention s'applique à tout système satellitaire comportant autant de satellites 30 que nécessaire. Le satellite 30 ne comporte pas nécessairement de répéteur transparent protégé contre les perturbations électromagnétique. En outre, le satellite 30 peut être un satellite géostationnaire de radiocommunication ordinaire, opéré par exemple par un opérateur de télécommunication. Le segment sol comporte un ensemble de station au sol 31. Le segment sol met en oeuvre une forme d'onde protégée à évasion de fréquence orthogonale. La vitesse de saut de fréquence peut éventuellement être réduite par rapport à la vitesse de saut de fréquence d'un système protégé selon l'état de l'art. A la différence des systèmes protégés selon l'état de l'art, les procédures de gestion d'heure et de synchronisation nécessaires au respect du critère d'orthogonalité ne sont pas centralisées sur une station au sol maître 20. Selon l'invention, chaque station au sol 31 met en œuvre de manière autonome et donc décentralisée des procédures de gestion du temps de transit TT entre ladite station au sol 31 et le satellite 30. Quant à la procédure de gestion d'heure, elle est soit décentralisée soit centralisée.FIG. 2 illustrates a satellite radio system with decentralized transit time management according to the invention. The system according to the invention comprises a constellation of radiocommunication satellites 30. In the description and in FIG. 2, only one satellite is represented. However, the invention applies to any satellite system having as many satellites as necessary. The satellite 30 does not necessarily include a transparent repeater protected against electromagnetic interference. In addition, the satellite 30 may be an ordinary geostationary radiocommunication satellite, operated for example by a telecommunication operator. The ground segment comprises a ground station assembly 31. The ground segment uses a protected waveform with an orthogonal frequency evasion. Frequency hopping speed can optionally be reduced with respect to the hopping rate of a protected system according to the state of the art. Unlike state-of-the-art protected systems, the time and synchronization management procedures necessary to comply with the orthogonality criterion are not centralized on a master ground station 20. According to the invention, each ground station 31 implements autonomously and therefore decentralized TT transit time management procedures between said ground station 31 and the satellite 30. As for the time management procedure, it is either decentralized or centralized .
Dans un mode de réalisation, la gestion d'heure est décentralisée.In one embodiment, the time management is decentralized.
Cela signifie qu'il est de la responsabilité de chaque station au sol 31 d'acquérir et de maintenir sa synchronisation d'heure et de temps de transit. L'heure peut alors être obtenue soit localement, par exemple grâce à un dispositif GPS/GNSS ou une horloge atomique, soit par voie radio à l'initiative de la station au sol 31 de façon automatique et transparente pour l'opérateur qui interroge l'une des stations du réseau et obtient l'heure par voie radio par une procédure bilatérale qui compense le temps de propagation.This means that it is the responsibility of each ground station 31 to acquire and maintain its synchronization of time and transit time. The time can then be obtained either locally, for example by means of a GPS / GNSS device or an atomic clock, or by radio at the initiative of the ground station 31 automatically and transparently for the operator who interrogates one of the stations of the network and obtains the time by radio by a bilateral procedure which compensates for the propagation time.
Dans un autre mode de réalisation, la gestion d'heure est centralisée. Cela signifie qu'il est de la responsabilité de chaque station au sol 31 d'acquérir et de maintenir sa synchronisation de temps de transit mais il est de la responsabilité d'une station maître horaire 31 de garantir la synchronisation horaire de toutes les stations au sol 31 du segment sol. L'heure est diffusée par un maître de manière synchrone ou asynchrone sous forme d'une balise permanente ou périodique. Le maître de l'heure doit compenser son temps de transit pour émettre sa balise. Les stations au sol 31 recopient l'heure de la station au sol maître horaire, entachée de deux biais: l'erreur d'estimation de temps de transit montant et l'erreur d'estimation de temps de transit descendant. Quelle que soit la gestion d'heure utilisée, le temps de transit est calculé localement, par exemple grâce aux trois paramètres d'entrée d'un algorithme de calcul d'orbitographie connu de l'homme du métier :In another embodiment, time management is centralized. This means that it is the responsibility of each ground station 31 to acquire and maintain its transit time synchronization but it is the responsibility of a master clock station 31 to guarantee the time synchronization of all the stations at the same time. ground 31 of the ground segment. The time is broadcast by a master synchronously or asynchronously in the form of a permanent or periodic beacon. The time master must compensate for his transit time to emit his beacon. The stations on the ground 31 copy the time of the station to the master hourly ground, tainted with two biases: the estimation error of transit time amount and the estimation error of downstream transit time. Regardless of the time management used, the transit time is calculated locally, for example by virtue of the three input parameters of an orbitography calculation algorithm known to those skilled in the art:
• les éphémérides du satellite 30, données initiales qui peuvent être rafraîchies tous les mois par exemple ; • la position géographique de la station au sol 31 dans un repère géodésique donné ;The ephemeris of the satellite 30, initial data which can be refreshed every month for example; The geographical position of the ground station 31 in a given geodesic landmark;
• l'heure universelle UTC, qui peut être déduite de l'heure de la station.• Universal Time UTC, which can be deducted from the time of the station.
La figure 3 illustre un procédé de synchronisation temporelle d'une forme d'onde à évasion de fréquence orthogonale selon l'invention. Le procédé selon l'invention comporte pour chaque station au sol 31 une étape 40 d'acquisition et de maintien de l'heure et une étape 41 d'acquisition et de maintien du Temps de Transit TT entre une station au sol 31 et un satellite 30. Ces étapes sont mises en œuvre de manière continue au sein de chaque station au sol 31 afin de mettre à jour en permanence lesdits paramètres. L'étape 40 de procédure d'acquisition et de maintien d'heure peut être mis par les moyens illustrés à la figure 2. A l'issue de l'étape 40, la station au sol 31 dispose d'une heure estimée locale à tout instant, souffrant toutefois d'une certaine incertitude maximale +/- ΔT par rapport à l'heure de référence du réseau (laquelle est définie au niveau du satellite). A l'issue de l'étape 41 , la station au sol 31 dispose du Temps de Transit localement estimé entre ladite station 31 et le satelitte 30. Le temps de transit localement estimé à tout instant souffre d'une certaine incertitude maximale +/-Δτ par rapport au vrai temps de transit instantané. La valeur de ces deux incertitudes maximales ΔT et Δτ est dimensionnant pour calculer la tolérance de dispersion temporelle +/- σ des instants d'arrivée des paliers 2a, 2b, 2c voies montantes du réseau sur le satellite. En effet, cette valeur de dispersion 2σ doit être majorée par la durée du trou de palier TP de manière à annuler l'auto interférence de la forme d'onde protégée. L'état de l'art donne un certain ratio entre la durée palier et la durée du temps mort en début de palier (qui est la somme de plusieurs temps élémentaires : temps de changement de fréquence, de mise en forme descendante et montante, éventuellement temps de montée en puissance de l'amplificateur). En conséquence, la vitesse de saut maximum autorisée sera une fonction des incertitudes maximum de synchronisation temporelle (heure et temps de transit). A partir de l'estimation locale du temps de transit et de l'heure, et en fonction de la loi préétablie de codage de la forme d'onde, chaque station peut alors émettre le palier local 2a, 2b, 2c à l'instant prévu. Dans un mode de réalisation, l'étape 41 d'acquisition et de maintien du Temps de Transit TT est une estimation locale à tout instant du temps de transit connaissant les éphémérides du satellite 30, la position géographique de la station au sol 31 et d'une heure réseau commune de référence Href. Cette estimation locale permet d'émettre le palier local 2a, 2b, 2c à l'instant Href-TT de manière à ce que tous les paliers 2a, 2b, 2c arrivent synchrones sur le satellite 30 à l'heureFIG. 3 illustrates a time synchronization method of an orthogonal frequency evasion waveform according to the invention. The method according to the invention comprises, for each station on the ground 31, a step 40 for acquiring and maintaining the time and a step 41 for acquiring and maintaining the TT Transit Time between a ground station 31 and a satellite These steps are implemented continuously within each ground station 31 in order to permanently update said parameters. Step 40 of the procedure for acquiring and maintaining time can be set by the means illustrated in FIG. 2. At the end of step 40, the ground station 31 has an estimated time local to any time, however, suffering from some maximum uncertainty +/- ΔT compared to the reference time network (which is defined at the satellite level). At the end of step 41, the ground station 31 has the locally estimated Transit Time between said station 31 and the satellite 30. The locally estimated transit time at all times suffers from a certain maximum uncertainty +/- Δτ compared to the real instantaneous transit time. The value of these two maximum uncertainties ΔT and Δτ is dimensioning to calculate the temporal dispersion tolerance +/- σ of the arrival times of the bearings 2a, 2b, 2c uplinks of the network on the satellite. Indeed, this dispersion value 2σ must be increased by the duration of the bearing hole TP so as to cancel the self interference of the protected waveform. The state of the art gives a certain ratio between the duration of the stage and the duration of the dead time at the beginning of the stage (which is the sum of several elementary times: frequency change time, downward and upward shaping, possibly ramp-up time of the amplifier). Consequently, the maximum allowed jump speed will be a function of the maximum temporal synchronization uncertainties (time and transit time). From the local estimation of the transit time and the time, and according to the pre-established law of coding of the waveform, each station can then transmit the local level 2a, 2b, 2c at the instant planned. In one embodiment, the step 41 for acquiring and maintaining the Transit Time TT is a local estimate at any instant of the transit time knowing the ephemeris of the satellite 30, the geographical position of the ground station 31 and one hour Href reference common network. This local estimate makes it possible to transmit the local level 2a, 2b, 2c at the instant Href-TT so that all the levels 2a, 2b, 2c arrive synchronously on the satellite 30 at the time
Href +/- σ avec une tolérance σjnax compatible du trou de palier TP de la forme d'onde. La tolérance σjnax est fonction des 5 imprécisions suivantes : i. incertitude locale sur la connaissance de Href ; ii. incertitude locale sur la position géographique ; iii. imprécision des éphémérides satellites utilisées pour le calcul du temps de transit TT; iv. biais introduit par le procédé de calcul de temps de transit TT qui correspond à une modélisation de la trajectoire de l'orbite (il s'agit souvent d'une ellipse képlérienne, alors que le vrai plan de la trajectoire se déplace sous l'effet du champ gravitationnel terrestre non centripète à cause de la forme aplatie du géoïde) ; v. variation du temps de transit TT depuis le dernier instant de rafraîchissement du calcul jusqu'à l'instant d'emploi de l'estimée de temps de transit TT pour émettre.Href +/- σ with a compatible tolerance σjnax of the bearing hole TP of the waveform. The tolerance σjnax is a function of the following 5 inaccuracies: i. local uncertainty about Href's knowledge; ii. local uncertainty about geographical position; iii. inaccuracy of the satellite ephemerides used to calculate the TT transit time; iv. bias introduced by the transit time calculation method TT which corresponds to a modeling of the trajectory of the orbit (it is often a Keplerian ellipse, whereas the true plane of the trajectory moves under the effect of the non-centripetal terrestrial gravitational field due to the flattened shape of the geoid); v. variation of the TT transit time since the last refresh time of the calculation up to the instant of use of the transit time estimate TT to transmit.
Le premier poste i) d'incertitude dépend du type de gestion d'heure, centralisée ou décentralisée. Par exemple, pour une gestion d'heure décentralisée à base de récepteur GPS ou équivalent, on peut atteindre une précision de +/- 1 μs. Si on veut s'affranchir du GPS, on revient à une distribution d'heure par voie radio dont la précision peut varier de 1 μs à 10 μs selon la procédure employée. Le deuxième poste ii) d'incertitude est compris entre 1 et 10 km soit une incertitude de 3.3 μs à de 33 μs en bord de zone. Pour une plate-forme fixe, la précision géographique de 1 km est facilement atteinte, grâce à toute méthode de localisation. Le troisième poste iii) d'incertitude est compris entre 500 m et 4 km soit une incertitude de 1.6 μs à 13.2 μs. En effet, les éphémérides satellite permettent de prédire la position du satellite 30 à tout instant et avec une incertitude Delta_distance de quelques km typiquement. Ceci dépend de l'inclinaison du satellite, de la période de rafraîchissement des paramètres orbitaux, du biais initial sur les éphémérides, de la présence ou non d'une manœuvre de maintien à poste du satellite par la SCS (station de contrôle du satellite) et de l'algorithme de calcul de mécanique céleste utilisé pour déduire la distance station terrestre- satellite, toute chose étant connue par ailleurs (position géographique de la station dans un repère géodésique donné, heure UTC courante). Le cinquième poste v) d'incertitude glisse à raison de 1 ns/s/degré d'inclinaison/degré de latitude au centre du «huit» du satellite 30. En effet la variation maximum de la sinusoïde de TT de période 24 heures est de 81 ns/s pour une inclinaison de 3° et pour une latitude maximum de 81 ° soit la limite de visibilité optique dans le méridien du satellite. Si on rafraîchit le calcul de temps de transit TT qui sert à asservir l'heure d'émission Hémi, alors la dérive vaut au maximum, en limite de couverture globale et pour 3° d'inclinaison, 2 μs. La contrainte d'orthogonalité impose que le double de la somme des 5 postes ci-dessus n'excède pas la durée du trou de palier de la forme d'onde. Dans un mode de réalisation, le procédé de synchronisation temporelle d'une forme d'onde selon l'invention est utilisé pour la synchronisation d'une forme d'onde répondant à la norme ETSI DVB-RCS (selon l'expression anglo-saxonne Digital Video Broadcast - Return Channel System). La norme DVB-RCS définit notamment une voie de retour. Cette voie de retour peut alors être supportée par une forme d'onde à évasion de fréquence orthogonale, afin de partager la capacité montante. The first item i) of uncertainty depends on the type of time management, centralized or decentralized. For example, for decentralized time management based on GPS receiver or equivalent, an accuracy of +/- 1 μs can be achieved. If we want to get rid of GPS, we return to a time distribution by radio whose accuracy can vary from 1 microsecond to 10 microseconds depending on the procedure used. The second item ii) of uncertainty is between 1 and 10 km, ie an uncertainty of 3.3 μs to 33 μs at the edge of the zone. For a fixed platform, the geographical accuracy of 1 km is easily reached, thanks to any method of localization. The third item iii) of uncertainty is between 500 m and 4 km, ie an uncertainty of 1.6 μs at 13.2 μs. Indeed, the satellite ephemeris can predict the position of the satellite 30 at any time and with a Delta_distance uncertainty of a few km typically. This depends on the inclination of the satellite, the orbital parameter refresh period, the initial ephemeris bias, the presence or absence of a satellite station keeping maneuver by the SCS (Satellite Control Station) and the celestial mechanics calculation algorithm used to derive the satellite-earth station distance, all else being known (geographical position of the station in a given geodetic coordinate system, current UTC time). The fifth position v) of uncertainty slides at a rate of 1 ns / s / degree of inclination / degree of latitude in the center of the "eight" of the satellite 30. Indeed the maximum variation of the sinusoid of TT of period 24 hours is 81 ns / s for an inclination of 3 ° and for a maximum latitude of 81 ° is the limit of optical visibility in the meridian of the satellite. If one refreshes the TT transit time calculation which serves to enslave the time of emission Hemi, then the drift is worth to the maximum, in limit of overall cover and for 3 ° of inclination, 2 μs. The orthogonality constraint requires that twice the sum of the above five positions does not exceed the duration of the bearing hole of the waveform. In one embodiment, the temporal synchronization method of a waveform according to the invention is used for the synchronization of a waveform that meets the ETSI DVB-RCS standard (according to the English expression). Digital Video Broadcast - Return Channel System). The DVB-RCS standard defines a return path. This return path can then be supported by an orthogonal frequency evasion waveform, in order to share the rising capacity.

Claims

REVENDICATIONS
1. Procédé de synchronisation temporelle de stations utilisant une forme d'onde à évasion de fréquence orthogonale pour des communications par satellites, caractérisé en ce qu'il comporte pour chaque station (31 ) :A method of time synchronization of stations using an orthogonal frequency evasion waveform for satellite communications, characterized in that it comprises for each station (31):
• une étape (40) d'acquisition et de maintien de l'heure ; • une étape (41 ) d'acquisition et de maintien du Temps de Transit (TT) entre la station (31 ) et un satellite (30), le temps de transit (TT) étant estimé localement et de manière autonome ; les instants d'émission par ladite station (31 ) étant déterminés en fonction de l'heure et du temps de transit (TT) estimé localement.A step (40) for acquiring and maintaining the time; A step (41) for acquiring and maintaining the Transit Time (TT) between the station (31) and a satellite (30), the transit time (TT) being estimated locally and autonomously; the transmission times by said station (31) being determined according to the time and transit time (TT) estimated locally.
2. Procédé selon la revendication 1 caractérisé en ce que la forme d'onde comporte des paliers (2a, 2b, 2c) dont les instants d'émission et la bande de fréquence instantanée (Bl) sont déterminés par une loi préétablie de codage, l'instant d'émission d'un palier par une station (31 ) étant déterminé en fonction de la loi préétablie de codage, de l'heure estimée et du temps de transit (TT) estimé localement.2. Method according to claim 1 characterized in that the waveform comprises bearings (2a, 2b, 2c) whose transmission instants and the instantaneous frequency band (Bl) are determined by a predetermined law of coding, the moment of emission of a bearing by a station (31) being determined according to the pre-established law of coding, the estimated time and the transit time (TT) estimated locally.
3. Procédé selon l'une des quelconques revendications 1 à 2 caractérisé en ce que l'étape (41 ) d'acquisition et de maintien du Temps de Transit (TT) est une estimation locale à tout instant du temps de transit fonction des éphémérides du satellite (30), de la position géographique de la station (31 ) et d'une heure réseau commune de référence (Href).3. Method according to any one of claims 1 to 2 characterized in that the step (41) for acquiring and maintaining the Transit Time (TT) is a local estimate at any time of the transit time according ephemeris the satellite (30), the geographical position of the station (31) and a common reference hour network (Href).
4. Système de radiocommunications par satellite à gestion de temps de transit décentralisée caractérisé en ce qu'il comporte au moins un satellite de radiocommunications (30), un segment sol comportant un ensemble de stations au sol (31 ), le segment sol mettant en oeuvre une forme d'onde protégée à évasion de fréquence orthogonale, chaque station au sol (31 ) mettant en œuvre des procédures de gestion du temps de transit (TT) entre ladite station au sol (31 ) et le satellite (30) et une procédure de gestion d'heure, nécessaires au respect du critère d'orthogonalité de ladite forme d'onde, le temps de transit de chaque station étant déterminé localement et de manière autonome à chaque station 4. A satellite radio system with decentralized transit time management characterized in that it comprises at least one radiocommunication satellite (30), a ground segment comprising a set of ground stations (31), the ground segment implementing an orthogonal frequency evasion protected waveform, each ground station (31) implementing transit time management (TT) procedures between said ground station (31) and the satellite (30) and a time management procedure, necessary to comply with the orthogonality criterion of said waveform, the transit time of each station being determined locally and autonomously at each station
5. Système selon la revendication 5 caractérisé en ce que chaque station au sol (31 ) met en œuvre une étape (40) d'acquisition et de maintien de l'heure, l'heure ainsi déterminée étant une heure estimée localement à chaque station au (31 ) et une étape (41 ) d'acquisition et de maintien du Temps de Transit (TT) entre la station (31 ) et le satellite (30), le temps de transit (TT) étant estimé localement, les instants d'émission par ladite station au sol (31 ) étant déterminés en fonction de l'heure estimée localement et du temps de transit (TT) estimé localement.5. System according to claim 5 characterized in that each ground station (31) implements a step (40) for acquiring and maintaining the time, the time thus determined being a time estimated locally at each station at (31) and a step (41) for acquiring and maintaining the Transit Time (TT) between the station (31) and the satellite (30), the transit time (TT) being estimated locally, the instants of emission by said ground station (31) being determined according to the locally estimated time and the locally estimated transit time (TT).
6. Système selon la revendication 6 caractérisé en ce que ladite forme d'onde est utilisée pour des liaisons via un satellite (30) entre des stations au sol (31 ) échangeant du trafic, ladite forme d'onde comportant des paliers (2a, 2b, 2c) dont les instants d'émission et la bande de fréquence instantanée (Bl) sont déterminés par une loi préétablie de codage, ladite forme d'onde étant orthogonale, l'instant d'émission d'un palier par une station au sol (31 ) étant déterminé en fonction de la loi préétablie de codage, de l'heure estimée localement et du temps de transit (TT) estimé localement.6. System according to claim 6 characterized in that said waveform is used for links via a satellite (30) between ground stations (31) exchanging traffic, said waveform comprising bearings (2a, 2b, 2c) whose transmission instants and the instantaneous frequency band (Bl) are determined by a pre-established encoding law, said waveform being orthogonal, the instant of emission of a bearing by a station at sol (31) being determined according to the pre-established encoding law, locally estimated time and locally estimated transit time (TT).
7. Système selon l'une des quelconques revendications 6 à 7 caractérisé en ce que l'étape (41 ) d'acquisition et de maintien du Temps de Transit (TT) est une estimation locale à tout instant du temps de transit fonction des éphémérides du satellite (30), de la position géographique de la station au sol (31 ) et d'une heure réseau commune de référence (Href).7. System according to any one of claims 6 to 7 characterized in that the step (41) for acquiring and maintaining the Transit Time (TT) is a local estimate at any time of the transit time according ephemeris the satellite (30), the geographical position of the ground station (31) and a common reference hour network (Href).
8. Système selon la revendication 8 caractérisé en ce que les instants d'émission par ladite station au sol (31 ) correspondent sensiblement à l'heure réseau commune de référence (Href) à laquelle est soustrait le Temps de Transit (TT) estimée. 8. System according to claim 8 characterized in that the transmission instants by said ground station (31) substantially correspond to the time common reference network (Href) to which is subtracted the estimated Transit Time (TT).
PCT/EP2007/057205 2006-07-13 2007-07-12 Time-dependent method of synchronizing of a radio communication system WO2008006886A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07787476A EP2050208A1 (en) 2006-07-13 2007-07-12 Time-dependent method of synchronizing of a radio communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0606418 2006-07-13
FR0606418A FR2903828B1 (en) 2006-07-13 2006-07-13 METHOD FOR TEMPORALLY SYNCHRONIZING AN ORTHOGONAL FREQUENCY EVACUATION WAVY FORM AND DECENTRALIZED TRANSIT TIME MANAGEMENT SATELLITE RADIOCOMMUNICATION SYSTEM.

Publications (1)

Publication Number Publication Date
WO2008006886A1 true WO2008006886A1 (en) 2008-01-17

Family

ID=37944737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/057205 WO2008006886A1 (en) 2006-07-13 2007-07-12 Time-dependent method of synchronizing of a radio communication system

Country Status (3)

Country Link
EP (1) EP2050208A1 (en)
FR (1) FR2903828B1 (en)
WO (1) WO2008006886A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107276629A (en) * 2017-06-20 2017-10-20 中国人民解放军军械工程学院 Hop cycle method of estimation based on time frequency analysis center of gravity of frequency
CN112039579A (en) * 2020-09-10 2020-12-04 上海清申科技发展有限公司 Signal synchronization method and device for satellite communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2321831A (en) * 1994-07-22 1998-08-05 Int Mobile Satellite Org Satellite Communication Method and Apparatus
US5878034A (en) * 1996-05-29 1999-03-02 Lockheed Martin Corporation Spacecraft TDMA communications system with synchronization by spread spectrum overlay channel
US20020089946A1 (en) * 2001-01-05 2002-07-11 Hutchings Jonathon M. System and method for providing a timing reference for data transmissions in a satellite-based communications network
US20020105976A1 (en) * 2000-03-10 2002-08-08 Frank Kelly Method and apparatus for deriving uplink timing from asynchronous traffic across multiple transport streams

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2321831A (en) * 1994-07-22 1998-08-05 Int Mobile Satellite Org Satellite Communication Method and Apparatus
US5878034A (en) * 1996-05-29 1999-03-02 Lockheed Martin Corporation Spacecraft TDMA communications system with synchronization by spread spectrum overlay channel
US20020105976A1 (en) * 2000-03-10 2002-08-08 Frank Kelly Method and apparatus for deriving uplink timing from asynchronous traffic across multiple transport streams
US20020089946A1 (en) * 2001-01-05 2002-07-11 Hutchings Jonathon M. System and method for providing a timing reference for data transmissions in a satellite-based communications network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107276629A (en) * 2017-06-20 2017-10-20 中国人民解放军军械工程学院 Hop cycle method of estimation based on time frequency analysis center of gravity of frequency
CN112039579A (en) * 2020-09-10 2020-12-04 上海清申科技发展有限公司 Signal synchronization method and device for satellite communication

Also Published As

Publication number Publication date
EP2050208A1 (en) 2009-04-22
FR2903828A1 (en) 2008-01-18
FR2903828B1 (en) 2009-03-27

Similar Documents

Publication Publication Date Title
FR2751495A1 (en) Telecommunication system featuring temporal synchronisation
EP3494653B1 (en) Satellite telecommunications system comprising an optical gateway link and a radio gateway link, and control method
FR2901934A1 (en) Satellite communication system e.g. low earth orbit constellation system, has gateway communicating with user terminal over system, where some of user terminals employ combination of time slots and orthogonal codes
FR2959571A1 (en) DISTRIBUTED DISTANCE MEASUREMENT SYSTEM FOR LOCATING A GEOSTATIONARY SATELLITE.
RU2428714C2 (en) Universal high-performance navigation system
EP0854600A1 (en) Auto-adaptive data transmission method and device for carrying out the method
FR2790888A1 (en) Ground station reference clock/satellite reference clock synchronization having ground station reference burst with recognition signal and first alignment period/second period phase locking loop applied.
EP2579062B1 (en) Spatial augmentation system adapted to improve the accuracy and reliability of data delivered by a satellite navigation system, and associated method
US6701127B1 (en) Burst communications method and apparatus
EP1875634B1 (en) Method for synchronisation and control in wireless communication systems
WO2004002022A1 (en) Method for return link sychronisation in an orthogonal cdma satellite system
WO2008006886A1 (en) Time-dependent method of synchronizing of a radio communication system
Sun et al. Enabling inter-satellite communication and ranging for small satellites
FR2796229A1 (en) METHOD AND SYSTEM FOR TELECOMMUNICATION BY DEFLECTING SATELLITES IN WHICH COMMUNICATIONS ARE TRANSFERABLE FROM SATELLITE TO ANOTHER
EP3516793B1 (en) System for communication in a system of drones
US20030214936A1 (en) Using GPS signals to synchronize stationary multiple master networks
FR2721466A1 (en) Control signal for receivers, synchronization device, equalization device, synchronization method and corresponding receivers.
EP3487089A1 (en) System for distributing a timing reference in an aircraft
EP3635881B1 (en) Telecommunications satellite, beamforming method and method for manufacturing a satellite payload
EP2218237A1 (en) Device and method making it possible to intercept communications in a network
CA2349929C (en) Atm telecommunication method whereby the terminals transmit to a common station
EP2720064B1 (en) System for synchronising a satellite pointing device
EP4195531A1 (en) Communication device for 5g communication between a mobile terminal and a core network via a satellite
Fenech Satellite multiple access protocols for land mobile terminals. A study of the multiple access environment for land mobile satellite terminals, including the design analysis and simulation of a suitable protocol and the evaluation of its performance in a UK system.
FR2811834A1 (en) Satellite navigation system for aircraft has reference station using coding circuits with pseudo-random in spreading code

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07787476

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007787476

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU