WO2008003766A2 - 4-heter0cycl0alkylpyri(mi)dines, process for the preparation thereof and their use as medicaments - Google Patents

4-heter0cycl0alkylpyri(mi)dines, process for the preparation thereof and their use as medicaments Download PDF

Info

Publication number
WO2008003766A2
WO2008003766A2 PCT/EP2007/056853 EP2007056853W WO2008003766A2 WO 2008003766 A2 WO2008003766 A2 WO 2008003766A2 EP 2007056853 W EP2007056853 W EP 2007056853W WO 2008003766 A2 WO2008003766 A2 WO 2008003766A2
Authority
WO
WIPO (PCT)
Prior art keywords
membered
tetrahydro
imidazo
pyridin
compounds
Prior art date
Application number
PCT/EP2007/056853
Other languages
French (fr)
Other versions
WO2008003766A3 (en
Inventor
Harald Engelhardt
Gerd Bader
Guido Boehmelt
Ralph Brueckner
Thomas Gerstberger
Maria Impagnatiello
Daniel Kuhn
Otmar Schaaf
Heinz Stadtmueller
Irene Waizenegger
Andreas Zoephel
Original Assignee
Boehringer Ingelheim International Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim International Gmbh filed Critical Boehringer Ingelheim International Gmbh
Priority to US12/304,134 priority Critical patent/US8258129B2/en
Priority to JP2009517280A priority patent/JP2009542604A/en
Priority to EP07787138A priority patent/EP2041132A2/en
Priority to CA002654670A priority patent/CA2654670A1/en
Publication of WO2008003766A2 publication Critical patent/WO2008003766A2/en
Publication of WO2008003766A3 publication Critical patent/WO2008003766A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Definitions

  • the present invention relates to new 4-heterocycloalkylpyrimidines of general formula (1)
  • the present invention relates to compounds of general formula (1)
  • R 1 denotes 8-12 membered heterocycloalkyl, optionally substituted by one or more identical or different R 4
  • R 2 denotes a group selected from among C ⁇ -isaryl, 3-8 membered heterocycloalkyl and 5- 14 membered heteroaryl, substituted by one or more identical or different R 4
  • R 3 denotes a group selected from among halogen, -CN, , -NR f R f , -OR f , -C(O)R f , -SR f , -S(O)R f , -S(O) 2 R f , Ci -4 alkyl, Ci -4 haloalkyl, C 3-5 cycloalkyl and 3-5 membered heterocycloalkyl, and R 4 denotes a group selected from among R a , R b and R a substituted by one or more identical or different R c and/or R
  • each R d independently of one another denotes hydrogen or a group optionally substituted by one or more identical or different R e and/or R f selected from among
  • the invention relates to compounds of general formula (1), wherein X denotes N.
  • the invention relates to compounds of general formula (1), wherein R 3 denotes a group selected from among halogen, -NR f R f , -OR f , -C(O)R f , C 1-4 alkyl, and C ⁇ .scycloalkyl.
  • the invention relates to compounds of general formula (1), wherein R 2 denotes a group selected from among phenyl and 5-12 membered heteroaryl.
  • Q denotes 5, 6 or 7 membered heterocycloalkyl
  • R 2 , R 3 and R 4 are as hereinbefore defined.
  • the invention in another aspect relates to compounds of general formula (1), wherein R 2 denotes phenyl substituted by a 5-6 membered heterocycloalkyl, which may optionally be substituted by one or more identical or different R c and/or R b .
  • R 2 denotes phenyl substituted by -C(O)NR 0 R 0 .
  • (C2) In another aspect the invention relates to compounds of general formula (1), wherein R 3 denotes methoxy. All the above mentioned aspects (Al) and (A2) for R 1 , (Bl) to (B6) for R 2 and (Cl) and (C2) for R 3 may be combined with one another as desired.
  • the invention relates to compounds of general formula (1) or (IA), or the pharmaceutically effective salts thereof, for use as pharmaceutical compositions.
  • the invention relates to compounds of general formula (1) or (IA), or the pharmaceutically effective salts thereof, for preparing a pharmaceutical composition with an antiproliferative activity.
  • the invention relates to pharmaceutical preparations containing as active substance one or more compounds of general formula (1) or (IA), or the pharmaceutically effective salts thereof optionally in combination with conventional excipients and/or carriers.
  • the invention relates to the use of compounds of general formula (1) or (IA) for preparing a pharmaceutical composition for the treatment and/or prevention of cancer, infections, inflammations and autoimmune diseases.
  • the invention in another aspect relates to a pharmaceutical preparation
  • a pharmaceutical preparation comprising a compound of general formula (1) or (IA) and at least one other antiproliferative active substance, different from formula (1) or (IA), optionally in the form of the tautomers, the racemates, the enantiomers, the diastereomers and the mixtures thereof, and optionally the pharmaceutically effective salts thereof.
  • alkyl substituents are meant in each case saturated, unsaturated, straight-chain or branched aliphatic hydrocarbon groups (alkyl group) and this includes both saturated alkyl groups and unsaturated alkenyl and alkynyl groups.
  • Alkenyl substituents are in each case straight-chain or branched, unsaturated alkyl groups, which have at least one double bond.
  • alkynyl substituents are meant in each case straight-chain or branched, unsaturated alkyl groups, which have at least one triple bond.
  • Heteroalkyl represents unbranched or branched aliphatic hydrocarbon chains which contain 1 to 3 heteroatoms, while each of the available carbon and heteroatoms in the heteroalkyl chain may optionally each be substituted independently and the heteroatoms independently of one another are selected from among O, N, P, PO, PO 2 , S, SO and SO 2 (e.g.
  • dimethylaminomethyl dimethylaminoethyl, dimethylaminopropyl, diethylamino methyl, diethylamino ethyl, diethylaminopropyl, 2-diisopropylaminoethyl, bis- 2-methoxyethylamino, [2-(dimethylamino-ethyl)-ethyl-amino]-methyl, 3-[2- (dimethylamino-ethyl)-ethyl-amino]-propyl, hydroxymethyl, 2-hydroxyethyl, 3- hydroxypropyl, methoxy, ethoxy, propoxy, methoxymethyl, 2-methoxyethyl).
  • Haloalkyl refers to alkyl groups wherein one or more hydrogen atoms are replaced by halogen atoms.
  • Halogen refers to fluorine, chlorine, bromine and/or iodine atoms.
  • cycloalkyl a mono- or polycyclic ring, wherein the ring system may be a saturated ring but also an unsaturated, non-aromatic ring or a spiro compound, which may optionally also contain double bonds, such as for example cyclopropyl, cyclopropenyl, cyclobutyl, cyclobutenyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptanyl, cycloheptenyl, norbornyl, norbornenyl, indanyl, adamantyl, spiroheptanyl and spiro[4.2]heptanyl.
  • Cycloalkylalkyl includes a non-cyclic alkyl as hereinbefore defined wherein a hydrogen atom bound to a carbon atom is replaced by a cycloalkyl group.
  • Aryl relates to monocyclic or bicyclic rings with 6 - 12 carbon atoms such as for example phenyl and naphthyl.
  • Arylalkyl includes a non-cyclic alkyl group wherein a hydrogen atom bound to a carbon atom is replaced by an aryl group.
  • heteroaryl mono- or polycyclic rings which contain, instead of one or more carbon atoms, one or more heteroatoms, which may be identical or different, such as e.g. nitrogen, sulphur or oxygen atoms.
  • heteroatoms such as e.g. nitrogen, sulphur or oxygen atoms.
  • Examples include furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl, oxadiazolyl, thiadiazolyl, pyridyl, pyrimidyl, pyridazinyl, pyrazinyl and triazinyl.
  • bicyclic heteroaryl groups are indolyl, isoindolyl, benzofuranyl, benzothienyl, benzoxazolyl, benzothiazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolyl, indazolyl, isoquinolinyl, quinolinyl, quinoxalinyl, cinnolinyl, phthalazinyl, quinazolinyl and benzotriazinyl, indolizinyl, oxazolopyridinyl, imidazopyridinyl, naphthyridinyl, indolinyl, isochromanyl, chromanyl, tetrahydroisoquinolinyl, isoindolinyl, isobenzotetrahydrofuranyl, isobenzotetrahydrothienyl, isobenzothienyl, benzoxazolyl,
  • Heteroarylalkyl encompasses a non-cyclic alkyl wherein a hydrogen atom bound to a carbon atom is replaced by a heteroaryl group.
  • Heterocycloalkyl relates to saturated or unsaturated, non-aromatic mono-, polycyclic or bridged polycyclic rings or spiro compounds comprising 3 - 12 carbon atoms, which carry heteroatoms, such as nitrogen, oxygen or sulphur, instead of one or more carbon atoms.
  • heterocyclyl groups are tetrahydrofuranyl, pyrrolidinyl, pyrrolinyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperidinyl, piperazinyl, indolinyl, isoindolinyl, morpholinyl, thiomorpholinyl, homomorpholinyl, homopiperidinyl, homopiperazinyl, ho mo thiomorpholinyl, thiomorpholinyl-S-oxide, thiomorpholinyl- ⁇ - dioxide, tetrahydropyranyl, tetrahydrothienyl, homothiomorpholinyl- ⁇ -dioxide, oxazolidinonyl, dihydropyrazolyl, dihydropyrrolyl, dihydropyrazinyl, dihydropyridinyl, dihydropyrimidinyl, dihydrofuryl
  • Heterocycloalkylalkyl relates to a non-cyclic alkyl group wherein a hydrogen atom bound to a carbon atom is replaced by a heterocycloalkyl group.
  • substituted is meant that a hydrogen atom which is bound directly to the atom in question is replaced by a different atom or a different atomic group.
  • Step 1 The preparation of the intermediate compound III is carried out by substitution of a leaving group (LG), for example halogen, SCN or methoxy, preferably chlorine, in a heteroaromatic system I by a nucleophile II.
  • LG leaving group
  • the preparation of the end compound V is carried out by substitution of a leaving group LG, for example halogen, SCN or methoxy, preferably chlorine, in a heteroaromatic system III by a nucleophile IV.
  • LG for example halogen, SCN or methoxy, preferably chlorine
  • iv v 1 equivalent of the compound III and 1 - 3 equivalents of the compound IV are stirred in a solvent, for example 1,4-dioxane, DMF, DMA, 7V-methyl-2-pyrrolidinone or water.
  • a solvent for example 1,4-dioxane, DMF, DMA, 7V-methyl-2-pyrrolidinone or water.
  • an inorganic acid for example sulphuric acid or hydrochloric acid
  • Step 3B molecules with a carbonyl group may be reacted with an amine.
  • Molecules with an additional N atom may be reacted with an alkyl halide (alkyl-Hal).
  • Vl XII XIII 1 equivalent of the compound VI and 1 - 10 equivalents of the compound XII are stirred in a solvent, for example 1,4-dioxane, THF, DMF or acetonitrile.
  • a solvent for example 1,4-dioxane, THF, DMF or acetonitrile.
  • 2 - 2.5 equivalents of a base for example potassium carbonate, sodium carbonate, caesium carbonate, ethyldiispropylamine or triethylamine.
  • the reaction mixture is stirred for a further 12 - 72 h at a temperature of 15 - 25°C, then combined with water, which has been adjusted to a pH of 8 - 9 with an inorganic base, for example sodium hydrogen carbonate or potassium carbonate.
  • Molecules that have a carboxyl group may be reacted with an amine. If the carboxyl group is present in a protected form it is converted into the deprotected compound beforehand by hydrolysis or similar methods known to the skilled man.
  • 1 equivalent of the compound XIV, 1 - 1.5 equivalents of the compound X and 1 - 3 equivalents of a base are stirred in a solvent, for example 1,4-dioxane, DMF, DMA or 7V-methyl-2-pyrrolidinone.
  • a base for example triethylamine or ethyldiisopropylamine
  • a coupling reagent for example N, N- dicyclohexylcarbodiimide, 7V,7V-diisopropylcarbodiimide, O-(benzotriazol- 1 -y ⁇ )-N,N,N',N'- tetramethyluronium-tetrafluoroborate, 1 -(3 -N,7V-dimethylaminopropyl)-3 - ethylcarbodiimide or O-(7-azabenzotriazol- 1 -yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate, are added.
  • the reaction mixture is stirred for a further 4 - 24 h at a temperature of 15 - 25°C.
  • the solvent is distilled off and the residue is purified by chromatography.
  • Nagel Polygoprep 100-50 C 18 is used.
  • the apparatus is constructed so that the chromatography (column: Zorbax SB-C8, 3.5 ⁇ m, 2.1*50, Agilent) is followed by a diode array detector (G1315B made by Agilent) and a mass detector (1100 LS-MSD SL; G1946D; Agilent) connected in series. This apparatus is operated with a flow of 0.6 mL/min.
  • the carrier material used is C18-RP-silica gel and a gradient is run through which consists at the starting point of 95% water and 5% acetonitrile and at the finishing point of 70% water and 30% acetonitrile. 0.2 % formic acid is added to both eluants. The suitable fractions are freeze-dried. 140 mg of the intermediate product thus obtained are combined with 15 mL DMF, 8 mL water and 30 mg palladium hydroxide and hydrogenated for 2 h at 7 bar H 2 pressure. The catalyst is filtered off and the solvent is eliminated in vacuo. Yield: 0.47 g
  • the carrier material used is C18-RP-silica gel and a gradient is run through which consists at the starting point of 85% water and 15% acetonitrile and at the finishing point of 5% water and 95% acetonitrile. 0.2% NH3/KHCO3 is added to both eluants. The suitable fractions are freeze-dried. Yield: 22 mg
  • Example 53 The following compounds are prepared by a process analogous to that described in Example 53.
  • the preparation of 2-chloro-4-(3,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5- yl)-5-dimethylamino-pyrimidine is described in Example 63.
  • Example 64 - 191 The following compounds are prepared by a process analogous to that described in Example 63.
  • the carrier material used is C18-RP-silica gel and a gradient is run through which consists at the starting point of 80% water (10 mM ammonium hydrogen carbonate and 38 mM ammonia) and 20% acetonitrile and at the finishing point of 35% water and 65% acetonitrile. Fractions are freeze-dried. The residue is taken up in acetonitrile, combined with aqueous hydrochloric acid and freeze-dried again. Yield: 40 mg
  • the following compounds are prepared by a process analogous to that described in Example 192.
  • the acid component for Examples 228 to 232 may be obtained by saponification of the methyl ester (see Example 14).
  • the carrier material used is C18-RP-silica gel and a gradient is run through which consists at the starting point of 80% water (10 mM ammonium hydrogen carbonate and 20 mM ammonia) and 20% acetonitrile and at the finishing point of 35% water and 65% acetonitrile. The appropriate fractions are freeze-dried. The residue is taken up in acetonitrile, combined with aqueous hydrochloric acid and freeze-dried once again. Yield: 17.5 mg
  • the effect of the compounds according to the invention on various kinases is determined in in vitro kinase assays with recombinantly prepared protein.
  • the compounds in this assay exhibit good to very good activity, i.e. for example an IC 50 value of less than 1 ⁇ mol/L, generally less than 0.1 ⁇ mol/L.
  • Recombinant human PDKl enzyme (aa 52-556) attached to HiS 6 at its N-terminal end is isolated from Baculovirus-infected insect cells. Purified enzyme may also be obtained for example through Upstate.
  • the following components are combined in a well of a 96-well round-bottomed plate (Greiner bio-one, No. 650101):
  • KTFCGTPEYLAPEVRREPRILSEEEQEMFRDFDYIADWC synthesised by Pepceuticals Limited, Nottingham, United Kingdom; 25 ⁇ M final concentration; PDKl and PDKtide are correspondingly diluted together in assay buffer; PDKtide is present in this mixture as an 83.3 ⁇ M solution) - 10 ⁇ L ATP solution (25 ⁇ M ATP with 0.5 ⁇ Ci/well of gamma-P33-ATP)
  • the reaction is started by adding the ATP solution and incubated for 30 min at RT; at the start of the reaction the plates are shaken gently. The reaction is stopped by the addition of 5 ⁇ L/well 0.5 M phosphoric acid (H3PO4) and incubated for about 20 min at RT. The precipitate is transferred by harvesting onto filter plates (96-well microtitre filter plate: UniFilter GF/C; Perkin Elmer; No. 6005174), then washed 6 times with 50 mM H 3 PO 4 and dried at 6O 0 C. Then the plate is stuck down with sealing tape, 25 ⁇ L/well of scintillation solution (Microscint 0; Perkin Elmer; No. 6013611) are added and the amount of P33 precipitated is measured using the Wallac Betacounter. The measurement data are evaluated using the Standard Graphpad software.
  • the antiproliferative activity of the compounds according to the invention is determined on cultivated human tumour cells, for example on PC-3 cells.
  • the compounds exhibit good to very good activity, i.e. for example an EC50 value of less than 5 ⁇ mol/L, generally less than 1 ⁇ mol/L in the PC-3 proliferation test. Measurement of the inhibition of proliferation on cultivated human tumour cells
  • cells of prostate carcinoma tumour cell line PC-3 are cultivated in Ham's F 12 Medium (Gibco) and 10% foetal calf serum (Gibco) and harvested in the log growth phase.
  • PC-3 cells are placed in 96-well plates (Costar) at a density of 1000 cells per well and incubated overnight in an incubator (at 37°C and 5% CO2), while on each plate 16 wells are used as controls (8 wells with cells to which only DMSO solution has been added (should yield 30 - 50% maximum value of reduced AlamarBlue), 4 wells containing only medium (medium control, after the addition of oxidised AlamarBlue reagent the background signal is obtained) and 4 wells where again only medium is added (after the addition of reduced AlamarBlue reagent it acts as a maximum value)).
  • the active substances are added to the cells in various concentrations (dissolved in DMSO; DMSO final concentration: 0.1% or 1%) (in each case as a double or triple measurement). After 5 days' incubation 20 ⁇ l AlamarBlue reagent (Serotec) are added to each well, and the cells are incubated for a further 5-7 hours. As a control, 20 ⁇ l reduced AlamarBlue reagent is added to each of 4 wells. After incubation the colour change of the AlamarBlue reagent in the individual wells is determined in a SpectraMax Photometer (Molecular Devices) (extinction 530 nm, emission 590 nm, 5 sec measuring time). The amount of AlamarBlue reagent reacted represents the metabolic activity of the cells. The relative cell activity is calculated in relation to the control (PC-3 cells without inhibitor) and the active substance concentration which inhibits the cell activity by 50% (EC50) is derived. The values are calculated from the average of two or three individual measurements.
  • the compounds according to the invention are also tested accordingly on other tumour cells.
  • these compounds are effective on carcinomas of all kinds of tissue (e.g. gliomas (U87), sarcoma (e.g. MES-SA, SK-UT-IB), breast (MDA-MB468), colon (HCTl 16), lung (H460)) and could be used in indications of this kind, particularly in indications which have activating changes in the PI3K- AKT-PDKl signal pathway.
  • This demonstrates the wide range of applications for the compounds according to the invention for the treatment of all kinds of tumour types.
  • the new compounds of general formula (1) or (IA) the isomers and the physiologically acceptable salts thereof are therefore suitable for treating diseases characterised by excessive or abnormal cell proliferation.
  • Such diseases include for example: viral infections (e.g. HIV and Kaposi's sarcoma); inflammatory and autoimmune diseases (e.g. colitis, arthritis, Alzheimer's disease, glomerulonephritis and wound healing); bacterial, fungal and/or parasitic infections; leukaemias, lymphomas and solid tumours (e.g. carcinomas and sarcomas), skin diseases (e.g. psoriasis); diseases based on hyperplasia which are characterised by an increase in the number of cells (e.g. fibroblasts, hepatocytes, bones and bone marrow cells, cartilage or smooth muscle cells or epithelial cells (e.g. endometrial hyperplasia)); bone diseases and cardiovascular diseases (e.g. restenosis and hypertrophy).
  • viral infections e.g. HIV and Kaposi's sarcoma
  • inflammatory and autoimmune diseases e.g. colitis, arthritis, Alzheimer's disease, glomerulonephritis and
  • brain tumours such as for example acoustic neurinoma, astrocytomas such as pilocytic astrocytomas, fibrillary astrocytoma, protoplasmic astrocytoma, gemistocytary astrocytoma, anaplastic astrocytoma and glioblastoma, brain lymphomas, brain metastases, hypophyseal tumour such as prolactinoma, HGH (human growth hormone) producing tumour and ACTH producing tumour (adrenocorticotropic hormone), craniopharyngiomas, medulloblastomas, meningeomas and oligodendrogliomas; nerve tumours (neoplasms) such as for example tumours of the vegetative nervous system such as neuroblastoma sympathicum, ganglioneuroma, paraganglioma (pheochromocytoma, chromaffinom
  • lymphosarcoma such as for example malignant lymphoma, Hodgkin's disease, non- Hodgkin's lymphomas (NHL) such as chronic lymphatic leukaemia, leukaemic reticuloendotheliosis, immunocytoma, plasmocytoma (multiple myeloma), immunoblastoma, Burkitt's lymphoma, T-zone mycosis fungoides, large-cell anaplastic lymphoblastoma and lymphoblastoma; laryngeal cancer such as for example tumours of the vocal cords, supra-glottal, glottal and subglottal laryngeal tumours; bone cancer such as for example osteochondroma, chondroma, chondroblastoma, chondromyxoid fibroma, osteoma, osteoid osteoma, osteoblastoma, eosinophilic granuloma, giant cell tumour, cho
  • the new compounds may be used for the prevention, short-term or long-term treatment of the above-mentioned diseases, optionally also in combination with radiotherapy or other "state-of-the-art" compounds, such as e.g. cytostatic or cytotoxic substances, cell proliferation inhibitors, anti-angiogenic substances, steroids or antibodies.
  • radiotherapy or other "state-of-the-art” compounds, such as e.g. cytostatic or cytotoxic substances, cell proliferation inhibitors, anti-angiogenic substances, steroids or antibodies.
  • the compounds of general formula (1) or (IA) may be used on their own or in combination with other active substances according to the invention, optionally also in combination with other pharmacologically active substances.
  • Chemotherapeutic agents which may be administered in combination with the compounds according to the invention include, without being restricted thereto, hormones, hormone analogues and antihormones (e.g. tamoxifen, toremifene, raloxifene, fulvestrant, megestrol acetate, flutamide, nilutamide, bicalutamide, aminoglutethimide, cyproterone acetate, finasteride, buserelin acetate, fludrocortisone, fiuoxymesterone, medroxyprogesterone, octreotide), aromatase inhibitors (e.g.
  • hormones e.g. tamoxifen, toremifene, raloxifene, fulvestrant, megestrol acetate, flutamide, nilutamide, bicalutamide, aminoglutethimide, cyproterone acetate, finasteride,
  • anastrozole anastrozole, letrozole, liarozole, vorozole, exemestane, atamestane
  • LHRH agonists and antagonists e.g. goserelin acetate, luprolide
  • inhibitors of growth factors growth factors such as for example "platelet derived growth factor” and “hepatocyte growth factor”
  • inhibitors are for example "growth factor” antibodies, “growth factor receptor” antibodies and tyrosinekinase inhibitors, such as for example cetuximab, gefitinib, imatinib, lapatinib and trastuzumab
  • antimetabolites e.g.
  • antifolates such as methotrexate, raltitrexed, pyrimidine analogues such as 5- fluorouracil, capecitabin and gemcitabin, purine and adenosine analogues such as mercaptopurine, thioguanine, cladribine and pentostatin, cytarabine, fludarabine); antitumour antibiotics (e.g. anthracyclins such as doxorubicin, daunorubicin, epirubicin and idarubicin, mitomycin-C, bleomycin, dactinomycin, plicamycin, streptozocin); platinum derivatives (e.g.
  • cisplatin, oxaliplatin, carboplatin alkylation agents (e.g. estramustin, meclorethamine, melphalan, chlorambucil, busulphan, dacarbazin, cyclophosphamide, ifosfamide, temozolomide, nitrosoureas such as for example carmustin and lomustin, thiotepa); antimitotic agents (e.g. Vinca alkaloids such as for example vinblastine, vindesin, vinorelbin and vincristine; and taxanes such as paclitaxel, docetaxel); topoisomerase inhibitors (e.g.
  • epipodophyllotoxins such as for example etoposide and etopophos, teniposide, amsacrin, topotecan, irinotecan, mitoxantron) and various chemotherapeutic agents such as amifostin, anagrelid, clodronat, filgrastin, interferon alpha, leucovorin, rituximab, procarbazine, levamisole, mesna, mitotane, pamidronate and porfimer.
  • epipodophyllotoxins such as for example etoposide and etopophos, teniposide, amsacrin, topotecan, irinotecan, mitoxantron
  • chemotherapeutic agents such as amifostin, anagrelid, clodronat, filgrastin, interferon alpha, leucovorin, rituximab, procarbazine, levamisole, me
  • Suitable preparations include for example tablets, capsules, suppositories, solutions, - particularly solutions for injection (s.c, Lv., i.m.) and infusion - elixirs, emulsions or dispersible powders.
  • the content of the pharmaceutically active compound(s) should be in the range from 0.1 to 90 wt.-%, preferably 0.5 to 50 wt.-% of the composition as a whole, i.e. in amounts which are sufficient to achieve the dosage range specified below.
  • the doses specified may, if necessary, be given several times a day.
  • Suitable tablets may be obtained, for example, by mixing the active substance(s) with known excipients, for example inert diluents such as calcium carbonate, calcium phosphate or lactose, disintegrants such as corn starch or alginic acid, binders such as starch or gelatine, lubricants such as magnesium stearate or talc and/or agents for delaying release, such as carboxymethyl cellulose, cellulose acetate phthalate, or polyvinyl acetate.
  • excipients for example inert diluents such as calcium carbonate, calcium phosphate or lactose, disintegrants such as corn starch or alginic acid, binders such as starch or gelatine, lubricants such as magnesium stearate or talc and/or agents for delaying release, such as carboxymethyl cellulose, cellulose acetate phthalate, or polyvinyl acetate.
  • excipients for example inert dilu
  • Coated tablets may be prepared accordingly by coating cores produced analogously to the tablets with substances normally used for tablet coatings, for example collidone or shellac, gum arabic, talc, titanium dioxide or sugar.
  • the core may also consist of a number of layers.
  • the tablet coating may consist of a number of layers to achieve delayed release, possibly using the excipients mentioned above for the tablets.
  • Syrups or elixirs containing the active substances or combinations thereof according to the invention may additionally contain a sweetener such as saccharine, cyclamate, glycerol or sugar and a flavour enhancer, e.g. a flavouring such as vanillin or orange extract. They may also contain suspension adjuvants or thickeners such as sodium carboxymethyl cellulose, wetting agents such as, for example, condensation products of fatty alcohols with ethylene oxide, or preservatives such as p-hydroxybenzoates.
  • a sweetener such as saccharine, cyclamate, glycerol or sugar
  • a flavour enhancer e.g. a flavouring such as vanillin or orange extract.
  • suspension adjuvants or thickeners such as sodium carboxymethyl cellulose, wetting agents such as, for example, condensation products of fatty alcohols with ethylene oxide, or preservatives such as p-hydroxybenzoates.
  • Solutions for injection and infusion are prepared in the usual way, e.g. with the addition of isotonic agents, preservatives such as p-hydroxybenzoates, or stabilisers such as alkali metal salts of ethylenediamine tetraacetic acid, optionally using emulsifiers and/or dispersants, whilst if water is used as the diluent, for example, organic solvents may optionally be used as solvating agents or dissolving aids, and transferred into injection vials or ampoules or infusion bottles.
  • isotonic agents e.g. with the addition of isotonic agents, preservatives such as p-hydroxybenzoates, or stabilisers such as alkali metal salts of ethylenediamine tetraacetic acid, optionally using emulsifiers and/or dispersants, whilst if water is used as the diluent, for example, organic solvents may optionally be used as solvating agents or dissolving aid
  • Capsules containing one or more active substances or combinations of active substances may for example be prepared by mixing the active substances with inert carriers such as lactose or sorbitol and packing them into gelatine capsules.
  • Suitable suppositories may be made for example by mixing with carriers provided for this purpose, such as neutral fats or polyethyleneglycol or the derivatives thereof.
  • Excipients which may be used include, for example, water, pharmaceutically acceptable organic solvents such as paraffins (e.g. petroleum fractions), vegetable oils (e.g. groundnut or sesame oil), mono- or polyfunctional alcohols (e.g. ethanol or glycerol), carriers such as e.g. natural mineral powders (e.g. kaolins, clays, talc, chalk), synthetic mineral powders (e.g. highly dispersed silicic acid and silicates), sugars (e.g. cane sugar, lactose and glucose) emulsifiers (e.g.
  • pharmaceutically acceptable organic solvents such as paraffins (e.g. petroleum fractions), vegetable oils (e.g. groundnut or sesame oil), mono- or polyfunctional alcohols (e.g. ethanol or glycerol), carriers such as e.g. natural mineral powders (e.g. kaolins, clays, talc, chalk), synthetic mineral powders (e.g. highly disper
  • lignin e.g. lignin, spent sulphite liquors, methylcellulose, starch and polyvinylpyrrolidone
  • lubricants e.g. magnesium stearate, talc, stearic acid and sodium lauryl sulphate.
  • the preparations are administered by the usual methods, preferably by oral or transdermal route, most preferably by oral route.
  • the tablets may, of course contain, apart from the abovementioned carriers, additives such as sodium citrate, calcium carbonate and dicalcium phosphate together with various additives such as starch, preferably potato starch, gelatine and the like.
  • lubricants such as magnesium stearate, sodium lauryl sulphate and talc may be used at the same time for the tabletting process.
  • the active substances may be combined with various flavour enhancers or colourings in addition to the excipients mentioned above.
  • solutions of the active substances with suitable liquid carriers may be used.
  • the dosage for intravenous use is from 1 - 1000 mg per hour, preferably between 5 and
  • the finely ground active substance, lactose and some of the corn starch are mixed together.
  • the mixture is screened, then moistened with a solution of polyvinylpyrrolidone in water, kneaded, wet-granulated and dried.
  • the granules, the remaining corn starch and the magnesium stearate are screened and mixed together.
  • the mixture is compressed to produce tablets of suitable shape and size.
  • the finely ground active substance, some of the corn starch, lactose, microcrystalline cellulose and polyvinylpyrrolidone are mixed together, the mixture is screened and worked with the remaining corn starch and water to form a granulate which is dried and screened.
  • the sodiumcarboxymethyl starch and the magnesium stearate are added and mixed in and the mixture is compressed to form tablets of a suitable size.
  • the active substance is dissolved in water at its own pH or optionally at pH 5.5 to 6.5 and sodium chloride is added to make it isotonic.
  • the solution obtained is filtered free from pyrogens and the filtrate is transferred under aseptic conditions into ampoules which are then sterilised and sealed by fusion.
  • the ampoules contain 5 mg, 25 mg and 50 mg of active substance.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

The present invention encompasses compounds of general Formula (I) wherein X and R1 to R3 are defined as in claim 1, which are suitable for the treatment of diseases characterised by excessive or abnormal cell proliferation, and the use thereof for preparing a pharmaceutical composition having the above-mentioned properties.

Description

New compounds
The present invention relates to new 4-heterocycloalkylpyrimidines of general formula (1)
( 1 )
Figure imgf000002_0001
wherein the groups X and R1 to R3 have the meanings given in the claims and specification, the isomers thereof, processes for preparing these compounds and their use as medicaments.
Detailed description of the invention It has now surprisingly been found that compounds of general formula (1) wherein the groups X, R1, R2 and R3 have the meanings given hereinafter act as inhibitors of specific cell cycle kinases. Thus, the compounds according to the invention may be used for example for the treatment of diseases connected with the activity of specific cell cycle kinases and characterised by excessive or abnormal cell proliferation.
The present invention relates to compounds of general formula (1)
Figure imgf000002_0002
wherein
X denotes CH or N, and R1 denotes 8-12 membered heterocycloalkyl, optionally substituted by one or more identical or different R4, and R2 denotes a group selected from among Cό-isaryl, 3-8 membered heterocycloalkyl and 5- 14 membered heteroaryl, substituted by one or more identical or different R4, and R3 denotes a group selected from among halogen, -CN, , -NRfRf, -ORf, -C(O)Rf, -SRf, -S(O)Rf, -S(O)2Rf, Ci-4alkyl, Ci-4haloalkyl, C3-5cycloalkyl and 3-5 membered heterocycloalkyl, and R4 denotes a group selected from among Ra, Rb and Ra substituted by one or more identical or different Rc and/or Rb; each Ra is selected independently of one another from among Ci_6alkyl, C3-iocycloalkyl, C4-i6cycloalkylalkyl, Cό-ioaryl, Cy-iόarylalkyl, 2-6 membered heteroalkyl, 3-8 membered heterocycloalkyl, 4-14 membered heterocycloalkylalkyl, 5-12 membered heteroaryl and 6- 18 membered heteroarylalkyl; each Rb is a suitable group and each is independently selected from among =0, -ORC, Ci-3haloalkyloxy, -OCF3, =S, -SRC, =NRC, =NORC, -NRCRC, halogen, -CF3, -CN, -NC, -OCN, -SCN, -NO2, -S(O)RC, -S(O)2RC, -S(O)2OR0, -S(O)NRCRC, -S(O)2NRCRC, -OS(O)RC, -OS(O)2R0, -OS(O)2OR0, -OS(O)2NRCRC, -C(O)RC, -C(O)ORC, -C(O)NRCRC, -CN(Rf)NRcRc, -CN(OH)RC, -CN(OH)NRCRC, -OC(O)RC, -OC(O)ORC, -0C(0)NRcRc, -0CN(Rf)NRcRc, -N(Rf)C(0)Rc, -N(Rf)C(S)Rc, -N(Rf)S(O)2Rc, -N(Rf)C(0)0Rc, -N(Rf)C(0)NRcRc, -[N(Rf)C(0)]2Rc, -N[C(O)]2RC, -N[C(O)]2ORC, -[N(Rf)C(0)]20Rc and -N(Rf)CN(Rf)NRcRc; each Rc independently of one another denotes hydrogen or a group optionally substituted by one or more identical or different Rd and/or Re selected from among
Figure imgf000003_0001
C3-iocycloalkyl, C4-H eye loalkylalkyl, Co-ioaryl,
Figure imgf000003_0002
2-6 membered heteroalkyl, 3-8 membered heterocycloalkyl, 4-14 membered heterocycloalkylalkyl, 5-12 membered heteroaryl and 6-18 membered heteroarylalkyl; each Rd independently of one another denotes hydrogen or a group optionally substituted by one or more identical or different Re and/or Rf selected from among
Figure imgf000003_0003
C3-8Cycloalkyl, C4-H eye loalkylalkyl, Co-ioaryl,
Figure imgf000003_0004
2-6 membered heteroalkyl, 3-8 membered heterocycloalkyl, 4-14 membered heterocycloalkylalkyl, 5-12 membered heteroaryl and 6-18 membered heteroarylalkyl; each Re is a suitable group and each is independently selected from among =0, -0Rf, Ci-3haloalkyloxy, -OCF3, =S, -SRf, =NRf, =N0Rf, -NRfRf, halogen, -CF3, -CN, -NC,
-OCN, -SCN, -NO2, -S(O)Rf, -S(O)2Rf, -S(O)2ORf, -S(O)NRfRf, -S(O)2NRfRf, -OS(O)Rf, -OS(O)2Rf, -OS(O)2ORf, -OS(O)2NRfRf, -C(O)Rf, -C(O)ORf, -C(O)NRfRf, -CN(Rg)NRfRf, -CN(OH)Rf, -C(NOH)NRfRf, -OC(O)Rf, -OC(O)ORf, -OC(O)NRfRf, -OCN(Rg)NRfRf, -N(Rg)C(O)Rf, -N(Rg)C(S)Rf, -N(Rg)S(O)2Rf, -N(Rd)C(O)ORf, -N(Rg)C(O)NRfRf, and -N(Rg)CN(Rf)NRfRf; each Rf independently of one another denotes hydrogen or a group optionally substituted by one or more identical or different Rg selected from among Ci_6alkyl, Cβ-scycloalkyl, C4-H eye loalkylalkyl, C6-10aryl, Cy-iόarylalkyl, 2-6 membered heteroalkyl, 3-8 membered heterocycloalkyl, 4-14 membered heterocycloalkylalkyl, 5-12 membered heteroaryl and 6-18 membered heteroarylalkyl; each R8 independently of one another denotes hydrogen, Ci-6alkyl, Cβ-scycloalkyl,
C4-I i eye loalkylalkyl, Cό-ioaryl,
Figure imgf000004_0001
2-6 membered heteroalkyl, 3-8 membered heterocycloalkyl, 4-14 membered heterocycloalkyl, 5-12 membered heteroaryl and 6-18 membered heteroarylalkyl, optionally in the form of the tautomers, the racemates, the enantiomers, the diastereomers and the mixtures thereof, and optionally the pharma- cologically acceptable acid addition salts thereof, with the proviso that R2 carries at least one substituent different from halogen and the following compounds are not included: 4-[5-chloro-4-(4,5,7,8-tetrahydro-lH-imidazo[4,5-J]azepin-6-yl)-pyrimidin-2-ylamino]- Λ/,7V-dimethyl-phenylsulphonamide, (2-99) 4-[5-chloro-4-(l,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-pyrimidin-2-ylamino]-N,Λ/- dimethyl-phenylsulphonamide (2-136)
N,Λ/-dimethyl-4-[5-methyl-4-(l,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-pyrimidin-2- ylamino]-phenylsulphonamide, (2-143)
N,Λ/-dimethyl-4-[5-methyl-4-(4,5,7,8-tetrahydro-lH-imidazo[4,5-</Jazepin-6-yl)- pyrimidin-2-ylamino]-phenylsulphonamide, (2-144) 2-(4-(l-piperidinyl-methyl-)phenylamino)-4-(l,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5- yl)-5-trifluoromethyl-pyrimidine; (1-006)
2-[4-(l,2,4,5-tetrahydro-benzo[J]azepin-3-ylmethyl)-phenylamino]-4-(l,4,6,7-tetrahydro- imidazo[4,5-c]pyridin-5-yl)-5-trifluoromethyl-pyrimidine; (1-646) N,Λ/-dimethyl-4-[4-(4,5,7,8-tetrahydro-lH-imidazo[4,5-</Jazepin-6-yl)-5-trifluoromethyl- pyrimidin-2-ylamino]-phenylsulphonamide, (2-73)
N,Λ/-dimethyl-4-[4-(3,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-5-trifluoromethyl- pyrimidin-2-ylamino]-phenylsulphonamide, (1-694)
[4-(morpholin-4-sulphonyl)-phenyl]-[4-(3,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-5- trifluoromethyl-pyrimidin-2-yl]-amine, (1-695)
[5-methoxy-4-(l,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-pyrimidin-2-yl]-(4- piperidin-l-ylmethyl-phenyl)-amine, (2-139)
N ,N -dimethyl-N -(4-piperidin-l-ylmethyl-phenyl)-4-(l,4,6,7-tetrahydro-imidazo[4,5- c]pyridin-5-yl)-pyrimidine-2,5-diamine, (2-145)
[5-isopropyl-4-(l,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-pyrimidin-2-yl]-(4- piperidin- 1 -ylmethyl-phenyl)-amine, (2- 146) 2-4-(carboxy-phenylamino)-4-(l,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-5- trifluoromethyl-pyrimidine (1-017)
2-4-(2-carboxy-l-ethyl-)phenylamino)-4-(l,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)- 5 -trifluoromethyl-pyrimidine (1-023).
In one aspect the invention relates to compounds of general formula (1), wherein X denotes N.
In another aspect the invention relates to compounds of general formula (1), wherein R3 denotes a group selected from among halogen, -NRfRf, -ORf, -C(O)Rf, C1-4alkyl,
Figure imgf000005_0001
and Cβ.scycloalkyl.
In another aspect the invention relates to compounds of general formula (1), wherein R2 denotes a group selected from among phenyl and 5-12 membered heteroaryl.
In another aspect the invention relates to compounds of general formula (IA),
Figure imgf000005_0002
wherein
Q denotes 5, 6 or 7 membered heterocycloalkyl and
R2, R3 and R4 are as hereinbefore defined.
(A) Aspects relating to R1.
(Al) In one aspect the invention relates to compounds of general formula (1), wherein R1 denotes 1 ,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl.
(A2) In another aspect the invention relates to compounds of general formula (1), wherein R1 denotes 4,5,7,8-tetrahydro-lH-imidazo[4,5-J]azepin-6-yl. (B) Aspects relating to R2.
(Bl) In one aspect the invention relates to compounds of general formula (1), wherein R denotes 9 membered heteroaryl, substituted by one or more identical or different R4.
(B2) In another aspect the invention relates to compounds of general formula (1), wherein R2 denotes 9 membered heterocycloalkyl substituted by one or more identical or different R4.
(B3) In another aspect the invention relates to compounds of general formula (1), wherein R2 denotes phenyl substituted by a 5-6 membered heterocycloalkyl, which may optionally be substituted by one or more identical or different Rc and/or Rb.
(B4) In another aspect the invention relates to compounds of general formula (1), wherein R denotes phenyl substituted by -NR0R0.
(B5) In another aspect the invention relates to compounds of general formula (1), wherein R2 denotes phenyl substituted by -C(O)R0.
(B6) In another aspect the invention relates to compounds of general formula (1), wherein
R2 denotes phenyl substituted by -C(O)NR0R0. (C) Aspects relating to R3.
(Cl) In one aspect the invention relates to compounds of general formula (1), wherein R3 denotes dimethylamino.
(C2) In another aspect the invention relates to compounds of general formula (1), wherein R3 denotes methoxy. All the above mentioned aspects (Al) and (A2) for R1, (Bl) to (B6) for R2 and (Cl) and (C2) for R3 may be combined with one another as desired.
The following Table shows preferred combinations of different aspects of the compounds of formula 1 according to the invention:
Figure imgf000007_0001
In another aspect the invention relates to compounds of general formula (1) or (IA), or the pharmaceutically effective salts thereof, for use as pharmaceutical compositions.
In another aspect the invention relates to compounds of general formula (1) or (IA), or the pharmaceutically effective salts thereof, for preparing a pharmaceutical composition with an antiproliferative activity.
In another aspect the invention relates to pharmaceutical preparations containing as active substance one or more compounds of general formula (1) or (IA), or the pharmaceutically effective salts thereof optionally in combination with conventional excipients and/or carriers.
In another aspect the invention relates to the use of compounds of general formula (1) or (IA) for preparing a pharmaceutical composition for the treatment and/or prevention of cancer, infections, inflammations and autoimmune diseases.
In another aspect the invention relates to a pharmaceutical preparation comprising a compound of general formula (1) or (IA) and at least one other antiproliferative active substance, different from formula (1) or (IA), optionally in the form of the tautomers, the racemates, the enantiomers, the diastereomers and the mixtures thereof, and optionally the pharmaceutically effective salts thereof.
Definitions
As used herein, the following definitions apply, unless stated otherwise.
By alkyl substituents are meant in each case saturated, unsaturated, straight-chain or branched aliphatic hydrocarbon groups (alkyl group) and this includes both saturated alkyl groups and unsaturated alkenyl and alkynyl groups. Alkenyl substituents are in each case straight-chain or branched, unsaturated alkyl groups, which have at least one double bond. By alkynyl substituents are meant in each case straight-chain or branched, unsaturated alkyl groups, which have at least one triple bond. Heteroalkyl represents unbranched or branched aliphatic hydrocarbon chains which contain 1 to 3 heteroatoms, while each of the available carbon and heteroatoms in the heteroalkyl chain may optionally each be substituted independently and the heteroatoms independently of one another are selected from among O, N, P, PO, PO2, S, SO and SO2 (e.g. dimethylaminomethyl, dimethylaminoethyl, dimethylaminopropyl, diethylamino methyl, diethylamino ethyl, diethylaminopropyl, 2-diisopropylaminoethyl, bis- 2-methoxyethylamino, [2-(dimethylamino-ethyl)-ethyl-amino]-methyl, 3-[2- (dimethylamino-ethyl)-ethyl-amino]-propyl, hydroxymethyl, 2-hydroxyethyl, 3- hydroxypropyl, methoxy, ethoxy, propoxy, methoxymethyl, 2-methoxyethyl).
Haloalkyl refers to alkyl groups wherein one or more hydrogen atoms are replaced by halogen atoms. Haloalkyl includes both saturated alkyl groups and unsaturated alkenyl and alkynyl groups, such as for example -CF3, -CHF2, -CH2F, -CF2CF3, -CHFCF3, -CH2CF3, - CF2CH3, -CHFCH3, -CF2CF2CF3, -CF2CH2CH3, -CF=CF2, -CCl=CH2, -CBr=CH2, -CI=CH2, -C=C-CF3, -CHFCH2CH3 and -CHFCH2CF3. Halogen refers to fluorine, chlorine, bromine and/or iodine atoms.
By cycloalkyl is meant a mono- or polycyclic ring, wherein the ring system may be a saturated ring but also an unsaturated, non-aromatic ring or a spiro compound, which may optionally also contain double bonds, such as for example cyclopropyl, cyclopropenyl, cyclobutyl, cyclobutenyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptanyl, cycloheptenyl, norbornyl, norbornenyl, indanyl, adamantyl, spiroheptanyl and spiro[4.2]heptanyl.
Cycloalkylalkyl includes a non-cyclic alkyl as hereinbefore defined wherein a hydrogen atom bound to a carbon atom is replaced by a cycloalkyl group.
Aryl relates to monocyclic or bicyclic rings with 6 - 12 carbon atoms such as for example phenyl and naphthyl. Arylalkyl includes a non-cyclic alkyl group wherein a hydrogen atom bound to a carbon atom is replaced by an aryl group.
By heteroaryl are meant mono- or polycyclic rings which contain, instead of one or more carbon atoms, one or more heteroatoms, which may be identical or different, such as e.g. nitrogen, sulphur or oxygen atoms. Examples include furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl, oxadiazolyl, thiadiazolyl, pyridyl, pyrimidyl, pyridazinyl, pyrazinyl and triazinyl. Examples of bicyclic heteroaryl groups are indolyl, isoindolyl, benzofuranyl, benzothienyl, benzoxazolyl, benzothiazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolyl, indazolyl, isoquinolinyl, quinolinyl, quinoxalinyl, cinnolinyl, phthalazinyl, quinazolinyl and benzotriazinyl, indolizinyl, oxazolopyridinyl, imidazopyridinyl, naphthyridinyl, indolinyl, isochromanyl, chromanyl, tetrahydroisoquinolinyl, isoindolinyl, isobenzotetrahydrofuranyl, isobenzotetrahydrothienyl, isobenzothienyl, benzoxazolyl, pyridopyridinyl, benzotetrahydrofuranyl, benzotetrahydrothienyl, purinyl, benzodioxolyl, triazinyl, phenoxazinyl, phenothiazinyl, pteridinyl, benzothiazolyl, imidazopyridinyl, imidazothiazolyl, dihydrobenzisoxazinyl, benzisoxazinyl, benzoxazinyl, dihydrobenzisothiazinyl, benzopyranyl, benzothiopyranyl, coumarinyl, isocoumarinyl, chromonyl, chromanonyl, pyridinyl-N-oxide tetrahydroquinolinyl, dihydroquinolinyl, dihydroquinolinonyl, dihydroisoquinolinonyl, dihydrocoumarinyl, dihydro isocoumarinyl, isoindolinonyl, benzodioxanyl, benzoxazolinonyl, pyrrolyWV-oxide, pyrimidinyl-N-oxide, pyridazinyl-7V-oxide, pyrazinyl-N-oxide, quinolinyl-N-oxide, indolyl-N-oxide, indolinyl-N- oxide, isoquinolyl-7V-oxide, quinazolinyl-N-oxide, quinoxalinyl-N-oxide, phthalazinyl-N- oxide, imidazolyl-7V-oxide, isoxazolyWV-oxide, oxazolyWV-oxide, thiazolyl-N-oxide, indolizinyl-7V-oxide, indazolyl-N-oxide, benzothiazolyl-N-oxide, benzimidazolyl-N-oxide, pyrrolyl-N-oxide, oxadiazolyl-N-oxide, thiadiazolyl-N-oxide, triazolyl-N-oxide, tetrazolyl- N-oxide, benzothiopyranyl-^-oxide and benzothiopyranyl-^^-dioxide.
Heteroarylalkyl encompasses a non-cyclic alkyl wherein a hydrogen atom bound to a carbon atom is replaced by a heteroaryl group. Heterocycloalkyl relates to saturated or unsaturated, non-aromatic mono-, polycyclic or bridged polycyclic rings or spiro compounds comprising 3 - 12 carbon atoms, which carry heteroatoms, such as nitrogen, oxygen or sulphur, instead of one or more carbon atoms. Examples of such heterocyclyl groups are tetrahydrofuranyl, pyrrolidinyl, pyrrolinyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperidinyl, piperazinyl, indolinyl, isoindolinyl, morpholinyl, thiomorpholinyl, homomorpholinyl, homopiperidinyl, homopiperazinyl, ho mo thiomorpholinyl, thiomorpholinyl-S-oxide, thiomorpholinyl-^^- dioxide, tetrahydropyranyl, tetrahydrothienyl, homothiomorpholinyl-^^-dioxide, oxazolidinonyl, dihydropyrazolyl, dihydropyrrolyl, dihydropyrazinyl, dihydropyridinyl, dihydropyrimidinyl, dihydrofuryl, dihydropyranyl, tetrahydrothienyl-S-oxide, tetrahydrothienyl-^^-dioxide, homothiomorpholinyl-S-oxide, 2-oxa-5- azabicyclo[2.2.1]heptane, 8-oxa-3-aza-bicyclo[3.2.1]octane, 3,8- diaza-bicyclo[3.2.1]octane, 2,5-diaza-bicyclo[2,2,l]heptane, 3,8- diaza-bicyclo[3.2.1]octane, 3,9-diaza-bicyclo[4.2.1]nonane and 2,6-diaza- bicyclo[3.2.2]nonane.
Heterocycloalkylalkyl relates to a non-cyclic alkyl group wherein a hydrogen atom bound to a carbon atom is replaced by a heterocycloalkyl group.
By the word "substituted" is meant that a hydrogen atom which is bound directly to the atom in question is replaced by a different atom or a different atomic group. Bivalent substituents such as =0, =S, =NR, =NOR, =NNRR, =NN(R)C (O)NRR, =N2 and others demand substitution by two hydrogen atoms which are bound directly to the atom in question. Accordingly, bivalent substituents of this kind may not be substituents in aromatic systems. List of abbreviations
Figure imgf000012_0002
Preparation of the compounds according to the invention:
The compounds according to the invention may be prepared according to the methods of synthesis described hereinafter, wherein the substituents of general formulae (I to XIV) have the meanings given hereinbefore.
Method Step 1 The preparation of the intermediate compound III is carried out by substitution of a leaving group (LG), for example halogen, SCN or methoxy, preferably chlorine, in a heteroaromatic system I by a nucleophile II.
Scheme 1 1
Figure imgf000012_0001
II III 1 equivalent of compound I and 1 - 1.5 equivalents of compound II are stirred in a solvent, for example 1,4-dioxane, THF, DMF, DMA or 2-butanol. At a temperature of 15 - 25°C
2 - 2.5 equivalents of a base, for example potassium carbonate, sodium carbonate, caesium carbonate, ethyldiispropylamine or triethylamine, are added. The reaction mixture is stirred for a further 12 - 72 h at a temperature of 15 - 500C. Then the solvent is distilled off and the residue is purified by chromatography.
Step 2
The preparation of the end compound V is carried out by substitution of a leaving group LG, for example halogen, SCN or methoxy, preferably chlorine, in a heteroaromatic system III by a nucleophile IV.
Scheme 2
Figure imgf000013_0001
in iv v 1 equivalent of the compound III and 1 - 3 equivalents of the compound IV are stirred in a solvent, for example 1,4-dioxane, DMF, DMA, 7V-methyl-2-pyrrolidinone or water. At a temperature of 15 - 400C 1 - 2 equivalents of an inorganic acid, for example sulphuric acid or hydrochloric acid, are added. The reaction mixture is stirred for a further 12 - 72 h at a temperature of 20 - 1000C. Then the solvent is distilled off and the residue is purified by chromatography.
Step 3A
For groups R2 which contain, in addition to the N atom mentioned above, another N atom, a carbonyl group, a halogen atom or another functional group, there is the possibility of further derivatisation to obtain the product VIII. For example it is possible to react molecules which have a further N atom with a reactant having a carbonyl group (VII). Scheme 3A
Figure imgf000014_0001
VI VII VIII
1 equivalent of the compound VI and 1 - 2 equivalents of the compound VII are stirred in a solvent, for example methanol or DMA. At a temperature of 15 - 25°C, 2 - 5 equivalents of a reducing agent, for example sodium triacetoxyboro hydride or sodium cyanoboro hydride, are added. The reaction mixture is stirred for a further 0.5 - 18 h at a temperature of 15 - 25°C, then combined with water, which has been adjusted to a pH of 8 to 9 with an inorganic base, for example sodium hydrogen carbonate, potassium carbonate or sodium hydroxide. This mixture is extracted two to three times with an organic solvent, for example diethyl ether, ethyl acetate or dichloromethane. The combined organic extracts are dried and the solvent is distilled off. The residue is purified by chromatography or repeated crystallisation.
Step 3B In addition, molecules with a carbonyl group may be reacted with an amine.
Scheme 3B
Figure imgf000014_0002
ix x xi
1 equivalent of the compound IX and 1 - 2 equivalents of the compound X are stirred in a solvent, for example methanol or DMA. At a temperature of 15 - 25°C, 2 - 5 equivalents of a reducing agent, for example sodium triacetoxyboro hydride or sodium cyanoboro hydride, are added. The reaction mixture is stirred for a further 0.5 - 18 h at a temperature of 15 - 25°C, then combined with water, which has been adjusted to a pH of 8 to 9 with an inorganic base, for example sodium hydrogen carbonate, potassium carbonate or sodium hydroxide. This mixture is extracted two to three times with an organic solvent, for example diethyl ether, ethyl acetate or dichloromethane. The combined organic extracts are dried and the solvent is distilled off. The residue is purified by chromatography or repeated crystallisation.
Step 3C
Molecules with an additional N atom may be reacted with an alkyl halide (alkyl-Hal).
Scheme 3C
a
Figure imgf000015_0001
R
Vl XII XIII 1 equivalent of the compound VI and 1 - 10 equivalents of the compound XII are stirred in a solvent, for example 1,4-dioxane, THF, DMF or acetonitrile. At a temperature of 15 - 25°C, 2 - 2.5 equivalents of a base, for example potassium carbonate, sodium carbonate, caesium carbonate, ethyldiispropylamine or triethylamine, are added. The reaction mixture is stirred for a further 12 - 72 h at a temperature of 15 - 25°C, then combined with water, which has been adjusted to a pH of 8 - 9 with an inorganic base, for example sodium hydrogen carbonate or potassium carbonate. This mixture is extracted two to three times with an organic solvent, for example diethyl ether, ethyl acetate or dichloromethane. The combined organic extracts are dried and the solvent is distilled off. The residue is purified by chromatography or repeated crystallisation. Step 3D
Molecules that have a carboxyl group may be reacted with an amine. If the carboxyl group is present in a protected form it is converted into the deprotected compound beforehand by hydrolysis or similar methods known to the skilled man.
Scheme 3D
Figure imgf000016_0001
XIV X XV
1 equivalent of the compound XIV, 1 - 1.5 equivalents of the compound X and 1 - 3 equivalents of a base, for example triethylamine or ethyldiisopropylamine, are stirred in a solvent, for example 1,4-dioxane, DMF, DMA or 7V-methyl-2-pyrrolidinone. At a temperature of 15 - 25°C, 1 - 1.5 equivalents of a coupling reagent, for example N, N- dicyclohexylcarbodiimide, 7V,7V-diisopropylcarbodiimide, O-(benzotriazol- 1 -yϊ)-N,N,N',N'- tetramethyluronium-tetrafluoroborate, 1 -(3 -N,7V-dimethylaminopropyl)-3 - ethylcarbodiimide or O-(7-azabenzotriazol- 1 -yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate, are added. The reaction mixture is stirred for a further 4 - 24 h at a temperature of 15 - 25°C. Then the solvent is distilled off and the residue is purified by chromatography.
Chromatography For the preparative medium pressure chromatography (MPLC) silica gel obtained from
Millipore (Granula Silica Si-60A 35-70 μm) or C-18 RP silica gel obtained from Macherey
Nagel (Polygoprep 100-50 C 18) is used.
For the high pressure chromatography, columns made by Waters (XTerra Prep. MS C 18,
5 μM, 30*100 mm, Symmetrie C 18, 5 μm, 19*100 mm or XBridge C 18, 5 μm, 19*100) are used. Mass spectroscopy / UV-spectrometer:
These data are produced using an HPLC-MS apparatus (high performance liquid chromatography with mass detector) made by Agilent.
The apparatus is constructed so that the chromatography (column: Zorbax SB-C8, 3.5 μm, 2.1*50, Agilent) is followed by a diode array detector (G1315B made by Agilent) and a mass detector (1100 LS-MSD SL; G1946D; Agilent) connected in series. This apparatus is operated with a flow of 0.6 mL/min. For a separation process a gradient is run through within 3.5 min (gradient at the start: 95% water and 5% acetonitrile, gradient at the finish: 5% water and 95% acetonitrile; as buffer, either 0.1% formic acid is added to both solvents, or 5 mM ammonium hydrogen carbonate and 19 mM ammonia are added to the water).
Starting materials
Where the preparation of the starting compounds has not been described, these are commercially obtainable, known from the literature or are easily obtained by the skilled man using general methods.
(2,4-dichloro-pyrimidin-5-yl)-dimethyl-amine and derivatives (O'Brien, Darrell E. et al., J. Med. Chem (1966), 9, 121) 4,5,6,7-tetrahydro-lH-imidazo[4,5-c] pyridine (T. Vitali et al., Farmacao, Ed. Sci.20, 636 (1969)) l-methyl-4,5,6,7-tetrahydro-lH-imidazo[4,5-c]pyridine (R. Jain, L.A. Cohen, Tetrahedron, 52 (15) 5363 (1996) or T. Vitali et al., Farmacao, Ed. Sci.20, 636 (1969)) 3-methyl-4,5,6,7-tetrahydro-lH-imidazo[4,5-c] pyridine (G. Durant et. al, J. Med. Chem. (1976), 19, 923 or T. Vitali et al., Farmacao, Ed. Sci.20, 636 (1969)) 4,5,6,7-tetrahydro-lΗ-imidazo [4,5-d]-azepine (WO 03/032997)
2-methyl-4,5,6,7-tetrahydro-lH-imidazo [4,5-d]-azepine (WO 03/032997) 2-thiomethyl-4,5,6,7-tetrahydro-lH-imidazo [4,5-d]-azepine (analogously to 2- methyl- 4,5,6,7-tetrahydro-lH-imidazo [4,5-d]-azepine with S-methylthiourea) JV-(3-aminophenyl)pyrrolidine-l-carboxamide (WO 2004/048343) 4-morpholin-4-yl-cyclohexylamine and 4-morpholin-4-yl-cyclobutylamine (WO 2006/021544) 2-thiomethyl-4,5,6,7-tetrahydro-lH-imidazo [4,5-d]-azepine (analogously to 2-methyl- 4,5,6,7-tetrahydro-lH-imidazol[4,5-d]-azepine with S-methylthiourea) Aminobenzylamines are commercially obtainable, may be prepared analogously to Monatsh. Chem. (1969), 100(4) or by corresponding methods known to the skilled man. Aminobenzimidazoles are commercially obtainable, may be prepared analogously to
Olguin, Luis F.; Synlett (2005), (2), 340-342, Bapat; Shirsat , Indian J. Chem.; 3; 1965; 81, Ainsworth, D. P.; Suschitzky, H. J. Chem. Soc, Org. (1966), (1), 111-13 or by corresponding methods known to the skilled man. 4-aminoanilines are commercially obtainable, may be prepared analogously to WO 2006/021548 or by corresponding methods known to the skilled man. l-methyl-4-piperazin-l-yl-lH-pyridin-2-one may be obtained for example by methylation of 4-benzyloxy-lH-pyridin-2-one and subsequent debenzylation (Gwaltney, S. L. et al, Bioorganic & Medicinal Chemistry Letters (2001), 11(7), 871-874) and reaction with Bocpiperazine (in toluene, 1200C, water separator) with subsequent deprotection or by similar methods known to the skilled man.
Method 1
4-methyl-4,5,6,7-tetrahydro-lH-imidazo[4,5-c]pyridine
Figure imgf000018_0001
1.5 g Histamine (x 2 HCl) are dissolved in 100 mL phosphate buffer (pH 7) and combined with 1.6 mL acetaldehyde. The pH of the reaction solution is adjusted to 8 by the addition of 1 N NaOH and the reaction solution is stirred for 5 days at 37°C. Then the pH is adjusted to 12 by the further addition of 1 N NaOH, the solvent is eliminated in vacuo, the residue is suspended in ethanol and filtered to remove any undissolved constituents. After elimination of the ethanol in vacuo a crude product remains, which is further used directly for the following reactions. Yield: 1.62 g MS: 138 (M+H)+ 4-ethyl-4,5,6,7-tetrahydro-lH-imidazo[4,5-c]pyridine is prepared analogously to 4-methyl- 4,5,6,7-tetrahydro-lH-imidazo[4,5-c]pyridine using 2.2 mL propionaldehyde.
Figure imgf000019_0001
Yield: 1.8 g MS: 152 (M+H)+
Method 2
(R)-6-methyl-4,5,6,7-tetrahydro-lH-imidazo[4,5-c]pyridine
Figure imgf000019_0002
a) (S)-l-bromomethyl-2-(3H-imidazol-4-yl)-ethylamine
900 mg (S)-histidinol (x 2 HCl) are dissolved in 20 mL HBr in acetic acid (32%) and heated to 1100C in the microwave for 6 h. The solvent is eliminated in vacuo, the residue is dissolved in ethanol and again freed from the solvent in vacuo. This crude product is used in the next reaction step without further purification. Yield: 1.5 g
MS: 204/206 (M+H)+ b) (R)-2-(3H-imidazol-4-yl)- 1 -methyl-ethylamine
1.5 g (S)-l-bromomethyl-2-(3H-imidazol-4-yl)-ethylamine and 1.87 g sodium acetate are dissolved in 94 mL acetic acid (10%). After the addition of 400 mg palladium/C the suspension is shaken under 3.5 bar H2 pressure at RT for about 60 h. After the catalyst has been filtered off the solvent is eliminated in vacuo and the crude product is used without further purification in the following reaction step. c) (R)-6-methyl-4,5,6,7-tetrahydro-lH-imidazo[4,5-c]pyridine
0.5 g (R)-2-(3H-imidazol-4-yl)-l -methyl-ethylamine are dissolved in 50 mL phosphate buffer (pH 7) and combined with 1.35 mL formaldehyde. The pH is adjusted to 8 by the addition of 1 N NaOH and the reaction solution is stirred for 12 h at 37°C. Then by the further addition of 1 N NaOH the pH is adjusted to 12, the solvent is eliminated in vacuo, the residue is suspended in ethanol and filtered to remove any undissolved constituents. After elimination of the ethanol in vacuo a crude product is left which is further used directly for the following reactions.
(S)-6-methyl-4,5,6,7-tetrahydro-lH-imidazo[4,5-c]pyridine is prepared analogously to (R)-6-methyl-4,5,6,7-tetrahydro-lH-imidazo[4,5-c]pyridine using 900 mg (R)-histidinol (x 2 HCl).
Figure imgf000020_0001
Method 3 7-methyl-3a.4,5,6,7.7a-hexahydro-lH-imidazo[4,5-c]pyridine
Figure imgf000020_0002
a) ( 1 -trityl- 1 H-imidazo l-4-yl)-acetonitrile
2.5 g (l//-imidazol-4-yl)-acetonitrile are dissolved in 20 mL DMF. After the addition of
3.6 mL triethylamine and 7.25 g chlorotriphenylmethane the suspension is left for 60 h at RT with stirring. Water and ethyl acetate are added, the organic phase is separated off, dried with MgSO4 and the solvent is eliminated in vacuo. Yield: 8.15 g MS: 243 (CPh3 +) b) 2-(l -trityl- IH- imidazol-4-yl)-propionitrile 9.2 g (1 -trityl- IH- imidazol-4-yl)-acetonitrile are dissolved in 120 mL THF, the solution is cooled to -5°C and 1.8 mL methyl iodide and 1.08 g sodium hydride (60%) are added. The suspension is stirred for 12 h at RT and then applied directly to RP gel and purified by RP chromatography (C18, 10/90 to 90/10 acetonitrile/water in 15 min - 0.2 % formic acid is added to both solvents). Yield: 3.23 g
MS: 243 (CPh3 +) c) 2-(l-trityl-lH-imidazol-4-yl)-propylamine 3.2 g 2-(l-trityl-lH-imidazol-4-yl)-propionitrile are dissolved in 150 mL methanolic ammonia (7 mol/L) and Raney nickel is added. After 12 h and 4 bar H2 pressure the catalyst is filtered off and the solvent is eliminated in vacuo. This crude product is used in the following reaction step without further purification. Yield: 3.2 g
MS: 243 (CPh3 +) d) 7-methyl-3a.4,5,6,7.7a-hexahydro-lH-imidazo[4,5-c]pyridine
3.2 g 2-(l-trityl-lH-imidazol-4-yl)-propylamine is suspended in aqueous HCl (1 N). After the addition of 2.9 mL formaldehyde the mixture is heated to 95°C with stirring. After 5 h it is cooled to RT, suction filtered to remove the precipitate formed and the solvent is eliminated in vacuo. This crude product is used in the following reaction step without further purification. Yield: 2.47 g MS: 138 (M+H)+
Example 1
2-(4-piperazin-l-yl-phenylamino)-4-(3,4,6,7-tetrahydro-imidazor4,5-clpyridin-5-yl)-5- methoxy-pyrimidine
Figure imgf000021_0001
a) benzyl 4-(4-nitro-phenyl)-piperazine-l-carboxylate
3.76 mL 4-fluoronitrobenzene are dissolved in 40 mL DMA and combined with 9.25 mL 7V-ethyldiisopropylamine and 7.6 mL l-(benzyloxycarbonyl)-piperazine. The reaction mixture is stirred for 18 h at 800C. Then the solvent is eliminated in vacuo and the crude product is purified by chromatography. The carrier material used is silica gel and the eluant is a mixture consisting of cyclohexane/ethyl acetate (50/50). Yield: 11.28 g MS (ESI): 342 (M+H)+ b) benzyl 4-(4-amino-phenyl)-piperazine-l-carboxylate
11.28 g benzyl 4-(4-nitro-phenyl)-piperazine-l-carboxylate are dissolved in 500 mL MeOH and combined with 1 g Raney nickel. The mixture is hydrogenated for 18 h at 5 bar H2 pressure. Then the mixture is filtered to remove the catalyst, 70 mL of 1 N aqueous hydrochloric acid are added and the solvent is eliminated in vacuo. Yield: 10.89 g MS (ESI): 312 (M+H)+ c) 2-chloro-4-(3,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-5-methoxy-pyrimidine
1 g 2,4-dichloro-5-methoxy-pyrimidine are dissolved in 4 mL butanol and combined with 1.04 g 4,5,6,7-tetrahydroimidazopyridine dihydrochloride and 2.96 mL ethyldiispropylamine. This mixture is stirred for 16 h at 500C and then the solvent is eliminated in vacuo. The crude mixture is purified by column chromatography. The carrier material used is C18-RP-silica gel and a gradient is run through which consists at the starting point of 95% water and 5% acetonitrile and at the finishing point of 70% water and 30% acetonitrile. 0.2 % formic acid is added to both eluants. The suitable fractions are freeze-dried. Yield: 0.47 g
MS (ESI): 266 (M+H)+ d) 2-(4-piperazin-l-yl-phenylamino)-4-(3,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-5- methoxy-pyrimidine
100 mg 2-chloro-4-(3,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-5-methoxy-pyrimidine are suspended in 0.26 mL 1,4-dioxane and 40 μL water and combined with 196 mg benzyl 4-(4-amino-phenyl)-piperazine-l-carboxylate hydrochloride (prepared according to Method 4). This mixture is heated to 95°C and stirred for 20 h at this temperature. The suspension obtained is diluted with DMF and then purified by column chromatography. The carrier material used is C18-RP-silica gel and a gradient is run through which consists at the starting point of 95% water and 5% acetonitrile and at the finishing point of 70% water and 30% acetonitrile. 0.2 % formic acid is added to both eluants. The suitable fractions are freeze-dried. 140 mg of the intermediate product thus obtained are combined with 15 mL DMF, 8 mL water and 30 mg palladium hydroxide and hydrogenated for 2 h at 7 bar H2 pressure. The catalyst is filtered off and the solvent is eliminated in vacuo. Yield: 0.47 g
UV max: 282 nM MS (ESI): 407 (M+H)+
Example 2 - 52
The following compounds are prepared by a process analogous to that described in Example 1. The preparation of 2-chloro-4-(3,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)- 5-dimethylamino-pyrimidine is described in Example 63.
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
Example 53
2-[4-(4-isopropyl)-(piperazin-l-yl-phenylamino)-4-(3,4,6,7-tetrahydro-imidazo[4,5- clpyridin-5-yl)-5-methoxy-pyrimidine
Figure imgf000028_0002
30 mg 2-(4-piperazin-l-yl-phenylamino)-4-(3,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5- yl)-5-methoxy-pyrimidine (see Example 1) are dissolved in 0.2 mL DMF. After the addition of 2 μL glacial acetic acid, 11 μL acetone and 78 mg sodium triacetoxyborohydride the suspension is stirred for 3 h at RT. After the addition of 100 μL water the reaction solution is purified by chromatography. The carrier material used is C18-RP-silica gel and a gradient is run through which consists at the starting point of 85% water and 15% acetonitrile and at the finishing point of 5% water and 95% acetonitrile. 0.2% NH3/KHCO3 is added to both eluants. The suitable fractions are freeze-dried. Yield: 22 mg
UV max: 282 nM MS (ESI): 449 (M+H)+
Example 54 - 62
The following compounds are prepared by a process analogous to that described in Example 53. The preparation of 2-chloro-4-(3,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5- yl)-5-dimethylamino-pyrimidine is described in Example 63.
Figure imgf000029_0001
Figure imgf000029_0002
Figure imgf000030_0002
Example 63
2-(4-dimethylaminomethyl-phenylamino)-4-(3,4,6,7-tetrahydro-imidazo[4,5-clpyridin-5- yl)-5-dimethylamino-pyrimidine
Figure imgf000030_0001
a) 2-chloro-4-(3,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-5-dimethylamino-pyrimidine 5 g of 2,4-dichloro-5-dimethylamino-pyrimidine are dissolved in 30 mL isopropanol and combined with 5.82 g 4,5,6,7-tetrahydroimidazopyridine dihydrochloride and 6.06 g potassium carbonate. After 6 and 8 days in each case 1 g of 4, 5,6, 7- tetrahydroimidazopyridine dihydrochloride and 1 g potassium carbonate are added. In all, the mixture is stirred for 10 days at 250C. The reaction mixture is diluted with 400 mL water and stirred for 1 h. The precipitate formed is suction filtered, washed and dried. Yield: 6.24 g
MS (ESI): 279 (M+H)+ b) 2-(4-dimethylaminomethyl-phenylamino)-4-(3,4,6,7-tetrahydro-imidazo[4,5-c]pyridin- 5 -yl)-5 -dimethylamino-pyrimidine 50 mg 2-chloro-4-(3,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-5-dimethylamino- pyrimidine are suspended in 60 μL of 1,4-dioxane, 20 μL water and 90 μL of a 5 M hydrochloric acid (in 1,4-dioxane) and mixed with 55 mg 4-dimethylaminomethyl- phenylamine. This mixture is heated to 95°C and stirred for 20 h at this temperature. The suspension obtained is diluted with DMF and then purified by column chromatography. The carrier material used is C18-RP-silica gel and a gradient is run through which consists at the starting point of 95% water (10 mM ammonium hydrogen carbonate and 38 mM ammonia) and 5% acetonitrile and at the finishing point of 50% water and 50% acetonitrile. The fractions are freeze-dried. The residue is taken up in acetonitrile, combined with aqueous hydrochloric acid and freeze-dried once more. Yield: 8 mg
UV max: 290 nM MS (ESI): 393 (M+H)+
Example 64 - 191 The following compounds are prepared by a process analogous to that described in Example 63.
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000033_0001
Figure imgf000034_0001
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000037_0001
Figure imgf000038_0001
Figure imgf000039_0001
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000044_0002
Example 192
2-r4-(2-pyrrolidin-l-yl-ethylcarbamoyl)-phenylaminol-4-(3,4,6,7-tetrahydro-imidazor4,5- clpyridin-5-yl)-5-dimethylamino-pyrimidine
Figure imgf000044_0001
35 mg 2-(4-carboxy-phenylamino)-4-(3,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-5- dimethylamino-pyrimidine (prepared analogously to Example 63) is dissolved in 0.2 mL DMF, and combined with 64 μL triethylamine, 33 mg O-(benzotriazol-l-yl)-Λ/,Λ/,N',N'- tetramethyluronium-tetrafluoroborate and l-(2-aminoethyl)-pyrrolidine. After being stirred for 15 h at RT the reaction solution is purified by column chromatography. The carrier material used is C18-RP-silica gel and a gradient is run through which consists at the starting point of 80% water (10 mM ammonium hydrogen carbonate and 38 mM ammonia) and 20% acetonitrile and at the finishing point of 35% water and 65% acetonitrile. Fractions are freeze-dried. The residue is taken up in acetonitrile, combined with aqueous hydrochloric acid and freeze-dried again. Yield: 40 mg
UV max: 315 nM
MS (ESI): 476 (M+H)+ Example 193 - 232
The following compounds are prepared by a process analogous to that described in Example 192. The acid component for Examples 228 to 232 may be obtained by saponification of the methyl ester (see Example 14).
Figure imgf000045_0001
Figure imgf000045_0002
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000049_0002
Example 233
2-(3-(4-cvanomethyl-piperazin-l-yl)-phenylamino)-4-(3,4,6,7-tetrahydro-imidazor4,5- clpyridin-5-yl)-5-dimethylamino-pyrimidine
Figure imgf000049_0001
45 mg 2-(3-piperazin-l-yl-phenylamino)-4-(3,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5- yl)-5-methoxy-pyrimidine (prepared analogously to Example 1) is dissolved in 0.5 mL DMA and combined with 6.8 μL chloroacetonitrile and 15.2 mg potassium carbonate 33 mg. After being stirred for 15 h at RT the reaction solution is purified by column chromatography. The carrier material used is C18-RP-silica gel and a gradient is run through which consists at the starting point of 80% water (10 mM ammonium hydrogen carbonate and 20 mM ammonia) and 20% acetonitrile and at the finishing point of 35% water and 65% acetonitrile. The appropriate fractions are freeze-dried. The residue is taken up in acetonitrile, combined with aqueous hydrochloric acid and freeze-dried once again. Yield: 17.5 mg
UV max: 244 nM MS (ESI): 459 (M+H)+ Examples 234 - 236
The following compounds are prepared by a process analogous to that described in Example 233. The corresponding amines are described in the literature or are commercially obtainable.
Figure imgf000050_0001
Figure imgf000050_0003
Example 237 2-[4-(furan-3-yl)-phenylaminol-4-(3,4,6,7-tetrahydro-imidazo[4,5-clpyridin-5-yl)-5- dimethylamino -p yrimidine
Figure imgf000050_0002
a) 4-furan-3 -yl- 1 -nitrobenzene
200 mg 4-bromonitrobenzene, 110.8 mg furan-3 -boric acid and 162 mg palladium/C are dissolved in 3 mL 1,4-dioxane. Then 965.3 mg caesium carbonate (dissolved in
586 μL water) are added. The reaction is completed in the microwave (1100C) after 100 min. After aqueous working up the mixture is extracted with ethyl acetate and died on magnesium sulphate. The solvent is eliminated in vacuo. This crude product is used in the following reaction without further purification. b) 4-furan-3-yl-phenylamine 277 mg 4-furan-3-yl-l -nitrobenzene are dissolved in 40 ml of methanol and combined with 200 mg palladium/C. The suspension is shaken at 25°C for 60 h under a H2 pressure of 5 bar. Then the solvent is eliminated in vacuo. The crude mixture is purified by column chromatography. The carrier material used is silica gel and the mobile phase used is a solvent mixture of cyclohexane/ ethyl acetate 50/50. The suitable fractions are freed from the solvent in vacuo. Yield: 82 mg
MS (ESI): 160 (M+H)+ c) 2-[4-(furan-3-yl)-phenylamino]-4-(3,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-5- dimethy lamino -pyrimidine This compound is prepared analogously to Example 63 using 4-furan-3-yl-phenylamine instead of 4-dimethylaminomethyl-phenylamine.
Yield: 40 mg
UV max: 302 nM
MS (ESI): 402 (M+H)+
Example 238 - 243
The following compounds are prepared by a process analogous to that described in Example 237. The corresponding amines are described in the literature or are commercially obtainable.
Figure imgf000051_0001
Figure imgf000052_0001
The following Examples describe the biological activity of the compounds according to the invention without restricting the invention to these Examples.
The effect of the compounds according to the invention on various kinases, for example on serine-threonine kinase PDKl, is determined in in vitro kinase assays with recombinantly prepared protein. The compounds in this assay exhibit good to very good activity, i.e. for example an IC50 value of less than 1 μmol/L, generally less than 0.1 μmol/L. Example PDKl Kinase Assay
Recombinant human PDKl enzyme (aa 52-556) attached to HiS6 at its N-terminal end is isolated from Baculovirus-infected insect cells. Purified enzyme may also be obtained for example through Upstate. The following components are combined in a well of a 96-well round-bottomed plate (Greiner bio-one, No. 650101):
- 7.5 μL of the compound to be tested in a variable concentration (e.g. beginning at 10 μM, and dilution in 1:5) in 3.33% DMSO (1% DMSO final concentration)/assay buffer (50 mM Tris pH 7.5, 0.05% β-mercaptoethanol, 10 mM magnesium acetate) - 7.5 μL PDKl (10 ng/well) and PDKtide
(KTFCGTPEYLAPEVRREPRILSEEEQEMFRDFDYIADWC) synthesised by Pepceuticals Limited, Nottingham, United Kingdom; 25 μM final concentration; PDKl and PDKtide are correspondingly diluted together in assay buffer; PDKtide is present in this mixture as an 83.3 μM solution) - 10 μL ATP solution (25 μM ATP with 0.5 μCi/well of gamma-P33-ATP)
The reaction is started by adding the ATP solution and incubated for 30 min at RT; at the start of the reaction the plates are shaken gently. The reaction is stopped by the addition of 5 μL/well 0.5 M phosphoric acid (H3PO4) and incubated for about 20 min at RT. The precipitate is transferred by harvesting onto filter plates (96-well microtitre filter plate: UniFilter GF/C; Perkin Elmer; No. 6005174), then washed 6 times with 50 mM H3PO4 and dried at 6O0C. Then the plate is stuck down with sealing tape, 25 μL/well of scintillation solution (Microscint 0; Perkin Elmer; No. 6013611) are added and the amount of P33 precipitated is measured using the Wallac Betacounter. The measurement data are evaluated using the Standard Graphpad software.
The antiproliferative activity of the compounds according to the invention is determined on cultivated human tumour cells, for example on PC-3 cells. The compounds exhibit good to very good activity, i.e. for example an EC50 value of less than 5 μmol/L, generally less than 1 μmol/L in the PC-3 proliferation test. Measurement of the inhibition of proliferation on cultivated human tumour cells
To measure proliferation on cultivated human tumour cells, cells of prostate carcinoma tumour cell line PC-3 (obtained from American Type Culture Collection (ATCC)) are cultivated in Ham's F 12 Medium (Gibco) and 10% foetal calf serum (Gibco) and harvested in the log growth phase. Then the PC-3 cells are placed in 96-well plates (Costar) at a density of 1000 cells per well and incubated overnight in an incubator (at 37°C and 5% CO2), while on each plate 16 wells are used as controls (8 wells with cells to which only DMSO solution has been added (should yield 30 - 50% maximum value of reduced AlamarBlue), 4 wells containing only medium (medium control, after the addition of oxidised AlamarBlue reagent the background signal is obtained) and 4 wells where again only medium is added (after the addition of reduced AlamarBlue reagent it acts as a maximum value)). The active substances are added to the cells in various concentrations (dissolved in DMSO; DMSO final concentration: 0.1% or 1%) (in each case as a double or triple measurement). After 5 days' incubation 20 μl AlamarBlue reagent (Serotec) are added to each well, and the cells are incubated for a further 5-7 hours. As a control, 20 μl reduced AlamarBlue reagent is added to each of 4 wells. After incubation the colour change of the AlamarBlue reagent in the individual wells is determined in a SpectraMax Photometer (Molecular Devices) (extinction 530 nm, emission 590 nm, 5 sec measuring time). The amount of AlamarBlue reagent reacted represents the metabolic activity of the cells. The relative cell activity is calculated in relation to the control (PC-3 cells without inhibitor) and the active substance concentration which inhibits the cell activity by 50% (EC50) is derived. The values are calculated from the average of two or three individual measurements.
The compounds according to the invention are also tested accordingly on other tumour cells. For example these compounds are effective on carcinomas of all kinds of tissue (e.g. gliomas (U87), sarcoma (e.g. MES-SA, SK-UT-IB), breast (MDA-MB468), colon (HCTl 16), lung (H460)) and could be used in indications of this kind, particularly in indications which have activating changes in the PI3K- AKT-PDKl signal pathway. This demonstrates the wide range of applications for the compounds according to the invention for the treatment of all kinds of tumour types. On the basis of their biological properties the new compounds of general formula (1) or (IA), the isomers and the physiologically acceptable salts thereof are therefore suitable for treating diseases characterised by excessive or abnormal cell proliferation.
Such diseases include for example: viral infections (e.g. HIV and Kaposi's sarcoma); inflammatory and autoimmune diseases (e.g. colitis, arthritis, Alzheimer's disease, glomerulonephritis and wound healing); bacterial, fungal and/or parasitic infections; leukaemias, lymphomas and solid tumours (e.g. carcinomas and sarcomas), skin diseases (e.g. psoriasis); diseases based on hyperplasia which are characterised by an increase in the number of cells (e.g. fibroblasts, hepatocytes, bones and bone marrow cells, cartilage or smooth muscle cells or epithelial cells (e.g. endometrial hyperplasia)); bone diseases and cardiovascular diseases (e.g. restenosis and hypertrophy).
For example, the following cancers may be treated with compounds according to the invention, without being restricted thereto: brain tumours such as for example acoustic neurinoma, astrocytomas such as pilocytic astrocytomas, fibrillary astrocytoma, protoplasmic astrocytoma, gemistocytary astrocytoma, anaplastic astrocytoma and glioblastoma, brain lymphomas, brain metastases, hypophyseal tumour such as prolactinoma, HGH (human growth hormone) producing tumour and ACTH producing tumour (adrenocorticotropic hormone), craniopharyngiomas, medulloblastomas, meningeomas and oligodendrogliomas; nerve tumours (neoplasms) such as for example tumours of the vegetative nervous system such as neuroblastoma sympathicum, ganglioneuroma, paraganglioma (pheochromocytoma, chromaffinoma) and glomus- caroticum tumour, tumours on the peripheral nervous system such as amputation neuroma, neurofibroma, neurinoma (neurilemmoma, Schwannoma) and malignant Schwannoma, as well as tumours of the central nervous system such as brain and bone marrow tumours; intestinal cancer such as for example carcinoma of the rectum, colon, anus, small intestine and duodenum; eyelid tumours such as basalioma or basal cell carcinoma; pancreatic cancer or carcinoma of the pancreas; bladder cancer or carcinoma of the bladder; lung cancer (bronchial carcinoma) such as for example small-cell bronchial carcinomas (oat cell carcinomas) and non-small cell bronchial carcinomas such as plate epithelial carcinomas, adenocarcinomas and large-cell bronchial carcinomas; breast cancer such as for example mammary carcinoma such as infiltrating ductal carcinoma, colloid carcinoma, lobular invasive carcinoma, tubular carcinoma, adenocystic carcinoma and papillary carcinoma; non-Hodgkin's lymphomas (NHL) such as for example Burkitt's lymphoma, low- malignancy non-Hodgkin's lymphomas (NHL) and mucosis fungoides; uterine cancer or endometrial carcinoma or corpus carcinoma; CUP syndrome (Cancer of Unknown Primary); ovarian cancer or ovarian carcinoma such as mucinous, endometrial or serous cancer; gall bladder cancer; bile duct cancer such as for example Klatskin tumour; testicular cancer such as for example seminomas and non-seminomas; lymphoma
(lymphosarcoma) such as for example malignant lymphoma, Hodgkin's disease, non- Hodgkin's lymphomas (NHL) such as chronic lymphatic leukaemia, leukaemic reticuloendotheliosis, immunocytoma, plasmocytoma (multiple myeloma), immunoblastoma, Burkitt's lymphoma, T-zone mycosis fungoides, large-cell anaplastic lymphoblastoma and lymphoblastoma; laryngeal cancer such as for example tumours of the vocal cords, supra-glottal, glottal and subglottal laryngeal tumours; bone cancer such as for example osteochondroma, chondroma, chondroblastoma, chondromyxoid fibroma, osteoma, osteoid osteoma, osteoblastoma, eosinophilic granuloma, giant cell tumour, chondrosarcoma, osteosarcoma, Ewing's sarcoma, reticulo-sarcoma, plasmocytoma, giant cell tumour, fibrous dysplasia, juvenile bone cysts and aneurysmatic bone cysts; head and neck tumours such as for example tumours of the lips, tongue, floor of the mouth, oral cavity, gums, palate, salivary glands, throat, nasal cavity, paranasal sinuses, larynx and middle ear; liver cancer such as for example liver cell carcinoma or hepatocellular carcinoma (HCC); leukaemias, such as for example acute leukaemias such as acute lymphatic/lymphoblastic leukaemia (ALL), acute myeloid leukaemia (AML); chronic leukaemias such as chronic lymphatic leukaemia (CLL), chronic myeloid leukaemia (CML); stomach cancer or gastric carcinoma such as for example papillary, tubular and mucinous adenocarcinoma, signet ring cell carcinoma, adenosquamous carcinoma, small- cell carcinoma and undifferentiated carcinoma; melanomas such as for example superficially spreading, nodular, lentigo-maligna and acral-lentiginous melanoma; renal cancer such as for example kidney cell carcinoma or hypernephroma or Grawitz's tumour; oesophageal cancer or carcinoma of the oesophagus; penile cancer; prostate cancer; throat cancer or carcinomas of the pharynx such as for example nasopharynx carcinomas, oropharynx carcinomas and hypopharynx carcinomas; retinoblastoma; vaginal cancer or vaginal carcinoma; plate epithelial carcinomas, adenocarcinomas, in situ carcinomas, malignant melanomas and sarcomas; thyroid carcinomas such as for example papillary, follicular and medullary thyroid carcinoma, as well as anaplastic carcinomas; spinalioma, epidormoid carcinoma and plate epithelial carcinoma of the skin; thymomas, cancer of the urethra and cancer of the vulva.
The new compounds may be used for the prevention, short-term or long-term treatment of the above-mentioned diseases, optionally also in combination with radiotherapy or other "state-of-the-art" compounds, such as e.g. cytostatic or cytotoxic substances, cell proliferation inhibitors, anti-angiogenic substances, steroids or antibodies.
The compounds of general formula (1) or (IA) may be used on their own or in combination with other active substances according to the invention, optionally also in combination with other pharmacologically active substances.
Chemotherapeutic agents which may be administered in combination with the compounds according to the invention include, without being restricted thereto, hormones, hormone analogues and antihormones (e.g. tamoxifen, toremifene, raloxifene, fulvestrant, megestrol acetate, flutamide, nilutamide, bicalutamide, aminoglutethimide, cyproterone acetate, finasteride, buserelin acetate, fludrocortisone, fiuoxymesterone, medroxyprogesterone, octreotide), aromatase inhibitors (e.g. anastrozole, letrozole, liarozole, vorozole, exemestane, atamestane), LHRH agonists and antagonists (e.g. goserelin acetate, luprolide), inhibitors of growth factors (growth factors such as for example "platelet derived growth factor" and "hepatocyte growth factor", inhibitors are for example "growth factor" antibodies, "growth factor receptor" antibodies and tyrosinekinase inhibitors, such as for example cetuximab, gefitinib, imatinib, lapatinib and trastuzumab); antimetabolites (e.g. antifolates such as methotrexate, raltitrexed, pyrimidine analogues such as 5- fluorouracil, capecitabin and gemcitabin, purine and adenosine analogues such as mercaptopurine, thioguanine, cladribine and pentostatin, cytarabine, fludarabine); antitumour antibiotics (e.g. anthracyclins such as doxorubicin, daunorubicin, epirubicin and idarubicin, mitomycin-C, bleomycin, dactinomycin, plicamycin, streptozocin); platinum derivatives (e.g. cisplatin, oxaliplatin, carboplatin); alkylation agents (e.g. estramustin, meclorethamine, melphalan, chlorambucil, busulphan, dacarbazin, cyclophosphamide, ifosfamide, temozolomide, nitrosoureas such as for example carmustin and lomustin, thiotepa); antimitotic agents (e.g. Vinca alkaloids such as for example vinblastine, vindesin, vinorelbin and vincristine; and taxanes such as paclitaxel, docetaxel); topoisomerase inhibitors (e.g. epipodophyllotoxins such as for example etoposide and etopophos, teniposide, amsacrin, topotecan, irinotecan, mitoxantron) and various chemotherapeutic agents such as amifostin, anagrelid, clodronat, filgrastin, interferon alpha, leucovorin, rituximab, procarbazine, levamisole, mesna, mitotane, pamidronate and porfimer.
Suitable preparations include for example tablets, capsules, suppositories, solutions, - particularly solutions for injection (s.c, Lv., i.m.) and infusion - elixirs, emulsions or dispersible powders. The content of the pharmaceutically active compound(s) should be in the range from 0.1 to 90 wt.-%, preferably 0.5 to 50 wt.-% of the composition as a whole, i.e. in amounts which are sufficient to achieve the dosage range specified below. The doses specified may, if necessary, be given several times a day.
Suitable tablets may be obtained, for example, by mixing the active substance(s) with known excipients, for example inert diluents such as calcium carbonate, calcium phosphate or lactose, disintegrants such as corn starch or alginic acid, binders such as starch or gelatine, lubricants such as magnesium stearate or talc and/or agents for delaying release, such as carboxymethyl cellulose, cellulose acetate phthalate, or polyvinyl acetate. The tablets may also comprise several layers.
Coated tablets may be prepared accordingly by coating cores produced analogously to the tablets with substances normally used for tablet coatings, for example collidone or shellac, gum arabic, talc, titanium dioxide or sugar. To achieve delayed release or prevent incompatibilities the core may also consist of a number of layers. Similarly the tablet coating may consist of a number of layers to achieve delayed release, possibly using the excipients mentioned above for the tablets.
Syrups or elixirs containing the active substances or combinations thereof according to the invention may additionally contain a sweetener such as saccharine, cyclamate, glycerol or sugar and a flavour enhancer, e.g. a flavouring such as vanillin or orange extract. They may also contain suspension adjuvants or thickeners such as sodium carboxymethyl cellulose, wetting agents such as, for example, condensation products of fatty alcohols with ethylene oxide, or preservatives such as p-hydroxybenzoates.
Solutions for injection and infusion are prepared in the usual way, e.g. with the addition of isotonic agents, preservatives such as p-hydroxybenzoates, or stabilisers such as alkali metal salts of ethylenediamine tetraacetic acid, optionally using emulsifiers and/or dispersants, whilst if water is used as the diluent, for example, organic solvents may optionally be used as solvating agents or dissolving aids, and transferred into injection vials or ampoules or infusion bottles.
Capsules containing one or more active substances or combinations of active substances may for example be prepared by mixing the active substances with inert carriers such as lactose or sorbitol and packing them into gelatine capsules.
Suitable suppositories may be made for example by mixing with carriers provided for this purpose, such as neutral fats or polyethyleneglycol or the derivatives thereof.
Excipients which may be used include, for example, water, pharmaceutically acceptable organic solvents such as paraffins (e.g. petroleum fractions), vegetable oils (e.g. groundnut or sesame oil), mono- or polyfunctional alcohols (e.g. ethanol or glycerol), carriers such as e.g. natural mineral powders (e.g. kaolins, clays, talc, chalk), synthetic mineral powders (e.g. highly dispersed silicic acid and silicates), sugars (e.g. cane sugar, lactose and glucose) emulsifiers (e.g. lignin, spent sulphite liquors, methylcellulose, starch and polyvinylpyrrolidone) and lubricants (e.g. magnesium stearate, talc, stearic acid and sodium lauryl sulphate).
The preparations are administered by the usual methods, preferably by oral or transdermal route, most preferably by oral route. For oral administration the tablets may, of course contain, apart from the abovementioned carriers, additives such as sodium citrate, calcium carbonate and dicalcium phosphate together with various additives such as starch, preferably potato starch, gelatine and the like. Moreover, lubricants such as magnesium stearate, sodium lauryl sulphate and talc may be used at the same time for the tabletting process. In the case of aqueous suspensions the active substances may be combined with various flavour enhancers or colourings in addition to the excipients mentioned above.
For parenteral use, solutions of the active substances with suitable liquid carriers may be used.
The dosage for intravenous use is from 1 - 1000 mg per hour, preferably between 5 and
500 mg per hour.
However, it may sometimes be necessary to depart from the amounts specified, depending on the body weight, the route of administration, the individual response to the drug, the nature of its formulation and the time or interval over which the drug is administered.
Thus, in some cases it may be sufficient to use less than the minimum dose given above, whereas in other cases the upper limit may have to be exceeded. When administering large amounts it may be advisable to divide them up into a number of smaller doses spread over the day.
The formulation examples that follow illustrate the present invention without restricting its scope: Examples of pharmaceutical formulations
A) Tablets per tablet
active substance according to formula (1) 100 mg lactose 140 mg corn starch 240 mg polyvinylpyrrolidone 15 mg magnesium stearate 5 mg ^^_
500 mg
The finely ground active substance, lactose and some of the corn starch are mixed together. The mixture is screened, then moistened with a solution of polyvinylpyrrolidone in water, kneaded, wet-granulated and dried. The granules, the remaining corn starch and the magnesium stearate are screened and mixed together. The mixture is compressed to produce tablets of suitable shape and size.
B) Tablets per tablet
active substance according to formula (1) 80 mg lactose 55 mg corn starch 190 mg microcrystalline cellulose 35 mg polyvinylpyrrolidone 15 mg sodium-carboxymethyl starch 23 mg magnesium stearate 2 mg
400 mg The finely ground active substance, some of the corn starch, lactose, microcrystalline cellulose and polyvinylpyrrolidone are mixed together, the mixture is screened and worked with the remaining corn starch and water to form a granulate which is dried and screened. The sodiumcarboxymethyl starch and the magnesium stearate are added and mixed in and the mixture is compressed to form tablets of a suitable size.
C) Ampoule solution
active substance according to formula (1) 50 mg sodium chloride 50 mg water for inj. 5 ml
The active substance is dissolved in water at its own pH or optionally at pH 5.5 to 6.5 and sodium chloride is added to make it isotonic. The solution obtained is filtered free from pyrogens and the filtrate is transferred under aseptic conditions into ampoules which are then sterilised and sealed by fusion. The ampoules contain 5 mg, 25 mg and 50 mg of active substance.

Claims

Claims
1. Compounds of general formula ( 1 ),
Figure imgf000063_0001
H%2 ( 1 )
wherein
X denotes CH or N, and
R1 denotes 8-12 membered heterocycloalkyl, optionally substituted by one or more identical or different R4, and
R2 denotes a group selected from among Cό-isaryl, 3-8 membered heterocycloalkyl and 5- 14 membered heteroaryl, substituted by one or more identical or different R4, and
R3 denotes a group selected from among halogen, -CN, -NRfRf, -ORf, -C(O)Rf, -SRf, -S(O)Rf, -S(O)2Rf, Ci-4alkyl, Ci-4haloalkyl, C3-5cycloalkyl and 3-5 membered heterocycloalkyl, and R4 denotes a group selected from among Ra, Rb and Ra substituted by one or more identical or different Rc and/or Rb; each Ra is selected independently of one another from among
Figure imgf000063_0002
C3-iocycloalkyl, C4-i6cycloalkylalkyl, Cό-ioaryl, C7-i6arylalkyl, 2-6 membered heteroalkyl, 3-8 membered heterocycloalkyl, 4-14 membered heterocycloalkylalkyl, 5-12 membered heteroaryl and 6- 18 membered heteroarylalkyl; each Rb is a suitable group and each is independently selected from among =0, -ORC, Ci-3haloalkyloxy, -OCF3, =S, -SRC, =NRC, =NORC, -NRCRC, halogen, -CF3, -CN, -NC, -OCN, -SCN, -NO2, -S(O)RC, -S(O)2RC, -S(O)2OR0, -S(O)NRCRC, -S(O)2NRCRC, -OS(O)RC, -OS(O)2R0, -OS(O)2OR0, -OS(O)2NRCRC, -C(O)RC, -C(O)ORC, -C(O)NRCRC, -CN(Rf)NRcRc, -CN(OH)RC, -CN(OH)NRCRC, -OC(O)RC, -OC(O)ORC, -0C(0)NRcRc, -0CN(Rf)NRcRc, -N(Rf)C(0)Rc, -N(Rf)C(S)Rc, -N(Rf)S(O)2Rc, -N(Rf)C(0)0Rc,
-N(Rf)C(0)NRcRc, -[N(Rf)C(0)]2Rc, -N[C(O)]2RC, -N[C(O)]2ORC, -[N(Rf)C(0)]20Rc and -N(Rf)CN(Rf)NRcRc; each Rc independently of one another denotes hydrogen or a group optionally substituted by one or more identical or different Rd and/or Re selected from among Ci_6alkyl, Cβ.iocycloalkyl, C4-I i eye loalkylalkyl, Co-ioaryl,
Figure imgf000064_0001
2-6 membered heteroalkyl, 3-8 membered heterocycloalkyl, 4-14 membered heterocycloalkylalkyl, 5-12 membered heteroaryl and 6-18 membered heteroarylalkyl; each Rd independently of one another denotes hydrogen or a group optionally substituted by one or more identical or different Re and/or Rf selected from among C1-6alkyl, C3-8cycloalkyl, Czμπcycloalkylalkyl, C6-10aiyl, Cy-iόarylalkyl, 2-6 membered heteroalkyl, 3-8 membered heterocycloalkyl, 4-14 membered heterocycloalkylalkyl, 5-12 membered heteroaryl and 6-18 membered heteroarylalkyl; each Re is a suitable group and each is independently selected from among =0, -ORf, Ci-3haloalkyloxy, -OCF3, =S, -SRf, =NRf, =N0Rf, -NRfRf, halogen, -CF3, -CN, -NC, -OCN, -SCN, -NO2, -S(O)Rf, -S(O)2Rf, -S(O)2ORf, -S(O)NRfRf, -S(O)2NRfRf, -OS(O)Rf, -OS(O)2Rf, -OS(O)2ORf, -OS(O)2NRfRf, -C(O)Rf, -C(O)ORf, -C(O)NRfRf, -CN(Rg)NRfRf, -CN(OH)Rf, -C(N0H)NRfRf, -OC(O)Rf, -OC(O)ORf, -OC(O)NRfRf, -0CN(Rg)NRfRf, -N(Rg)C(O)Rf, -N(Rg)C(S)Rf, -N(Rg)S(O)2Rf, -N(Rd)C(O)ORf, -N(Rg)C(0)NRfRf, and -N(Rg)CN(Rf)NRfRf; each Rf independently of one another denotes hydrogen or a group optionally substituted by one or more identical or different Rg selected from among Ci-6alkyl, C3-scycloalkyl, Czμπcycloalkylalkyl, Co-ioaryl,
Figure imgf000064_0002
2-6 membered heteroalkyl, 3-8 membered heterocycloalkyl, 4-14 membered heterocycloalkylalkyl, 5-12 membered heteroaryl and 6-18 membered heteroarylalkyl; each R8 independently of one another denotes hydrogen, C1-6alkyl, C3-scycloalkyl, Czμπcycloalkylalkyl, C6-10aryl, Cy-iόarylalkyl, 2-6 membered heteroalkyl, 3-8 membered heterocycloalkyl, 4-14 membered heterocycloalkyl, 5-12 membered heteroaryl and 6-18 membered heteroarylalkyl, optionally in the form of the tautomers, the racemates, the enantiomers, the diastereomers and the mixtures thereof, and optionally the pharmacologically acceptable acid addition salts thereof, with the proviso that R2 carries at least one substituent different from halogen and the following compounds are not included: 4-[5-chloro-4-(4,5,7,8-tetrahydro-lH-imidazo[4,5-J]azepin-6-yl)-pyrimidin-2-ylamino]- 7V,7V-dimethyl-phenylsulphonamide, (2-99)
4-[5-chloro-4-(l,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-pyrimidin-2-ylamino]-N,Λ/- dimethyl-phenylsulphonamide (2- 136)
^Λ/-dimethyl-4-[5-methyl-4-(l,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-pyrimidin-2- ylamino]-phenylsulphonamide, (2-143)
N,Λ/-dimethyl-4-[5-methyl-4-(4,5,7,8-tetrahydro-lH-imidazo[4,5-(/]azepin-6-yl)- pyrimidin-2-ylamino]-phenylsulphonamide, (2-144)
2-(4-(l-piperidinyl-methyl-)phenylamino)-4-(l,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5- yl)-5-trifluoromethyl-pyrimidine; (1-006) 2-[4-(l ,2,4,5-tetrahydro-benzo[J]azepin-3-ylmethyl)-phenylamino]-4-(l ,4,6,7-tetrahydro- imidazo[4,5-c]pyridin-5-yl)-5-trifluoromethyl-pyrimidine; (1-646)
N,N-dimethyl-4-[4-(4,5,7,8-tetrahydro-lH-imidazo[4,5-(/]azepin-6-yl)-5-trifluoromethyl- pyrimidin-2-ylamino]-phenylsulphonamide, (2-73)
N,Λ/-dimethyl-4-[4-(3,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-5-trifluoromethyl- pyrimidin-2-ylamino]-phenylsulphonamide, (1-694)
[4-(morpholin-4-sulphonyl)-phenyl]-[4-(3,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-5- trifluoromethyl-pyrimidin-2-yl]-amine, (1-695)
[5-methoxy-4-(l,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-pyrimidin-2-yl]-(4- piperidin- 1 -ylmethyl-phenyl)-amine, (2- 139) Λ/J,Λ/J-dimethyl-Λr--(4-piperidin-l-ylmethyl-phenyl)-4-(l,4,6,7-tetrahydro-imidazo[4,5- c]pyridin-5-yl)-pyrimidine-2,5-diamine, (2-145)
[5-isopropyl-4-(l,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-pyrimidin-2-yl]-(4- piperidin- 1 -ylmethyl-phenyl)-amine, (2- 146)
2-4-(carboxy-phenylamino)-4-(l,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-5- trifluoromethyl-pyrimidine (1-017)
2-4-(2-carboxy-l-ethyl-)phenylamino)-4-(l,4,6,7-tetrahydro-imidazo[4,5-c]pyridin-5-yl)-
5 -trifluoromethyl-pyrimidine (1-023).
2. Compounds according to claim 1, wherein X denotes N.
3. Compounds according to claim 1 or 2, wherein
R3 denotes a group selected from among halogen, -NRfRf, -ORf, -C(O)Rf, C1-4alkyl,
Figure imgf000066_0001
and C3-5Cycloalkyl.
4. Compounds according to one of claims 1 to 3, wherein
R2 denotes a group selected from among phenyl and 5-12 membered heteroaryl.
5. Compounds of general formula (IA),
Figure imgf000066_0002
wherein
Q denotes 5, 6 or 7 membered heterocycloalkyl and R2, R3 and R4 are defined as in claim 1.
6. Compounds, or the pharmaceutically effective salts thereof, according to one of claims 1 to 5 for use as pharmaceutical compositions.
7. Compounds, or the pharmaceutically effective salts thereof, according to one of claims 1 to 5 for preparing a pharmaceutical composition with an antiproliferative activity.
8. Pharmaceutical preparations, containing as active substance one or more compounds of general formula (1) or (IA) according to one of claims 1 to 5 or the pharmaceutically effective salts thereof, optionally in combination with conventional excipients and/or carriers.
9. Use of compounds of general formula (1) or (IA) according to one of claims 1 to 5, for preparing a medicament for the treatment and/or prevention of cancer, infections, inflammations and autoimmune diseases.
10. Pharmaceutical preparation comprising a compound of general formula (1) or
(IA) according to one of claims 1 to 5 and at least one other antiproliferative active substance, different from formula (1), optionally in the form of the tautomers, the racemates, the enantiomers, the diastereomers and the mixtures thereof, and optionally the pharmaceutically active salts thereof.
PCT/EP2007/056853 2006-07-06 2007-07-05 4-heter0cycl0alkylpyri(mi)dines, process for the preparation thereof and their use as medicaments WO2008003766A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/304,134 US8258129B2 (en) 2006-07-06 2007-07-05 4-heterocycloalkylpyri(mi)dines, process for the preparation thereof and their use as medicaments
JP2009517280A JP2009542604A (en) 2006-07-06 2007-07-05 4-Heterocycloalkylpyrimidines, their preparation and use as pharmaceuticals
EP07787138A EP2041132A2 (en) 2006-07-06 2007-07-05 New compounds
CA002654670A CA2654670A1 (en) 2006-07-06 2007-07-05 New compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06116748 2006-07-06
EP06116748.2 2006-07-06

Publications (2)

Publication Number Publication Date
WO2008003766A2 true WO2008003766A2 (en) 2008-01-10
WO2008003766A3 WO2008003766A3 (en) 2008-02-28

Family

ID=37801393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/056853 WO2008003766A2 (en) 2006-07-06 2007-07-05 4-heter0cycl0alkylpyri(mi)dines, process for the preparation thereof and their use as medicaments

Country Status (5)

Country Link
US (1) US8258129B2 (en)
EP (1) EP2041132A2 (en)
JP (1) JP2009542604A (en)
CA (1) CA2654670A1 (en)
WO (1) WO2008003766A2 (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009103032A1 (en) * 2008-02-15 2009-08-20 Rigel Pharmaceuticals, Inc. Pyrimidine-2-amine compounds and their use as inhibitors of jak kinases
WO2009122180A1 (en) * 2008-04-02 2009-10-08 Medical Research Council Pyrimidine derivatives capable of inhibiting one or more kinases
WO2010007114A2 (en) * 2008-07-16 2010-01-21 Boehringer Ingelheim International Gmbh New chemical compounds
WO2011018517A1 (en) 2009-08-14 2011-02-17 Boehringer Ingelheim International Gmbh Regioselective preparation of 2-amino-5-trifluoromethylpyrimidine derivatives
WO2011018518A1 (en) 2009-08-14 2011-02-17 Boehringer Ingelheim International Gmbh Regioselective preparation of 2 -amino-5-trifluoromethylpyrimidine derivatives
WO2011104411A2 (en) * 2010-02-25 2011-09-01 Universidad Del País Vasco Compounds for treating alzheimer's disease
US8148391B2 (en) 2006-10-23 2012-04-03 Cephalon, Inc. Fused bicyclic derivatives of 2,4-diaminopyrimidine as ALK and c-Met inhibitors
US8633197B2 (en) 2007-06-08 2014-01-21 Janssen Pharmaceutica N.V. Piperidine/piperazine derivatives
US8835437B2 (en) 2007-06-08 2014-09-16 Janssen Pharmaceutica N.V. Piperidine/piperazine derivatives
US8946228B2 (en) 2007-06-08 2015-02-03 Janssen Pharmaceutica N.V. Piperidine/piperazine derivatives
US8981094B2 (en) 2007-06-08 2015-03-17 Janssen Pharmaceutica N.V. Piperidine/piperazine derivatives
US9107946B2 (en) 2008-06-05 2015-08-18 Janssen Pharmaceutica Nv Drug combinations comprising a DGAT inhibitor and a PPAR-agonist
EP2473486B1 (en) 2009-09-02 2015-10-28 Vifor (International) Ag Pyrimidines as hepcidine antagonists
CN105111191A (en) * 2015-07-21 2015-12-02 上海皓元生物医药科技有限公司 Key intermediate for synthesis of CDK9 inhibitor, preparation method and application thereof
WO2016141881A1 (en) * 2015-03-11 2016-09-15 南京明德新药研发股份有限公司 Substituted 2-hydrogen-pyrazole derivative serving as anticancer drug
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
WO2017133701A1 (en) * 2016-02-06 2017-08-10 Shanghai Fochon Pharmaceutical Co., Ltd. Certain protein kinase inhibitors
US9745311B2 (en) 2012-08-10 2017-08-29 Incyte Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9801889B2 (en) 2015-02-20 2017-10-31 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
CN107382974A (en) * 2017-06-08 2017-11-24 扬州市三药制药有限公司 A kind of application of pyrimidinamine compound as the inhibitor of Cyclin dependent kinase 4/6
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10040790B2 (en) 2013-04-19 2018-08-07 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10213427B2 (en) 2010-12-22 2019-02-26 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
WO2019090198A1 (en) * 2017-11-06 2019-05-09 Bristol-Myers Squibb Company Isofuranone compounds useful as hpk1 inhibitors
US10457669B2 (en) 2015-10-21 2019-10-29 Otsuka Pharmaceutical Co., Ltd. Benzolactam compounds as protein kinase inhibitors
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US10662186B2 (en) 2015-12-31 2020-05-26 Shanghai Pharmaceuticals Holding Co., Ltd. Substituted pyrimidines as cyclin-dependent kinase inhibitors
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11142518B2 (en) 2017-04-20 2021-10-12 Otsuka Pharmaceutical Co., Ltd. 6-pyrimidin-isoindole derivative as ERK1/2 inhibitor
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
CN114555585A (en) * 2019-07-04 2022-05-27 上海齐鲁锐格医药研发有限公司 HPK1 inhibitors and uses thereof
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
EP3966213A4 (en) * 2019-05-05 2023-04-19 Qilu Regor Therapeutics Inc. Cdk inhibitors
WO2023164233A1 (en) 2022-02-28 2023-08-31 Agios Pharmaceuticals, Inc. (4-benzo[d]oxazol-2-yl)-6,7-dihydro-1h-imidazo[4,5-c]pyridine-5(4h)-yl)methanone derivatives as mutant pah stabilizers for the treatment of phenylketonuria
WO2023164236A1 (en) 2022-02-28 2023-08-31 Agios Pharmaceuticals, Inc. Compounds and methods useful for stabilizing phenylalanine hydroxylase mutations
WO2023164234A1 (en) 2022-02-28 2023-08-31 Agios Pharmaceuticals, Inc. Compounds and methods useful for stabilizing phenylalanine hydroxylase mutations
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US12012409B2 (en) 2020-01-15 2024-06-18 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US12065494B2 (en) 2021-04-12 2024-08-20 Incyte Corporation Combination therapy comprising an FGFR inhibitor and a Nectin-4 targeting agent
US12084453B2 (en) 2021-12-10 2024-09-10 Incyte Corporation Bicyclic amines as CDK12 inhibitors

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ589315A (en) 2008-04-16 2012-11-30 Portola Pharm Inc 2,6-diamino-pyrimidin-5-yl-carboxamides as Spleen tryosine kinase (syk) or Janus kinase (JAK) inhibitors
US8138339B2 (en) * 2008-04-16 2012-03-20 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
US8354420B2 (en) * 2010-06-04 2013-01-15 Genentech, Inc. Aminopyrimidine derivatives as LRRK2 inhibitors
MX363551B (en) 2011-11-23 2019-03-27 Portola Pharmaceuticals Inc Star Pyrazine kinase inhibitors.
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
ES2795748T3 (en) 2014-07-31 2020-11-24 Pasteur Institut Korea Derivatives of 2-amino-benzimidazole as 5-lipoxygenase and / or prostaglandin E synthase inhibitors to treat inflammatory diseases
WO2021007269A1 (en) 2019-07-09 2021-01-14 Incyte Corporation Bicyclic heterocycles as fgfr inhibitors
WO2021076728A1 (en) 2019-10-16 2021-04-22 Incyte Corporation Bicyclic heterocycles as fgfr inhibitors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032997A1 (en) * 2001-10-17 2003-04-24 Boehringer Ingelheim Pharma Gmbh & Co. Kg Pyrimidine derivatives, pharmaceutical agent containing said compounds, use and method for making same
WO2006069258A1 (en) * 2004-12-20 2006-06-29 Amgen Inc Substituted heterocyclic compounds and methods of use

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935966A (en) * 1995-09-01 1999-08-10 Signal Pharmaceuticals, Inc. Pyrimidine carboxylates and related compounds and methods for treating inflammatory conditions
WO1997009325A1 (en) * 1995-09-01 1997-03-13 Signal Pharmaceuticals, Inc. Pyrimidine carboxylates and related compounds and methods for treating inflammatory conditions
GB9905075D0 (en) * 1999-03-06 1999-04-28 Zeneca Ltd Chemical compounds
GB9914258D0 (en) * 1999-06-18 1999-08-18 Celltech Therapeutics Ltd Chemical compounds
GB9919778D0 (en) * 1999-08-21 1999-10-27 Zeneca Ltd Chemical compounds
ATE416175T1 (en) * 2001-02-20 2008-12-15 Astrazeneca Ab 2-ARYLAMINOPYRIMIDINES FOR THE TREATMENT OF GSK3-RELATED DISEASES
WO2003030909A1 (en) * 2001-09-25 2003-04-17 Bayer Pharmaceuticals Corporation 2- and 4-aminopyrimidines n-substtituded by a bicyclic ring for use as kinase inhibitors in the treatment of cancer
GB0308466D0 (en) * 2003-04-11 2003-05-21 Novartis Ag Organic compounds
MXPA06011658A (en) * 2004-05-14 2006-12-14 Pfizer Prod Inc Pyrimidine derivatives for the treatment of abnormal cell growth.
WO2006038001A1 (en) * 2004-10-06 2006-04-13 Celltech R & D Limited Aminopyrimidine derivatives as jnk inhibitors
EP1828185B1 (en) * 2004-12-21 2009-05-06 SmithKline Beecham Corporation 2-pyrimidinyl pyrazolopyridine erbb kinase inhibitors
EP1971606B1 (en) * 2005-12-05 2013-04-24 GlaxoSmithKline LLC 2-pyrimidinyl pyrazolopyridine erbb kinase inhibitors
JP4332590B2 (en) * 2005-12-21 2009-09-16 ファイザー・プロダクツ・インク Pyrimidine derivatives for treating abnormal cell proliferation
AU2007261440A1 (en) * 2006-06-22 2007-12-27 Merck & Co., Inc. Tyrosine kinase inhibitors
EP2094681A1 (en) * 2006-12-22 2009-09-02 Novartis AG Indol-4-yl-pyrimidinyl-2-yl-amine derivatives and use thereof as cyclin dependant kinase inhibitors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032997A1 (en) * 2001-10-17 2003-04-24 Boehringer Ingelheim Pharma Gmbh & Co. Kg Pyrimidine derivatives, pharmaceutical agent containing said compounds, use and method for making same
WO2006069258A1 (en) * 2004-12-20 2006-06-29 Amgen Inc Substituted heterocyclic compounds and methods of use

Cited By (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148391B2 (en) 2006-10-23 2012-04-03 Cephalon, Inc. Fused bicyclic derivatives of 2,4-diaminopyrimidine as ALK and c-Met inhibitors
US8552186B2 (en) 2006-10-23 2013-10-08 Cephalon, Inc. Fused bicyclic derivatives of 2,4-diaminopyrimidine as ALK and c-MET inhibitors
US9499567B2 (en) 2007-06-08 2016-11-22 Janssen Pharmaceutica N.V. Piperidine/piperazine derivatives
US8633197B2 (en) 2007-06-08 2014-01-21 Janssen Pharmaceutica N.V. Piperidine/piperazine derivatives
US9688696B2 (en) 2007-06-08 2017-06-27 Janssen Pharmaceutica N.V. Piperidine/piperazine derivatives
US9227935B2 (en) 2007-06-08 2016-01-05 Janssen Pharmaceutical N.V. Piperidine/piperazine derivatives
US9120821B2 (en) 2007-06-08 2015-09-01 Janssen Pharmaceutica N.V. Piperidine/piperazine derivatives
US8981094B2 (en) 2007-06-08 2015-03-17 Janssen Pharmaceutica N.V. Piperidine/piperazine derivatives
US8946228B2 (en) 2007-06-08 2015-02-03 Janssen Pharmaceutica N.V. Piperidine/piperazine derivatives
US8835437B2 (en) 2007-06-08 2014-09-16 Janssen Pharmaceutica N.V. Piperidine/piperazine derivatives
JP2011512361A (en) * 2008-02-15 2011-04-21 ライジェル ファーマシューティカルズ, インコーポレイテッド Pyrimidin-2-amine compounds and their use as inhibitors of JAK kinase
JP2015061846A (en) * 2008-02-15 2015-04-02 ライジェル ファーマシューティカルズ, インコーポレイテッド Pyrimidine-2-amine compounds and their use as inhibitors of jak kinases
WO2009103032A1 (en) * 2008-02-15 2009-08-20 Rigel Pharmaceuticals, Inc. Pyrimidine-2-amine compounds and their use as inhibitors of jak kinases
US9624229B2 (en) 2008-02-15 2017-04-18 Rigel Pharmaceuticals, Inc. Pyrimidine-2-amine compounds and their use as inhibitors of JAK kinases
KR101700454B1 (en) * 2008-02-15 2017-01-26 리겔 파마슈티칼스, 인크. Pyrimidine-2-amine compounds and their use as inhibitors of jak kinases
KR20100124292A (en) * 2008-02-15 2010-11-26 리겔 파마슈티칼스, 인크. Pyrimidine-2-amine compounds and their use as inhibitors of jak kinases
CN102007124A (en) * 2008-02-15 2011-04-06 里格尔制药公司 Pyrimidine-2-amine compounds and their use as inhibitors of jak kinases
WO2009122180A1 (en) * 2008-04-02 2009-10-08 Medical Research Council Pyrimidine derivatives capable of inhibiting one or more kinases
US9724418B2 (en) 2008-06-05 2017-08-08 Janssen Pharmaceutica Nv Drug combinations comprising a DGAT inhibitor and a PPAR-agonist
US9107946B2 (en) 2008-06-05 2015-08-18 Janssen Pharmaceutica Nv Drug combinations comprising a DGAT inhibitor and a PPAR-agonist
WO2010007114A2 (en) * 2008-07-16 2010-01-21 Boehringer Ingelheim International Gmbh New chemical compounds
WO2010007114A3 (en) * 2008-07-16 2010-03-11 Boehringer Ingelheim International Gmbh Heterocyclyl carbonic acid amides as antiproliferative agents, pdkl inhibitors
WO2011018518A1 (en) 2009-08-14 2011-02-17 Boehringer Ingelheim International Gmbh Regioselective preparation of 2 -amino-5-trifluoromethylpyrimidine derivatives
WO2011018517A1 (en) 2009-08-14 2011-02-17 Boehringer Ingelheim International Gmbh Regioselective preparation of 2-amino-5-trifluoromethylpyrimidine derivatives
EP2473486B1 (en) 2009-09-02 2015-10-28 Vifor (International) Ag Pyrimidines as hepcidine antagonists
WO2011104411A2 (en) * 2010-02-25 2011-09-01 Universidad Del País Vasco Compounds for treating alzheimer's disease
ES2385276A1 (en) * 2010-02-25 2012-07-20 Universidad Del País Vasco Compounds for treating alzheimer's disease
WO2011104411A3 (en) * 2010-02-25 2011-11-03 Universidad Del País Vasco Compounds for treating alzheimer's disease
US10213427B2 (en) 2010-12-22 2019-02-26 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US10813930B2 (en) 2010-12-22 2020-10-27 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US11840534B2 (en) 2012-06-13 2023-12-12 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
US11053246B2 (en) 2012-06-13 2021-07-06 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US10131667B2 (en) 2012-06-13 2018-11-20 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US9745311B2 (en) 2012-08-10 2017-08-29 Incyte Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US10040790B2 (en) 2013-04-19 2018-08-07 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US11530214B2 (en) 2013-04-19 2022-12-20 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10450313B2 (en) 2013-04-19 2019-10-22 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10947230B2 (en) 2013-04-19 2021-03-16 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9801889B2 (en) 2015-02-20 2017-10-31 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10016438B2 (en) 2015-02-20 2018-07-10 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10632126B2 (en) 2015-02-20 2020-04-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10214528B2 (en) 2015-02-20 2019-02-26 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10251892B2 (en) 2015-02-20 2019-04-09 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11014923B2 (en) 2015-02-20 2021-05-25 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11173162B2 (en) 2015-02-20 2021-11-16 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11667635B2 (en) 2015-02-20 2023-06-06 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10738048B2 (en) 2015-02-20 2020-08-11 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
TWI688559B (en) * 2015-03-11 2020-03-21 大陸商正大天晴藥業集團股份有限公司 Substituted 2-hydropyrazol derivatives for anti-cancer drugs
US9969719B2 (en) 2015-03-11 2018-05-15 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Substituted 2-hydrogen-pyrazole derivative serving as anticancer drug
AU2016228660B2 (en) * 2015-03-11 2020-05-07 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Substituted 2-hydrogen-pyrazole derivative serving as anticancer drug
CN111333627B (en) * 2015-03-11 2024-09-13 正大天晴药业集团股份有限公司 Substituted 2-hydro-pyrazole derivatives as anticancer agents
CN111333627A (en) * 2015-03-11 2020-06-26 正大天晴药业集团股份有限公司 Substituted 2-hydro-pyrazole derivatives as anti-cancer agents
WO2016141881A1 (en) * 2015-03-11 2016-09-15 南京明德新药研发股份有限公司 Substituted 2-hydrogen-pyrazole derivative serving as anticancer drug
CN107428731A (en) * 2015-03-11 2017-12-01 正大天晴药业集团股份有限公司 2 substituted hydrogen pyrazole derivatives as cancer therapy drug
KR20180005160A (en) * 2015-03-11 2018-01-15 치아타이 티안큉 파마수티컬 그룹 주식회사 2-h- 1
CN107428731B (en) * 2015-03-11 2020-05-05 正大天晴药业集团股份有限公司 Substituted 2-hydro-pyrazole derivatives as anti-cancer agents
CN105111191A (en) * 2015-07-21 2015-12-02 上海皓元生物医药科技有限公司 Key intermediate for synthesis of CDK9 inhibitor, preparation method and application thereof
US11001575B1 (en) 2015-10-21 2021-05-11 Otsuka Pharmaceutical Co., Ltd. Benzolactam compounds as protein kinase inhibitors
US10457669B2 (en) 2015-10-21 2019-10-29 Otsuka Pharmaceutical Co., Ltd. Benzolactam compounds as protein kinase inhibitors
US11939321B2 (en) 2015-10-21 2024-03-26 Otsuka Pharmaceutical Co., Ltd. Benzolactam compounds as protein kinase inhibitors
US10662186B2 (en) 2015-12-31 2020-05-26 Shanghai Pharmaceuticals Holding Co., Ltd. Substituted pyrimidines as cyclin-dependent kinase inhibitors
US10988476B2 (en) 2015-12-31 2021-04-27 Shanghai Pharmaceuticals Holding Co., Ltd. Substituted pyrimidines as cyclin-dependent kinase inhibitors
WO2017133701A1 (en) * 2016-02-06 2017-08-10 Shanghai Fochon Pharmaceutical Co., Ltd. Certain protein kinase inhibitors
US12030873B2 (en) 2017-04-20 2024-07-09 Otsuka Pharmaceutical Co., Ltd. 6-pyrimidin-isoindole derivative as ERK1/2 inhibitor
US11142518B2 (en) 2017-04-20 2021-10-12 Otsuka Pharmaceutical Co., Ltd. 6-pyrimidin-isoindole derivative as ERK1/2 inhibitor
US11472801B2 (en) 2017-05-26 2022-10-18 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
CN107382974A (en) * 2017-06-08 2017-11-24 扬州市三药制药有限公司 A kind of application of pyrimidinamine compound as the inhibitor of Cyclin dependent kinase 4/6
CN107382974B (en) * 2017-06-08 2020-06-05 扬州市三药制药有限公司 Application of pyrimidinamine compound as cyclin-dependent kinase 4/6 inhibitor
US11166959B2 (en) 2017-11-06 2021-11-09 Bristol-Myers Squibb Company Isofuranone compounds useful as HPK1 inhibitors
CN111527084A (en) * 2017-11-06 2020-08-11 百时美施贵宝公司 Isofuranone compounds useful as HPK1 inhibitors
WO2019090198A1 (en) * 2017-11-06 2019-05-09 Bristol-Myers Squibb Company Isofuranone compounds useful as hpk1 inhibitors
CN111527084B (en) * 2017-11-06 2023-07-18 百时美施贵宝公司 Isofuranone compounds useful as HPK1 inhibitors
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
US12024517B2 (en) 2018-05-04 2024-07-02 Incyte Corporation Salts of an FGFR inhibitor
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
EP3966213A4 (en) * 2019-05-05 2023-04-19 Qilu Regor Therapeutics Inc. Cdk inhibitors
CN114555585A (en) * 2019-07-04 2022-05-27 上海齐鲁锐格医药研发有限公司 HPK1 inhibitors and uses thereof
EP3994133A4 (en) * 2019-07-04 2023-11-22 Qilu Regor Therapeutics Inc. Hpk1 inhibitors and uses thereof
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US12083124B2 (en) 2019-10-14 2024-09-10 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US12012409B2 (en) 2020-01-15 2024-06-18 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US12065494B2 (en) 2021-04-12 2024-08-20 Incyte Corporation Combination therapy comprising an FGFR inhibitor and a Nectin-4 targeting agent
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US12084453B2 (en) 2021-12-10 2024-09-10 Incyte Corporation Bicyclic amines as CDK12 inhibitors
WO2023164234A1 (en) 2022-02-28 2023-08-31 Agios Pharmaceuticals, Inc. Compounds and methods useful for stabilizing phenylalanine hydroxylase mutations
WO2023164233A1 (en) 2022-02-28 2023-08-31 Agios Pharmaceuticals, Inc. (4-benzo[d]oxazol-2-yl)-6,7-dihydro-1h-imidazo[4,5-c]pyridine-5(4h)-yl)methanone derivatives as mutant pah stabilizers for the treatment of phenylketonuria
WO2023164237A1 (en) 2022-02-28 2023-08-31 Agios Pharmaceuticals, Inc. Compounds and methods useful for stabilizing phenylalanine hydroxylase mutations
WO2023164236A1 (en) 2022-02-28 2023-08-31 Agios Pharmaceuticals, Inc. Compounds and methods useful for stabilizing phenylalanine hydroxylase mutations

Also Published As

Publication number Publication date
JP2009542604A (en) 2009-12-03
CA2654670A1 (en) 2008-01-10
US8258129B2 (en) 2012-09-04
EP2041132A2 (en) 2009-04-01
US20090203673A1 (en) 2009-08-13
WO2008003766A3 (en) 2008-02-28

Similar Documents

Publication Publication Date Title
US8258129B2 (en) 4-heterocycloalkylpyri(mi)dines, process for the preparation thereof and their use as medicaments
US7241769B2 (en) Pyrimidines as PLK inhibitors
AU2009317170B2 (en) Substituted pyrimidines for the treatment of diseases such as cancer
EP2398797B1 (en) Pyrimido[5,4-d]pyrimidine derivatives for the inhibition of tyrosine kinases
US8623887B2 (en) Compounds
US8207179B2 (en) Substituted indolines as tyrosine kinase inhibitors
US20070004684A1 (en) Alpha-Carbolines as CDK-1 inhibitors
US7981880B2 (en) 3-(aminomethyliden) 2-indolinone derivates and their use as cell proliferation inhibitors
US20090306067A1 (en) 2, 4-diaminopyrimidide derivates and their use for the treatment of cancer
NZ574621A (en) Phenyl substituted heteroaryl-derivatives and use thereof as anti-tumour agents
US20100210644A1 (en) Chemical compounds
CA2729990A1 (en) New chemical compounds
US20100144706A1 (en) Compounds
EP2167465A1 (en) Indolinone derivatives and their use in treating disease-states such as cancer
EP2134723B1 (en) 2,6 diamino-9h-purine derivatives and their use in the treatment of proliferative diseases
US9090564B2 (en) 5-alkynyl-pyridines
WO2007144370A1 (en) New chemical compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07787138

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007787138

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2654670

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009517280

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12304134

Country of ref document: US