WO2008001871A1 - Procédé de maintenance, procédé d'exposition et procédé de fabrication d'appareil et de dispositif - Google Patents

Procédé de maintenance, procédé d'exposition et procédé de fabrication d'appareil et de dispositif Download PDF

Info

Publication number
WO2008001871A1
WO2008001871A1 PCT/JP2007/063049 JP2007063049W WO2008001871A1 WO 2008001871 A1 WO2008001871 A1 WO 2008001871A1 JP 2007063049 W JP2007063049 W JP 2007063049W WO 2008001871 A1 WO2008001871 A1 WO 2008001871A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
substrate
exposure apparatus
cleaning
exposure
Prior art date
Application number
PCT/JP2007/063049
Other languages
English (en)
French (fr)
Inventor
Yasushi Yoda
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to EP07767841A priority Critical patent/EP2043134A4/en
Priority to JP2008522636A priority patent/JP5245825B2/ja
Priority to CN2007800061840A priority patent/CN101390194B/zh
Publication of WO2008001871A1 publication Critical patent/WO2008001871A1/ja
Priority to US12/314,317 priority patent/US20090103064A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70975Assembly, maintenance, transport or storage of apparatus

Definitions

  • the present invention relates to a maintenance technique for an exposure apparatus that exposes a substrate with an exposure beam via a liquid, and a background technique relating to an exposure technique and a device manufacturing technique using the maintenance technique.
  • Microdevices such as semiconductor devices and liquid crystal display devices transfer a pattern formed on a mask such as a reticle onto a substrate such as a wafer coated with a resist (photosensitive material). Manufactured by photolithography.
  • the step 'and' repeat type reduction projection type exposure apparatus so-called stepper
  • An exposure apparatus such as a 'scanning reduction projection type exposure apparatus (a so-called scanning' stepper) is used.
  • an exposure apparatus using an immersion method has been developed as a method of substantially shortening the exposure wavelength and increasing the depth of focus compared to the air (see, for example, Patent Document 1). ).
  • this immersion method exposure is performed in a state where an immersion region is formed by filling the space between the lower surface of the projection optical system and the substrate surface with a liquid such as water or an organic solvent.
  • a liquid such as water or an organic solvent.
  • the substrate is exposed while supplying a liquid from a predetermined liquid supply mechanism to the immersion area between the projection optical system and the substrate! Then, the liquid in the immersion area is recovered by a predetermined liquid recovery mechanism. While exposed to this force, minute foreign matter (particle) force such as resist residue during exposure by this immersion method is gradually applied to the liquid contact part (liquid contact part), for example, the liquid flow path of the liquid supply mechanism and the liquid recovery mechanism. There is a risk of accumulation. The foreign matter accumulated in this way may be mixed in the liquid again during the subsequent exposure and adhere to the substrate to be exposed, which may cause defects such as a defective shape of the transferred pattern.
  • an object of the present invention is to provide an efficient maintenance technique for an exposure apparatus that performs exposure by a liquid immersion method.
  • Another object of the present invention is to provide an exposure technique and a device manufacturing technique to which the maintenance technique can be easily applied.
  • Another object of the present invention is to provide a cleaning technique, an exposure technique, and a device manufacturing technique that can easily clean a wetted part in contact with a liquid.
  • a space between the optical member (2) and the substrate (P) is filled with a first liquid to form an immersion space, and the optical member and the first liquid are filled.
  • a maintenance method for an exposure apparatus that exposes the substrate with exposure light through the movable body (MST) facing the immersion space forming member (30) that forms the immersion space with the first liquid.
  • the second liquid is ejected toward the region including at least a part of the wetted part. Cleaning step.
  • the present invention at least a part of the foreign matter adhering to the liquid contact portion when exposure is performed by the liquid immersion method can be easily removed together with the second liquid.
  • the present invention by forming an immersion space with the first liquid in advance or at least partially in parallel, it is easy to remove foreign matters adhering to the liquid contact portion. Accordingly, maintenance of the mechanism for supplying and collecting the first liquid can be performed efficiently.
  • the space between the optical member (2) and the substrate (P) is filled with the first liquid to form an immersion space, and the optical member and the first liquid
  • a maintenance method for an exposure apparatus that exposes the substrate with exposure light via a movable body (MST) is placed opposite the immersion space forming member (30) that forms the immersion space with the first liquid.
  • the moving step the first liquid is supplied onto the movable body using the immersion space forming member, the accumulating step for accumulating the supplied first liquid, and the liquid contact in contact with the first liquid
  • the first liquid accumulated in the accumulation process is ejected toward a region including at least a part of the liquid contact part.
  • the present invention it is possible to easily remove at least a part of the foreign matter adhering to the wetted part when the exposure is performed by the immersion method together with the first liquid. Therefore, the maintenance of the mechanism for supplying and collecting the first liquid can be performed efficiently. At this time, by supplying the first liquid used in the immersion exposure in advance or in parallel, the foreign matter adhering to the liquid contact portion can be easily removed, and the first liquid can be used as a cleaning liquid. As a result, the mechanism for supplying the cleaning liquid can be simplified.
  • a third maintenance method is a maintenance method for an exposure apparatus that exposes a substrate with exposure light via the optical member (2) and the first liquid, and is in contact with the first liquid.
  • a movable body (MST) is disposed between the optical member and the substrate so as to face the nozzle member (30) holding the first liquid between the optical member and the substrate. The wetted part is washed with the second liquid supplied to the movable body.
  • a fourth maintenance method is a maintenance method for an exposure apparatus that exposes a substrate with exposure light through the optical member (2) and the first liquid, and the optical member and the substrate are exposed to each other.
  • a movable body is disposed opposite the nozzle member that holds the first liquid in between. In accordance with information on the wetted part in contact with the first liquid, the cleaning conditions for the wetted part with the second liquid are set.
  • the wetted part can be easily cleaned, and as a result, efficient maintenance of the exposure apparatus that performs exposure by the liquid immersion method can be performed.
  • the first exposure method of the present invention includes a step using the maintenance method of the present invention.
  • the second exposure method of the present invention is an exposure method in which the substrate (P) is exposed with exposure light via the optical member (2) and the first liquid, and is in contact with the first liquid. And a movable body (MST) is disposed between the optical member and the substrate so as to be opposed to the nozzle member (30) holding the first liquid, and the movable body (MST) is disposed on the movable body via the nozzle member. The wetted part is washed using the supplied second liquid.
  • the third exposure method of the present invention is an exposure method in which the substrate (P) is exposed with exposure light through the optical member (2) and the first liquid, and the optical member and the substrate are exposed.
  • a movable body (MST) is disposed opposite the nozzle member (30) that holds the first liquid therebetween, and the first part of the liquid contact part is determined according to information on the liquid contact part that is in contact with the first liquid. 2 Set cleaning conditions with liquid.
  • the wetted part can be easily washed, and as a result, efficient maintenance of the exposure apparatus that performs exposure by the liquid immersion method can be performed.
  • the first exposure apparatus fills a space between the optical member (2) and the substrate (P) with the first liquid to form an immersion space, and the optical member and the first liquid.
  • the immersion space forming member (30) that forms the immersion space with the first liquid and the optical member can be moved relative to the exposure apparatus that exposes the substrate with exposure light via A movable body (MST), a liquid ejection mechanism (62, 63A, 90) at least partially provided on the movable body and ejecting the second liquid, and a liquid immersion space forming member on the movable body.
  • the liquid ejection mechanism force is applied to the region including at least a part of the liquid contact part in order to clean the liquid contact part in contact with the first liquid.
  • a control device (61) for ejecting the second liquid toward the head is provided.
  • the second exposure apparatus provides a first liquid between the optical member (2) and the substrate (P).
  • An immersion space that fills and forms an immersion space, and then exposes the substrate with exposure light through the optical member and the first liquid to form the immersion space with the first liquid.
  • a liquid jetting device (63E, 91, 92) for jetting toward a region including at least a part of the liquid contact portion.
  • the third exposure apparatus is an exposure apparatus that exposes the substrate (P) with exposure light through the optical member (2) and the first liquid, and is in contact with the first liquid.
  • a fourth exposure apparatus is an exposure apparatus that exposes a substrate (P) with exposure light through an optical member (2) and a first liquid, and the exposure apparatus exposes the substrate (P) between the optical member and the substrate.
  • the first, second, third, or fourth maintenance methods of the present invention can be used by these first, second, third, or fourth exposure apparatuses of the present invention, respectively.
  • the device manufacturing method according to the present invention includes exposing a substrate using the exposure method or exposure apparatus of the present invention and developing the exposed substrate.
  • the reference numerals in parentheses attached to the predetermined elements of the present invention correspond to members in the drawings showing an embodiment of the present invention, but each reference sign is used to facilitate the division of the present invention. It merely illustrates the elements of the invention and is intended to limit the invention to the configuration of the embodiment. There is no.
  • FIG. 1 is a schematic block diagram showing a part of an exposure apparatus as an example of an embodiment of the present invention.
  • FIG. 2 is a perspective view showing a nozzle member 30 in FIG.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG.
  • FIG. 4 is a partially cutaway view showing a cleaning mechanism provided on the measurement stage MST side in FIG. 1.
  • FIG. 5 is a plan view showing the substrate stage PST and the measurement stage MST in FIG. 1.
  • FIG. 6 is a plan view showing a process in which the measurement stage MST moves to the bottom surface of the projection optical system PL.
  • FIG. 7 is a cross-sectional view of a measurement table MTB and a nozzle member 30 used for explaining the cleaning operation of an example of an embodiment of the present invention.
  • FIG. 8 (A) is a partially cutaway view showing another example of the cleaning mechanism of the embodiment of the present invention, and (B) is a partially cutaway view showing a state in which liquid is ejected from the cleaning mechanism. !
  • FIG. 9A is a flowchart showing an example of a maintenance operation
  • FIG. 9B is a flowchart showing an example of a microdevice manufacturing process.
  • FIG. 1 is a schematic block diagram that shows the exposure apparatus EX of the first embodiment.
  • the exposure apparatus EX includes a mask stage RST that supports a mask M on which a transfer pattern is formed, and a substrate to be exposed.
  • the substrate stage PST that supports P, the illumination optical system IL that illuminates the mask M supported by the mask stage RST with the exposure light EL, and the pattern image of the mask M that is illuminated with the exposure light EL is applied to the substrate stage PST.
  • Projection optical system PL that projects onto the supported substrate P projection area A R1, measurement stage MST on which alignment reference marks, etc. are formed, and controller that controls the overall operation of the exposure apparatus EX It is equipped with CONT and an immersion system (immersion mechanism) for applying the immersion method.
  • the liquid immersion system of the present embodiment includes a liquid supply mechanism 10 that supplies liquid 1 onto the substrate P and the measurement stage MST, and a liquid that collects the liquid 1 supplied onto the substrate P and the measurement stage MST. It has a recovery mechanism 20.
  • the exposure apparatus EX uses the liquid 1 supplied from the liquid supply mechanism 10 on the substrate P including the projection area AR1 of the projection optical system PL at least while transferring the pattern image of the mask M onto the substrate P.
  • the immersion region AR2 is formed (locally) in a part of the region or a part of the region on the substrate P and the surrounding region.
  • the exposure apparatus EX includes an optical element at the end of the image plane side of the projection optical system PL (for example, a lens or a plane parallel plate having a substantially flat bottom surface (exit surface)) and its image plane side.
  • Adopting the local immersion method that fills the liquid 1 between the substrate P surface and the exposure light EL that has passed through the mask M, the projection optical system PL and between the projection optical system PL and the substrate P By exposing the substrate P through the liquid 1, the pattern of the mask M is transferred and exposed to the substrate P.
  • immersion exposure is performed using an immersion space forming member (for example, including nozzle member 30) that forms an immersion space including the optical path space of the exposure light EL emitted from the projection optical system PL. As to do.
  • the exposure apparatus EX a scanning type exposure apparatus (so-called scanning) that exposes the pattern formed on the mask M onto the substrate P while moving the mask M and the substrate P synchronously in a predetermined scanning direction.
  • scanning a scanning type exposure apparatus
  • the Z axis is taken parallel to the optical axis AX of the projection optical system PL, and the mask M and substrate P are moved synchronously in a plane perpendicular to the Z axis.
  • a description will be given by taking the X axis along the direction (scanning direction) and the Y axis along the direction perpendicular to the scanning direction (non-scanning direction).
  • the rotation (tilt) directions around the X, Y, and Z axes are the ⁇ , 0 Y, and 0 Z directions, respectively.
  • a substrate includes a substrate in which a resist (photoresist), which is a photosensitive material, is coated on a base material such as a semiconductor wafer such as a silicon wafer. In addition to the film, it includes those coated with various films such as a protective film (topcoat film).
  • the mask includes a reticle on which a device pattern to be reduced and projected is formed on a substrate.For example, a predetermined pattern is formed on a glass plate (transparent substrate) such as synthetic quartz using a light shielding film such as chromium. It is.
  • This transmissive mask is not limited to a binary mask in which a pattern is formed by a light shielding film, and includes, for example, a phase shift mask such as a halftone type or a spatial frequency modulation type.
  • the substrate P of this example has a photoresist with a predetermined thickness (for example, about 200 nm) using a coater / developer (not shown) on a disk-shaped semiconductor wafer having a diameter of about 200 mm and a force of about 300 mm. It can be applied, and if necessary, an antireflection film or topcoat film can be applied thereon.
  • the illumination optical system IL illuminates the mask M supported by the mask stage RST with the exposure light EL, and optically equalizes the illuminance of the light beam emitted from the exposure light source (not shown). It has a condenser lens that collects the exposure light EL from the integrator, the optical integrator, a relay lens system, and a variable field stop that sets the illumination area on the mask M by the exposure light EL in a slit shape. A predetermined illumination area on the mask M is illuminated with the exposure light EL having a uniform illuminance distribution by the illumination optical system IL.
  • the exposure light EL emitted from the illumination optical system IL includes, for example, a mercury lamp force emitted ultraviolet ray (i-line etc.), far ultraviolet light (DUV light) such as KrF excimer laser light (wavelength 248 nm), or Vacuum ultraviolet light (VUV light) such as ArF excimer laser light (wavelength 193 nm), F laser light (wavelength 157 nm), etc.
  • a mercury lamp force emitted ultraviolet ray i-line etc.
  • DUV light far ultraviolet light
  • VUV light Vacuum ultraviolet light
  • ArF excimer laser light wavelength 193 nm
  • F laser light wavelength 157 nm
  • Etc. are used.
  • ArF excimer laser light is used as the exposure light EL.
  • the mask stage RST supports the mask M, and is two-dimensionally in a plane perpendicular to the optical axis AX of the projection optical system PL on the mask base (not shown), that is, in the XY plane. It can be moved and rotated slightly in the ⁇ Z direction.
  • Mask stage RST It is driven by a mask stage drive device RSTD such as The mask stage driving device RSTD is controlled by the control device CONT.
  • a movable mirror (reflection surface) 55A is provided on the mask stage RST, and a laser interferometer 56A is provided at a position facing the movable mirror 55A.
  • the laser interferometer 56A constitutes a laser interferometer system having three or more measurement axes.
  • the position and rotation angle of the mask stage RST (mask M) in the two-dimensional direction are measured in real time by the laser interferometer 56A, and the measurement result is output to the control device CONT. Based on the measurement result, the control device CONT moves or positions the mask M supported by the mask stage RST by driving the mask stage drive device RSTD.
  • the movable mirror 55A may include not only a plane mirror but also a corner cube (retro reflector). Instead of the movable mirror 55A, for example, a reflection formed by mirroring the end surface (side surface) of the mask stage RST. You can use the surface!
  • the projection optical system PL projects and exposes the pattern of the mask M onto the substrate ⁇ at a predetermined projection magnification ⁇ ( ⁇ is a reduced magnification such as 1 ⁇ 4, 1 ⁇ 5, etc.).
  • the optical system PL is composed of a plurality of optical elements including the optical element 2 provided at the terminal portion (on the image plane side), and these optical elements are supported by the lens barrel PK.
  • the projection optical system PL is not limited to a reduction system, and may be either a unity magnification system or an enlargement system.
  • the optical element 2 at the tip of the projection optical system PL is detachably attached to the lens barrel PK, and the liquid 1 in the liquid immersion area AR2 comes into contact with the optical element 2.
  • the projection optical system PL is mounted on a lens barrel surface plate supported by three columns via an anti-vibration mechanism.
  • a main frame member (not shown) disposed above the projection optical system PL may be supported by suspending the projection optical system PL from the aforementioned mask base or the like!
  • pure water is used as the liquid 1.
  • Pure water can transmit not only ArF excimer laser light but also far ultraviolet light (DUV light) such as emission lines emitted from mercury lamps and KrF excimer laser light.
  • the optical element 2 is made of meteorite (CaF). ⁇
  • the resist on the substrate P is a liquid repellent resist that repels the liquid 1 as an example. As described above, a protective top coat may be applied on the resist as necessary. In this example, the property of repelling liquid 1 is called liquid repellency. When liquid 1 is pure water, liquid repellency means water repellency.
  • the substrate stage PST controls the substrate holder PH that holds the substrate P by, for example, vacuum suction, the position of the substrate holder PH (substrate P) in the Z direction (focus position), and the tilt angle in the 0 X and 0 Y directions.
  • This XY stage part can be moved in the X and Y directions on a guide plane parallel to the XY plane on the base 54 (a plane substantially parallel to the image plane of the projection optical system PL). It is mounted via (gas bearing).
  • the substrate stage PST (Z stage unit and XY stage unit) is driven by a substrate stage driving device PSTD such as a linear motor.
  • the substrate stage driving device PSTD is controlled by the control device CONT.
  • the Z stage unit includes a table and an actuator (for example, a voice coil motor) that drives the table in at least the ⁇ X and ⁇ Y directions, and the substrate holder and the table are integrated. Formed and collectively called the substrate holder PH.
  • the substrate stage PST can be a coarse / fine movement stage where the table can be finely moved in the direction of 6 degrees of freedom relative to the XY stage.
  • the substrate holder PH on the substrate stage PST is provided with a moving mirror 55B, and a laser interferometer 56B is provided at a position facing the moving mirror 55B.
  • the moving mirror 55B is actually composed of an X-axis moving mirror 55BX and a Y-axis moving mirror 55BY
  • the laser interferometer 56B is also an X-axis laser interferometer 56BX and Y-axis laser interference.
  • a total of 56BY power is also configured.
  • the two-dimensional position and rotation angle of the substrate holder PH (substrate P) on the substrate stage PST are measured in real time by the laser interferometer 56B, and the measurement result is output to the control device CONT. Based on the measurement result, the control device CONT moves or positions the substrate P supported by the substrate stage PST by driving the substrate stage drive device PSTD.
  • the laser interferometer 56B can measure the position of the substrate stage PST in the Z-axis direction and the rotation information in the ⁇ X and ⁇ Y directions. For example, refer to JP 2001-510577 (corresponding to International Publication No. 1999Z28790 Pamphlet ).
  • a reflecting surface formed by mirror processing the side surface of the substrate stage PST or the substrate holder PH may be used.
  • an annular and flat liquid-repellent plate portion 97 is provided so as to surround the substrate P.
  • the liquid repellent treatment include a coating treatment using a material having liquid repellency.
  • the material having liquid repellency include fluorine resin materials such as polytetrafluoroethylene (Teflon (registered trademark)), acrylic resin materials, silicon resin materials, and synthetic resin materials such as polyethylene.
  • the thin film for surface treatment may be a single layer film or a film composed of a plurality of layers.
  • the upper surface of the plate portion 97 is a flat surface having almost the same height as the surface of the substrate P held by the substrate holder PH.
  • the resist of the substrate P is liquid repellent, and the liquid 1 has a surface on the surface. Due to the tension, the liquid 1 can be held between the plate portion 97 and the projection optical system PL even when the vicinity of the peripheral edge of the substrate P is hardly exposed.
  • a suction device (not shown) for discharging the liquid 1 flowing into the gap between the plate portion 97 and the substrate P to the outside may be provided in the substrate holder PH. Therefore, the resist (or top coat) of the substrate P does not necessarily have to be liquid repellent.
  • the plate portion 97 is detachably (replaceable) provided on the substrate holder PH.
  • the plate portion 97 is not provided, and the upper surface of the substrate holder PH surrounding the substrate P is flattened by liquid repellent treatment, for example. A surface may be formed.
  • the liquid supply mechanism 10 in FIG. 1 supplies a predetermined liquid 1 onto the substrate P, and a liquid supply unit 11 capable of delivering the liquid 1 and one end thereof connected to the liquid supply unit 11 Supply pipe 12 to be provided.
  • the liquid supply unit 11 includes a tank that stores the liquid 1, a filter unit, a pressurizing pump, and the like. It should be noted that at least a part of the liquid supply mechanism 10 is not necessarily provided with a tank, a filter unit, a pressure pump, and the like, for example, with equipment such as a factory where the exposure apparatus EX is installed. May be.
  • the liquid recovery mechanism 20 recovers the liquid 1 supplied onto the substrate P, and the liquid 1
  • a liquid recovery unit 21 capable of recovering the liquid, a recovery pipe 22 connected to one end of the liquid recovery part 21, a supply pipe 27 connected to the recovery pipe 22, and an end of the supply pipe 27
  • a cleaning liquid supply unit 26 for supplying a predetermined cleaning liquid.
  • Valves 23 and 28 are provided in the middle of the recovery pipe 22 and the supply pipe 27, respectively.
  • the liquid recovery unit 21 includes, for example, a vacuum system (a suction device) such as a vacuum pump, and a tank for storing the recovered liquid 1.
  • the cleaning liquid supply unit 26 includes a tank that stores the cleaning liquid, a pressure pump, and the like.
  • the cleaning liquid can be supplied from the cleaning liquid supply unit 26 to the recovery pipe 22 via the supply pipe 27.
  • the liquid recovery mechanism 20 it is not necessary for the liquid recovery mechanism 20 to be equipped with a vacuum system, a tank, etc., and at least a part of them is replaced with equipment such as a factory where the exposure apparatus EX is installed. Also good.
  • the cleaning liquid a mixed liquid of water and thinner, which is a liquid different from liquid 1, a solvent such as y-butyl rataton or isopropyl alcohol (IPA) can be used.
  • IPA isopropyl alcohol
  • a liquid containing liquid 1 as the cleaning liquid for example, liquid 1 itself, liquid 1 in which gas (for example, nitrogen, ozone, oxygen, etc.) is dissolved, or a solution using liquid 1 as a solvent, etc.
  • the liquid supply unit 11 can also be used as the cleaning liquid supply unit, and therefore the cleaning liquid supply unit 26 and the supply pipe 27 are not necessarily provided.
  • the cleaning liquid may be supplied to the liquid immersion area (immersion space) independently of the liquid 1 supply flow path (for example, the supply pipe 12).
  • a nozzle member 30 as a flow path forming member is disposed in the vicinity of the optical element 2 at the end of the projection optical system PL.
  • the nozzle member 30 is an annular member provided so as to surround the optical element 2 above the substrate P (substrate stage PST), and is supported by a column mechanism (not shown) via a support member (not shown).
  • the nozzle member 30 has a first supply port 13 and a second supply port 14 (see FIG. 3) on which the surface of the substrate P is disposed facing each other. ).
  • the nozzle member 30 has supply channels 82A and 82B (see FIG. 3) therein.
  • the supply channel 82A is connected to the first supply port 13, and the second supply port 14 passes through the supply channel 82B in the middle of the supply channel 82A. Connected (see FIG. 3), the other end of the supply channel 82A is connected to the liquid supply unit 11 via the supply pipe 12. Further, the nozzle member 30 includes a rectangular frame-shaped collection port 24 (see FIG. 3) disposed so as to face the surface of the substrate P.
  • FIG. 2 is a schematic perspective view of the nozzle member 30.
  • the nozzle member 30 is an annular member provided so as to surround the optical element 2 at the terminal end of the projection optical system PL.
  • the first member 31 and the first member And a second member 32 disposed on top of 31.
  • Each of the first and second members 31 and 32 is a plate-like member, and has through holes 31 A and 32 A in which the projection optical system PL (optical element 2) can be arranged at the center.
  • FIG. 3 is a cross-sectional view taken along line AA of the lower first member 31 of the nozzle member 30 of FIG. 2, and in FIG. 3, the supply flow path 82A formed in the second member 32 above the first member 31 , 82B and the supply pipe 12 connected to the supply flow line 82A are indicated by a two-dot chain line.
  • the first member 31 of the nozzle member 30 is formed on the + X direction side of the optical element 2 of the projection optical system PL.
  • the first supply port 13 that supplies the liquid 1 onto the substrate P and the optical element 2
  • a second supply port 14 that is formed on the X direction side and supplies the liquid 1 onto the substrate P is provided.
  • the supply ports 13 and 14 are arranged so as to sandwich the projection area AR1 in the X direction (scanning direction of the substrate P).
  • Each of the supply ports 13 and 14 is a through-hole penetrating the first member 31 and has a rectangular shape elongated in the Y direction, but may have an arc shape or the like extending outward from the center of the projection area AR1. .
  • the first member 31 has a rectangular (or circular) frame-like collection port 24 disposed so as to surround the optical element 2 (projection area AR1) of the projection optical system PL, and a collection unit 24.
  • a recovery flow path 84 that connects the port 24 and the recovery pipe 22 is formed.
  • the collection port 24 is a groove-shaped recess formed on the bottom surface of the first member 31 and is provided outside the optical element 2 from the supply ports 13 and 14.
  • the gap between the supply port 13 and 14 and the substrate P of the recovery port 24 is almost the same as the gap of the recovery port 24 and the substrate P.
  • the gap between the recovery port 24 and the substrate P is the supply port 1 3, 14
  • the gap may be narrower than the substrate P.
  • the nozzle member 30 includes a porous member 25, and this porous member 25 is provided, for example, in the flow path or passage port of the liquid 1 of the first member 31 (including at least one of the supply ports 13, 14 and the recovery port 24). It is done.
  • the porous member 25 a mesh filter in which a large number of small holes are formed in a mesh shape so as to cover the recovery port 24 is fitted, and hereinafter, the porous member 25 is also referred to as a mesh filter.
  • the porous member 25 is not limited to a mesh filter, and may be made of a material with pores such as sintered metal or ceramics.
  • the immersion area AR2 filled with the liquid 1 is formed inside a substantially rectangular (or circular) area surrounded by the recovery port 24 so as to include the projection area AR1. It is locally formed on the upper part (or so as to include a part on the substrate P).
  • the nozzle member (flow path forming member) 30 fills the space between the optical element 2 and the substrate P with the liquid 1, and provides a local immersion space (corresponding to the immersion area AR2) including the optical path space of the exposure light EL. Since it is formed, it is also called an immersion space forming member or containment member (or confinement member).
  • the first member 31 and the second member 32 of the nozzle member 30 in FIG. 2 and the mesh filter 25 in FIG. 3 are each easily compatible with the liquid 1 ⁇ ⁇ A lyophilic material such as stainless steel (SUS) or titanium. Is formed. Therefore, in FIG. 1, the liquid 1 in the liquid immersion area AR2 passes through the mesh filter 25 of the recovery port 24 provided in the nozzle member 30, and then passes through the recovery flow path 84 and the recovery pipe 22 to the liquid recovery section. 21 is smoothly collected. At this time, among foreign matters such as resist residues, foreign matters larger than the mesh of the mesh filter 25 remain on the surface.
  • SUS stainless steel
  • the liquid recovery port 24 in this example is a rectangular or circular frame-like force.
  • the supply ports 13 and 14 are arranged so as to be sandwiched in the X direction as indicated by a two-dot chain line.
  • Two rectangular (or arc-shaped) recovery ports 29A and 29B, and two rectangular (or arc-shaped) recovery ports 29C and 29D arranged so as to sandwich the optical element 2 in the Y direction.
  • a mesh filter may be arranged in each of the recovery ports 29A to 29D using a recovery port consisting of Note that the number of the collecting rods 29A to 29D is arbitrary. Further, as disclosed in, for example, International Publication No.
  • the liquid 1 in the liquid immersion area AR2 may be recovered by using the recovery ports 29A to 29D and the recovery port 24 twice.
  • a mesh filter for preventing foreign matter in the liquid immersion area AR 2 from entering the nozzle member 30 may be arranged at the supply ports 13 and 14. Conversely, for example, when there is a low possibility of foreign matter adhering to the collection tube 22, the mesh filter 25 is not necessarily provided.
  • the nozzle member 30 used in the above embodiment is not limited to the above-described structure.
  • European Patent Application Publication No. 1420298, International Publication No. 2004Z055803 Panfret, International Publication No. 2004Z057589 K International Publication No. 2004Z057590 Nflet, a flow path forming member described in International Publication No. 2005Z029559 (corresponding to US Patent Application Publication No. 2 006/0231206) can also be used.
  • the liquid supply ports 13 and 14 and the recovery port 24 are provided in the same nozzle member 30, but the supply ports 13 and 14 and the recovery port 24 may be provided in different members. Good. For example, only the supply port may be provided on a member different from the nozzle member 30, or only the recovery port may be provided on another member. Further, when the second recovery port is provided outside the recovery port 24, the second recovery port may be provided in another member. Further, in FIG. 1, the supply ports 13 and 14 are connected to different liquid supply units, and the liquid 1 is supplied to the immersion area AR2 in a state where the supply amount can be controlled independently from the supply ports 13 and 14. Even so,
  • the liquid supply ports 13 and 14 do not have to be arranged to face the substrate P.
  • the lower surface of the nozzle member 30 of this example is set to the image plane side (substrate side) from the lower end surface of the projection optical system PL. It may be set to almost the same height (Z position) as the exit surface. Further, a part (lower end portion) of the nozzle member 30 may be provided so as to be embedded under the projection optical system PL (optical element 2) so as not to block the exposure light EL.
  • the nozzle member 30 constitutes a part of each of the liquid supply mechanism 10 and the liquid recovery mechanism 20. That is, the nozzle member 30 is part of the immersion system.
  • the valves 23 and 28 provided in the recovery pipe 22 and the supply pipe 27 open and close the flow paths of the recovery pipe 22 and the supply pipe 27, respectively, and their operations are controlled by the control device CONT. While the flow path of the recovery pipe 22 is open, the liquid recovery section 21 can suck and recover the liquid 1 from the immersion area AR2 through the recovery port 24, and the recovery pipe 22 is connected to the recovery pipe 22 with the valve 28 closed. When the flow path is closed, the suction and recovery of the liquid 1 through the recovery port 24 is stopped. Thereafter, by opening the valve 28, the cleaning liquid can flow from the cleaning liquid supply unit 26 so as to pass through the recovery port 24 of the nozzle member 30 via the supply pipe 27, the recovery pipe 22, and the mesh filter 25.
  • a part of the liquid immersion system for example, at least the nozzle member 30 is the above-described column mechanism (not shown) on which the main body of the exposure apparatus EX is mounted, that is, a memory that holds the projection optical system PL.
  • Force provided to the in-frame may be provided on a frame member different from the column mechanism (main frame).
  • the nozzle member 30 may be suspended and supported integrally with the projection optical system PL, or may be supported by hanging independently from the projection optical system PL.
  • the nozzle member 30 may be provided on the measurement frame. In the latter case, the projection optical system PL need not be suspended and supported.
  • the liquid supply operations of the liquid supply unit 11 and the cleaning liquid supply unit 26 are controlled by the controller CONT.
  • the control device CONT can independently control the liquid supply amount per unit time on the substrate P by the liquid supply unit 11 and the cleaning liquid supply unit 26.
  • the liquid 1 delivered from the liquid supply unit 11 is supplied to the lower surface of the nozzle member 30 so as to face the substrate P via the supply pipe 12 and the supply flow paths 82A and 82B of the nozzle member 30. 13 and 14 (see Fig. 3).
  • the liquid recovery operation of the liquid recovery unit 21 is controlled by the control device CONT.
  • the control device CONT can control the amount of liquid recovered by the liquid recovery unit 21 per unit time.
  • the liquid 1 on the substrate P recovered from the recovery port 24 provided above the substrate P via the mesh filter 25 is transferred to the liquid recovery unit 21 via the recovery flow path 84 and the recovery pipe 22 of the nozzle member 30. Collected.
  • a measurement stage MST has a rectangular shape elongated in the Y direction and driven in the X direction (scanning direction), and a leveling table 188 placed thereon via an air bearing, for example.
  • a measurement table MTB as a measurement unit arranged on the leveling table 188.
  • the measurement table MTB is mounted on the leveling table 188 via an air bearing.
  • the measurement table MTB can be integrated with the leveling table 188.
  • the stage portion 181 is mounted on the base 54 so as to be movable in the X direction via an air bearing, for example.
  • FIG. 5 is a plan view showing the substrate stage PST and the measurement stage MST in FIG. 1.
  • the base 54 is parallel to the X axis so as to sandwich the base 54 in the Y direction (non-scanning direction).
  • X-axis stators 186 and 187 each having a plurality of permanent magnets arranged in a predetermined arrangement in the X direction are installed on the inner surface, and movers 182 and 183 including coils are respectively placed between the stators 186 and 187.
  • the Y-axis slider 180 is arranged so as to be movable in the X direction substantially parallel to the Y-axis.
  • a substrate stage PST is arranged along the Y-axis slider 180 so as to be movable in the Y direction.
  • the mover in the substrate stage PST, the stator (not shown) on the Y-axis slider 180, and the force are also applied to the substrate stage PST.
  • a Y-axis linear motor that drives in the direction is configured, and a pair of X-axis linear motors that drive the substrate stage PST in the X direction are also configured, respectively, with the stators 186 and 187 corresponding to the movers 182 and 183. Yes.
  • These X-axis and Y-axis constant motor isotropic forces constitute the substrate stage drive unit PSTD in Figure 1.
  • the stage 181 of the measurement stage MST is arranged so as to be movable in the X direction via movers 184 and 185 each including a coil between the stators 186 and 187, and the movers 184 and 185
  • the corresponding stators 186 and 187 and the force each constitute a pair of X-axis linear motors that drive the measurement stage MST in the X direction.
  • This X-axis linear motor and the like are shown in FIG. 1 as a measurement stage driving device TSTD.
  • a stator 167 having a U-shaped cross-section in which a plurality of permanent magnets are arranged on a flat plate and a plate-like stator 171 including a coil wound (arranged) substantially along the X axis are fixed.
  • a movable body 170 having a U-shaped cross section in which a plurality of permanent magnets are arranged in a predetermined arrangement in the Y direction is fixed to the measurement table MTB so that the upper stator 171 is sandwiched in the Z direction.
  • (Ejection surface) 55CX and Y-axis moving mirror (reflective surface) 55CY are fixed, and X-axis laser interferometer 56C is placed opposite to the moving mirror 55CX in the X direction.
  • the movable mirrors 55CX and 55CY are represented as the movable mirror 55C in FIG.
  • the laser interferometer 56C is a multi-axis laser interferometer, and the laser interferometer 56C always measures the position of the measurement table ⁇ in the X direction and the rotation angle in the ⁇ ⁇ direction.
  • a reflective surface formed by mirror processing the side surface of the measurement stage MST or the like may be used.
  • the laser interferometer 56 for position measurement in the heel direction is shared by the substrate stage PST and the measurement stage MST. That is, the optical axes of the two laser interferometers 56 ⁇ and 56C on the X axis pass through the center of the projection area AR1 of the projection optical system PL (in this example, the optical axis AX in FIG. 1) and are parallel to the X axis.
  • the optical axis of the Y-axis laser interferometer 56BY passes through the center of the projection area (optical axis AX) and is parallel to the Y-axis.
  • the laser beam of the laser interferometer 56BY is irradiated to the moving mirror 55BY of the substrate stage PST, and the laser interferometer 56BY.
  • the position of the substrate stage PST (substrate P) in the Y direction is measured.
  • the measurement table MTB of the measurement stage MST is moved below the projection optical system PL in order to measure, for example, the imaging characteristics of the projection optical system PL
  • the laser beam of the laser interferometer 56BY is changed to the measurement table MTB.
  • the position of the measurement table MTB in the Y direction is measured by the laser interferometer 56 BY.
  • the position of the substrate stage PST and measurement table MTB can be measured with high accuracy at all times based on the center of the projection area of the projection optical system PL, and the number of high-precision and expensive laser interferometers can be reduced. Manufacturing cost can be reduced.
  • an optical linear encoder (not shown) is disposed along the Y-axis linear motor 169 for the substrate stage PST and the Y-axis linear motor 169 for the measurement table MTB. During the period when the 56BY laser beam is applied to the moving mirror 55BY or 55CY, the position of the substrate stage PST or the measurement table MTB in the Y direction is measured by the above linear encoder.
  • the position and rotation angle of the measurement table MTB in the two-dimensional direction Measurement is performed by 56C and the laser interferometer 56BY (or linear encoder) in Fig. 5, and the measurement result is output to the controller CONT.
  • the control device CONT drives the measurement stage drive device TSTD, linear motor 169, and voice coil motors 168A, 168B to move or position the measurement table MTB in the measurement stage MST. Do.
  • the leveling table 188 is provided with three Z-axis actuators each capable of controlling the position in the Z direction by, for example, an air cylinder or a voice coil motor method, and the upper surface of the measurement table MTB is usually the projection optical system.
  • the leveling table 188 controls the position of the measurement table MTB in the Z direction, the 0 X direction, and the 0 Y direction angle so that it is focused on the PL image plane.
  • an autofocus sensor (not shown) is provided in the vicinity of the nozzle member 30 to measure the position of the test surface such as the upper surface of the substrate P in and near the projection area AR1. Based on the measured value of the sensor, the control device CONT controls the operation of the leveling table 188.
  • an actuator for maintaining the positions of the leveling table 188 in the X direction, the Y direction, and the ⁇ Z direction with respect to the stage unit 181 at predetermined positions is also provided.
  • the autofocus sensor detects the tilt information (rotation angle) in the ⁇ X and ⁇ Y directions by measuring the position information in the Z direction of the test surface at each of the plurality of measurement points.
  • at least a part of the plurality of measurement points may be set in the immersion area AR2 (or the projection area AR1), or all of the measurement points may be set outside the immersion area AR2.
  • the laser interferometers 56B and 56C can measure the position information of the test surface in the Z-axis, 0 X and 0 Y directions
  • the position information in the Z direction is measured during the exposure operation of the substrate P. It is not necessary to provide an autofocus sensor so that it can be used. At least during exposure operations, use the measurement results of the laser interferometers 56B and 56C to control the position of the test surface in the Z-axis, 0 and 0 ⁇ directions.
  • the measurement table MTB of this example includes measuring instruments (measuring members) for performing various measurements related to exposure. That is, the measurement table MTB includes a measurement table main body 159 to which the movable element of the linear motor 169 and the movable mirror 55C are fixed, and a light-transmitting material cover having a low expansion coefficient such as quartz glass fixed to the upper surface. And the plate 101 The A chromium film is formed almost entirely on the surface of the plate 101, and a plurality of areas disclosed in, for example, measuring instrument areas and Japanese Patent Laid-Open No. 5-21314 (corresponding US Pat. No. 5,243,195) are provided. A fiducial mark area FM is provided where fiducial marks are formed.
  • the reference mark region FM on the plate 101 has a pair of reference marks FM 1 and FM2 for the mask alignment sensor AS shown in FIG. 1 and side surfaces of the projection optical system PL.
  • the alignment mark FM3 for the alignment sensor ALG for the placed substrate is formed.
  • the base which is the positional relationship between the projection position of the projection area AR1 of the projection optical system PL and the detection position of the alignment sensor ALG.
  • the amount of line can be measured.
  • the immersion area AR2 is also formed on the plate 101.
  • the alignment sensors MA and ALG may each be an image processing system, or a system that detects diffracted light generated by a mark force by irradiation of a coherent beam.
  • Various measurement opening patterns are formed in the measurement area on the plate 101.
  • the measurement aperture pattern include an aerial image measurement aperture pattern (e.g., slit-shaped aperture pattern), illumination unevenness measurement pinhole aperture pattern, illuminance measurement aperture pattern, and wavefront aberration measurement aperture pattern.
  • an aerial image measurement aperture pattern e.g., slit-shaped aperture pattern
  • illumination unevenness measurement pinhole aperture pattern e.g., illuminance measurement aperture pattern
  • wavefront aberration measurement aperture pattern e.g., wavefront aberration measurement aperture pattern.
  • a measuring instrument including a corresponding measuring optical system and a photoelectric sensor is arranged in the measurement table main body 159 on the bottom surface side of these opening patterns.
  • An example of the measuring instrument is an illuminance unevenness sensor disclosed in, for example, JP-A-57-117238 (corresponding US Pat. No. 4,465,368), for example, JP-A-2002-14005 ( (E.g., U.S. Patent Application Publication No. 2002Z0041377)), a spatial image measuring device for measuring the light intensity of a spatial image (projected image) of a pattern projected by the projection optical system PL, for example, Japanese Patent Laid-Open No. 11 16816.
  • Illuminance monitor disclosed in Japanese Patent Publication No. corresponding to U.S. Patent Application Publication No. 2002Z0061469
  • International Publication No.99Z60361 pamphlet corresponding to European Patent No. 1,079,223
  • the substrate P is exposed by the exposure light EL through the projection optical system PL and the liquid 1.
  • the above-mentioned illuminance unevenness sensor, illuminance monitor, aerial image measuring instrument, wavefront aberration measuring instrument, etc. used for the measurement using the exposure light EL are used in the projection optical system PL and Exposure light EL is received through liquid 1. For this reason, the surface of the plate 101 is coated with a liquid repellent coating.
  • Fig. 4 shows the cleaning liquid ejection mechanism attached to the measurement stage MST.
  • the recesses 60A and 60B are formed at two locations on the upper surface of the measurement table body 159.
  • An opening 101a is formed in the upper plate 101 of the first recess 60A, and a light shielding film and a liquid repellent coating are not formed in the region 101b of the plate 101 above the second recess 60B. Accordingly, the illumination light can pass through the plate 101 in the region 101b.
  • a jet nozzle 90 for injecting the cleaning liquid supplied from the bottom at high speed from the injection port 90a at a high speed is fixed to the center of the first recess 60A, and the liquid at the bottom of the jet nozzle 90 is fixed.
  • the cleaning mechanism includes the ejection mechanism shown in FIG. 4, and the liquid contact portion that comes into contact with the liquid 1 is cleaned by the ejection of the cleaning liquid.
  • the cleaning liquid is jetted at a high pressure to perform high-pressure cleaning.
  • the cleaning liquid may be sprayed in a mist form.
  • a plurality of jet nozzle portions 90 may be provided and these may be arranged in a line, for example. Furthermore, it is possible to set the ejection direction of the cleaning liquid from the ejection port 90 a of the jet nozzle section 90 to an oblique direction other than the direction perpendicular to the upper surface of the plate 101.
  • the spray angle of the cleaning liquid with respect to the upper surface of the plate 101 is not limited to 90 degrees.
  • the jet angle of the cleaning liquid may be made variable by driving the jet nozzle 90 with an actuator.
  • the cleaning liquid from the ejection port 90a may be ejected while being expanded within a predetermined angle range.
  • the type of cleaning liquid sprayed from the jet nozzle section 90 including the above-mentioned mixing ratio, dissolved gas concentration, etc.
  • pressure, ejection pattern, or temperature may be changed.
  • the cleaning conditions to be changed are not limited to one and may be plural.
  • the cleaning conditions are not limited to at least one of the characteristics of the cleaning liquid and the ejection conditions, and the cleaning mechanism does not necessarily include the ejection mechanism!
  • the ejection device 62 includes a cleaning liquid storage section 62a, a temperature control section 62b for controlling the temperature of the cleaning liquid supplied from the storage section 62a to a predetermined temperature (for example, high temperature), and a temperature-controlled cleaning liquid.
  • the pressurizing unit 62c delivers the gas to the pipe 63A side at a high pressure, and the operations of the accumulating unit 62a, the temperature control unit 62b, and the pressurizing unit 62c are controlled by a control unit 61 including a computer. For example, the temperature of the cleaning solution may be increased when the area to be cleaned is heavily contaminated.
  • a mixed jetting device 66 for mixing and jetting gas and cleaning liquid is connected to the middle of the pipe 63A through a flexible pipe 63B.
  • the mixing and ejecting device 66 includes, for example, a gas suction unit 66a that takes in the air in the tare room through a duct 66c and an internal dust filter, and a mixing and pressurizing unit 66b.
  • Mixing pressing 66b includes a gas supplied from the gas suction portion 6 6a, at a predetermined pressure by mixing a temperature-controlled washing solution is subjected fed through the pipe 63D from the temperature control unit 62b of the discharge device 62 Send to piping 63B side.
  • the operations of the gas suction unit 66a and the mixing and pressurizing unit 66b are controlled by the control unit 61.
  • valves 64A and 64B are mounted on the pipes 63A and 63B, respectively, and when using the ejection device 62, the control unit 61 closes the valve 64B and opens the valve 64A, and the mixed ejection device 66 When using, valve 64A is closed and valve 64B is opened.
  • valves 64A and 64B (same as valve 64C described later) can be used as measurement table MTB. It is desirable to install in a position close to.
  • the bottom force of the recess 60A is connected to the liquid recovery device 65 via the recovery flow path 87 in the measurement table body 159 and the external flexible pipe 63C, and the pipe 63C is also used for opening and closing.
  • Valve 64C is installed.
  • the collection device 65 includes a suction pump, a dust removal filter unit, and a collected liquid storage unit. The operation and the opening / closing of the valve 64C are controlled by the control unit 61.
  • the cleaning liquid that enters the recess 60A, etc. (Including the liquid forming the immersion area AR2) is recovered by the recovery device 65.
  • an objective lens 67a a two-dimensional image sensor 67b such as a CCD, and an illumination system (not shown) that illuminates the test surface DP
  • An observation device 67 including is arranged.
  • the image pickup signal of the image pickup element 67b is supplied to the image processing system of the control device CONT in FIG. 1 via the control unit 61.
  • the jet signal is based on the image pickup signal (image of the test surface DP).
  • the position of the member to be cleaned is confirmed by the nozzle unit 90 and the degree of contamination is confirmed.
  • the observation device 67 is not necessarily provided. Further, when the observation device 67 is provided in the measurement stage MST, a part of the observation device 67, for example, the above-described illumination system may be arranged outside the measurement stage MST.
  • the cleaning liquid ejected from the ejection device 62 in FIG. 4 is, for example, a mixed liquid of water and thinner, y-butyl lactone, or IPA, similar to the cleaning liquid supplied from the cleaning liquid supply unit 26 in FIG. It is possible to use a solvent such as the above or a liquid containing the liquid 1 described above. In the present embodiment, it is assumed that the cleaning liquid ejected from the ejection device 62 is the same type as the cleaning liquid supplied from the cleaning liquid supply unit 26.
  • the control of the jetting device 62, the mixed jetting device 66, the recovery device 65 by the control unit 61, the opening / closing operation of the valves 64A to 64C, and the operation of the measurement stage MST corresponding to these operations are shown in FIG. Centrally controlled by the control device CON T.
  • the cleaning liquid storage 62a of the ejection device 62 is used as a cassette-type container of its own attachment / detachment, and the liquid recovered by the recovery device 65 (or the liquid recovery unit 21 of FIG. 1) is passed through a dust filter to the cassette-type container. Return this recovered liquid to the container May be reused as a cleaning solution. Further, the type of cleaning liquid may be different between the ejection device 62 and the cleaning liquid supply unit 26.
  • the cleaning liquid supply unit 26 may supply a solvent such as IPA, and the ejection device 62 may eject the liquid 1 itself. Furthermore, a part of the cleaning mechanism may be substituted by equipment such as a factory where the exposure apparatus EX is installed. Further, the cleaning mechanism is not limited to the above configuration, and for example, the storage unit 62a may not be provided.
  • a plurality of shot areas are set on the substrate P, and the control apparatus CONT in this example has a predetermined path for the substrate P with respect to the optical axis AX (projection area AR1) of the projection optical system PL.
  • the substrate stage PST is moved while monitoring the output of the laser interferometer 56B so that the plurality of shot areas are sequentially exposed by the step “and” scan method.
  • a partial pattern image of the mask M is projected onto the rectangular projection area AR1 by the projection optical system PL, and the mask M moves at a speed in the X direction with respect to the illumination area.
  • the substrate P moves in the X direction at a speed of
  • 8 is the projection magnification
  • the next shot area is moved to the scanning start position by step movement of the substrate ⁇ , and as shown in Fig. 5, the step-and-scan method is used. Scanning exposure processing for each shot region is sequentially performed while moving the substrate ⁇ .
  • the control device CONT in Fig. 1 drives the liquid supply mechanism 10 to perform a liquid supply operation on the substrate ⁇ .
  • the liquid 1 delivered from the liquid supply unit 11 of the liquid supply mechanism 10 flows through the supply pipe 12 and then is supplied onto the substrate substrate via supply flow channels 82 and 82 formed in the nozzle member 30.
  • the liquid 1 supplied on the substrate ⁇ flows under the projection optical system PL in accordance with the movement of the substrate ⁇ .
  • the liquid 1 moves in the + X direction, which is the same direction as the substrate P, at approximately the same speed as the substrate P.
  • the exposure light EL that has been emitted from the illumination optical system IL and passed through the mask M is irradiated onto the image plane side of the projection optical system PL, whereby the pattern of the mask M is projected onto the projection optical system PL and the immersion area AR2.
  • the substrate P is exposed through the liquid 1.
  • the control device C ONT is used when the exposure light EL is irradiated on the image plane side of the projection optical system PL, ie, During the exposure operation of the plate P, the liquid 1 is supplied onto the substrate P by the liquid supply mechanism 10. The liquid immersion area AR2 is formed satisfactorily by continuing the supply of the liquid 1 by the liquid supply mechanism 10 during the exposure operation.
  • the control device CONT detects the liquid 1 on the substrate P by the liquid recovery mechanism 20 when the exposure light EL is irradiated on the image plane side of the projection optical system PL, that is, during the exposure operation of the substrate P. Collect.
  • the liquid recovery mechanism 20 continuously recovers the liquid 1 so that the liquid immersion area AR2 Expansion can be suppressed.
  • the liquid supply mechanism 10 simultaneously supplies the liquid 1 onto the substrate P from both the supply ports 13 and 14 in the projection area AR 1.
  • the liquid 1 supplied onto the substrate P from the supply ports 13 and 14 flows between the lower end surface of the optical element 2 at the end of the projection optical system PL and the substrate P, and the nozzle member 30 (first member). It spreads well between the lower surface of 31) and the substrate P, and the immersion area AR2 is formed in a range wider than at least the projection area AR1.
  • the supply ports 13 and 14 are connected to different liquid supply units, the liquid supply amount per unit time supplied from the front side of the projection area AR1 in the scanning direction is the opposite side. You may set more than the amount of liquid supplied in.
  • the recovery operation of the liquid 1 by the liquid recovery mechanism 20 is not performed.
  • the flow path of the recovery tube 22 is opened to recover the liquid 1 on the substrate P. May be.
  • the liquid recovery mechanism 20 performs only during a part period (at least part of the stepping period) until the start of exposure of the next shot area.
  • the liquid 1 on the substrate P may be collected.
  • the control device CONT continues the supply of the liquid 1 by the liquid supply mechanism 10 during the exposure of the substrate P.
  • the vibration of the liquid 1 (so-called water hammer phenomenon) that can be satisfactorily filled with the liquid 1 can be satisfactorily filled with the liquid 1 between the projection optical system PL and the substrate P. Occurrence can be prevented.
  • the entire shot area of the substrate P can be exposed by the immersion method.
  • the control device CONT moves the measurement stage MST to a position facing the optical element 2 of the projection optical system PL, and forms an immersion area AR2 on the measurement stage MST.
  • the substrate stage PST and measurement stage MST are close to each other
  • the liquid immersion area AR2 is moved between the substrate stage PST and the measurement stage MST by moving in step (b) and placing the other stage opposite the optical element 2 by exchanging with one stage.
  • the controller CONT uses the at least one measuring instrument (measuring member) mounted on the measuring stage MST with the immersion area AR2 formed on the measuring stage MST to measure exposure (for example, baseline Measure).
  • the substrate P in FIG. 1 and the liquid 1 in the immersion area AR2 come into contact with each other, some components of the substrate P may be eluted into the liquid 1.
  • the chemically amplified resist is a base resin, a photoacid generator (PAG: Photo Acid Generator) contained in the base resin. ), And an amine-based substance called Quenchia.
  • PAG Photo Acid Generator
  • Quenchia an amine-based substance
  • liquid 1 may come into contact with liquid 1, depending on the materials that make up the base material, some components of the base material (such as silicon) may elute.
  • the liquid 1 in contact with the substrate P may contain a minute foreign matter such as an impurity generated from the substrate P or a particle having a resist residual force. Liquid 1 may also contain minute foreign matter such as dust and impurities in the atmosphere. Therefore, the liquid 1 recovered by the liquid recovery mechanism 20 may contain foreign substances such as various impurities. There is sex. Therefore, the liquid recovery unit 21 discharges the recovered liquid 1 to the outside. In addition, after cleaning at least a part of the collected liquid 1 with an internal processing device, the cleaned liquid 1 may be returned to the liquid supply unit 11.
  • foreign matters larger than the mesh of the mesh filter 25 provided in the recovery port 24 of the nozzle member 30 in FIG. May adhere to the surface (outer surface) of the mesh filter 25 and remain.
  • foreign matter may adhere to the liquid contact area of the nozzle member 30 other than the mesh filter 25. The foreign matter remaining in this manner may be mixed again in the liquid 1 in the immersion area AR2 when the substrate P is exposed. If foreign matter mixed in the liquid 1 adheres to the substrate P, the pattern formed on the substrate P may have a defect such as a shape defect.
  • the exposure apparatus EX of the present example cleans the foreign matter remaining on the nozzle member 30 during regular maintenance of the liquid supply mechanism 10 and the liquid recovery mechanism 20 or during maintenance required by an operator or the like. It is executed as follows according to the sequence of (A).
  • the liquid recovery unit 21 constantly monitors the level of liquid particles collected, and when the particle level exceeds a predetermined allowable range, maintenance including the following cleaning operation is executed. May be.
  • a particle counter that measures the number of foreign substances (particles) via a branch pipe may be provided in the middle of the collection pipe 22, and the number of particles in the collected liquid may be monitored.
  • the particle counter extracts a predetermined volume of liquid at a predetermined sampling rate, collects a liquid beam, irradiates the extracted liquid with a laser beam, and performs image processing on the image of the scattered light.
  • the following cleaning operation may be performed at any time during the exchange of the substrate P on the substrate stage PST.
  • it may be possible to detect in advance the dirty part of the nozzle member 30 using the observation device 67 of FIG. 4 and to wash only the heavily contaminated part during the cleaning operation !, .
  • step 301 of FIG. 9A the substrate holder PH on the substrate stage PST is placed on the substrate holder PH.
  • the measurement stage MST measurement table MTB is brought into close contact (or close proximity).
  • move the substrate stage PST and measurement table MTB (measurement stage MST) simultaneously in the + X direction The concave portion 60A of the measurement table MTB is moved directly under the projection optical system PL (moving process).
  • the substrate stage PST may be further retracted in the + X direction.
  • the column mechanism (not shown) is supported by the support members 33A and 33B (with a liquid repellent coating) so as to surround the optical element 2 at the tip of the projection optical system PL.
  • the jet nozzle portion 90 in the recess 6OA on the measurement table MTB moves to the bottom surface of the recovery port 24 (mesh filter 25) of the nozzle member 30 supported by the nozzle member 30.
  • step 302 the supply port 13 of the nozzle member 30 from the liquid supply mechanism 10 of FIG. 14, the liquid 1 is supplied between the bottom surface of the optical element 2 of the projection optical system PL and the nozzle member 30 surrounding the projection optical system PL and the top surface of the measurement table MTB, as shown in FIG. Then, the immersion area AR 2 is formed (immersion process). At this time, the liquid 28 in the liquid immersion area AR2 is recovered by the liquid recovery mechanism 20 by closing the valve 28 in FIG. 1 and opening the valve 23 so that the liquid immersion area AR2 does not spread outside the nozzle member 30.
  • the valve 64C in FIG. 4 is opened as necessary, and the liquid 1 in the recess 60A is recovered through the recovery flow path 87 and the pipe 63C in FIG. You can collect it at By forming the liquid immersion area AR2 in advance as described above, the foreign matter attached to the nozzle member 30 can be easily peeled off. It is also possible to suppress the scattering of the cleaning liquid sprayed from the spray device 62 and hitting the nozzle member 30. In this state, the recovery of the liquid 1 from the liquid immersion area AR2 by the liquid recovery mechanism 20 in FIG. 1 is stopped, and the supply of the liquid 1 from the liquid supply mechanism 10 to the liquid immersion area AR2 is stopped. The liquid immersion area AR2 is maintained between the bottom surface of the optical element 2 and the nozzle member 30 and the measurement table MTB by the liquid repellency of the upper surface of the measurement table MTB and the surface tension of the liquid 1.
  • step 303 the valve 64 B is closed and the valve 64 A is opened under the control of the control unit 61, and the piping 63 A and the supply flow path 86 are connected from the ejection device 62.
  • the cleaning liquid 1B is sprayed through the jet nozzle portion 90 toward the mesh filter 25 in the recovery port 24 of the nozzle member 30.
  • the cleaning liquid 1B flowing into the recess 60A is recovered by the recovery device 65 via the recovery flow path 87 and the pipe 63C of FIG. In this way, the cleaning liquid 1B is ejected from the jet nozzle section 90. 4 and driving the measurement stage MST in FIG.
  • the cleaning operation from FIG. 7A to FIG. 7D may be repeated a plurality of times.
  • the liquid 1 supply and recovery operation to the liquid immersion area AR2 in FIG. 7 (B) (step 302) and the cleaning liquid 1B injection operation (step 303) from the jet nozzle section 90 in step (C) are performed. It may be executed at least partially in parallel.
  • the cleaning liquid 1B may be recovered by the liquid recovery mechanism 20 instead of or in parallel with the recovery of the cleaning liquid 1B by the recovery device 65.
  • the supply and recovery operations of the liquid 1 to the immersion area AR2 may be performed continuously.
  • the amount of foreign matter in the liquid in the immersion area AR2 on the substrate P is reduced, so that the shape error of the transferred pattern is reduced and exposure can be performed with high accuracy. It can.
  • the liquid supply ports 13 and 14 and the recovery port 24 are provided in different nozzle members in FIG. 1, only one of the nozzle members is cleaned in the cleaning process. But you can.
  • the cleaning liquid from the jet nozzle section 90 is sprayed onto the portion to be cleaned including at least a part of the portion that may come into contact with the liquid 1 (liquid contact portion) during exposure by the immersion method. Also good. This also reduces the amount of foreign matter in the liquid during subsequent exposures.
  • This cleaned part is not limited to the other wetted parts of the nozzle member 30 except for the mesh filter 25 (recovery port 24) and the supply ports 13 and 14, and is different from the nozzle member 30 such as the optical element 2 Even the wetted part.
  • the cleaning liquid 1B is sprayed from the jet nozzle section 90, the foreign matter adhering to the nozzle member 30 can be efficiently removed.
  • a simple spray loca that uses the jet nozzle portion 90 may also eject the cleaning liquid 1B toward the portion to be cleaned.
  • the measurement table MTB may be vibrated in at least one of the X direction, the Y direction, and the Z direction. Good.
  • the aforementioned cleaning conditions may include the presence or absence of vibration of the measurement table MTB, and Z or vibration conditions.
  • the cleaning liquid supplied from the jetting device 62 in FIG. 4 is sprayed from the jet nozzle 90, but the cleaning liquid and gas supplied from the mixed jetting device 66 in FIG.
  • the mixture may be ejected from the jet nozzle section 90.
  • the cleaning effect can be enhanced by the bubbles (cavitation bubbles). Dissolve nitrogen or other gas in the cleaning solution.
  • the nozzle member 30 of the present example is disposed so as to surround the optical element 2 closest to the image plane of the projection optical system PL, and a mesh filter 25 is provided in the recovery port 24 of the nozzle member 30.
  • the cleaning liquid 1B is sprayed onto the mesh filter 25 and the like.
  • the cleaning liquid 1B may also be sprayed onto the lower surface of the optical element 2. As a result, foreign matter adhering to the optical element 2 can also be removed.
  • the cleaning operation includes an operation (collection process) of collecting the cleaning liquid 1B ejected from the jet nozzle section 90, the cleaning liquid 1B mixed with foreign matters is discharged to the outside. Can do.
  • the cleaning liquid 1B recovery mechanism (mechanism including the recovery device 65 in FIG. 4) is measured. Force provided on the measuring stage MST side
  • the suction port for the cleaning liquid may be provided in the vicinity of the nozzle member 30, for example.
  • the apparatus for sucking the cleaning liquid such as the suction loci, can also be used as the liquid recovery apparatus 21 of FIG. 1, thereby simplifying the configuration of the measurement stage MST (movable body).
  • the liquid 1 itself as the cleaning liquid 1B.
  • the cleaning liquid supply unit 26 in FIG. 1 and the accumulating unit 62a of the ejection device 62 in FIG. 4 are also used as the liquid supply unit 11 in FIG. Therefore, the configuration of the liquid and cleaning liquid supply mechanism can be simplified.
  • the exposure apparatus in this example is basically the same as the exposure apparatus EX in FIG. 1, but the exposure apparatus in this example has a cleaning provided on the measurement stage MST side in FIG. 1 to clean the nozzle member 30.
  • the mechanism is different.
  • parts corresponding to those in FIGS. 4 and 7A are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 8A is a cross-sectional view showing the nozzle member 30 provided so as to surround the measurement table MTB of the measurement stage MST (see FIG. 1) of this example and the optical element 2 of the projection optical system PL.
  • the liquid 1 is supplied from the liquid supply mechanism 10 of FIG. 1 through the nozzle member 30 and the liquid recovery mechanism 20 collects the liquid 1.
  • the liquid immersion area AR2 is formed so as to include a space between the bottom surfaces of the optical element 2 and the nozzle member 30 of the projection optical system PL and the surface of the substrate (not shown) facing the optical element 2 and the nozzle member 30.
  • FIG. 8 (A) the central portion in the X direction (scanning direction) of the upper surface of the measurement table main body MTB is formed along the side surface in the X direction of the measurement table MTB.
  • a check valve 89 is provided to prevent liquid from flowing upward (in the + Z direction).
  • a recess 60A is formed in the vicinity of the opening communicating with the recovery channel 87A on the upper surface of the measurement table MTB, the jet nozzle 90 is fixed to the center of the recess 60A, and the bottom of the recess 60A is the recovery channel 87B.
  • the liquid inlet at the bottom of the jet nozzle 90 in the recess 60A is a cylinder for accumulating liquid via the supply flow path 86 in the measurement table MTB and the external supply pipe 63E. It communicates with part 91.
  • the recovery flow path 87A communicates with the cylinder portion 91 from the side surface of the measurement table MTB through a recovery pipe 63F to which a dust filter 88 is attached.
  • a piston part 92 that is pushed and pulled by a drive part (not shown) (controlled by the control part 61 in FIG. 4) is mounted on the cylinder part 91 and is pulled into the cylinder part 91 by pulling the piston part 92.
  • Liquid 1 in the immersion area AR2 can be accumulated through the recovery pipe 63F, and the liquid 1 in the cylinder part 91 is injected upward from the jet nozzle part 90 through the supply pipe 63E by pushing the piston part 92.
  • the storage mechanism for the liquid 1 is configured including the recovery flow path 87A, the check valve 89, the recovery pipe 63F, the cylinder portion 91, the piston portion 92, and this drive portion (not shown).
  • a liquid 1 jetting device is configured including the supply flow path 86, the supply pipe 63E, the cylinder part 91, the piston part 92, and the drive part (not shown).
  • the cleaning mechanism of this example is configured including the accumulating mechanism and the ejection device.
  • the liquid 1 accumulation mechanism including the recovery pipe 63F, the cylinder portion 91, and the piston portion 92 is jetted from the jet nozzle portion 90 and flows into the recess 60A together with the recovery flow path 87B. It is also used as a liquid recovery mechanism.
  • a temperature control unit that controls the temperature of the liquid 1 may be provided between the supply pipe 63E and the cylinder unit 91 to control the temperature of the liquid ejected from the jet nozzle unit 90. .
  • a mixing unit that mixes (or dissolves) a gas such as air into the liquid 1 is provided between the supply pipe 63 E and the cylinder unit 91, and a gas (bubble) is generated in the liquid ejected from the jet nozzle unit 90. May be mixed.
  • a cleaning liquid in which a solvent such as thinner or IPA is mixed in the liquid 1 may be sprayed from the jet nozzle section 90. Further, the cleaning mechanism of this example is not limited to the above configuration.
  • FIG. 8 (A) the measurement stage MST is driven in a state where irradiation of the exposure light EL is stopped, and the opening of the collection channel 87A of the measurement table MTB is moved to the bottom surface of the projection optical system PL. (Moving process). In this state, it is assumed that the piston portion 92 of the cylinder portion 91 is pushed to the limit and the liquid 1 is not accumulated in the cylinder portion 91.
  • the liquid supply mechanism 10 shown in FIG. the liquid 1 is supplied between the bottom surface of the nozzle member 30 surrounding this and the top surface of the measurement table MTB to form the liquid immersion area AR2 (liquid immersion process). Then, the piston part 92 of the cylinder part 91 is gradually pulled to the limit, and the liquid 1 in the liquid immersion area AR2 is accumulated in the cylinder part 91 via the recovery flow path 87A and the recovery pipe 63F (accumulation step). At this time, the liquid supply mechanism 10 in FIG.
  • the piston portion 92 of the cylinder portion 91 is gradually pushed so that the liquid 1 accumulated in the cylinder portion 91 is supplied to the supply pipe 63E, the supply flow path 86, And it injects toward the mesh filter 25 in the collection port 24 of the nozzle member 30 through the jet nozzle part 90.
  • the measurement stage MST in FIG. 4 is driven in the X and Y directions, so that the jet nozzle as shown in FIG.
  • the portion 90 is relatively moved along the rectangular frame-shaped collection port 24 and the supply ports 13 and 14 of the nozzle member 30. Thereby, the liquid 1 is sprayed on the entire surface of the mesh filter 25 and the supply ports 13 and 14 (cleaning process). In this case, since the check valve 89 is provided, the liquid 1 does not flow back in the recovery flow path 87A.
  • the liquid 1 in the cylinder portion 91 runs short during the process, as shown in FIG. 8 (A), the liquid is supplied from the liquid supply mechanism 10 of FIG. 1 to the liquid immersion area AR2 via the nozzle member 30. 1 may be supplied, and the piston portion 92 may be pulled to refill the cylinder portion 91 with the liquid 1. At this time, the liquid 1 flowing into the recess 60A is also collected. Thereafter, the liquid 1 can be ejected from the jet nozzle portion 90 again by pushing the piston portion 92. As a result, most of the foreign matters adhering to the mesh filter 25 (recovery port 24) and the supply ports 13 and 14 in the nozzle member 30 are mixed or dissolved in the liquid 1.
  • the cleaning liquid for cleaning the nozzle member 30 As the cleaning liquid for cleaning the nozzle member 30, the liquid 1 supplied from the liquid supply mechanism 10 of FIG. 1 to the immersion area AR2 via the nozzle member 30 is used. Therefore, the cleaning liquid supply mechanism can be simplified. Further, since it is equivalent to supplying the liquid 1 to the liquid contact portion in advance, the foreign matter adhering in the nozzle member 30 can be efficiently removed. Therefore, the maintenance of the liquid supply mechanism 10 and the liquid recovery mechanism 20 (and hence the maintenance of the exposure apparatus) or the cleaning of the nozzle member 30 can be performed efficiently.
  • the liquid may be ejected from the jet nozzle unit 90 to the cleaning target part including at least a part of the liquid contact part. This also reduces the amount of foreign matter in the liquid during subsequent exposure.
  • This portion to be cleaned is not limited to the other wetted parts of the nozzle member 30 except the mesh filter 25 (recovery port 24) and the supply ports 13 and 14, but a member different from the nozzle member 30 such as the optical element 2 Even the wetted part.
  • the cylinder portion 91 and the piston portion 92 may be individually provided by the liquid 1 accumulation mechanism and the ejection device. In this case, for example, by connecting the two cylinders via a check valve, the liquid 1 accumulation step and the cleaning step using the liquid 1 are at least partially parallel. Can be performed.
  • liquid 1 is ejected onto the measurement table MTB.
  • a small pump is mounted, and the liquid 1 is supplied from the liquid supply mechanism 10 in FIG. 1 through the supply ports 13 and 14 in FIG. 8 (A), and the supplied liquid 1 is supplied to the nozzle member by the small pump.
  • the operation of spraying to the bottom surface of 30 may be continuously repeated.
  • the liquid 1 spouted on the measurement table MTB may be circulated and spouted again.
  • the overall stage mechanism can be miniaturized.
  • the measurement stage MST is powered to move the jet nozzle part 90 and the nozzle member 30 that inject the cleaning liquid 1B or the liquid 1 relative to each other.
  • the nozzle member 30 may be movable, and the jet nozzle 90 and the nozzle member 30 may be moved relative to each other on a stationary measurement stage MST (or substrate stage PST). In this case, both the nozzle member 30 and the measurement stage MST may be moved.
  • the liquid in the liquid immersion area AR2 may be vibrated to enhance the cleaning effect.
  • piezoelectric vibrators such as barium titanate or lead zirconate titanate (so-called PZT)
  • ultrasonic vibrators such as Freight vibrators (magnetostrictive vibrators) are used as members that vibrate the liquid.
  • the vibration of the liquid in the immersion area AR2 and the ejection of the cleaning liquid 1B or liquid 1 may be performed at least partially in parallel, or the immersion area AR2 prior to the ejection of the cleaning liquid 1B or liquid 1 Let's vibrate the liquid.
  • the liquid immersion area AR2 is formed with the liquid 1 during the cleaning operation.
  • a liquid different from the liquid for immersion exposure such as the cleaning liquid supply unit 26 or the above-described cleaning mechanism cover, is used.
  • the liquid immersion area AR2 may be formed with the cleaning liquid supplied from the head.
  • the same type of cleaning liquid as the cleaning liquid in the liquid region AR2 may be ejected, or a different type of cleaning liquid or liquid for immersion exposure may be ejected.
  • the force that forms the liquid immersion area AR2 during the cleaning operation may clean the wetted part without forming the liquid immersion area AR2.
  • a member that suppresses or prevents the splashing of the liquid that hits the liquid contact portion may be disposed, or a gas barrier surrounding the region to be cleaned of the liquid contact portion may be formed.
  • the cleaning mechanism adopts the liquid ejection method. However, when the cleaning mechanism can change the cleaning conditions, the cleaning mechanism is different from the liquid ejection method. A cleaning method may be adopted. Furthermore, in the above-described embodiment, the wetted part in contact with the liquid 1 for immersion exposure is to be cleaned, but if necessary, the part not in contact with the liquid 1 may be cleaned.
  • the mesh filter 25 installed in the recovery port 24 of the nozzle member 30 may be replaceable. Further, when the porous member force mesh filter 25 (mesh-like filter member) installed at the recovery port 24 or the like, foreign substances can be efficiently removed and the attached foreign substances can be easily cleaned. .
  • the porous member installed at the recovery port 24 of the nozzle member 30 while the force is applied is not limited to the mesh filter 25. That is, instead of the mesh filter 25, a porous member made of sponge or the like, or a porous member equipped with a replaceable cartridge type filter (ceramic filter or the like) can be used. The location where the porous member is installed is not limited to the collection port 24 or the like.
  • the mesh filter 25 in the nozzle member 30 (or in the case of other porous members) can be replaced, the mesh filter 25 to which foreign matter has adhered is replaced with another unused (or cleaned) mesh filter.
  • the control device CONT in FIG. 1 drives the liquid recovery mechanism 20, and the liquid flow path cover of the liquid 1 including the supply flow paths 82A and 82B and the recovery flow path 84 in the nozzle member 30 in FIG. It is desirable that all liquid 1 is discharged. As a result, when the mesh filter 25 is replaced, foreign matter eluted from the mesh filter 25 into the liquid 1 can be prevented from remaining in the nozzle member 30.
  • the measurement stage MST includes at least one of the plurality of measuring instruments and the reference mark as a measurement member in addition to the cleaning mechanism, but is mounted on the measurement stage MST.
  • the types and Z or number of measuring members are not limited to this.
  • a transmittance measuring instrument for measuring the transmittance of the projection optical system PL may be provided.
  • only a part of the above measuring instruments may be provided in the measuring stage MST, and the rest may be provided outside the measuring stage MST.
  • at least one measuring member may be provided on the substrate stage PST.
  • the cleaning mechanism is provided in measurement stage MST.
  • a movable stage (movable member, movable body) independent of measurement stage MST is used.
  • At least a part of the cleaning mechanism may be provided.
  • the movable stage may be the substrate stage PST or may be different from the substrate stage PST. In this case, for example, when the substrate P is replaced, in order to maintain the liquid immersion area AR2, the movable stage may be disposed to face the projection optical system PL by replacement with the substrate stage PST.
  • the position information of the mask stage RST, the substrate stage PST, and the measurement stage MST is measured using the interferometer system (56A to 56C).
  • the interferometer system 56A to 56C
  • an encoder system that detects a scale (diffraction grating) provided on each stage may be used.
  • the position control of the stage may be performed by switching between the interferometer system and the encoder system or using both.
  • the substrate holder PH may be formed integrally with the substrate stage PST, or the substrate holder PH and the substrate stage PST are configured separately, and the substrate holder PH is formed by, for example, vacuum suction. It may be fixed to the substrate stage PST.
  • the present invention can also be applied to an exposure apparatus (an exposure apparatus that does not include a measurement stage MST) in which various measuring instruments are mounted on the substrate stage PST. Further, only a part of various measuring instruments may be mounted on the measuring stage MST or the substrate stage PST, and the rest may be provided on the outside or another member. In these cases, for example, a cleaning mechanism including the jet nozzle 90 shown in FIG. 4 may be provided on the substrate stage PST side.
  • the irradiation area of the exposure light EL (including the above-described illumination area and projection area AR1) is rectangular.
  • the present invention is not limited to this, and may be, for example, an arc.
  • the irradiation area (such as AR1) is set to include the optical axis AX within the field of view of the projection optical system PL.
  • the present invention is not limited to this, and may be set eccentrically without including the optical axis AX, for example. Good.
  • step 201 for a micro device such as a semiconductor device
  • step 201 for performing a function / performance design of the micro device and a mask (retinal) based on the design step are manufactured.
  • the substrate P in each of the above embodiments is used not only for semiconductor wafers for manufacturing semiconductor devices but also for glass substrates for display devices, ceramic wafers for thin film magnetic heads, or exposure apparatuses.
  • a mask or reticle master synthetic quartz, silicon wafer
  • a film member is applied.
  • the shape of the substrate P is not limited to a circle but may be other shapes such as a rectangle.
  • the DMD has a plurality of reflective elements (micromirrors) driven based on predetermined electronic data, and the plurality of reflective elements are arranged in a two-dimensional matrix on the surface of the DMD, and It is driven element by element to reflect and deflect exposure light. The angle of the reflecting surface of each reflecting element is adjusted.
  • the operation of the DMD can be controlled by the control device CONT.
  • the control device CONT drives the DMD reflecting element based on the electronic data (pattern information) corresponding to the pattern to be formed on the substrate P, and patterns the exposure light irradiated by the illumination system IL with the reflecting element. .
  • DMD eliminates the need for mask replacement work and mask alignment on the mask stage when the turn is changed. Therefore, the exposure operation can be performed more efficiently.
  • the mask stage may not be provided, and the substrate may be simply moved in the X-axis and Y-axis directions by the substrate stage.
  • an exposure apparatus using DMD is disclosed in, for example, Japanese Patent Laid-Open No. 8-31384. No. 2 and JP-A-2004-304135. To the extent permitted by the laws of the designated or selected country, the disclosure of US Pat. No. 6,778,257 is incorporated into the text.
  • the exposure apparatus EX in addition to the step-and-scan type scanning exposure apparatus (scanning stepper) that scans and exposes the pattern of the mask M by synchronously moving the mask M and the substrate P,
  • the present invention can also be applied to a step-and-repeat projection exposure apparatus (step bar) in which the pattern of the mask M is collectively exposed while the mask M and the substrate P are stationary, and the substrate P is sequentially moved stepwise.
  • the type of exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern onto a substrate P, but an exposure apparatus for manufacturing a liquid crystal display element or display, a thin film magnetic head, a micromachine, MEMS, DNA It can be widely applied to an exposure apparatus for manufacturing a chip, an imaging device (CCD), a reticle, a mask, or the like.
  • the present invention is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 10-163099 and 10-214783 (corresponding US Pat. Nos. 6,341,007,6,400,441,6,549,269 and 6,590). , 634), JP 2000-505958 (corresponding to US Pat. No. 5,969,441) or US Pat. No. 6,208,407, etc.
  • the present invention can also be applied to a multi-stage type exposure apparatus provided with a substrate stage.
  • the disclosure of the above-mentioned US patent is incorporated into the text.
  • the projection optical system of the above-described embodiment is disclosed in, for example, International Publication No. 2004Z019128 pamphlet, a force that fills the optical path space (immersion space) on the image plane side of the optical element at the tip with a liquid.
  • a projection optical system that fills the optical path space on the mask side of the optical element at the tip with a liquid can also be employed.
  • the present invention also provides a liquid immersion area between the projection optical system and the substrate around the air curtain as disclosed in, for example, WO 2004Z093159 pamphlet and US Patent Application Publication No. 2006Z0023189A1. It can also be applied to an immersion type exposure apparatus held in
  • an interference fringe is formed on the substrate P, whereby a line 'and' spacer is formed on the substrate P.
  • the present invention can also be applied to an exposure apparatus that forms a source pattern. Also in this case, the exposure light is irradiated to the substrate P through the liquid between the optical member and the substrate P.
  • JP-T-2004-519850 corresponding to US Pat. No. 6,611,316
  • two mask patterns are formed on the substrate via a projection optical system.
  • the present invention can also be applied to an exposure apparatus that combines and double-exposes one shot area on the substrate almost simultaneously by one scanning exposure.
  • the liquid supply unit and the Z or liquid recovery unit need not be provided in the exposure apparatus.
  • facilities such as a factory in which the exposure apparatus is installed may be substituted.
  • the structure necessary for immersion exposure is not limited to the above-described structure.
  • European Patent Publication No. 1420298, International Publication No. 2004Z055803, International Publication No. 2004Z057590, International Publication No. 2005Z029559 ( Corresponding US Patent Publication No. 2006Z0231206), International Publication No. 2004/086468 Pamphlet (corresponding US Patent Publication No. 2005Z0280791), JP 2004-289126 A (corresponding US Patent No. 6,952,253), etc. Can be used.
  • the immersion mechanism of the immersion exposure apparatus and its accessory equipment are partly described in the text, with the disclosure of the above-mentioned U.S. patent or U.S. patent publication, to the extent permitted by the laws of the designated country or selected country.
  • U.S. patent or U.S. patent publication to the extent permitted by the laws of
  • liquid 1 used in the immersion method a liquid having a higher refractive index with respect to exposure light than water, for example, a refractive index of about 1.6 to 1.8 is used. Also good.
  • liquid 1 having a refractive index higher than that of pure water (for example, 1.5 or more) for example, isopropanol having a refractive index of about 1.50 and glycerol (glycerin) having a refractive index of about 1.61 —
  • predetermined liquids having H bonds or O—H bonds predetermined liquids (organic solvents) such as hexane, heptane, decane, or decalin (Decalin: Decahydronaphthalene) having a refractive index of about 1.60.
  • the liquid 1 may be a mixture of any two or more of these liquids, or may be a mixture of at least one of these liquids in pure water (mixed). Further, the liquid 1, H + in the pure water, Cs +, K +, Cl _, SO 2_, a base such as PO 2_ or
  • Liquid 1 has a low temperature dependency with a small light absorption coefficient. It is preferably stable with respect to the projection optical system PL and the photosensitive material (or top coat film or antireflection film) coated on the surface of Z or the substrate P. A supercritical fluid can be used as the liquid 1. Further, the substrate P can be provided with a top coat film for protecting the photosensitive material or the base material from the liquid.
  • the optical element (terminal optical element) 2 of the projection optical system PL is replaced with calcium fluoride (fluorite), for example, quartz (silica), barium fluoride, strontium fluoride, lithium lithium And a single crystal material of a fluorinated compound such as sodium fluoride, or a material having a refractive index higher than that of quartz or fluorite (eg, 1.6 or more).
  • a material having a refractive index of 1.6 or more include sapphire, germanium dioxide, etc. disclosed in International Publication No. 2005Z059617, or disclosed in International Publication No. 2005/059618, Potassium chloride (refractive index is about 1.75) can be used.
  • the terminal optical in addition to the optical path on the image plane side of the terminal optical element, the terminal optical
  • the optical path on the object plane side of the element may be filled with liquid.
  • a thin film having lyophilicity and Z or a dissolution preventing function may be formed on a part (including at least a contact surface with the liquid) or the entire surface of the terminal optical element. Quartz has a high affinity for liquids and does not require a dissolution preventing film, but fluorite preferably forms at least a dissolution preventing film.
  • a DFB semiconductor laser as disclosed in, for example, International Publication No. 1999Z46835 pamphlet (corresponding US Pat. No. 7,023,610) using an ArF excimer laser as a light source of exposure light EL.
  • a harmonic generator that outputs pulsed light having a wavelength of 193 nm may be used, including a solid-state laser light source such as a fiber laser, an optical amplification unit having a fiber amplifier, and a wavelength conversion unit.
  • the projection area is rectangular, but other shapes such as an arc, trapezoid, parallelogram, or rhombus may be used.
  • the exposure apparatus EX has various subsystems including the respective constituent elements recited in the claims of the present application in predetermined mechanical accuracy, electrical accuracy, optical Manufactured by assembling to maintain accuracy.
  • various optical systems are adjusted to achieve optical accuracy
  • various mechanical systems are adjusted to achieve mechanical accuracy
  • various electrical systems Adjustments are made to achieve electrical accuracy.
  • Various subsystem powers The assembly process to the exposure equipment includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. It is desirable to manufacture the exposure apparatus in a clean room where the temperature and cleanliness are controlled.
  • the exposure apparatus that performs exposure by the liquid immersion method can be efficiently maintained, the amount of foreign matter in the liquid in the liquid immersion area is reduced during the subsequent exposure, and the device can be reduced. Can be manufactured with high accuracy.

Description

明 細 書
メンテナンス方法、露光方法及び装置、並びにデバイス製造方法 技術分野
[0001] 本発明は、液体を介して露光ビームで基板を露光する露光装置のメンテナンス技 術、並びにこのメンテナンス技術を用いる露光技術及びデバイス製造技術に関する 背景技術
[0002] 半導体デバイス及び液晶表示デバイス等のマイクロデバイス (電子デバイス)は、レ チクル等のマスク上に形成されたパターンをレジスト (感光材料)が塗布されたウェハ 等の基板上に転写する、所謂フォトリソグラフィの手法により製造される。このフォトリソ グラフイエ程にぉ 、て、マスク上のパターンを投影光学系を介して基板上に転写する ために、ステップ 'アンド'リピート方式の縮小投影型の露光装置 (いわゆるステッパー )、及びステップ'アンド'スキャン方式の縮小投影型の露光装置 (いわゆるスキヤニン グ 'ステッパー)等の露光装置が使用されている。
[0003] この種の露光装置では、半導体デバイス等の高集積ィ匕によるパターンの微細化に 伴って、年々より高い解像度 (解像力)が要求されるのに応えるために、露光光の短 波長化及び投影光学系の開口数 (NA)の増大 (大 NA化)が行われて来た。しかる に、露光光の短波長化及び大 NA化は、投影光学系の解像度を向上させる反面、焦 点深度の狭小化を招くため、このままでは焦点深度が狭くなり過ぎて、露光動作時の フォーカスマージンが不足する恐れがある。
[0004] そこで、実質的に露光波長を短くして、かつ空気中に比べて焦点深度を広くする方 法として、液浸法を利用した露光装置が開発されている (例えば、特許文献 1参照)。 この液浸法は、投影光学系の下面と基板表面との間を水又は有機溶媒等の液体で 満たして液浸領域を形成した状態で露光を行うものである。これによつて液体中での 露光光の波長が空気中の lZn倍 (nは液体の屈折率で、例えば 1. 2〜1. 6程度)に なることを利用して解像度を向上できるとともに、焦点深度を約 n倍に拡大することが できる。 特許文献 1:国際公開第 99Z49504号パンフレット
発明の開示
発明が解決しょうとする課題
[0005] 上記の如く液浸法を用いて露光処理を行う場合、所定の液体供給機構から投影光 学系と基板との間の液浸領域に液体を供給しつつ基板の露光を行!ヽ、所定の液体 回収機構によってその液浸領域の液体を回収する。し力しながら、この液浸法による 露光中にレジスト残滓等の微小な異物 (パーティクル)力 液体と接する部分 (接液部 )、例えば液体供給機構及び液体回収機構の液体の流路等に次第に蓄積される恐 れがある。このように蓄積された異物は、その後の露光時に、再び液体中に混入して 露光対象の基板上に付着して、転写されるパターンの形状不良等の欠陥の要因に なる可能性がある。
[0006] そのため、例えば露光装置の定期的なメンテナンス時等に、何らかの方法で効率 的にその液体供給機構及び液体回収機構の液体の流路等に蓄積される異物を除 去することが望ましい。
本発明はこのような事情に鑑み、液浸法で露光を行う露光装置の効率的なメンテナ ンス技術を提供することを目的とする。
[0007] また、本発明は、そのメンテナンス技術を容易に適用できる露光技術及びデバイス 製造技術を提供することをも目的とする。
さらに、本発明は、液体と接する接液部の洗浄を容易に行うことができる洗浄技術、 露光技術、及びデバイス製造技術を提供することをも目的とする。
課題を解決するための手段
[0008] 本発明による第 1のメンテナンス方法は、光学部材 (2)と基板 (P)との間を第 1液体 で満たして液浸空間を形成し、その光学部材とその第 1液体とを介して露光光でその 基板を露光する露光装置のメンテナンス方法にぉ 、て、その第 1液体でその液浸空 間を形成する液浸空間形成部材 (30)と対向して可動体 (MST)を配置する移動ェ 程と、その液浸空間形成部材を用いてその可動体上にその第 1液体によるその液浸 空間を形成する液浸工程と、その第 1液体に接する接液部の洗浄を行うために、そ の可動体側力 その接液部の少なくとも一部を含む領域に向けて第 2液体を噴出す る洗浄工程とを有するものである。
[0009] 本発明によれば、液浸法で露光を行う際にその接液部に付着する異物の少なくと も一部をその第 2液体とともに容易に除去できる。この際に、予め又は少なくとも部分 的に並行してその第 1液体によって液浸空間を形成することによって、その接液部に 付着している異物の除去が容易になる。従って、その第 1液体の供給及び回収を行 う機構のメンテナンスを効率的に行うことができる。
[0010] また、本発明による第 2のメンテナンス方法は、光学部材 (2)と基板 (P)との間を第 1液体で満たして液浸空間を形成し、その光学部材とその第 1液体とを介して露光光 でその基板を露光する露光装置のメンテナンス方法において、その第 1液体でその 液浸空間を形成する液浸空間形成部材 (30)と対向して可動体 (MST)を配置する 移動工程と、その液浸空間形成部材を用いてその可動体上にその第 1液体を供給し 、この供給されたその第 1液体を蓄積する蓄積工程と、その第 1液体に接する接液部 の洗浄を行うために、その蓄積工程で蓄積されたその第 1液体をその接液部の少な くとも一部を含む領域に向けて噴出する洗浄工程とを有するものである。
本発明によれば、液浸法で露光を行う際にその接液部に付着する異物の少なくと も一部をその第 1液体とともに容易に除去できる。従って、その第 1液体の供給及び 回収を行う機構のメンテナンスを効率的に行うことができる。この際に、液浸露光の際 に用いる第 1液体を予め又は並行して供給することによって、接液部に付着した異物 を容易に除去できるとともに、その第 1液体を洗浄用の液体としても用いるため、洗浄 用の液体の供給機構が簡素化できる。
[0011] また、本発明による第 3のメンテナンス方法は、光学部材 (2)と第 1液体とを介して 露光光で基板を露光する露光装置のメンテナンス方法であって、その第 1液体と接 する接液部を有しかつその光学部材とその基板との間にその第 1液体を保持するノ ズル部材(30)と対向して可動体 (MST)を配置し、そのノズル部材を介してその可 動体に供給される第 2液体を用いてその接液部を洗浄するものである。
また、本発明による第 4のメンテナンス方法は、光学部材 (2)と第 1液体とを介して 露光光で基板を露光する露光装置のメンテナンス方法であって、その光学部材とそ の基板との間にその第 1液体を保持するノズル部材と対向して可動体を配置し、その 第 1液体と接する接液部に関する情報に応じて、その接液部の第 2液体による洗浄 条件を設定するものである。
これらの発明によれば、接液部の洗浄を容易に行うことができ、ひいては液浸法で 露光を行う露光装置の効率的なメンテナンスを行うことができる。
[0012] また、本発明の第 1の露光方法は、本発明のメンテナンス方法を用いる工程を有す るものである。
また、本発明の第 2の露光方法は、光学部材 (2)と第 1液体とを介して露光光で基 板 (P)を露光する露光方法であって、その第 1液体と接する接液部を有しかつその 光学部材とその基板との間にその第 1液体を保持するノズル部材 (30)と対向して可 動体 (MST)を配置し、そのノズル部材を介してその可動体に供給される第 2液体を 用いてその接液部を洗浄するものである。
また、本発明の第 3の露光方法は、光学部材 (2)と第 1液体とを介して露光光で基 板 (P)を露光する露光方法であって、その光学部材とその基板との間にその第 1液 体を保持するノズル部材 (30)と対向して可動体 (MST)を配置し、その第 1液体と接 する接液部に関する情報に応じて、その接液部の第 2液体による洗浄条件を設定す るものである。
この第 2又は第 3の露光方法によれば、接液部の洗浄を容易に行うことができ、ひ いては液浸法で露光を行う露光装置の効率的なメンテナンスを行うことができる。
[0013] また、本発明による第 1の露光装置は、光学部材 (2)と基板 (P)との間を第 1液体で 満たして液浸空間を形成し、その光学部材とその第 1液体とを介して露光光でその 基板を露光する露光装置にぉ ヽて、その第 1液体で液浸空間を形成する液浸空間 形成部材 (30)と、その光学部材に対して相対移動可能な可動体 (MST)と、その可 動体に少なくとも一部が設けられかつ第 2液体を噴出する液体噴出機構 (62, 63A, 90)と、その液浸空間形成部材を介してその可動体上にその第 1液体によるその液 浸空間が形成されているときに、その第 1液体に接する接液部の洗浄を行うために、 その液体噴出機構力 その接液部の少なくとも一部を含む領域に向けて第 2液体を 噴出させる制御装置 (61)とを備えたものである。
また、本発明による第 2の露光装置は、光学部材 (2)と基板 (P)との間を第 1液体で 満たして液浸空間を形成し、その光学部材とその第 1液体とを介して露光光でその 基板を露光する露光装置にぉ ヽて、その第 1液体で液浸空間を形成する液浸空間 形成部材 (30)と、その光学部材に対して相対移動可能な可動体 (MST)と、その液 浸空間形成部材を介してその可動体上に供給されるその第 1液体を蓄積する蓄積 機構 (63F, 91, 92)と、その可動体に少なくとも一部が設けられ、その第 1液体に接 する接液部の洗浄を行うために、その蓄積機構で蓄積されたその第 1液体をその接 液部の少なくとも一部を含む領域に向けて噴出する液体噴出装置(63E, 91, 92)と を備えたものである。
また、本発明による第 3の露光装置は、光学部材 (2)と第 1液体とを介して露光光で 基板 (P)を露光する露光装置であって、その第 1液体と接する接液部を有しかつそ の光学部材とその基板との間にその第 1液体を保持するノズル部材 (30)と、その光 学部材に対して相対移動可能な可動体 (MST)と、その可動体に少なくとも一部が 設けられ、そのノズル部材を介してその可動体に供給される第 2液体を用いてその接 液部を洗浄する洗浄部材を備えるものである。
また、本発明による第 4の露光装置は、光学部材 (2)と第 1液体とを介して露光光で 基板 (P)を露光する露光装置であって、その光学部材とその基板との間にその第 1 液体を保持するノズル部材 (30)と、その第 1液体と接する接液部を第 2液体で洗浄 する洗浄部材と、少なくともその洗浄時にそのノズル部材に対向して配置される可動 体 (MST)と、その洗浄部材を制御してその第 2液体による洗浄条件を可変とし、 つその接液部に関する情報に応じてその洗浄条件が設定する制御装置 (61)と、を 備えるものである。
これらの本発明の第 1、第 2、第 3、又は第 4の露光装置によってそれぞれ本発明の 第 1、第 2、第 3、又は第 4のメンテナンス方法を使用できる。
また、本発明によるデバイス製造方法は、本発明の露光方法又は露光装置を用い て基板を露光することと、その露光された基板を現像することを含むものである。 なお、以上の本発明の所定要素に付した括弧付き符号は、本発明の一実施形態 を示す図面中の部材に対応しているが、各符号は本発明を分力り易くするために本 発明の要素を例示したに過ぎず、本発明をその実施形態の構成に限定するもので はない。
発明の効果
[0015] 本発明によれば、接液部の洗浄を容易に行うことが可能となり、ひ 、ては液浸法で 露光を行う露光装置の効率的なメンテナンスを行うことができる。
図面の簡単な説明
[0016] [図 1]本発明の実施形態の一例の露光装置を示す一部を切り欠いた概略構成図で ある。
[図 2]図 1中のノズル部材 30を示す斜視図である。
[図 3]図 2の AA線に沿う断面図である。
[図 4]図 1中の計測ステージ MST側に設けられる洗浄機構を示す一部を切り欠いた 図である。
[図 5]図 1の基板ステージ PST及び計測ステージ MSTを示す平面図である。
[図 6]図 5の状態力 投影光学系 PLの底面に計測ステージ MSTが移動する過程を 示す平面図である。
[図 7]本発明の実施形態の一例の洗浄動作の説明に供する計測テーブル MTB及び ノズル部材 30を断面で表した図である。
[図 8] (A)は本発明の実施形態の他の例の洗浄機構を示す一部を切り欠いた図、 (B )はその洗浄機構から液体を噴射する様子を示す一部を切り欠!ヽた図である。
[図 9] (A)はメンテナンス動作の一例を示すフローチャート、 (B)はマイクロデバイスの 製造工程の一例を示すフローチャートである。
符号の説明
[0017] 1…液体、 2…光学素子、 10· ··液体供給機構、 11· ··液体供給部、 13, 14· ··供給 口、 20…液体回収機構、 21· ··液体回収部、 24· ··回収口、 25· ··メッシュフィルタ、 30 …ノズル部材、 62…噴出装置、 65· ··回収装置、 66· ··混合噴出装置、 89· ··逆止弁、 90…ジェットノズル部、 91 · ··シリンダー部、 92…ピストン部、 AR1…投景領域、 AR2 …液浸領域、 CONT…制御装置、 EL…露光光、 EX…露光装置、 M…マスク、 P〜 基板、 PL…投影光学系、 PST…基板ステージ、 MST…計測ステージ、 MTB…計 測テーブル 発明を実施するための最良の形態
[0018] 以下、本発明の好ましい実施形態の一例につき図 1〜図 7を参照して説明する。
図 1は第 1実施形態の露光装置 EXを示す概略構成図であり、図 1において、露光 装置 EXは、転写用のパターンが形成されたマスク Mを支持するマスクステージ RST と、露光対象の基板 Pを支持する基板ステージ PSTと、マスクステージ RSTに支持さ れているマスク Mを露光光 ELで照明する照明光学系 ILと、露光光 ELで照明された マスク Mのパターン像を基板ステージ PSTに支持されている基板 P上の投影領域 A R1に投影する投影光学系 PLと、ァライメント用の基準マーク等が形成されている計 測ステージ MSTと、露光装置 EX全体の動作を統括制御する制御装置 CONTと、液 浸法の適用のための液浸システム (液浸機構)とを備えている。本実施形態の液浸シ ステムは、に基板 P上及び計測ステージ MST上に液体 1を供給する液体供給機構 1 0と、基板 P上及び計測ステージ MST上に供給された液体 1を回収する液体回収機 構 20とを備えている。
[0019] 露光装置 EXは、少なくともマスク Mのパターン像を基板 P上に転写している間、液 体供給機構 10から供給した液体 1により投影光学系 PLの投影領域 AR1を含む基板 P上の一部の領域、又は基板 P上の一部の領域とその周囲の領域に(局所的に)液 浸領域 AR2を形成する。具体的には、露光装置 EXは、投影光学系 PLの像面側終 端部の光学素子 (例えば、底面 (射出面)がほぼ平坦なレンズ又は平行平面板等) 2 と、その像面側に配置された基板 P表面との間に液体 1を満たす局所液浸方式を採 用し、マスク Mを通過した露光光 ELで、投影光学系 PL及び投影光学系 PLと基板 P との間の液体 1を介して基板 Pを露光することによって、マスク Mのパターンを基板 P に転写露光する。なお、本例では投影光学系 PLから射出される露光光 ELの光路空 間を含む液浸空間を形成する液浸空間形成部材 (例えばノズル部材 30を含む)を用 Vヽて液浸露光を行うこととして 、る。
[0020] 本例では、露光装置 EXとして、マスク Mと基板 Pとを所定の走査方向に同期移動し つつマスク Mに形成されたパターンを基板 Pに露光する走査型露光装置 (所謂スキ ャユング'ステッパー)を使用する場合を例にして説明する。以下、投影光学系 PLの 光軸 AXに平行に Z軸を取り、 Z軸に垂直な平面内でマスク Mと基板 Pとの同期移動 方向(走査方向)に沿って X軸を、その走査方向に垂直な方向(非走査方向)に沿つ て Y軸を取って説明する。また、 X軸、 Y軸、及び Z軸周りの回転 (傾斜)方向をそれぞ れ、 Θ Χ, 0 Y、及び 0 Z方向とする。
[0021] 本文中で、基板は、例えばシリコンウェハのような半導体ウェハ等の基材そのもの だけでなぐこの基材上に感光材料であるレジスト(フォトレジスト)を塗布したものを含 み、この感光膜とは別に保護膜 (トップコート膜)などの各種の膜を塗布したものをも 含む。マスクは、基板上に縮小投影されるデバイスパターンが形成されたレチクルを 含み、例えば合成石英等のガラス板 (透明基板)上にクロム等の遮光膜を用いて所 定のパターンが形成されたものである。この透過型マスクは、遮光膜でパターンが形 成されるバイナリーマスクに限られず、例えばハーフトーン型あるいは空間周波数変 調型などの位相シフトマスクも含む。なお、本例の基板 Pは、例えば直径が 200mm 力 300mm程度の円板状の半導体ウェハ上に、不図示のコータ 'ディべロッパによ つてフォトレジストを所定の厚さ(例えば 200nm程度)で塗布し、必要に応じてその上 に反射防止膜又はトップコート膜を塗布したものを使用できる。
[0022] 先ず、照明光学系 ILは、マスクステージ RSTに支持されているマスク Mを露光光 E Lで照明するものであり、不図示の露光用光源から射出された光束の照度を均一化 するオプティカルインテグレータ、オプティカルインテグレータからの露光光 ELを集 光するコンデンサレンズ、リレーレンズ系、露光光 ELによるマスク M上の照明領域を スリット状に設定する可変視野絞り等を有している。マスク M上の所定の照明領域は 照明光学系 ILにより均一な照度分布の露光光 ELで照明される。照明光学系 ILから 射出される露光光 ELとしては、例えば水銀ランプ力 射出される紫外域の輝線 (i線 等)、 KrFエキシマレーザ光(波長 248nm)等の遠紫外光(DUV光)、又は ArFェキ シマレーザ光(波長 193nm)、 F レーザ光(波長 157nm)等の真空紫外光 (VUV光
2
)などが用いられる。本例においては、露光光 ELとして、 ArFエキシマレーザ光が用 いられる。
[0023] また、マスクステージ RSTは、マスク Mを支持するものであって、不図示のマスクべ ース上の投影光学系 PLの光軸 AXに垂直な平面内、すなわち XY平面内で 2次元移 動可能及び θ Z方向に微小回転可能である。マスクステージ RSTは例えばリニアモ ータ等のマスクステージ駆動装置 RSTDにより駆動される。マスクステージ駆動装置 RSTDは制御装置 CONTにより制御される。マスクステージ RST上には移動鏡 (反 射面) 55Aが設けられ、移動鏡 55Aに対向する位置にはレーザ干渉計 56Aが設け られている。実際には、レーザ干渉計 56Aは、 3軸以上の測長軸を有するレーザ干 渉計システムを構成している。マスクステージ RST (マスク M)の 2次元方向の位置、 及び回転角はレーザ干渉計 56Aによりリアルタイムで計測され、計測結果は制御装 置 CONTに出力される。制御装置 CONTはその計測結果に基づ 、てマスクステー ジ駆動装置 RSTDを駆動することでマスクステージ RSTに支持されているマスク Mの 移動又は位置決めを行う。なお、移動鏡 55Aは平面鏡のみでなくコーナーキューブ( レトロリフレクタ)を含むものとしてもよいし、移動鏡 55Aの代わりに、例えばマスクステ ージ RSTの端面 (側面)を鏡面加工して形成される反射面を用いてもよ!、。
[0024] 投影光学系 PLは、マスク Mのパターンを所定の投影倍率 β ( βは例えば 1Ζ4, 1 Ζ5等の縮小倍率)で基板 Ρ上に投影露光するものであって、基板 Ρ側 (投影光学系 PLの像面側)の終端部に設けられた光学素子 2を含む複数の光学素子から構成さ れており、これら光学素子は鏡筒 PKにより支持されている。なお、投影光学系 PLは 縮小系のみならず、等倍系及び拡大系のいずれでもよい。また、投影光学系 PLの 先端部の光学素子 2は鏡筒 PKに対して着脱 (交換)可能に設けられており、光学素 子 2には液浸領域 AR2の液体 1が接触する。図示していないが、投影光学系 PLは、 防振機構を介して 3本の支柱で支持される鏡筒定盤に搭載されるが、例えば国際公 開第 2006Z038952号パンフレットに開示されているように、投影光学系 PLの上方 に配置される不図示のメインフレーム部材、ある 、は前述のマスクベースなどに対し て投影光学系 PLを吊り下げ支持しても良!、。
[0025] 本例において、液体 1には純水が用いられる。純水は ArFエキシマレーザ光のみな らず、例えば水銀ランプ力 射出される輝線及び KrFエキシマレーザ光等の遠紫外 光 (DUV光)も透過可能である。光学素子 2は螢石 (CaF )から形成されている。螢
2
石は水との親和性が高いので、光学素子 2の液体接触面 2aのほぼ全面に液体 1を 密着させることができる。なお、光学素子 2は水との親和性が高い石英等であっても よい。 [0026] また、基板 Pのレジストは、一例として液体 1をはじく撥液性のレジストである。なお、 前述のように必要に応じてレジストの上に保護用のトップコートを塗布してもよい。本 例では、液体 1をはじく性質を撥液性と呼ぶ。液体 1が純水の場合には、撥液性とは 撥水性を意味する。
また、基板ステージ PSTは、基板 Pを例えば真空吸着で保持する基板ホルダ PHと 、基板ホルダ PH (基板 P)の Z方向の位置(フォーカス位置)及び 0 X, 0 Y方向の傾 斜角を制御する Zステージ部と、この Zステージ部を支持して移動する XYステージ部 とを備える。この XYステージ部は、ベース 54上の XY平面に平行なガイド面(投影光 学系 PLの像面と実質的に平行な面)上に X方向、 Y方向に移動できるように例えば エアべリング (気体軸受け)を介して載置されている。基板ステージ PST(Zステージ 部及び XYステージ部)は例えばリニアモータ等の基板ステージ駆動装置 PSTDによ り駆動される。基板ステージ駆動装置 PSTDは制御装置 CONTにより制御される。な お、本実施形態では、 Zステージ部はテーブル、及びこのテーブルを少なくとも Ζ、 Θ X及び Θ Y方向に駆動するァクチユエータ(例えば、ボイスコイルモータなど)を含み 、基板ホルダとテーブルとを一体に形成し、まとめて基板ホルダ PHと呼んでいる。ま た、基板ステージ PSTはテーブルが XYステージ部に対して 6自由度の方向に微動 可能な粗微動ステージでも良 、。
[0027] 基板ステージ PST上の基板ホルダ PHには移動鏡 55Bが設けられ、移動鏡 55Bに 対向する位置にはレーザ干渉計 56Bが設けられている。移動鏡 55Bは、実際には図 5に示すように、 X軸の移動鏡 55BX及び Y軸の移動鏡 55BYから構成され、レーザ 干渉計 56Bも X軸のレーザ干渉計 56BX及び Y軸のレーザ干渉計 56BY力も構成さ れている。図 1に戻り、基板ステージ PST上の基板ホルダ PH (基板 P)の 2次元方向 の位置及び回転角は、レーザ干渉計 56Bによりリアルタイムで計測され、計測結果は 制御装置 CONTに出力される。制御装置 CONTはその計測結果に基づ 、て基板ス テージ駆動装置 PSTDを駆動することで基板ステージ PSTに支持されている基板 P の移動又は位置決めを行う。なお、レーザ干渉計 56Bは基板ステージ PSTの Z軸方 向の位置、及び Θ X、 Θ Y方向の回転情報をも計測可能としてよぐその詳細は、例 えば特表 2001— 510577号公報(対応する国際公開第 1999Z28790号パンフレ ット)に開示されている。さらに、移動鏡 55Bの代わりに、例えば基板ステージ PST又 は基板ホルダ PHの側面などを鏡面加工して形成される反射面を用いてもょ 、。
[0028] また、基板ホルダ PH上には、基板 Pを囲むように環状で平面の撥液性のプレート 部 97が設けられている。撥液処理としては、例えば撥液性を有する材料を使ったコ 一ティング処理が挙げられる。撥液性を有する材料としては、例えばポリ四フッ化工 チレン (テフロン (登録商標))等のフッ素系榭脂材料、アクリル系榭脂材料、シリコン 系榭脂材料、又はポリエチレン等の合成樹脂材料が挙げられる。また、表面処理の ための薄膜は単層膜であってもよいし、複数層からなる膜であってもよい。そのプレ ート部 97の上面は、基板ホルダ PHに保持された基板 Pの表面とほぼ同じ高さの平 坦面である。ここで、基板 Pのエッジとプレート部 97との間には 0. l〜lmm程度の隙 間があるが、本例においては、基板 Pのレジストは撥液性であり、液体 1には表面張 力があるため、その隙間に液体 1が流れ込むことはほとんどなぐ基板 Pの周縁近傍 を露光する場合にも、プレート部 97と投影光学系 PLとの間に液体 1を保持することが できる。なお、プレート部 97と基板 Pとの隙間に流れ込んだ液体 1を外部に排出する ための吸引装置 (不図示)を基板ホルダ PHに設けてもよい。従って、基板 Pのレジス ト(又はトップコート)は必ずしも撥液性でなくともよい。また、本実施形態ではプレート 部 97を着脱可能(交換可能)に基板ホルダ PHに設けているが、プレート部 97を設け ず、例えば基板 Pを囲む基板ホルダ PHの上面を撥液処理して平坦面を形成しても よい。この場合、基板ホルダ PHを着脱可能(交換可能)とし、その平坦面のメンテナ ンス (例えば、撥液膜の補修など)を行うことが好ま 、。
[0029] 〔液体の供給及び回収機構の説明〕
次に、図 1の液体供給機構 10は、所定の液体 1を基板 P上に供給するものであって 、液体 1を送出可能な液体供給部 11と、液体供給部 11にその一端部を接続する供 給管 12とを備えている。液体供給部 11は、液体 1を収容するタンク、フィルタ部、及 び加圧ポンプ等を備えている。なお、液体供給機構 10が、タンク、フィルタ部、加圧 ポンプなどのすベてを備えている必要はなぐそれらの少なくとも一部を、例えば露光 装置 EXが設置される工場などの設備で代用してもよい。
[0030] 液体回収機構 20は、基板 P上に供給された液体 1を回収するものであって、液体 1 を回収可能な液体回収部 21と、液体回収部 21にその一端部が接続された回収管 2 2と、回収管 22に連結された供給管 27と、供給管 27の端部に接続されて所定の洗 浄液を供給する洗浄液供給部 26とを備えている。回収管 22及び供給管 27の途中 にはそれぞれバルブ 23及び 28が設けられている。液体回収部 21は例えば真空ポ ンプ等の真空系(吸引装置)、及び回収した液体 1を収容するタンク等を備えている。 洗浄液供給部 26は、洗浄液を収容するタンク、及び加圧ポンプ等を備えている。回 収管 22側のバルブ 23を閉じて、供給管 27側のバルブ 28を開けることで、洗浄液供 給部 26から供給管 27を介して回収管 22に洗浄液を供給することができる。なお、液 体回収機構 20が、真空系、タンクなどのすベてを備えている必要はなぐそれらの少 なくとも一部を、例えば露光装置 EXが設置される工場などの設備で代用してもよい。
[0031] 洗浄液としては、液体 1とは別の液体である水とシンナーとの混合液、 yーブチルラ タトン、又はイソプロピルアルコール (IPA)等の溶剤等が使用できる。ただし、その洗 浄液として液体 1を含む液体、例えば液体 1そのもの、あるいは気体 (例えば、窒素、 オゾン、あるいは酸素など)を溶存 (dissolve)させた液体 1、または液体 1を溶媒とする 溶液などを使用することも可能である。なお、洗浄液として液体 1そのものを使用する ような場合には、液体供給部 11を洗浄液供給部としても使用できるため、洗浄液供 給部 26及び供給管 27は必ずしも設ける必要はない。また、洗浄液供給部 26からの 供給管 27を液体供給部 11に連通している供給管 12に接続することも可能である。こ の場合、液体 1の供給流路 (例えば供給管 12など)とは独立に洗浄液を液浸領域( 液浸空間)に供給してもよい。
[0032] 投影光学系 PLの終端部の光学素子 2の近傍には流路形成部材としてのノズル部 材 30が配置されている。ノズル部材 30は、基板 P (基板ステージ PST)の上方におい て光学素子 2の周りを囲むように設けられた環状部材であり、不図示の支持部材を介 してコラム機構 (不図示)に支持されている。投影光学系 PLの投影領域 AR1が基板 P上にある状態で、ノズル部材 30は、その基板 Pの表面が対向して配置される第 1供 給口 13と第 2供給口 14 (図 3参照)とを備えている。また、ノズル部材 30は、その内部 に供給流路 82A, 82B (図 3参照)を有している。供給流路 82Aの一端部は第 1供給 口 13に接続し、その供給流路 82Aの途中に供給流路 82Bを介して第 2供給口 14が 接続され (図 3参照)、供給流路 82Aの他端部は供給管 12を介して液体供給部 11に 接続している。更に、ノズル部材 30は、基板 Pの表面に対向するように配置された矩 形の枠状の回収口 24 (図 3参照)を備えて 、る。
[0033] 図 2は、ノズル部材 30の概略斜視図である。図 2に示すように、ノズル部材 30は投 影光学系 PLの終端部の光学素子 2の周りを囲むように設けられた環状部材であって 、一例として、第 1部材 31と、第 1部材 31の上部に配置される第 2部材 32とを備えて いる。第 1、第 2部材 31及び 32のそれぞれは板状部材であってその中央部に投影 光学系 PL (光学素子 2)を配置可能な貫通穴 31 A及び 32Aを有している。
[0034] 図 3は、図 2のノズル部材 30のうち下段の第 1部材 31の AA線に沿う断面図であり、 図 3において、その上の第 2部材 32に形成された供給流路 82A, 82B及び供給流 路 82Aに接続された供給管 12は 2点鎖線で表されている。また、ノズル部材 30の第 1部材 31は、投影光学系 PLの光学素子 2の +X方向側に形成され、基板 P上に液 体 1を供給する第 1供給口 13と、光学素子 2の X方向側に形成され、基板 P上に液 体 1を供給する第 2供給口 14とを備えている。供給口 13及び 14は投影領域 AR1を X方向(基板 Pの走査方向)に挟むように配置されている。また、供給口 13及び 14の それぞれは第 1部材 31を貫通する貫通穴であって、 Y方向に細長い矩形状であるが 、投影領域 AR1の中心から外側に広がる円弧状等であってもよい。
[0035] 更に、第 1部材 31には、投影光学系 PLの光学素子 2 (投影領域 AR1)を囲むよう に配置された矩形(円形等でもよ 、)の枠状の回収口 24と、回収口 24と回収管 22と を連通する回収流路 84とが形成されている。回収口 24は、第 1部材 31の底面に形 成された溝状の凹部であり、かつ供給口 13, 14より光学素子 2に対して外側に設け られている。供給口 13, 14の基板 Pとのギャップと、回収口 24の基板 Pとのギャップと は、ほぼ同じに設けられている力 例えば回収口 24の基板 Pとのギャップを供給口 1 3, 14の基板 Pとのギャップよりも狭くしてもよい。また、ノズル部材 30は多孔部材 25 を備え、この多孔部材 25は例えば第 1部材 31の液体 1の流路または通過口(供給口 13、 14と回収口 24との少なくとも一方を含む)に設けられる。本実施形態では、多孔 部材 25として、回収口 24を覆うように網目状に多数の小さい孔が形成されたメッシュ フィルタが嵌め込まれており、以下では多孔部材 25をメッシュフィルタとも呼ぶ。なお 、多孔部材 25はメッシュフィルタに限らず、例えば焼結金属あるいはセラミックスなど ポアがある材料で構成しても良い。液体 1が満たされた液浸領域 AR2は、投影領域 AR1を含むように回収口 24で囲まれたほぼ矩形状 (又は円形等でもよい)の領域の 内側に形成され、且つ走査露光時には基板 P上の一部に(又は基板 P上の一部を含 むように)局所的に形成される。ノズル部材 (流路形成部材) 30は、光学素子 2と基板 Pとの間を液体 1で満たして、露光光 ELの光路空間を含む局所的な液浸空間(液浸 領域 AR2に相当)を形成するので、液浸空間形成部材あるいは containment member (又は confinement member)などとも呼ばれる。
[0036] 図 2のノズル部材 30の第 1部材 31、第 2部材 32、及び図 3のメッシュフィルタ 25は それぞれ液体 1になじみ易 ヽ親液性の材料、例えばステンレス(SUS)又はチタン等 から形成されている。そのため、図 1において、液浸領域 AR2中の液体 1は、ノズル 部材 30に設けられた回収口 24のメッシュフィルタ 25を通過した後、回収流路 84及 び回収管 22を介して液体回収部 21に円滑に回収される。この際に、レジスト残滓等 の異物のうち、メッシュフィルタ 25の網目よりも大きい異物はその表面に残留する。
[0037] 図 3において、本例の液体の回収口 24は矩形又は円形の枠状である力 その代わ りに 2点鎖線で示すように、供給口 13, 14を X方向に挟むように配置された 2つの矩 形状 (又は円弧状等)の回収口 29A及び 29Bと、光学素子 2を Y方向に挟むように配 置された 2つの矩形状 (又は円弧状等)の回収口 29C及び 29Dとからなる回収口を 用いて、回収口 29A〜29Dにそれぞれメッシュフィルタを配置してもよい。なお、回 収ロ 29A〜29Dの個数は任意である。また、例えば国際公開第 2005Z122218号 パンフレットに開示されて 、るように、回収口 29A〜29Dと回収口 24とを二重に用い て液浸領域 AR2の液体 1を回収してもよい。さらに、供給口 13, 14にも液浸領域 AR 2内の異物がノズル部材 30内部に入り込むのを防止するためのメッシュフィルタを配 置してもよい。逆に、例えば回収管 22内に異物が付着する可能性が低いような場合 には、メッシュフィルタ 25は必ずしも設ける必要はな 、。
[0038] なお、上記実施形態で用いたノズル部材 30は、上述の構造に限られず、例えば、 欧州特許出願公開第 1420298号明細書、国際公開第 2004Z055803号パンフレ ッ卜、国際公開第 2004Z057589号パンフレツ K国際公開第 2004Z057590号パ ンフレット、国際公開第 2005Z029559号パンフレット (対応米国特許出願公開第 2 006/0231206号明細書)に記載されて ヽる流路形成部材等も用 ヽることができる
[0039] また、本例では液体の供給口 13, 14と回収口 24とは同じノズル部材 30に設けられ ているが、供給口 13, 14と回収口 24とは別の部材に設けてもよい。例えば、供給口 のみをノズル部材 30とは別の部材に設けてもょ 、し、回収口のみを別の部材に設け てもよい。また、回収口 24の外側に第 2回収口を設ける場合、この第 2回収口を別の 部材に設けてもよい。さらに、図 1において、供給口 13及び 14を異なる別の液体供 給部に連通させて、供給口 13及び 14から互いに独立に供給量が制御できる状態で 液体 1を液浸領域 AR2に供給するようにしてもょ 、。
[0040] また、液体の供給口 13, 14は基板 Pと対向するように配置されていなくてもよい。さ らに、本例のノズル部材 30はその下面が投影光学系 PLの下端面よりも像面側(基板 側)に設定されている力 ノズル部材 30の下面を投影光学系 PLの下端面 (射出面) とほぼ同じ高さ (Z位置)に設定してもよい。また、ノズル部材 30の一部(下端部)を、 露光光 ELを遮らな ヽように投影光学系 PL (光学素子 2)の下側まで潜り込ませて設 けてもよい。
[0041] 上述のように、ノズル部材 30は液体供給機構 10及び液体回収機構 20のそれぞれ の一部を構成している。すなわち、ノズル部材 30は液浸システムの一部である。また 、回収管 22及び供給管 27に設けられたバルブ 23及び 28は、回収管 22及び供給管 27の流路のそれぞれを開閉するものであって、その動作は制御装置 CONTに制御 される。回収管 22の流路が開放されている間、液体回収部 21は回収口 24を通して 液浸領域 AR2から液体 1を吸引回収可能であり、バルブ 28が閉じた状態で、バルブ 23により回収管 22の流路が閉塞されると、回収口 24を介した液体 1の吸引回収が停 止される。その後、バルブ 28を開くことで、洗浄液供給部 26から供給管 27、回収管 2 2、及びメッシュフィルタ 25を介してノズル部材 30の回収口 24を通すように洗浄液を 流すことが可能となる。
[0042] なお、液浸システムの一部、例えば少なくともノズル部材 30は、露光装置 EXの本 体部が搭載される前述のコラム機構 (不図示)、すなわち投影光学系 PLを保持するメ インフレーム (前述の鏡筒定盤などを含む)に設けるものとした力 これに限らず、例 えばコラム機構 (メインフレーム)とは別のフレーム部材に設けてもよい。または、前述 の如く投影光学系 PLが吊り下げ支持される場合、投影光学系 PLと一体にノズル部 材 30を吊り下げ支持してもよいし、あるいは投影光学系 PLとは独立に吊り下げ支持 される計測フレームにノズル部材 30を設けてもよい。後者の場合、投影光学系 PLは 吊り下げ支持しなくてもよい。
[0043] 図 1にお 、て、液体供給部 11及び洗浄液供給部 26の液体供給動作は制御装置 C ONTにより制御される。制御装置 CONTは、液体供給部 11及び洗浄液供給部 26 による基板 P上に対する単位時間当たりの液体供給量をそれぞれ独立して制御可能 である。液体供給部 11から送出された液体 1は、供給管 12及びノズル部材 30の供 給流路 82A, 82Bを介して、ノズル部材 30の下面に基板 Pに対向するように設けら れた供給口 13, 14 (図 3参照)より基板 P上に供給される。
[0044] また、液体回収部 21の液体回収動作は制御装置 CONTにより制御される。制御装 置 CONTは、液体回収部 21による単位時間当たりの液体回収量を制御可能である 。基板 Pの上方に設けられた回収口 24からメッシュフィルタ 25を介して回収された基 板 P上の液体 1は、ノズル部材 30の回収流路 84及び回収管 22を介して液体回収部 21に回収される。
[0045] 〔計測ステージの説明〕
図 1において、計測ステージ MSTは、 Y方向に細長い長方形状で X方向(走査方 向)に駆動される テージ部 181と、この上に例えばエアベアリングを介して載置さ れたレベリングテーブル 188と、このレべリングテーブル 188上に配置された計測ュ ニットとしての計測テーブル MTBとを備えている。一例として、計測テーブル MTBは レベリングテーブル 188上にエアベアリングを介して載置されて 、るが、計測テープ ル MTBをレべリングテーブル 188と一体化することも可能である。 テージ部 181 は、ベース 54上に例えばエアベアリングを介して X方向に移動自在に載置されてい る。
[0046] 図 5は、図 1中の基板ステージ PST及び計測ステージ MSTを示す平面図であり、こ の図 5において、ベース 54を Y方向(非走査方向)に挟むように、 X軸に平行にそれ ぞれ内面に X方向に所定配列で複数の永久磁石が配置された X軸の固定子 186及 び 187が設置され、固定子 186及び 187の間にそれぞれコイルを含む移動子 182及 び 183を介して Y軸にほぼ平行に Y軸スライダ 180が X方向に移動自在に配置され ている。そして、 Y軸スライダ 180に沿って Y方向に移動自在に基板ステージ PSTが 配置され、基板ステージ PST内の移動子と、 Y軸スライダ 180上の固定子 (不図示) と力も基板ステージ PSTを Y方向に駆動する Y軸のリニアモータが構成され、移動子 182及び 183と対応する固定子 186及び 187と力もそれぞれ基板ステージ PSTを X 方向に駆動する 1対の X軸のリニアモータが構成されている。これらの X軸、 Y軸のリ ユアモータ等力 図 1の基板ステージ駆動装置 PSTDを構成している。
[0047] また、計測ステージ MSTの テージ部 181は、固定子 186及び 187の間にそれ ぞれコイルを含む移動子 184及び 185を介して X方向に移動自在に配置され、移動 子 184及び 185と対応する固定子 186及び 187と力もそれぞれ計測ステージ MST を X方向に駆動する 1対の X軸のリニアモータが構成されている。この X軸のリニアモ ータ等が、図 1では計測ステージ駆動装置 TSTDとして表されている。
[0048] 図 5において、 テージ部 181の— X方向の端部にほぼ Y軸に平行に、 Z方向に 積み重ねるように順次、内面に対向するように Z方向に一様な磁場を発生するために 複数の永久磁石が配置された断面形状がコの字型の固定子 167と、ほぼ X軸に沿つ て卷回 (配列)されたコイルを含む平板状の固定子 171とが固定され、下方の固定子 167内に配置されるように計測テーブル MTBの Y方向に離れた 2箇所にそれぞれ Y 軸に沿って卷回(配列)されたコイルをそれぞれ含む移動子 166A及び 166Bが固定 され、上方の固定子 171を Z方向に挟むように、計測テーブル MTBに Y方向に所定 配列で複数の永久磁石が配置された断面形状がコの字型の移動子 170が固定され ている。そして、下方の固定子 167と移動子 166A及び 166Bと力 それぞれ X テ ージ部 181に対して計測テーブル MTBを X方向及び 0 Z方向に微少量駆動する X 軸のボイスコイルモータ 168A及び 168B (図 1参照)が構成され、上方の固定子 171 と移動子 170とから、 X テージ部 181に対して計測テーブル MTBを Y方向に駆動 する Y軸のリニアモータ 169が構成されて!、る。
[0049] また、計測テーブル MTB上の X方向及び +Y方向にそれぞれ X軸の移動鏡 (反 射面) 55CX及び Y軸の移動鏡 (反射面) 55CYが固定され、移動鏡 55CXに— X方 向に対向するように X軸のレーザ干渉計 56Cが配置されている。移動鏡 55CX, 55 CYは、図 1では移動鏡 55Cとして表されている。レーザ干渉計 56Cは複数軸のレー ザ干渉計であり、レーザ干渉計 56Cによって常時、計測テーブル ΜΤΒの X方向の位 置、及び θ Ζ方向の回転角度等が計測される。なお、移動鏡 55CX, 55CYの代わり に、例えば計測ステージ MSTの側面などを鏡面加工して形成される反射面を用い てもよい。
[0050] 一方、図 5において、 Υ方向の位置計測用のレーザ干渉計 56ΒΥは、基板ステージ PST及び計測ステージ MSTで共用される。すなわち、 X軸の 2つのレーザ干渉計 56 ΒΧ及び 56Cの光軸は、投影光学系 PLの投影領域 AR1の中心 (本例では図 1の光 軸 AXと一致)を通り X軸に平行であり、 Y軸のレーザ干渉計 56BYの光軸は、その投 影領域の中心 (光軸 AX)を通り Y軸に平行である。そのため、通常、走査露光を行う ために、基板ステージ PSTを投影光学系 PLの下方に移動したときには、レーザ干渉 計 56BYのレーザビームは基板ステージ PSTの移動鏡 55BYに照射され、レーザ干 渉計 56BYによって基板ステージ PST (基板 P)の Y方向の位置が計測される。そし て、例えば投影光学系 PLの結像特性等を計測するために、計測ステージ MSTの計 測テーブル MTBを投影光学系 PLの下方に移動したときには、レーザ干渉計 56BY のレーザビームは計測テーブル MTBの移動鏡 55CYに照射され、レーザ干渉計 56 BYによって計測テーブル MTBの Y方向の位置が計測される。これによつて、常に投 影光学系 PLの投影領域の中心を基準として高精度に基板ステージ PST及び計測 テーブル MTBの位置を計測できるとともに、高精度で高価なレーザ干渉計の数を減 らして、製造コストを低減できる。
[0051] なお、基板ステージ PST用の Y軸のリニアモータ及び計測テーブル MTB用の Y軸 のリニアモータ 169に沿ってそれぞれ光学式等のリニアエンコーダ (不図示)が配置 されており、レーザ干渉計 56BYのレーザビームが移動鏡 55BY又は 55CYに照射 されて ヽな 、期間では、基板ステージ PST又は計測テーブル MTBの Y方向の位置 はそれぞれ上記のリニアエンコーダによって計測される。
[0052] 図 1に戻り、計測テーブル MTBの 2次元方向の位置及び回転角は、レーザ干渉計 56C及び図 5のレーザ干渉計 56BY (又はリニアエンコーダ)で計測され、計測結果 は制御装置 CONTに出力される。制御装置 CONTはその計測結果に基づ ヽて計 測ステージ駆動装置 TSTD、リニアモータ 169、及びボイスコイルモータ 168A, 168 Bを駆動することで、計測ステージ MST中の計測テーブル MTBの移動又は位置決 めを行う。
[0053] また、レべリングテーブル 188は、それぞれ例えばエアシリンダ又はボイスコイルモ ータ方式で Z方向の位置を制御可能な 3個の Z軸ァクチユエータを備え、通常は計測 テーブル MTBの上面が投影光学系 PLの像面に合焦されるように、レベリングテー ブル 188によって計測テーブル MTBの Z方向の位置、 0 X方向、 0 Y方向の角度が 制御される。そのために、ノズル部材 30の近傍には、投影領域 AR1内及びその近傍 の基板 Pの上面等の被検面の位置を計測するためのオートフォーカスセンサ(不図 示)が設けられ、このオートフォーカスセンサの計測値に基づいて、制御装置 CONT がレべリングテーブル 188の動作を制御する。さらに、不図示であるが、 テージ部 181に対するレべリングテーブル 188の X方向、 Y方向、 θ Z方向の位置を所定位置 に維持するためのァクチユエータも設けられて 、る。
[0054] なお、オートフォーカスセンサはその複数の計測点でそれぞれ被検面の Z方向の 位置情報を計測することで、 Θ X及び Θ Y方向の傾斜情報(回転角)をも検出するも のであるが、この複数の計測点はその少なくとも一部が液浸領域 AR2 (又は投影領 域 AR1)内に設定されてもよいし、あるいはその全てが液浸領域 AR2の外側に設定 されてもよい。さらに、例えばレーザ干渉計 56B, 56Cが被検面の Z軸、 0 X及び 0 Y方向の位置情報を計測可能であるときは、基板 Pの露光動作中にその Z方向の位 置情報が計測可能となるようにオートフォーカスセンサは設けなくてもよぐ少なくとも 露光動作中はレーザ干渉計 56B, 56Cの計測結果を用いて Z軸、 0 及び0 ¥方向 に関する被検面の位置制御を行うようにしてもょ 、。
[0055] 本例の計測テーブル MTBは、露光に関する各種計測を行うための計測器類 (計 測部材)を備えている。すなわち、計測テーブル MTBは、リニアモータ 169の移動子 等及び移動鏡 55Cが固定される計測テーブル本体 159と、この上面に固定されて例 えば石英ガラス等の低膨張率の光透過性の材料カゝら成るプレート 101とを備えてい る。このプレート 101の表面にはほぼ全面に渡ってクロム膜が形成され、所々に計測 器用の領域や、特開平 5— 21314号公報公報 (対応する米国特許第 5,243,195号 )などに開示される複数の基準マークが形成された基準マーク領域 FMが設けられて いる。
[0056] 図 5に示すように、プレート 101上の基準マーク領域 FMには、図 1のマスク用のァ ライメントセンサ AS用の 1対の基準マーク FM 1 , FM2及び投影光学系 PLの側面に 配置された基板用のァライメントセンサ ALG用の基準マーク FM3が形成されている 。これらの基準マークの位置を、対応するァライメントセンサでそれぞれ計測すること で、投影光学系 PLの投影領域 AR1の投影位置とァライメントセンサ ALGの検出位 置との間隔 (位置関係)であるベースライン量を計測することができる。このベースライ ン量の計測時には、プレート 101上にも液浸領域 AR2が形成される。なお、ァラィメ ントセンサ MA、 ALGはそれぞれ画像処理方式でもよいし、あるいはコヒーレントビー ムの照射によってマーク力 発生する回折光を検出する方式などでもよい。
[0057] プレート 101上の計測器用の領域には、各種計測用開口パターンが形成されてい る。この計測用開口パターンとしては、例えば空間像計測用開口パターン (例えばス リット状開口パターン)、照明むら計測用ピンホール開口パターン、照度計測用開口 パターン、及び波面収差計測用開口パターンなどがあり、これらの開口パターンの底 面側の計測テーブル本体 159内には、対応する計測用光学系及び光電センサより なる計測器が配置されて 、る。
[0058] その計測器の一例は、例えば特開昭 57— 117238号公報 (対応する米国特許第 4 ,465,368号明細書)などに開示される照度むらセンサ、例えば特開 2002— 14005 号公報 (対応する米国特許出願公開第 2002Z0041377号明細書)などに開示さ れる、投影光学系 PLにより投影されるパターンの空間像 (投影像)の光強度を計測 する空間像計測器、例えば特開平 11 16816号公報 (対応する米国特許出願公 開第 2002Z0061469号明細書)などに開示される照度モニタ、及び例えば国際公 開第 99Z60361号パンフレット (対応する欧州特許第 1, 079, 223号明細書)など に開示される波面収差計測器である。
[0059] なお、本例では、投影光学系 PLと液体 1とを介して露光光 ELにより基板 Pを露光 する液浸露光が行われるのに対応して、露光光 ELを用いる計測に使用される上記 の照度むらセンサ、照度モニタ、空間像計測器、波面収差計測器などでは、投影光 学系 PL及び液体 1を介して露光光 ELを受光することとなる。このため、プレート 101 の表面には撥液コートが施されて 、る。
[0060] 〔洗浄液を噴出する機構の説明〕
図 4は、計測ステージ MSTに装着された洗浄液の噴出機構を示し、この計測テー ブル MTBを断面にした図 4において、計測テーブル本体 159の上面の 2箇所に凹 部 60A及び 60Bが形成され、第 1の凹部 60Aの上部のプレート 101には開口 101a が形成され、第 2の凹部 60Bの上部のプレート 101の領域 101bには、遮光膜及び 撥液コートは形成されていない。従って、領域 101bでは照明光がプレート 101を通 過することができる。
[0061] そして、第 1の凹部 60Aの中央部に、底部から供給された洗浄液を噴射口 90aから 上方に高速に噴射するためのジェットノズル部 90が固定され、ジェットノズル部 90の 底部の液体の流入口は、計測テーブル本体 159内の供給流路 86、及び外部の可 撓性を持つ配管 63Aを介して洗浄液の噴出装置 62に接続されている。すなわち、 本実施形態では洗浄機構が図 4に示した噴出機構を備え、洗浄液の噴出によって 液体 1と接する接液部を洗浄する。なお、洗浄液を噴出する態様として本例では、そ の洗浄液を高圧で噴射して高圧洗浄を行うものとしている。また、少なくとも液浸露光 時に液体 1と接する接液部の全部を洗浄してもよ!ヽが、本実施形態では接液部の一 部、例えばノズル部材 30の下面の一部のみを洗浄するものとしている。なお、その洗 浄液の噴出の別の態様として、その洗浄液を霧状に噴霧してもよい。また、ジェットノ ズル部 90を複数個備えてこれらを例えば一列に配置してもよい。さらに、ジェットノズ ル部 90の噴射口 90aからの洗浄液の噴出方向を、プレート 101の上面に対して垂直 な方向以外の斜め方向等に設定することも可能である。すなわち、プレート 101の上 面に対する洗浄液の噴出角度は 90度に限られず、例えばァクチユエータによるジェ ットノズル部 90の駆動によって、洗浄液の噴出角度を可変としてもよい。また、噴出 口 90aからの洗浄液を所定の角度範囲内で広げて噴出させてもよい。さらに、接液 部に関する情報、例えば洗浄箇所及び Z又は汚れの程度に応じて、噴出機構によ る接液部の洗浄条件、例えばジェットノズル部 90から噴射される洗浄液の種類 (前述 の混合比、溶存気体の濃度なども含む)、圧力、噴出パターン、又は温度等を変化さ せてもよい。この場合、変化させる洗浄条件は 1つに限られず複数でもよい。また、洗 浄条件は洗浄液の特性と噴出条件との少なくとも一方に限られるものではな 、し、洗 浄機構は必ずしも噴出機構を備えて 、なくてもよ!、。
[0062] 噴出装置 62は、洗浄液の蓄積部 62a、この蓄積部 62aから供給された洗浄液の温 度を所定温度 (例えば高温等)に制御する温度制御部 62b、及び温度制御された洗 浄液を高圧で配管 63A側に送り出す加圧部 62cから構成され、蓄積部 62a、温度制 御部 62b、及び加圧部 62cの動作はコンピュータを含む制御部 61によって制御され ている。例えば被洗浄部の汚れが多いような場合には、洗浄液の温度を高くしてもよ い。また、配管 63Aの途中に可撓性を持つ配管 63Bを介して、気体及び洗浄液を混 合して噴出する混合噴出装置 66が接続されている。混合噴出装置 66は、例えばタリ ーンルーム内の空気をダクト 66c及び内部の除塵フィルタを介して取り込む気体吸引 部 66aと、混合加圧部 66bとから構成されている。混合加圧部 66bは、気体吸引部6 6aから供給される気体と、噴出装置 62の温度制御部 62bから配管 63Dを介して供 給される温度制御された洗浄液とを混合して所定圧力で配管 63B側に送出する。気 体吸引部 66a及び混合加圧部 66bの動作は制御部 61によって制御されている。
[0063] さらに、配管 63A及び 63Bにはそれぞれバルブ 64A及び 64Bが装着されており、 制御部 61は、噴出装置 62を用いる際には、バルブ 64Bを閉じてバルブ 64Aを開き、 混合噴出装置 66を用いる際には、バルブ 64Aを閉じてバルブ 64Bを開く。なお、計 測ステージ MSTの移動によって配管 63A及び 63Bが頻繁に屈曲して内部の液体が 漏れ出る恐れを考慮して、バルブ 64A, 64B (後述のバルブ 64Cも同様)はできるだ け計測テーブル MTBに近 、位置に設けることが望ま 、。
[0064] また、凹部 60Aの底面力 計測テーブル本体 159内の回収流路 87、及び外部の 可撓性を持つ配管 63Cを介して液体の回収装置 65に接続され、配管 63Cにも開閉 用のバルブ 64Cが装着されている。回収装置 65は、吸引用のポンプ、除塵用のフィ ルタ部、及び回収された液体の蓄積部を含み、その動作及びバルブ 64Cの開閉は 制御部 61によって制御されている。本例では、凹部 60A内に入り込む洗浄液等 (液 浸領域 AR2を形成する液体を含む)を回収装置 65によって回収する。なお、凹部 6 OA内に入り込む洗浄液等を図 1の液体回収部 21によってノズル部材 30を介して吸 引回収することも可能である。この場合には回収装置 65、配管 63C、及び回収流路 87を含む計測ステージ MST側の洗浄液等の回収機構は省略することも可能である
[0065] さらに、図 4の計測テーブル本体 159上の第 2の凹部 60B内には、対物レンズ 67a 、 CCD等の 2次元の撮像素子 67b、及び被検面 DPを照明する不図示の照明系を含 む観察装置 67が配置されている。撮像素子 67bの撮像信号は、制御部 61を介して 図 1の制御装置 CONTの画像処理系に供給され、この画像処理系では、その撮像 信号 (被検面 DPの画像)に基づいて、ジェットノズル部 90による洗浄対象の部材の 位置の確認、及び汚れの程度の確認等を行う。なお、本例では図 5において、基準 マーク FM1〜FM3と凹部 60Aとの位置関係は既知であり、かつァライメントセンサ A LGによって基準マーク FM1〜FM3を検出して図 1のノズル部材 30との位置関係も 計測できるため、この計測結果から図 4のジェットノズル部 90と図 1のノズル部材 30 ( 洗浄対象)との位置関係も高精度に求めることができる。従って、観察装置 67は必ず しも設ける必要はない。また、計測ステージ MSTに観察装置 67を設ける場合、観察 装置 67の一部、例えば前述の照明系を計測ステージ MSTの外部に配置してもよい
[0066] 図 4の噴出装置 62から噴出される洗浄液としては、図 1の洗浄液供給部 26から供 給される洗浄液と同様に、例えば水とシンナーとの混合液、 y—プチルラクトン又は I PA等の溶剤、あるいは前述した液体 1を含む液体などを使用することが可能である。 本実施形態では、噴出装置 62から噴出される洗浄液は、洗浄液供給部 26から供給 される洗浄液と同一種類であるものとする。そして、制御部 61による噴出装置 62、混 合噴出装置 66、回収装置 65の動作の制御、及びバルブ 64A〜64Cの開閉動作、 並びにこれらの動作に対応する計測ステージ MSTの動作は、図 1の制御装置 CON Tによって統括的に制御される。なお、噴出装置 62の洗浄液の蓄積部 62aを着脱自 在のカセット方式の容器として、回収装置 65 (又は図 1の液体回収部 21)で回収され た液体を除塵フィルタを介してそのカセット方式の容器に戻し、この回収された液体 を洗浄液として再使用してもよい。また、噴出装置 62と洗浄液供給部 26とで洗浄液 の種類を異ならせても良い。例えば、洗浄液供給部 26は IPA等の溶剤を供給し、噴 出装置 62は液体 1そのものを噴出してもよい。さらに、洗浄機構はその一部を、例え ば露光装置 EXが設置される工場などの設備で代用してもよい。また、洗浄機構は上 記構成に限られるものでなぐ例えば蓄積部 62aを設けなくても良い。
[0067] 〔露光工程の説明〕
図 1において、基板 P上には複数のショット領域が設定されており、本例の制御装 置 CONTは、投影光学系 PLの光軸 AX (投影領域 AR1)に対して基板 Pが所定経 路に沿って進むように、レーザ干渉計 56Bの出力をモニタしつつ基板ステージ PST を移動し、複数のショット領域を順次ステップ'アンド'スキャン方式で露光する。すな わち、露光装置 EXによる走査露光時には、投影光学系 PLによる矩形状の投影領域 AR1にマスク Mの一部のパターン像が投影され、マスク Mが照明領域に対して X方 向に速度 Vで移動するのに同期して、基板ステージ PSTを介して基板 Pが投影領域 AR1に対して X方向に速度 |8 ·ν ( |8は投影倍率)で移動する。そして、基板 Ρ上の 1 つのショット領域への露光終了後に、基板 Ρのステップ移動によって次のショット領域 が走査開始位置に移動し、以下、図 5に示すように、ステップ ·アンド'スキャン方式で 基板 Ρを移動しながら各ショット領域に対する走査露光処理が順次行われる。
[0068] 基板 Ρの露光処理中、図 1の制御装置 CONTは液体供給機構 10を駆動し、基板 Ρ 上に対する液体供給動作を行う。液体供給機構 10の液体供給部 11から送出された 液体 1は、供給管 12を流通した後、ノズル部材 30内部に形成された供給流路 82Α, 82Βを介して基板 Ρ上に供給される。
基板 Ρ上に供給された液体 1は、基板 Ρの動きに合わせて投影光学系 PLの下を流 れる。例えば、あるショット領域の露光中に基板 Pが +X方向に移動しているときには 、液体 1は基板 Pと同じ方向である +X方向に、ほぼ基板 Pと同じ速度で、投影光学 系 PLの下を流れる。この状態で、照明光学系 ILより射出されマスク Mを通過した露 光光 ELが投影光学系 PLの像面側に照射され、これによりマスク Mのパターンが投 影光学系 PL及び液浸領域 AR2の液体 1を介して基板 Pに露光される。制御装置 C ONTは、露光光 ELが投影光学系 PLの像面側に照射されているときに、すなわち基 板 Pの露光動作中に、液体供給機構 10による基板 P上への液体 1の供給を行う。露 光動作中に液体供給機構 10による液体 1の供給を継続することで液浸領域 AR2は 良好に形成される。一方、制御装置 CONTは、露光光 ELが投影光学系 PLの像面 側に照射されているときに、すなわち基板 Pの露光動作中に、液体回収機構 20によ る基板 P上の液体 1の回収を行う。露光動作中に (露光光 ELが投影光学系 PLの像 面側に照射されているときに)、液体回収機構 20による液体 1の回収を継続的に実 行することで、液浸領域 AR2の拡大を抑えることができる。
[0069] 本例において、露光動作中、液体供給機構 10は、供給口 13, 14より投影領域 AR 1の両側力も基板 P上への液体 1の供給を同時に行う。これにより、供給口 13, 14か ら基板 P上に供給された液体 1は、投影光学系 PLの終端部の光学素子 2の下端面と 基板 Pとの間、及びノズル部材 30 (第 1部材 31)の下面と基板 Pとの間に良好に拡が り、液浸領域 AR2を少なくとも投影領域 AR1より広い範囲で形成する。なお、仮に供 給口 13及び 14が別の液体供給部に接続されている場合には、走査方向に関して、 投影領域 AR1の手前カゝら供給する単位時間当たりの液体供給量を、その反対側で 供給する液体供給量よりも多く設定してもよ ヽ。
[0070] なお、露光動作中、液体回収機構 20による液体 1の回収動作を行わずに、露光完 了後、回収管 22の流路を開放し、基板 P上の液体 1を回収するようにしてもよい。一 例として、基板 P上のある 1つのショット領域の露光完了後であって、次のショット領域 の露光開始までの一部の期間 (ステッピング期間の少なくとも一部)においてのみ、 液体回収機構 20により基板 P上の液体 1の回収を行うようにしてもよい。
[0071] 制御装置 CONTは、基板 Pの露光中、液体供給機構 10による液体 1の供給を継続 する。このように液体 1の供給を継続することにより、投影光学系 PLと基板 Pとの間を 液体 1で良好に満たすことができるば力りでなぐ液体 1の振動(所謂ウォーターハン マー現象)の発生を防止することができる。このようにして、基板 Pの全部のショット領 域に液浸法で露光を行うことができる。
[0072] また、例えば基板 Pの交換中、制御装置 CONTは、計測ステージ MSTを投影光学 系 PLの光学素子 2と対向する位置に移動し、計測ステージ MST上に液浸領域 AR2 を形成する。この場合、基板ステージ PSTと計測ステージ MSTとを近接させた状態 で移動して、一方のステージとの交換で他方のステージを光学素子 2と対向して配置 することで、基板ステージ PSTと計測ステージ MSTとの間で液浸領域 AR2を移動す る。制御装置 CONTは、計測ステージ MST上に液浸領域 AR2を形成した状態で計 測ステージ MSTに搭載されている少なくとも一つの計測器 (計測部材)を使って、露 光に関する計測 (例えば、ベースライン計測)を実行する。
なお、液浸領域 AR2を、基板ステージ PSTと計測ステージ MSTとの間で移動する 動作、及び基板 Pの交換中における計測ステージ MSTの計測動作の詳細は、国際 公開第 2005Z074014号パンフレット (対応する欧州特許出願公開第 1713113号 明細書)、国際公開第 2006Z013806号パンフレットなどに開示されている。また、 基板ステージと計測ステージを備えた露光装置は、例えば特開平 11 135400号 公報(対応する国際公開第 1999Z23692号パンフレット)、特開 2000— 164504 号公報 (対応する米国特許第 6,897,963号)に開示されている。指定国及び選択国 の国内法令が許す限りにおいて、米国特許第 6,897,963号の開示を援用して本文 の記載の一部とする。
[0073] 〔洗浄動作の説明〕
上記の如き露光工程において、図 1の基板 Pと液浸領域 AR2の液体 1とが接触す ると、基板 Pの一部の成分が液体 1中に溶出することがある。例えば、基板 P上の感 光性材料として化学増幅型レジストが使われている場合、その化学増幅型レジストは 、ベース榭脂、ベース榭脂中に含まれる光酸発生剤(PAG : Photo Acid Generator) 、及びクェンチヤ一と呼ばれるアミン系物質を含んで構成されている。そのようなレジ ストが液体 1に接触すると、レジストの一部の成分、具体的には PAG及びアミン系物 質等が液体 1中に溶出することがある。また、基板 Pの基材自体 (例えばシリコン基板
)と液体 1とが接触した場合にも、その基材を構成する物質によっては、その基材の 一部の成分 (シリコン等)が液体 1中に溶出する可能性がある。
[0074] このように、基板 Pに接触した液体 1は、基板 Pより発生した不純物やレジスト残滓等 力もなるパーティクルのような微小な異物を含んでいる可能性がある。また液体 1は、 大気中の塵埃や不純物等の微小な異物を含んでいる可能性もある。したがって、液 体回収機構 20により回収される液体 1は、種々の不純物等の異物を含んでいる可能 性がある。そこで、液体回収部 21は、回収した液体 1を外部に排出している。なお、 回収した液体 1の少なくとも一部を内部の処理装置で清浄にした後、その清浄ィ匕され た液体 1を液体供給部 11に戻してもょ ヽ。
[0075] また、液浸領域 AR2の液体 1に混入したそのようなパーティクル等の異物のうちで、 図 1のノズル部材 30の回収口 24に設けられたメッシュフィルタ 25の網目よりも大きい 異物等は、メッシュフィルタ 25の表面 (外面)等に付着して残留する恐れがある。また 、メッシュフィルタ 25以外のノズル部材 30の接液領域などにも異物が付着することが ある。このように残留した異物は、基板 Pの露光時に、液浸領域 AR2の液体 1に再び 混入する恐れがある。液体 1に混入した異物が基板 P上に付着すると、基板 Pに形成 されるパターンに形状不良等の欠陥が生じる恐れがある。
[0076] そこで、本例の露光装置 EXは、例えば液体供給機構 10及び液体回収機構 20の 定期的又はオペレータ等によって要求されるメンテナンス時に、ノズル部材 30に残 留した異物の洗浄を、図 9 (A)のシーケンスに従って以下のように実行する。なお、 液体回収部 21にて回収される液体のパーティクルのレベルを常時モニタし、そのパ 一ティクルのレベルが所定の許容範囲を超えたときに以下の洗浄動作を含むメンテ ナンスを実行するようにしてもよい。例えば、回収管 22の途中に分岐管を介して異物 (パーティクル)の数を計測するパーティクルカウンタを設け、回収される液体中のパ 一ティクル数をモニタしてもよい。パーティクルカウンタは、一例として、回収される液 体力 所定のサンプリングレートで所定容量の液体を抽出し、抽出した液体にレーザ ビームを照射し、散乱光の画像を画像処理することによってその液体中のパーテイク ル数を計測する。また、以下の洗浄動作を、基板ステージ PST上の基板 Pの交換中 に随時行うようにしてもよい。さらに、例えば予め図 4の観察装置 67を用いてノズル部 材 30の汚れの多い部分を検出しておき、その洗浄動作時には、その汚れの多い部 分のみを洗浄するようにしてもよ!、。
[0077] この洗浄動作にぉ 、て、露光光 ELの照射を停止した状態で、図 9 (A)のステップ 3 01において、図 6に示すように、基板ステージ PST上の基板ホルダ PHに対して計測 ステージ MSTの計測テーブル MTBを密着 (又は近接)させる。次に、基板ステージ PST及び計測テーブル MTB (計測ステージ MST)を同時に +X方向に移動して、 投影光学系 PLの直下に計測テーブル MTBの凹部 60Aを移動する (移動工程)。こ の後、基板ステージ PSTはさらに +X方向に待避させてもよい。この結果、図 7 (A) に示すように、投影光学系 PLの先端の光学素子 2を囲むように支持部材 33A及び 3 3B (撥液コートが施されて 、る)によって不図示のコラム機構に支持されて 、るノズル 部材 30の回収口 24 (メッシュフィルタ 25)の底面に、計測テーブル MTB上の凹部 6 OA内のジェットノズル部 90が移動する。
[0078] この状態で、液浸法による露光時と同様に (ただし、露光光 ELは照射されな 、)、ス テツプ 302において、図 1の液体供給機構 10からノズル部材 30の供給口 13, 14を 通して、投影光学系 PLの光学素子 2及びこれを囲むノズル部材 30の底面と計測テ 一ブル MTBの上面との間に液体 1を供給して、図 7 (B)に示すように、液浸領域 AR 2を形成する(液浸工程)。この際に、液浸領域 AR2がノズル部材 30の外側に広がら ないように、図 1のバルブ 28を閉じバルブ 23を開いて、液浸領域 AR2内の液体 1を 液体回収機構 20によって回収する。また、液体 1が凹部 60A内にも流入するため、 必要に応じて、図 4のバルブ 64Cを開き、凹部 60A内の液体 1を回収流路 87及び図 4の配管 63Cを介して回収装置 65で回収してもよ 、。このように予め液浸領域 AR2 を形成することによって、ノズル部材 30に付着した異物の剥離が容易になる。また、 噴出装置 62から噴射されてノズル部材 30に当たる洗浄液の飛散などを抑えることも 可能となる。この状態で、図 1の液体回収機構 20による液浸領域 AR2からの液体 1 の回収を停止し、液体供給機構 10からの液浸領域 AR2に対する液体 1の供給を停 止する。計測テーブル MTBの上面の撥液性及び液体 1の表面張力によって、光学 素子 2及びノズル部材 30の底面と計測テーブル MTBとの間には液浸領域 AR2が 維持される。
[0079] 次に、図 4の噴出装置 62を使用するものとして、ステップ 303において、制御部 61 の制御により、バルブ 64Bを閉じバルブ 64Aを開いて、噴出装置 62から配管 63A、 供給流路 86、及びジヱットノズル部 90を介して、図 7 (C)に示すように、ノズル部材 3 0の回収口 24内のメッシュフィルタ 25に向けて洗浄液 1Bを噴射する。これと並行して 、凹部 60A内に流入する洗浄液 1Bを、回収流路 87及び図 4の配管 63Cを介して回 収装置 65で回収する。そして、このようにジェットノズル部 90からの洗浄液 1Bの噴射 及び凹部 60A内の洗浄液 IBの回収を行いながら、図 4の計測ステージ MSTを X方 向、 Y方向に駆動することによって、図 7 (C)に示すように、ジェットノズル部 90をノズ ル部材 30の矩形の枠状の回収口 24及び供給口 13, 14に沿って相対移動する。こ れによって、メッシュフィルタ 25及び供給口 13, 14の全面に洗浄液 1Bが噴射される (洗浄工程)。なお、図 7 (D)に示すように、ノズル部材 30の底面の一部力も計測テー ブル MTBの上面が外れる場合には、液浸領域 AR2内の液体 1を図 1の液体回収機 構 20によって回収してぉ 、てもよ 、。
[0080] この結果、ノズル部材 30内のメッシュフィルタ 25 (回収口 24)及び供給口 13, 14内 に付着している異物の多くは、洗浄液 1B内に混入又は溶解する。そして、それらの 異物は洗浄液 1Bとともに図 4の回収装置 65に回収される。なお、必要に応じて、図 7 (A)から図 7 (D)までの洗浄動作を複数回繰り返してもよい。また、図 7 (B)の液浸領 域 AR2への液体 1の供給及び回収動作 (ステップ 302)と、 07 (C)のジェットノズル 部 90からの洗浄液 1Bの噴射動作 (ステップ 303)とを少なくとも部分的に並行に実行 してもよい。さらに、回収装置 65による洗浄液 1Bの回収の代わりに、あるいはそれと 並行して、液体回収機構 20による洗浄液 1Bの回収を行っても良い。また、洗浄動作 (特に洗浄液 1Bの噴射動作)中に、液浸領域 AR2への液体 1の供給及び回収動作 を継続的に行っても良い。
[0081] 本例の洗浄動作の作用等をまとめると以下のようになる。
(A1)図 7 (C)に示すように、洗浄液 1Bがノズル部材 30の回収口 24及び供給口 1 3, 14に供給されるため、液浸法で露光を行う際にノズル部材 30内に蓄積される、あ るいはその表面に堆積される異物の少なくとも一部を洗浄液 1Bとともに除去できる。 この際に、予め又は部分的に並行して液浸領域 AR2を形成しているため、ノズル部 材 30に付着している異物を容易に剥離して除去することができる。また、洗浄液の飛 散などによる露光装置の汚染を防止することもできる。このため、効率的に液体供給 機構 10及び液体回収機構 20のメンテナンス(ひ 、ては露光装置のメンテナンス)又 はノズル部材 30の洗浄を行うことができる。その結果、その後の露光工程において、 基板 P上の液浸領域 AR2の液体中の異物の量が減少するため、転写されるパター ンの形状誤差等が低減され、高精度に露光を行うことができる。 [0082] なお、例えば図 1において液体の供給口 13, 14と回収口 24とが別のノズル部材に 設けられている場合には、洗浄工程において、どちらか一方のノズル部材の洗浄を 行うのみでもよい。さらに、露光装置 EXにおいて、液浸法による露光時に液体 1に接 する可能性のある部分 (接液部)の少なくとも一部を含む被洗浄部に、ジェットノズル 部 90からの洗浄液を噴射してもよい。これによつても、その後の露光時の液体中の異 物量は減少する。この被洗浄部は、メッシュフィルタ 25 (回収口 24)及び供給口 13、 14を除くノズル部材 30の他の接液部に限られるものでなぐノズル部材 30と異なる 部材、例えば光学素子 2などの接液部でもよ 、。
[0083] (A2)また、本例では洗浄液 1Bをジェットノズル部 90から噴射して 、るため、ノズル 部材 30に付着した異物を効率的に除去できる。なお、ジェットノズル部 90を用いるこ となぐ単なる噴き出しロカも洗浄液 1Bを被洗浄部に向けて噴出してもよい。また、 例えば洗浄液 1Bによる洗浄効果を高めるために、洗浄液 1Bをノズル部材 30に噴出 している際に、計測テーブル MTBを X方向、 Y方向、及び Z方向の少なくとも 1つの 方向に振動させてもよい。前述の洗浄条件は、計測テーブル MTBの振動の有無、 及び Z又は振動条件を含んでも良い。
[0084] (A3)また、本例では図 4の噴出装置 62から供給される洗浄液をジェットノズル部 9 0から噴射しているが、図 4の混合噴出装置 66から供給される洗浄液と気体との混合 物をジェットノズル部 90から噴射してもよい。この場合、その気泡(キヤビテーシヨン気 泡)によって洗浄効果を高めることができる。なお、窒素などの気体を洗浄液に溶存 させてちょい。
(A4)また、本例のノズル部材 30は、投影光学系 PLの像面に最も近い光学素子 2 を囲むように配置されるとともに、ノズル部材 30の回収口 24にメッシュフィルタ 25が 設けられており、上記の洗浄工程では、メッシュフィルタ 25等に洗浄液 1Bが噴射さ れる。この際に、光学素子 2の下面にも洗浄液 1Bを噴射してもよい。これによつて、光 学素子 2に付着した異物も除去できる。
[0085] (A5)また、上記の洗浄動作は、ジェットノズル部 90から噴射された洗浄液 1Bを回 収する動作(回収工程)を含むため、異物が混入した洗浄液 1Bを外部に排出するこ とができる。本例では、洗浄液 1Bの回収機構(図 4の回収装置 65を含む機構)を計 測ステージ MST側に設けている力 その洗浄液の吸引口を例えばノズル部材 30の 近傍に設けてもよい。この場合、その吸引ロカゝら洗浄液を吸引する装置を図 1の液体 回収装置 21で兼用することも可能であり、これによつて、計測ステージ MST (可動体 )の構成を簡素化できる。
[0086] (A6)また、上記の実施形態では、液浸露光用の液体 1と洗浄液 1Bとは異なる種 類であるため、洗浄液 1Bとして溶剤等の洗浄効果の高い液体を使用することができ る。
なお、洗浄液 1Bとして液体 1そのものを用いることも可能であり、この場合には、図 1の洗浄液供給部 26及び図 4の噴出装置 62の蓄積部 62aを図 1の液体供給部 11で 兼用することが可能となり、液体及び洗浄液の供給機構の構成を簡素化できる。
[0087] 〔他の実施形態の洗浄動作の説明〕
次に、本発明の実施形態の他の例につき図 8を参照して説明する。本例の露光装 置も基本的に図 1の露光装置 EXと同じ構成であるが、本例の露光装置ではノズル部 材 30を洗浄するために図 1の計測ステージ MST側に設けられた洗浄機構が異なつ ている。以下、図 8において図 4及び図 7 (A)に対応する部分には同一符号を付して その詳細説明を省略する。
[0088] 図 8 (A)は、本例の計測ステージ MST (図 1参照)の計測テーブル MTB及び投影 光学系 PLの光学素子 2を囲むように設けられたノズル部材 30を示す断面図であり、 この図 8 (A)において、液浸法による露光時には、ノズル部材 30を介して図 1の液体 供給機構 10から液体 1を供給するとともに液体回収機構 20によってその液体 1を回 収することで、投影光学系 PLの光学素子 2及びノズル部材 30の底面とこれに対向す る基板 (不図示)の表面との間の空間を含むように液浸領域 AR2が形成される。
[0089] 図 8 (A)において、計測テーブル本体 MTBの上面の X方向(走査方向)の中央部 力 計測テーブル MTBの X方向の側面にかけて回収流路 87Aが形成され、回収 流路 87Aの途中に、液体が上方(+Z方向)に流れないようにするための逆止弁 89 が設けられている。また、計測テーブル MTBの上面の回収流路 87Aに連通する開 口の近傍に凹部 60Aが形成され、凹部 60Aの中央部にジェットノズル部 90が固定さ れ、凹部 60Aの底部は回収流路 87Bによって回収流路 87Aの逆止弁 89よりも上部 に接続されている。
[0090] また、凹部 60A内のジェットノズル部 90の底部の液体の流入口は、計測テーブル MTB内の供給流路 86、及び外部の供給管 63Eを介して液体を蓄積するためのシリ ンダ一部 91に連通している。また、回収流路 87Aは、計測テーブル MTBの側面か ら除塵フィルタ 88が装着された回収管 63Fを介してシリンダー部 91に連通している。 シリンダー部 91には不図示の駆動部(図 4の制御部 61によって制御される。)によつ て押し引きされるピストン部 92が装着され、ピストン部 92を引くことによってシリンダー 部 91内に回収管 63Fを介して液浸領域 AR2の液体 1を蓄積することができ、ピストン 部 92を押すことで、シリンダー部 91内の液体 1を供給管 63Eを介してジェットノズル 部 90から上方に噴射(噴出)することができる。従って、回収流路 87A、逆止弁 89、 回収管 63F、シリンダー部 91、ピストン部 92、及びこの駆動部(不図示)を含んで液 体 1の蓄積機構が構成され、ジェットノズル部 90、供給流路 86、供給管 63E、シリン ダ一部 91、ピストン部 92、及びこの駆動部(不図示)を含んで液体 1の噴出装置が構 成されて!/、る。その蓄積機構及び噴出装置を含んで本例の洗浄機構が構成されて いる。
[0091] また、本例では、その回収管 63F、シリンダー部 91、ピストン部 92を含む液体 1の 蓄積機構は、回収流路 87Bとともに、ジェットノズル部 90から噴射されて凹部 60A内 に流入する液体の回収機構としても使用される。なお、本例においても、例えば供給 管 63Eとシリンダー部 91との間に、液体 1の温度を制御する温度制御部を設け、ジ ットノズル部 90から噴射される液体の温度を制御してもよい。また、例えば供給管 63 Eとシリンダー部 91との間に、液体 1に空気などの気体を混入 (あるいは溶存)する混 合部を設け、ジェットノズル部 90から噴射される液体に気体 (気泡)を混入させてもよ い。さら〖こ、例えばシンナー、あるいは IPAなどの溶剤を液体 1に混入した洗浄液を ジェットノズル部 90から噴射してもよい。また、本例の洗浄機構は上記構成に限られ るものではない。
[0092] 次に、例えば図 1の液体供給機構 10及び液体回収機構 20のメンテナンスを行う際 に、本例の洗浄機構を用いて図 1のノズル部材 30の洗浄を行う場合の動作の一例に つき図 8 (A)及び (B)を参照して説明する。 先ず、図 8 (A)に示すように、露光光 ELの照射を停止した状態で計測ステージ MS Tを駆動して、投影光学系 PLの底面に計測テーブル MTBの回収流路 87Aの開口 を移動する(移動工程)。この状態では、シリンダー部 91のピストン部 92は限界まで 押されており、シリンダー部 91には液体 1は蓄積されていないものとする。続いて、液 浸法による露光時と同様に (ただし、露光光 ELは照射されない)、図 1の液体供給機 構 10力もノズル部材 30の供給口 13, 14を通して投影光学系 PLの光学素子 2及び これを囲むノズル部材 30の底面と計測テーブル MTBの上面との間に液体 1を供給 して液浸領域 AR2を形成する (液浸工程)。そして、シリンダー部 91のピストン部 92 を次第に限界まで引いて、液浸領域 AR2内の液体 1を回収流路 87A及び回収管 63 Fを介してシリンダー部 91内に蓄積する(蓄積工程)。この際に、図 1の液体供給機 構 10からは、シリンダー部 91の容量以上の液体 1を供給する。
[0093] 次に、図 8 (B)に示すように、シリンダー部 91のピストン部 92を次第に押して、シリン ダ一部 91内に蓄積された液体 1を、供給管 63E、供給流路 86、及びジェットノズル 部 90を介してノズル部材 30の回収口 24内のメッシュフィルタ 25に向けて噴射する。 そして、このようにジェットノズル部 90からの液体 1の噴射を行いながら、図 4の計測ス テージ MSTを X方向、 Y方向に駆動することによって、図 8 (B)に示すように、ジェット ノズル部 90をノズル部材 30の矩形の枠状の回収口 24及び供給口 13, 14に沿って 相対移動する。これによつて、メッシュフィルタ 25及び供給口 13, 14の全面に液体 1 が噴射される (洗浄工程)。この場合、逆止弁 89が設けてあるため、液体 1が回収流 路 87A内を逆流することがな 、。
[0094] なお、途中でシリンダー部 91内の液体 1が少なくなつたときには、図 8 (A)に示すよ うに、図 1の液体供給機構 10からノズル部材 30を介して液浸領域 AR2に液体 1を供 給し、ピストン部 92を引いてシリンダー部 91内に液体 1を補充してもよい。この際に、 凹部 60A内に流入した液体 1も回収される。その後、ピストン部 92を押すことによって 、再びジェットノズル部 90から液体 1を噴射することができる。この結果、ノズル部材 3 0内のメッシュフィルタ 25 (回収口 24)及び供給口 13, 14内に付着している異物の多 くは、液体 1内に混入又は溶解する。そして、それらの異物は液体 1とともに図 8 (A) のシリンダー部 91内に回収することができる。また、除塵フィルタ 88を定期的に交換 するか、又はシリンダー部 91に水抜き用の弁を設けておき、必要に応じてシリンダー 部 91内の液体を外部に排出することで、ジェットノズル部 90から噴射される液体に異 物が混入することを防止できる。
[0095] 本例の洗浄動作の作用等をまとめると以下のようになる。
(A7)ノズル部材 30を洗浄するための洗浄液として、図 1の液体供給機構 10からノ ズル部材 30を介して液浸領域 AR2に供給される液体 1を用いている。従って、洗浄 液の供給機構を簡素化できる。また、予め接液部に液体 1を供給するのと同等である ため、ノズル部材 30内に付着している異物を効率的に除去できる。このため、効率的 に液体供給機構 10及び液体回収機構 20のメンテナンス(ひ ヽては露光装置のメン テナンス)又はノズル部材 30の洗浄を行うことができる。
[0096] なお、本例の露光装置 EXにお 、ても、接液部の少なくとも一部を含む被洗浄部に 、ジェットノズル部 90から液体を噴射してもよい。これによつても、その後の露光時の 液体中の異物量は減少する。この被洗浄部は、メッシュフィルタ 25 (回収口 24)及び 供給口 13、 14を除くノズル部材 30の他の接液部に限られるものでなぐノズル部材 3 0と異なる部材、例えば光学素子 2などの接液部でもよ 、。
(A8)本例では、図 8 (A)に示すように、ジヱットノズル部 90から液体 1を噴射してい るため、高い洗浄効果が得られる。なお、ジェットノズル部 90の代わりに、例えば単に 液体 1を噴出する部材を用いることも可能である。
[0097] (A9)本例では、図 8 (A)に示すように、回収流路 87A中に逆止弁 89が設けられて いるため、シリンダー部 91及びピストン部 92を液体 1の蓄積機構及び噴出装置で兼 用することができる。なお、逆止弁 89の代わりに、例えば回収管 63Fを開閉するため のバルブを設けてもよ!、。
なお、シリンダー部 91及びピストン部 92を液体 1の蓄積機構及び噴出装置で個別 に備えてもよい。この場合には、例えばその 2つのシリンダー部を逆止弁を介して連 結しておくことによって、上記の液体 1の蓄積工程と液体 1を用いる洗浄工程とを少な くとも部分的に並行して行うことが可能となる。
[0098] また、液体 1の噴出機構を計測ステージ MST上に設けることも可能である。この場 合には、一例として、図 8 (A)において、計測テーブル MTB上に液体 1を噴出する 小型のポンプを搭載しておき、図 1の液体供給機構 10から図 8 (A)の供給口 13, 14 を介して液体 1を供給し、供給された液体 1をその小型のポンプによってノズル部材 3 0の底面等 (接液部の少なくとも一部)に噴出するという動作を連続的に繰り返しても よい。又は、計測テーブル MTB上で噴出した液体 1を循環させて再度噴出してもよ い。このように計測テーブル MTB上に小型のポンプを設ける構成では、ステージ機 構を全体として小型化できる。
[0099] また、上述の実施形態にお!、ては、計測ステージ MSTを動力して、洗浄液 1B又は 液体 1を噴射するジェットノズル部 90とノズル部材 30とを相対移動して ヽるが、ノズル 部材 30を可動にして、静止した計測ステージ MST (又は基板ステージ PST)上でジ エツトノズル部 90とノズル部材 30とを相対移動してもよい。この場合、ノズル部材 30と 計測ステージ MSTの両方を移動してもよい。さらに、ノズル部材 30と計測ステージ M STとの相対移動の代わりに、あるいはそれと組み合わせて、液浸領域 AR2の液体を 振動させて、洗浄効果を高めるようにしてもよい。液体を振動させる部材としては、例 えば圧電セラミックス(チタン酸バリウム系もしくはチタン酸ジルコン酸鉛系(いわゆる PZT)等)又はフ ライト振動子 (磁歪振動子)等の超音波振動子などを用いることが できる。この場合、液浸領域 AR2の液体の振動と洗浄液 1B又は液体 1の噴出とを少 なくとも部分的に並行して行ってもよいし、洗浄液 1B又は液体 1の噴出に先立って液 浸領域 AR2の液体を振動させてもょ 、。
[0100] また、上述の実施形態では洗浄動作時に液体 1で液浸領域 AR2を形成するものと したが、液浸露光用の液体と異なる液体、例えば洗浄液供給部 26あるいは前述の 洗浄機構カゝら供給される洗浄液で液浸領域 AR2を形成してもよい。この場合、液体 領域 AR2の洗浄液と同一種類の洗浄液を噴出させてもよ 、し、異なる種類の洗浄液 あるいは液浸露光用の液体を噴出させてもよい。さらに、上述の実施形態では洗浄 動作時に液浸領域 AR2を形成するものとした力 この液浸領域 AR2を形成しな ヽで 接液部の洗浄を行っても良い。この場合、接液部に当たる液体の飛散を抑制又は防 止する部材を配置する、ある ヽは接液部の洗浄対象領域を囲むガスバリアを形成し てもよい。また、上述の実施形態では洗浄機構が液体噴出方式を採用するものとし たが、洗浄機構が洗浄条件を変更可能である場合、洗浄機構は液体噴出方式と異 なる洗浄方式を採用しても良い。さらに、上述の実施形態では液浸露光用の液体 1と 接する接液部を洗浄対象とするものとしたが、必要ならば、液体 1と接しない部分も洗 浄対象としてよい。
[0101] なお、上述の実施形態において、ノズル部材 30の回収口 24に設置されるメッシュ フィルタ 25を交換可能としてもよい。また、回収口 24等に設置される多孔部材力 メ ッシュフィルタ 25 (網目状のフィルタ部材)である場合には、異物を効率的に除去可 能であるとともに、付着した異物の洗浄も容易である。
[0102] し力しながら、ノズル部材 30の回収口 24等に設置される多孔部材は、メッシュフィ ルタ 25には限定されない。すなわち、メッシュフィルタ 25の代わりに、スポンジ等から なる多孔部材又は交換可能なカートリッジ式のフィルタ (セラミックスフィルタ等)を備 えた多孔部材等も使用可能である。なお、多孔部材の設置箇所は回収口 24などに 限られるものではない。
また、ノズル部材 30内のメッシュフィルタ 25 (又は他の多孔部材の場合も同様)を交 換可能とした場合、異物が付着したメッシュフィルタ 25を未使用(又は洗浄済み)の 別のメッシュフィルタと交換する際には、例えば図 1の制御装置 CONTが液体回収 機構 20を駆動して、図 3のノズル部材 30内の供給流路 82A, 82B及び回収流路 84 を含む液体 1の流路カも液体 1を全て排出しておくことが望ましい。これによつて、メッ シュフィルタ 25の交換時に、メッシュフィルタ 25から液体 1中に溶出した異物がノズル 部材 30内に残留することを防止できる。
[0103] なお、上述の実施形態では、計測ステージ MSTは洗浄機構の他に、上記複数の 計測器の少なくとも 1つと基準マークとを計測部材として備えるものとしたが、計測ス テージ MSTに搭載する計測部材の種類及び Z又は数などはこれに限られな 、。計 測部材として、例えば投影光学系 PLの透過率を計測する透過率計測器などを設け てもよい。また、上記計測器はその一部のみを計測ステージ MSTに設け、残りは計 測ステージ MSTの外部に設けてもよい。さらに、少なくとも 1つの計測部材を基板ス テージ PSTに設けてもょ 、。
[0104] また、上述の実施形態では、洗浄機構の少なくとも一部を計測ステージ MSTに設 けるものとしたが、計測ステージ MSTとは独立の可動ステージ (可動部材、可動体) に洗浄機構の少なくとも一部を設けてもよい。この可動ステージは、基板ステージ PS Tでもよいし、あるいは基板ステージ PSTと異なっていてもよい。この場合、例えば基 板 Pの交換時などに、前述の液浸領域 AR2を維持するために、基板ステージ PSTと の交換でその可動ステージを投影光学系 PLと対向して配置してもよい。
[0105] また、上述の実施形態では干渉計システム(56A〜56C)を用いてマスクステージ RST、基板ステージ PST、及び計測ステージ MSTの各位置情報を計測するものと したが、これに限らず、例えば各ステージに設けられるスケール(回折格子)を検出す るエンコーダシステムを用いてもよい。この場合、干渉計システムとエンコーダシステ ムの両方を備えるハイブリッドシステムとし、干渉計システムの計測結果を用いてェン コーダシステムの計測結果の較正(キャリブレーション)を行うことが好まし 、。また、 干渉計システムとェンコーダシステムとを切り替えて用いる、あるいはその両方を用い て、ステージの位置制御を行うようにしてもよい。
[0106] また、上述の実施形態では基板ホルダ PHを基板ステージ PSTと一体に形成しても よいし、基板ホルダ PHと基板ステージ PSTとを別々に構成し、例えば真空吸着など によって基板ホルダ PHを基板ステージ PSTに固定することとしてもよい。
なお、本発明は、各種計測器類を基板ステージ PSTに搭載した露光装置 (計測ス テージ MSTを備えていない露光装置)にも適用することができる。また、各種計測器 類はその一部のみが計測ステージ MSTまたは基板ステージ PSTに搭載され、残り は外部あるいは別の部材に設けるようにしてもよい。これらの場合、例えば図 4のジヱ ットノズル部 90を含む洗浄機構を基板ステージ PST側に設けてもょ ヽ。
なお、上記実施形態では露光光 ELの照射領域 (前述の照明領域、投影領域 AR1 を含む)が矩形状であるものとしたが、これに限らず、例えば円弧状などでもよい。ま た、照射領域 (AR1など)は投影光学系 PLの視野内で光軸 AXを含んで設定される ものとしたが、これに限らず、例えば光軸 AXを含まず偏心して設定されてもよい。
[0107] また、半導体デバイス等のマイクロデバイスは、図 9 (B)に示すように、マイクロデバ イスの機能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチタ ル)を製作するステップ 202、デバイスの基材である基板を製造するステップ 203、前 述した実施形態の露光装置 EXによりマスクのパターンを基板に露光する工程、露光 した基板を現像する工程、現像した基板の加熱 (キュア)及びエッチング工程などを 含む基板処理ステップ 204、デバイス組み立てステップ (ダイシング工程、ボンディン グ工程、パッケージ工程などの加工プロセスを含む) 205、並びに検査ステップ 206 等を経て製造される。
[0108] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板、薄膜磁気ヘッド用のセラミックゥェ ノ、、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリコン ウェハ)、またはフィルム部材等が適用される。また、基板 Pの形状は円形のみならず 、矩形など他の形状でもよい。
なお、上述の実施形態においては、転写用のパターンが形成されたマスクを用い た力 このマスクに代えて、例えば米国特許第 6, 778, 257号明細書に開示されて V、るように、露光すべきパターンの電子データに基づ 、て透過パターンまたは反射 パターンを形成する電子マスクを用いてもよい。この電子マスクは、可変成形マスク( アクティブマスクあるいはイメージジェネレータ)とも呼ばれ、例えば非発光型画像表 示素子(空間光変調器)の一種である DMD (Digital Micro-mirror Device)などを含 むものである。
[0109] DMDは、所定の電子データに基づ!/、て駆動する複数の反射素子 (微小ミラー)を 有し、複数の反射素子は、 DMDの表面に 2次元マトリックス状に配列され、かつ素子 単位で駆動されて露光光を反射、偏向する。各反射素子はその反射面の角度が調 整される。 DMDの動作は、制御装置 CONTにより制御され得る。制御装置 CONT は、基板 P上に形成すべきパターンに応じた電子データ (パターン情報)に基づいて DMDの反射素子を駆動し、照明系 ILにより照射される露光光を反射素子でパター ン化する。 DMDを使用することにより、パターンが形成されたマスク(レチクル)を用 いて露光する場合に比べて、ノターンが変更されたときに、マスクの交換作業及びマ スクステージにおけるマスクの位置合わせ操作が不要になるため、露光動作を一層 効率よく行うことができる。なお、電子マスクを用いる露光装置では、マスクステージを 設けず、基板ステージによって基板を X軸及び Y軸方向に移動するだけでもよい。な お、 DMDを用いた露光装置は、上記米国特許のほかに、例えば特開平 8— 31384 2号公報、特開 2004— 304135号公報に開示されている。指定国または選択国の 法令が許す範囲において米国特許第 6,778,257号明細書の開示を援用して本文 の記載の一部とする。
[0110] また、露光装置 EXとしては、マスク Mと基板 Pとを同期移動してマスク Mのパターン を走査露光するステップ ·アンド'スキャン方式の走査型露光装置 (スキャニングステツ パ)の他に、マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一括露光し、 基板 Pを順次ステップ移動させるステップ ·アンド ·リピート方式の投影露光装置 (ステ ツバ)にも適用することができる。露光装置 EXの種類としては、基板 Pに半導体素子 パターンを露光する半導体素子製造用の露光装置に限られず、液晶表示素子製造 用又はディスプレイ製造用の露光装置、薄膜磁気ヘッド、マイクロマシン、 MEMS, DNAチップ、撮像素子(CCD)あるいはレチクル又はマスクなどを製造するための露 光装置などにも広く適用できる。
また、本発明は、例えば特開平 10— 163099号公報、特開平 10— 214783号公 報(対応する米国特許第 6, 341, 007, 6, 400, 441, 6, 549, 269及び 6, 590, 634号明細書)、特表 2000— 505958号公報(対応する米国特許第 5, 969, 441 号明細書)あるいは米国特許第 6, 208, 407号明細書などに開示されているような 複数の基板ステージを備えたマルチステージ型の露光装置にも適用できる。マルチ ステージ型の露光装置に関して、指定国及び選択国の国内法令が許す限りにおい て、上記米国特許の開示を援用して本文の記載の一部とする。
[0111] また、上述の実施形態の投影光学系は、先端の光学素子の像面側の光路空間 (液 浸空間)を液体で満たしている力 例えば国際公開第 2004Z019128号パンフレツ トに開示されているように、先端の光学素子のマスク側の光路空間も液体で満たす投 影光学系を採用することもできる。また、本発明は、例えば国際公開第 2004Z0931 59号パンフレット、米国特許出願公開第 2006Z0023189A1号明細書に開示され ているように、投影光学系と基板との間の液浸領域をその周囲のエアーカーテンで 保持する液浸型の露光装置にも適用することができる。
[0112] また、本発明は、例えば国際公開第 2001Z035168号パンフレットに開示されて いるように、干渉縞を基板 P上に形成することによって、基板 P上にライン 'アンド'スぺ ースパターンを形成する露光装置にも適用できる。この場合も、光学部材と基板 Pと の間の液体を介して基板 Pに露光光が照射される。
さらに、例えば特表 2004— 519850号公報(対応する米国特許第 6, 611, 316号 明細書)に開示されているように、 2つのマスクのパターンを、投影光学系を介して基 板上で合成し、 1回の走査露光によって基板上の 1つのショット領域をほぼ同時に二 重露光する露光装置にも本発明を適用することができる。
[0113] 上述の実施形態において、液体供給部及び Z又は液体回収部が露光装置に設け られている必要はなぐ例えば露光装置が設置される工場等の設備を代用してもよい 。また、液浸露光に必要な構造は、上述の構造に限られず、例えば、欧州特許公開 第 1420298号公報、国際公開第 2004Z055803号パンフレット、国際公開第 200 4Z057590号パンフレット、国際公開第 2005Z029559号パンフレット(対応米国 特許公開第 2006Z0231206号)、国際公開第 2004/086468号パンフレット(対 応米国特許公開第 2005Z0280791号)、特開 2004— 289126号公報(対応米国 特許第 6,952,253号)などに記載されているものを用いることができる。液浸露光装 置の液浸機構及びその付属機器にっ 、て、指定国または選択国の法令が許す範囲 において上記の米国特許又は米国特許公開などの開示を援用して本文の記載の一 部とする。
[0114] また、上記実施形態では、液浸法に用いる液体 1として、水よりも露光光に対する屈 折率が高い液体、例えば屈折率が 1. 6〜1. 8程度のものを使用してもよい。ここで、 純水よりも屈折率が高い(例えば 1. 5以上)の液体 1としては、例えば、屈折率が約 1 . 50のイソプロパノール、屈折率が約 1. 61のグリセロール(グリセリン)といった C— H結合あるいは O— H結合を持つ所定液体、へキサン、ヘプタン、デカン等の所定 液体(有機溶剤)、あるいは屈折率が約 1. 60のデカリン (Decalin: Decahydronaphthal ene)などが挙げられる。また、液体 1は、これら液体のうち任意の 2種類以上の液体を 混合したものでもよいし、純水にこれら液体の少なくとも 1つを添カ卩(混合)したもので もよい。さらに、液体 1は、純水に H+、 Cs+、 K+、 Cl_、 SO 2_、 PO 2_等の塩基又は
4 4
酸を添加(混合)したものでもよ 、し、純水に A1酸ィ匕物等の微粒子を添カ卩(混合)した ものでもよい。なお、液体 1としては、光の吸収係数が小さぐ温度依存性が少なぐ 投影光学系 PL、及び Z又は基板 Pの表面に塗布されている感光材 (又はトップコー ト膜あるいは反射防止膜など)に対して安定なものであることが好ましい。液体 1として 、超臨界流体を用いることも可能である。また、基板 Pには、液体から感光材ゃ基材 を保護するトップコート膜などを設けることができる。
[0115] また、投影光学系 PLの光学素子 (終端光学素子) 2を、フッ化カルシウム (蛍石)に 代えて、例えば石英(シリカ)、あるいは、フッ化バリウム、フッ化ストロンチウム、フツイ匕 リチウム、及びフッ化ナトリウム等のフッ化化合物の単結晶材料で形成してもよ 、し、 石英や蛍石よりも屈折率が高い(例えば 1. 6以上)材料で形成してもよい。屈折率が 1. 6以上の材料としては、例えば、国際公開第 2005Z059617号パンフレットに開 示される、サファイア、二酸ィ匕ゲルマニウム等、あるいは、国際公開第 2005/0596 18号パンフレットに開示される、塩化カリウム (屈折率は約 1. 75)等を用いることがで きる。
[0116] 液浸法を用いる場合、例えば、国際公開第 2004Z019128号パンフレット(対応 米国特許公開第 2005Z0248856号)に開示されているように、終端光学素子の像 面側の光路に加えて、終端光学素子の物体面側の光路も液体で満たすようにしても よい。さらに、終端光学素子の表面の一部 (少なくとも液体との接触面を含む)又は全 部に、親液性及び Z又は溶解防止機能を有する薄膜を形成してもよい。なお、石英 は液体との親和性が高ぐかつ溶解防止膜も不要であるが、蛍石は少なくとも溶解防 止膜を形成することが好まし 、。
[0117] 上記各実施形態では、露光光 ELの光源として ArFエキシマレーザを用いた力 例 えば、国際公開第 1999Z46835号パンフレット (対応米国特許第 7,023,610号)に 開示されているように、 DFB半導体レーザ又はファイバーレーザなどの固体レーザ 光源、ファイバーアンプなどを有する光増幅部、及び波長変換部などを含み、波長 1 93nmのパルス光を出力する高調波発生装置を用いてもよい。さらに、上記各実施 形態では、投影領域 (露光領域)が矩形状であるものとしたが、他の形状、例えば円 弧状、台形状、平行四辺形状、あるいは菱形状などでもよい。
[0118] 以上のように、上記の実施形態の露光装置 EXは、本願請求の範囲に挙げられた 各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的 精度を保つように、組み立てることで製造される。これら各種精度を確保するために、 この組み立ての前後には、各種光学系については光学的精度を達成するための調 整、各種機械系については機械的精度を達成するための調整、各種電気系につい ては電気的精度を達成するための調整が行われる。各種サブシステム力 露光装置 への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接 続、気圧回路の配管接続等が含まれる。この各種サブシステム力 露光装置への組 み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない 。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ 、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度及び クリーン度等が管理されたクリーンルームで行うことが望ましい。
[0119] 本願明細書に掲げた種々の米国特許及び米国特許出願公開などについては、特 に援用表示をしたもの以外についても、指定国または選択国の法令が許す範囲に おいてそれらの開示を援用して本文の一部とする。
また、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で 種々の構成を取り得ることは勿論である。また、明細書、特許請求の範囲、図面、及 び要約を含む 2006年 6月 30日付け提出の日本国特願 2006— 182561の全ての 開示内容は、そっくりそのまま引用して本願に組み込まれて!/、る。
産業上の利用可能性
[0120] 本発明によれば、液浸法で露光を行う露光装置のメンテナンスを効率的に行うこと ができるため、その後の露光時に液浸領域の液体中の異物の量が減少し、デバイス を高精度に製造できる。

Claims

請求の範囲
[1] 光学部材と基板との間を第 1液体で満たして液浸空間を形成し、前記光学部材と 前記第 1液体とを介して露光光で前記基板を露光する露光装置のメンテナンス方法 において、
前記第 1液体で前記液浸空間を形成する液浸空間形成部材と対向して可動体を 配置する移動工程と、
前記液浸空間形成部材を用いて前記可動体上に前記第 1液体による前記液浸空 間を形成する液浸工程と、
前記第 1液体に接する接液部の洗浄を行うために、前記可動体側から前記接液部 の少なくとも一部を含む領域に向けて第 2液体を噴出する洗浄工程とを有するメンテ ナンス方法。
[2] 前記液浸工程と前記洗浄工程とを少なくとも部分的に並行に実行する請求項 1〖こ 記載のメンテナンス方法。
[3] 前記洗浄工程では、前記第 2液体をジェットノズルから噴射する請求項 1又は 2〖こ 記載のメンテナンス方法。
[4] 前記洗浄工程では、前記第 2液体に気体を混合させて噴出する請求項 1から 3の
Vヽずれか一項に記載のメンテナンス方法。
[5] 前記第 2液体を回収する回収工程を有する請求項 1から 4のいずれか一項に記載 のメンテナンス方法。
[6] 前記第 1液体と前記第 2液体とは異なる請求項 1から 5のいずれか一項に記載のメ ンテナンス方法。
[7] 前記第 2液体は前記第 1液体を含む請求項 1から 6の 、ずれか一項に記載のメンテ ナンス方法。
[8] 前記第 2液体は前記第 1液体に気体あるいは溶剤を混入してなる請求項 7に記載 のメンテナンス方法。
[9] 前記第 2液体は前記第 1液体と同一である請求項 1から 5のいずれか一項に記載の メンテナンス方法。
[10] 前記第 1液体は、前記液浸空間形成部材を介して前記可動体側に供給される請求 項 7から 9のいずれか一項に記載のメンテナンス方法。
[11] 光学部材と基板との間を第 1液体で満たして液浸空間を形成し、前記光学部材と 前記第 1液体とを介して露光光で前記基板を露光する露光装置のメンテナンス方法 において、
前記第 1液体で前記液浸空間を形成する液浸空間形成部材と対向して可動体を 配置する移動工程と、
前記液浸空間形成部材を用いて前記可動体上に前記第 1液体を供給し、この供給 された前記第 1液体を蓄積する蓄積工程と、
前記第 1液体に接する接液部の洗浄を行うために、前記蓄積工程で蓄積された前 記第 1液体を前記接液部の少なくとも一部を含む領域に向けて噴出する洗浄工程と を有するメンテナンス方法。
[12] 前記洗浄工程では、前記蓄積工程で蓄積された前記第 1液体をジェットノズルから 噴射する請求項 11に記載のメンテナンス方法。
[13] 前記蓄積工程と前記洗浄工程とを少なくとも部分的に並行に実行する請求項 11又 は 12に記載のメンテナンス方法。
[14] 前記洗浄工程では、前記液浸空間形成部材の前記第 1液体の通過口が少なくとも 洗浄される請求項 1から 13のいずれか一項に記載のメンテナンス方法。
[15] 前記液浸空間形成部材は、前記第 1液体の供給口及び回収口の少なくとも一方を 有し、前記通過口は、前記供給口及び前記回収口の少なくとも一方を含む請求項 1
4に記載のメンテナンス方法。
[16] 前記洗浄工程では、前記液浸空間形成部材の多孔部材が少なくとも洗浄される請 求項 1から 15のいずれか一項に記載のメンテナンス方法。
[17] 前記多孔部材は、前記液浸空間形成部材の前記第 1液体の回収口あるいは回収 流路に設けられる請求項 16に記載のメンテナンス方法。
[18] 前記液浸空間形成部材は、前記光学部材を囲むように配置される請求項 1から 17 の!、ずれか一項に記載のメンテナンス方法。
[19] 前記露光装置は、前記光学部材が最も像面の近くに配置される投影光学系を有す る請求項 18に記載のメンテナンス方法。
[20] 光学部材と第 1液体とを介して露光光で基板を露光する露光装置のメンテナンス方 法であって、
前記第 1液体と接する接液部を有しかつ前記光学部材と前記基板との間に前記第 1液体を保持するノズル部材と対向して可動体を配置し、前記ノズル部材を介して前 記可動体に供給される第 2液体を用いて前記接液部を洗浄するメンテナンス方法。
[21] 前記第 2液体を前記可動体から噴出して前記接液部を洗浄する請求項 20に記載 のメンテナンス方法。
[22] 前記洗浄時、前記光学部材と前記可動体との間に液浸領域を形成する請求項 20 又は 21に記載のメンテナンス方法。
[23] 前記液浸領域は前記第 2液体で形成される請求項 22に記載のメンテナンス方法。
[24] 前記可動体に供給される第 2液体を蓄積し、該蓄積された第 2液体を前記接液部 に向ける請求項 20から 23のいずれか一項に記載のメンテナンス方法。
[25] 光学部材と第 1液体とを介して露光光で基板を露光する露光装置のメンテナンス方 法であって、
前記光学部材と前記基板との間に前記第 1液体を保持するノズル部材と対向して 可動体を配置し、前記第 1液体と接する接液部に関する情報に応じて、前記接液部 の第 2液体による洗浄条件を設定するメンテナンス方法。
[26] 前記情報は、前記接液部の洗浄対象領域の位置と状態との少なくとも一方に関す る情報を含む請求項 25に記載のメンテナンス方法。
[27] 前記情報は、前記洗浄対象領域の汚染に関する情報を含む請求項 26に記載のメ ンテナンス方法。
[28] 前記洗浄条件は、前記情報に応じて可変である請求項 25から 27のいずれか一項 に記載のメンテナンス方法。
[29] 前記洗浄条件は、前記第 2液体の特性を含む請求項 25から 28のいずれか一項に 記載のメンテナンス方法。
[30] 前記第 2液体は、前記接液部に向けて噴出され、前記洗浄条件は、前記第 2液体 の噴出条件を含む請求項 25から 29のいずれか一項に記載のメンテナンス方法。
[31] 前記第 2液体は前記第 1液体を含む請求項 20から 30のいずれか一項に記載のメ ンテナンス方法。
[32] 前記第 2液体は前記第 1液体に気体あるいは溶剤を混入してなる請求項 31に記載 のメンテナンス方法。
[33] 前記第 2液体は前記第 1液体と同一である請求項 20から 31のいずれか一項に記 載のメンテナンス方法。
[34] 前記第 2液体は前記第 1液体と異なる請求項 20から 31のいずれか一項に記載のメ ンテナンス方法。
[35] 前記ノズル部材の接液部のうち少なくとも前記第 1液体の通過口を洗浄する請求項
20から 34のいずれか一項に記載のメンテナンス方法。
[36] 前記ノズル部材は、前記第 1液体の供給口及び回収口の少なくとも一方を有し、前 記供給口及び前記回収口の少なくとも一方を洗浄する請求項 20から 35のいずれか 一項に記載のメンテナンス方法。
[37] 前記ノズル部材の接液部のうち少なくとも多孔部材を洗浄する請求項 20から 36の
Vヽずれか一項に記載のメンテナンス方法。
[38] 前記多孔部材は、前記ノズル部材の前記第 1液体の回収口あるいは回収流路に設 けられる請求項 37に記載のメンテナンス方法。
[39] 前記ノズル部材と異なる前記第 1液体との接液部の洗浄も行う請求項 20から 38の
Vヽずれか一項に記載のメンテナンス方法。
[40] 前記ノズル部材と異なる接液部は少なくとも前記光学部材を含む請求項 39に記載 のメンテナンス方法。
[41] 前記ノズル部材は、前記光学部材を囲んで配置され、前記露光装置は、前記光学 部材が最も像面の近くに配置される投影光学系を有する請求項 20から 40の 、ずれ か一項に記載のメンテナンス方法。
[42] 前記接液部は、前記第 1流体に対して親液性の領域を含む請求項 1から 41のいず れか一項に記載のメンテナンス方法。
[43] 前記可動体は、前記基板を保持可能な可動体とは異なる請求項 1から 42のいずれ か一項に記載のメンテナンス方法。
[44] 光学部材と第 1液体とを介して露光光で基板を露光する露光方法であって、 請求項 1から 43のいずれか一項に記載のメンテナンス方法を用いる工程を有する 露光方法。
[45] 光学部材と第 1液体とを介して露光光で基板を露光する露光方法であって、
前記第 1液体と接する接液部を有しかつ前記光学部材と前記基板との間に前記第 1液体を保持するノズル部材と対向して可動体を配置し、前記ノズル部材を介して前 記可動体に供給される第 2液体を用いて前記接液部を洗浄することを含む露光方法
[46] 光学部材と第 1液体とを介して露光光で基板を露光する露光方法であって、
前記光学部材と前記基板との間に前記第 1液体を保持するノズル部材と対向して 可動体を配置し、前記第 1液体と接する接液部に関する情報に応じて、前記接液部 の第 2液体による洗浄条件を設定することを含む露光方法。
[47] 請求項 44から 46の 、ずれか一項に記載の露光方法を用いて基板を露光すること と、
前記露光された基板を現像することを含むデバイス製造方法。
[48] 光学部材と基板との間を第 1液体で満たして液浸空間を形成し、前記光学部材と 前記第 1液体とを介して露光光で前記基板を露光する露光装置において、
前記第 1液体で前記液浸空間を形成する液浸空間形成部材と、
前記光学部材に対して相対移動可能な可動体と、
前記可動体に少なくとも一部が設けられかつ第 2液体を噴出する液体噴出機構と、 前記液浸空間形成部材を介して前記可動体上に前記第 1液体による前記液浸空 間が形成されているときに、前記第 1液体に接する接液部の洗浄を行うために、前記 液体噴出機構力 前記接液部の少なくとも一部を含む領域に向けて第 2液体を噴出 させる制御装置とを備える露光装置。
[49] 前記液体噴出機構は、前記第 2液体を噴射するジェットノズルを含む請求項 48に 記載の露光装置。
[50] 前記液体噴出機構は、前記第 2液体に気体を混合させる混合器を含む請求項 48 又は 49に記載の露光装置。
[51] 前記第 2液体を回収する液体回収機構を備える請求項 48から 50のいずれか一項 に記載の露光装置。
[52] 前記第 1液体と前記第 2液体とは異なる請求項 48から 51のいずれか一項に記載の 露光装置。
[53] 前記第 2液体は前記第 1液体を含む請求項 48から 52の 、ずれか一項に記載の露 光装置。
[54] 前記第 2液体は前記第 1液体に気体あるいは溶剤を混入してなる請求項 53に記載 の露光装置。
[55] 前記第 2液体は前記第 1液体と同一である請求項 48から 51のいずれか一項に記 載の露光装置。
[56] 前記第 1液体は、前記液浸空間形成部材を介して前記可動体側に供給される請求 項 53から 55の!ヽずれか一項に記載の露光装置。
[57] 光学部材と基板との間を第 1液体で満たして液浸空間を形成し、前記光学部材と 前記第 1液体とを介して露光光で前記基板を露光する露光装置において、
前記第 1液体で前記液浸空間を形成する液浸空間形成部材と、
前記光学部材に対して相対移動可能な可動体と、
前記液浸空間形成部材を介して前記可動体上に供給される前記第 1液体を蓄積 する蓄積機構と、
前記可動体に少なくとも一部が設けられ、前記第 1液体に接する接液部の洗浄を 行うために、前記蓄積機構で蓄積された前記第 1液体を前記接液部の少なくとも一 部を含む領域に向けて噴出する液体噴出装置とを備える露光装置。
[58] 前記液体噴出装置は、前記蓄積機構で蓄積された前記第 1液体を噴射するジエツ トノズルを含み、
前記蓄積機構は、前記第 1液体が前記液浸空間形成部材側に逆流するのを防止 するための逆止弁を含む請求項 57に記載の露光装置。
[59] 前記接液部は、前記液浸空間形成部材の前記第 1液体の通過口を少なくとも含む 請求項 48から 58のいずれか一項に記載の露光装置。
[60] 前記液浸空間形成部材は、前記第 1液体の供給口及び回収口の少なくとも一方を 有し、前記通過口は、前記供給口及び前記回収口の少なくとも一方を含む請求項 5 9に記載の露光装置。
[61] 前記接液部は、前記液浸空間形成部材の多孔部材を少なくとも含む請求項 48か ら 60の 、ずれか一項に記載の露光装置。
[62] 前記多孔部材は、前記液浸空間形成部材の前記第 1液体の回収口あるいは回収 流路に設けられる請求項 61に記載の露光装置。
[63] 前記液浸空間形成部材は、前記第 1液体の通過口に多孔部材が固定的に、又は 交換可能に設けられる請求項 48から 62のいずれか一項に記載の露光装置。
[64] 前記多孔部材は交換可能であり、前記多孔部材の交換時に前記第 1液体をその 流路内から全て排出する液体回収部を備える請求項 63に記載の露光装置。
[65] 前記液浸空間形成部材は、前記光学部材を囲むように配置される請求項 48から 6
4の 、ずれか一項に記載の露光装置。
[66] 前記光学部材が最も像面の近くに配置される投影光学系を備える請求項 65に記 載の露光装置。
[67] 光学部材と第 1液体とを介して露光光で基板を露光する露光装置であって、
前記第 1液体と接する接液部を有しかつ前記光学部材と前記基板との間に前記第 1液体を保持するノズル部材と、
前記光学部材に対して相対移動可能な可動体と、
前記可動体に少なくとも一部が設けられ、前記ノズル部材を介して前記可動体に供 給される第 2液体を用いて前記接液部を洗浄する洗浄部材を備える露光装置。
[68] 前記洗浄部材は、前記第 2液体を前記可動体から噴出して前記接液部を洗浄する 請求項 67に記載の露光装置。
[69] 前記洗浄時、前記ノズル部材によって前記光学部材と前記可動体との間に液浸領 域を形成する請求項 67又は 68に記載の露光装置。
[70] 前記液浸領域は前記第 2液体で形成される請求項 69に記載の露光装置。
[71] 前記可動体に供給される第 2液体を蓄積する蓄積部を備え、前記洗浄部材は、前 記蓄積された第 2液体を前記接液部に向ける請求項 67から 70のいずれか一項に記 載の露光装置。
[72] 光学部材と第 1液体とを介して露光光で基板を露光する露光装置であって、 前記光学部材と前記基板との間に前記第 1液体を保持するノズル部材と、 前記第 1液体と接する接液部を第 2液体で洗浄する洗浄部材と、
少なくとも前記洗浄時に前記ノズル部材に対向して配置される可動体と、 前記洗浄部材を制御して前記第 2液体による洗浄条件を可変とし、かつ前記接液 部に関する情報に応じて前記洗浄条件が設定する制御装置と、を備える露光装置。
[73] 前記情報は、前記接液部の洗浄対象領域の位置と状態との少なくとも一方に関す る情報を含む請求項 72に記載の露光装置。
[74] 前記情報は、前記洗浄対象領域の汚染に関する情報を含む請求項 73に記載の 露光装置。
[75] 前記洗浄条件は、前記第 2液体の特性を含む請求項 72から 74のいずれか一項に 記載の露光装置。
[76] 前記洗浄部材は、前記第 2液体を前記接液部に向けて噴出し、前記洗浄条件は、 前記第 2液体の噴出条件を含む請求項 72から 75のいずれか一項に記載の露光装 置。
[77] 前記第 2液体は前記第 1液体を含む請求項 67から 76のいずれか一項に記載の露 光装置。
[78] 前記第 2液体は前記第 1液体に気体あるいは溶剤を混入してなる請求項 77に記載 の露光装置。
[79] 前記第 2液体は前記第 1液体と同一である請求項 67から 77のいずれか一項に記 載の露光装置。
[80] 前記第 2液体は前記第 1液体と異なる請求項 67から 77の 、ずれか一項に記載の 露光装置。
[81] 前記ノズル部材の接液部のうち少なくとも前記第 1液体の通過口を洗浄する請求項
67から 80の!ヽずれか一項に記載の露光装置。
[82] 前記ノズル部材は、前記第 1液体の供給口及び回収口の少なくとも一方を有し、前 記供給口及び前記回収口の少なくとも一方を洗浄する請求項 67から 81のいずれか 一項に記載の露光装置。
[83] 前記ノズル部材の接液部のうち少なくとも多孔部材を洗浄する請求項 67から 82の V、ずれか一項に記載の露光装置。
[84] 前記多孔部材は、前記ノズル部材の前記第 1液体の回収口あるいは回収流路に設 けられる請求項 83に記載の露光装置。
[85] 前記ノズル部材は、前記第 1液体の通過口に固定される、あるいは交換可能に設 けられる多孔部材を有する請求項 67から 83のいずれか一項に記載の露光装置。
[86] 前記洗浄部材は、前記ノズル部材と異なる前記第 1液体との接液部の洗浄も行う請 求項 67から 85の!ヽずれか一項に記載の露光装置。
[87] 前記ノズル部材と異なる接液部は少なくとも前記光学部材を含む請求項 86に記載 の露光装置。
[88] 前記光学部材が最も像面の近くに配置される投影光学系を備え、前記ノズル部材 は、前記光学部材を囲んで配置される請求項 67から 87の 、ずれか一項に記載の露 光装置。
[89] 前記接液部は、前記第 1流体に対して親液性の領域を含む請求項 48から 88のい ずれか一項に記載の露光装置。
[90] 前記可動体は、前記基板を保持可能な可動体とは異なる請求項 48から 89のいず れか一項に記載の露光装置。
[91] 前記可動体は、前記基板を保持可能な基板ステージ又は該基板ステージとは独立 に移動するステージである請求項 48から 89のいずれか一項に記載の露光装置。
[92] 請求項 48から 91のいずれか一項に記載の露光装置を用いて基板を露光すること と、
前記露光された基板を現像することを含むデバイス製造方法。
PCT/JP2007/063049 2006-06-30 2007-06-28 Procédé de maintenance, procédé d'exposition et procédé de fabrication d'appareil et de dispositif WO2008001871A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07767841A EP2043134A4 (en) 2006-06-30 2007-06-28 MAINTENANCE METHOD, EXPOSURE METHOD, AND DEVICE AND DEVICE MANUFACTURING METHOD
JP2008522636A JP5245825B2 (ja) 2006-06-30 2007-06-28 メンテナンス方法、露光方法及び装置、並びにデバイス製造方法
CN2007800061840A CN101390194B (zh) 2006-06-30 2007-06-28 维修方法、曝光方法及装置、以及元件制造方法
US12/314,317 US20090103064A1 (en) 2006-06-30 2008-12-08 Maintenance method, exposure method and apparatus and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006182561 2006-06-30
JP2006-182561 2006-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/314,317 Continuation US20090103064A1 (en) 2006-06-30 2008-12-08 Maintenance method, exposure method and apparatus and device manufacturing method

Publications (1)

Publication Number Publication Date
WO2008001871A1 true WO2008001871A1 (fr) 2008-01-03

Family

ID=38845635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063049 WO2008001871A1 (fr) 2006-06-30 2007-06-28 Procédé de maintenance, procédé d'exposition et procédé de fabrication d'appareil et de dispositif

Country Status (7)

Country Link
US (1) US20090103064A1 (ja)
EP (1) EP2043134A4 (ja)
JP (1) JP5245825B2 (ja)
KR (1) KR20090033170A (ja)
CN (1) CN101390194B (ja)
TW (1) TW200819920A (ja)
WO (1) WO2008001871A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7916269B2 (en) 2007-07-24 2011-03-29 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
JP2011129914A (ja) * 2009-12-18 2011-06-30 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法
US8243255B2 (en) 2007-12-20 2012-08-14 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US8339572B2 (en) 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8587762B2 (en) 2007-09-27 2013-11-19 Asml Netherlands B.V. Methods relating to immersion lithography and an immersion lithographic apparatus
US8638421B2 (en) 2007-09-27 2014-01-28 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a lithographic apparatus
WO2014157137A1 (ja) 2013-03-26 2014-10-02 キッセイ薬品工業株式会社 シロドシンの苦味をマスキングした経口投与製剤
US8941811B2 (en) 2004-12-20 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9013672B2 (en) 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9019466B2 (en) 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system
US9289802B2 (en) 2007-12-18 2016-03-22 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a surface of an immersion lithographic apparatus
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120013864A1 (en) * 2010-07-14 2012-01-19 Nikon Corporation Liquid immersion member, immersion exposure apparatus, liquid recovering method, device fabricating method, program, and storage medium
KR102071873B1 (ko) * 2012-12-27 2020-02-03 삼성디스플레이 주식회사 용매 제거장치 및 이를 포함하는 포토리소그래피 장치
US9658536B2 (en) * 2014-02-25 2017-05-23 Taiwan Semiconductor Manufacturing Co., Ltd. In-line inspection and clean for immersion lithography
GB2562081B (en) * 2017-05-04 2020-07-15 Imrali Ahmet Slide cleaner
JP7252322B2 (ja) 2018-09-24 2023-04-04 エーエスエムエル ネザーランズ ビー.ブイ. プロセスツール及び検査方法

Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117238A (en) 1981-01-14 1982-07-21 Nippon Kogaku Kk <Nikon> Exposing and baking device for manufacturing integrated circuit with illuminometer
JPH0521314A (ja) 1991-07-10 1993-01-29 Nikon Corp 投影露光装置
US5243195A (en) 1991-04-25 1993-09-07 Nikon Corporation Projection exposure apparatus having an off-axis alignment system and method of alignment therefor
JPH08313842A (ja) 1995-05-15 1996-11-29 Nikon Corp 照明光学系および該光学系を備えた露光装置
JPH10163099A (ja) 1996-11-28 1998-06-19 Nikon Corp 露光方法及び露光装置
JPH10214783A (ja) 1996-11-28 1998-08-11 Nikon Corp 投影露光装置及び投影露光方法
JPH1116816A (ja) 1997-06-25 1999-01-22 Nikon Corp 投影露光装置、該装置を用いた露光方法、及び該装置を用いた回路デバイスの製造方法
JPH1123692A (ja) 1997-06-30 1999-01-29 Sekisui Chem Co Ltd 地中探査用アンテナ
JPH1128790A (ja) 1997-07-09 1999-02-02 Asahi Chem Ind Co Ltd 紫外線遮蔽用熱可塑性樹脂板
JPH11135400A (ja) 1997-10-31 1999-05-21 Nikon Corp 露光装置
WO1999046835A1 (fr) 1998-03-11 1999-09-16 Nikon Corporation Dispositif a laser ultraviolet et appareil d'exposition comportant un tel dispositif a laser ultraviolet
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
US5969441A (en) 1996-12-24 1999-10-19 Asm Lithography Bv Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
WO1999060361A1 (fr) 1998-05-19 1999-11-25 Nikon Corporation Instrument et procede de mesure d'aberrations, appareil et procede de sensibilisation par projection incorporant cet instrument, et procede de fabrication de dispositifs associe
JP2000164504A (ja) 1998-11-30 2000-06-16 Nikon Corp ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法
JP2001035168A (ja) 1999-06-30 2001-02-09 Samsung Electronics Co Ltd データ出力パスのデータライン上のデータをラッチする回路を具備する半導体メモリ装置及びこの半導体メモリ装置のデータラッチ方法
US6208407B1 (en) 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
JP2001510577A (ja) 1997-12-02 2001-07-31 エイエスエム リトグラフィー ベスローテン フエンノートシャップ 干渉計システムおよびそのようなシステムを含むリソグラフィー装置
JP2002014005A (ja) 2000-04-25 2002-01-18 Nikon Corp 空間像計測方法、結像特性計測方法、空間像計測装置及び露光装置
US6341007B1 (en) 1996-11-28 2002-01-22 Nikon Corporation Exposure apparatus and method
US20020041377A1 (en) 2000-04-25 2002-04-11 Nikon Corporation Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
US20040019128A1 (en) 2002-07-25 2004-01-29 Ai Kondo Curable white ink
US20040086468A1 (en) 2002-10-30 2004-05-06 Isp Investments Inc. Delivery system for a tooth whitener
US20040093159A1 (en) 2002-11-01 2004-05-13 Daniel Bernesi Vehicle and/or asset tracking and localization system and method
EP1420298A2 (en) 2002-11-12 2004-05-19 ASML Netherlands B.V. Immersion lithographic apparatus and device manufacturing method
WO2004055803A1 (en) 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
WO2004057590A1 (en) 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
WO2004057589A1 (en) 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
JP2004289126A (ja) 2002-11-12 2004-10-14 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2004304135A (ja) 2003-04-01 2004-10-28 Nikon Corp 露光装置、露光方法及びマイクロデバイスの製造方法
US20050059618A1 (en) 2001-11-08 2005-03-17 Karsten Eulenberg Men protein, gst2, rab-rp1, csp, f-box protein lilina/fbl7, abc50, coronin, sec61 alpha, or vhappa1-1, or homologous proteins involved in the regulation of energy homeostasis
US20050059617A1 (en) 2001-09-17 2005-03-17 Takeshi Imanishi Novel anitsense oligonucleotide derivatives against to hepatitis c virus
JP2005079222A (ja) * 2003-08-29 2005-03-24 Nikon Corp 光学部品の洗浄機構を搭載した液浸投影露光装置及び液浸光学部品洗浄方法
WO2005029559A1 (ja) 2003-09-19 2005-03-31 Nikon Corporation 露光装置及びデバイス製造方法
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
WO2005074014A1 (ja) 2004-02-02 2005-08-11 Nikon Corporation ステージ駆動方法及びステージ装置、露光装置、並びにデバイス製造方法
JP2005277363A (ja) * 2003-05-23 2005-10-06 Nikon Corp 露光装置及びデバイス製造方法
US20050248856A1 (en) 2002-08-23 2005-11-10 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
WO2005122218A1 (ja) 2004-06-09 2005-12-22 Nikon Corporation 露光装置及びデバイス製造方法
US20050280791A1 (en) 2003-02-26 2005-12-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2006032750A (ja) * 2004-07-20 2006-02-02 Canon Inc 液浸型投影露光装置、及びデバイス製造方法
WO2006013806A1 (ja) 2004-08-03 2006-02-09 Nikon Corporation 露光装置、露光方法及びデバイス製造方法
JP2006073951A (ja) * 2004-09-06 2006-03-16 Toshiba Corp 液浸光学装置及び洗浄方法
WO2006038952A2 (en) 2004-09-30 2006-04-13 Nikon Corporation Projection optical device and exposure apparatus
JP2006182561A (ja) 2004-11-30 2006-07-13 Konica Minolta Business Technologies Inc 画像形成システム、画像形成装置、およびプログラム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1175799A (en) * 1997-11-21 1999-06-15 Nikon Corporation Projection aligner and projection exposure method
TW201806001A (zh) * 2003-05-23 2018-02-16 尼康股份有限公司 曝光裝置及元件製造方法
EP1486827B1 (en) * 2003-06-11 2011-11-02 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7616383B2 (en) * 2004-05-18 2009-11-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7224427B2 (en) * 2004-08-03 2007-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Megasonic immersion lithography exposure apparatus and method
US7701550B2 (en) * 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7362412B2 (en) * 2004-11-18 2008-04-22 International Business Machines Corporation Method and apparatus for cleaning a semiconductor substrate in an immersion lithography system
US7732123B2 (en) * 2004-11-23 2010-06-08 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion photolithography with megasonic rinse
WO2006062065A1 (ja) * 2004-12-06 2006-06-15 Nikon Corporation メンテナンス方法、メンテナンス機器、露光装置、及びデバイス製造方法
US7880860B2 (en) * 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060250588A1 (en) * 2005-05-03 2006-11-09 Stefan Brandl Immersion exposure tool cleaning system and method
US7986395B2 (en) * 2005-10-24 2011-07-26 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography apparatus and methods
US8125610B2 (en) * 2005-12-02 2012-02-28 ASML Metherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
SG175671A1 (en) * 2006-05-18 2011-11-28 Nikon Corp Exposure method and apparatus, maintenance method and device manufacturing method
US7969548B2 (en) * 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
US8564759B2 (en) * 2006-06-29 2013-10-22 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and method for immersion lithography

Patent Citations (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117238A (en) 1981-01-14 1982-07-21 Nippon Kogaku Kk <Nikon> Exposing and baking device for manufacturing integrated circuit with illuminometer
US4465368A (en) 1981-01-14 1984-08-14 Nippon Kogaku K.K. Exposure apparatus for production of integrated circuit
US5243195A (en) 1991-04-25 1993-09-07 Nikon Corporation Projection exposure apparatus having an off-axis alignment system and method of alignment therefor
JPH0521314A (ja) 1991-07-10 1993-01-29 Nikon Corp 投影露光装置
JPH08313842A (ja) 1995-05-15 1996-11-29 Nikon Corp 照明光学系および該光学系を備えた露光装置
US6400441B1 (en) 1996-11-28 2002-06-04 Nikon Corporation Projection exposure apparatus and method
JPH10214783A (ja) 1996-11-28 1998-08-11 Nikon Corp 投影露光装置及び投影露光方法
JPH10163099A (ja) 1996-11-28 1998-06-19 Nikon Corp 露光方法及び露光装置
US6590634B1 (en) 1996-11-28 2003-07-08 Nikon Corporation Exposure apparatus and method
US6549269B1 (en) 1996-11-28 2003-04-15 Nikon Corporation Exposure apparatus and an exposure method
US6341007B1 (en) 1996-11-28 2002-01-22 Nikon Corporation Exposure apparatus and method
US5969441A (en) 1996-12-24 1999-10-19 Asm Lithography Bv Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
JP2000505958A (ja) 1996-12-24 2000-05-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 2個の物品ホルダを有する二次元バランス位置決め装置及びこの位置決め装置を有するリソグラフ装置
JPH1116816A (ja) 1997-06-25 1999-01-22 Nikon Corp 投影露光装置、該装置を用いた露光方法、及び該装置を用いた回路デバイスの製造方法
US20020061469A1 (en) 1997-06-25 2002-05-23 Nikon Corporation Projection apparatus, method of manufacturing the apparatus,method of exposure using the apparatus, and method of manufacturing circuit devices by using the apparatus
JPH1123692A (ja) 1997-06-30 1999-01-29 Sekisui Chem Co Ltd 地中探査用アンテナ
JPH1128790A (ja) 1997-07-09 1999-02-02 Asahi Chem Ind Co Ltd 紫外線遮蔽用熱可塑性樹脂板
JPH11135400A (ja) 1997-10-31 1999-05-21 Nikon Corp 露光装置
JP2001510577A (ja) 1997-12-02 2001-07-31 エイエスエム リトグラフィー ベスローテン フエンノートシャップ 干渉計システムおよびそのようなシステムを含むリソグラフィー装置
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
US6208407B1 (en) 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
WO1999046835A1 (fr) 1998-03-11 1999-09-16 Nikon Corporation Dispositif a laser ultraviolet et appareil d'exposition comportant un tel dispositif a laser ultraviolet
US7023610B2 (en) 1998-03-11 2006-04-04 Nikon Corporation Ultraviolet laser apparatus and exposure apparatus using same
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
EP1079223A1 (en) 1998-05-19 2001-02-28 Nikon Corporation Aberration measuring instrument and measuring method, projection exposure apparatus provided with the instrument and device-manufacturing method using the measuring method, and exposure method
WO1999060361A1 (fr) 1998-05-19 1999-11-25 Nikon Corporation Instrument et procede de mesure d'aberrations, appareil et procede de sensibilisation par projection incorporant cet instrument, et procede de fabrication de dispositifs associe
JP2000164504A (ja) 1998-11-30 2000-06-16 Nikon Corp ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法
JP2001035168A (ja) 1999-06-30 2001-02-09 Samsung Electronics Co Ltd データ出力パスのデータライン上のデータをラッチする回路を具備する半導体メモリ装置及びこの半導体メモリ装置のデータラッチ方法
US20020041377A1 (en) 2000-04-25 2002-04-11 Nikon Corporation Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method
JP2002014005A (ja) 2000-04-25 2002-01-18 Nikon Corp 空間像計測方法、結像特性計測方法、空間像計測装置及び露光装置
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
JP2004519850A (ja) 2001-02-27 2004-07-02 エイエスエムエル ユーエス, インコーポレイテッド デュアルレチクルイメージを露光する方法および装置
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
US20050059617A1 (en) 2001-09-17 2005-03-17 Takeshi Imanishi Novel anitsense oligonucleotide derivatives against to hepatitis c virus
US20050059618A1 (en) 2001-11-08 2005-03-17 Karsten Eulenberg Men protein, gst2, rab-rp1, csp, f-box protein lilina/fbl7, abc50, coronin, sec61 alpha, or vhappa1-1, or homologous proteins involved in the regulation of energy homeostasis
US20040019128A1 (en) 2002-07-25 2004-01-29 Ai Kondo Curable white ink
US20050248856A1 (en) 2002-08-23 2005-11-10 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US20040086468A1 (en) 2002-10-30 2004-05-06 Isp Investments Inc. Delivery system for a tooth whitener
US20040093159A1 (en) 2002-11-01 2004-05-13 Daniel Bernesi Vehicle and/or asset tracking and localization system and method
JP2004289126A (ja) 2002-11-12 2004-10-14 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
US6952253B2 (en) 2002-11-12 2005-10-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1420298A2 (en) 2002-11-12 2004-05-19 ASML Netherlands B.V. Immersion lithographic apparatus and device manufacturing method
US20060023189A1 (en) 2002-11-12 2006-02-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2004055803A1 (en) 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
WO2004057589A1 (en) 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
WO2004057590A1 (en) 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
US20050280791A1 (en) 2003-02-26 2005-12-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2004304135A (ja) 2003-04-01 2004-10-28 Nikon Corp 露光装置、露光方法及びマイクロデバイスの製造方法
JP2005277363A (ja) * 2003-05-23 2005-10-06 Nikon Corp 露光装置及びデバイス製造方法
JP2005079222A (ja) * 2003-08-29 2005-03-24 Nikon Corp 光学部品の洗浄機構を搭載した液浸投影露光装置及び液浸光学部品洗浄方法
WO2005029559A1 (ja) 2003-09-19 2005-03-31 Nikon Corporation 露光装置及びデバイス製造方法
US20060231206A1 (en) 2003-09-19 2006-10-19 Nikon Corporation Exposure apparatus and device manufacturing method
WO2005074014A1 (ja) 2004-02-02 2005-08-11 Nikon Corporation ステージ駆動方法及びステージ装置、露光装置、並びにデバイス製造方法
EP1713113A1 (en) 2004-02-02 2006-10-18 Nikon Corporation Stage drive method and stage drive apparatus, exposure apparatus, and device producing method
WO2005122218A1 (ja) 2004-06-09 2005-12-22 Nikon Corporation 露光装置及びデバイス製造方法
JP2006032750A (ja) * 2004-07-20 2006-02-02 Canon Inc 液浸型投影露光装置、及びデバイス製造方法
WO2006013806A1 (ja) 2004-08-03 2006-02-09 Nikon Corporation 露光装置、露光方法及びデバイス製造方法
JP2006073951A (ja) * 2004-09-06 2006-03-16 Toshiba Corp 液浸光学装置及び洗浄方法
WO2006038952A2 (en) 2004-09-30 2006-04-13 Nikon Corporation Projection optical device and exposure apparatus
JP2006182561A (ja) 2004-11-30 2006-07-13 Konica Minolta Business Technologies Inc 画像形成システム、画像形成装置、およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2043134A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10509326B2 (en) 2004-12-20 2019-12-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9703210B2 (en) 2004-12-20 2017-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8941811B2 (en) 2004-12-20 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US9013672B2 (en) 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9599908B2 (en) 2007-07-24 2017-03-21 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US7916269B2 (en) 2007-07-24 2011-03-29 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US9158206B2 (en) 2007-07-24 2015-10-13 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US9019466B2 (en) 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system
US8638421B2 (en) 2007-09-27 2014-01-28 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a lithographic apparatus
US8587762B2 (en) 2007-09-27 2013-11-19 Asml Netherlands B.V. Methods relating to immersion lithography and an immersion lithographic apparatus
US9289802B2 (en) 2007-12-18 2016-03-22 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a surface of an immersion lithographic apparatus
US9036128B2 (en) 2007-12-20 2015-05-19 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US9405205B2 (en) 2007-12-20 2016-08-02 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US9785061B2 (en) 2007-12-20 2017-10-10 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US8243255B2 (en) 2007-12-20 2012-08-14 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US8339572B2 (en) 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8659742B2 (en) 2009-12-18 2014-02-25 Asml Netherlands B.V. Lithographic apparatus and a device manufacturing method
JP2011129914A (ja) * 2009-12-18 2011-06-30 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法
WO2014157137A1 (ja) 2013-03-26 2014-10-02 キッセイ薬品工業株式会社 シロドシンの苦味をマスキングした経口投与製剤

Also Published As

Publication number Publication date
EP2043134A4 (en) 2012-01-25
KR20090033170A (ko) 2009-04-01
TW200819920A (en) 2008-05-01
EP2043134A1 (en) 2009-04-01
US20090103064A1 (en) 2009-04-23
CN101390194B (zh) 2011-04-20
JPWO2008001871A1 (ja) 2009-11-26
CN101390194A (zh) 2009-03-18
JP5245825B2 (ja) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5245825B2 (ja) メンテナンス方法、露光方法及び装置、並びにデバイス製造方法
JP5019170B2 (ja) メンテナンス方法、露光方法及び装置、並びにデバイス製造方法
JP5217239B2 (ja) 露光方法及び装置、メンテナンス方法、並びにデバイス製造方法
US7924402B2 (en) Exposure apparatus and device manufacturing method
JP5655921B2 (ja) メンテナンス方法、露光装置、及びデバイス製造方法
TWI508130B (zh) An exposure apparatus, an element manufacturing method, a cleaning method, and a cleaning member
JP5264504B2 (ja) 洗浄用液体、洗浄方法、液体発生装置、露光装置、及びデバイス製造方法
US8189168B2 (en) Exposure apparatus, device production method, cleaning apparatus, cleaning method, and exposure method
EP2034514A1 (en) Exposure method and apparatus, maintenance method, and device manufacturing method
JP2008300775A (ja) クリーニング装置、クリーニング方法、露光装置、及びデバイス製造方法
JP5018277B2 (ja) 露光装置、デバイス製造方法、及びクリーニング方法
JPWO2011046174A1 (ja) 露光装置、露光方法、メンテナンス方法、及びデバイス製造方法
JP2009021365A (ja) 露光装置、デバイス製造方法、メンテナンス方法、及び膜形成装置
JP2012195606A (ja) 露光装置、デバイス製造方法、及びクリーニング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008522636

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780006184.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087025418

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007767841

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU