WO2007149134A1 - A method to control insects resistant to common insecticides - Google Patents

A method to control insects resistant to common insecticides Download PDF

Info

Publication number
WO2007149134A1
WO2007149134A1 PCT/US2007/003784 US2007003784W WO2007149134A1 WO 2007149134 A1 WO2007149134 A1 WO 2007149134A1 US 2007003784 W US2007003784 W US 2007003784W WO 2007149134 A1 WO2007149134 A1 WO 2007149134A1
Authority
WO
WIPO (PCT)
Prior art keywords
insecticides
herbicides
spp
methyl
compounds
Prior art date
Application number
PCT/US2007/003784
Other languages
French (fr)
Inventor
Jim X. Huang
Richard B. Rogers
Nailah Orr
Thomas C. Sparks
James M. Gifford
Michael R. Loso
Yuanming Zhu
Thomas Meade
Original Assignee
Dow Agrosciences Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Agrosciences Llc filed Critical Dow Agrosciences Llc
Priority to CA002653186A priority Critical patent/CA2653186A1/en
Priority to KR1020087031120A priority patent/KR101344974B1/en
Priority to EP07750611A priority patent/EP2043436A1/en
Priority to MX2008016527A priority patent/MX2008016527A/en
Priority to NZ572838A priority patent/NZ572838A/en
Priority to BRPI0713519-0A priority patent/BRPI0713519A2/en
Priority to JP2009516478A priority patent/JP5264719B2/en
Priority to AU2007261706A priority patent/AU2007261706B2/en
Publication of WO2007149134A1 publication Critical patent/WO2007149134A1/en
Priority to ZA2008/09866A priority patent/ZA200809866B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/06Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings
    • A01N43/10Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings with sulfur as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/14Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
    • A01N43/18Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with sulfur as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/80Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,2

Definitions

  • the present invention concerns a novel method to control certain insect pests, specifically those that have developed resistance to one or more classes of insecticides, through the use of ⁇ T-substituted sulfoximines.
  • Predicting whether or not a resistance mechanism that has conferred resistance to an existing insecticide will confer resistance to a novel insecticide is not necessarily a simple matter.
  • a novel insecticide that acts at a different target site is unlikely to be affected by the resistance mechanism.
  • the target site at which a novel chemistry acts is known and the resistance mechanism of concern involves a modification to a different target site, one could predict with some confidence that the resistance mechanism would not confer resistance to the novel chemistry.
  • neonicotinoids One of the newer and more successful classes of insecticides to be introduced in past 25 years is the neonicotinoids.
  • the introduction of neonicotinoid insecticides has provided growers with invaluable new tools for managing some of the world's most destructive crop pests, including species with a long history of developing resistance to earlier-used products.
  • Imidacloprid was the first major active ingredient of the neonicotinoid class to reach the market.
  • the substitution of the chloropyridinyl moiety by a chlorothiazolyl group resulted in a second subgroup of neonicotinoid insecticides including clothianidin and thiamethoxam.
  • Neonicotinoid insecticides remain valuable and effective tools for the management of insect pests in most areas in spite of the limited development of resistance. Control of neonicotinoid-resistant insect pest populations, or for that matter other insecticide-resistant insect pest populations, will rely on the availability of insecticides that are effective on the resistant populations. Preventing or delaying the development of insecticide-resistant insect pest populations also relies on the rotation of insecticides that are not affected by the same resistance mechanisms. In either case, new insecticides that lack cross- resistance to currently available insecticides are imminently needed.
  • This invention concerns the discovery of lack of cross-resistance for N- substituted sulfoximine compounds on insect pests that have developed resistance to one or more classes of insecticides including imidacloprid and other neonicotinoids. More particularly, this invention concerns a method to control certain insect pests that have developed resistance to one or more classes of insecticides, including neonicotinoids, organophosphates, carbamates and pyrethroids, which comprises applying to a locus where control is desired an insect-inactivating amount of a compound of the formula (I)
  • X represents NO 2 , CN or COOR 4 ;
  • L represents a single bond or R 1 , S and L taken together represent a 5- or 6-membered ring;
  • R 1 represents methyl or ethyl
  • R 2 and R 3 independently represent hydrogen, methyl, ethyl, fluoro, chloro or bromo;
  • n is an integer from 0-3;
  • R 4 represents C1-C 3 alkyl.
  • Preferred compounds of formula (I) include the following classes:
  • alkyl include straight chain, branched chain, and cyclic groups.
  • typical alkyl groups are methyl, ethyl, 1-methylethyl, propyl, 1,1-dimethylethyl, and cyclopropyl.
  • halogen includes fluorine, chlorine, bromine, and iodine.
  • haloalkyl and haloalkoxy includes alkyl and alkoxy groups substituted with from one to the maximum possible number of halogen atoms, preferably fluorine atoms.
  • the compounds of this invention can exist as one or more stereoisomers.
  • the various stereoisomers include geometric isomers, diastereomers and enantiomers.
  • the compounds of the present invention include racemic mixtures, individual stereoisomers and optically active mixtures. It will be appreciated by those skilled in the art that one stereoisomer may be more active than the others.
  • Individual stereoisomers and optically active mixtures may be obtained by selective synthetic procedures, by conventional synthetic procedures using resolved starting materials or by conventional resolution procedures.
  • step a of Scheme A sulfide of formula (A) is oxidized with meta- chloroperoxybenzoic acid (mCPBA) in a polar solvent below 0 0 C to provide sulfoxide of formula (B).
  • mCPBA meta- chloroperoxybenzoic acid
  • dichloromethane is the preferred solvent for oxidation.
  • step b of Scheme A sulfoxide (B) is iminated with sodium azide in the presence of concentrated sulfuric acid in an aprotic solvent under heating to provide s ⁇ lfoximine of formula (C). In most cases, chloroform is the preferred solvent for this reaction.
  • the nitrogen of sulfoximine (C) can be either cyanated with cyanogen bromide in the presence of a base, or nitrated with nitric acid in the presence of acetic anhydride under mildly elevated temperature, or carboxylated with alkyl (R 4 ) chloroformate in the presence of base such as 4- dimethylaminopyridine (DMAP) to provide iV-substituted sulfoximine (Ia).
  • base is required for efficient cyanation and carboxylation and the preferred base is DMAP, whereas sulfuric acid is used as catalyst for efficient nitration reaction.
  • step a of Scheme B sulfide is oxidized with iodobenzene diacetate in the presence of cyanamide at 0 0 C to give sulfilimine (F).
  • the reaction can be carried out in a polar aprotic solvent like dichloromethane.
  • the sulfilimine (F) is oxidized with OTCPB A.
  • a base such as potassium carbonate is employed to neutralize the acidity of mCPB A.
  • Protic polar solvents such as ethanol and water are used to increase the solubility of the sulfilimine starting material and the base employed.
  • the sulfilimine (F) can also be oxidized with aqueous sodium or potassium periodinate solution in the presence of catalyst ruthenium trichloride hydrate or similar catalyst.
  • the organic solvent for this catalysis can be polar aprotic solvent such as dichloromethane, chloroform, or acetonitrile.
  • KHMDS potassium hexamethyldisilamide
  • base such as potassium terf-butoxide
  • the corresponding appropriately substituted chloromethyl pyridine is treated with thiourea, hydrolyzed and subsequently alkylated with l-bromo-3-chloropropane under aqueous base conditions, and cyclized in the presence of a base like potassium terf-butoxide in a polar aprotic solvent such as tetrahydrofuran (THF).
  • a base like potassium terf-butoxide in a polar aprotic solvent such as tetrahydrofuran (THF).
  • step a of Scheme J which is similar to step b of Scheme A, sulfoxide is iminated with sodium azide in the presence of concentrated sulfuric acid or with 0-mesitylsulfonylhydroxylamine in a polar aprotic solvent to provide sulfoximine.
  • Chloroform or dichloromethane are the preferred solvents.
  • the nitrogen of sulfoximine can be either cyanated with cyanogen bromide, or nitrated with nitric acid followed by treatment with acetic anhydride under refluxing conditions, or carboxylated with methyl chloroformate in the presence of base such as DMAP to provide ./V-substitued cyclic sulfoximine.
  • Base is required for efficient cyanation and carboxylation and the preferred base is DMAP, whereas sulfuric acid is used as catalyst for efficient nitration reaction.
  • the ⁇ -carbon of ⁇ f-s ⁇ bstituted sulfoximine can be alkylated with a heteroaromatic methyl halide in the presence of a base such as KHMDS or butyl lithium (BuLi) to give the desired TV-substituted sulfoximines.
  • a base such as KHMDS or butyl lithium (BuLi)
  • the preferred halide can be bromide, chloride or iodide.
  • the compounds of formula (Ib) can be prepared by a first ⁇ - alkylation of sulfoxides to give ⁇ -substituted sulfoxides and then an imination of the sulfoxide followed by JV-substitution of the resulting sulfoximine by using the steps c , a and b respectively as described above for Scheme J.
  • sulfoximine (1) 50 mg, 0.19 mmol
  • HMPA hexamethyl- phosphoramide
  • THF tetrahydrofuran
  • KHMDS potassium hexamethyldisilazane
  • Diastereomer 1 IR (film) 3439, 3006, 2949, 2194 cm 1 ; 1 H NMR (300 MHz, CDCl 3 ): ⁇ 8.4 (d, IH), 7.8 (dd, IH), 7.4 (d, IH), 4.6 (dd, IH), 3.6 (m, 2H), 2.4-2.7 (m, 4H); GC-MS: mass calcd for Ci 0 H 1 1ClN 3 OS [M+H] + 256. Found 256.
  • Diastereomer 2 IR (film) 3040, 2926, 2191 cm “1 ; 1 H NMR (300 MHz, CDCl 3 ): ⁇ 8.4 (d, IH), 7.8 (dd, IH), 7.4 (d, IH), 4.7 (dd, IH), 3.8 (ddd, IH), 3.4 (m, IH), 2.8 (m, IH), 2.6 (m, 2H), 2.3 (m, IH); GC-MS: mass calcd for Ci 0 H 11 ClN 3 OS [M+H] + 256. Found 256.
  • Example VII Insecticidal activity of Af-substituted sulfoximi ⁇ es on a neonicitinoid-resistant O-biotvpe Bemisia tabaci strain.
  • the insecticidal activity of Compounds 6 and 7 on adults from an insecticide-resistant, Q-biotype Bemisia tabaci strain was assessed.
  • the activity of commercial, neonicotinoid insecticides was also assessed and served as the basis for comparisons of relative efficacy on this insecticide-resistant whitefly strain.
  • the common name associated with the Q-biotype of B. tabaci is the sweetpotato whitefly.
  • the strain used in these tests, "CHLORAKA” was collected from cucumbers in Cyprus in 2003 and has exhibited stable and strong resistance to multiple insecticide classes in repeated laboratory testing.
  • Adults from this strain are largely unaffected by exposure to imidacloprid (a neonicotinoid insecticide) at 1000 ppm.
  • the SUD-S strain of B. tabaci was the reference strain used in these tests and is a laboratory strain that is fully susceptible to all insecticide groups.
  • Deltapine 16 were dipped into serial dilutions of insecticide, allowed to air-dry, and placed onto agar-water beds (1%) in plastic Petri dishes. Leaf discs immersed in the diluent only were used for controls.
  • Adult B. tabaci were removed from rearing cages using a motorized aspirator and, after brief narcosis, 20-30 healthy female whiteflies were placed onto each treated leaf disc. Each unit was sealed with a close-fitting, ventilated Hd. Once adults had recovered from narcosis, dishes were inverted so that the leaf disc was facing abaxial side down allowing the adult whiteflies to orient normally. All bioassays consisted of three replicates per concentration (including controls). Mortality was assessed at 48 hours after initiation of the test for the commercial standards and at 72 hours for Compounds 6 and 7.
  • Table 1 Mortality of adults from an insecticide-resistant Q-biotype B. tabaci strain and a susceptible laboratory strain exposed to discriminating concentrations of Compounds 6, 7, imidacloprid, thiamethoxam, or acetamiprid.
  • Example VDI Insecticidal activity of ⁇ f-substituted sulfoximines on a neonicitinoid-resistant B-biotvpe Bemisia tabaci strain.
  • the common name associated with the B-biotype of B. tabaci is the silverleaf whitefly.
  • the strain used in these tests, "GUA-MIX” was collected from a variety of crops situated in the Zacapa Valley of Guatemala in January of 2004. This strain exhibits strong resistance to imidacloprid with the majority of adults being largely unaffected by concentrations of 1000 ppm.
  • the SUD-S strain of B. tabaci was the reference strain used in these tests and is a laboratory strain that is fully susceptible to all insecticide groups.
  • a technical sample of Compound 7 was initially dissolved in 90% acetone in distilled water (containing 0.01% Agral) to obtain a 5000 ppm stock solution.
  • Discs cut from fully expanded leaves of cotton (Gossypium hirsutum cv. Deltapine 16) were dipped into serial dilutions of insecticide, allowed to air-dry, and placed onto agar- water beds (1%) in plastic Petri dishes.
  • Leaf discs immersed in the diluent only were used for controls.
  • Adult B. tabaci were removed from rearing cages using a motorized aspirator and, after brief narcosis, 20-30 healthy female whiteflies were placed onto each treated leaf disc. Each unit was sealed with a close-fitting, ventilated lid. Once adults had recovered from narcosis, dishes were inverted so that the leaf disc was facing abaxial side down allowing the adult whiteflies to orient normally. All bioassays consisted of three replicates per concentration (including controls). Mortality was assessed at 48 hours after initiation of the test for the commercial standards and at 72 hours for Compound 7.
  • Table 3 Mortality of adults from an insecticide-resistant B-biotype B. tabaci strain and a susceptible laboratory strain exposed to discriminating concentrations of Compound 7, imidacloprid, thiamethoxam, or acetamiprid.
  • Table 4 Potency estimates and resistance ratios for Compound 7 and imidacloprid on an insecticide-resistant B-biotype B. tabaci strain and a susceptible laboratory strain.
  • ** Value represents a conservative estimate of the Resistance Ratio calculated using the highest concentration tested as the numerator in the equation.
  • Example IX Insecticidal activity of TV-substituted sulfoximines on insecticide- resistant whiteflv and aphid strains.
  • the insecticidal activity of Compounds 2, 4, and 5 on adults from an insecticide-resistant, Q-biotype Bemisia tabaci strain and an insecticide resistant Myzus persicae strain was assessed. Activity was compared to that of commercial insecticides representing major insecticide classes.
  • the common name associated with the Q-biotype of B. tabaci is the sweetpotato whitefly.
  • the resistant strain used in these tests, "CHLORAKA” was collected from cucumbers in Cyprus in 2003 and has exhibited stable and strong resistance to pyrethroids, organophosphates, and neonicotinoids in repeated laboratory testing. Adults from this strain are largely unaffected by exposure to imidacloprid at 1000 ppm.
  • the SUD-S strain of B. tabaci was the reference strain used in these tests and is a laboratory strain that is fully susceptible to all insecticide groups.
  • the common name associated with Myzus persicae is the green peach aphid.
  • the "USlL” strain of M. persicae was the reference strain used in these tests. USlL is fully susceptible to all insecticide groups,
  • deltamethrin (Decis, 25 g/litre "1 EC), dimethoate (Danadim, 400 g/litre “1 EC), profenofos (Curacron 500 g/litre "1 EC), pirimicarb (Aphox 500 g/litre "1 DG) and imidacloprid (Confidor, 200 g/litre "1 SL) were obtained by diluting formulated material in distilled water containing a 0.01 % concentration of the non-ionic wetter Agral®.
  • Chinese cabbage (Brassica rapa ssp. Pekinensis cv. Won Bok) plants were dipped into serial dilutions of insecticide, allowed to air-dry, and placed onto agar-water
  • ** Value represents a conservative estimate of the Resistance Ratio calculated using the highest concentration tested as the numerator in the equation.
  • ** Value represents a conservative estimate of the Resistance Ratio calculated using the highest concentration tested as the numerator in the equation.
  • the compounds of the invention are useful for the control of insects. Therefore, the present invention also is directed to a method for inhibiting an insect which comprises applying an insect-inhibiting amount of a compound of formula (I) to a locus of the inset, to the area to be protected, or directly on the insect to be controlled.
  • the compounds of the invention may also be used to control other invertebrate pests such as mites, ticks, lice, and nematodes.
  • locus of insects or other pests is a term used herein to refer to the environment in which the insects or other pests live or where their eggs are present, including the air surrounding them, the food they eat, or objects which they contact.
  • insects which eat, damage or contact edible, commodity, ornamental, turf or pasture plants can be controlled by applying the active compounds to the seed of the plant before planting, to the seedling, or cutting which is planted, the leaves, stems, fruits, grain, and/or roots, or to the soil or other growth medium before or after the crop is planted. Protection of these plants against virus, fungus or bacterium diseases may also be achieved indirectly through controlling sap-feeding pests such as whitefly, plant hopper, aphid and spider mite. Such plants include those which are bred through conventional approaches and which are genetically modified using modern biotechnology to gain insect-resistant, herbicide-resistant, nutrition-enhancement, and/or any other beneficial traits.
  • the compounds might also be useful to protect textiles, paper, stored grain, seeds and other foodstuffs, houses and other buildings which may be occupied by humans and/or companion, farm, ranch, zoo, or other animals, by applying an active compound to or near such objects.
  • domesticated animals, buildings or human beings might be protected with the compounds by controlling invertebrate and/or nematode pests that are parasitic or are capable of transmitting infectious diseases.
  • pests include, for example, chiggers, ticks, lice, mosquitoes, flies, fleas and heartworms.
  • Nonagronomic applications also include invertebrate pest control in forests, in yards, along road sides and railroad right of way.
  • insects and other pests which can be inhibited include, but are not limited to:
  • Lepidoptera Heliothis spp., Helicoverpa spp., Spodoptera spp., Mythimna unipuncta, Agrotis ipsilon, Earias spp., Euxoa auxiliaris, Trichoplusia ni, Anticarsia gemmatalis, Rachiplusia nu, Plutella xylostella, Chilo spp., Scirpophaga incertulas, Sesamia inferens, Cnaphalocrocis medinalis, Ostrinia nubilalis, Cydia pomonella, Carposina niponensis, Adoxophyes orana, Archips argyrospilus, Pandemis heparana, Epinotia aporema, Eupoecilia ambiguella, Lobesia botrana, Polychrosis viteana, Pectinophora gossypiella,
  • Coleoptera - Diabrotica spp. Leptinotarsa decemlineata, Oulema oryzae, Anthonomus grandis, Lissorhoptrus oryzophilus, Agriotes spp., Melanotus communis, Popillia japonica, Cyclocephala spp.; Tribolium spp.
  • Hemiptera Lygus spp., Eurygaster maura, Nezara viridula, Piezodorus guildingi, Leptocorisa varicornis, Cimex lectularius, Cimex hemipterus
  • Diptera Liriomyza spp., Musca domestica, Aedes spp., Culex spp., Anopheles spp., Fannia spp., Stomoxys spp.,
  • Orthoptera grasshoppers, crickets
  • Melanoplus spp. Locusta migratoria
  • Schistocerca gregaria Gryllotalpidae (mole crickets).
  • Blattoidea (cockroaches) - Blatta orientalis, Blattella germanica, Periplaneta americana, Supella longipalpa, Periplaneta australasiae, Periplaneta brunnea, Parcoblatta pennsylvanica, Periplaneta fuliginosa, Pycnoscelus surinamensis,
  • Nematoda - Dirofilaria immitis Meloidogyne spp., Heterodera spp., Hoplolaimus columbus, Belonolaimus spp., Pratylenchus spp., Rotylenchus reniformis, Criconemella ornata, Ditylenchus spp., Aphelenchoides besseyi, Hirschmanniella spp.
  • compositions which are important embodiments of the invention, and which comprise a compound of this invention and a phytologically-acceptable inert carrier. Control of the pests is achieved by applying compounds of the invention in forms of sprays, topical treatment, gels, seed coatings, microcapsulations, systemic uptake, baits, eartags, boluses, foggers, fumigants aerosols, dusts and many others.
  • the compositions are either concentrated solid or liquid formulations which are dispersed in water for application, or are dust or granular formulations which are applied without further treatment.
  • the compositions are prepared according to procedures and formulae which are conventional in the agricultural chemical art, but which are novel and important because of the presence therein of the compounds of this invention. Some description of the formulation of the compositions will be given, however, to assure that agricultural chemists can readily prepare any desired composition.
  • the dispersions in which the compounds are applied are most often aqueous suspensions or emulsions prepared from concentrated formulations of the compounds.
  • Such water-soluble, water-suspendable or emulsifiable formulations are either solids, usually known as wettable powders, or liquids usually known as emulsifiable concentrates or aqueous suspensions.
  • Wettable powders which may be compacted to form water dispersible granules, comprise an intimate mixture of the active compound, an inert carrier, and surfactants.
  • the concentration of the active compound is usually from about 10% to about 90% by weight.
  • the inert carrier is usually chosen from among the attapulgite clays, the montmorillonite clays, the diatomaceous earths, or the purified silicates.
  • Effective surfactants comprising from about 0.5% to about 10% of the wettable powder, are found among the sulfonated lignins, the condensed naphthalenesulfonates, the naphthalenesulfonates, the alkylbenzenesulfonates, the alkyl sulfates, and nonionic surfactants such as ethylene oxide adducts of alkyl phenols.
  • Emulsifiable concentrates of the compounds comprise a convenient concentration of a compound, such as from about 50 to about 500 grams per liter of liquid, equivalent to about 10% to about 50%, dissolved in an inert carrier which is either a water miscible solvent or a mixture of water-immiscible organic solvent and emulsifiers.
  • Useful organic solvents include aromatics, especially the xylenes, and the petroleum fractions, especially the high-boiling naphthalenic and olefinic portions of petroleum such as heavy aromatic naphtha.
  • Other organic solvents may also be used, such as the terpenic solvents including rosin derivatives, aliphatic ketones such as cyclohexanone, and complex alcohols such as 2-ethoxyethanol.
  • Suitable emulsifiers for emulsifiable concentrates are chosen from conventional nonionic surfactants, such as those discussed above.
  • Aqueous suspensions comprise suspensions of water-insoluble compounds of this invention, dispersed in an aqueous vehicle at a concentration in the range from about 5% to about 50% by weight.
  • Suspensions are prepared by finely grinding the compound, and vigorously mixing it into a vehicle comprised of water and surfactants chosen from the same types discussed above.
  • Inert ingredients such as inorganic salts and synthetic or natural gums, may also be added, to increase the density and viscosity of the aqueous vehicle. It is often most effective to grind and mix the compound at the same time by preparing the aqueous mixture, and homogenizing it in an implement such as a sand mill, ball mill, or piston-type homogenizer.
  • the compounds may also be applied as granular compositions, which are particularly useful for applications to the soil.
  • Granular compositions usually contain from about 0.5% to about 10% by weight of the compound, dispersed in an inert carrier which consists entirely or in large part of clay or a similar inexpensive substance.
  • Such compositions are usually prepared by dissolving the compound in a suitable solvent and applying it to a granular carrier which has been pre-formed to the appropriate particle size, in the range of from about 0.5 to 3 mm.
  • Such compositions may also be formulated by making a dough or paste of the carrier and compound and crushing and drying to obtain the desired granular particle size.
  • Dusts containing the compounds are prepared simply by intimately mixing the compound in powdered form with a suitable dusty agricultural carrier, such as kaolin clay, ground volcanic rock, and the like. Dusts can suitably contain from about 1% to about 10% of the compound.
  • Insecticides and acaricides are generally applied in the form of a dispersion of the active ingredient in a liquid carrier. It is conventional to refer to application rates in terms of the concentration of active ingredient in the carrier. The most widely used carrier is water.
  • the compounds of the invention can also be applied in the form of an aerosol composition.
  • the active compound is dissolved or dispersed in an inert carrier, which is a pressure-generating propellant mixture.
  • the aerosol composition is packaged in a container from which the mixture is dispensed through an atomizing valve.
  • Propellant mixtures comprise either low- boiling halocarbons, which may be mixed with organic solvents, or aqueous suspensions pressurized with inert gases or gaseous hydrocarbons.
  • the actual amount of compound to be applied to loci of insects and mites is not critical and can readily be determined by those skilled in the art in view of the examples above. In general, concentrations from 10 ppm to 5000 ppm by weight of compound are expected to provide good control. With many of the compounds, concentrations from 100 to 1500 ppm will suffice.
  • the locus to which a compound is applied can be any locus inhabited by an insect or mite, for example, vegetable crops, fruit and nut trees, grape vines, ornamental plants, domesticated animals, the interior or exterior surfaces of buildings, and the soil around buildings.
  • Systemic movement of compounds of the invention in plants may be utilized to control pests on one portion of the plant by applying the compounds to a different portion of it.
  • control of foliar-feeding insects can be controlled by drip irrigation or furrow application, or by treating the seed before planting.
  • Seed treatment can be applied to all types of seeds, including those from which plants genetically transformed to express specialized traits will germinate.
  • Representative examples include those expressing proteins toxic to invertebrate pests, such as Bacillus thuringiensis or other insecticidal toxins, those expressing herbicide resistance, such as "Roundup Ready ® " seed , or those with "stacked” foreign genes expressing insecticidal toxins, herbicide resistance, nutrition- enhancement and/or other beneficial traits.
  • An insecticidal bait composition consisting of compounds of the present invention and attractants and/or feeding stimulants may be used to increase efficacy of the insecticides against insect pest in a device such as trap, bait station, and the like.
  • the bait composition is usually a solid, semi-solid (including gel) or liquid bait matrix including the stimulants and one or more non- microencapsulated or microencapsulated insecticides in an amount effective to act as kill agents.
  • the compounds of the present invention are often applied in conjunction with one or more other insecticides or fungicides or herbicides to obtain control of a wider variety of pests diseases and weeds.
  • the presently claimed compounds can be formulated with the other insecticides or fungicides or herbicide, tank mixed with the other insecticides or fungicides or herbicides, or applied sequentially with the other insecticides or fungicides or herbicides.
  • antibiotic insecticides such as
  • lilacinus Photorhabdus luminescens, Spodoptera exigua NPV, trypsin modulating oostatic factor, Xenorhabdus nematophilus, and X. bovienii, plant incorporated protectant insecticides such as Cryl Ab, CrylAc, CrylF, Cryl A.105, Cry2Ab2, Cry3A, mir Cry3A, Cry3Bbl, Cry34, Cry35, and VIP3A; botanical insecticides such as anabasine, azadirachtin, d-limonene, nicotine, pyrethrins, cinerins, cinerin I, cinerin II, jasmolin I, jasmolin II, pyrethrin I, pyrethrin II, quassia, rotenone, ryania and sabadilla; carbamate insecticides such as bendiocarb and carbaryl; benzofuranyl methylcarbamate insecticides
  • fungicides that can be employed beneficially in combination with the compounds of the present invention include: 2-(thiocyanatomethylthio)- benzothiazole, 2-phenylphenol, 8-hydroxyquinoline sulfate, Ampelomyces, quisqualis, azaconazole, azoxystrobin, Bacillus subtilis, benalaxyl, benomyl, benthiavalicarb-isopropyl, benzylaminobenzene-sulfonate (BABS) salt, bicarbonates, biphenyl, bismeithiazol, bitertanol, blasticidin-S, borax, Bordeaux mixture, boscalid, bromuconazole, bupirimate, calcium polysulfide, captafol, captan, carbendazim, carboxin, carpropamid, carvone, chloroneb, chlorothalonil, chlozolinate, Coniothyrium minitans, copper
  • Some of the herbicides that can be employed in conjunction with the compounds of the present invention include: amide herbicides such as allidochlor, beflubutamid, benzadox, benzipram, bromobutide, cafenstrole, CDEA, chlorthiamid, cyprazole, dimethenamid, dimethenamid-P, diphenamid, epronaz, etnipromid, fentrazamide, flupoxam, fomesafen, halosafen, isocarbamid, isoxaben, napropamide, naptalam, pethoxamid, propyzamide, quinonamid and tebutam; anilide herbicides such as chloranocryl, cisanilide, clomeprop, cypromid, diflufenican, etobenzanid, fenasulam, flufenacet, flufenican, mefenacet, mefluid

Abstract

N-Substituted sulfoximines are effective at controlling insects resistant to common insecticides.

Description

A METHOD TO CONTROL INSECTS RESISTANT TO COMMON
INSECTICIDES
This application claims the benefit of United States Provisional Application Serial Number 60/815,932 filed on June 23, 2006.
The present invention concerns a novel method to control certain insect pests, specifically those that have developed resistance to one or more classes of insecticides, through the use of ΛT-substituted sulfoximines.
The development of resistance to insecticides in insect populations is a well recognized phenomenon and there are well documented cases of resistance for all of the major classes of insecticides (Georghiou and Saito, 1984 Pest
Resistance to Pesticides. Plenum Press, New York; Whalon et al., 2007 Arthropod Pest Resistance Database, http://www.cips.msu.edu/resistance/rmdb). The reduction in effectiveness of insecticides due to the development of resistance is one of the forces that drives the discovery and development of new insecticides.
Predicting whether or not a resistance mechanism that has conferred resistance to an existing insecticide will confer resistance to a novel insecticide (i.e., cross-resistance) is not necessarily a simple matter. In the case where resistance is conferred by a change or modification in the molecular target at which the insecticide acts (ie., target-site resistance), a novel insecticide that acts at a different target site is unlikely to be affected by the resistance mechanism. Thus, in such a case in which the target site at which a novel chemistry acts is known and the resistance mechanism of concern involves a modification to a different target site, one could predict with some confidence that the resistance mechanism would not confer resistance to the novel chemistry.
In contrast to the above, the case where the target site of the novel chemistry is not known or where resistance is conferred by some mechanism other than target site insensitivity (e.g., metabolic detoxification, sequestration, or excretion), cross resistance is difficult to predict. In these cases, empirical assessment of the cross-resistance among insecticide chemistries using well characterized resistant populations or "strains" of a target pest species provides the most direct and compelling evidence for the likelihood of cross-resistance
One of the newer and more successful classes of insecticides to be introduced in past 25 years is the neonicotinoids. The introduction of neonicotinoid insecticides has provided growers with invaluable new tools for managing some of the world's most destructive crop pests, including species with a long history of developing resistance to earlier-used products. Imidacloprid was the first major active ingredient of the neonicotinoid class to reach the market. Research on molecules with a similar structure containing the 6-chloro-3- pyridylmethyl moiety led to acetamiprid, nitenpyram and thiacloprid. The substitution of the chloropyridinyl moiety by a chlorothiazolyl group resulted in a second subgroup of neonicotinoid insecticides including clothianidin and thiamethoxam.
Although the neonicotinoids have proved relatively resilient to the development of resistance, high levels of resistance have been documented in field-collected populations of the whitefly, Bemisia tabaci. During the late 1990s, resistant species increased in potency with more recently-collected strains of this whitefly exhibiting more than 100-fold resistance to imidacloprid, and comparable levels of resistance to thiamethoxam and acetamiprid (Elbert and Nauen, 2000 Pest Manag Set. 56: 60-64; Rauch and Nauen, 2003 Arch Insects Biochem Physiol. 54: 165-176; Gorman et al., 2003 Proc BCPC Intl Cong: Crop Science & Technology. 2: 783-788). The major mechanism of resistance in whitefly to neonicotinoid insecticides appears to be an elevated detoxification capability (Rauch and Nauen, 2003 Arch Insects Biochem Physiol. 54: 165-176) and no target- site resistance has been found in neonicotinoid-resistant whitefly populations (Nauen and Denholm, 2005 Arch Insect Biochem Physiol. 58:200-215).
Neonicotinoid insecticides remain valuable and effective tools for the management of insect pests in most areas in spite of the limited development of resistance. Control of neonicotinoid-resistant insect pest populations, or for that matter other insecticide-resistant insect pest populations, will rely on the availability of insecticides that are effective on the resistant populations. Preventing or delaying the development of insecticide-resistant insect pest populations also relies on the rotation of insecticides that are not affected by the same resistance mechanisms. In either case, new insecticides that lack cross- resistance to currently available insecticides are imminently needed.
This invention concerns the discovery of lack of cross-resistance for N- substituted sulfoximine compounds on insect pests that have developed resistance to one or more classes of insecticides including imidacloprid and other neonicotinoids. More particularly, this invention concerns a method to control certain insect pests that have developed resistance to one or more classes of insecticides, including neonicotinoids, organophosphates, carbamates and pyrethroids, which comprises applying to a locus where control is desired an insect-inactivating amount of a compound of the formula (I)
Figure imgf000004_0001
wherein
X represents NO2, CN or COOR4;
L represents a single bond or R1, S and L taken together represent a 5- or 6-membered ring;
R1 represents methyl or ethyl;
R2 and R3 independently represent hydrogen, methyl, ethyl, fluoro, chloro or bromo;
n is an integer from 0-3; Y represents 6-halopyridin-3-yl, 6-(Cι-C4)alkylpyridin-3-yl, 6-(Ci-C4) haloalkylpyridin-3-yl, 6-(Ci-C4)alkoxypyridin-3-yl, 6-(Ci-C4)haloalkoxypyridin- 3-yl, 2-chlorothiazol-4-yl, or 3-chloroisoxazol-5-yl when n = 0-3 and L represents a single bond, or Y represents hydrogen, Ci-C4alkyl, phenyl, 6-halopyridin-3-yl, 6-(Ci-C4)alkylpyridin-3-yl, 6-(C1-C4) haloalkylpyridin-3-yl, 6-(Ci-C4)alkoxy- pyridin-3-yl, 6-(Ci-C4)haloalkoxypyridin-3-yl, 2-chlorothiazol-4-yl, or 3- chloroisoxazol-5-yl when n = 0-1 and R1, S and L taken together represent a 5- or 6-membered ring; and
R4 represents C1-C3 alkyl.
Preferred compounds of formula (I) include the following classes:
(1) Compounds of formula (I) wherein X is NO2 or CN, most preferably CN.
(2) Compounds of formula (I) wherein Y represents 6-chloropyridin-3- yl or 6-trifluoromethylpyridin-3-yl having the structure:
Figure imgf000005_0001
(3) Compounds of formula (I) wherein R1, S and L taken together form a standard 5-membered ring and n = 0, i.e., having the structure
Figure imgf000005_0002
(4) Compounds of formula (I) wherein R1 represents CH3, L represents a single bond and n = 1 or 2, most preferably 1, having the structure:
Y
Figure imgf000006_0001
(5) Compounds of formula (I) wherein R2 and R3 independently represent hydrogen, methyl or ethyl.
It will be appreciated by those skilled in the art that the most preferred compounds are generally those which are comprised of combinations of the above preferred classes.
Throughout this document, all temperatures are given in degrees Celsius, and all percentages are weight percentages unless otherwise stated.
Unless specifically limited otherwise, the term alkyl (including derivative terms such as alkoxy), as used herein, include straight chain, branched chain, and cyclic groups. Thus, typical alkyl groups are methyl, ethyl, 1-methylethyl, propyl, 1,1-dimethylethyl, and cyclopropyl. The term halogen includes fluorine, chlorine, bromine, and iodine. The term haloalkyl and haloalkoxy includes alkyl and alkoxy groups substituted with from one to the maximum possible number of halogen atoms, preferably fluorine atoms.
The compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include geometric isomers, diastereomers and enantiomers. Thus the compounds of the present invention include racemic mixtures, individual stereoisomers and optically active mixtures. It will be appreciated by those skilled in the art that one stereoisomer may be more active than the others. Individual stereoisomers and optically active mixtures may be obtained by selective synthetic procedures, by conventional synthetic procedures using resolved starting materials or by conventional resolution procedures.
Methods for the preparation of sulfoximines, other than those described in Scheme H, have been previously disclosed in US Patent Publication 20050228027.
The compounds of formula (Ia), wherein R1, R2, R3, R4, X, and Y are as previously defined and L is a single bond, can be prepared by the methods illustrated in Scheme A:
Scheme A
a H I l b
R1— S-(CR2RJ)nY *- R' — S -(CRW)11Y » mCPBA NaN11 H2SO4
(A) (B)
Ri- V1S-/N(HCRW)nY
Figure imgf000007_0001
HNO3, Ac2O or
(O ClCO2R4, DMAP (Ia)
In step a of Scheme A, sulfide of formula (A) is oxidized with meta- chloroperoxybenzoic acid (mCPBA) in a polar solvent below 0 0C to provide sulfoxide of formula (B). In most cases, dichloromethane is the preferred solvent for oxidation.
In step b of Scheme A, sulfoxide (B) is iminated with sodium azide in the presence of concentrated sulfuric acid in an aprotic solvent under heating to provide sυlfoximine of formula (C). In most cases, chloroform is the preferred solvent for this reaction.
In step c of Scheme A, the nitrogen of sulfoximine (C) can be either cyanated with cyanogen bromide in the presence of a base, or nitrated with nitric acid in the presence of acetic anhydride under mildly elevated temperature, or carboxylated with alkyl (R4) chloroformate in the presence of base such as 4- dimethylaminopyridine (DMAP) to provide iV-substituted sulfoximine (Ia). Base is required for efficient cyanation and carboxylation and the preferred base is DMAP, whereas sulfuric acid is used as catalyst for efficient nitration reaction.
The compounds of formula (Ia), wherein X represents CN and R1, R2, R3, R4 and Y are as previously defined, can be prepared by the mild and efficient method illustrated in Scheme B.
Scheme B
S-L_(CR*R3)n
I Rl (A)
Figure imgf000008_0001
In step a of Scheme B, sulfide is oxidized with iodobenzene diacetate in the presence of cyanamide at 0 0C to give sulfilimine (F). The reaction can be carried out in a polar aprotic solvent like dichloromethane.
In step b of Scheme B, the sulfilimine (F) is oxidized with OTCPB A. A base such as potassium carbonate is employed to neutralize the acidity of mCPB A. Protic polar solvents such as ethanol and water are used to increase the solubility of the sulfilimine starting material and the base employed. The sulfilimine (F) can also be oxidized with aqueous sodium or potassium periodinate solution in the presence of catalyst ruthenium trichloride hydrate or similar catalyst. The organic solvent for this catalysis can be polar aprotic solvent such as dichloromethane, chloroform, or acetonitrile. The α-carbon of the W-substituted sulfoximine of formula (Ia), i.e., n=l, R3 = H in the (CR2R3) group adjacent to the ^-substituted sulfoximine function can be further alkylated or halogenated (R5) in the presence of a base such as potassium hexamethyldisilamide (KHMDS) to give Λf-substituted sulfoximines of formula (Ib), wherein R1, R2, R3, R4, X, L and Y are as previously defined and Z is an appropriate leaving group, as illustrated in Scheme C. The preferred leaving groups are iodide (R5 = alkyl), benzenesulfonimide (R5 = F), tetrachloroethene (R5 = Cl), and tetrafluoroethene (R5 = Br).
Scheme C
Figure imgf000009_0001
The starting sulfides (A) in Scheme A can be prepared in different ways as illustrated in Schemes D, E, F G, H, and I.
In Scheme D, the sulfide of formula (Ai), wherein R1, R2 and Y are as previously defined, n = 1, and R3 = H, can be prepared from the chloride of formula (Di) by nucleophilic substitution with the sodium salt of an alkyl thiol.
Scheme D R2 R2
-Y
>-'
Cl R'SNa R1 — S
(D1) (A1)
In Scheme E, the sulfide of formula (A2), wherein R1, R2 and Y are as previously defined, n = 3, and R3 = H, can be prepared from the chloride of formula (D2) by reacting with a 2-mono substituted methyl malonate in the presence of base such as potassium terf-butoxide to provide 2,2-disubstitued malonate, hydrolysis under basic conditions to form a diacid, decarboxylation of the diacid by heating to give a monoacid, reduction of the monoacid with borane- tetrahyrofuran complex to provide an alcohol, tosylation of the alcohol with toluenesulfonyl chloride (tosyl chloride) in the presence of a base like pyridine to give a tosylate and replacement of the tosylate with the sodium salt of the desired thiol.
Scheme E
ClCH2 — Y
UOH (D2) R2CH(CO2Me), MeO2C
R2
BHjTHF
Figure imgf000010_0001
Figure imgf000010_0002
In Scheme F, the sulfide of formula (A3), wherein R1, R2 and Y are as previously defined, n = 2, and R3 = H, can be prepared from the nitrile of formula (E) by deprotonation with a strong base and alkylation with an alkyl iodide to give α-alkylated nitrile, hydrolysis of the α-alkylated nitrile in the presence of a strong acid like HCl to give an acid, reduction of the acid with borane-tetrahydrofuran complex to provide an alcohol, tosylation of the alcohol with tosyl chloride in the presence of a base like pyridine to give a tosylate and replacement of the tosylate with the sodium salt of the desired thiol.
Scheme F
R2
-Y
NC £T Nc >'-
(E)
Figure imgf000011_0001
Figure imgf000011_0002
NaSRl
Figure imgf000011_0003
In Scheme G, the sulfide of formula (A4), wherein R1, S and L taken together form a ring, n = 0, and Y = isopropyl or phenyl can be prepared from the unsubstituted cyclic sulfide wherein m = 0, 1. Chlorination of the cyclic sulfide starting material with TV-chlorosuccinimide in benzene followed by alkylation with Grignard reagent can lead to the desired sulfide (A4) in satisfactory yield.
Scheme G
NCS,
Figure imgf000011_0004
Figure imgf000011_0005
Y YMMggCCll 1
Figure imgf000011_0006
An alternative method for the preparation of sulfides of formula (A4), wherein R1, S and L taken together form a ring, n = 0, m = 0, and Y = 6-halo, 6- (C|-C4)alkyl, 6-(Ci-C4) haloalkyl or 6-(Ci-C4)alkoxy substituted 3-pyridyl is highlighted in Scheme H. Accordingly, the corresponding appropriately substituted chloromethyl pyridine is treated with thiourea, hydrolyzed and subsequently alkylated with l-bromo-3-chloropropane under aqueous base conditions, and cyclized in the presence of a base like potassium terf-butoxide in a polar aprotic solvent such as tetrahydrofuran (THF).
Scheme H
Figure imgf000012_0001
In Scheme I, the sulfide of formula (A5), wherein R1 is previously defined, L is a bond, n = 0 and Y is 6-chloropyridin-3-yl can be prepared from 2-chloro-5- bromopyridine with a halo-metal exchange followed by a substitution with disulfide.
Scheme I
Figure imgf000012_0002
(A5)
Sulfoximine compounds of type Ib wherein R1, S and L taken together form a saturated 5- or 6-membered ring and n =1 can be prepared by the methods illustrated in Scheme J wherein X and Y are as previously defined and m is 0 or 1. Scheme J
N~X Y-C BHas 2 eC1,-78 °C
Figure imgf000013_0001
Figure imgf000013_0002
In step a of Scheme J, which is similar to step b of Scheme A, sulfoxide is iminated with sodium azide in the presence of concentrated sulfuric acid or with 0-mesitylsulfonylhydroxylamine in a polar aprotic solvent to provide sulfoximine. Chloroform or dichloromethane are the preferred solvents.
In step b of Scheme J, similar to step c of Scheme A, the nitrogen of sulfoximine can be either cyanated with cyanogen bromide, or nitrated with nitric acid followed by treatment with acetic anhydride under refluxing conditions, or carboxylated with methyl chloroformate in the presence of base such as DMAP to provide ./V-substitued cyclic sulfoximine. Base is required for efficient cyanation and carboxylation and the preferred base is DMAP, whereas sulfuric acid is used as catalyst for efficient nitration reaction.
In step c of Scheme J, the α-carbon of Λf-sυbstituted sulfoximine can be alkylated with a heteroaromatic methyl halide in the presence of a base such as KHMDS or butyl lithium (BuLi) to give the desired TV-substituted sulfoximines. The preferred halide can be bromide, chloride or iodide.
Alternatively, the compounds of formula (Ib) can be prepared by a first α- alkylation of sulfoxides to give α-substituted sulfoxides and then an imination of the sulfoxide followed by JV-substitution of the resulting sulfoximine by using the steps c , a and b respectively as described above for Scheme J.
Compounds in which Y represents claimed substituents other than 6-(Ci- C4) halooalkylpyridin-3-yl and 6-(Ci-C-O halooalkoxypyridin-3-yl have been disclosed in US Patent Publication 20050228027.
Examples
Example I. [(ό-Trifluoromethylpyridin-B-yDmethylKmethvD-oxido- λ^ sulfanylidenecvanamide (1).
Figure imgf000014_0001
(D
[(6-Trifluoromethylpyridin-3-yl)methyl](methyl)-oxido- λ4-sulfanylidene- cyanamide (1) was prepared from 3-chloromethyl-6-(trifluoromethyl)pyridine according to the following three step sequence:
(A)
Figure imgf000014_0002
(A)
To a solution of 3-chloromethyl-6-(trifluoromethyl)pyridine (5.1 g, 26 mmol) in dimethyl sulfoxide (DMSO; 20 mL) was added in one portion sodium thiomethoxide (1.8 g, 26 mmol). A violent exothermic reaction was observed which resulted in the reaction turning dark. The reaction was stirred for 1 hr, then additional sodium thiomethoxide (0.91 g, 13 mmol) was added slowly. The reaction was stirred overnight, after which it was poured into H2O and several drops of cone. HCl were added. The mixture was extracted with Et2O (3 x 50 mL) and the organic layers combined, washed with brine, dried over MgSO4 and concentrated. The crude product was purified by chromatography (Prep 500, 10% acetone/hexanes) to furnish the sulfide (A) as a pale yellow oil (3.6 g, 67%). 1H NMR (300 MHz, CDCl3): δ 8.6 (s, IH), 7.9 (d, IH), 7.7 (d, IH), 3.7 (s, 2H), 2.0 (s, 3H); GC-MS: mass calcd for C8H8F3NS [M]+ 207. Found 207.
(B)
Figure imgf000015_0001
(A) (B)
To a solution of sulfide (A) (3.5 g, 17 mmol) and cyanamide (1.4 mg, 34 mmol) in dichloromethane (30 mL) at 00C was added iodobenzenediacetate (11.0 g, 34 mmol) all at once. The reaction was stirred for 30 minutes then allowed to warm to room temperature overnight. The mixture was diluted with dichloromethane (50 mL) and washed with H2O. The aqueous layer was extracted with ethyl acetate (4 x 50 mL), and the combined dichloromethane and ethyl acetate layers dried over MgSθ4 and concentrated. The crude product was triturated with hexanes and purified by chromatography (chromatotron, 60% acetone/hexanes) to furnish the sulfilimine (B) as a yellow gum (0.60 g, 14%). IR (film) 3008, 2924, 2143, 1693 cm"1; 1H NMR (300 MHz, CDCl3): δ 8.8 (s, IH), 8.0 (d, IH), 7.8 (d, IH), 4.5 (d, IH), 4.3 (d, IH), 2.9 (s, 3H); LC-MS (ESI): mass calcd for C9H9F3N3S [M+H]+ 248.04. Found 248.
(C)
Figure imgf000015_0002
(B) (1) To a solution of m-chloroperbenzoic acid (mCPBA; 80%, 1.0 g, 4.9 mmol) in EtOH (10 mL) at 00C was added a solution of K2CO3 (1.4 g, 10 mmol) in H2O (7 mL). The solution was stirred for 20 min and then a solution of sulfϊlimine (B) (0.60 g, 2.4 mmol) in EtOH (20 mL) was added all at once. The reaction was stirred at 00C for 30 min, and then allowed to warm to room temperature over the course of 1 hr. The reaction was quenched with aq. sodium bisulfite and the mixture concentrated to remove ethanol. The resulting mixture was extracted with dichloromethane and the combined organic layers dried over MgSθ4 and concentrated. The crude product was purified by chromatography (chromatotron, 50% acetone/hexanes) to furnish the sulfoximine (1) as an off-white solid (0.28 g, 44%). Mp = 135-137 0C; 1H NMR (300 MHz, CDCl3): δ 8.8 (s, IH), 8.1 (d, IH), 7.8 (d, IH), 4.7 (m, 2H), 3.2 (s, 3H); LC-MS (ELSD): mass calcd for C9H9F3N3OS [M+H]+ 264.04. Found 263.92.
Example II. F 1 -(6-Trifluoromethylpyridin-3-yl)ethvI1(methylVoxido- λ4- sulfanylidenecvanamide (2).
Figure imgf000016_0001
(2)
(A)
Figure imgf000016_0002
[ 1 -(6-Trifluoromethylpyridin-3-yl)ethyl](methyl)-oxido- λ4-sulfanylidene- cyanamide (2) was prepared from [(6-trifluoromethylpyridin-3-yl)methyl]- (methyl)-oxido- λ4-sulfanylidenecyanamide (1) using the method outlined in Scheme C:
To a solution of sulfoximine (1) (50 mg, 0.19 mmol) and hexamethyl- phosphoramide (HMPA; 17 μL, 0.10 mmol) in tetrahydrofuran (THF; 2 mL) at -78 0C was added potassium hexamethyldisilazane (KHMDS; 0.5 M in toluene, 420 μL, 0.21 mmol) dropwise. The solution was stirred at -78 0C for an additional 20 min, after which iodomethane (13 μL, 0.21 mmol) was added. The reaction was allowed to warm to room temperature over the course of 1 hr, after which it was quenched with saturated aqueous (aq.) NH4CI and extracted with dichloro- methane. The organic layer was dried over Na2SO-1, concentrated, and the crude product purified by chromatography (chromatotron, 70% acetone/C^Ch) to furnish the sulfoximine (2) as a 2:1 mixture of diastereomers (colorless oil; 31 mg, 59%). 1H NMR (300 MHz, CDCl3): δ (major diastereomer) 8.8 (s, IH), 8.1 (d, IH), 7.8 (d, IH), 4.6 (q, IH), 3.0 (s, 3H), 2.0 (d, 3H); (minor diastereomer) 8.8 (s, IH), 8.1 (d, IH), 7.8 (d, IH), 4.6 (q, IH), 3.1 (s, 3H), 2.0 (d, 3H); LC-MS (ELSD): mass calcd for C10HiOF3N3OS [M+H]+ 278.06. Found 278.05.
Example UI. 2-(6-Trifluoromethylpyridin-3-yl)- 1 -oxido-tetrahvdro- IH- 1 λ4- thien-1-ylidenecvanamide (3)
Figure imgf000017_0001
(3)
2-(6-Trifluoromethylpyridin-3-yl)- 1 -oxido-tetrahydro- IH- 1 λ4-thien- 1 - ylidene-cyanamide (3) was prepared from 3-chloromethyl-6-(trifluoromethyl)- pyridine according to the 5 step sequence outline below: (A)
Figure imgf000018_0001
A
To a suspension of thiourea (1.2 g, 16 mmol) in EtOH (25 mL) was added a solution of 3-chloromethyl-6-(trifluoromethyl)pyridine in EtOH (10 mL). The suspension was stirred at room temperature for 2 days, during which a white precipitated formed. The precipitate was filtered to give the desired amidine hydrochloride as a white solid (2.4 g, 58%). Mp = 186-188 0C. No further attempt was made to purify the product. 1H NMR (300 MHz, CDCl3): δ 8.9 (bs, 4H), 8.4 (s, IH), 7.6 (d, IH), 7.3 (d, IH), 4.2 (s, 2H); LC-MS (ELSD): mass calcd for C8H8F3N3S [MH-H]+ 236.05. Found 236.01.
(B)
Figure imgf000018_0002
(A) (B)
To a solution of amidine hydrochloride (A) (1.8 g, 6.8 mmol) in H2O (12 mL) at 10 0C was added 10 N NaOH (0.68 mL, 6.8 mmol), which resulted in the formation of a white precipitate. The suspension was heated at 1000C for 30 min, then cooled back down to 100C. Additional 10 N NaOH (0.68 mL, 6.8 mmol) was added, followed by l-bromo-3-chloropropane (0.67 mL, 6.8 mmol) all at once. The reaction was stirred at room temperature overnight, then extracted with dichloromethane. The combined organic layers were washed with brine, dried over Na2SO4 and concentrated to furnish the sulfide (B) as a colorless oil (1.7 g. 96%). No further attempt was made to purify the product. 1H NMR (300 MHz, CDCl3): δ 8.6 (s, IH), 7.8 (d, IH), 7.6 (d, IH), 3.8 (s, 2H), 3.6 (t, 2H), 2.6 (t, 2H), 2.0 (quint, 2H).
(C)
Figure imgf000019_0001
To a suspension of potassium /erf-butoxide (1.5 g, 13 mmol) in THF (12 mL) was added HMPA (1.7 mL, 10 mmol) followed by a solution of sulfide (B) (1.8 g, 6.7 mmol) in THF (3 mL) dropwise. The reaction was allowed to stir at room temperature overnight, followed by concentration and purification by chromatography (Biotage, 40% EtOAc/hexanes) to furnish cyclized product (C) as an orange oil (230 mg, 15%). 1H NMR (300 MHz, CDCl3): δ 8.7 (s, IH), 8.0 (d, IH), 7.6 (d, IH), 4.6 (dd, IH), 3.2 (m, IH), 3.1 (m, IH), 2.5 (m, IH), 2.3 (m, IH), 2.1-1.9 (m, 2H).
(D)
Figure imgf000019_0002
To a solution of sulfide (C) (230 mg, 0.99 mmol) and cyanamide (83 mg, 2.0 mmol) in dichloromethane (5 mL) at 0 0C was added iodobenzenediacetate (350 mg, 1.1 mmol) all at once. The reaction was stirred for 3 hr, then concentrated and the crude product purified by chromatography (chromatotron, 50% acetone/hexanes) to furnish the sulfilimine (D) as an orange oil (150 mg, mixture of diastereomers, 56%). 1H NMR (300 MHz, CDCl3): δ 8.8 (s, IH), 7.9 (d, IH), 7.8 (d, IH), 4.8 (dd, IH), 3.5 (m, 2H), 2.9-2.7 (m, 2H), 2.6 (m, IH), 2.3 (m, IH).
(E)
Figure imgf000020_0001
(D) (3)
To a solution of mCPBA (80%, 180 mg, 0.82 mmol) in EtOH (3 mL) at 0 0C was added a solution Of K2CO3 (230 mg, 1.7 mmol) in H2O (1.5 mL). The solution was stirred for 20 min and then a solution of sulfilimine (D) (150 mg, 0.55 mmol) in EtOH (2 mL) was added all at once. The reaction was stirred at 0 0C for 45 min, after which the solvent was decanted into a separate flask and concentrated to give a white solid. The solid was slurried in CHCl3, filtered, and concentrated to furnish pure sulfoximine (3) as a colorless oil (72 mg, 44%). 1H NMR (300 MHz, CDCl3): δ (1.5:1 mixture of diastereomers) 8.8 (s, 2H), 8.0 (d, 2H), 7.8 (d, 2H), 4.7 (q, IH), 4.6 (q, IH), 4.0-3.4 (m, s, 4H), 3.0-2.4 (m, 8 H); LC- MS (ELSD): mass calcd for C11HnF3N3OS [M+H]+ 290.06. Found 289.99.
Example IV. r(6-Chloropyridin-3-yl)methyl](methyl)oxido-λ4-suIfanylidene- cyanamide (4)
Figure imgf000020_0002
(4) [(6-Chloropyridin-3-yl)methyl](methyl)oxido-λ4-sulfanylidenecyanamide
(4) was prepared from_3-chloromethyl-6-chloropyridine via the same 3 step sequence outline in Example I. Product was a white solid; mp = 115-117 0C; 1H NMR (300 MHz, CD3OD/CDCI3) δ 8.5 (d, IH), 8.0 (dd, IH), 7.6 (d, IH), 5.0 (s, 2H), 3.4 (s, 3H); LC-MS (ELSD): mass calcd for C8H9ClN3OS [M+H]+ 230. Found 230.
Example V. r 1 -(6-Chloropyridin-3-vPethvπf methvDoxido- λ4-sulfanylidene- cyanamide (5).
Figure imgf000021_0001
(5)
[ 1 -(6-Chloropyridin-3-yl)ethyl](methyl)oxido- λ4-sulfanylidenecyanamide (5) was prepared from [(6-chloropyridin-3-yl)methyl](methyl)oxido-λ4- sulfanylidenecyanamide (4) via the same protocol as described in Example IL The final product, isolated as a 3:2 mixture of diastereomers, was an off-white solid; mp = 155-164 0C. LC-MS (ELSD): mass calcd for C9H9ClN3OS [M-H]+ 242. Found 242. The diastereomers of (5) could be separated by recrystallization (2: 1 McOWR2O) and subsequent chromatotron chromatography of the supernate to provide (6) and (7) (Stereochemistry arbitrarily assigned).
Figure imgf000021_0002
Compound (6) was isolated as a white solid; mp = 163-165 0C; 1H NMR (300 MHz, CDCl3): δ 8.4 (d, IH), 7.9 (dd, IH), 7.5 (d, IH), 4.6 (q, IH), 3.1 (s, 3H), 2.0 (d, 3H); LC-MS (ELSD): mass calcd for C9HnClN3OS [M+H]+, 244. Found 244. Compound (7) was isolated as a colorless oil; 1H NMR (300 MHz, CDCl3) 6 8.4 (d, IH), 7.9 (dd, IH), 7.5 (d, IH), 4.6 (q, IH), 3.0 (s, 3H), 2.0 (d, 3H); LC- MS (ELSD): mass calcd for C9HnClN3OS [M+H]+, 244. Found 244.
Example VI. 2-(6-Chloropyridin-3- vD- 1 -oxido-tetrahvdro- IH- 1 λ4-thien- 1 - ylidenecvanamide (8)
Figure imgf000022_0001
(8)
2-(6-Chloropyridin-3-yl)- 1 -oxido-tetrahydro- IH-I λ4-thien- 1 - ylidenecyanamide (8) was prepared from 3-chloromethyl-6-chloropyridine according to the same five step sequence described in Example HI. Product was a colorless gum and a 1:1 ratio of diastereomers. Diastereomer 1: IR (film) 3439, 3006, 2949, 2194 cm 1; 1H NMR (300 MHz, CDCl3): δ 8.4 (d, IH), 7.8 (dd, IH), 7.4 (d, IH), 4.6 (dd, IH), 3.6 (m, 2H), 2.4-2.7 (m, 4H); GC-MS: mass calcd for Ci0H11ClN3OS [M+H]+ 256. Found 256. Diastereomer 2: IR (film) 3040, 2926, 2191 cm"1; 1H NMR (300 MHz, CDCl3): δ 8.4 (d, IH), 7.8 (dd, IH), 7.4 (d, IH), 4.7 (dd, IH), 3.8 (ddd, IH), 3.4 (m, IH), 2.8 (m, IH), 2.6 (m, 2H), 2.3 (m, IH); GC-MS: mass calcd for Ci0H11ClN3OS [M+H]+ 256. Found 256.
Example VII. Insecticidal activity of Af-substituted sulfoximiπes on a neonicitinoid-resistant O-biotvpe Bemisia tabaci strain.
The insecticidal activity of Compounds 6 and 7 on adults from an insecticide-resistant, Q-biotype Bemisia tabaci strain was assessed. The activity of commercial, neonicotinoid insecticides was also assessed and served as the basis for comparisons of relative efficacy on this insecticide-resistant whitefly strain. The common name associated with the Q-biotype of B. tabaci is the sweetpotato whitefly. The strain used in these tests, "CHLORAKA", was collected from cucumbers in Cyprus in 2003 and has exhibited stable and strong resistance to multiple insecticide classes in repeated laboratory testing. Adults from this strain are largely unaffected by exposure to imidacloprid (a neonicotinoid insecticide) at 1000 ppm. The SUD-S strain of B. tabaci was the reference strain used in these tests and is a laboratory strain that is fully susceptible to all insecticide groups.
Technical samples of Compounds 6 and 7 were initially dissolved in 90% acetone in distilled water (containing 0.01% Agral) to obtain 5000 ppm stock solutions. Subsequent dilutions were made by using 0.9% acetone in distilled water (containing 0.01% Agral) as the diluent. Commercial formulations of imidacloprid (Confidor, 200SL), thiamethoxam (Actara, 25WG) and acetamiprid (Mospilan, 20SP) were diluted using distilled water containing 0.01% Agral. Discs cut from fully expanded leaves of cotton (Gossypium hirsutum cv.
Deltapine 16) were dipped into serial dilutions of insecticide, allowed to air-dry, and placed onto agar-water beds (1%) in plastic Petri dishes. Leaf discs immersed in the diluent only were used for controls. Adult B. tabaci were removed from rearing cages using a motorized aspirator and, after brief narcosis, 20-30 healthy female whiteflies were placed onto each treated leaf disc. Each unit was sealed with a close-fitting, ventilated Hd. Once adults had recovered from narcosis, dishes were inverted so that the leaf disc was facing abaxial side down allowing the adult whiteflies to orient normally. All bioassays consisted of three replicates per concentration (including controls). Mortality was assessed at 48 hours after initiation of the test for the commercial standards and at 72 hours for Compounds 6 and 7.
Compounds 6, 7 and the commercial neonicotinoid insecticides imidacloprid, thiamethoxam and acetamiprid were tested in discriminating concentration bioassays against both whitefly strains. More extensive concentration-response bioassays against both whitefly strains were conducted for Compounds 6, 7 and imidacloprid. The data from these more extensive assays were subjected to probit analysis to derive LC50 and LC90 estimates. Resistance ratios were calculated using the following equation: Resistance Ratio = LCsn on Resistant Population
LC50 on Susceptible Population
In the discriminating concentration bioassays, there was only a slight difference in the efficacy of Compounds 6 and 7 on the 2 whitefly strains (Table 1). This was in contrast to the responses for the commercial neonicotinoid insecticides which were much less effective on the CHLORAKA strain compared to the susceptible, reference strain (SUD-S).
Table 1. Mortality of adults from an insecticide-resistant Q-biotype B. tabaci strain and a susceptible laboratory strain exposed to discriminating concentrations of Compounds 6, 7, imidacloprid, thiamethoxam, or acetamiprid.
Figure imgf000025_0001
The results from the concentration-response bioassays provided additional documentation of the effectiveness of the Λf-substituted sulfoximines on neonicotinoid-resistant Q-biotype B. tabaci (Table 2). The similar LC50S on the resistant CHLORAKA and susceptible SUD-S strains for Compounds 6 and 7 produced small resistance ratios. This was in contrast to the response for imidacloprid, where a large resistance ratio was obtained due to the high level of resistance observed in the CHLORAKA strain.
Table 2. Potency estimates and resistance ratios for Compounds 6, 7 and imidacloprid on an insecticide-resistant, Q-biotype B. tabaci strain and a susceptible laboratory strain.
Figure imgf000026_0001
* Accurate calculation of LC50 was not possible because doses as high as 4000 ppm caused <50% mortality on the R strain (CHLORAKA).
"Value represents a conservative estimate of the Resistance Ratio calculated using the highest concentration tested as the numerator in the equation.
Example VDI. Insecticidal activity of Λf-substituted sulfoximines on a neonicitinoid-resistant B-biotvpe Bemisia tabaci strain.
The insecticidal activity of Compound 7 on adults from an insecticide- resistant, B-biotype Bemisia tabaci strain was assessed. The activity of commercial, neonicotinoid insecticides was also assessed and served as the basis for comparisons of relative efficacy on this insecticide-resistant whitefly strain.
The common name associated with the B-biotype of B. tabaci is the silverleaf whitefly. The strain used in these tests, "GUA-MIX", was collected from a variety of crops situated in the Zacapa Valley of Guatemala in January of 2004. This strain exhibits strong resistance to imidacloprid with the majority of adults being largely unaffected by concentrations of 1000 ppm. The SUD-S strain of B. tabaci was the reference strain used in these tests and is a laboratory strain that is fully susceptible to all insecticide groups. A technical sample of Compound 7 was initially dissolved in 90% acetone in distilled water (containing 0.01% Agral) to obtain a 5000 ppm stock solution. Subsequent dilutions were made by using 0.9% acetone in distilled water (containing 0.01% Agral) as the diluent. Commercial formulations of imidacloprid (Confidor, 200SL), thiamethoxam (Actara, 25WG) and acetamiprid (Mospilan, 20SP) were diluted using distilled water containing 0.01% Agral.
Discs cut from fully expanded leaves of cotton (Gossypium hirsutum cv. Deltapine 16) were dipped into serial dilutions of insecticide, allowed to air-dry, and placed onto agar- water beds (1%) in plastic Petri dishes. Leaf discs immersed in the diluent only were used for controls. Adult B. tabaci were removed from rearing cages using a motorized aspirator and, after brief narcosis, 20-30 healthy female whiteflies were placed onto each treated leaf disc. Each unit was sealed with a close-fitting, ventilated lid. Once adults had recovered from narcosis, dishes were inverted so that the leaf disc was facing abaxial side down allowing the adult whiteflies to orient normally. All bioassays consisted of three replicates per concentration (including controls). Mortality was assessed at 48 hours after initiation of the test for the commercial standards and at 72 hours for Compound 7.
Compound 7 and the commercial neonicotinoid insecticides imidacloprid, thiamethoxam and acetamiprid were tested in discriminating concentration bioassays against both whitefly strains. More extensive concentration-response bioassays against both whitefly strains were conducted for Compound 7 and imidacloprid. The data from these more extensive assays were subjected to probit analysis to derive LC50 and LC90 estimates. Resistance ratios were calculated using the following equation: Resistance Ratio = LCsn on Resistant Population
LC50 on Susceptible Population
In the discriminating concentration bioassays, there was only a slight difference in the efficacy of Compound 7 on the 2 whitefly strains (Table 3). This was in contrast to the responses for the commercial neonicotinoid insecticides, which were much less effective on the GUA-MIX strain compared to the susceptible, reference strain (SUD-S).
Table 3. Mortality of adults from an insecticide-resistant B-biotype B. tabaci strain and a susceptible laboratory strain exposed to discriminating concentrations of Compound 7, imidacloprid, thiamethoxam, or acetamiprid.
Figure imgf000028_0001
The results from the concentration-response bioassays provided additional documentation of the effectiveness of the N-substituted sulfoximine on neonicotinoid-resistant B-biotype B. tabaci (Table 4). The similar LC50S on the resistant GUA-MIX and susceptible SUD-S strains for Compound 7 produced a small resistance ratio. This was in contrast to the response for imidacloprid, where a large resistance ratio was obtained due to the high level of resistance observed in the GUA-MIX strain.
Table 4. Potency estimates and resistance ratios for Compound 7 and imidacloprid on an insecticide-resistant B-biotype B. tabaci strain and a susceptible laboratory strain.
Figure imgf000029_0001
Accurate calculation of LC50 was not possible because doses as high as 2000 ppm caused -50% mortality on the R strain (GUA-MIX).
** Value represents a conservative estimate of the Resistance Ratio calculated using the highest concentration tested as the numerator in the equation.
Example IX. Insecticidal activity of TV-substituted sulfoximines on insecticide- resistant whiteflv and aphid strains. The insecticidal activity of Compounds 2, 4, and 5 on adults from an insecticide-resistant, Q-biotype Bemisia tabaci strain and an insecticide resistant Myzus persicae strain was assessed. Activity was compared to that of commercial insecticides representing major insecticide classes.
The common name associated with the Q-biotype of B. tabaci is the sweetpotato whitefly. The resistant strain used in these tests, "CHLORAKA", was collected from cucumbers in Cyprus in 2003 and has exhibited stable and strong resistance to pyrethroids, organophosphates, and neonicotinoids in repeated laboratory testing. Adults from this strain are largely unaffected by exposure to imidacloprid at 1000 ppm. The SUD-S strain of B. tabaci was the reference strain used in these tests and is a laboratory strain that is fully susceptible to all insecticide groups.
The common name associated with Myzus persicae is the green peach aphid. The resistant M. persicae strain used in these tests, "4013 A", was collected from tobacco in Greece in 2000 and is known to possess several resistance mechanisms. The "USlL" strain of M. persicae was the reference strain used in these tests. USlL is fully susceptible to all insecticide groups,
Technical samples of Compounds 2, 4 and 5 were initially diluted in analytical reagent grade acetone to obtain 15,000 ppm stock solutions. Subsequent dilutions used a 10 % solution of acetone in distilled water (containing 0.01 % Agral®) as the diluent. Commercial formulations of deltamethrin (Decis, 25 g/litre"1 EC), dimethoate (Danadim, 400 g/litre"1 EC), profenofos (Curacron 500 g/litre"1 EC), pirimicarb (Aphox 500 g/litre"1 DG) and imidacloprid (Confidor, 200 g/litre"1 SL) were obtained by diluting formulated material in distilled water containing a 0.01 % concentration of the non-ionic wetter Agral®.
For i9. tabaci bioassays, discs cut from fully expanded leaves of cotton (Gossypium hirsutum cv. Deltapine 16) were dipped into serial dilutions of insecticide, allowed to air-dry, and placed onto agar-water (1 %) beds in plastic
Petri-dishes. Leaf discs immersed in the diluent only were used for controls. Adult B. tabaci were removed from rearing cages using a motorized aspirator and, after brief narcosis, 20-30 healthy female whiteflies were placed onto each treated leaf disc. Each unit was sealed with a close-fitting, ventilated lid. Once adults had recovered from narcosis, dishes were inverted so that the leaf disc was facing abaxial side down allowing the adult whiteflies to orient normally. All bioassays consisted of three replicates per concentration (including controls). Mortality was assessed at 48 hours after initiation of the test for the commercial standards and at 72 hours for Compounds 2, 4, and 5.
For M. persicae bioassays, discs cut from fully expanded leaves of
Chinese cabbage (Brassica rapa ssp. Pekinensis cv. Won Bok) plants were dipped into serial dilutions of insecticide, allowed to air-dry, and placed onto agar-water
(1%) beds in plastic Petri-dishes. Leaf discs immersed in the diluent only were used for controls. Adults were removed from rearing boxes and, using a fine camel-hair paint brush, 10 healthy, apterous females were placed onto each treated leaf disc and each unit sealed with a close-fitting, ventilated lid. All bioassays consisted of three replicates per dose (including controls). Mortality was scored at
24, 48 and 72h following initial exposure for all compounds and the 72h data were used for all analyses.
Mortality data were subjected to probit analysis to derive LC50 and LC90 estimates. Resistance ratios were calculated using the following equation:
Resistance Ratio = LCsn on Resistant Population
LC50 on Susceptible Population
The results from the bioassays on whiteflies (B. tabaci) demonstrated that the iV-substituted sulfoximines were effective on an insecticide resistant strain (Table 5). The similar LC50S on the resistant CHLORAKA and susceptible SUD-S strains for Compounds 2, 4, and 5 produced small resistance ratios. This was in contrast to the responses for deltamethrin (a pyrethroid), profenofos (an organophosphate), and imidacloprid (a neonicotinoid), where large resistance ratios were obtained due to the high levels of resistance observed in the CHLORAKA strain. Table 5. Potency estimates and resistance ratios for Compounds 2, 4, and 5 and the commercial insecticides deltamethrin (pyrethroid), profenofos (organophosphate), and imidacloprid (neonicotinoid) on an insecticide-resistant, Q-biotype B. tabaci strain and a susceptible laboratory strain.
Figure imgf000032_0001
* Accurate calculation of LC50 was not possible because doses as high as 1000 ppm caused <10% mortality on the R strain (CHLORAKA).
**Value represents a conservative estimate of the Resistance Ratio calculated using the highest concentration tested as the numerator in the equation.
Similar results were obtained from bioassays on aphids (Af. persicae) in which the Λf-substituted sulfoximines were effective on an insecticide resistant strain (Table 6). The similar LC50S on the resistant 4013A and susceptible US IL strains for Compounds 2, 4, and 5 produced small resistance ratios. This was in contrast to the responses for deltamethrin (a pyrethroid), dimethoate (an organophosphate), pirimicarb (a carbamate), and imidacloprid (a neonicotinoid), where relatively large resistance ratios were obtained due to the high levels of resistance observed in the 4013 A strain. Table 6. Potency estimates and resistance ratios for Compounds 2, 4, and 5 and the commercial insecticides deltamethrin (pyrethroid), dimethoate (organophosphate), pirimicarb (carbamate) and imidacloprid (neonicotinoid) on an insecticide-resistant, Myzus persicae strain and a susceptible laboratory strain.
Figure imgf000033_0001
Accurate calculation of LC50 was not possible because doses as high as 1000 ppm caused <10% mortality on the R strain (4013A).
** Value represents a conservative estimate of the Resistance Ratio calculated using the highest concentration tested as the numerator in the equation.
Insecticide Utility
The compounds of the invention are useful for the control of insects. Therefore, the present invention also is directed to a method for inhibiting an insect which comprises applying an insect-inhibiting amount of a compound of formula (I) to a locus of the inset, to the area to be protected, or directly on the insect to be controlled. The compounds of the invention may also be used to control other invertebrate pests such as mites, ticks, lice, and nematodes. The "locus" of insects or other pests is a term used herein to refer to the environment in which the insects or other pests live or where their eggs are present, including the air surrounding them, the food they eat, or objects which they contact. For example, insects which eat, damage or contact edible, commodity, ornamental, turf or pasture plants can be controlled by applying the active compounds to the seed of the plant before planting, to the seedling, or cutting which is planted, the leaves, stems, fruits, grain, and/or roots, or to the soil or other growth medium before or after the crop is planted. Protection of these plants against virus, fungus or bacterium diseases may also be achieved indirectly through controlling sap-feeding pests such as whitefly, plant hopper, aphid and spider mite. Such plants include those which are bred through conventional approaches and which are genetically modified using modern biotechnology to gain insect-resistant, herbicide-resistant, nutrition-enhancement, and/or any other beneficial traits.
It is contemplated that the compounds might also be useful to protect textiles, paper, stored grain, seeds and other foodstuffs, houses and other buildings which may be occupied by humans and/or companion, farm, ranch, zoo, or other animals, by applying an active compound to or near such objects. Domesticated animals, buildings or human beings might be protected with the compounds by controlling invertebrate and/or nematode pests that are parasitic or are capable of transmitting infectious diseases. Such pests include, for example, chiggers, ticks, lice, mosquitoes, flies, fleas and heartworms. Nonagronomic applications also include invertebrate pest control in forests, in yards, along road sides and railroad right of way.
The term "inhibiting an insect" refers to a decrease in the numbers of living insects, or a decrease in the number of viable insect eggs. The extent of reduction accomplished by a compound depends, of course, upon the application rate of the compound, the particular compound used, and the target insect species. At least an inactivating amount should be used. The term "insect-inactivating amount" is used to describe the amount, which is sufficient to cause a measurable reduction in the treated insect population. Generally an amount in the range from about 1 to about 1000 ppm by weight active compound is used. For example, insects and other pests which can be inhibited include, but are not limited to:
Lepidoptera — Heliothis spp., Helicoverpa spp., Spodoptera spp., Mythimna unipuncta, Agrotis ipsilon, Earias spp., Euxoa auxiliaris, Trichoplusia ni, Anticarsia gemmatalis, Rachiplusia nu, Plutella xylostella, Chilo spp., Scirpophaga incertulas, Sesamia inferens, Cnaphalocrocis medinalis, Ostrinia nubilalis, Cydia pomonella, Carposina niponensis, Adoxophyes orana, Archips argyrospilus, Pandemis heparana, Epinotia aporema, Eupoecilia ambiguella, Lobesia botrana, Polychrosis viteana, Pectinophora gossypiella, Pieris rapae, Phyllonorycter spp., Leucoptera malifoliella, Phyllocnisitis citrella
Coleoptera - Diabrotica spp., Leptinotarsa decemlineata, Oulema oryzae, Anthonomus grandis, Lissorhoptrus oryzophilus, Agriotes spp., Melanotus communis, Popillia japonica, Cyclocephala spp.; Tribolium spp.
Homoptera - Aphis spp., Myzus persicae, Rhopalosiphum spp., Dysaphis plantaginea, Toxoptera spp., Macrosiphum euphorbiae, Aulacorthwn solani, Sitobion avenae, Metopolophium dirhόdum, Schizaphis graminum, Brachycolus noxius, Nephotettix spp., Nilaparvata lugens, Sogatellafurcifera, Laodelphax striatellus, Bemisia tabaci, Trialeurodes vaporariorum, Aleurodes proletella, Aleurothrixus floccosus, Quadraspidiotus perniciosus, Unaspis yanonensis, Ceroplastes rubens, Aonidiella aurantii
Hemiptera — Lygus spp., Eurygaster maura, Nezara viridula, Piezodorus guildingi, Leptocorisa varicornis, Cimex lectularius, Cimex hemipterus
Thysanoptera - Frankliniella spp., Thrips spp., Scirtothrips dorsalis Isoptera - Reticulitermes flavipes, Coptotermes formosanus, Reticuliterm.es virginicus, Heterotermes aureus, Reticuliterm.es Hesperus, Coptotermes frenchii, Shedorhinotermes spp., Reticulitermes santonensis, Reticulitermes grassei, Reticulitermes banyulensis, Reticulitermes speratus, Reticulitermes hageni, Reticulitermes tibialis, Zootermopsis spp., Incisitermes spp., Marginitermes spp., Macrotermes spp., Microcerotermes spp., Microterm.es spp.
Diptera — Liriomyza spp., Musca domestica, Aedes spp., Culex spp., Anopheles spp., Fannia spp., Stomoxys spp.,
Hymenoptera - Iridomyrmex humilis, Solenopsis spp., Monomorium pharaonis, Atta spp., Pogonomyrmex spp., Camponotus spp., Monomorium spp., Tapinoma sessile, Tetramorium spp., Xylocapa spp., Vespula spp., Polistes spp.
Mallophaga (chewing lice)
Anoplura (sucking lice) - Pthirus pubis, Pediculus spp.
Orthoptera (grasshoppers, crickets) - Melanoplus spp., Locusta migratoria, Schistocerca gregaria, Gryllotalpidae (mole crickets).
Blattoidea (cockroaches) - Blatta orientalis, Blattella germanica, Periplaneta americana, Supella longipalpa, Periplaneta australasiae, Periplaneta brunnea, Parcoblatta pennsylvanica, Periplaneta fuliginosa, Pycnoscelus surinamensis,
Siphonaptera - Ctenophalides spp., Pulex irritans
Acari - Tetranychus spp., Panonychus spp., Eotetranychus carpini,
Phyllocoptruta oleivora, Aculus pelekassi, Brevipalpus phoenicis, Boophilus spp., Dermacentor variabilis, Rhipicephalus sanguineus, Amblyomma americanum, Ixodes spp., Notoedres cati, Sarcoptes scabiei, Dermatophagoides spp. Nematoda - Dirofilaria immitis, Meloidogyne spp., Heterodera spp., Hoplolaimus columbus, Belonolaimus spp., Pratylenchus spp., Rotylenchus reniformis, Criconemella ornata, Ditylenchus spp., Aphelenchoides besseyi, Hirschmanniella spp.
Compositions
The compounds of this invention are applied in the form of compositions which are important embodiments of the invention, and which comprise a compound of this invention and a phytologically-acceptable inert carrier. Control of the pests is achieved by applying compounds of the invention in forms of sprays, topical treatment, gels, seed coatings, microcapsulations, systemic uptake, baits, eartags, boluses, foggers, fumigants aerosols, dusts and many others. The compositions are either concentrated solid or liquid formulations which are dispersed in water for application, or are dust or granular formulations which are applied without further treatment. The compositions are prepared according to procedures and formulae which are conventional in the agricultural chemical art, but which are novel and important because of the presence therein of the compounds of this invention. Some description of the formulation of the compositions will be given, however, to assure that agricultural chemists can readily prepare any desired composition.
The dispersions in which the compounds are applied are most often aqueous suspensions or emulsions prepared from concentrated formulations of the compounds. Such water-soluble, water-suspendable or emulsifiable formulations are either solids, usually known as wettable powders, or liquids usually known as emulsifiable concentrates or aqueous suspensions. Wettable powders, which may be compacted to form water dispersible granules, comprise an intimate mixture of the active compound, an inert carrier, and surfactants. The concentration of the active compound is usually from about 10% to about 90% by weight. The inert carrier is usually chosen from among the attapulgite clays, the montmorillonite clays, the diatomaceous earths, or the purified silicates. Effective surfactants, comprising from about 0.5% to about 10% of the wettable powder, are found among the sulfonated lignins, the condensed naphthalenesulfonates, the naphthalenesulfonates, the alkylbenzenesulfonates, the alkyl sulfates, and nonionic surfactants such as ethylene oxide adducts of alkyl phenols.
Emulsifiable concentrates of the compounds comprise a convenient concentration of a compound, such as from about 50 to about 500 grams per liter of liquid, equivalent to about 10% to about 50%, dissolved in an inert carrier which is either a water miscible solvent or a mixture of water-immiscible organic solvent and emulsifiers. Useful organic solvents include aromatics, especially the xylenes, and the petroleum fractions, especially the high-boiling naphthalenic and olefinic portions of petroleum such as heavy aromatic naphtha. Other organic solvents may also be used, such as the terpenic solvents including rosin derivatives, aliphatic ketones such as cyclohexanone, and complex alcohols such as 2-ethoxyethanol. Suitable emulsifiers for emulsifiable concentrates are chosen from conventional nonionic surfactants, such as those discussed above.
Aqueous suspensions comprise suspensions of water-insoluble compounds of this invention, dispersed in an aqueous vehicle at a concentration in the range from about 5% to about 50% by weight. Suspensions are prepared by finely grinding the compound, and vigorously mixing it into a vehicle comprised of water and surfactants chosen from the same types discussed above. Inert ingredients, such as inorganic salts and synthetic or natural gums, may also be added, to increase the density and viscosity of the aqueous vehicle. It is often most effective to grind and mix the compound at the same time by preparing the aqueous mixture, and homogenizing it in an implement such as a sand mill, ball mill, or piston-type homogenizer. The compounds may also be applied as granular compositions, which are particularly useful for applications to the soil. Granular compositions usually contain from about 0.5% to about 10% by weight of the compound, dispersed in an inert carrier which consists entirely or in large part of clay or a similar inexpensive substance. Such compositions are usually prepared by dissolving the compound in a suitable solvent and applying it to a granular carrier which has been pre-formed to the appropriate particle size, in the range of from about 0.5 to 3 mm. Such compositions may also be formulated by making a dough or paste of the carrier and compound and crushing and drying to obtain the desired granular particle size.
Dusts containing the compounds are prepared simply by intimately mixing the compound in powdered form with a suitable dusty agricultural carrier, such as kaolin clay, ground volcanic rock, and the like. Dusts can suitably contain from about 1% to about 10% of the compound.
It is equally practical, when desirable for any reason, to apply the compound in the form of a solution in an appropriate organic solvent, usually a bland petroleum oil, such as the spray oils, which are widely used in agricultural chemistry.
Insecticides and acaricides are generally applied in the form of a dispersion of the active ingredient in a liquid carrier. It is conventional to refer to application rates in terms of the concentration of active ingredient in the carrier. The most widely used carrier is water.
The compounds of the invention can also be applied in the form of an aerosol composition. In such compositions the active compound is dissolved or dispersed in an inert carrier, which is a pressure-generating propellant mixture. The aerosol composition is packaged in a container from which the mixture is dispensed through an atomizing valve. Propellant mixtures comprise either low- boiling halocarbons, which may be mixed with organic solvents, or aqueous suspensions pressurized with inert gases or gaseous hydrocarbons.
The actual amount of compound to be applied to loci of insects and mites is not critical and can readily be determined by those skilled in the art in view of the examples above. In general, concentrations from 10 ppm to 5000 ppm by weight of compound are expected to provide good control. With many of the compounds, concentrations from 100 to 1500 ppm will suffice.
The locus to which a compound is applied can be any locus inhabited by an insect or mite, for example, vegetable crops, fruit and nut trees, grape vines, ornamental plants, domesticated animals, the interior or exterior surfaces of buildings, and the soil around buildings.
Because of the unique ability of insect eggs to resist toxicant action, repeated applications may be desirable to control newly emerged larvae, as is true of other known insecticides and acaricides.
Systemic movement of compounds of the invention in plants may be utilized to control pests on one portion of the plant by applying the compounds to a different portion of it. For example, control of foliar-feeding insects can be controlled by drip irrigation or furrow application, or by treating the seed before planting. Seed treatment can be applied to all types of seeds, including those from which plants genetically transformed to express specialized traits will germinate. Representative examples include those expressing proteins toxic to invertebrate pests, such as Bacillus thuringiensis or other insecticidal toxins, those expressing herbicide resistance, such as "Roundup Ready®" seed , or those with "stacked" foreign genes expressing insecticidal toxins, herbicide resistance, nutrition- enhancement and/or other beneficial traits. An insecticidal bait composition consisting of compounds of the present invention and attractants and/or feeding stimulants may be used to increase efficacy of the insecticides against insect pest in a device such as trap, bait station, and the like. The bait composition is usually a solid, semi-solid (including gel) or liquid bait matrix including the stimulants and one or more non- microencapsulated or microencapsulated insecticides in an amount effective to act as kill agents.
The compounds of the present invention (Formula I) are often applied in conjunction with one or more other insecticides or fungicides or herbicides to obtain control of a wider variety of pests diseases and weeds. When used in conjunction with other insecticides or fungicides or herbicides, the presently claimed compounds can be formulated with the other insecticides or fungicides or herbicide, tank mixed with the other insecticides or fungicides or herbicides, or applied sequentially with the other insecticides or fungicides or herbicides.
Some of the insecticides that can be employed beneficially in combination with the compounds of the present invention include: antibiotic insecticides such as allosamidin and thuringiensin; macrocyclic lactone insecticides such as spinosad, spinetoram, and other spinosyns including the 21-butenyl spinosyns and their derivatives; avermectin insecticides such as abamectin, doramectin, emamectin, eprinomectin, ivermectin and selamectin; milbemycin insecticides such as lepimectin, milbemectin, milbemycin oxime and moxidectin; arsenical insecticides such as calcium arsenate, copper acetoarsenite, copper arsenate, lead arsenate, potassium arsenite and sodium arsenite; biological insecticides such as Bacillus popilliae, B. sphaericus, B. thuringiensis subsp. aizawai, B. thuringiensis subsp. kurstaki, B. thuringiensis subsp. tenebrionis, Beauveria bassiana, Cydia pomonella granulosis virus, Douglas fir tussock moth NPV, gypsy moth NPV, Helicoverpa zea NPV, Indian meal moth granulosis virus, Metarhizium anisopliae, Nosema locustae, Paecilomyces fumosoroseus, P. lilacinus, Photorhabdus luminescens, Spodoptera exigua NPV, trypsin modulating oostatic factor, Xenorhabdus nematophilus, and X. bovienii, plant incorporated protectant insecticides such as Cryl Ab, CrylAc, CrylF, Cryl A.105, Cry2Ab2, Cry3A, mir Cry3A, Cry3Bbl, Cry34, Cry35, and VIP3A; botanical insecticides such as anabasine, azadirachtin, d-limonene, nicotine, pyrethrins, cinerins, cinerin I, cinerin II, jasmolin I, jasmolin II, pyrethrin I, pyrethrin II, quassia, rotenone, ryania and sabadilla; carbamate insecticides such as bendiocarb and carbaryl; benzofuranyl methylcarbamate insecticides such as benfiiracarb, carbofuran, carbosulfan, decarbofuran and furathiocarb; dimethylcarbamate insecticides dimitan, dimetilan, hyquincarb and pirimicarb; oxime carbamate insecticides such as alanycarb, aldicarb, aldoxycarb, butocarboxim, butoxycarboxim, methomyl, nitrilacarb, oxamyl, tazimcarb, thiocarboxime, thiodicarb and thiofanox; phenyl methylcarbamate insecticides such as allyxycarb, aminocarb, bufencarb, butacarb, carbanolate, cloethocarb, dicresyl, dioxacarb, EMPC, ethiofencarb, fenethacarb, fenobucarb, isoprocarb, methiocarb, metolcarb, mexacarbate, promacyl, promecarb, propoxur, trimethacarb, XMC and xylylcarb; dinitrophenol insecticides such as dinex, dinoprop, dinosam and DNOC; fluorine insecticides such as barium hexafluorosilicate, cryolite, sodium fluoride, sodium hexafluorosilicate and sulfluτanάd; formamidine insecticides such as aπήtraz, chlordimeform, formetanate and formparanate; /umigαπf insecticides such as acrylonitrile, carbon disulfide, carbon tetrachloride, chloroform, chloropicrin, para-dichlorobenzene, 1,2-dichloropropane, ethyl formate, ethylene dibromide, ethylene dichloride, ethylene oxide, hydrogen cyanide, iodomethane, methyl bromide, methylchloroform, methylene chloride, naphthalene, phosphine, sulfuryl fluoride and tetrachloroethane; inorganic insecticides such as borax, calcium polysulfide, copper oleate, mercurous chloride, potassium thiocyanate and sodium thiocyanate; chitin synthesis inhibitors such as bistrifiuron, buprofezin, chlorfluazuron, cyromazine, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, penfluron, teflubenzuron and triflumuron; ju venile hormone mimics such as epofenonane, fenoxycarb, hydroprene, kinoprene, methoprene, pyriproxyfen and triprene; juvenile hormones such as juvenile hormone I, juvenile hormone II and juvenile hormone HI; moulting hormone agonists such as chromafenozide, halofenozide, methoxyfenozide and tebufenozide; moulting hormones such as α-ecdysone and ecdysterone; moulting inhibitors such as diofenolan; precocenes such as precocene I, precocene II and precocene HI; unclassified insect growth regulators such as dicyclanil; nereistoxin analogue insecticides such as bensultap, cartap, thiocyclam and thiosultap; nicotinoid insecticides such as flonicamid; nitroguanidine insecticides such as clothianidin, dinotefuran, imidacloprid and thiamethoxam; nitromethylene insecticides such as nitenpyram and nithiazine; pyridylmethylamine insecticides such as acetamiprid, imidacloprid, nitenpyram and thiacloprid; organochlorine insecticides such as bromo-DDT, camphechlor, DDT, pp'-DDT, ethyl-DDD, HCH, gamma-HCH, lindane, methoxychlor, pentachlorophenol and TDE; cyclodiene insecticides such as aldrin, bromocyclen, chlorbicyclen, chlordane, chlordecone, dieldrin, dilor, endosulfan, endrin, HEOD, heptachlor, HHDN, isobenzan, isodrin, kelevan and mirex; organophosphate insecticides such as bromfenvinfos, chlorfenvinphos, crotoxyphos, dichlorvos, dicrotophos, dimethylvinphos, fospirate, heptenophos, methocrotophos, mevinphos, monocrotophos, naled, naftalofos, phosphamidon, propaphos, TEPP and tetrachlorvinphos; organothiophosphate insecticides such as dioxabenzofos, fosmethilan and phenthoate; aliphatic organothiophosphate insecticides such as acethion, amiton, cadusafos, chlorethoxyfos, chlormephos, demephion, demephion-O, demephion-S, demeton, demeton-O, demeton-S, demeton-methyl, demeton-O-methyl, demeton-S-methyl, demeton-S-methylsulphon, disulfoton, ethion, ethoprophos, IPSP, isothioate, malathion, methacrifos, oxydemeton- methyl, oxydeprofos, oxydisulfoton, phorate, sulfotep, terbufos and thiometon; aliphatic amide organothiophosphate insecticides such as amidithion, cyanthoate, dimethoate, ethoate-methyl, formothion, mecarbam, omethoate, prothoate, sophamide and vamidothion; oxime organothiophosphate insecticides such as chlorphoxim, phoxim and phoxim-methyl; heterocyclic organothiophosphate insecticides such as azamethiphos, coumaphos, coumithoate, dioxathion, endothion, menazon, morphothion, phosalone, pyraclofos, pyridaphenthion and quinothion; benzothiopyran organothiophosphate insecticides such as dithicrofos and thicrofos; benzotriazine organothiophosphate insecticides such as azinphos- ethyl and azinphos-methyl; isoindole organothiophosphate insecticides such as dialifos and phosmet; isoxazole organothiophosphate insecticides such as isoxathion and zolaprofos; pyrazolopyrimidine organothiophosphate insecticides such as chlorprazophos and pyrazophos; pyridine organothiophosphate insecticides such as chlorpyrifos and chlorpyrifos-methyl; pyrimidine organothiophosphate insecticides such as butathiofos, diazinon, etrimfos, lirimfos, pirimiphos-ethyl, pirimiphos-methyl, primidophos, pyrimitate and tebupirimfos; quinoxaline organothiophosphate insecticides such as quinalphos and quinalphos-methyl; thiadiazole organothiophosphate insecticides such as atnidathion, lythidathion, methidathion and prothidathion; triazole organothiophosphate insecticides such as isazofos and triazophos; phenyl organothiophosphate insecticides such as azothoate, bromophos, bromophos- ethyl, carbophenothion, chlorthiophos, cyanophos, cythioate, dicapthon, dichlofenthion, etaphos, famphur, fenchlorphos, fenitrothion fensulfothion, fenthion, fenthion-ethyl, heterophos, jcκifenphos, mesulfenfos, parathion, parathion-methyl, phenkapton, phosnichlor, profenofos, prothiofos, sulprofos, temephos, trichlormetaphos-3 and trifenofos; phosphonate insecticides such as butonate and trichlorfon; phosphonothioate insecticides such as mecarphon; phenyl ethylphosphonothioate insecticides such as fonofos and trichloronat; phenyl phenylphosphonothioate insecticides such as cyanofenphos, EPN and leptophos; phosphoramidate insecticides such as crufomate, fenamiphos, fosthietan, imicyafos, mephosfolan.phosfolan and pirimetaphos; phosphoramidothioate insecticides such as acephate, isocarbophos, isofenphos, methamidophos and propetamphos; phosphorodiamide insecticides such as dimefox, mazidox, mipafox and schradan; oxadiazine insecticides such as indoxacarb; phthalimide insecticides such as dialifos, phosmet and tetramethrin; pyrazole insecticides such as acetoprole, ethiprole, fipronil, pyrafluprole, pyriprole, tebufenpyrad, tolfenpyrad and vaniliprole; pyrethroid ester insecticides such as acrinathrin, allethrin, bioallethrin, barthrin, bifenthrin, bioethanomethrin, cyclethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, gamma- cyhalothrin, lambda-cyhalothrin, cypermethrin, alpha-cypermethrin, beta- cypermethrin, theta-cypermethrin, zeta-cypermethrin, cyphenothrin, deltamethrin, dimefluthrin, dimethrin, empenthrin, fenfluthrin, fenpirithrin, fenpropathrin, fenvalerate, esfenvalerate, flucythrinate, fluvalinate, tau- fluvalinate, furethrin, imiprothrin, metofluthrin, permethrin, biopermethrin, transpermethrin, phenothrin, prallethrin, profluthrin, pyresmethrin, resmethrin, bioresmethrin, cismethrin, tefluthrin, terallethrin, tetramethrin, tralomethrin and transfluthrin; pyrethroid ether insecticides such as etofenprox, flufenprox, halfenprox, protrifenbute and silafluofen; pyrimidinamine insecticides such as flufenerim and pyrimidifen; pyrrole insecticides such as chlorfenapyr; tetronic acid insecticides such as spirodiclofen, spiromesifen and spirotetramat; thiourea insecticides such as diafenthiuron; urea insecticides such as flucofiiron and sulcofuron; and unclassified insecticides such as AKD-3088, chlorantraniliprole, closantel, crotamiton, cyflumetofen, E2Y45, EXD, fenazaflor, fenazaquin, fenoxacrim, fenpyroximate, FKI- 1033, flubendiamide, HGW86, hydramethylnon, IKI-2002, isoprothiolane, malonoben, metaflumizone, metoxadiazone, nifluridide, NNI-9850, NNI-0101, pymetrozine, pyridaben, pyridalyl, pyrifluquinazon, Qcide, rafoxanide, rynaxypyr™, SYJ- 159, triarathene and triazamate and any combinations thereof.
Some of the fungicides that can be employed beneficially in combination with the compounds of the present invention include: 2-(thiocyanatomethylthio)- benzothiazole, 2-phenylphenol, 8-hydroxyquinoline sulfate, Ampelomyces, quisqualis, azaconazole, azoxystrobin, Bacillus subtilis, benalaxyl, benomyl, benthiavalicarb-isopropyl, benzylaminobenzene-sulfonate (BABS) salt, bicarbonates, biphenyl, bismeithiazol, bitertanol, blasticidin-S, borax, Bordeaux mixture, boscalid, bromuconazole, bupirimate, calcium polysulfide, captafol, captan, carbendazim, carboxin, carpropamid, carvone, chloroneb, chlorothalonil, chlozolinate, Coniothyrium minitans, copper hydroxide, copper octanoate, copper oxychloride, copper sulfate, copper sulfate (tπbasic), cuprous oxide, cyazofamid, cyflufenamid, cymoxanil, cyproconazole, cyprodinil, dazomet, debacarb, diammonium ethylenebis-(dithiocarbamate), dichlofluanid, dichlorophen, diclocymet, diclomezine, dichloran, diethofencarb, difenoconazole, difenzoquat ion, diflumetorim, dimethomorph, dimoxystrobin, diniconazole, diniconazole- M.dinobuton, dinocap, diphenylamine, dithianon, dodemorph, dodemoφh acetate, dodine, dodine free base, edifenphos, epoxiconazole, ethaboxam, ethoxyquin, etridiazole, famoxadone, fenamidone, fenarimol, fenbuconazole, fenfuram, fenhexamid, fenoxanil, fenpiclonil, fenpropidin, fenpropimorph, fentin, fentin acetate, fentin hydroxide, ferbam, ferimzone, fluazinam, fludioxonil, flumorph, fluopicolide, fluoroimide, fluoxastrobin, fluquinconazole, flusilazole, flusulfamide, flutolanil, flutriafol, folpet, formaldehyde, fosetyl, fosetyl- aluminium, fuberidazole, furalaxyl, furametpyr, guazatine, guazatine acetates, GY-81, hexachlorobenzene, hexaconazole, hymexazol, imazalil, imazalil sulfate, imibenconazole, iminoctadine, iminoctadine triacetate, iminoctadine tris(albesilate), ipconazole, iprobenfos, iprodione, iprovalicarb, isoprothiolane, kasugamycin, kasugamycin hydrochloride hydrate, kresoxim-methyl, mancopper, mancozeb, maneb, mepanipyrim, mepronil, mercuric chloride, mercuric oxide, mercurous chloride, metalaxyl, mefenoxam, metalaxyl-M, metam, metam- ammonium, metam-potassium, metam-sodium, metconazole, methasulfocarb, methyl iodide, methyl isothiocyanate, metiram, metominostrobin, metrafenone, mildiomycin, myclobutanil, nabam, nitrothal-isopropyl, nuarimol, octhilinone, ofurace, oleic acid (fatty acids), orysastrobin, oxadixyl, oxine-copper, oxpoconazole fumarate, oxycarboxin, pefiirazoate, penconazole, pencycuron, pentachlorophenol, pentachlorophenyl laurate, penthiopyrad, phenylmercury acetate, phosphonic acid, phthalide, picoxystrobin, polyoxin B, polyoxins, polyoxorim, potassium bicarbonate, potassium hydroxyquinoline sulfate, probenazole, prochloraz, procymidone, propamocarb, propamocarb hydrochloride, propiconazole, propineb, proquinazid, prothioconazole, pyraclostrobin, pyrazophos, pyributicarb, pyrifenox, pyrimethanil, pyroquilon, quinoclamine, quinoxyfen, quintozene, Reynoutria sachalinensis extract, silthiofam, simeconazole, sodium 2-phenylphenoxide, sodium bicarbonate, sodium pentachlorophenoxide, spiroxamine, sulfur, SYP-Z071, tar oils, tebuconazole, tecnazene, tetraconazole, thiabendazole, thifluzamide, thiophanate- methyl, thiram, tiadinil, tolclofos-methyl, tolylfluanid, triadimefon, triadimenol, triazoxide, tricyclazole, tridemoφh, trifloxystrobin, triflumizole, triforine, triticonazole, validamycin, vinclozolin, zineb, ziram, zoxamide, Candida oleophila, Fusarium oxysporum, Gliocladium spp., Phlebiopsis gigantean, Streptomyces griseoviridis, Trichoderma spp., (RS)-N-(3,5-dichlorophenyl)-2- (methoxymethyl)-succinimide, 1,2-dichloropropane, 1,3-dichloro-l, 1,3,3- tetrafluoroacetone hydrate, l-chloro-2,4-dinitronaphthalene, l-chloro-2- nitropropane, 2-(2-heptadecyl-2-imidazolin-l-yl)ethanol, 2,3-dihydro-5-phenyl- 1,4-dithi-ine 1,1,4,4-tetraoxide, 2-methoxyethylmercury acetate, 2- methoxyethylmercury chloride, 2-methoxyethylmercury silicate, 3-(4- chlorophenyl)-5-methylrhodanine, 4-(2-nitroprop- l-enyl)phenyl thiocyanateme: ampropylfos, anilazine, azithiram, barium polysulfide, Bayer 32394, benodanil, benquinox, bentaluron, benzamacril; benzamacril-isobutyl, benzamorf, binapacryl, bis(methylmercury) sulfate, bis(tributyltin) oxide, buthiobate, cadmium calcium copper zinc chromate sulfate, carbamorph, CECA, chlobenthiazone, chloraniformethan, chlorfenazole, chlorquinox, climbazole, copper bis(3- phenylsalicylate), copper zinc chromate, cufraneb, cupric hydrazinium sulfate, cuprobam, cyclafuramid, cypendazole, cyprofiiram, decafentin, dichlone, dichlozoline, diclobutrazol, dimethirimol, dinocton, dinosulfon, dinoterbon, dipyrithione, ditalimfos, dodicin, drazoxolon, EBP, ESBP, etaconazole, etem, ethirim, fenaminosulf, fenapanil, fenitropan, fluotrimazole, furcarbanil, furconazole, furconazole-cis, furmecyclox, fiirophanate, glyodine, griseofulvin, halacrinate, Hercules 3944, hexylthiofos, ICIA0858, isopamphos, isovaledione, mebenil, mecarbinzid, metazoxolon, methfuroxam, methylmercury dicyandiamide, metsulfovax, milneb, mucochloric anhydride, myclozolin, N-3,5- dichlorophenyl-succinimide, N-3-nitrophenylitaconimide, natamycin, N- ethylmercurio-4-toluenesulfonanilide, nickel bis(dimethyldithiocarbamate), OCH, phenylmercury dimethyldithiocarbamate, phenylmercury nitrate, phosdiphen, prothiocarb; prothiocarb hydrochloride, pyracarbolid, pyridinitril, pyroxychlor, pyroxyfur, quinacetol; quinacetol sulfate, quinazamid, quinconazole, rabenzazole, salicylanilide, SSF- 109, sultropen, tecoram, thiadifluor, thicyofen, thiochlorfenphim, thiophanate, thioquinox, tioxymid, triamiphos, triarimol, triazbutil, trichlamide, urbacid, XRD-563, and zarilamid, and any combinations thereof.
Some of the herbicides that can be employed in conjunction with the compounds of the present invention include: amide herbicides such as allidochlor, beflubutamid, benzadox, benzipram, bromobutide, cafenstrole, CDEA, chlorthiamid, cyprazole, dimethenamid, dimethenamid-P, diphenamid, epronaz, etnipromid, fentrazamide, flupoxam, fomesafen, halosafen, isocarbamid, isoxaben, napropamide, naptalam, pethoxamid, propyzamide, quinonamid and tebutam; anilide herbicides such as chloranocryl, cisanilide, clomeprop, cypromid, diflufenican, etobenzanid, fenasulam, flufenacet, flufenican, mefenacet, mefluidide, metamifop, monalide, naproanilide, pentanochlor, picolinafen and propanil; arylalanine herbicides such as benzoylprop, flamprop and flamprop-M; chloroacetanilide herbicides such as acetochlor, alachlor, butachlor, butenachlor, delachlor, diethatyl, dimethachlor, metazachlor, metolachlor, S-metolachlor, pretilachlor, propachlor, propisochlor, prynachlor, terbuchlor, thenylchlor and xylachlor; sulfonanilide herbicides such as benzofluor, perfluidone, pyrimisulfan and profluazol; sulfonamide herbicides such as asulam, carbasulam, fenasulam and oryzalin; antibiotic herbicides such as bilanafos; benzoic acid herbicides such as chloramben, dicamba, 2,3>6-TBA and tricamba; pyrimidinyloxybenzoic acid herbicides such as bispyribac and pyriminobac; pyrimidinylthiobenzoic acid herbicides such as pyrithiobac; phthalic acid herbicides such as chloithal; picolinic acid herbicides such as aminopyralid, clopyralid and picloram; quinolinecarboxylic acid herbicides such as quinclorac and quinmerac; arsenical herbicides such as cacodylic acid, CMA, DSMA, hexaflurate, MAA, MAMA, MSMA, potassium arsenite and sodium arsenite; benzoylcyclohexanedione herbicides such as mesotrione, sulcotrione, tefuryltrione and tembotrione; benzofuranyl alkylsulfonate herbicides such as benfuresate and ethofumesate; carbamate herbicides such as asulam, carboxazole chlorprocarb, dichlormate, fenasulam, karbutilate and terbucarb; carbanilate herbicides such as barban, BCPC, carbasulam, carbetamide, CEPC, chlorbufam, chloφropham, CPPC, desmedipham, phenisopham, phenmedipham, phenmedipham-ethyl, propham and swep; cyclohexene oxime herbicides such as alloxydim, butroxydim, clethodim, cloproxydim, cycloxydim, profoxydim, sethoxydim, tepraloxydim and tralkoxydim; cyclopropylisoxazole herbicides such as isoxachlortole and isoxaflutole; dicarboximide herbicides such as benzfendizone, cinidon-ethyl, flumezin, flumiclorac, flumioxazin and flumipropyn; dinitroaniline herbicides such as benfluralin, butralin, dinitramine, ethalfluralin, fluchloralin, isopropalin, methalpropaliπ, nitralin, oryzalin, pendimethalin, prodiamine, profluralin and trifluralin; dinitrophenol herbicides such as dinofenate, dinoprop, dinosam, dinoseb, dinoterb, DNOC, etinofen and medinoterb; diphenyl ether herbicides such as ethoxyfen; nitrophenyl ether herbicides such as acifluorfen, aclonifen, bifenox, chlomethoxyfen, chlornitrofen, etnipromid, fluorodifen, fluoroglycofen, fluoronitrofen, fomesafen, furyloxyfen, halosafen, lactofen.nitrofen, nitrofluorfen and oxyfluorfen; dithiocarbamate herbicides such as dazomet and metam; halogenated aliphatic herbicides such as alorac, chloropon, dalapon, flupropanate, hexachloroacetone, iodomethane, methyl bromide, monochloroacetic acid, SMA and TCA; imidazolinone herbicides such as imazamethabenz, imazamox, imazapic, imazapyr, imazaquin and imazethapyr; inorganic herbicides such as ammonium sulfamate, borax, calcium chlorate, copper sulfate, ferrous sulfate, potassium azide, potassium cyanate, sodium azide, sodium chlorate and sulfuric acid; nitrile herbicides such as bromobonil, bromoxynil, chloroxynil, dichlobenil, iodobonil, ioxynil and pyraclonil; organophosphorus herbicides such as amiprofos-methyl, anilofos, bensulide, bilanafos, butamifos, 2,4-DEP, DMPA, EBEP, fosamine, glufosinate, glyphosate and piperophos; phenoxy herbicides such as bromofenoxim, clomeprop, 2,4-DEB, 2,4-DEP, difenopenten, disul, erbon, etnipromid, fenteracol and trifopsime; phenoxyacetic herbicides such as 4- CPA, 2,4-D, 3,4-DA, MCPA, MCPA-thioethyl and 2,4,5-T; phenoxybutyric herbicides such as 4-CPB, 2,4-DB, 3,4-DB, MCPB and 2,4,5-TB; phenoxypropionic herbicides such as cloprop, 4-CPP, dichlorprop, dichlorprop-P, 3,4-DP, fenoprop, mecoprop and mecoprop-P; aryloxyphenoxypropionic herbicides such as chlorazifop, clodinafop, clofop, cyhalofop, diclofop, fenoxaprop, fenoxaprop-P, fenthiaprop, fluazifop, fluazifop-P, haloxyfop, haloxyfop-P, isoxapyrifop, metamifop, propaquizafop, quizalofop, quizalofop-P and trifop; phenylenediamine herbicides such as dinitramine and prodiamine; pyrazolyl herbicides such as benzofenap, pyrazolynate, pyrasulfotole, pyrazoxyfen, pyroxasulfone and topramezone; pyrazolylphenyl herbicides such as fluazolate and pyraflufen; pyridazine herbicides such as credazine, pyridafol and pyridate; pyridazinone herbicides such as brompyrazon, chloridazon, dimidazon, flufenpyr, metflurazon, norflurazon, oxapyrazon and pydanon; pyridine herbicides such as aminopyralid, cliodinate, clopyralid, dithiopyr, fluroxypyr, haloxydine, picloram, picolinafen, pyriclor, thiazopyr and triclopyr; pyrimidinediamine herbicides such as iprymidam and tioclorim; quaternary ammonium herbicides such as cyperquat, diethamquat, difenzoquat, diquat, morfamquat and paraquat; thiocarbamate herbicides such as butylate, cycloate, di-allate, EPTC, esprocarb, ethiolate, isopolinate, methiobencarb, molinate, orbencarb, pebulate, prosulfocarb, pyributicarb, sulfallate, thiobencarb, tiocarbazil, tri-allate and vernolate; thiocarbonate herbicides such as dimexano, EXD and proxan; thiourea herbicides such as methiuron; triazine herbicides such as dipropetryn, triaziflam and trihydroxytriazine; chlorotriazine herbicides such as atrazine, chlorazine, cyanazine, cyprazine, eglinazinβ, ipazine, mesoprazine, procyazine, proglinazine, propazine, sebuthylazine, simazine, terbuthylazine and trietazine; methoxytriazine herbicides such as atraton, methometon, prometon, secbumeton, simeton and terbumeton; methylthiotriazine herbicides such as ametryn, aziprotryne, cyanatryn, desmetryn, dimethametryn, methoprotryne, prometryn, simetryn and terbutryn; triazinone herbicides such as ametridione, amibuzin, hexazinone, isomethiozin, metamitron and metribuzin; triazole herbicides such as amitrole, cafenstrole, epronaz and flupoxam; triazolone herbicides such as amicarbazone, bencarbazone, carfentrazone, flucarbazone, propoxycarbazone, sulfentxazone and thiencarbazone-methyl; triazolopyrimidine herbicides such as cloransulam, diclosulam, florasulam, flumetsulam, metosulam, penoxsulam and pyroxsulam; uracil herbicides such as butafenacil, bromacil, flupropacil, isocil, lenacil and terbacil; 3-phenyluracils; urea herbicides such as benzthiazuron, cumyluron, cycluron, dichloralurea, diflufenzopyr, isonoruron, isouron, methabenzthiazuron, monisouron and noruron; phenylurea herbicides such as anisuron, buturon, chlorbromuron, chloreturon, chlorotoluron, chloroxuron, daimuron, difenoxuron, dimefuron, diuron, fenuron, fluometuron, fluothiuron, isoproturon, linuron, methiuron, methyldymron, metobenzuron, metobromuron, metoxuron, monolinuron, monuron, neburon, parafluron, phenobenzuron, siduron, tetrafluron and thidiazuron; pyrimidinylsulfonylurea herbicides such as amidosulfuron, azimsulfuron, bensulfuron, chlorimuron, cyclosulfamuron, ethoxysulfuron, flazasulfuron, flucetosulfuron, flupyrsulfuron, foramsulfiiron, halosulfuron, imazosulfuron, mesosulfuron, nicosulfuron, orthosulfamuron, oxasulfiiron, primisulfuron, pyrazosulfuron, rimsulfuron, sulfometuron, sulfosulfuron and trifloxysulfuron; triazinylsulfonylurea herbicides such as chlorsulfuron, cinosulfuron, ethametsulfuron, iodosulfuron, metsulfuron, prosulfuron, thifensυlfuron, triasulfuron, tribenuron, triflusulfuron and tritosulfuron; thiadiazolylurea herbicides such as buthiuron, ethidimuron, tebuthiuron, thiazafluron and thidiazuron; and unclassified herbicides such as acrolein, allyl alcohol, azafenidin, benazolin, bentazone, benzobicyclon, buthidazole, calcium cyanamide, cambendichlor, chlorfenac, chlorfenprop, chlorflurazole, chlorflurenol, cinmethylin, clomazone, CPMF, cresol, ortho-dichlorobenzene, dimepiperate, endothal, fluoromidine, fluridone, flurochloridone, flurtamone, fluthiacet, indanofan, methazole, methyl isothiocyanate, nipyraclofen, OCH, oxadiargyl, oxadiazon, oxaziclomefone, pentachlorophenol, pentoxazone, phenylmercury acetate, pinoxaden, prosulfalin, pyribenzoxim, pyriftalid, quinoclamine, rhodethanil, sulglycapin, thidiazimin, tridiphane, trimeturon, tripropindan and tritac.

Claims

We claim
1. A method to control certain insects that have developed resistance to one or more classes of insecticides, including neonicotinoids, organophosphates, carbamates and pyrethroids, which comprises applying to a locus where control is desired an insect-inactivating amount of a compound of the formula (I)
Figure imgf000053_0001
wherein X represents NO2, CN or COOR4;
L represents a single bond or R1, S and L taken together represent a 5- or 6-membered ring;
R1 represents methyl or ethyl;
R2 and R3 independently represent hydrogen, methyl, ethyl, fluoro, chloro or bromo; n is an integer from 0-3; Y represents 6-halopyridin-3-yl, 6-(Ci-C4)alkyrpyridin-3-yl, 6-(Ci-C4) haloalkylpyridin-3-yl, 6-(Ci-C4)aIkoxypyridin-3-yl, 6-(Ci-C4)haloalkoxypyridin- 3-yl, 2-chlorothiazol-4-yl, or 3-chloroisoxazol-5-yl when n = 0-3 and L represents a single bond, or Y represents hydrogen, Ci-C4alkyl, phenyl, 6-halopyridin-3-yl, 6-(Ci-C4)alkylpyridin-3-yl, 6-(CrC4) haloalkylpyridin-3-yl, 6-(Ci-C4)alkoxy- pyridin-3-yl, 6-(Ci-C4)haloalkoxypyridin-3-yl, 2-chlorothiazol-4-yl, or 3- chloroisoxazol-5-yl when n = 0-1 and R1, S and L taken together represent a 5- or 6-membered ring; and
R4 represents C1-C3 alkyl.
2. The method of Claim 1 in which X in the compound of Formula I represents CN.
3. The method of Claim 1 in which the compound of Formula I is
Figure imgf000054_0001
wherein X, R1, R2, R3 and n are as previously defined.
4. The method of Claim 3 in which X represents CN, R1 represents methyl, R2 and R3 independently represent hydrogen, methyl or ethyl and n = 1.
5. The method of Claim 1 in which the compound of Formula I is
Figure imgf000054_0002
wherein X represents CN and Y represents 6-chloropyridin-3-yl or 6- trifluoromethylpyridin-3-yl.
PCT/US2007/003784 2006-06-23 2007-02-09 A method to control insects resistant to common insecticides WO2007149134A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA002653186A CA2653186A1 (en) 2006-06-23 2007-02-09 A method to control insects resistant to common insecticides
KR1020087031120A KR101344974B1 (en) 2006-06-23 2007-02-09 A method to control insects resistant to common insecticides
EP07750611A EP2043436A1 (en) 2006-06-23 2007-02-09 A method to control insects resistant to common insecticides
MX2008016527A MX2008016527A (en) 2006-06-23 2007-02-09 A method to control insects resistant to common insecticides.
NZ572838A NZ572838A (en) 2006-06-23 2007-02-09 A method to control insects resistant to common insecticides using sulfoximines
BRPI0713519-0A BRPI0713519A2 (en) 2006-06-23 2007-02-09 method for controlling insecticide resistant insects
JP2009516478A JP5264719B2 (en) 2006-06-23 2007-02-09 How to control insects that are resistant to common insecticides
AU2007261706A AU2007261706B2 (en) 2006-06-23 2007-02-09 A method to control insects resistant to common insecticides
ZA2008/09866A ZA200809866B (en) 2006-06-23 2008-11-19 A method to control insects resistant to common insecticides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81593206P 2006-06-23 2006-06-23
US60/815,932 2006-06-23

Publications (1)

Publication Number Publication Date
WO2007149134A1 true WO2007149134A1 (en) 2007-12-27

Family

ID=38309977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/003784 WO2007149134A1 (en) 2006-06-23 2007-02-09 A method to control insects resistant to common insecticides

Country Status (13)

Country Link
US (3) US20070299264A1 (en)
EP (1) EP2043436A1 (en)
JP (2) JP5264719B2 (en)
KR (1) KR101344974B1 (en)
CN (1) CN101478877A (en)
AR (1) AR059438A1 (en)
AU (1) AU2007261706B2 (en)
CA (1) CA2653186A1 (en)
MX (1) MX2008016527A (en)
NZ (1) NZ572838A (en)
TW (1) TWI381811B (en)
WO (1) WO2007149134A1 (en)
ZA (1) ZA200809866B (en)

Cited By (226)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014891A2 (en) * 2007-07-20 2009-01-29 Dow Agrosciences Llc Increasing plant vigor
EP2039771A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
EP2039772A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants introduction
EP2039770A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
WO2009017951A3 (en) * 2007-07-27 2009-06-25 Dow Agrosciences Llc Pesticides and uses thereof
EP2094659A1 (en) * 2006-11-08 2009-09-02 Dow AgroSciences LLC Heteroaryl (substituted) alkyl n-substituted sulfoximines as insecticides
WO2009111309A1 (en) 2008-03-03 2009-09-11 Dow Agrosciences Llc Pesticides
WO2009135613A1 (en) * 2008-05-07 2009-11-12 Bayer Cropscience Aktiengesellschaft Synergistic active ingredient combinations
EP2127522A1 (en) 2008-05-29 2009-12-02 Bayer CropScience AG Active-agent combinations with insecticidal and acaricidal properties
DE102008041695A1 (en) 2008-08-29 2010-03-04 Bayer Cropscience Ag Methods for improving plant growth
WO2010023171A2 (en) * 2008-08-28 2010-03-04 Basf Se Pesticidal mixtures comprising cyanosulfoximine compounds and spinetoram
WO2010027779A2 (en) * 2008-08-27 2010-03-11 Dow Agrosciences Llc Pesticidal compositions
WO2010040623A1 (en) * 2008-10-08 2010-04-15 Syngenta Participations Ag Pesticidal combinations containing sulfoxaflor
EP2201841A1 (en) 2008-12-29 2010-06-30 Bayer CropScience AG Synergistic insecticidal mixtures
WO2010074747A1 (en) * 2008-12-26 2010-07-01 Dow Agrosciences, Llc Stable insecticide compositions and methods for producing same
EP2204094A1 (en) 2008-12-29 2010-07-07 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants Introduction
WO2010075966A1 (en) * 2008-12-29 2010-07-08 Bayer Cropscience Ag Method for improved use of the production potential of genetically modified plants
WO2010083955A2 (en) 2009-01-23 2010-07-29 Bayer Cropscience Aktiengesellschaft Use of enaminocarboxylic compounds for fighting viruses transmitted by insects
WO2010086095A1 (en) 2009-01-29 2010-08-05 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants introduction
DE102008063561A1 (en) 2008-12-18 2010-08-19 Bayer Cropscience Ag Hydrazides, process for their preparation and their use as herbicides and insecticides
WO2010094728A1 (en) 2009-02-19 2010-08-26 Bayer Cropscience Ag Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
WO2010094418A2 (en) 2009-02-23 2010-08-26 Bayer Cropscience Ag Insecticidal compositions having an improved effect
EP2223602A1 (en) 2009-02-23 2010-09-01 Bayer CropScience AG Method for improved utilisation of the production potential of genetically modified plants
WO2010100189A1 (en) 2009-03-04 2010-09-10 Basf Se 3-arylquinazolin-4-one compounds for combating invertebrate pests
EP2232995A1 (en) 2009-03-25 2010-09-29 Bayer CropScience AG Method for improved utilisation of the production potential of transgenic plants
WO2010108616A1 (en) 2009-03-25 2010-09-30 Bayer Cropscience Ag Nematicidal, insecticidal, and acaricidal combination of active substances, comprising pyridylethyl benzamide and insecticide
EP2239331A1 (en) 2009-04-07 2010-10-13 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
WO2010121735A1 (en) 2009-04-22 2010-10-28 Bayer Cropscience Ag Use of propineb as bird repellent
EP2264008A1 (en) 2009-06-18 2010-12-22 Bayer CropScience AG Substituted enaminocarbonyl compounds
WO2010149370A1 (en) 2009-06-24 2010-12-29 Bayer Cropscience Ag Combinations of biological control agents and insecticides
WO2011003796A1 (en) 2009-07-06 2011-01-13 Basf Se Pyridazine compounds for controlling invertebrate pests
WO2011009540A2 (en) 2009-07-24 2011-01-27 Bayer Cropscience Ag Pesticidal carboxamides
WO2011009804A2 (en) 2009-07-24 2011-01-27 Basf Se Pyridine derivatives compounds for controlling invertebrate pests
WO2011014660A1 (en) 2009-07-30 2011-02-03 Merial Limited Insecticidal 4-amino-thieno[2,3-d]-pyrimidine compounds and methods of their use
WO2011020567A1 (en) 2009-08-20 2011-02-24 Bayer Cropscience Ag 3-triazolylphenyl-substituted sulfide derivatives for use as acaricides and insecticides
WO2011029506A1 (en) 2009-08-20 2011-03-17 Bayer Cropscience Ag 3-[1-(3-haloalkyl)-triazolyl]-phenyl-sulfide derivatives for use as acaricides and insecticides
WO2011045224A1 (en) 2009-10-12 2011-04-21 Bayer Cropscience Ag 1- (pyrid-3-yl) -pyrazole and 1- (pyrimid-5-yl) -pyrazole as pesticide
WO2011045240A1 (en) 2009-10-12 2011-04-21 Bayer Cropscience Ag Amides and thioamides as pesticides
WO2011051455A1 (en) 2009-10-30 2011-05-05 Bayer Cropscience Ag Pesticidal heterocyclic compounds
WO2011051151A1 (en) 2009-10-26 2011-05-05 Bayer Cropscience Ag Novel solid form of 4-[[(6-chloropyridin-3-yl)methyl](2,2-difluoroethyl)amino]furan-2(5h)-one
WO2011054436A2 (en) 2009-10-27 2011-05-12 Bayer Cropscience Ag Halogenalkyl-substituted amides used as insecticides and acaricides
WO2011061156A1 (en) 2009-11-17 2011-05-26 Bayer Cropscience Ag Active compound combinations
WO2011076726A2 (en) 2009-12-23 2011-06-30 Bayer Cropscience Ag Pesticidal compound mixtures
WO2011076727A2 (en) 2009-12-23 2011-06-30 Bayer Cropscience Ag Pesticidal compound mixtures
WO2011076724A2 (en) 2009-12-23 2011-06-30 Bayer Cropscience Ag Pesticidal compound mixtures
WO2011080044A2 (en) 2009-12-16 2011-07-07 Bayer Cropscience Ag Active compound combinations
WO2011080211A1 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Pesticidal arylpyrrolidines
WO2011092147A1 (en) 2010-01-29 2011-08-04 Bayer Cropscience Ag Method to reduce the frequency and/or intensity of blossom-end rot disorder in horticultural crops
WO2011098443A1 (en) 2010-02-10 2011-08-18 Bayer Cropscience Ag Spiroheterocyclical substituted tetramic acid derivatives
WO2011098440A2 (en) 2010-02-10 2011-08-18 Bayer Cropscience Ag Biphenyl substituted cyclical keto-enols
JP2011523939A (en) * 2008-05-01 2011-08-25 ダウ アグロサイエンシィズ エルエルシー Synergistic insecticidal mixture
WO2011107504A1 (en) 2010-03-04 2011-09-09 Bayer Cropscience Ag Fluoroalkyl-substituted 2-amidobenzimidazoles and the use thereof for boosting stress tolerance in plants
WO2011107443A1 (en) 2010-03-02 2011-09-09 Bayer Cropscience Ag Use of propineb for physiological curative treatment under zinc deficiency
WO2011117286A1 (en) 2010-03-23 2011-09-29 Basf Se Pyridazine compounds for controlling invertebrate pests
WO2011131616A2 (en) 2010-04-23 2011-10-27 Bayer Cropscience Ag Triglyceride-containing winter spraying agents
EP2382865A1 (en) 2010-04-28 2011-11-02 Bayer CropScience AG Synergistic active agent compounds
WO2011138285A1 (en) 2010-05-05 2011-11-10 Bayer Cropscience Ag Thiazol derivatives as pest control agents
WO2011157663A1 (en) 2010-06-15 2011-12-22 Bayer Cropscience Ag Novel ortho-substituted aryl amide derivatives
WO2011157778A1 (en) 2010-06-18 2011-12-22 Bayer Cropscience Ag Active substance combinations with insecticide and acaricide properties
JP2011530605A (en) * 2008-08-12 2011-12-22 ダウ アグロサイエンシィズ エルエルシー Synergistic insecticide composition comprising an active compound, an ammonium salt, and a nonionic surfactant
WO2012001068A2 (en) 2010-07-02 2012-01-05 Bayer Cropscience Ag Insecticidal or acaricidal formulations with improved availability on plant surfaces
WO2012000902A1 (en) 2010-06-29 2012-01-05 Bayer Cropscience Ag Improved insecticidal compositions comprising cyclic carbonylamidines
WO2012000946A2 (en) 2010-06-30 2012-01-05 Bayer Cropscience Ag Active ingredient combinations
WO2012000896A2 (en) 2010-06-28 2012-01-05 Bayer Cropscience Ag Heterocyclic compounds as agents for pest control
WO2012004208A1 (en) 2010-07-09 2012-01-12 Bayer Cropscience Ag Anthranilic acid diamide derivative as a pesticide
WO2012004326A1 (en) 2010-07-08 2012-01-12 Bayer Cropscience Ag Pesticidal pyrroline derivatives
WO2012004293A2 (en) 2010-07-08 2012-01-12 Bayer Cropscience Ag Insecticide and fungicide active ingredient combinations
WO2012007505A2 (en) 2010-07-16 2012-01-19 Bayer Innovation Gmbh Polymer composite material with biocide functionality
WO2012007500A2 (en) 2010-07-15 2012-01-19 Bayer Cropscience Ag New heterocyclic compounds as pesticides
WO2012010509A2 (en) 2010-07-20 2012-01-26 Bayer Cropscience Ag Gel bait for controlling crawling harmful insects
EP2422620A1 (en) 2010-08-26 2012-02-29 Bayer CropScience AG Insecticidal combinations comprising ethiprole and pymetrozine
WO2012028583A1 (en) 2010-09-03 2012-03-08 Bayer Cropscience Ag Formulations comprising deltamethrin
WO2012035011A1 (en) 2010-09-15 2012-03-22 Bayer Cropscience Ag Pesticidal arylpyrrolidines
WO2012034957A1 (en) 2010-09-15 2012-03-22 Bayer Cropscience Ag Pesticidal pyrroline n-oxide derivatives
WO2012038476A1 (en) 2010-09-22 2012-03-29 Bayer Cropscience Ag Use of active ingredients for controlling nematodes in nematode-resistant crops
WO2012045680A2 (en) 2010-10-04 2012-04-12 Bayer Cropscience Ag Insecticidal and fungicidal active substance combinations
WO2012045798A1 (en) 2010-10-07 2012-04-12 Bayer Cropscience Ag Fungicide composition comprising a tetrazolyloxime derivative and a thiazolylpiperidine derivative
WO2012052490A1 (en) 2010-10-21 2012-04-26 Bayer Cropscience Ag N-benzyl heterocyclic carboxamides
WO2012052412A1 (en) 2010-10-22 2012-04-26 Bayer Cropscience Ag Novel heterocyclic compounds as pesticides
EP2446742A1 (en) 2010-10-28 2012-05-02 Bayer CropScience AG Insecticide or acaricide compositions containing mono- or disaccharides as activity enhancers
WO2012059497A1 (en) 2010-11-02 2012-05-10 Bayer Cropscience Ag N-hetarylmethyl pyrazolylcarboxamides
WO2012065944A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag N-aryl pyrazole(thio)carboxamides
EP2460406A1 (en) 2010-12-01 2012-06-06 Bayer CropScience AG Use of fluopyram for controlling nematodes in nematode resistant crops
WO2012072660A1 (en) 2010-12-01 2012-06-07 Bayer Cropscience Ag Use of fluopyram for controlling nematodes in crops and for increasing yield
WO2012072489A1 (en) 2010-11-29 2012-06-07 Bayer Cropscience Ag Alpha,beta-unsaturated imines
WO2012076471A1 (en) 2010-12-09 2012-06-14 Bayer Cropscience Ag Insecticidal mixtures with improved properties
WO2012076470A1 (en) 2010-12-09 2012-06-14 Bayer Cropscience Ag Pesticidal mixtures with improved properties
WO2012082548A2 (en) 2010-12-15 2012-06-21 Syngenta Participations Ag Soybean event syht0h2 and compositions and methods for detection thereof
WO2012080188A1 (en) 2010-12-17 2012-06-21 Bayer Cropscience Ag Composition containing insecticide-wax particles
DE102010063691A1 (en) 2010-12-21 2012-06-21 Bayer Animal Health Gmbh Ectoparasiticidal drug combinations
EP2468097A1 (en) 2010-12-21 2012-06-27 Bayer CropScience AG Use of Isothiazolecarboxamides to create latent host defenses in a plant
WO2012084900A1 (en) 2010-12-20 2012-06-28 Universite De Poitiers Zeolite-based phytosanitary composition
WO2012089721A1 (en) 2010-12-30 2012-07-05 Bayer Cropscience Ag Use of substituted spirocyclic sulfonamidocarboxylic acids, carboxylic esters thereof, carboxamides thereof and carbonitriles thereof or salts thereof for enhancement of stress tolerance in plants
WO2012110464A1 (en) 2011-02-17 2012-08-23 Bayer Cropscience Ag Use of sdhi fungicides on conventionally bred asr-tolerant, stem canker resistant and/or frog-eye leaf spot resistant soybean varieties
WO2012110519A1 (en) 2011-02-17 2012-08-23 Bayer Cropscience Ag Substituted 3-(biphenyl-3-yl)-8,8-difluoro-hydroxy-1-azaspiro[4.5]dec-3-en-2-ones for therapy and halogen-substituted spirocyclic ketoenols
WO2012116960A1 (en) 2011-03-01 2012-09-07 Bayer Cropscience Ag 2-acyloxy-pyrrolin-4-ones
WO2012120105A1 (en) 2011-03-10 2012-09-13 Bayer Cropscience Ag Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds
WO2012119984A1 (en) 2011-03-09 2012-09-13 Bayer Cropscience Ag Indolecarboxamides and benzimidazolecarboxamides as insecticides and acaricides
WO2012126766A1 (en) 2011-03-18 2012-09-27 Bayer Cropscience Ag N-(3-carbamoylphenyl)-1h-pyrazole-5-carboxamide derivatives and the use thereof for controlling animal pests
WO2012136751A1 (en) 2011-04-08 2012-10-11 Basf Se N-substituted hetero-bicyclic compounds and derivatives for combating animal pests
WO2012139891A1 (en) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituted vinyl and alkinyl cyclohexenols as active agents against abiotic stress in plants
WO2012139890A1 (en) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituted 5-(cyclohex-2-en-1-yl)-penta-2,4-dienes and 5-(cyclohex-2-en-1-yl)-pent-2-en-4-ines as active agents against abiotic stress in plants
WO2012139892A1 (en) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituted 5-(bicyclo[4.1.0]hept-3-en-2-yl)-penta-2,4-dienes and 5-(bicyclo[4.1.0]hept-3-en-2-yl)-pent-2-ene-4-ines as active agents against abiotic stress in plants
EP2529927A2 (en) 2007-07-20 2012-12-05 Bayer Innovation Gmbh Polymer composite material with biocide functionality
EP2534951A1 (en) 2007-04-17 2012-12-19 Bayer CropScience AG Combating pests with a combination of insecticides and transgenic plants by means of leaf and drench application
EP2535334A1 (en) 2011-06-17 2012-12-19 Bayer CropScience AG Crystalline modifications of penflufen
EP2540163A1 (en) 2011-06-30 2013-01-02 Bayer CropScience AG Nematocide N-cyclopropyl-sulfonylamide derivatives
WO2013004652A1 (en) 2011-07-04 2013-01-10 Bayer Intellectual Property Gmbh Use of substituted isoquinolinones, isoquinolindiones, isoquinolintriones and dihydroisoquinolinones or in each case salts thereof as active agents against abiotic stress in plants
WO2013010946A2 (en) 2011-07-15 2013-01-24 Basf Se Pesticidal methods using substituted 3-pyridyl thiazole compounds and derivatives for combating animal pests i
WO2013014126A1 (en) 2011-07-26 2013-01-31 Bayer Intellectual Property Gmbh Etherified lactate esters, method for the production thereof and use thereof for enhancing the effect of plant protecting agents
WO2013014227A1 (en) 2011-07-27 2013-01-31 Bayer Intellectual Property Gmbh Seed dressing for controlling phytopathogenic fungi
US8372417B2 (en) 2007-07-20 2013-02-12 Bayer Innovation Gmbh Polymer composite film with barrier functionality
WO2013024008A1 (en) 2011-08-12 2013-02-21 Basf Se Aniline type compounds
US8383549B2 (en) 2007-07-20 2013-02-26 Bayer Cropscience Lp Methods of increasing crop yield and controlling the growth of weeds using a polymer composite film
EP2561759A1 (en) 2011-08-26 2013-02-27 Bayer Cropscience AG Fluoroalkyl-substituted 2-amidobenzimidazoles and their effect on plant growth
WO2013037956A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield
WO2013037955A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of acylsulfonamides for improving plant yield
WO2013037958A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of phenylpyrazolin-3-carboxylates for improving plant yield
WO2013050433A1 (en) 2011-10-05 2013-04-11 Bayer Intellectual Property Gmbh Pesticide preparation and process for producing the same
WO2013079601A1 (en) 2011-12-02 2013-06-06 Basf Se Method and system for monitoring crops and/or infestation of crops with harmful organismus during storage
WO2013079600A1 (en) 2011-12-02 2013-06-06 Basf Se Method and system for monitoring crops during storage
EP2604118A1 (en) 2011-12-15 2013-06-19 Bayer CropScience AG Active ingredient combinations having insecticidal and acaricidal properties
EP2606726A1 (en) 2011-12-21 2013-06-26 Bayer CropScience AG N-Arylamidine-substituted trifluoroethylsulfide derivatives as acaricides and insecticides
WO2013092868A1 (en) 2011-12-21 2013-06-27 Basf Se N-thio-anthranilamide compounds and their use as pesticides
WO2013092522A1 (en) 2011-12-20 2013-06-27 Bayer Intellectual Property Gmbh Novel insecticidal aromatic amides
WO2013092519A1 (en) 2011-12-19 2013-06-27 Bayer Cropscience Ag Use of anthranilic acid diamide derivatives for pest control in transgenic crops
WO2013092943A1 (en) 2011-12-23 2013-06-27 Basf Se Isothiazoline compounds for combating invertebrate pests
WO2013107785A1 (en) 2012-01-21 2013-07-25 Bayer Intellectual Property Gmbh Use of host defense inducers for controlling bacterial harmful organisms in useful plants
WO2013113789A1 (en) 2012-02-02 2013-08-08 Basf Se N-thio-anthranilamide compounds and their use as pesticides
US20130231334A1 (en) * 2010-04-27 2013-09-05 Syngenta Crop Protection Llc Methods of controlling neonicotinoid resistant aphids
WO2013135724A1 (en) 2012-03-14 2013-09-19 Bayer Intellectual Property Gmbh Pesticidal arylpyrrolidines
WO2013144213A1 (en) 2012-03-30 2013-10-03 Basf Se N-substituted pyridinylidene compounds and derivatives for combating animal pests
WO2013144223A1 (en) 2012-03-30 2013-10-03 Basf Se N-substituted pyrimidinylidene compounds and derivatives for combating animal pests
WO2013144228A1 (en) 2012-03-29 2013-10-03 Basf Se Pesticidal methods using heterocyclic compounds and derivatives for combating animal pests
WO2013150115A1 (en) 2012-04-05 2013-10-10 Basf Se N- substituted hetero - bicyclic compounds and derivatives for combating animal pests
WO2013149940A1 (en) 2012-04-02 2013-10-10 Basf Se Acrylamide compounds for combating invertebrate pests
WO2013149903A1 (en) 2012-04-03 2013-10-10 Basf Se N- substituted hetero - bicyclic furanone derivatives for combating animal
WO2013164295A1 (en) 2012-05-04 2013-11-07 Basf Se Substituted pyrazole-containing compounds and their use as pesticides
WO2013167633A1 (en) 2012-05-09 2013-11-14 Basf Se Acrylamide compounds for combating invertebrate pests
WO2013171199A1 (en) 2012-05-16 2013-11-21 Bayer Cropscience Ag Insecticidal water-in-oil (w/o) formulation
WO2013171201A1 (en) 2012-05-16 2013-11-21 Bayer Cropscience Ag Insecticidal oil-in water (o/w) formulation
WO2013174836A1 (en) 2012-05-22 2013-11-28 Bayer Cropscience Ag Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound
WO2013174645A1 (en) 2012-05-24 2013-11-28 Basf Se N-thio-anthranilamide compounds and their use as pesticides
WO2013182613A1 (en) 2012-06-08 2013-12-12 Bayer Cropscience Ag Detection system for the identification of insecticide resistance
WO2013186089A2 (en) 2012-06-14 2013-12-19 Basf Se Pesticidal methods using substituted 3-pyridyl thiazole compounds and derivatives for combating animal pests
US8629273B2 (en) 2009-11-11 2014-01-14 Bayer Intellectual Property Gmbh Diazinylpyrazolyl compounds
WO2014019983A1 (en) 2012-07-31 2014-02-06 Bayer Cropscience Ag Compositions comprising a pesticidal terpene mixture and an insecticide
EP2698063A1 (en) 2008-04-07 2014-02-19 Bayer CropScience AG Combinations of biological control agents and insecticides or fungicides
WO2014026984A1 (en) 2012-08-17 2014-02-20 Bayer Cropscience Ag Azaindole carboxylic acid amides and azaindole thiocarboxylic acid amides for use as insecticides and acaricides
WO2014037340A1 (en) 2012-09-05 2014-03-13 Bayer Cropscience Ag Use of substituted 2-amidobenzimidazoles, 2-amidobenzoxazoles and 2-amidobenzothiazoles or salts thereof as active substances against abiotic plant stress
WO2014053395A1 (en) 2012-10-01 2014-04-10 Basf Se Use of n-thio-anthranilamide compounds on cultivated plants
WO2014053401A2 (en) 2012-10-01 2014-04-10 Basf Se Method of improving plant health
WO2014053403A1 (en) 2012-10-01 2014-04-10 Basf Se Method of controlling insecticide resistant insects
WO2014053406A1 (en) 2012-10-01 2014-04-10 Basf Se Method of controlling ryanodine-modulator insecticide resistant insects
WO2014053405A1 (en) 2012-10-01 2014-04-10 Basf Se Pesticidally active mixtures comprising anthranilamide compounds
WO2014053404A1 (en) 2012-10-01 2014-04-10 Basf Se Pesticidally active mixtures comprising anthranilamide compounds
WO2014053450A1 (en) 2012-10-02 2014-04-10 Bayer Cropscience Ag Heterocyclic compounds as pesticides
WO2014053407A1 (en) 2012-10-01 2014-04-10 Basf Se N-thio-anthranilamide compounds and their use as pesticides
WO2014060381A1 (en) 2012-10-18 2014-04-24 Bayer Cropscience Ag Heterocyclic compounds as pesticides
WO2014067962A1 (en) 2012-10-31 2014-05-08 Bayer Cropscience Ag Novel heterocyclic compounds as pest control agents
WO2014072250A1 (en) 2012-11-06 2014-05-15 Bayer Cropscience Ag Herbicidal combinations for tolerant soybean cultures
WO2014079820A1 (en) 2012-11-22 2014-05-30 Basf Se Use of anthranilamide compounds for reducing insect-vectored viral infections
WO2014083088A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary fungicidal mixtures
WO2014083033A1 (en) 2012-11-30 2014-06-05 Bayer Cropsience Ag Binary fungicidal or pesticidal mixture
WO2014086751A1 (en) 2012-12-05 2014-06-12 Bayer Cropscience Ag Use of substituted 1-(aryl ethynyl)-, 1-(heteroaryl ethynyl)-, 1-(heterocyclyl ethynyl)- and 1-(cyloalkenyl ethynyl)-cyclohexanols as active agents against abiotic plant stress
WO2014086753A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising biological control agents
WO2014086758A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising a biological control agent and an insecticide
WO2014086749A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising a biological control agent and an insecticide
WO2014086750A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising a biological control agent and an insecticide
WO2014086759A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising biological control agents
WO2014090700A1 (en) 2012-12-14 2014-06-19 Basf Se Malononitrile compounds for controlling animal pests
WO2014090765A1 (en) 2012-12-12 2014-06-19 Bayer Cropscience Ag Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops
WO2014095826A1 (en) 2012-12-18 2014-06-26 Bayer Cropscience Ag Binary fungicidal and bactericidal combinations
WO2014096238A1 (en) 2012-12-21 2014-06-26 Basf Se Cycloclavine and derivatives thereof for controlling invertebrate pests
WO2014102244A1 (en) 2012-12-27 2014-07-03 Basf Se 2-(pyridin-3-yl)-5-hetaryl-thiazole compounds carrying an imine or imine-derived substituent for combating invertebrate pests
WO2014124361A1 (en) 2013-02-11 2014-08-14 Bayer Cropscience Lp Compositions comprising a streptomyces-based biological control agent and another biological control agent
WO2014122083A1 (en) 2013-02-06 2014-08-14 Bayer Cropscience Ag Halogen-substituted pyrazol derivatives as pest-control agents
WO2014124373A1 (en) 2013-02-11 2014-08-14 Bayer Cropscience Lp Compositions comprising gougerotin and an insecticide
WO2014128069A1 (en) 2013-02-19 2014-08-28 Bayer Cropscience Ag Use of prothioconazole to induce host defence responses
WO2014128136A1 (en) 2013-02-20 2014-08-28 Basf Se Anthranilamide compounds and their use as pesticides
WO2014139897A1 (en) 2013-03-12 2014-09-18 Bayer Cropscience Ag Use of dithiine-tetracarboximides for controlling bacterial harmful organisms in useful plants
WO2014140111A1 (en) 2013-03-13 2014-09-18 Bayer Cropscience Ag Lawn growth-promoting agent and method of using same
WO2014170313A1 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Active compound combinations having insecticidal properties
WO2014170300A1 (en) 2013-04-19 2014-10-23 Basf Se N-substituted acyl-imino-pyridine compounds and derivatives for combating animal pests
WO2014170364A1 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Binary insecticidal or pesticidal mixture
DE202014008418U1 (en) 2014-02-19 2014-11-14 Clariant International Ltd. Low foaming agrochemical compositions
DE202014008415U1 (en) 2014-02-19 2014-11-25 Clariant International Ltd. Aqueous adjuvant composition for increasing the effectiveness of electrolyte active substances
WO2014202505A1 (en) 2013-06-20 2014-12-24 Bayer Cropscience Ag Aryl sulfide derivatives and aryl sulfoxide derivatives as acaricides and insecticides
WO2014202510A1 (en) 2013-06-20 2014-12-24 Bayer Cropscience Ag Aryl sulfide derivatives and aryl sulfoxide derivatives as acaricides and insecticides
WO2014202751A1 (en) 2013-06-21 2014-12-24 Basf Se Methods for controlling pests in soybean
CN104222135A (en) * 2008-12-26 2014-12-24 美国陶氏益农公司 Stable insecticide compositions
WO2015004028A1 (en) 2013-07-08 2015-01-15 Bayer Cropscience Ag Six-membered c-n-linked aryl sulfide derivatives and aryl sulfoxide derivatives as pest control agents
WO2015007682A1 (en) 2013-07-15 2015-01-22 Basf Se Pesticide compounds
WO2015040116A1 (en) 2013-09-19 2015-03-26 Basf Se N-acylimino heterocyclic compounds
WO2015055757A1 (en) 2013-10-18 2015-04-23 Basf Se Use of pesticidal active carboxamide derivative in soil and seed application and treatment methods
WO2015055497A1 (en) 2013-10-16 2015-04-23 Basf Se Substituted pesticidal pyrazole compounds
WO2015091645A1 (en) 2013-12-18 2015-06-25 Basf Se Azole compounds carrying an imine-derived substituent
WO2015091649A1 (en) 2013-12-18 2015-06-25 Basf Se N-substituted imino heterocyclic compounds
WO2015101622A1 (en) 2014-01-03 2015-07-09 Bayer Cropscience Ag Novel pyrazolyl-heteroarylamides as pesticides
WO2015104422A1 (en) 2014-01-13 2015-07-16 Basf Se Dihydrothiophene compounds for controlling invertebrate pests
DE102014018274A1 (en) 2014-12-12 2015-07-30 Clariant International Ltd. Sugar surfactants and their use in agrochemical compositions
US9161542B2 (en) 2011-05-26 2015-10-20 Dow Agrosciences Llc Pesticidal compositions and related methods
WO2015160620A1 (en) 2014-04-16 2015-10-22 Bayer Cropscience Lp Compositions comprising ningnanmycin and an insecticide
WO2015160618A1 (en) 2014-04-16 2015-10-22 Bayer Cropscience Lp Compositions comprising ningnanmycin and a biological control agent
WO2016001129A1 (en) 2014-07-01 2016-01-07 Bayer Cropscience Aktiengesellschaft Improved insecticidal compositions
WO2016008830A1 (en) 2014-07-15 2016-01-21 Bayer Cropscience Aktiengesellschaft Aryl-triazolyl pyridines as pest control agents
DE102014012022A1 (en) 2014-08-13 2016-02-18 Clariant International Ltd. Organic ammonium salts of anionic pesticides
WO2016106063A1 (en) 2014-12-22 2016-06-30 Bayer Corpscience Lp Method for using a bacillus subtilis or bacillus pumilus strain to treat or prevent pineapple disease
WO2016166252A1 (en) 2015-04-17 2016-10-20 Basf Agrochemical Products B.V. Method for controlling non-crop pests
US9510594B2 (en) 2011-02-17 2016-12-06 Bayer Intellectual Property Gmbh Use of SDHI fungicides on conventionally bred ASR-tolerant, stem canker resistant and/or frog-eye leaf spot resistant soybean varieties
EP2114163B1 (en) 2007-04-12 2017-05-10 Basf Se Pesticidal mixtures comprising a cyanosulfoximine compound
EP3238540A1 (en) 2016-04-28 2017-11-01 Bayer CropScience Aktiengesellschaft Timed-release-type granular agrochemical composition and method for manufacturing same
WO2017186543A2 (en) 2016-04-24 2017-11-02 Bayer Cropscience Aktiengesellschaft Use of fluopyram and/or bacillus subtilis for controlling fusarium wilt in plants of the musaceae family
EP3243387A2 (en) 2012-05-30 2017-11-15 Bayer CropScience Aktiengesellschaft Compositions comprising a biological control agent and an insecticide
RU2639870C2 (en) * 2012-06-30 2017-12-25 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи Insecticidum n-substituted sulphylimines and sulphoximines of n-pyridine oxides
WO2018019676A1 (en) 2016-07-29 2018-02-01 Bayer Cropscience Aktiengesellschaft Active compound combinations and methods to protect the propagation material of plants
EP3363289A2 (en) 2012-05-30 2018-08-22 Bayer CropScience Aktiengesellschaft Compositions comprising a biological control agent and an insecticide
US10772324B2 (en) 2012-11-03 2020-09-15 Clariant International Ltd. Aqueous adjuvant-compositions
US10813862B2 (en) 2012-05-30 2020-10-27 Clariant International Ltd. Use of N-methyl-N-acylglucamines as solubilizers
US10864275B2 (en) 2012-05-30 2020-12-15 Clariant International Ltd. N-methyl-N-acylglucamine-containing composition
US10920080B2 (en) 2015-10-09 2021-02-16 Clariant International Ltd. N-Alkyl glucamine-based universal pigment dispersions
US10961484B2 (en) 2015-10-09 2021-03-30 Clariant International Ltd. Compositions comprising sugar amine and fatty acid
CN113480474A (en) * 2021-07-27 2021-10-08 深圳市易瑞生物技术股份有限公司 Sulfoxaflor hapten, preparation method thereof, antigen, antibody and application thereof
US11220603B2 (en) 2016-05-09 2022-01-11 Clariant International Ltd. Stabilizers for silicate paints
US11425904B2 (en) 2014-04-23 2022-08-30 Clariant International Ltd. Use of aqueous drift-reducing compositions
US11700852B2 (en) 2014-12-19 2023-07-18 Clariant International Ltd Aqueous electrolyte-containing adjuvant compositions, active ingredient-containing compositions and the use thereof

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398433B (en) * 2006-02-10 2013-06-11 Dow Agrosciences Llc Insecticidal n-substituted (6-haloalkylpyridin-3-yl)alkyl sulfoximines
TWI381811B (en) * 2006-06-23 2013-01-11 Dow Agrosciences Llc A method to control insects resistant to common insecticides
TWI383973B (en) * 2006-08-07 2013-02-01 Dow Agrosciences Llc Process for the preparation of 2-substituted-5-(1-alkylthio)alkylpyridines
TWI387585B (en) * 2006-09-01 2013-03-01 Dow Agrosciences Llc Insecticidal n-substituted (heteroaryl)alkyl sulfilimines
TWI409256B (en) * 2006-09-01 2013-09-21 Dow Agrosciences Llc Insecticidal n-substituted (heteroaryl)cycloalkyl sulfoximines
CN101541771B (en) * 2006-09-01 2012-05-02 陶氏益农公司 Insecticidal N-substituted (2- sudstituted-1,3-thiazol) alkyl sulfoximines
TWI383970B (en) * 2006-11-08 2013-02-01 Dow Agrosciences Llc Multi-substituted pyridyl sulfoximines and their use as insecticides
US7709648B2 (en) * 2007-02-09 2010-05-04 Dow Agrosciences Llc Process for the preparation of 2-substituted-5-(1-alkylthio)alkylpyridines
AR066366A1 (en) * 2007-05-01 2009-08-12 Dow Agrosciences Llc PESTICIDED SYNERGIC BLENDS
BRPI0819823B1 (en) * 2007-11-16 2018-11-06 Basf Se pesticide mixture, pesticide composition, methods for controlling harmful phytopathogenic fungi, for protecting plants from harmful phytopathogenic fungi and for seed protection, and use of a mixture
WO2010069495A1 (en) * 2008-12-18 2010-06-24 Bayer Cropscience Aktiengesellschaft Atpenins
US20130210817A1 (en) * 2010-04-27 2013-08-15 Syngenta Crop Protection Llc Methods of controlling neonicotinoid resistant aphids
CN102905531A (en) * 2010-04-27 2013-01-30 先正达参股股份有限公司 Methods of controlling neonicotinoid resistant aphids
CN101946796A (en) * 2010-10-08 2011-01-19 青岛海利尔药业有限公司 Insecticidal composition containing flonicamid and profenofos
AU2013249560B2 (en) * 2012-04-18 2017-01-19 Corteva Agriscience Llc N-substituted(6-haloalkylpyridin-3-yl)alkyl sulfoximines as a seed treatment to control Coleopteran insects
EP2931706A1 (en) * 2012-12-11 2015-10-21 Dow AgroSciences LLC Improved process for the preparation of!n-cyano-s-[1 -(pyridin-3-yl)ethyl]-s-methylsulfilimines
GB2513859B (en) * 2013-05-07 2018-01-17 Rotam Agrochem Int Co Ltd Agrochemical composition, method for its preparation and the use thereof
CN103333101B (en) * 2013-06-08 2015-06-17 北京格林凯默科技有限公司 Pyridyl sulfoximine compound and preparation method thereof
CN103333102B (en) * 2013-06-08 2015-06-17 北京格林凯默科技有限公司 Pyridyl-N-cyano sulfo oxime compound and preparation method thereof
CN103483246B (en) * 2013-09-12 2015-12-02 中国农业科学院植物保护研究所 A kind of Benzyl sulfimide derivative and application thereof
CN103704257B (en) * 2013-12-30 2016-08-17 青岛青知企业管理咨询有限公司 A kind of Pesticidal combination containing sulfoxaflor
KR102323868B1 (en) * 2014-03-28 2021-11-09 이시하라 산교 가부시끼가이샤 Method for preventing infection by plant virus
CN104397010A (en) * 2014-11-26 2015-03-11 广东中迅农科股份有限公司 Tefluthrin and sulfoxaflor containing pesticide composite and application thereof
CN105481743B (en) * 2015-11-25 2017-09-01 南阳师范学院 A kind of method that sulfilimine is oxidized to sulfoximide
US10494760B2 (en) * 2017-12-12 2019-12-03 EctoGuard, LLC Methods and formulations for controlling human lice infestations

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006060029A2 (en) * 2004-04-08 2006-06-08 Dow Agrosciences Llc Insecticidal n-substituted sulfoximines

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787420A (en) * 1969-03-17 1974-01-22 Dow Chemical Co Cyanoalkoxy(trifluoromethyl)pyridines
US3711486A (en) * 1969-03-17 1973-01-16 Dow Chemical Co Substituted(trifluoromethyl)pyridines
US3852279A (en) * 1973-03-12 1974-12-03 Squibb & Sons Inc 7-substituted -3,3a,4,5,6,7-hexahydro-3-substituted-2h- pyrazolo (4,3-c)pyridines
US4577028A (en) * 1981-10-20 1986-03-18 Ciba-Geigy Corporation 5-Haloalkyl-pyridines
US4692184A (en) * 1984-04-24 1987-09-08 Monsanto Company 2,6-substituted pyridine compounds
US5053516A (en) * 1984-05-23 1991-10-01 Ici Americas Inc. Synthesis of 2-substituted-5-methylpyridines from methylcyclobutanecarbonitrile, valeronitrile and pentenonitrile intermediates
EP0274379B1 (en) * 1987-01-06 1993-06-30 Sugai Chemical Industry Co., Ltd. Process for preparing pyridine-2,3-dicarboxylic acid compounds
US4747871A (en) * 1987-01-07 1988-05-31 Monsanto Company 2,6-bis(trifluoromethyl)-3-hydroxycarbonyl pyridine, salts and gametocides
GB8700838D0 (en) * 1987-01-15 1987-02-18 Shell Int Research Termiticides
JPH0625116B2 (en) * 1987-07-08 1994-04-06 ダイソー株式会社 Process for producing pyridine-2,3-dicarboxylic acid derivative
US5099023A (en) * 1990-03-19 1992-03-24 Monsanto Company Process for preparation of fluoromethyl-substituted pyridine carbodithioates
US5099024A (en) * 1990-03-19 1992-03-24 Monsanto Company Process for preparation of fluoromethyl-substituted pyridine carbodithioates
US5118809A (en) * 1990-06-15 1992-06-02 American Cyanamid Company Process for the preparation of substituted and unsubstituted-2,3-pyridinedicarboxylates from chloromaleate or chlorofumarate or mixtures thereof
US5124458A (en) * 1990-06-15 1992-06-23 American Cyanamid Company Process for the preparation of dialkyl pyridine-2,3-dicarboxylate and derivatives thereof from dialkyl dichlorosuccinate
US5225560A (en) * 1990-06-15 1993-07-06 American Cyanamid Company Process for the preparation of dialkyl pyridine-2,3-dicarboxylate and derivatives thereof from dialkyl dichlorosuccinate
US5169432A (en) * 1991-05-23 1992-12-08 Monsanto Company Substituted 2,6-Substituted Pyridine Herbicides
US5229519A (en) * 1992-03-06 1993-07-20 Reilly Industries, Inc. Process for preparing 2-halo-5-halomethylpyridines
US5227491A (en) * 1992-03-10 1993-07-13 American Cyanamid Company Process for the preparation of dialkyl 2,3-pyridinedicarboxylate and derivatives thereof from an α,β-unsaturated oxime and an aminobutenedioate
US6060502A (en) * 1995-06-05 2000-05-09 Rhone-Poulenc Agrochimie Pesticidal sulfur compounds
AU3776699A (en) * 1998-05-01 1999-11-23 Summus Group, Ltd. Methods and compositions for controlling a pest population
EP1110962A1 (en) * 1999-12-10 2001-06-27 Pfizer Inc. Process for preparing 1,4-dihydropyridine compounds
AU2003291403A1 (en) * 2002-11-08 2004-06-03 Neurogen Corporation 3-substituted-6-aryl pyridined as ligands of c5a receptors
DE60332757D1 (en) * 2002-12-20 2010-07-08 Dow Agrosciences Llc COMPOUNDS THAT APPRECIATE AS PESTICIDES
AU2004218241B2 (en) * 2003-03-07 2010-06-03 Syngenta Participations Ag Process for the production of substituted nicotinic acid esters
DE10328968A1 (en) * 2003-06-26 2005-01-13 Linde Ag Metal shielding gas joining with alternating polarity
ZA200605471B (en) * 2003-12-23 2007-11-28 Dow Agrosciences Llc Process for the preparation of pyridine derivatives
TWI398433B (en) 2006-02-10 2013-06-11 Dow Agrosciences Llc Insecticidal n-substituted (6-haloalkylpyridin-3-yl)alkyl sulfoximines
TWI381811B (en) * 2006-06-23 2013-01-11 Dow Agrosciences Llc A method to control insects resistant to common insecticides
TWI383973B (en) 2006-08-07 2013-02-01 Dow Agrosciences Llc Process for the preparation of 2-substituted-5-(1-alkylthio)alkylpyridines
TWI409256B (en) * 2006-09-01 2013-09-21 Dow Agrosciences Llc Insecticidal n-substituted (heteroaryl)cycloalkyl sulfoximines
TWI387585B (en) 2006-09-01 2013-03-01 Dow Agrosciences Llc Insecticidal n-substituted (heteroaryl)alkyl sulfilimines
CN101541771B (en) * 2006-09-01 2012-05-02 陶氏益农公司 Insecticidal N-substituted (2- sudstituted-1,3-thiazol) alkyl sulfoximines
TWI383970B (en) 2006-11-08 2013-02-01 Dow Agrosciences Llc Multi-substituted pyridyl sulfoximines and their use as insecticides
TWI395737B (en) * 2006-11-08 2013-05-11 Dow Agrosciences Llc Heteroaryl (substituted)alkyl n-substituted sulfoximines as insecticides
TW200820902A (en) 2006-11-08 2008-05-16 Dow Agrosciences Llc Use of N-substituted sulfoximines for control of invertebrate pests
JP5162598B2 (en) 2006-11-30 2013-03-13 ダウ アグロサイエンシィズ エルエルシー Process for producing 2-substituted-5- (1-alkylthio) alkylpyrimidine
US7511149B2 (en) 2007-02-09 2009-03-31 Dow Agrosciences Llc Process for the oxidation of certain substituted sulfilimines to insecticidal sulfoximines
US7709648B2 (en) 2007-02-09 2010-05-04 Dow Agrosciences Llc Process for the preparation of 2-substituted-5-(1-alkylthio)alkylpyridines
AR066366A1 (en) * 2007-05-01 2009-08-12 Dow Agrosciences Llc PESTICIDED SYNERGIC BLENDS
WO2009014891A2 (en) * 2007-07-20 2009-01-29 Dow Agrosciences Llc Increasing plant vigor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006060029A2 (en) * 2004-04-08 2006-06-08 Dow Agrosciences Llc Insecticidal n-substituted sulfoximines

Cited By (340)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017788B2 (en) 2006-11-08 2011-09-13 Dow Agrosciences Llc Heteroaryl (substituted)alkyl N-substituted sulfoximines as insecticides
EP2094659A1 (en) * 2006-11-08 2009-09-02 Dow AgroSciences LLC Heteroaryl (substituted) alkyl n-substituted sulfoximines as insecticides
EP2114163B1 (en) 2007-04-12 2017-05-10 Basf Se Pesticidal mixtures comprising a cyanosulfoximine compound
US9888685B2 (en) 2007-04-12 2018-02-13 Basf Se Pesticidal mixtures comprising cyanosulfoximine compounds
US11033028B2 (en) 2007-04-12 2021-06-15 Basf Se Pesticidal mixtures comprising cyanosulfoximine compounds
US11930813B2 (en) 2007-04-12 2024-03-19 Basf Se Pesticidal mixtures comprising cyanosulfoximine compounds
US11930814B2 (en) 2007-04-12 2024-03-19 Basf Se Pesticidal mixtures comprising cyanosulfoximine compounds
EP2534951A1 (en) 2007-04-17 2012-12-19 Bayer CropScience AG Combating pests with a combination of insecticides and transgenic plants by means of leaf and drench application
US8383549B2 (en) 2007-07-20 2013-02-26 Bayer Cropscience Lp Methods of increasing crop yield and controlling the growth of weeds using a polymer composite film
US8372418B2 (en) 2007-07-20 2013-02-12 Bayer Innovation Gmbh Polymer composite film with biocide functionality
WO2009014891A3 (en) * 2007-07-20 2009-03-12 Dow Agrosciences Llc Increasing plant vigor
AU2008279513B2 (en) * 2007-07-20 2013-09-26 Dow Agrosciences Llc Increasing plant vigor
EP2529927A2 (en) 2007-07-20 2012-12-05 Bayer Innovation Gmbh Polymer composite material with biocide functionality
US8372417B2 (en) 2007-07-20 2013-02-12 Bayer Innovation Gmbh Polymer composite film with barrier functionality
WO2009014891A2 (en) * 2007-07-20 2009-01-29 Dow Agrosciences Llc Increasing plant vigor
WO2009017951A3 (en) * 2007-07-27 2009-06-25 Dow Agrosciences Llc Pesticides and uses thereof
KR101542264B1 (en) 2007-07-27 2015-08-06 다우 아그로사이언시즈 엘엘씨 Pesticides and uses thereof
JP2010534659A (en) * 2007-07-27 2010-11-11 ダウ アグロサイエンシィズ エルエルシー Insecticides and their use
EP2338334A1 (en) 2007-07-27 2011-06-29 Dow AgroSciences LLC Pesticides and uses thereof
US8445689B2 (en) 2008-03-03 2013-05-21 Dow Agrosciences, Llc. Pesticides
WO2009111309A1 (en) 2008-03-03 2009-09-11 Dow Agrosciences Llc Pesticides
US8178685B2 (en) 2008-03-03 2012-05-15 Dow Agrosciences, Llc Pesticides
US9596862B2 (en) 2008-04-07 2017-03-21 Bayer Intellectual Property Gmbh Composition of Bacillus firmus CNCM I-1582 spore and a fungicide
EP2698063A1 (en) 2008-04-07 2014-02-19 Bayer CropScience AG Combinations of biological control agents and insecticides or fungicides
US9560852B2 (en) 2008-04-07 2017-02-07 Bayer Intellectual Property Gmbh Combinations of biological control agents and insecticides or fungicides
EP2700317A1 (en) 2008-04-07 2014-02-26 Bayer CropScience AG Combinations of biological control agents and insecticides or fungicides
US20170188585A1 (en) * 2008-04-07 2017-07-06 Bayer Intellectual Property Gmbh Composition of bacillus firmus cncm i-1582 spore and a fungicide
JP2011523939A (en) * 2008-05-01 2011-08-25 ダウ アグロサイエンシィズ エルエルシー Synergistic insecticidal mixture
AU2009243775B2 (en) * 2008-05-07 2015-05-14 Bayer Intellectual Property Gmbh Synergistic active ingredient combinations
CN102014639A (en) * 2008-05-07 2011-04-13 拜耳作物科学股份公司 Synergistic active ingredient combinations
WO2009135613A1 (en) * 2008-05-07 2009-11-12 Bayer Cropscience Aktiengesellschaft Synergistic active ingredient combinations
CN104604922B (en) * 2008-05-07 2016-05-11 拜耳作物科学股份公司 The method of reactive compound combination and composition thereof, control animal pest
EP2127522A1 (en) 2008-05-29 2009-12-02 Bayer CropScience AG Active-agent combinations with insecticidal and acaricidal properties
JP2011530605A (en) * 2008-08-12 2011-12-22 ダウ アグロサイエンシィズ エルエルシー Synergistic insecticide composition comprising an active compound, an ammonium salt, and a nonionic surfactant
CN102307476A (en) * 2008-08-27 2012-01-04 陶氏益农公司 Pesticidal compositions including N-substituted sulfoximine
US8324209B2 (en) 2008-08-27 2012-12-04 Dow Agrosciences, Llc Pesticidal compositions
WO2010027779A3 (en) * 2008-08-27 2011-07-14 Dow Agrosciences Llc Pesticidal compositions comprising n-substituted sulfoximines
WO2010027779A2 (en) * 2008-08-27 2010-03-11 Dow Agrosciences Llc Pesticidal compositions
CN102137593A (en) * 2008-08-28 2011-07-27 巴斯夫欧洲公司 Pesticidal mixtures comprising cyanosulfoximine compounds and spinetoram
WO2010023171A3 (en) * 2008-08-28 2010-12-23 Basf Se Pesticidal mixtures comprising cyanosulfoximine compounds and spinetoram
WO2010023171A2 (en) * 2008-08-28 2010-03-04 Basf Se Pesticidal mixtures comprising cyanosulfoximine compounds and spinetoram
WO2010022897A3 (en) * 2008-08-29 2011-01-06 Bayer Cropscience Ag Method for improving plant growth
CN102196727B (en) * 2008-08-29 2015-07-29 拜耳知识产权有限责任公司 The method of improving plant growth
US8796175B2 (en) 2008-08-29 2014-08-05 Bayer Cropscience Ag Method for enhancing plant intrinsic defense
CN102196727A (en) * 2008-08-29 2011-09-21 拜尔农作物科学股份公司 Method for improving plant growth
WO2010022897A2 (en) * 2008-08-29 2010-03-04 Bayer Cropscience Ag Method for improving plant growth
DE102008041695A1 (en) 2008-08-29 2010-03-04 Bayer Cropscience Ag Methods for improving plant growth
CN102202511A (en) * 2008-10-08 2011-09-28 先正达参股股份有限公司 Pesticidal combinations containing sulfoxaflor
JP2012505170A (en) * 2008-10-08 2012-03-01 シンジェンタ パーティシペーションズ アクチェンゲゼルシャフト Insecticide combinations, including sulfoxaflor
WO2010040623A1 (en) * 2008-10-08 2010-04-15 Syngenta Participations Ag Pesticidal combinations containing sulfoxaflor
DE102008063561A1 (en) 2008-12-18 2010-08-19 Bayer Cropscience Ag Hydrazides, process for their preparation and their use as herbicides and insecticides
US8846717B2 (en) 2008-12-26 2014-09-30 Dow Agrosciences, Llc. Stable insecticide compositions and methods for producing same
JP2012513994A (en) * 2008-12-26 2012-06-21 ダウ アグロサイエンシィズ エルエルシー Stable insecticide composition and method for producing the same
CN104222135B (en) * 2008-12-26 2017-04-26 美国陶氏益农公司 Stable insecticide compositions
CN102271516A (en) * 2008-12-26 2011-12-07 美国陶氏益农公司 Stable insecticide compositions and methods for producing same
AU2009330658B2 (en) * 2008-12-26 2014-07-10 Corteva Agriscience Llc Stable insecticide compositions and methods for producing same
US8507532B2 (en) 2008-12-26 2013-08-13 Dow Agrosciences, Llc. Stable insecticide compositions and methods for producing same
CN102271516B (en) * 2008-12-26 2014-06-18 美国陶氏益农公司 Stable insecticide compositions and methods for producing same
CN104222135A (en) * 2008-12-26 2014-12-24 美国陶氏益农公司 Stable insecticide compositions
US9125412B2 (en) 2008-12-26 2015-09-08 Dow Agrosciences Llc Stable insecticide compositions and methods for producing same
WO2010074747A1 (en) * 2008-12-26 2010-07-01 Dow Agrosciences, Llc Stable insecticide compositions and methods for producing same
WO2010075966A1 (en) * 2008-12-29 2010-07-08 Bayer Cropscience Ag Method for improved use of the production potential of genetically modified plants
EP2204094A1 (en) 2008-12-29 2010-07-07 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants Introduction
WO2010075994A1 (en) 2008-12-29 2010-07-08 Bayer Cropscience Aktiengesellschaft Treatment of transgenic crops with mixtures of fiproles and chloronicotinyls
EP2201841A1 (en) 2008-12-29 2010-06-30 Bayer CropScience AG Synergistic insecticidal mixtures
US9763451B2 (en) 2008-12-29 2017-09-19 Bayer Intellectual Property Gmbh Method for improved use of the production potential of genetically modified plants
EP2039772A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants introduction
EP2039770A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
EP2039771A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
WO2010083955A2 (en) 2009-01-23 2010-07-29 Bayer Cropscience Aktiengesellschaft Use of enaminocarboxylic compounds for fighting viruses transmitted by insects
EP2227951A1 (en) 2009-01-23 2010-09-15 Bayer CropScience AG Application of enaminocarbonyl compounds for combating viruses transmitted by insects
WO2010086095A1 (en) 2009-01-29 2010-08-05 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants introduction
WO2010094728A1 (en) 2009-02-19 2010-08-26 Bayer Cropscience Ag Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
WO2010094418A2 (en) 2009-02-23 2010-08-26 Bayer Cropscience Ag Insecticidal compositions having an improved effect
EP2223598A1 (en) 2009-02-23 2010-09-01 Bayer CropScience AG Insecticidal compounds with improved effect
EP2223602A1 (en) 2009-02-23 2010-09-01 Bayer CropScience AG Method for improved utilisation of the production potential of genetically modified plants
WO2010094418A3 (en) * 2009-02-23 2011-06-23 Bayer Cropscience Ag Insecticidal compositions having an improved effect
WO2010100189A1 (en) 2009-03-04 2010-09-10 Basf Se 3-arylquinazolin-4-one compounds for combating invertebrate pests
EP2232995A1 (en) 2009-03-25 2010-09-29 Bayer CropScience AG Method for improved utilisation of the production potential of transgenic plants
EP2561756A1 (en) 2009-03-25 2013-02-27 Bayer CropScience AG Nematicidal agent combinations comprising fluopyram and spirotetramate
EP2564704A1 (en) 2009-03-25 2013-03-06 Bayer CropScience AG Nematicidal agent combinations comprising fluopyram and methiocarb
EP2564703A1 (en) 2009-03-25 2013-03-06 Bayer CropScience AG Nematicidal agent combinations comprising fluopyram and rynaxypyr or cyazypyr
EP2564699A1 (en) 2009-03-25 2013-03-06 Bayer CropScience AG Nematicidal agent combinations comprising Fluopyram and Metarhizium
EP2564698A1 (en) 2009-03-25 2013-03-06 Bayer CropScience AG Nematicidal agent combinations comprising Fluopyram and Bacillus firmus
EP2561758A1 (en) 2009-03-25 2013-02-27 Bayer CropScience AG Nematicidal agent combinations comprising fluopyram and thiodicarb
EP2561755A1 (en) 2009-03-25 2013-02-27 Bayer CropScience AG Nematicidal combinations comprising fluopyram and mycorrhiza
EP2564700A1 (en) 2009-03-25 2013-03-06 Bayer CropScience AG Nematicidal agent combinations comprising Fluopyram and Hirsutella
WO2010108616A1 (en) 2009-03-25 2010-09-30 Bayer Cropscience Ag Nematicidal, insecticidal, and acaricidal combination of active substances, comprising pyridylethyl benzamide and insecticide
EP2564705A1 (en) 2009-03-25 2013-03-06 Bayer CropScience AG Nematicidal agent combinations comprising Fluopyram and Pasteuria penetrans
EP2564701A1 (en) 2009-03-25 2013-03-06 Bayer CropScience AG Nematicidal agent combinations comprising fluopyram and fluensulfone
EP2561757A1 (en) 2009-03-25 2013-02-27 Bayer CropScience AG Nematicidal agent combinations comprising fluopyram and ethiprole
EP2564702A1 (en) 2009-03-25 2013-03-06 Bayer CropScience AG Nematicidal agent combinations comprising fluopyram and a further active
US9089135B2 (en) 2009-03-25 2015-07-28 Bayer Intellectual Property Gmbh Nematicidal, insecticidal and acaricidal active ingredient combinations comprising pyridyl-ethylbenzamides and insecticides
EP2239331A1 (en) 2009-04-07 2010-10-13 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
US8586628B2 (en) 2009-04-22 2013-11-19 Bayer Cropscience Ag Use of Propineb as bird repellent
WO2010121735A1 (en) 2009-04-22 2010-10-28 Bayer Cropscience Ag Use of propineb as bird repellent
EP2264008A1 (en) 2009-06-18 2010-12-22 Bayer CropScience AG Substituted enaminocarbonyl compounds
US8343893B2 (en) 2009-06-18 2013-01-01 Bayer Cropscience Ag Substituted enaminocarbonyl compounds
WO2010145764A1 (en) 2009-06-18 2010-12-23 Bayer Cropscience Ag Substituted enamino carbonyl compounds
EP2269455A1 (en) 2009-06-24 2011-01-05 Bayer CropScience AG Combinations of biological control agents and insecticides
WO2010149370A1 (en) 2009-06-24 2010-12-29 Bayer Cropscience Ag Combinations of biological control agents and insecticides
WO2011003796A1 (en) 2009-07-06 2011-01-13 Basf Se Pyridazine compounds for controlling invertebrate pests
US8822691B2 (en) 2009-07-24 2014-09-02 Bayer Cropscience Ag Pesticidal carboxamides
WO2011009804A2 (en) 2009-07-24 2011-01-27 Basf Se Pyridine derivatives compounds for controlling invertebrate pests
WO2011009540A2 (en) 2009-07-24 2011-01-27 Bayer Cropscience Ag Pesticidal carboxamides
WO2011014660A1 (en) 2009-07-30 2011-02-03 Merial Limited Insecticidal 4-amino-thieno[2,3-d]-pyrimidine compounds and methods of their use
US8722717B2 (en) 2009-08-20 2014-05-13 Bayer Cropscience Ag 3-triazolylphenyl-substituted sulphide derivatives as acaricides and insecticides
WO2011020567A1 (en) 2009-08-20 2011-02-24 Bayer Cropscience Ag 3-triazolylphenyl-substituted sulfide derivatives for use as acaricides and insecticides
WO2011029506A1 (en) 2009-08-20 2011-03-17 Bayer Cropscience Ag 3-[1-(3-haloalkyl)-triazolyl]-phenyl-sulfide derivatives for use as acaricides and insecticides
US8632767B2 (en) 2009-08-20 2014-01-21 Bayer Intellectual Property Gmbh 3-[1-(3-haloalkyl)triazolyl]phenyl sulphide derivatives as acaricides and insecticides
WO2011045224A1 (en) 2009-10-12 2011-04-21 Bayer Cropscience Ag 1- (pyrid-3-yl) -pyrazole and 1- (pyrimid-5-yl) -pyrazole as pesticide
US8536204B2 (en) 2009-10-12 2013-09-17 Bayer Cropscience Ag Amides and thioamides as pesticides
US9066518B2 (en) 2009-10-12 2015-06-30 Bayer Intellectual Property Gmbh Heterocyclic compounds as pesticides
US8685964B2 (en) 2009-10-12 2014-04-01 Bayer Cropscience Ag Heterocyclic compounds as pesticides
WO2011045240A1 (en) 2009-10-12 2011-04-21 Bayer Cropscience Ag Amides and thioamides as pesticides
WO2011051151A1 (en) 2009-10-26 2011-05-05 Bayer Cropscience Ag Novel solid form of 4-[[(6-chloropyridin-3-yl)methyl](2,2-difluoroethyl)amino]furan-2(5h)-one
US8889878B2 (en) 2009-10-27 2014-11-18 Bayer Cropscience Ag Haloalky-substituted amides as insecticides and acaricides
US8710242B2 (en) 2009-10-27 2014-04-29 Bayer Cropscience Ag Haloalky -substituted amides as insecticides and acaricides
WO2011054436A2 (en) 2009-10-27 2011-05-12 Bayer Cropscience Ag Halogenalkyl-substituted amides used as insecticides and acaricides
WO2011051455A1 (en) 2009-10-30 2011-05-05 Bayer Cropscience Ag Pesticidal heterocyclic compounds
US8629273B2 (en) 2009-11-11 2014-01-14 Bayer Intellectual Property Gmbh Diazinylpyrazolyl compounds
US8916500B2 (en) 2009-11-17 2014-12-23 Bayer Intellectual Property Gmbh Active compound combinations
WO2011061156A1 (en) 2009-11-17 2011-05-26 Bayer Cropscience Ag Active compound combinations
US8481456B2 (en) 2009-11-17 2013-07-09 Bayer Cropscience Ag Active compound combinations
WO2011080044A2 (en) 2009-12-16 2011-07-07 Bayer Cropscience Ag Active compound combinations
US8530381B2 (en) 2009-12-16 2013-09-10 Bayer Cropscience Ag Active compound combinations
WO2011076724A2 (en) 2009-12-23 2011-06-30 Bayer Cropscience Ag Pesticidal compound mixtures
WO2011076726A2 (en) 2009-12-23 2011-06-30 Bayer Cropscience Ag Pesticidal compound mixtures
WO2011076727A2 (en) 2009-12-23 2011-06-30 Bayer Cropscience Ag Pesticidal compound mixtures
WO2011080211A1 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Pesticidal arylpyrrolidines
WO2011092147A1 (en) 2010-01-29 2011-08-04 Bayer Cropscience Ag Method to reduce the frequency and/or intensity of blossom-end rot disorder in horticultural crops
US8901038B2 (en) 2010-02-10 2014-12-02 Bayer Cropscience Ag Biphenyl-substituted cyclic ketoenols
WO2011098443A1 (en) 2010-02-10 2011-08-18 Bayer Cropscience Ag Spiroheterocyclical substituted tetramic acid derivatives
US9809542B2 (en) 2010-02-10 2017-11-07 Bayer Intellectual Property Gmbh Spiroheterocyclically substituted tetramic acid derivatives
WO2011098440A2 (en) 2010-02-10 2011-08-18 Bayer Cropscience Ag Biphenyl substituted cyclical keto-enols
WO2011107443A1 (en) 2010-03-02 2011-09-09 Bayer Cropscience Ag Use of propineb for physiological curative treatment under zinc deficiency
WO2011107504A1 (en) 2010-03-04 2011-09-09 Bayer Cropscience Ag Fluoroalkyl-substituted 2-amidobenzimidazoles and the use thereof for boosting stress tolerance in plants
WO2011117286A1 (en) 2010-03-23 2011-09-29 Basf Se Pyridazine compounds for controlling invertebrate pests
WO2011131616A2 (en) 2010-04-23 2011-10-27 Bayer Cropscience Ag Triglyceride-containing winter spraying agents
US20130231334A1 (en) * 2010-04-27 2013-09-05 Syngenta Crop Protection Llc Methods of controlling neonicotinoid resistant aphids
EP2382865A1 (en) 2010-04-28 2011-11-02 Bayer CropScience AG Synergistic active agent compounds
WO2011134964A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Synergistic active substance combinations
US8686156B2 (en) 2010-05-05 2014-04-01 Bayer Cropscience Ag Thiazole derivatives as pesticides
WO2011138285A1 (en) 2010-05-05 2011-11-10 Bayer Cropscience Ag Thiazol derivatives as pest control agents
WO2011157663A1 (en) 2010-06-15 2011-12-22 Bayer Cropscience Ag Novel ortho-substituted aryl amide derivatives
US8658800B2 (en) 2010-06-15 2014-02-25 Bayer Cropscience Ag Ortho-substituted arylamide derivatives
WO2011157778A1 (en) 2010-06-18 2011-12-22 Bayer Cropscience Ag Active substance combinations with insecticide and acaricide properties
US9968086B2 (en) 2010-06-18 2018-05-15 Bayer Intellectual Property Gmbh Active ingredient combinations having insecticidal and acaricidal properties
US9198424B2 (en) 2010-06-18 2015-12-01 Bayer Intellectual Property Gmbh Active ingredient combinations having insecticidal and acaricidal properties
US8686004B2 (en) 2010-06-28 2014-04-01 Bayer Cropscience Ag Heterocyclic compounds as pesticides
US9044015B2 (en) 2010-06-28 2015-06-02 Bayer Cropscience Ag Heterocyclic compounds as pesticides
WO2012000896A2 (en) 2010-06-28 2012-01-05 Bayer Cropscience Ag Heterocyclic compounds as agents for pest control
WO2012000902A1 (en) 2010-06-29 2012-01-05 Bayer Cropscience Ag Improved insecticidal compositions comprising cyclic carbonylamidines
US8598079B2 (en) 2010-06-30 2013-12-03 Bayer Cropscience Ag Active compound combinations
EP3146841A2 (en) 2010-06-30 2017-03-29 Bayer Intellectual Property GmbH Active agent combinations comprising penflufen and rynaxypyr or sulfoxaflor
WO2012000946A2 (en) 2010-06-30 2012-01-05 Bayer Cropscience Ag Active ingredient combinations
WO2012001068A2 (en) 2010-07-02 2012-01-05 Bayer Cropscience Ag Insecticidal or acaricidal formulations with improved availability on plant surfaces
WO2012004326A1 (en) 2010-07-08 2012-01-12 Bayer Cropscience Ag Pesticidal pyrroline derivatives
WO2012004293A2 (en) 2010-07-08 2012-01-12 Bayer Cropscience Ag Insecticide and fungicide active ingredient combinations
US9790202B2 (en) 2010-07-09 2017-10-17 Bayer Intellectual Property Gmbh Anthranilamide derivatives as pesticides
WO2012004208A1 (en) 2010-07-09 2012-01-12 Bayer Cropscience Ag Anthranilic acid diamide derivative as a pesticide
WO2012007500A2 (en) 2010-07-15 2012-01-19 Bayer Cropscience Ag New heterocyclic compounds as pesticides
US9233951B2 (en) 2010-07-15 2016-01-12 Bayer Intellectual Property Gmbh Heterocyclic compounds as pesticides
WO2012007505A2 (en) 2010-07-16 2012-01-19 Bayer Innovation Gmbh Polymer composite material with biocide functionality
WO2012010509A2 (en) 2010-07-20 2012-01-26 Bayer Cropscience Ag Gel bait for controlling crawling harmful insects
EP2422620A1 (en) 2010-08-26 2012-02-29 Bayer CropScience AG Insecticidal combinations comprising ethiprole and pymetrozine
WO2012028583A1 (en) 2010-09-03 2012-03-08 Bayer Cropscience Ag Formulations comprising deltamethrin
WO2012035011A1 (en) 2010-09-15 2012-03-22 Bayer Cropscience Ag Pesticidal arylpyrrolidines
US9375000B2 (en) 2010-09-15 2016-06-28 Bayer Intellectual Property Gmbh Pesticidal arylpyrrolidines
WO2012034957A1 (en) 2010-09-15 2012-03-22 Bayer Cropscience Ag Pesticidal pyrroline n-oxide derivatives
WO2012038480A2 (en) 2010-09-22 2012-03-29 Bayer Cropscience Ag Use of biological or chemical control agents for controlling insects and nematodes in resistant crops
WO2012038476A1 (en) 2010-09-22 2012-03-29 Bayer Cropscience Ag Use of active ingredients for controlling nematodes in nematode-resistant crops
WO2012045680A2 (en) 2010-10-04 2012-04-12 Bayer Cropscience Ag Insecticidal and fungicidal active substance combinations
WO2012045798A1 (en) 2010-10-07 2012-04-12 Bayer Cropscience Ag Fungicide composition comprising a tetrazolyloxime derivative and a thiazolylpiperidine derivative
WO2012052490A1 (en) 2010-10-21 2012-04-26 Bayer Cropscience Ag N-benzyl heterocyclic carboxamides
US9173396B2 (en) 2010-10-22 2015-11-03 Bayer Intellectual Property Gmbh Heterocyclic compounds as pesticides
WO2012052412A1 (en) 2010-10-22 2012-04-26 Bayer Cropscience Ag Novel heterocyclic compounds as pesticides
EP2446742A1 (en) 2010-10-28 2012-05-02 Bayer CropScience AG Insecticide or acaricide compositions containing mono- or disaccharides as activity enhancers
WO2012059497A1 (en) 2010-11-02 2012-05-10 Bayer Cropscience Ag N-hetarylmethyl pyrazolylcarboxamides
WO2012065944A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag N-aryl pyrazole(thio)carboxamides
US9206137B2 (en) 2010-11-15 2015-12-08 Bayer Intellectual Property Gmbh N-Aryl pyrazole(thio)carboxamides
US9055743B2 (en) 2010-11-29 2015-06-16 Bayer Intellectual Property Gmbh Alpha, beta-unsaturated imines
WO2012072489A1 (en) 2010-11-29 2012-06-07 Bayer Cropscience Ag Alpha,beta-unsaturated imines
WO2012072660A1 (en) 2010-12-01 2012-06-07 Bayer Cropscience Ag Use of fluopyram for controlling nematodes in crops and for increasing yield
EP2460406A1 (en) 2010-12-01 2012-06-06 Bayer CropScience AG Use of fluopyram for controlling nematodes in nematode resistant crops
WO2012076470A1 (en) 2010-12-09 2012-06-14 Bayer Cropscience Ag Pesticidal mixtures with improved properties
WO2012076471A1 (en) 2010-12-09 2012-06-14 Bayer Cropscience Ag Insecticidal mixtures with improved properties
WO2012082548A2 (en) 2010-12-15 2012-06-21 Syngenta Participations Ag Soybean event syht0h2 and compositions and methods for detection thereof
WO2012080188A1 (en) 2010-12-17 2012-06-21 Bayer Cropscience Ag Composition containing insecticide-wax particles
WO2012084900A1 (en) 2010-12-20 2012-06-28 Universite De Poitiers Zeolite-based phytosanitary composition
DE102010063691A1 (en) 2010-12-21 2012-06-21 Bayer Animal Health Gmbh Ectoparasiticidal drug combinations
US9066945B2 (en) 2010-12-21 2015-06-30 Bayer Intellectual Property Gmbh Ectoparasiticidal active substance combinations
WO2012084852A2 (en) 2010-12-21 2012-06-28 Bayer Animal Health Gmbh Ectoparasiticidal active substance combinations
EP2468097A1 (en) 2010-12-21 2012-06-27 Bayer CropScience AG Use of Isothiazolecarboxamides to create latent host defenses in a plant
WO2012089721A1 (en) 2010-12-30 2012-07-05 Bayer Cropscience Ag Use of substituted spirocyclic sulfonamidocarboxylic acids, carboxylic esters thereof, carboxamides thereof and carbonitriles thereof or salts thereof for enhancement of stress tolerance in plants
WO2012089722A2 (en) 2010-12-30 2012-07-05 Bayer Cropscience Ag Use of open-chain carboxylic acids, carbonic esters, carboxamides and carbonitriles of aryl, heteroaryl and benzylsulfonamide or the salts thereof for improving the stress tolerance in plants
US8946124B2 (en) 2011-02-17 2015-02-03 Bayer Intellectual Property Gmbh Substituted 3-(biphenyl-3-yl)-8,8-difluoro-4-hydroxy-1-azaspiro[4.5]dec-3-en-2-ones for therapy and halogen-substituted spirocyclic ketoenols
WO2012110464A1 (en) 2011-02-17 2012-08-23 Bayer Cropscience Ag Use of sdhi fungicides on conventionally bred asr-tolerant, stem canker resistant and/or frog-eye leaf spot resistant soybean varieties
WO2012110518A1 (en) 2011-02-17 2012-08-23 Bayer Pharma Aktiengesellschaft Substituted 3-(biphenyl-3-yl)-8,8-difluoro-4-hydroxy-1-azaspiro[4.5]dec-3-en-2-ones for therapy
WO2012110519A1 (en) 2011-02-17 2012-08-23 Bayer Cropscience Ag Substituted 3-(biphenyl-3-yl)-8,8-difluoro-hydroxy-1-azaspiro[4.5]dec-3-en-2-ones for therapy and halogen-substituted spirocyclic ketoenols
US9510594B2 (en) 2011-02-17 2016-12-06 Bayer Intellectual Property Gmbh Use of SDHI fungicides on conventionally bred ASR-tolerant, stem canker resistant and/or frog-eye leaf spot resistant soybean varieties
US9204640B2 (en) 2011-03-01 2015-12-08 Bayer Intellectual Property Gmbh 2-acyloxy-pyrrolin-4-ones
WO2012116960A1 (en) 2011-03-01 2012-09-07 Bayer Cropscience Ag 2-acyloxy-pyrrolin-4-ones
WO2012119984A1 (en) 2011-03-09 2012-09-13 Bayer Cropscience Ag Indolecarboxamides and benzimidazolecarboxamides as insecticides and acaricides
US9107411B2 (en) 2011-03-09 2015-08-18 Bayer Intellectual Property Gmbh Indolecarboxamides and benzimidazolecarboxamides as insecticides and acaricides
WO2012120105A1 (en) 2011-03-10 2012-09-13 Bayer Cropscience Ag Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds
WO2012126766A1 (en) 2011-03-18 2012-09-27 Bayer Cropscience Ag N-(3-carbamoylphenyl)-1h-pyrazole-5-carboxamide derivatives and the use thereof for controlling animal pests
WO2012136751A1 (en) 2011-04-08 2012-10-11 Basf Se N-substituted hetero-bicyclic compounds and derivatives for combating animal pests
WO2012139892A1 (en) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituted 5-(bicyclo[4.1.0]hept-3-en-2-yl)-penta-2,4-dienes and 5-(bicyclo[4.1.0]hept-3-en-2-yl)-pent-2-ene-4-ines as active agents against abiotic stress in plants
WO2012139890A1 (en) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituted 5-(cyclohex-2-en-1-yl)-penta-2,4-dienes and 5-(cyclohex-2-en-1-yl)-pent-2-en-4-ines as active agents against abiotic stress in plants
WO2012139891A1 (en) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituted vinyl and alkinyl cyclohexenols as active agents against abiotic stress in plants
US9161542B2 (en) 2011-05-26 2015-10-20 Dow Agrosciences Llc Pesticidal compositions and related methods
EP2535334A1 (en) 2011-06-17 2012-12-19 Bayer CropScience AG Crystalline modifications of penflufen
EP2540163A1 (en) 2011-06-30 2013-01-02 Bayer CropScience AG Nematocide N-cyclopropyl-sulfonylamide derivatives
WO2013010758A1 (en) 2011-06-30 2013-01-24 Bayer Intellectual Property Gmbh Nematocide n- cyclopropyl - sulfonylamide derivatives
WO2013004652A1 (en) 2011-07-04 2013-01-10 Bayer Intellectual Property Gmbh Use of substituted isoquinolinones, isoquinolindiones, isoquinolintriones and dihydroisoquinolinones or in each case salts thereof as active agents against abiotic stress in plants
WO2013010946A2 (en) 2011-07-15 2013-01-24 Basf Se Pesticidal methods using substituted 3-pyridyl thiazole compounds and derivatives for combating animal pests i
WO2013010947A2 (en) 2011-07-15 2013-01-24 Basf Se Pesticidal methods using substituted 3-pyridyl thiazole compounds and derivatives for combating animal pests ii
WO2013014126A1 (en) 2011-07-26 2013-01-31 Bayer Intellectual Property Gmbh Etherified lactate esters, method for the production thereof and use thereof for enhancing the effect of plant protecting agents
US9826734B2 (en) 2011-07-26 2017-11-28 Clariant International Ltd. Etherified lactate esters, method for the production thereof and use thereof for enhancing the effect of plant protecting agents
WO2013014227A1 (en) 2011-07-27 2013-01-31 Bayer Intellectual Property Gmbh Seed dressing for controlling phytopathogenic fungi
WO2013024008A1 (en) 2011-08-12 2013-02-21 Basf Se Aniline type compounds
EP2561759A1 (en) 2011-08-26 2013-02-27 Bayer Cropscience AG Fluoroalkyl-substituted 2-amidobenzimidazoles and their effect on plant growth
WO2013037956A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield
WO2013037955A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of acylsulfonamides for improving plant yield
WO2013037958A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of phenylpyrazolin-3-carboxylates for improving plant yield
WO2013050433A1 (en) 2011-10-05 2013-04-11 Bayer Intellectual Property Gmbh Pesticide preparation and process for producing the same
WO2013079600A1 (en) 2011-12-02 2013-06-06 Basf Se Method and system for monitoring crops during storage
WO2013079601A1 (en) 2011-12-02 2013-06-06 Basf Se Method and system for monitoring crops and/or infestation of crops with harmful organismus during storage
EP2604118A1 (en) 2011-12-15 2013-06-19 Bayer CropScience AG Active ingredient combinations having insecticidal and acaricidal properties
WO2013087709A1 (en) 2011-12-15 2013-06-20 Bayer Intellectual Property Gmbh Active ingredient combinations having insecticidal and acaricidal properties
WO2013092519A1 (en) 2011-12-19 2013-06-27 Bayer Cropscience Ag Use of anthranilic acid diamide derivatives for pest control in transgenic crops
WO2013092522A1 (en) 2011-12-20 2013-06-27 Bayer Intellectual Property Gmbh Novel insecticidal aromatic amides
WO2013092350A1 (en) 2011-12-21 2013-06-27 Bayer Cropscience Ag N-arylamidine-substituted trifluoroethyl sulfide derivatives as acaricides and insecticides
EP3395171A1 (en) 2011-12-21 2018-10-31 Bayer CropScience Aktiengesellschaft N-arylamidine-substituted trifluoroethylsulfide derivatives as acaricides and insecticides
EP2606726A1 (en) 2011-12-21 2013-06-26 Bayer CropScience AG N-Arylamidine-substituted trifluoroethylsulfide derivatives as acaricides and insecticides
WO2013092868A1 (en) 2011-12-21 2013-06-27 Basf Se N-thio-anthranilamide compounds and their use as pesticides
WO2013092943A1 (en) 2011-12-23 2013-06-27 Basf Se Isothiazoline compounds for combating invertebrate pests
WO2013107785A1 (en) 2012-01-21 2013-07-25 Bayer Intellectual Property Gmbh Use of host defense inducers for controlling bacterial harmful organisms in useful plants
WO2013113789A1 (en) 2012-02-02 2013-08-08 Basf Se N-thio-anthranilamide compounds and their use as pesticides
WO2013135724A1 (en) 2012-03-14 2013-09-19 Bayer Intellectual Property Gmbh Pesticidal arylpyrrolidines
WO2013144228A1 (en) 2012-03-29 2013-10-03 Basf Se Pesticidal methods using heterocyclic compounds and derivatives for combating animal pests
WO2013144213A1 (en) 2012-03-30 2013-10-03 Basf Se N-substituted pyridinylidene compounds and derivatives for combating animal pests
WO2013144223A1 (en) 2012-03-30 2013-10-03 Basf Se N-substituted pyrimidinylidene compounds and derivatives for combating animal pests
WO2013149940A1 (en) 2012-04-02 2013-10-10 Basf Se Acrylamide compounds for combating invertebrate pests
WO2013149903A1 (en) 2012-04-03 2013-10-10 Basf Se N- substituted hetero - bicyclic furanone derivatives for combating animal
WO2013150115A1 (en) 2012-04-05 2013-10-10 Basf Se N- substituted hetero - bicyclic compounds and derivatives for combating animal pests
WO2013164295A1 (en) 2012-05-04 2013-11-07 Basf Se Substituted pyrazole-containing compounds and their use as pesticides
WO2013167633A1 (en) 2012-05-09 2013-11-14 Basf Se Acrylamide compounds for combating invertebrate pests
WO2013171201A1 (en) 2012-05-16 2013-11-21 Bayer Cropscience Ag Insecticidal oil-in water (o/w) formulation
WO2013171199A1 (en) 2012-05-16 2013-11-21 Bayer Cropscience Ag Insecticidal water-in-oil (w/o) formulation
WO2013174836A1 (en) 2012-05-22 2013-11-28 Bayer Cropscience Ag Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound
WO2013174645A1 (en) 2012-05-24 2013-11-28 Basf Se N-thio-anthranilamide compounds and their use as pesticides
EP3243387A2 (en) 2012-05-30 2017-11-15 Bayer CropScience Aktiengesellschaft Compositions comprising a biological control agent and an insecticide
EP3363289A2 (en) 2012-05-30 2018-08-22 Bayer CropScience Aktiengesellschaft Compositions comprising a biological control agent and an insecticide
US10813862B2 (en) 2012-05-30 2020-10-27 Clariant International Ltd. Use of N-methyl-N-acylglucamines as solubilizers
US10864275B2 (en) 2012-05-30 2020-12-15 Clariant International Ltd. N-methyl-N-acylglucamine-containing composition
WO2013182613A1 (en) 2012-06-08 2013-12-12 Bayer Cropscience Ag Detection system for the identification of insecticide resistance
WO2013186089A2 (en) 2012-06-14 2013-12-19 Basf Se Pesticidal methods using substituted 3-pyridyl thiazole compounds and derivatives for combating animal pests
RU2639870C2 (en) * 2012-06-30 2017-12-25 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи Insecticidum n-substituted sulphylimines and sulphoximines of n-pyridine oxides
WO2014019983A1 (en) 2012-07-31 2014-02-06 Bayer Cropscience Ag Compositions comprising a pesticidal terpene mixture and an insecticide
EP3424322A1 (en) 2012-07-31 2019-01-09 Bayer CropScience Aktiengesellschaft Compositions comprising a pesticidal terpene mixture and an insecticide
WO2014026984A1 (en) 2012-08-17 2014-02-20 Bayer Cropscience Ag Azaindole carboxylic acid amides and azaindole thiocarboxylic acid amides for use as insecticides and acaricides
WO2014037340A1 (en) 2012-09-05 2014-03-13 Bayer Cropscience Ag Use of substituted 2-amidobenzimidazoles, 2-amidobenzoxazoles and 2-amidobenzothiazoles or salts thereof as active substances against abiotic plant stress
WO2014053401A2 (en) 2012-10-01 2014-04-10 Basf Se Method of improving plant health
WO2014053407A1 (en) 2012-10-01 2014-04-10 Basf Se N-thio-anthranilamide compounds and their use as pesticides
WO2014053405A1 (en) 2012-10-01 2014-04-10 Basf Se Pesticidally active mixtures comprising anthranilamide compounds
WO2014053395A1 (en) 2012-10-01 2014-04-10 Basf Se Use of n-thio-anthranilamide compounds on cultivated plants
WO2014053403A1 (en) 2012-10-01 2014-04-10 Basf Se Method of controlling insecticide resistant insects
WO2014053406A1 (en) 2012-10-01 2014-04-10 Basf Se Method of controlling ryanodine-modulator insecticide resistant insects
WO2014053404A1 (en) 2012-10-01 2014-04-10 Basf Se Pesticidally active mixtures comprising anthranilamide compounds
WO2014053450A1 (en) 2012-10-02 2014-04-10 Bayer Cropscience Ag Heterocyclic compounds as pesticides
WO2014060381A1 (en) 2012-10-18 2014-04-24 Bayer Cropscience Ag Heterocyclic compounds as pesticides
WO2014067962A1 (en) 2012-10-31 2014-05-08 Bayer Cropscience Ag Novel heterocyclic compounds as pest control agents
US10772324B2 (en) 2012-11-03 2020-09-15 Clariant International Ltd. Aqueous adjuvant-compositions
EP3369318A1 (en) 2012-11-06 2018-09-05 Bayer CropScience Aktiengesellschaft Herbicidal combinations for tolerant soybean cultures
WO2014072250A1 (en) 2012-11-06 2014-05-15 Bayer Cropscience Ag Herbicidal combinations for tolerant soybean cultures
EP3387906A1 (en) 2012-11-06 2018-10-17 Bayer CropScience Aktiengesellschaft Herbicidal combinations for tolerant soybean cultures
WO2014079820A1 (en) 2012-11-22 2014-05-30 Basf Se Use of anthranilamide compounds for reducing insect-vectored viral infections
WO2014083033A1 (en) 2012-11-30 2014-06-05 Bayer Cropsience Ag Binary fungicidal or pesticidal mixture
WO2014083088A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary fungicidal mixtures
WO2014086759A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising biological control agents
WO2014086753A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising biological control agents
WO2014086750A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising a biological control agent and an insecticide
WO2014086758A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising a biological control agent and an insecticide
WO2014086749A2 (en) 2012-12-03 2014-06-12 Bayer Cropscience Ag Composition comprising a biological control agent and an insecticide
WO2014086751A1 (en) 2012-12-05 2014-06-12 Bayer Cropscience Ag Use of substituted 1-(aryl ethynyl)-, 1-(heteroaryl ethynyl)-, 1-(heterocyclyl ethynyl)- and 1-(cyloalkenyl ethynyl)-cyclohexanols as active agents against abiotic plant stress
WO2014090765A1 (en) 2012-12-12 2014-06-19 Bayer Cropscience Ag Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops
WO2014090700A1 (en) 2012-12-14 2014-06-19 Basf Se Malononitrile compounds for controlling animal pests
WO2014095826A1 (en) 2012-12-18 2014-06-26 Bayer Cropscience Ag Binary fungicidal and bactericidal combinations
WO2014096238A1 (en) 2012-12-21 2014-06-26 Basf Se Cycloclavine and derivatives thereof for controlling invertebrate pests
WO2014102244A1 (en) 2012-12-27 2014-07-03 Basf Se 2-(pyridin-3-yl)-5-hetaryl-thiazole compounds carrying an imine or imine-derived substituent for combating invertebrate pests
WO2014122083A1 (en) 2013-02-06 2014-08-14 Bayer Cropscience Ag Halogen-substituted pyrazol derivatives as pest-control agents
WO2014124361A1 (en) 2013-02-11 2014-08-14 Bayer Cropscience Lp Compositions comprising a streptomyces-based biological control agent and another biological control agent
WO2014124379A1 (en) 2013-02-11 2014-08-14 Bayer Cropscience Lp Compositions comprising a streptomyces-based biological control agent and an insecticide
WO2014124375A1 (en) 2013-02-11 2014-08-14 Bayer Cropscience Lp Compositions comprising gougerotin and a biological control agent
WO2014124373A1 (en) 2013-02-11 2014-08-14 Bayer Cropscience Lp Compositions comprising gougerotin and an insecticide
WO2014128069A1 (en) 2013-02-19 2014-08-28 Bayer Cropscience Ag Use of prothioconazole to induce host defence responses
WO2014128136A1 (en) 2013-02-20 2014-08-28 Basf Se Anthranilamide compounds and their use as pesticides
WO2014139897A1 (en) 2013-03-12 2014-09-18 Bayer Cropscience Ag Use of dithiine-tetracarboximides for controlling bacterial harmful organisms in useful plants
WO2014140111A1 (en) 2013-03-13 2014-09-18 Bayer Cropscience Ag Lawn growth-promoting agent and method of using same
WO2014170313A1 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Active compound combinations having insecticidal properties
WO2014170300A1 (en) 2013-04-19 2014-10-23 Basf Se N-substituted acyl-imino-pyridine compounds and derivatives for combating animal pests
WO2014170364A1 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Binary insecticidal or pesticidal mixture
WO2014202505A1 (en) 2013-06-20 2014-12-24 Bayer Cropscience Ag Aryl sulfide derivatives and aryl sulfoxide derivatives as acaricides and insecticides
WO2014202510A1 (en) 2013-06-20 2014-12-24 Bayer Cropscience Ag Aryl sulfide derivatives and aryl sulfoxide derivatives as acaricides and insecticides
WO2014202751A1 (en) 2013-06-21 2014-12-24 Basf Se Methods for controlling pests in soybean
WO2015004028A1 (en) 2013-07-08 2015-01-15 Bayer Cropscience Ag Six-membered c-n-linked aryl sulfide derivatives and aryl sulfoxide derivatives as pest control agents
WO2015007682A1 (en) 2013-07-15 2015-01-22 Basf Se Pesticide compounds
WO2015040116A1 (en) 2013-09-19 2015-03-26 Basf Se N-acylimino heterocyclic compounds
WO2015055497A1 (en) 2013-10-16 2015-04-23 Basf Se Substituted pesticidal pyrazole compounds
EP3456201A1 (en) 2013-10-18 2019-03-20 BASF Agrochemical Products B.V. Use of pesticidal active carboxamide derivative in soil and seed application and treatment meth-ods
WO2015055757A1 (en) 2013-10-18 2015-04-23 Basf Se Use of pesticidal active carboxamide derivative in soil and seed application and treatment methods
WO2015091649A1 (en) 2013-12-18 2015-06-25 Basf Se N-substituted imino heterocyclic compounds
WO2015091645A1 (en) 2013-12-18 2015-06-25 Basf Se Azole compounds carrying an imine-derived substituent
WO2015101622A1 (en) 2014-01-03 2015-07-09 Bayer Cropscience Ag Novel pyrazolyl-heteroarylamides as pesticides
WO2015104422A1 (en) 2014-01-13 2015-07-16 Basf Se Dihydrothiophene compounds for controlling invertebrate pests
DE202014008415U1 (en) 2014-02-19 2014-11-25 Clariant International Ltd. Aqueous adjuvant composition for increasing the effectiveness of electrolyte active substances
DE202014008418U1 (en) 2014-02-19 2014-11-14 Clariant International Ltd. Low foaming agrochemical compositions
WO2015160618A1 (en) 2014-04-16 2015-10-22 Bayer Cropscience Lp Compositions comprising ningnanmycin and a biological control agent
WO2015160620A1 (en) 2014-04-16 2015-10-22 Bayer Cropscience Lp Compositions comprising ningnanmycin and an insecticide
US11425904B2 (en) 2014-04-23 2022-08-30 Clariant International Ltd. Use of aqueous drift-reducing compositions
WO2016001129A1 (en) 2014-07-01 2016-01-07 Bayer Cropscience Aktiengesellschaft Improved insecticidal compositions
WO2016008830A1 (en) 2014-07-15 2016-01-21 Bayer Cropscience Aktiengesellschaft Aryl-triazolyl pyridines as pest control agents
EP3556211A1 (en) 2014-08-13 2019-10-23 Clariant International Ltd Organic ammonium salts of anionic pesticides
DE102014012022A1 (en) 2014-08-13 2016-02-18 Clariant International Ltd. Organic ammonium salts of anionic pesticides
DE102014018274A1 (en) 2014-12-12 2015-07-30 Clariant International Ltd. Sugar surfactants and their use in agrochemical compositions
US11700852B2 (en) 2014-12-19 2023-07-18 Clariant International Ltd Aqueous electrolyte-containing adjuvant compositions, active ingredient-containing compositions and the use thereof
WO2016106063A1 (en) 2014-12-22 2016-06-30 Bayer Corpscience Lp Method for using a bacillus subtilis or bacillus pumilus strain to treat or prevent pineapple disease
US11234436B2 (en) 2015-04-17 2022-02-01 Basf Agrochemical Products B.V. Method for controlling non-crop pests
WO2016166252A1 (en) 2015-04-17 2016-10-20 Basf Agrochemical Products B.V. Method for controlling non-crop pests
US10961484B2 (en) 2015-10-09 2021-03-30 Clariant International Ltd. Compositions comprising sugar amine and fatty acid
US10920080B2 (en) 2015-10-09 2021-02-16 Clariant International Ltd. N-Alkyl glucamine-based universal pigment dispersions
WO2017186543A2 (en) 2016-04-24 2017-11-02 Bayer Cropscience Aktiengesellschaft Use of fluopyram and/or bacillus subtilis for controlling fusarium wilt in plants of the musaceae family
EP3238540A1 (en) 2016-04-28 2017-11-01 Bayer CropScience Aktiengesellschaft Timed-release-type granular agrochemical composition and method for manufacturing same
WO2017186577A1 (en) 2016-04-28 2017-11-02 Bayer Cropscience Aktiengesselschaft Timed-release-type granular agrochemical composition and method for manufacturing same
US11220603B2 (en) 2016-05-09 2022-01-11 Clariant International Ltd. Stabilizers for silicate paints
WO2018019676A1 (en) 2016-07-29 2018-02-01 Bayer Cropscience Aktiengesellschaft Active compound combinations and methods to protect the propagation material of plants
CN113480474A (en) * 2021-07-27 2021-10-08 深圳市易瑞生物技术股份有限公司 Sulfoxaflor hapten, preparation method thereof, antigen, antibody and application thereof
CN113480474B (en) * 2021-07-27 2023-02-28 深圳市易瑞生物技术股份有限公司 Sulfoxaflor hapten, preparation method thereof, antigen, antibody and application thereof

Also Published As

Publication number Publication date
KR101344974B1 (en) 2013-12-31
TW200803745A (en) 2008-01-16
US20110196001A1 (en) 2011-08-11
NZ572838A (en) 2011-11-25
JP5264719B2 (en) 2013-08-14
ZA200809866B (en) 2010-02-24
US20070299264A1 (en) 2007-12-27
TWI381811B (en) 2013-01-11
AU2007261706A1 (en) 2007-12-27
EP2043436A1 (en) 2009-04-08
KR20090021355A (en) 2009-03-03
US8362046B2 (en) 2013-01-29
JP2009541313A (en) 2009-11-26
JP2013139466A (en) 2013-07-18
US20130123307A1 (en) 2013-05-16
US8912222B2 (en) 2014-12-16
CN101478877A (en) 2009-07-08
MX2008016527A (en) 2009-01-26
AU2007261706B2 (en) 2012-03-15
AR059438A1 (en) 2008-04-09
CA2653186A1 (en) 2007-12-27

Similar Documents

Publication Publication Date Title
US8912222B2 (en) Method to control insects resistant to common insecticides
US9125412B2 (en) Stable insecticide compositions and methods for producing same
EP2369921B1 (en) Stable sulfoximine-insecticide compositions
US8193364B2 (en) Insecticidal N-substituted (6-haloalkylpyridin-3-yl)-alkyl sulfoximines
EP2057120B1 (en) Insecticidal n-substituted (heteroaryl)cycloalkyl sulfoximines
EP2338882B1 (en) 2-((6-(Haloalkyl substituted))pyridin-3-yl)-tetrahydro-1H-1(lamba)4-thien-1-ylidenecyanamide derivatives and related compounds as pesticides and insecticides
EP2079697B1 (en) Multi-substituted pyridyl sulfoximines and their use as insecticides
US20080108665A1 (en) Use of N-substituted sulfoximines for control of invertebrate pests

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780023513.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07750611

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007261706

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 572838

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 9719/DELNP/2008

Country of ref document: IN

Ref document number: 2653186

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2007261706

Country of ref document: AU

Date of ref document: 20070209

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007750611

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08135441

Country of ref document: CO

Ref document number: MX/A/2008/016527

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2009516478

Country of ref document: JP

Ref document number: 1020087031120

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0713519

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081223