WO2007146225A2 - Heterocyclic aspartyl protease inhibitors - Google Patents

Heterocyclic aspartyl protease inhibitors Download PDF

Info

Publication number
WO2007146225A2
WO2007146225A2 PCT/US2007/013684 US2007013684W WO2007146225A2 WO 2007146225 A2 WO2007146225 A2 WO 2007146225A2 US 2007013684 W US2007013684 W US 2007013684W WO 2007146225 A2 WO2007146225 A2 WO 2007146225A2
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
aryl
cycloalkyl
groups
compound
Prior art date
Application number
PCT/US2007/013684
Other languages
French (fr)
Other versions
WO2007146225A3 (en
Inventor
Yusheng Wu
Ulrich Iserloh
Jared Cumming
Xiaoxiang Liu
Robert D. Mazzola
Zhong-Yue Sun
Ying Huang
Andrew Stamford
Brian Mckittrick
Zhaoning Zhu
Original Assignee
Schering Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schering Corporation filed Critical Schering Corporation
Priority to BRPI0712780-4A priority Critical patent/BRPI0712780A2/en
Priority to CA002653650A priority patent/CA2653650A1/en
Priority to AU2007258435A priority patent/AU2007258435A1/en
Priority to JP2009515439A priority patent/JP2009539983A/en
Priority to MX2008015956A priority patent/MX2008015956A/en
Priority to EP07795971A priority patent/EP2032542A2/en
Publication of WO2007146225A2 publication Critical patent/WO2007146225A2/en
Publication of WO2007146225A3 publication Critical patent/WO2007146225A3/en
Priority to IL195592A priority patent/IL195592A0/en
Priority to NO20090144A priority patent/NO20090144L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/20Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D411/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D411/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D411/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/20Spiro-condensed systems

Definitions

  • This invention relates to aspartyl protease inhibitors, pharmaceutical compositions comprising said compounds, their use in the treatment of cardiovascular diseases, cognitive and neurodegenerative diseases, and their use as inhibitors of the Human Immunodeficiency Virus, plasmepsins, cathepsin D and protozoal enzymes.
  • Angiotensin-ll a potent vasoconstrictor and stimulator for release of adrenal aldosterone, was processed from the precursor decapeptide Angiotensin-I, which in turn is processed from angiotensinogen by the renin enzyme.
  • Angiotensin-ll is also found to play roles in vascular smooth muscle cell growth, inflammation, reactive oxygen species generation and thrombosis and influence atherogenesis and vascular damage.
  • Clinically, the benefit of interruption of the generation of angiotensin-ll through antagonism of conversion of angiotensin-l has been well known and there are a number of ACE inhibitor drugs on the market.
  • renin is an aspartyl protease whose only natural substrate is angiotensinogen, it is believed that there would be less frequent adverse effect for controlling high blood pressure and related symptoms regulated by angiotensin-ll through its inhibition.
  • Another protease, Cathepsin-D is involved in lysosomal biogenesis and protein targeting, and may also be involved in antigen processing and presentation of peptide fragments. It has been linked to numerous diseases including, Alzheimer's, Disease, connective tissue disease, muscular dystrophy and breast cancer.
  • AD Alzheimer's Disease
  • a ⁇ extracellular ⁇ -amyloid
  • Amyloid plaques consist predominantly of A ⁇ peptides comprised of 40 - 42 amino acid residues, which are derived from processing of amyloid precursor protein (APP).
  • APP is processed by multiple distinct protease activities.
  • a ⁇ peptides result from the cleavage of APP by ⁇ -secretase at the position corresponding to the N-terminus of A ⁇ , and at the C- terminus by ⁇ secretase activity.
  • APP is also cleaved by ⁇ -secretase activity resulting in the secreted, non-amyloidogenic fragment known as soluble APP.
  • BACE- 1 An aspartyl protease known as BACE- 1 has been identified as the ⁇ -secretase activity responsible for cleavage of APP at the position corresponding to the N- terminus of A ⁇ peptides.
  • BACE- 1 An aspartyl protease known as BACE- 1 has been identified as the ⁇ -secretase activity responsible for cleavage of APP at the position corresponding to the N- terminus of A ⁇ peptides.
  • a ⁇ has been shown to be toxic to neuronal cells in vitro and when injected into rodent brains.
  • inherited forms of early-onset AD are known in which well-defined mutations of APP or the presenilis are present. These mutations enhance the production of A ⁇ and are considered causative of AD.
  • a ⁇ peptides are formed as a result of ⁇ -secretase activity
  • inhibition of BACE- 1 should inhibit formation of A ⁇ peptides.
  • inhibition of BAC E- 1 is a therapeutic approach to the treatment of AD and other cognitive and neurodegenerative diseases caused by A ⁇ plaque deposition.
  • HIV Human immunodeficiency virus
  • AIDS acquired immune deficiency syndrome
  • compounds such as indinavir, ritonavir and saquinavir which are inhibitors of the HIV aspartyl protease result in lowering of viral load.
  • the compounds described herein would be expected to be useful for the treatment of AIDS.
  • HIV-1 protease an aspartyl protease related to renin.
  • HTLV-I Human T-cell leukemia virus type I
  • HTLV-I Human T-cell leukemia virus type I
  • HTLV-I requires an aspartyl protease to process viral precursor proteins, which produce mature virions. This makes the protease an attractive target for inhibitor design.
  • Plasmepsins are essential aspartyl protease enzymes of the malarial parasite.
  • Compounds for the inhibition of aspartyl proteases plasmepsins, particularly I, II, IV and HAP, are in development for the treatment of malaria.
  • Aspartic proteases of Plasmodium vivax are highly conserved in wild isolates, Korean Journal of Parasitology (2004 June), 42(2) 61-6. Journal code: 9435800
  • compounds used to target aspartyl proteases plasmepsins e.g.
  • Alzherimer's disease include WO 2006/044492, which discloses spiropiperidine compounds that are said to be inhibitors of ⁇ -secretase, and WO 2006/041404, which discloses substituted amino compounds that are said to be useful for the treatment or prophylaxix of A ⁇ related pathologies. Both these publications are incorporated by reference.
  • the present invention relates to compounds having the structural formula I
  • U is a bond or -(C(R 3 )(R 4 )) b -, wherein b is 1 or 2;
  • R 1 , R 2 and R 5 are independently selected from the group consisting of H, alky I, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl.
  • arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkenylheteroaryl, heterocycloalkenylheteroaryl, -OR 15 , -CN 1 -Cf NR 11 )R 8 ,
  • R 7 is independently selected from the group consisting of alkylene, arylalkylene, heteroarylalkylene, cycloalkylalkylene, heterocycloalkylalkylene, arylcycloalkylalkylene.
  • M is -CH 2 -, S, -N(R 19 J- or O
  • a and B are independently arylene or heteroarylene and q is O, 1 or 2 provided that when q is 2, one M must be a carbon atom and when q is 2, M is optionally a double bond
  • R 3 and R 4 form said multicyclic groups
  • adjacent R 3 and R 4 or R 6 and R 7 groups cannot be combined to form said multicyclic groups
  • R 6 and R 7 together with the carbon to which they are attached are combined to form multicyclic groups such as wherein M is -CH 2 -, S, -N(R 19 )- or O, A and B are independently arylene or heteroarylene and q is 0, 1 or 2 provided that when q is 2, one M must be a carbon atom and when q is 2, M is optionally a double bond; and with the proviso that when R ⁇ and R 7 form said multicyclic groups, then adjacent R 3 and R 4 or R 6 and
  • R 8 is independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl
  • R 9 is independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl
  • R 10 is independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl
  • R 11 , R 12 and R 13 are independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalky
  • R 15 , R 1 ⁇ and R 17 are independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylal
  • R 23 numbers 0 to 5 substituents, m is 0 to 6 and n is 0 to 5;
  • R 18 is 1-5 substituents independently selected from the group consisting of alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl,
  • R 19 is alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkytaryl,
  • R 20 is halo substituted aryl, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyJ, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl,
  • R 23 is 1 to 5 groups independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl
  • R 27 is 1 -5 substituents independently selected from the group consisting of alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylaikyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloaikenyl, heterocycloalkenyl, arylheterocycioalkenyl, heteroarylheterocycloalkenyl, alky ⁇ yl, arylal
  • R 29 is alkyl, arylalkyl, h ⁇ teroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, het ⁇ rocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl,
  • T is a bond, -0-((C(R 23 XR 23 ))-, -3-((C(R 23 J(R 23 ))-, -N-((C(R 23 )(R 23 ))- or -((C(R 83 MR 83 )), ⁇ -.
  • the invention in another aspect, relates to a pharmaceutical composition
  • a pharmaceutical composition comprising at least one compound of formula I and a pharmaceutically acceptable carrier
  • the invention comprises the method of inhibiting aspartyl proteases comprising administering at least one compound of formula I to a patient in need of such treatment.
  • the invention comprises: the method of treating a cardiovascular disease such as hypertension, renal failure, congestive heart failure or another disease modulated by renin inhibition; the method of treating Human Immunodeficiency Virus; the method of treating a cognitive or neurodegenerative disease such as Alzheimer's Disease; the method of inhibiting plasmepsins I and Il for treatment of malaria; the method of inhibiting Cathepsin D for the treatment of Alzheimer's Disease, breast cancer, and ovarian cancer; and the method of inhibiting protozoal enzymes, for example inhibition of Plasmodium falciparnum, for the treatment of fungal infections.
  • Said method of treatment comprise administering at least one compound of formula I to a patient in need of such treatment.
  • the invention comprises the method of treating Alzheimer's Disease comprising administering at least one compound of formula I to a patient in need of such treatment.
  • the invention comprises the method of treating Alzheimer's Disease comprising administering to a patient in need of such treatment a combination of at least one compound of formula I and a cholinesterase inhibitor or a muscarinic nr ⁇ agonist or m 2 antagonist.
  • the invention relates to a kit comprising in separate containers in a single package pharmaceutical compositions for use in combination, in which one container comprises a compound of formula I in a pharmaceutically acceptable carrier and a second container comprises a cholinesterase inhibitor or a muscarinic mi agonist or m 2 antagonist in a pharmaceutically acceptable carrier, the combined quantities being an effective amount to treat a cognitive disease or neurodegenerative disease such as Alzheimer's Disease.
  • Preferred compounds of formula I are those compounds wherein R 1 is H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocylocalkylalkyl or cycloalkyl or more preferably.
  • Another group of preferred compounds of formula I are those compounds wherein R 2 is H.
  • Preferred compounds of formula I are those compounds wherein R 3 is H, alkyl, aryl, aryl substituted with 1 to 5 R 21 groups, heteroaryl, heteroaryl substituted with 1 to 5 R 21 groups, cycloalkyl, heterocycloalkyl, halo, -OR 9 , cycloalkyl, or -SR 19 or more
  • R 3 is H, -CH 3 , F, Cl, Br, -OCH 3 , -SCH 3 ,
  • Preferred compounds of the invention are those of formula I wherein R 4 is H, alkyl, aryl, aryl substituted with 1 to 5 R 21 groups, heteroaryl, heteroaryl substituted with 1 to 5 R 21 groups, cycloalkyl, heterocycloalkyl, halo, -OR 9 , cycloalkyl, or -SR 19 , or
  • R 4 is H, -CH 3 .
  • More preferred compounds of formula I are those compounds wherein W is -C(O)- or X is -N(R 5 )-, or more preferably R 5 is H.
  • Another group of preferred compounds of formula I are those compounds wherein R 6 is H, alkyl, cycloalkyl or cycloalkylalkyl or more preferably, R 6 is -CH 3 or
  • Preferred compounds of formula I are those compounds wherein R 7 is arylene, heteroarylene, cycloalkylene, heterocycloalkylene or alkylene, wherein each of said R 7 groups is independently, unsubstituted or substituted at 1 to 3 hydrogens by 1 to 3
  • R i2*1 1 is -CN, -NO 2 , NH 2 , -CH 3 or halo.
  • R 30 is arylene, heteroarylene, cycloalkylene, heterocycloalkylene or alkylene, wherein each of said R 30 groups is independently unsubstituted or substituted at 1 to 3 hydrogens by 1 to 3 R 21 groups; or more preferably R 30 is
  • Another group of preferred compounds of formula I are those compounds wherein T is a bond or -CH 2 -. Another group of preferred compounds of formula I are those compounds
  • R 23 is H, alkyl, alkyl substituted with 1 to 5 R 27 groups, cycloalkyl, aryl, heteroaryl, cycloalkyl substituted with 1 to 5 R 27 groups, aryl substituted with 1 to 5 R 27 groups or heteroaryl substituted with 1 to 5 R 27 groups.
  • W is -C(O)-; X iS -N(R 5 )-;
  • R 1 is H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocylocalkylalkyl or cycloalkyl;
  • R 2 is H
  • R 5 is H;
  • R 3 is H, alkyl, aryl, aryl substituted with 1 to 5 R 21 groups, heteroaryl, heteroaryl substituted with 1 to 5 R 21 groups, cycloalkyl, heterocycloalkyl, halo, -OR 9 , cycloalkyl, or -SR 19 ;
  • R 4 is H 1 alky I, aryl, aryl substituted with 1 to 5 R 21 groups, h ⁇ teroaryl, heteroaryl substituted with 1 to 5 R 21 groups, cycloalkyl, heterocycloalkyl, halo, -OR 9 , cycloalkyl, or -SR 19 ;
  • R 6 is H, alky I, cycloalkyl or cycloalkylalkyl
  • R 7 is arylene, heteroarylene, cycloalkylene, heterocycloalkylene or alkylene, wherein each of said R 7 groups is independently unsubstituted or substituted at 1 to 3 hydrogens by 1 to 3 R 21 groups;
  • R 30 is arylene, heteroarylene, cycloalkylene, heterocycloalkylene or alkylene, wherein each of said R 30 groups is independently unsubstituted or substituted at 1 to 3 hydrogens by 1 to 3 R 21 groups;
  • T is a bond or -CH 2 -;
  • R 23 is H 1 alkyl, alkyl substituted with 1 to 5 R 27 groups, cycloalkyl, aryl, heteroaryl, cycloalkyl substituted with 1 to 5 R 27 groups, aryl substituted with 1 to 5 R 27 groups or heteroaryl substituted with 1 to 5 R 27 groups.
  • R 4 is H, -CH 3 . F, Cl, Br, -OCH 3 , -SCH
  • R 21 is -CN, -NO 2 , NH 2 , -CH 3 or halo; and R 23 is H, -CH 3 , -CF 3 , -CH 2 -O-CH 3 , -CH 2 -CH 2 -CH 3 , -CH 2 -CH 2 -(CH)-(CHa) 2 ,
  • the compounds of Formula (I), or pharmaceutically acceptable salts, solvates, or esters thereof, are preferably purified to a degree suitable for use as a pharmaceutically active substance. That is, the compounds of Formula (I) can have a purity of 95 wt% or more (excluding adjuvants such as pharmaceutically acceptable carriers, solvents, etc., which are used in formulating the compound of Formula (I) into a conventional form, such as a pill, capsule, IV solution, etc. suitable for administration into a patient). In other embodiments, the purity can be 97 wt% or more, or 99 wt% or more.
  • a purified compound of Formula (I) includes a single isomer having a purity, as discussed above, of 95 wt% or more, 97 wt% or more, or 99 wt% or more, as discussed above.
  • the purified compound of Formula (I) can include a mixture of isomers, each having a structure according to Formula (I), where the amount of impurity (i.e., compounds or other contaminants, exclusive of adjuvants as discussed above) is 5 wt% or less, 3 wt% or less, or 1 wt% or less.
  • the purified compound of Formula (I) can be an isomeric mixture of compounds, where the ratio of the amounts of the two isomers is approximately 1 :1 , and the combined amount of the two isomers is 95 wt% or more, 97 wt% or more, or 99 wt% or more.
  • carbons of formula I may be replaced with 1 to 3 silicon atoms so long as all valency requirements are satisfied.
  • Alkyl means an aliphatic hydrocarbon group which may be straight or branched and comprising about 1 to about 20 carbon atoms in the chain. Preferred alkyl groups contain about 1 to about 12 carbon atoms in the chain. More preferred alkyl groups contain about 1 to about 6 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkyl chain.
  • Lower alkyl means a group having about 1 to about 6 carbon atoms in the chain which may be straight or branched.
  • Non-limiting examples of suitable alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n- pentyl, heptyl, nonyl and decyl.
  • R 21 -substituted alkyl groups include fluoromethyl, trifluoromethyl and cyclopropylmethyl .
  • Alkenyl means an aliphatic hydrocarbon group containing at least one carbon-carbon double bond and which may be straight or branched and comprising about 2 to about 15 carbon atoms in the chain.
  • Preferred alkenyl groups have about 2 to about 12 carbon atoms in the chain; and more preferably about 2 to about 6 carbon atoms in the chain.
  • Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkenyl chain.
  • Lower alkenyl means about 2 to about 6 carbon atoms in the chain which may be straight or branched.
  • suitable alkenyl groups include ethenyl, propenyl, n-butenyl, 3-methylbut-2-enyl, n-pentenyl, octenyl and decenyl.
  • Alkynyl means an aliphatic hydrocarbon group containing at least one carbon-carbon triple bond and which may be straight or branched and comprising about 2 to about 15 carbon atoms in the chain.
  • Preferred alkynyl groups have about 2 to about 12 carbon atoms in the chain; and more preferably about 2 to about 4 carbon atoms in the chain.
  • Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkynyl chain.
  • “Lower alkynyl” means about 2 to about 6 carbon atoms in the chain which may be straight or branched.
  • suitable alkynyl groups include ethynyl, propynyl, 2-butynyl, 3-methylbutynyl, n-pentynyl, and decynyl.
  • Aryl means an aromatic monocyclic or multicyclic ring system comprising about 6 to about 14 carbon atoms, preferably about 6 to about 10 carbon atoms.
  • the aryl group can be optionally substituted with one or more substituents (e.g., R 18 , R 21 ' R 22 , etc.) which may be the same or different, and are as defined herein or two substituents on adjacent carbons can be linked together to form
  • Suitable aryl groups include phenyl and naphthyl.
  • Heteroaryl means an aromatic monocyclic or multicyclic ring system comprising about 5 to about 14 ring atoms, preferably about 5 to about 10 ring atoms, in which one to four of the ring atoms is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination.
  • Preferred heteroaryls contain about 5 to about 6 ring atoms.
  • the "heteroaryl” can be optionally substituted by one or more R 21 substitue ⁇ ts which may be the same or different, and are as defined herein.
  • the prefix aza, oxa or thia before the heteroaryl root name means that at least a nitrogen, oxygen or sulfur atom respectively, is present as a ring atom.
  • a nitrogen atom of a heteroaryl can be optionally oxidized to the corresponding N-oxide.
  • Non- limiting examples of suitable heteroaryls include pyridyl, pyrazinyl, furanyl, thienyl, pyrimidrnyl, isoxazolyl, isothiazolyl, oxazolyl, thiazolyl, pyrazolyl, furazanyl, pyrrolyl, pyrazolyl, triazolyl, 1 ,2,4-thiadiazolyl, pyrazinyl, pyridazinyl, quinoxalinyl, phthalazinyl, imidazo[1,2-a]pyridinyl, imidazo[2,1-b]thiazolyl, benzofurazanyl, indolyl, azaindolyl, benzimidazolyl, benzothienyl, quinolinyl, imidazolyl, thienopyridyl, quinazolinyl, thienopyrimidyl, pyrrolopyri
  • Cycloalkyl means a non-aromatic mono- or multicyclic ring system comprising about 3 to about 15 carbon atoms, preferably about 5 to about 10 carbon atoms. Preferred cycloalkyl rings contain about 5 to about 7 ring atoms.
  • the cycloalkyl can be optionally substituted with one or more R 21 substituents which may be the same or different, and are as defined above.
  • suitable monocyclic cycloalkyls include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl and the like.
  • Non-limiting examples of suitable multicyclic cycloalkyls include 1-decalin, norbornyl, adamantyl and the like. Further non-limiting examples of cycloalkyl include the following
  • Cycloalkylether means a non-aromatic ring of 3 to 15 atoms comprising an oxygen atom and 2 to 14 carbon atoms. Ring carbon atoms can be substituted, provided that substituents adjacent to the ring oxygen do not include halo or substituents joined to the ring through an oxygen, nitrogen or sulfur atom.
  • Cycloalkenyl means a non-aromatic mono or multicyclic ring system comprising about 3 to about 15 carbon atoms, preferably about 5 to about 10 carbon atoms which contains at least one carbon-carbon double bond.
  • the cycloalkenyl ring can be optionally substituted with one or more R 21 substituents which may be the same or different, and are as defined above.
  • Preferred cycloalkenyl rings contain about 5 to about 7 ring atoms.
  • suitable monocyclic cycloalkenyls include cyclopentenyl, cyclohexenyl, cycloheptenyl, and the like.
  • Non- limiting example of a suitable multicyclic cycloalkenyl is norbornylenyl. '
  • Heterocyclenyl ( or “heterocycloalkenyl”) means a non-aromatic monocyclic or multicyclic ring system comprising about 3 to about 10 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the atoms in the ring system is an element other than carbon, for example nitrogen, oxygen or sulfur atom, alone or in combination, and which contains at least one carbon-carbon double bond or carbon- nitrogen double bond. There are no adjacent oxygen and/or sulfur atoms present in the ring system.
  • Preferred heterocyclenyl rings contain about 5 to about 6 ring atoms.
  • the prefix aza, oxa or thia before the heterocyclenyl root name means that at least a nitrogen, oxygen or sulfur atom respectively is present as a ring atom.
  • the heterocyclenyl can be optionally substituted by one or more ring system substituents, wherein "ring system substituenf is as defined above.
  • the nitrogen or sulfur atom of the heterocyclenyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide.
  • Non-limiting examples of suitable monocyclic azaheterocyclenyl groups include 1 ,2,3,4- tetrahydropyridyl, 1 ,2-dihydropyridyl, 1 ,4-dihydropyridyl, 1 ,2,3,6- tetrahydropyridyl, 1 ,4,5,6-tetrahydropyrimidyl, 2-pyrrolinyl, 3-pyrrolinyl, 2-imidazolinyl, 2-pyrazolinyl, and the like.
  • Non-limiting examples of suitable oxaheterocyclenyl groups include 3,4-dihydro-2H-pyran, dihydrofuranyl, fluorodihydrofuranyl, and the like.
  • Non-limiting example of a suitable multicyclic oxaheterocyclenyl group is 7- oxabicyclo[2.2.1]heptenyl.
  • Non-limiting examples of suitable monocyclic thiaheterocyclenyl rings include dihydrothiophenyl, dihydrothiopyranyl, and the like.
  • Halo means fluoro, chloro, bromo, or iodo groups. Preferred are fluoro, chloro or bromo, and more preferred are fluoro and chloro.
  • Haloalkyl means an alkyl as defined above wherein one or more hydrogen atoms on the alkyl is replaced by a halo group defined above.
  • Heterocyclyl or “Heterocycloalkyl” means a non-aromatic saturated monocyclic or multicyclic ring system comprising about 3 to about 10 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the atoms in the ring system is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination. There are no adjacent oxygen and/or sulfur atoms present in the ring system.
  • Preferred heterocyclyls contain about 5 to about 6 ring atoms.
  • the prefix aza, oxa or thia before the heterocyclyl root name means that at least a nitrogen, oxygen or sulfur atom respectively is present as a ring atom.
  • Any -NH in a heterocyclyl ring may exist protected such as, for example, as an -N(Boc), -N(CBz) 1 - N(Tos) group and the like; such protections are also considered part of this invention.
  • the heterocyclyl can be optionally substituted by one or more "ring system substituents" which may be the same or different, and are as defined herein.
  • the nitrogen or sulfur atom of the heterocyclyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S.S-dioxide.
  • heterocyclyl rings include piperidyl, pyrrolidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, 1 ,4-dioxanyl, tetrahydrofuranyl, tetrahydrothiophenyl, lactam, lactone, and the like.
  • Heterocyclyl can also mean a heterocyclyl wherein a single moiety (e.g., carbonyl) can simultaneously replace two available hydrogens on the same carbon atom on a ring system. Example of such moiety is pyrrolidone:
  • hetero-atom containing ring systems of this invention there are no hydroxyl groups on carbon atoms adjacent to a N, O or S, as well as there are no N or S groups on carbon adjacent to another heteroatom.
  • N, O or S there are no hydroxyl groups on carbon atoms adjacent to a N, O or S, as well as there are no N or S groups on carbon adjacent to another heteroatom.
  • Arylalkyl means an aryl-alkyl- group in which the aryl and alkyl are as previously described.
  • Preferred aralkyls comprise a lower alkyl group.
  • suitable aralkyl groups include benzyl, 2-phenethyl and naphthalenylm ethyl. The bond to the parent moiety is through the alkyl.
  • Arylcycloalkyl means a group derived from a fused aryl and cycloalkyl as defined herein.
  • Preferred arylcycloalkyls are those wherein aryl is phenyl and cycloalkyl consists of about 5 to about 6 ring atoms.
  • the arylcycloalkyl can be optionally substituted by 1 -5 R 21 substituents.
  • suitable arylcycloalkyls include indanyl and 1 ,2,3,4-tetrahydronaphthyl and the like.
  • the bond to the parent moiety is through a non-aromatic carbon atom.
  • Arylheterocycloalkyl means a group derived from a fused aryl and h ⁇ terocycloalkyl as defined herein.
  • Preferred arylcycloalkyls are those wherein aryl is phenyl and heterocycloalkyl consists of about 5 to about 6 ring atoms.
  • the arylheterocycloalkyl can be optionally substituted by 1-5 R 21 substituents.
  • suitable arylheterocycloalkyls include
  • heteroarylalkyl means a heteroaryl-, cycloalkyl- or heterocycloalkyl-alkyl- group in which the heteroaryl, cycloalkyl, heterocycloalkyl and alkyl are as previously described.
  • arylcycloalkylalkyl "heteroarylcycloalkylalkyl", “arylheterocycloalkylalkyl", “heteroarylheterocycloalkylalkyl", “heteroarylheterocycloalkyl”, “arylcycloalkenyl”, “heteroarylcycloalkenyl”,
  • heterocycloalkenyl similarly represented by the combination of the groups aryl-, cycloalkyl-, alkyl-, heteroaryl-, heterocycloalkyl-, cycloalkenyl- and heterocycloalkenyl- as previously described.
  • Preferred groups contain a lower alkyl group. The bond to the parent moiety is through the alkyl.
  • acyl means an H-C(O)-, alkyl-C(O)-, alkenyl-C(O)-, alkynyl-C(O)- or cycloalkyl-C(O)- group in which the various groups are as previously described.
  • the bond to the parent moiety is through the carbonyl.
  • Preferred acyls contain a lower alkyl.
  • suitable acyl groups include formyl, acetyl, propanoyl, 2-methylpropanoyl, butanoyl and cyclohexanoyl.
  • Alkoxy means an alkyl-O- group in which the alkyl group is as previously described.
  • suitable alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy and heptoxy.
  • the bond to the parent moiety is through the ether oxygen.
  • Alkoxyalkyl means a group derived from an alkoxy and alkyl as defined herein. The bond to the parent moiety is through the alkyl.
  • Arylalkenyl means a group derived from aryl and alkenyl as defined herein. Preferred arylalkenyls are those wherein aryl is phenyl and the alkenyl consists of about 3 to about 6 atoms. The arylalkenyl can be optionally substituted by one or more R 21 substituents. The bond to the parent moiety is through a non-aromatic carbon atom.
  • Arylalkynyr means a group derived from aryl and alkynyl as defined herein. Preferred arylalkynyls are those wherein aryl is phenyl and the alkynyl consists of about 3 to about 6 atoms. The arylalkynyl can be optionally substituted by one or more R 21 substituents. The bond to the parent moiety is through a non-aromatic carbon atom.
  • alkyl, aryl, hetercycloalkyl, etc. indicates a divalent moiety, e.g., -CH 2 CH 2 - is ethylene, and * > ⁇ ⁇ JT ⁇ * is para-phenylene. It is understood that groups ending with the suffix "ene” can be optionally substituted at least once at any of the hydrogens by R 21 .
  • multicyclic divalent groups for example, arylheterocycloalkylene
  • substitution on a cycloalkylalkyl, heterocycloalkylalkyl, arylalkyl, or heteroarylalkyl moiety includes substitution on the ring portion and/or on the alkyl portion of the group.
  • variables can be the same or different.
  • compositions and methods comprising the use of "at least one compound of formula I” one to three compounds of formula I can be administered at the same time, preferably one.
  • composition is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.
  • the wavy line ⁇ w ⁇ as a bond generally indicates a mixture of, or either of, the possible isomers, e.g., containing (R)- and (S)- stereochemistry.
  • Lin ses drawn into the ring system Ys such as, for e Yxample:
  • R 8 for example is, -N(R 15 )S(O) 2 N(R 16 )(R 17 ), and R 16 and R 17 form a ring
  • the moiety formed is, for example
  • All stereoisomers for example, geometric isomers, optical isomers and the like
  • of the present compounds including those of the salts, solvates, esters and prodrugs of the compounds as well as the salts, solvates and esters of the prodrugs
  • those which may exist due to asymmetric carbons on various substituents including enantiomeric forms (which may exist even in the absence of asymmetric carbons), rotameric forms, atropisomers, and diastereomeric forms, are contemplated within the scope of this invention, as are positional isomers (such as, for example, 4- pyridyl and 3-pyridyl).
  • substituted means that one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency under the existing circumstances is not exceeded, and that the substitution results in a stable compound. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.
  • stable compound 1 or “stable structure” is meant a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.
  • purified refers to the physical state of said compound after being isolated from a synthetic process (e.g. from a reaction mixture), or natural source or combination thereof.
  • purified refers to the physical state of said compound after being obtained from a purification process or processes described herein or well known to the skilled artisan (e.g., chromatography, recrystallization and the like) , in sufficient purity to be characterizable by standard analytical techniques described herein or well known to the skilled artisan.
  • any carbon as well as heteroatom with unsatisfied valences in the text, schemes, examples and Tables herein is assumed to have the sufficient number of hydrogen atom(s) to satisfy the valences.
  • a functional group in a compound is termed "protected”
  • Suitable protecting groups will be recognized by those with ordinary skill in the art as well as by reference to standard textbooks such as, for example, T. W. Greene et al, Protective Groups in organic Synthesis (1991 ), Wiley, New York.
  • variable e.g., aryl, heterocycle, R 2 , etc.
  • its definition on each occurrence is independent of its definition at every other occurrence.
  • composition is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.
  • Prodrugs and solvates of the compounds of the invention are also contemplated herein.
  • a discussion of prodrugs is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems (1987) 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, (1987) Edward B. Roche, ed., American Pharmaceutical Association and Pergamon Press.
  • the term "prodrug” means a compound (e.g. a drug precursor) that is transformed in vivo to yield a compound of Formula (I) or a pharmaceutically acceptable salt, hydrate or solvate of the compound. The transformation may occur by various mechanisms (e.g., by metabolic or chemical processes), such as, for example, through hydrolysis in blood.
  • a prodrug can comprise an ester formed by the replacement of the hydrogen atom of the acid group with a group such as, for example, (Ci-C 8 )alkyl, (C 2 - Ci 2 )alkanoyloxymethyl, 1 -(alkanoyloxy)ethyl having from 4 to 9 carbon atoms, 1- methyl-1 -(alkanoyloxy)-ethyl having from 5 to 10 carbon atoms, alkoxycarbonyloxymethyl having from 3 to 6 carbon atoms, 1- (alkoxycarbonyloxy)ethyl having from 4 to 7 carbon atoms, 1 -methyl- 1- (alkoxycarbonyloxy) ⁇ thyl having from 5 to 8 carbon atoms, N- (alkoxycarbonyl)aminomethyl having from 3 to 9 carbon atoms, 1-(N-C 8 )alkyl, (C 2 - Ci 2 )alkanoyloxymethyl, 1 -(alkanoyloxy)ethy
  • a prodrug can be formed by the replacement of the hydrogen atom of the alcohol group with a group such as, for example, (Ci-C 6 )alkanoyloxymethyl, 1-((Ci- Ce)alkanoyloxy)ethyl, 1-methyl-1-((Ci-C e )alkanoyloxy)ethyl, (Ci- C 6 )alkoxycarbonyloxymethyl, N-(Ci -C e )alkoxycarbonylaminomethyl, succinoyl, (Ci- C 6 )alkanoyl, a-amino(Ci-C 4 )alkanyl, arylacyl and ⁇ -aminoacyl, or ⁇ -aminoacyl- ⁇ - aminoacyl, where each ⁇ -aminoacyl group is independently selected from the naturally occurring L-amino acids, P(O)(OH) 2 ,
  • a prodrug can be formed by the replacement of a hydrogen atom in the amine group with a group such as, for example, R-carbonyl, RO-carbonyl, NRR'-carbonyl where R and R' are each independently (Ci-Ci O )alkyl, (C 3 -C 7 ) cycloalkyl, benzyl, or R-carbonyl is a natural ⁇ -aminoacyl or natural ⁇ -aminoacyl, — C(OH)C(O)OY 1 wherein Y 1 is H, (Ci-C 6 )alkyl or benzyl, — C(OY 2 JY 3 wherein Y 2 is (Ci-C 4 ) alkyl and Y 3 is (Ci-C 6 )alkyl, carboxy (C 1 -C 6 JaIlCyI, amino(Ci-C 4 )alkyl or mono-N —
  • R-carbonyl RO-carbonyl
  • One or more compounds of the invention may exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like, and it is intended that the invention embrace both solvated and unsolvated forms.
  • “Solvate” means a physical association of a compound of this invention with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate” encompasses both solution-phase and isolatable solvates. Non-limiting examples of suitable solvates include ethanolates, methanolates, and the like.
  • “Hydrate” is a solvate wherein the solvent molecule is H 2 O.
  • One or more compounds of the invention may optionally be converted to a solvate.
  • Preparation of solvates is generally known.
  • M. Caira etaf, J. Pharmaceutical ScL, 93(3). 601-611 (2004) describe the preparation of the solvates of the antifungal fluconazole in ethyl acetate as well as from water. Similar preparations of solvates, hemisolvate, hydrates and the like are described by E. C. van Tonder etal, AAPS PharmSciTech., 5(1). article 12 (2004); and A. L. Bingham et af, Chem.
  • a typical, non-limiting, process involves dissolving the inventive compound in desired amounts of the desired solvent (organic or water or mixtures thereof) at a higher than ambient temperature, and cooling the solution at a rate sufficient to form crystals which are then isolated by standard methods.
  • Analytical techniques such as, for example I. R. spectroscopy, show the presence of the solvent (or water) in the crystals as a solvate (or hydrate).
  • Effective amount or “therapeutically effective amount” is meant to describe an amount of compound or a composition of the present invention effective in inhibiting the above-noted diseases and thus producing the desired therapeutic, ameliorative, inhibitory or preventative effect. "Effective amount” or “therapeutically effective amount” can also further describe an amount of compound or a composition of the present invention effective in inhibiting aspartyl protease and/or inhibiting BAC E- 1 and thus producing the desired therapeutic effect in a suitable patient.
  • the compounds of Formula I can form salts which are also within the scope of this invention. Reference to a compound of Formula I herein is understood to include reference to salts thereof, unless otherwise indicated.
  • °salt(s) denotes acidic salts formed with inorganic and/or organic acids, as well as basic salts formed with inorganic and/or organic bases.
  • a compound of Formula I contains both a basic moiety, such as, but not limited to a pyridine or imidazole, and an acidic moiety, such as, but not limited to a carboxylic acid, zwitte rions ("inner salts") may be formed and are included within the term n salt(s)" as used herein.
  • Pharmaceutically acceptable (i.e., non-toxic, physiologically acceptable) salts are preferred, although other salts are also useful.
  • Salts of the compounds of the Formula I may be formed, for example, by reacting a compound of Formula I with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization.
  • Exemplary acid addition salts include acetates, adipates, alginates, ascorbates, aspartates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphorsulfonates, cyclopentanepropionates, digluconates, dodecylsulfates, ethanesulfonates, fumarates, glucoheptanoates, glycerophosphates, hemisulfates, heptanoates, hexanoates, hydrochlorides, hydrobromides, hydroiodides, 2-hydroxyethanesulfonates, lactates, maleates, methanesulfonates, methyl sulfates, 2-naphthalenesulfonates, nicotinates, nitrates, oxalates, pamoates, pectinates, persulfates, 3-
  • Exemplary basic salts include ammonium salts, alkali metal salts such as sodium, lithium, and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, aluminum salts, zinc salts, salts with organic bases (for example, organic amines) such as benzathines, diethylamine, dicyclohexylamines, hydrabamines (formed with N,N-bis(dehydroabietyl)ethylenediamine), N-methyl-D- glucamines, N-methyl-D-glucamides, t-butyl amines, piperazine, phenylcyclohexylamine, choline, tromethamine, and salts with amino acids such as arginine, lysine and the like.
  • organic bases for example, organic amines
  • organic bases for example, organic amines
  • benzathines diethylamine, dicyclohexylamines, hydrabamines (formed with N,N-
  • Basic nitrogen-containing groups may be quarternized with agents such as lower alkyl halides (e.g. methyl, ethyl, propyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (e.g. dimethyl, diethyl, dibutyl, and diamyl sulfates), long chain halides (e.g. decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides), aralkyl halides (e.g. benzyl and phenethyl bromides), and others.
  • lower alkyl halides e.g. methyl, ethyl, propyl, and butyl chlorides, bromides and iodides
  • dialkyl sulfates e.g. dimethyl, diethyl, dibutyl, and diamyl sulfates
  • long chain halides
  • Basic nitrogen-containing groups may be quarternized with agents such as lower alkyl halides (e.g. methyl, ethyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (e.g. dimethyl, diethyl, and dibutyl sulfates), long chain halides (e.g. decyl, lauryl, and stearyl chlorides, bromides and iodides), aralkyl halides (e.g. benzyl and phenethyl bromides), and others.
  • lower alkyl halides e.g. methyl, ethyl, and butyl chlorides, bromides and iodides
  • dialkyl sulfates e.g. dimethyl, diethyl, and dibutyl sulfates
  • long chain halides e.g. decyl, lauryl, and stearyl chlorides, bro
  • esters of the present compounds include the following groups: (1) carboxylic acid esters obtained by esterification of the hydroxy groups, in which the non-carbonyl moiety of the carboxylic acid portion of the ester grouping is selected from straight or branched chain alkyl (for example, acetyl, n- propyl, t-butyl, or n-butyl), alkoxyalkyl (for example, methoxymethyl), aralkyl (for example, benzyl), aryloxyalkyl (for example, phenoxy methyl), aryl (for example, phenyl optionally substituted with, for example, halogen, d ⁇ alkyl, or d -4 alkoxy or amino); (2) sulfonate esters, such as alkyl- or aralkylsulfonyl (for example, methanesulfonyl); (3) amino acid esters (for example, L-valyl or L-isoleucyl); (4)
  • the phosphate esters may be further esterified by, for example, a C 1 ⁇ O alcohol or reactive derivative thereof, or by a 2,3-di (C ⁇ - 2 4)acyl glycerol.
  • Compounds of Formula I, and salts, solvates, esters and prodrugs thereof, may exist in their tautomeric form (for example, as an amide or imino ether). All such tautomeric forms are contemplated herein as part of the present invention.
  • the compounds of Formula (I) may contain asymmetric or chiral centers, and, therefore, exist in different stereoisomeric forms. It is intended that all stereoisomeric forms of the compounds of Formula (I) as well as mixtures thereof, including racemic mixtures, form part of the present invention.
  • the present invention embraces all geometric and positional isomers. For example, if a compound of Formula (I) incorporates a double bond or a fused ring, both the cis- and trans-forms, as well as mixtures, are embraced within the scope of the invention.
  • Diastereomeric mixtures can be separated into their individual diastereomers on the basis of their physical chemical differences by methods well known to those skilled in the art, such as, for example, by chromatography and/or fractional crystallization.
  • Enantiomers can be separated by converting the enantiomeric mixture into a diastereomeric mixture by reaction with an appropriate optically active compound (e.g., chiral auxiliary such as a chiral alcohol or Mosher"s acid chloride), separating the diastereomers and converting (e.g., hydrolyzing) the individual diastereomers to the corresponding pure enantiomers.
  • an appropriate optically active compound e.g., chiral auxiliary such as a chiral alcohol or Mosher"s acid chloride
  • some of the compounds of Formula (I) may be atropisomers (e.g., substituted biaryls) and are considered as part of this invention.
  • Enantiomers can also be separated by use of chiral HPLC column
  • Individual stereoisomers of the compounds of the invention may, for example, be substantially free of other isomers, or may be admixed, for example, as racemates or with all other, or other selected, stereoisomers.
  • the chiral centers of the present invention can have the S or R configuration as defined by the IUPAC 1974 Recommendations.
  • the use of the terms "salt”, “solvate”, “ester”, “prodrug” and the like, is intended to equally apply to the salt, solvate, ester and prodrug of enantiomers, stereoisomers, rotamers, tautomers, positional isomers, racemates or prodrugs of the inventive compounds.
  • the present invention also embraces isotopicatly-labelled compounds of the present invention which are identical to those recited herein, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature.
  • isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine and chlorine, such as 2 H, 3 H, 13 C, 14 C 1 15 N, 18 0, 17 O 1 31 P, 32 P, 35 S, 18 F 1 and 36 CI, respectively.
  • Certain isotopically-labelled compounds of Formula (I) are useful in compound and/or substrate tissue distribution assays. Tritiated (i.e., 3 H) and carbon- 14 (i.e., 14 C) isotopes are particularly preferred for their ease of preparation and detectability.
  • lsotopically labelled compounds of Formula (I) can generally be prepared by following procedures analogous to those disclosed in the Schemes and/or in the Examples hereinbelow, by substituting an appropriate isotopically labelled reagent for a non-isotopically labelled reagent.
  • Polymo ⁇ hic forms of the compounds of Formula I, and of the salts, solvates, esters and prodrugs of the compounds of Formula I, are intended to be included in the present invention.
  • the compounds according to the invention have pharmacological properties; in particular, the compounds of Formula I can be inhibitors of asparty protease.
  • pharmaceutical composition is also intended to encompass both the bulk composition and individual dosage units comprised of more than one (e.g., two) pharmaceutically active agents such as, for example, a compound of the present invention and an additional agent selected from the lists of the additional agents described herein, along with any pharmaceutically inactive excipients.
  • the bulk composition and each individual dosage unit can contain fixed amounts of the afore- said "more than one pharmaceutically active agents".
  • the bulk composition is material that has not yet been formed into individual dosage units.
  • An illustrative dosage unit is an oral dosage unit such as tablets, pills and the like.
  • the herein-described method of treating a patient by administering a pharmaceutical composition of the present invention is also intended to encompass the administration of the afore-said bulk composition and individual dosage units.
  • DIEA means N, N-diisopropylethylamine ethyl acetate: EtOAc
  • the solution was concentrated down and put on vacuum to afford 7 as formate salt (white solid, 18.5 g, 94% overall yield).
  • the substrate used below has been described (Y.Yasuda et al., J. Biochem. , 125, 1137 (1999)).
  • Substrate and enzyme are commercially available.
  • the assay can be run in a 30 ⁇ l final volume using a 384 well Nunc black plate.
  • Pepstatin is used as a control inhibitor (Ki-0.5 nM) and is available from Sigma. Nunc 384 well black plates
  • Compound can be diluted to 3x final concentration in assay buffer containing 3% DMSO. 10 ⁇ l of compound will be added to 10 ⁇ l of 2.25 nM enzyme (3x) diluted in assay buffer without DMSO, mixed briefly, spun, and can be incubated at 37° C for 30 mins. 3x substrate (7.5 ⁇ M) is prepared in 1x assay buffer without DMSO. 10 ⁇ l of substrate will be added to each well mixed and spun briefly to initiate the reaction. Assay plates can be incubated at 37 C for 45 mins and read on 384 compatible fluorescence plate reader using a 328 nm Ex and 393 nm Em.
  • BACE-1 Cloning Protein Expression and Purification.
  • a predicted soluble form of human BACE1 (sBACEI , corresponding to amino acids 1-454) can be generated from the full length BACE1 cONA (full length human BACE1 cDNA in pCDNA4/mycHisA construct; University of Toronto) by PCR using the advantage-GC cDNA PCR kit (Clontech, Palo Alto, CA).
  • a Hindlll/Pmel fragment from pCDNA4-sBACE1 myc/His can be blunt ended using Klenow and subcloned into the Stu I site of pFASTBACI(A) (Invitrogen).
  • a sBACEI mycHis recombinant bacmid can be generated by transposition in DHIOBac cells(GIBCO/BRL). Subsequently, the sBACEI mycHis bacmid construct can be transfected into sf9 cells using CellFectin (Invitrogen, San Diego, CA) in order to generate recombinant baculovirus. Sf9 cells are grown in SF 900-II medium (Invitrogen) supplemented with 3% heat inactivated FBS and 0.5X penicillin/streptomycin solution (Invitrogen).
  • sBACEmyc/His virus Five milliliters of high titer plaque purified sBACEmyc/His virus is used to infect 1 L of logarithmically growing sf9 cells for 72 hours. Intact cells are pelleted by centrifugation at 3000xg for 15 minutes. The supernatant, containing secreted sBACEI , is collected and diluted 50% v/v with 100 mM HEPES, pH 8.0. The diluted medium is loaded onto a Q-sepharose column. The Q-sepharose column is washed with Buffer A (20 mM HEPES, pH 8.0, 50 mM NaCI).
  • Proteins can be eluted from the Q-sepharose column with Buffer B (20 mM HEPES, pH 8.0, 500 mM NaCI).
  • Buffer B (20 mM HEPES, pH 8.0, 500 mM NaCI).
  • the protein peaks from the Q-sepharose column are pooled and loaded onto a Ni-NTA agarose column.
  • the Ni-NTA column can be then washed with Buffer C (20 mM HEPES, pH 8.0, 500 mM NaCI).
  • Bound proteins are then eluted with Buffer D (Buffer C+250 mM imidazole). Peak protein fractions as determined by the Bradford Assay (Biorad, CA) are concentrated using a Centricon 30 concentrator (Millipore).
  • sBACEI purity is estimated to be -90% as assessed by SDS-PAGE and Commassie Blue staining. N-terminal sequencing indicates that greater than 90% of the purified sBACEI contained the prodomain; hence this protein is referred to as sproBACEL
  • Reactions are initiated by addition of substrate in a 5 ⁇ l aliquot resulting in a total volume of 25 ⁇ l. After 3 hr at 30 * C reactions are terminated by addition of an equal volume of 2x stop buffer containing 50 mM Tris-HCI pH 8.0, 0.5 M KF, 0.001% Brij- 35, 20 ⁇ g/ml SA-XL665 (cross-linked allophycocyanin protein coupled to streptavidin; CIS-Bio International, France) (0.5 ⁇ g/well). Plates are shaken briefly and spun at 1200xg for 10 seconds to pellet all liquid to the bottom of the plate before the incubation.
  • HTRF measurements are made on a Packard Discovery® HTRF plate reader using 337 nm laser light to excite the sample followed by a 50 ⁇ s delay and simultaneous measurements of both 620 nm and 665 nm emissions for 400 ⁇ s.
  • IC 50 determinations for inhibitors, (/). are determined by measuring the percent change of the relative fluorescence at 665 nm divided by the relative fluorescence at 620 nm, (665/620 ratio), in the presence of varying concentrations of / and a fixed concentration of enzyme and substrate.
  • Nonlinear regression analysis of this data can be performed using GraphPad Prism 3.0 software selecting four parameter logistic equation, that allows for a variable slope.
  • Y Bottom + (Top-Bottom)/
  • Human mature Renin enzyme assay Human Renin can be cloned from a human kidney cDNA library and C- terminally epitope-tagged with the V5-6His sequence into pCDNA3.1. pCNDA3.1- Renin-V5-6His is stably expressed in HEK293 cells and purified to >80% using standard Ni-Affinity chromatography. The prodomain of the recombinant human renin-V5-6His can be removed by limited proteolysis using immobilized TPCK-trypsin to give mature-human renin.
  • Renin enzymatic activity can be monitored using a commercially available fluorescence resonance energy transfer (FRET) peptide substrate, RS-1 (Molecular Probes, Eugene, OR) in 50 mM Tris-HCI pH 8.0, 100 mM NaCI, 0.1%Brij-35 and 5% DMSO buffer for 40 mins at 30 "Celsius in the presence or absence of different concentrations of test compounds.
  • FRET fluorescence resonance energy transfer
  • RS-1 Molecular Probes, Eugene, OR
  • Mature human Renin is present at approximately 200 nM.
  • Inhibitory activity is defined as the percent decrease in renin induced fluorescence at the end of the 40 min incubation compared to vehicle controls and samples lacking enzyme.
  • acetyl- and/or butyrylcholinesterase inhibitors can be used.
  • cholinesterase inhibitors are tacrine, donepezil, rivastigmine, galantamine, pyridostigmine and neostigmine, with tacrine, donepezil, rivastigmine and galantamine being preferred.
  • these combinations are directed to the treatment of Alzheimer's Disease.
  • a combination of at least one compound of formula I with at least one muscarinic mi agonist or m 2 antagonist can be used.
  • mi agonists are known in the art.
  • m 2 antagonists are also known in the art; in particular, m 2 antagonists are disclosed in US patents 5,883,096; 6,037,352; 5,889,006; 6,043,255; 5,952,349; 5,935,958; 6,066,636; 5,977,138; 6,294,554; 6,043,255; and 6,458,812; and in WO 03/031412, all of which are incorporated herein by reference.
  • a beta secretase inhibitor for example a beta secretase inhibitor; a gamma secretase inhibitor; an HMG-CoA reductase inhibitor such as atorvastatin, lovastatin, simvastatin, pravastatin, fluvastatin and rosuvastatin; nonsteroidal anti-inflammatory agents such as, but not necessarily limited to ibuprofen, relafen or naproxen; N-methyl-D-aspartate receptor antagonists such as memantine; anti-amyloid antibodies including humanized monoclonal antibodies; vitamin E; nicotinic acetylcholine receptor agonists; CB1 receptor inverse agonists or CB1 receptor antagonists; antibiotics such as doxycycline; growth hormone secretagogues; histamine H3 antagonists; AMPA agonists; PDE4 inhibitors; GABA A inverse agonists; inhibitors of amyloid
  • inert, pharmaceutically acceptable carriers can be either solid or liquid.
  • Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories.
  • the powders and tablets may be comprised of from about 5 to about 95 percent active ingredient.
  • Suitable solid carriers are known in the art, e.g. magnesium carbonate, magnesium stearate, talc, sugar or lactose. Tablets, powders, cachets and capsules can be used as solid dosage forms suitable for oral administration. .Examples of pharmaceutically acceptable carriers and methods of manufacture for various compositions may be found in A. Gennaro (ed.), Remington's Pharmaceutical Sciences, 18th Edition, (1990), Mack Publishing Co., Easton, Pennsylvania.
  • Liquid form preparations include solutions, suspensions and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injection or addition of sweeteners and opacif iers for oral solutions, suspensions and emulsions. Liquid form preparations may also include solutions for intranasal administration.
  • Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier, such as an inert compressed gas, e.g. nitrogen.
  • a pharmaceutically acceptable carrier such as an inert compressed gas, e.g. nitrogen.
  • solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration.
  • liquid forms include solutions, suspensions and emulsions.
  • the compounds of the invention may also be deliverable transdermally.
  • the transdermal compositions can take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.
  • the compound is administered orally.
  • the pharmaceutical preparation is in a unit dosage form.
  • the preparation is subdivided into suitably sized unit doses containing appropriate quantities of the active component, e.g., an effective amount to achieve the desired purpose.
  • the quantity of active compound in a unit dose of preparation may be varied or adjusted from about 1 mg to about 100 mg, preferably from about 1 mg to about 50 mg, more preferably from about 1 mg to about 25 mg, according to the particular application.
  • the actual dosage employed may be varied depending upon the requirements of the patient and the severity of the condition being treated. Determination of the proper dosage regimen for a particular situation is within the skill of the art. For convenience, the total daily dosage may be divided and administered in portions during the day as required.
  • a typical recommended daily dosage regimen for oral administration can range from about 1 mg/day to about 300 mg/day, preferably 1 mg/day to 50 mg/day, in two to four divided doses.
  • these two active components may be coadministered simultaneously or sequentially, or a single pharmaceutical composition comprising a compound of formula I and a cholinesterase inhibitor in a pharmaceutically acceptable carrier can be administered.
  • the components of the combination can be administered individually or together in any conventional oral or parenteral dosage form such as capsule, tablet, powder, cachet, suspension, solution, suppository, nasal spray, etc.
  • the dosage of the cholinesterase inhibitor can be determined from published material, and may range from 0.001 to 100 mg/kg body weight.
  • a kit comprising in a single package, one container comprising a compound of formula I in a pharmaceutically acceptable carrier, and a separate container comprising a cholinesterase inhibitor in a pharmaceutically acceptable carrier, with the compound of formula I and the cholinesterase inhibitor being present in amounts such that the combination is therapeutically effective.
  • a kit is advantageous for administering a combination when, for example, the components must be administered at different time intervals or when they are in different dosage forms.

Abstract

Disclosed are compounds of formula (I) or a stereoisomer, tautomer, or pharmaceutically acceptable salt or solvate thereof, U, W, X, R1, R2, R6, R7, R30 and R31 are as described above in the specification. Also disclosed is the method of inhibiting aspartyl protease, and in particular, the methods of treating cardiovascular diseases, cognitive and neurodegenerative diseases. Also disclosed are methods of treating cognitive or neurodegenerative diseases using the compounds of formula I in combination with a cholinesterase inhibitor or a muscarinic m1 agonist or m2 antagonist.

Description

HETEROCYCLIC ASPARTYL PROTEASE INHIBITORS
FIELD OF THE INVENTION
This invention relates to aspartyl protease inhibitors, pharmaceutical compositions comprising said compounds, their use in the treatment of cardiovascular diseases, cognitive and neurodegenerative diseases, and their use as inhibitors of the Human Immunodeficiency Virus, plasmepsins, cathepsin D and protozoal enzymes.
BACKGROUND
There are a number of aspartic proteases known to date, including pepsin A and C, renin, BACE, BACE 2, Napsin A, and cathepsin D, which have been implicated in pathological conditions. The role of renin-angiotensin system (RAS) in regulation of blood pressure and fluid electrolyte has been well established (Oparil, S, etal. N Engl J Med 1974; 291 :381-401/446-57). The octapeptide Angiotensin-ll, a potent vasoconstrictor and stimulator for release of adrenal aldosterone, was processed from the precursor decapeptide Angiotensin-I, which in turn is processed from angiotensinogen by the renin enzyme. Angiotensin-ll is also found to play roles in vascular smooth muscle cell growth, inflammation, reactive oxygen species generation and thrombosis and influence atherogenesis and vascular damage. Clinically, the benefit of interruption of the generation of angiotensin-ll through antagonism of conversion of angiotensin-l has been well known and there are a number of ACE inhibitor drugs on the market. The blockade of the earlier conversion of angiotensinogen to angiotensin-l, i.e.the inhibition of renin enzyme, is expected to have similar but not identical effects. Since renin is an aspartyl protease whose only natural substrate is angiotensinogen, it is believed that there would be less frequent adverse effect for controlling high blood pressure and related symptoms regulated by angiotensin-ll through its inhibition. Another protease, Cathepsin-D, is involved in lysosomal biogenesis and protein targeting, and may also be involved in antigen processing and presentation of peptide fragments. It has been linked to numerous diseases including, Alzheimer's, Disease, connective tissue disease, muscular dystrophy and breast cancer. Alzheimer's Disease (AD) is a progressive neurodegenerative disease that is ultimately fatal. Disease progression is associated with gradual loss of cognitive function related to memory, reasoning, orientation and judgment. Behavioral changes including confusion, depression and aggression also manifest as the disease progresses. The cognitive and behavioral dysfunction is believed to result from altered neuronal function and neuronal loss in the hippocampus and cerebral cortex. The currently available AD treatments are palliative, and while they ameliorate the cognitive and behavioral disorders, they do not prevent disease progression. Therefore there is an unmet medical need for AD treatments that halt disease progression. Pathological hallmarks of AD are the deposition of extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles comprised of abnormally phosphorylated protein tau. Individuals with AD exhibit characteristic Aβ deposits, in brain regions known to be important for memory and cognition. It is believed that Aβ is the fundamental causative agent of neuronal cell loss and dysfunction which is associated with cognitive and behavioral decline. Amyloid plaques consist predominantly of Aβ peptides comprised of 40 - 42 amino acid residues, which are derived from processing of amyloid precursor protein (APP). APP is processed by multiple distinct protease activities. Aβ peptides result from the cleavage of APP by β-secretase at the position corresponding to the N-terminus of Aβ, and at the C- terminus by γ^secretase activity. APP is also cleaved by α-secretase activity resulting in the secreted, non-amyloidogenic fragment known as soluble APP.
An aspartyl protease known as BACE- 1 has been identified as the β-secretase activity responsible for cleavage of APP at the position corresponding to the N- terminus of Aβ peptides. Accumulated biochemical and genetic evidence supports a central role of Aβ in the etiology of AD. For example, Aβ has been shown to be toxic to neuronal cells in vitro and when injected into rodent brains. Furthermore inherited forms of early-onset AD are known in which well-defined mutations of APP or the presenilis are present. These mutations enhance the production of Aβ and are considered causative of AD. Since Aβ peptides are formed as a result of β-secretase activity, inhibition of BACE- 1 should inhibit formation of Aβ peptides. Thus inhibition of BAC E- 1 is a therapeutic approach to the treatment of AD and other cognitive and neurodegenerative diseases caused by Aβ plaque deposition.
Human immunodeficiency virus (HIV), is the causative agent of acquired immune deficiency syndrome (AIDS). It has been clinically demonstrated that compounds such as indinavir, ritonavir and saquinavir which are inhibitors of the HIV aspartyl protease result in lowering of viral load. As such, the compounds described herein would be expected to be useful for the treatment of AIDS. Traditionally, a major target for researchers has been HIV-1 protease, an aspartyl protease related to renin.
In addition, Human T-cell leukemia virus type I (HTLV-I) is a human retrovirus that has been clinically associated with adult T-cell leukemia and other chronic diseases. Like other retroviruses, HTLV-I requires an aspartyl protease to process viral precursor proteins, which produce mature virions. This makes the protease an attractive target for inhibitor design. (Moore, et al. Purification of HTLV-I Protease and Synthesis of Inhibitors for the treatment of HTLV-I Infection 55th Southeast Regional Meeting of the American Chemical Society, Atlanta, GA, US November 16- 19, 2003 (2003), 1073. CODEN; 69EUCH Conference, AN 2004:137641 CAPLUS). Plasmepsins are essential aspartyl protease enzymes of the malarial parasite. Compounds for the inhibition of aspartyl proteases plasmepsins, particularly I, II, IV and HAP, are in development for the treatment of malaria. (Freire, et al. WO 2002074719. Na Byoung-Kuk, et al., Aspartic proteases of Plasmodium vivax are highly conserved in wild isolates, Korean Journal of Parasitology (2004 June), 42(2) 61-6. Journal code: 9435800) Furthermore, compounds used to target aspartyl proteases plasmepsins (e.g. I, II, IV and HAP), have been used to kill malarial parasites, thus treating patients thus afflicted. Compounds that act as aspartyl protease inhibitors are described, for example in application USSN 11/010,772, filed on December 13, 2004, herein incorporated by reference. WO/9304047, herein incorporated by reference, describes compounds having a quinazolin-2-(thi)one nucleus. The document alleges that the compounds described therein are inhibitors of HIV reverse transcriptase.
US Publication No. US 2005/0282826 A1, herein incorporated by reference, describes diphenylimidazopyrimidine or -imidazole amines, which are said to be useful for the therapeutic treatment, prevention or amelioration of a disease or disorder characterized by elevated β-amyloid deposits or β-amyloid levels in a patient. Disease states mentioned in the publication include Alzheimer's disease, mild cognative impairment, Down's syndrome, hereditary cerebral hemorrhage with amyloidosis of the Dutch type, cerebral amyloid angiopathy and degenerative dementia.
US Publication No. US 2005/0282825 A1, herein incorporated by reference, describes amino-5,5-diphenylimidazolones, which are said to be useful for the therapeutic treatment, prevention or amelioration of a disease or disorder characterized by elevated β-amyloid deposits or β-amyloid levels in a patient. Disease states mentioned in the publication include Alzheimer's disease, mild cognative impairment, Down's syndrome, hereditary cerebral hemorrhage with amyloidosis of the Dutch type, cerebral amyloid angiopathy and degenerative dementia. Other publications that disclosed compounds that are useful for treating
Alzherimer's disease include WO 2006/044492, which discloses spiropiperidine compounds that are said to be inhibitors of β-secretase, and WO 2006/041404, which discloses substituted amino compounds that are said to be useful for the treatment or prophylaxix of Aβ related pathologies. Both these publications are incorporated by reference.
SUMMARY OF THE INVENTION
The present invention relates to compounds having the structural formula I
Figure imgf000005_0001
or a stereoisomer, tautomer, or pharmaceutically acceptable salt or solvate thereof, wherein
W is a bond. -C(=S)-, -S(O)-, -S(O)2-, -C(=O)-. -O-, -C(R6)(R7)-, -N(R5)- or -C(=N(R5))-; X is -O-, -N(R5)- or -C(Rβ)(R7)-;
U is a bond or -(C(R3)(R4))b-, wherein b is 1 or 2;
R1, R2 and R5 are independently selected from the group consisting of H, alky I, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl. arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, -OR15, -CN1 -Cf=NR11)R8, -C(O)R8, -C(O)OR9, -S(O)R10, -S(O)2R10, -C(O)N(R11XR12), -S(O)N(R11)(R12), -S(O)2N(R11J(R12), -NO2, -N=C(R8J2 and -N(R11)(R12), provided that R1 and R5 are not both selected from -NO2, -N=C(R8J2 and -N(R11)(R12); R3, R4 and Rβ are independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, halo, -CH2-O-Si(R9XR10XR19), -SH, -CN, -OR9, -C(O)R8, -C(O)OR9, -C(O)N(R11J(R12), -SR19, -S(O)N(R11)(R12), -S(O)2N(R11)(R12), -N(R11J(R12), -N(R11JC(O)R8, -N(R11)S(O)R10, -N(R11JS(O)2R10, -N(R11)C(O)N(R12)(R13), -N(R11)C(O)OR9 and -C(=N0H)R8;
R7 is independently selected from the group consisting of alkylene, arylalkylene, heteroarylalkylene, cycloalkylalkylene, heterocycloalkylalkylene, arylcycloalkylalkylene. heteroarylcycloalkylalkylene, arylheterocycloalkylalkylene, heteroarylheterocycloalkylalkylene, cycloalkylene, arylcycloalkylene, heteroarylcycloalkylene, heterocycloalkylenβ, arylheterocycloalkylene, heteroarylheterocycloalkylene, alkeπylene, arylalkenylene, cycloalkenylene, arylcycloalkenylene, heteroarylcycloalkenylene, heterocycloalkenylene, arylheterocycloalkenylene, heteroarylheterocycloalkenylene, alkynylene, arylalkynylene, arylene, cycloalkylarylene, heterocycloalkylarylene, cycloalkenylarylene, heterocycloalkenylarylene, heteroarytene, cycloalkythθteroaryleπe, heterocycloalkylheteroarylene, cycloalkenylheteroarylene and heterocycloalkenylheteroarylene, wherein each of said R7 groups is independently unsubstituted or substituted at 1 to 3 hydrogens by 1 to 3 R21 groups; provided that when W is -O- or -N(R5)-, then R3 and R4 are not halo, -SH, -OR9, -SR19. -S(O)N(R11XR12), -S(O)2N(R11J(R12), -N(R11)(R12), -N(R11JC(O)R8, -N(R11JS(O)R10, -N(R11)C(O)N(R12)(R13), or -N(R11JC(O)OR9; or R3, R4, R6 and R7, together with the carbon to which they are attached, form a 3-7 membered cycloalkyl group optionally substituted by R14 or a 3-7 membered cycloalkylether optionally substituted by R14; or R3 and R4 together with the carbon to which they are attached, are combined to form multicyclic groups such as
Figure imgf000007_0001
wherein M is -CH2-, S, -N(R19J- or O, A and B are independently arylene or heteroarylene and q is O, 1 or 2 provided that when q is 2, one M must be a carbon atom and when q is 2, M is optionally a double bond; and with the proviso that when R3 and R4 form said multicyclic groups; then adjacent R3 and R4 or R6 and R7 groups cannot be combined to form said multicyclic groups; or R6 and R7 together with the carbon to which they are attached, are combined to form multicyclic groups such as
Figure imgf000008_0001
wherein M is -CH2-, S, -N(R19)- or O, A and B are independently arylene or heteroarylene and q is 0, 1 or 2 provided that when q is 2, one M must be a carbon atom and when q is 2, M is optionally a double bond; and with the proviso that when Rβ and R7 form said multicyclic groups, then adjacent R3 and R4 or R6 and R7 cannot be combined to form said multicyclic groups;
R8 is independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, -OR15, -N(R15)(R16), -N(R15)C(O)R16, -N(R15)S(O)R16, -N(R15)S(O)2R, -N(R15)S(O)2N(R16)(R17), -N(R15)S(O)N(R16)(R17), -N(R15)C(O)N(R)(R17) and -N(R15)C(O)OR16;
R9 is independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, and heterocycloalkenylheteroaryl;
R10 is independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cyctoalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl and -N(R15)(R);
R11, R12 and R13 are independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, -C(O)R8, -C(O)OR9, -S(O)R10, -S(O)2R10, -C(O)N(R15J(R16), -S(O)N(R15J(R16), -S(O)2N(R15)(R16) and -CN; R14 is 1 -5 substituents independently selected from the group consisting of alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, halo, -CN, -OR15, -C(O)R15, -C(O)OR15, -C(O)N(R15KR16), -SR15, -S(O)N(R15)(R16), -S(O)2N(R15)(R16), -C(=NOR15)R, -P(O)(OR15KOR16), -N(R15KR16), -N(R15JC(O)R16, -N(R15)S(O)R16, -N(R15JS(O)2R16, -N(R15)S(O)2N(R16)(R17), -N(R15)S(O)N(R16)(R17), -N(R15)C(O)N(R16)(R17) and -N(R15)C(O)OR16;
R15, R and R17 are independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkyiaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, R18-alkyl, R18-arylalkyl, R18-heteroarylalkyl, R18-cycloalkylalkyl, R18-heterocycloalkylalkyl, R18-arylcycloalkylalkyl, R18-heteroarylcycloalkylalkyl, R18-arylheterocycloalkylalkyl, R^-heteroarylheterocycloalkylalkyl, R-cycloalkyl, R18-arylcycloalkyl, R18-heteroarylcycloalkyl, R18-heterocycloalkyl, R18-arylheterocycloalkyl, R18-heteroarylheterocycloalkyl, R18-alkenyl, R18-arylalkenyl, R18-cycloalkenyl, R18-arylcycloalkenyl, R18-heteroarylcycloalkenyl, R18-heterocycloalkenyl, R18-arylheterocycloalkenyl, R18-heteroarylheterocycloalkenyl, R18-alkynyl, R18-arylalkynyl, R18-aryl, R18-cycloalkylaryl, R18-heterocycloalkylaryl, R18-cycloalkenylaryl, R18-heterocycloalkenylaryl, R18-heteroaryl, R18-cycloalkylheteroaryl, R18-heterocycloa!kylheteroaryl, R18-cycloalkθnylhθteroaryl, and R1 ^heterocycloalkenylheteroaryl; or R15, R16 and R17 are
Figure imgf000010_0001
wherein R23 numbers 0 to 5 substituents, m is 0 to 6 and n is 0 to 5;
R18 is 1-5 substituents independently selected from the group consisting of alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, hβterocycloalkenylheteroaryl, -NO2, halo, HO-alkoxyalkyl, -CF3, -CN, alkyl-CN, -C(O)R19, -C(O)OH, -C(O)OR19, -C(O)NHR20, -C(O)NH2, -C(O)NH2-C(O)N(alkyl)2, -C(O)N(alkyl)(aryl), -C(O)N(alkyl)(heteroaryl), -SR19, -S(O)2R20, -S(O)NH2, -S(O)NH(alkyl), -S(O)N(alkyl)(alkyl), -S(O)NH(aryl), -S(O)2NH2, -S(O)2NHR19, -S(O)2NH(hβtθrocycloalkyl), -S(O)2N(alkyl)2, -S(O)2N(alkyl)(aryl), -OCF3, -OH, -OR20, -O-heterocycloalkyl, -O-cycloalkylalkyl, -O-heterocycloalkylalkyl, -NH2, -NHR20, -N(alkyl)2, -N(arylalkyl)2, -N(arylalkyl)-(heteroarylalkyl), -NHC(O)R20, -NHC(O)NH2, -NHC(O)NH(alkyl), -NHC(O)N(alkyl)(alkyl), -N(alkyl)C(O)NH(alkyl), -N(alkyl)C(O)N(alkyl)(alkyl), -NHS(O)2R20, -NHS(O)2NH(alkyl), -NHS(O)2N(alkyl)(alkyl), -N(alkyl)S(O)2NH(alkyl) and -N(alkyl)S(O)2N(alkyl)(alkyl); or two R18 moieties on adjacent carbons can be linked together to form
Figure imgf000011_0001
R19 is alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkytaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl or heterocycloalkenylheteroaryl;
R20 is halo substituted aryl, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyJ, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl or heterocycloalkenylheteroaryl, and wherein each of the alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloatkylalkyl, arylheterocycloalkylalkyl, heteroarylhetβrocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl or heterocycloalkenylheteroaryl groups in R1, R2, R3, R4, R5, Rβ, R8, R9, R10, R11, R12, R13 and R14 are independently unsubstituted or substituted by 1 to 5 R21 groups independently selected from the group consisting alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, halo, -CN, -C(=NR11)R15, -OR15, -C(O)R15, -C(O)OR15, -C(O)N(R15)(R), -SR15, -S(O)N(R15KR16), -CH(R15J(R16), -S(O)2N(R15)(R16), -C(=NOR15)R, -P(O)(OR15J(OR16), -N(R15)(R16), -alkyl-N(R15)(R16), -N(R15JC(O)R16, -CH2-N(R15JC(O)R16, -CH2-N(R15)C(O)N(R)(R17), -CH2-R15; -CH2N(R15J(R16), -N(R15JS(O)R16, -N(R15JS(O)2R16, -CH2-N(R15JS(O)2R16, -N(R15JS(O)2N(R16J(R17), -N(R15)S(O)N(R16)(R17), -N(R15)C(O)N(R16)(R17), -CH2-N(R15)C(O)N(R16)(R17), -N(R15JC(O)OR16, -CH2-N(R15JC(O)OR16, -S(O)R15, -N3, -NO2 and -S(O)2R15; and wherein each of the alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycioalkenylheteroaryl or heterocycloalkenylheteroaryl groups in R21 are independently unsubstituted or substituted by 1 to 5 R22 groups independently selected from the group consisting of alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, halo, -CN, -C(=NR11)R15, -OR15, -C(O)R15, -C(O)OR15, -C(O)N(R15)(R16), -SR15, -S(O)N(R15J(R16), -CH(R15)(R16), -S(O)2N(R15)(R16), -C(=NOR15)R16, -P(O)(OR15J(OR16), -N(R15J(R16), -alkyl- N(R15J(R16), -N(R15JC(O)R16, -CH2-N(R15)C(O)R16, -CH2-N(R15)C(O)N(R16)(R17), -CH2- R15; -CH2N(R15J(R16J, -N(R15JS(O)R16, -N(R15)S(O)2R16, -CH2-N(R15)S(O)2R16. -N(R15)S(O)2N(R16)(R17), -N(R15)S(O)N(R16)(R17), -N(R15)C(O)N(R16)(R17), -CH2-N(R15)C(O)N(R16)(R17), -N(R15)C(O)OR16, -CH2-N(R15JC(O)OR16, -S(O)R15, -N3, -NO2 and -S(O)2R15;
R23 is 1 to 5 groups independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, halo, -CN, -OR24, -C(O)R24, -C(O)OR24, -C(O)N(R24HR25), -SR24, -S(O)N(R24J(R25), -S(O)2N(R24J(R25), -C(=NOR24)R25, -P(O)(OR24J(OR25), -N(R24J(R25J, -alkyl-N(R24)(R25), -N(R24JC(O)R25, -CH2-N(R24JC(O)R25, -N(R24)S(O)R25, -N(R24JS(O)2R25, -CH2-N(R24JS(O)2R25, -N(R24)S(O)2N(R25)(R26), -N(R24)S(O)N(R25)(R26), -N(R24JC(O)N(R25J(R26J, -CH2-N(R24JC(O)N(R25J(R26J, -N(R24JC(OJOR25, -CH2-N(R24JC(O)OR25, -S(O)R24 and -S(O)2R24; and wherein each of the alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl and heterocycloalkenylheteroaryl groups in R23 are independently unsubstituted or substituted by 1 to 5 R27 groups independently selected from the group consisting of alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, halo, -CF3, -CN, -OR24, -C(O)R24, -C(O)OR24, alkyl-C(O)OR24, -C(O)N(R24J(R25), -SR24, -S(O)N(R24)(R25), -S(O)2N(R24J(R25), -C(=NOR24)R25, -P(O)(OR24J(OR25), -N(R24)(R25),
-alkyl-N(R24)(R25), -N(R24JC(O)R25, -CH2-N(R24)C(O)R25, -N(R24)S(O)R25, -N(R24JS(O)2R25, -CH2-N(R24JS(O)2R25, -N(R24)S(O)2N(R25)(R26), -N(R24)S(O)N(R25)(R26), -N(R24)C(O)N(R25)(R26), -CH2-N(R24)C(O)N(R25)(R26), -N(R24)C(O)OR25, -CH2-N(R24)C(O)OR25, -S(O)R24 and -S(O)2R24; R24, R25 and R26 are independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, R27-alkyl, R27-arylalkyl, R27-heteroarylalkyl, R27-cycloalkylalkyl, R27-heterocycloalkytalkyl, R27-arylcycloalkylalkyl, R27-heteroarylcycloalkylalkyl, R27-arylheterocycloalkylalkyl, R27-heteroarylheterocycloalkylalkyl, R^-cycloalkyl, R27-arylcycloalkyl, R27-heteroarylcycloalkyl, R27-heterocycloalkyl. R27-arylheterocycloalkyl, R27-heteroarylheterocycloalkyl, R27-alkenyl, R27-arylalkenyl, R27-cycloalkenyl, R27-arylcycloalkenyl, R27-heteroarylcycloalkenyl, Rz7-heterocycloalkenyl, R27-arylheterocycloalkenyl, R27-heteroarylheterocycloalkenyl, R27-alkynyl, R27-arylalkynyl, R27-aryl, R27-cycloalkylaryl, R27-hβterocycloalkylaryl, R27-cycloalkenylaryl, R27-heterocycloalkenylaryl, R27-heteroaryl, R27-cycloalkylheteroaryl, R27-heterocycloalkylheteroaryl, R27-cycloalkenylheteroaryl and R^-heterocycloalkenylheteroaryl;
R27 is 1 -5 substituents independently selected from the group consisting of alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylaikyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloaikenyl, heterocycloalkenyl, arylheterocycioalkenyl, heteroarylheterocycloalkenyl, alkyπyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, -NO2, halo, -CF3, -CN, alkyl-CN, -C(O)R28, -C(O)OH, -C(O)OR28, -C(O)NHR29, -C(O)N(alkyl)2, -C(O)N(alkyl)(aryl), -C(O)N(alkyl)(heteroaryl), -SR28, -S(O)2R29, -S(O)NH2, -S(O)NH(alkyl), -S(O)N(alkyl)(alkyl), -S(O)NH(aryl), -S(O)2NH2, -S(O)2NHR28, -S(O)2NH(aryl), -S(0)2NH(heterocycloalkyl), -S(O)2N(alkyl)2, -S(O)2N(alkyl)(aryl), -OH, -OR29, -O-heterocycloalkyl, -O-cycloalkylalkyl, -O-heterocycloalkylalkyl, -NH2, -NHR29, -N(alkyl)2, -N(arylalkyl)2, -N(arylalkyl)(heteroarylalkyl), -NHC(O)R29, -NHC(O)NH2, -NHC(O)NH(alkyl), -NHC(O)N(alkyl)(alkyl), -N(alkyl)C(O)NH(alkyl), -N(alkyl)C(O)N(alkyl)(alkyl), -NHS(O)2R29, -NHS(O)2NH(alkyl), -NHS(O)2N(alkyl)(alkyl), -N(alkyl)S(O)2NH(alkyl) and -N(alkyl)S(O)2N(alkyl)(alkyl); R28 is alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylaikyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl or heterocycloalkenylheteroaryl;
R29 is alkyl, arylalkyl, hθteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, hetβrocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl or heterocycloalkenylheteroaryl; R30 is independently selected from the group consisting of alkylene, arylalkylene, heteroarylalkylene, cycloalkylalkylene, heterocycloalkylalkylene, arylcycloalkylalkylene, heteroarylcycloalkylalkylene, arylheterocycloalkylalkylene, heteroarylheterocycloalkylalkylene, cycloalkylene, arylcycloalkylene, heteroarylcycloalkylene, heterocycloalkylene, arylheterocycloalkylene, heteroarylheterocycloalkylene, alkenylene, arylalkenylene, cycloalkenylene, arylcycloalkenylene, heteroarylcycloalkenylene, heterocycloalkenylene, arylheterocycloalkenylene, heteroarylheterocycloalkenylene, alkynylene, arylalkynylene, arylene, cycloalkylarylene, heterocycloalkylarylene, cycioalkenylarylene, heterocycloalkenylarylene, heteroarylene, cycloalkylheteroarylene, heterocycloalkylheteroarylene, cycloalkenylheteroarylene and hθterocycloalkenylheteroarylene, wherein each of said R30 groups is independently unsubstituted or substituted at 1 to 3 hydrogens by 1 to 3 R21 groups; and
R31 is
Figure imgf000016_0001
wherein T is a bond, -0-((C(R23XR23))-, -3-((C(R23J(R23))-, -N-((C(R23)(R23))- or -((C(R83MR83)),^-.
In another aspect, the invention relates to a pharmaceutical composition comprising at least one compound of formula I and a pharmaceutically acceptable carrier
In another aspect, the invention comprises the method of inhibiting aspartyl proteases comprising administering at least one compound of formula I to a patient in need of such treatment.
More specifically, the invention comprises: the method of treating a cardiovascular disease such as hypertension, renal failure, congestive heart failure or another disease modulated by renin inhibition; the method of treating Human Immunodeficiency Virus; the method of treating a cognitive or neurodegenerative disease such as Alzheimer's Disease; the method of inhibiting plasmepsins I and Il for treatment of malaria; the method of inhibiting Cathepsin D for the treatment of Alzheimer's Disease, breast cancer, and ovarian cancer; and the method of inhibiting protozoal enzymes, for example inhibition of Plasmodium falciparnum, for the treatment of fungal infections. Said method of treatment comprise administering at least one compound of formula I to a patient in need of such treatment. In particular, the invention comprises the method of treating Alzheimer's Disease comprising administering at least one compound of formula I to a patient in need of such treatment.
In another aspect, the invention comprises the method of treating Alzheimer's Disease comprising administering to a patient in need of such treatment a combination of at least one compound of formula I and a cholinesterase inhibitor or a muscarinic nr^ agonist or m2 antagonist.
In a final aspect, the invention relates to a kit comprising in separate containers in a single package pharmaceutical compositions for use in combination, in which one container comprises a compound of formula I in a pharmaceutically acceptable carrier and a second container comprises a cholinesterase inhibitor or a muscarinic mi agonist or m2 antagonist in a pharmaceutically acceptable carrier, the combined quantities being an effective amount to treat a cognitive disease or neurodegenerative disease such as Alzheimer's Disease.
DETAILED DESCRIPTION: In general, it is understood that divalent groups are to be read left to right. Preferred compounds of formula I include the following structures:
Figure imgf000018_0001
Preferred compounds of formula I are those compounds wherein R1 is H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocylocalkylalkyl or cycloalkyl or more preferably.
Another group of preferred compounds of formula I are those compounds wherein R2 is H. Preferred compounds of formula I are those compounds wherein R3 is H, alkyl, aryl, aryl substituted with 1 to 5 R21 groups, heteroaryl, heteroaryl substituted with 1 to 5 R21 groups, cycloalkyl, heterocycloalkyl, halo, -OR9, cycloalkyl, or -SR19 or more
preferably, R3 is H, -CH3, F, Cl, Br, -OCH3, -SCH3,
Figure imgf000018_0002
Figure imgf000018_0003
Preferred compounds of the invention are those of formula I wherein R4 is H, alkyl, aryl, aryl substituted with 1 to 5 R21 groups, heteroaryl, heteroaryl substituted with 1 to 5 R21 groups, cycloalkyl, heterocycloalkyl, halo, -OR9, cycloalkyl, or -SR19, or
more preferably R4 is H, -CH3. F, Cl1 Br1 -OCH3, -SCH3,
Figure imgf000018_0004
L>,
Figure imgf000019_0001
More preferred compounds of formula I are those compounds wherein W is -C(O)- or X is -N(R5)-, or more preferably R5 is H. Another group of preferred compounds of formula I are those compounds wherein R6 is H, alkyl, cycloalkyl or cycloalkylalkyl or more preferably, R6 is -CH3 or
Figure imgf000019_0002
Preferred compounds of formula I are those compounds wherein R7 is arylene, heteroarylene, cycloalkylene, heterocycloalkylene or alkylene, wherein each of said R7 groups is independently, unsubstituted or substituted at 1 to 3 hydrogens by 1 to 3
Figure imgf000019_0003
and R i2*11 is -CN, -NO2, NH2, -CH3 or halo.
Another group of preferred compounds of formula I are those compounds
wherein
Figure imgf000019_0004
An even further group of preferred compounds of formula I are those compounds wherein R30 is arylene, heteroarylene, cycloalkylene, heterocycloalkylene or alkylene, wherein each of said R30 groups is independently unsubstituted or substituted at 1 to 3 hydrogens by 1 to 3 R21 groups; or more preferably R30 is
Figure imgf000020_0001
Figure imgf000020_0002
is -CN, -NO2. NH2, -CH3 or halo.
Another group of preferred compounds of formula I are those compounds wherein T is a bond or -CH2-. Another group of preferred compounds of formula I are those compounds
wherein R31 is
Figure imgf000020_0003
Another group of preferred compounds of formula I those compounds wherein R23 is H, alkyl, alkyl substituted with 1 to 5 R27 groups, cycloalkyl, aryl, heteroaryl, cycloalkyl substituted with 1 to 5 R27 groups, aryl substituted with 1 to 5 R27 groups or heteroaryl substituted with 1 to 5 R27 groups.
Another group of preferred compounds of formula I are those compounds wherein
W is -C(O)-; X iS -N(R5)-;
R1 is H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocylocalkylalkyl or cycloalkyl;
R2 is H;
R5 is H; R3 is H, alkyl, aryl, aryl substituted with 1 to 5 R21 groups, heteroaryl, heteroaryl substituted with 1 to 5 R21 groups, cycloalkyl, heterocycloalkyl, halo, -OR9, cycloalkyl, or -SR19; R4 is H1 alky I, aryl, aryl substituted with 1 to 5 R21 groups, hθteroaryl, heteroaryl substituted with 1 to 5 R21 groups, cycloalkyl, heterocycloalkyl, halo, -OR9, cycloalkyl, or -SR19;
R6 is H, alky I, cycloalkyl or cycloalkylalkyl; R7 is arylene, heteroarylene, cycloalkylene, heterocycloalkylene or alkylene, wherein each of said R7 groups is independently unsubstituted or substituted at 1 to 3 hydrogens by 1 to 3 R21 groups;
or Rβ and R7 are combined
Figure imgf000021_0001
R30 is arylene, heteroarylene, cycloalkylene, heterocycloalkylene or alkylene, wherein each of said R30 groups is independently unsubstituted or substituted at 1 to 3 hydrogens by 1 to 3 R21 groups;
T is a bond or -CH2-;
Figure imgf000021_0002
and R23 is H1 alkyl, alkyl substituted with 1 to 5 R27 groups, cycloalkyl, aryl, heteroaryl, cycloalkyl substituted with 1 to 5 R27 groups, aryl substituted with 1 to 5 R27 groups or heteroaryl substituted with 1 to 5 R27 groups.
Another group of preferred compounds of formula I are those compounds
wherein R3 is H, -CH3 F, Cl, Br, -OCH3, -SCH3,
Figure imgf000021_0003
L>, \=/,
Figure imgf000021_0004
R4 is H, -CH3. F, Cl, Br, -OCH3, -SCH
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000022_0003
or R6 and R7 are combined to form
Figure imgf000022_0004
Figure imgf000022_0005
Figure imgf000022_0006
wherein R21 is -CN, -NO2, NH2, -CH3 or halo; and R23 is H, -CH3, -CF3, -CH2-O-CH3, -CH2-CH2-CH3, -CH2-CH2-(CH)-(CHa)2,
Figure imgf000023_0001
The compounds of Formula (I), or pharmaceutically acceptable salts, solvates, or esters thereof, are preferably purified to a degree suitable for use as a pharmaceutically active substance. That is, the compounds of Formula (I) can have a purity of 95 wt% or more (excluding adjuvants such as pharmaceutically acceptable carriers, solvents, etc., which are used in formulating the compound of Formula (I) into a conventional form, such as a pill, capsule, IV solution, etc. suitable for administration into a patient). In other embodiments, the purity can be 97 wt% or more, or 99 wt% or more. A purified compound of Formula (I) includes a single isomer having a purity, as discussed above, of 95 wt% or more, 97 wt% or more, or 99 wt% or more, as discussed above.
Alternatively, the purified compound of Formula (I) can include a mixture of isomers, each having a structure according to Formula (I), where the amount of impurity (i.e., compounds or other contaminants, exclusive of adjuvants as discussed above) is 5 wt% or less, 3 wt% or less, or 1 wt% or less. For example, the purified compound of Formula (I) can be an isomeric mixture of compounds, where the ratio of the amounts of the two isomers is approximately 1 :1 , and the combined amount of the two isomers is 95 wt% or more, 97 wt% or more, or 99 wt% or more.
It is noted that the carbons of formula I may be replaced with 1 to 3 silicon atoms so long as all valency requirements are satisfied.
As used above, and throughout the specification, the following terms, unless otherwise indicated, shall be understood to have the following meanings: "Patient" includes both human and animals.
"Mammal" means humans and other mammalian animals. "Alkyl" means an aliphatic hydrocarbon group which may be straight or branched and comprising about 1 to about 20 carbon atoms in the chain. Preferred alkyl groups contain about 1 to about 12 carbon atoms in the chain. More preferred alkyl groups contain about 1 to about 6 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkyl chain. "Lower alkyl" means a group having about 1 to about 6 carbon atoms in the chain which may be straight or branched. Non-limiting examples of suitable alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n- pentyl, heptyl, nonyl and decyl. R21 -substituted alkyl groups include fluoromethyl, trifluoromethyl and cyclopropylmethyl . "Alkenyl" means an aliphatic hydrocarbon group containing at least one carbon-carbon double bond and which may be straight or branched and comprising about 2 to about 15 carbon atoms in the chain. Preferred alkenyl groups have about 2 to about 12 carbon atoms in the chain; and more preferably about 2 to about 6 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkenyl chain. "Lower alkenyl" means about 2 to about 6 carbon atoms in the chain which may be straight or branched. Non-limiting examples of suitable alkenyl groups include ethenyl, propenyl, n-butenyl, 3-methylbut-2-enyl, n-pentenyl, octenyl and decenyl.
"Alkynyl" means an aliphatic hydrocarbon group containing at least one carbon-carbon triple bond and which may be straight or branched and comprising about 2 to about 15 carbon atoms in the chain. Preferred alkynyl groups have about 2 to about 12 carbon atoms in the chain; and more preferably about 2 to about 4 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkynyl chain. "Lower alkynyl" means about 2 to about 6 carbon atoms in the chain which may be straight or branched. Non-limiting examples of suitable alkynyl groups include ethynyl, propynyl, 2-butynyl, 3-methylbutynyl, n-pentynyl, and decynyl.
"Aryl" means an aromatic monocyclic or multicyclic ring system comprising about 6 to about 14 carbon atoms, preferably about 6 to about 10 carbon atoms. The aryl group can be optionally substituted with one or more substituents (e.g., R18, R21' R22, etc.) which may be the same or different, and are as defined herein or two substituents on adjacent carbons can be linked together to form
Figure imgf000024_0001
Non-limiting examples of suitable aryl groups include phenyl and naphthyl. "Heteroaryl" means an aromatic monocyclic or multicyclic ring system comprising about 5 to about 14 ring atoms, preferably about 5 to about 10 ring atoms, in which one to four of the ring atoms is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination. Preferred heteroaryls contain about 5 to about 6 ring atoms. The "heteroaryl" can be optionally substituted by one or more R21 substitueπts which may be the same or different, and are as defined herein. The prefix aza, oxa or thia before the heteroaryl root name means that at least a nitrogen, oxygen or sulfur atom respectively, is present as a ring atom. A nitrogen atom of a heteroaryl can be optionally oxidized to the corresponding N-oxide. Non- limiting examples of suitable heteroaryls include pyridyl, pyrazinyl, furanyl, thienyl, pyrimidrnyl, isoxazolyl, isothiazolyl, oxazolyl, thiazolyl, pyrazolyl, furazanyl, pyrrolyl, pyrazolyl, triazolyl, 1 ,2,4-thiadiazolyl, pyrazinyl, pyridazinyl, quinoxalinyl, phthalazinyl, imidazo[1,2-a]pyridinyl, imidazo[2,1-b]thiazolyl, benzofurazanyl, indolyl, azaindolyl, benzimidazolyl, benzothienyl, quinolinyl, imidazolyl, thienopyridyl, quinazolinyl, thienopyrimidyl, pyrrolopyridyl, imidazopyridyl, isoquinolinyl, benzoazaindolyl, 1 ,2,4- triazinyl, benzothiazolyl and the like.
"Cycloalkyl" means a non-aromatic mono- or multicyclic ring system comprising about 3 to about 15 carbon atoms, preferably about 5 to about 10 carbon atoms. Preferred cycloalkyl rings contain about 5 to about 7 ring atoms. The cycloalkyl can be optionally substituted with one or more R21 substituents which may be the same or different, and are as defined above. Non-limiting examples of suitable monocyclic cycloalkyls include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl and the like. Non-limiting examples of suitable multicyclic cycloalkyls include 1-decalin, norbornyl, adamantyl and the like. Further non-limiting examples of cycloalkyl include the following
Figure imgf000026_0001
"Cycloalkylether" means a non-aromatic ring of 3 to 15 atoms comprising an oxygen atom and 2 to 14 carbon atoms. Ring carbon atoms can be substituted, provided that substituents adjacent to the ring oxygen do not include halo or substituents joined to the ring through an oxygen, nitrogen or sulfur atom.
"Cycloalkenyl" means a non-aromatic mono or multicyclic ring system comprising about 3 to about 15 carbon atoms, preferably about 5 to about 10 carbon atoms which contains at least one carbon-carbon double bond. The cycloalkenyl ring can be optionally substituted with one or more R21 substituents which may be the same or different, and are as defined above. Preferred cycloalkenyl rings contain about 5 to about 7 ring atoms. Non-limiting examples of suitable monocyclic cycloalkenyls include cyclopentenyl, cyclohexenyl, cycloheptenyl, and the like. Non- limiting example of a suitable multicyclic cycloalkenyl is norbornylenyl. '
"Heterocyclenyl" ( or "heterocycloalkenyl") means a non-aromatic monocyclic or multicyclic ring system comprising about 3 to about 10 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the atoms in the ring system is an element other than carbon, for example nitrogen, oxygen or sulfur atom, alone or in combination, and which contains at least one carbon-carbon double bond or carbon- nitrogen double bond. There are no adjacent oxygen and/or sulfur atoms present in the ring system. Preferred heterocyclenyl rings contain about 5 to about 6 ring atoms. The prefix aza, oxa or thia before the heterocyclenyl root name means that at least a nitrogen, oxygen or sulfur atom respectively is present as a ring atom. The heterocyclenyl can be optionally substituted by one or more ring system substituents, wherein "ring system substituenf is as defined above. The nitrogen or sulfur atom of the heterocyclenyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide. Non-limiting examples of suitable monocyclic azaheterocyclenyl groups include 1 ,2,3,4- tetrahydropyridyl, 1 ,2-dihydropyridyl, 1 ,4-dihydropyridyl, 1 ,2,3,6- tetrahydropyridyl, 1 ,4,5,6-tetrahydropyrimidyl, 2-pyrrolinyl, 3-pyrrolinyl, 2-imidazolinyl, 2-pyrazolinyl, and the like. Non-limiting examples of suitable oxaheterocyclenyl groups include 3,4-dihydro-2H-pyran, dihydrofuranyl, fluorodihydrofuranyl, and the like. Non-limiting example of a suitable multicyclic oxaheterocyclenyl group is 7- oxabicyclo[2.2.1]heptenyl. Non-limiting examples of suitable monocyclic thiaheterocyclenyl rings include dihydrothiophenyl, dihydrothiopyranyl, and the like. "Halo" means fluoro, chloro, bromo, or iodo groups. Preferred are fluoro, chloro or bromo, and more preferred are fluoro and chloro.
"Haloalkyl" means an alkyl as defined above wherein one or more hydrogen atoms on the alkyl is replaced by a halo group defined above.
"Heterocyclyl" or "Heterocycloalkyl" means a non-aromatic saturated monocyclic or multicyclic ring system comprising about 3 to about 10 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the atoms in the ring system is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination. There are no adjacent oxygen and/or sulfur atoms present in the ring system. Preferred heterocyclyls contain about 5 to about 6 ring atoms. The prefix aza, oxa or thia before the heterocyclyl root name means that at least a nitrogen, oxygen or sulfur atom respectively is present as a ring atom. Any -NH in a heterocyclyl ring may exist protected such as, for example, as an -N(Boc), -N(CBz)1 - N(Tos) group and the like; such protections are also considered part of this invention. The heterocyclyl can be optionally substituted by one or more "ring system substituents" which may be the same or different, and are as defined herein. The nitrogen or sulfur atom of the heterocyclyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S.S-dioxide. Non-limiting examples of suitable monocyclic heterocyclyl rings include piperidyl, pyrrolidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, 1 ,4-dioxanyl, tetrahydrofuranyl, tetrahydrothiophenyl, lactam, lactone, and the like. "Heterocyclyl" can also mean a heterocyclyl wherein a single moiety (e.g., carbonyl) can simultaneously replace two available hydrogens on the same carbon atom on a ring system. Example of such moiety is pyrrolidone:
Figure imgf000028_0001
It should be noted that in hetero-atom containing ring systems of this invention, there are no hydroxyl groups on carbon atoms adjacent to a N, O or S, as well as there are no N or S groups on carbon adjacent to another heteroatom. Thus, for example, in the ring:
Figure imgf000028_0002
there is no -OH attached directly to carbons marked 2 and 5 "Arylalkyl" means an aryl-alkyl- group in which the aryl and alkyl are as previously described. Preferred aralkyls comprise a lower alkyl group. Non-limiting examples of suitable aralkyl groups include benzyl, 2-phenethyl and naphthalenylm ethyl. The bond to the parent moiety is through the alkyl.
"Arylcycloalkyl" means a group derived from a fused aryl and cycloalkyl as defined herein. Preferred arylcycloalkyls are those wherein aryl is phenyl and cycloalkyl consists of about 5 to about 6 ring atoms. The arylcycloalkyl can be optionally substituted by 1 -5 R21 substituents. Non-limiting examples of suitable arylcycloalkyls include indanyl and 1 ,2,3,4-tetrahydronaphthyl and the like. The bond to the parent moiety is through a non-aromatic carbon atom. "Arylheterocycloalkyl" means a group derived from a fused aryl and hβterocycloalkyl as defined herein. Preferred arylcycloalkyls are those wherein aryl is phenyl and heterocycloalkyl consists of about 5 to about 6 ring atoms. The arylheterocycloalkyl can be optionally substituted by 1-5 R21 substituents. Non- limiting examples of suitable arylheterocycloalkyls include
Figure imgf000029_0001
The bond to the parent moiety is through a non-aromatic carbon atom. Similarly, "heteroarylalkyl" "cycloalkylalkyl" and "heterocycloalkylalkyl" mean a heteroaryl-, cycloalkyl- or heterocycloalkyl-alkyl- group in which the heteroaryl, cycloalkyl, heterocycloalkyl and alkyl are as previously described. It is also understood that the terms "arylcycloalkylalkyl", "heteroarylcycloalkylalkyl", "arylheterocycloalkylalkyl", "heteroarylheterocycloalkylalkyl", "heteroarylcycloalkyl", "heteroarylheterocycloalkyl", "arylcycloalkenyl", "heteroarylcycloalkenyl",
"heterocycloalkenyl", "arylheterocycloalkenyl", "heteroarylheterocycloalkenyl", "cycloalkylaryl", "heterocycloalkylaryl", "heterocycloalkenylaryl", "heterocycloalkylheteroaryl", "cycloalkenylaryr "cycloalkenylheteroaryr, "heterocycloalkenylaryl" and "heterocycloalkenylheteroaryl" similarly represented by the combination of the groups aryl-, cycloalkyl-, alkyl-, heteroaryl-, heterocycloalkyl-, cycloalkenyl- and heterocycloalkenyl- as previously described. Preferred groups contain a lower alkyl group. The bond to the parent moiety is through the alkyl.
"Acyl" means an H-C(O)-, alkyl-C(O)-, alkenyl-C(O)-, alkynyl-C(O)- or cycloalkyl-C(O)- group in which the various groups are as previously described. The bond to the parent moiety is through the carbonyl. Preferred acyls contain a lower alkyl. Non-limiting examples of suitable acyl groups include formyl, acetyl, propanoyl, 2-methylpropanoyl, butanoyl and cyclohexanoyl.
"Alkoxy" means an alkyl-O- group in which the alkyl group is as previously described. Non-limiting examples of suitable alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy and heptoxy. The bond to the parent moiety is through the ether oxygen.
"Alkoxyalkyl" means a group derived from an alkoxy and alkyl as defined herein. The bond to the parent moiety is through the alkyl.
"Arylalkenyl" means a group derived from aryl and alkenyl as defined herein. Preferred arylalkenyls are those wherein aryl is phenyl and the alkenyl consists of about 3 to about 6 atoms. The arylalkenyl can be optionally substituted by one or more R21 substituents. The bond to the parent moiety is through a non-aromatic carbon atom.
"Arylalkynyr means a group derived from aryl and alkynyl as defined herein. Preferred arylalkynyls are those wherein aryl is phenyl and the alkynyl consists of about 3 to about 6 atoms. The arylalkynyl can be optionally substituted by one or more R21 substituents. The bond to the parent moiety is through a non-aromatic carbon atom.
The suffix "ene" on alkyl, aryl, hetercycloalkyl, etc. indicates a divalent moiety, e.g., -CH2CH2- is ethylene, and *>~^JT~* is para-phenylene. It is understood that groups ending with the suffix "ene" can be optionally substituted at least once at any of the hydrogens by R21.
It is understood that multicyclic divalent groups, for example, arylheterocycloalkylene, can be attached to other groups via bonds that are formed on either ring of said group. For example,
Figure imgf000030_0001
The term "optionally substituted" means optional substitution with the specified groups, radicals or moieties, in available position or positions. Substitution on a cycloalkylalkyl, heterocycloalkylalkyl, arylalkyl, or heteroarylalkyl moiety includes substitution on the ring portion and/or on the alkyl portion of the group.
When a variable appears more than once in a group, e.g., R8 in -N=C(R8)2, or a variable appears more than once in the structure of formula I, e.g., R15 may appear in both R1 and R3, the variables can be the same or different.
With reference to the number of moieties (e.g., substituents, groups or rings) in a compound, unless otherwise defined, the phrases "one or more" and "at least one" mean that there can be as many moieties as chemically permitted, and the determination of the maximum number of such moieties is well within the knowledge of those skilled in the art. With respect to the compositions and methods comprising the use of "at least one compound of formula I," one to three compounds of formula I can be administered at the same time, preferably one. As used herein, the term "composition" is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts. The wavy line ~w^ as a bond generally indicates a mixture of, or either of, the possible isomers, e.g., containing (R)- and (S)- stereochemistry. For example,
means containing both I J and I J
Figure imgf000031_0001
Lin ses drawn into the ring system Ys, such as, for e Yxample:
indicate that the indicated line (bond) may be attached to any of the substitutable ring carbon atoms.
As well known in the art, a bond drawn from a particular atom wherein no moiety is depicted at the terminal end of the bond indicates a methyl group bound through that bond to the atom, unless stated otherwise. For example:
represents
Figure imgf000031_0003
Figure imgf000031_0002
It should also be noted that any heteroatom with unsatisfied valences in the text, schemes, examples, structural formulae, and any Tables herein is assumed to have the hydrogen atom or atoms to satisfy the valences.
Those skilled in the art will recognize that certain compounds of formula I are tautomeric, and all such tautomeric forms are contemplated herein as part of the present invention. For example, said compound can be represented by any of the following structures:
Figure imgf000031_0004
When, R8, for example is, -N(R15)S(O)2N(R16)(R17), and R16 and R17 form a ring, the moiety formed, is, for example
Figure imgf000032_0001
Polymoφhic forms of the compounds of formula I, and of the salts, solvates and prodrugs of the compounds of formula I, are intended to be included in the present invention
All stereoisomers (for example, geometric isomers, optical isomers and the like) of the present compounds (including those of the salts, solvates, esters and prodrugs of the compounds as well as the salts, solvates and esters of the prodrugs), such as those which may exist due to asymmetric carbons on various substituents, including enantiomeric forms (which may exist even in the absence of asymmetric carbons), rotameric forms, atropisomers, and diastereomeric forms, are contemplated within the scope of this invention, as are positional isomers (such as, for example, 4- pyridyl and 3-pyridyl). (For example, if a compound of Formula (I) incorporates a double bond or a fused ring, both the cis- and trans-forms, as well as mixtures, are embraced within the scope of the invention. Also, for example, all keto-enol and imine-enamine forms of the compounds are included in the invention.).
The term "substituted" means that one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency under the existing circumstances is not exceeded, and that the substitution results in a stable compound. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds. By "stable compound1 or "stable structure" is meant a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.
The term "optionally substituted" means optional substitution with the specified groups, radicals or moieties.
The term "purified", "in purified form" or "in isolated and purified form" for a compound refers to the physical state of said compound after being isolated from a synthetic process (e.g. from a reaction mixture), or natural source or combination thereof. Thus, the term "purified", "in purified form" or "in isolated and purified form" for a compound refers to the physical state of said compound after being obtained from a purification process or processes described herein or well known to the skilled artisan (e.g., chromatography, recrystallization and the like) , in sufficient purity to be characterizable by standard analytical techniques described herein or well known to the skilled artisan.
It should also be noted that any carbon as well as heteroatom with unsatisfied valences in the text, schemes, examples and Tables herein is assumed to have the sufficient number of hydrogen atom(s) to satisfy the valences. When a functional group in a compound is termed "protected", this means that the group is in modified form to preclude undesired side reactions at the protected site when the compound is subjected to a reaction. Suitable protecting groups will be recognized by those with ordinary skill in the art as well as by reference to standard textbooks such as, for example, T. W. Greene et al, Protective Groups in organic Synthesis (1991 ), Wiley, New York.
When any variable (e.g., aryl, heterocycle, R2, etc.) occurs more than one time in any constituent or in Formula I, its definition on each occurrence is independent of its definition at every other occurrence.
As used herein, the term "composition" is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.
Prodrugs and solvates of the compounds of the invention are also contemplated herein. A discussion of prodrugs is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems (1987) 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, (1987) Edward B. Roche, ed., American Pharmaceutical Association and Pergamon Press. The term "prodrug" means a compound (e.g. a drug precursor) that is transformed in vivo to yield a compound of Formula (I) or a pharmaceutically acceptable salt, hydrate or solvate of the compound. The transformation may occur by various mechanisms (e.g., by metabolic or chemical processes), such as, for example, through hydrolysis in blood. A discussion of the use of prodrugs is provided by T. Higuchi and W. Stella, "Prodrugs as Novel Delivery Systems," Vol. 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987.
For example, if a compound of Formula (I) or a pharmaceutically acceptable salt, hydrate or solvate of the compound contains a carboxylic acid functional group, a prodrug can comprise an ester formed by the replacement of the hydrogen atom of the acid group with a group such as, for example, (Ci-C8)alkyl, (C2- Ci2)alkanoyloxymethyl, 1 -(alkanoyloxy)ethyl having from 4 to 9 carbon atoms, 1- methyl-1 -(alkanoyloxy)-ethyl having from 5 to 10 carbon atoms, alkoxycarbonyloxymethyl having from 3 to 6 carbon atoms, 1- (alkoxycarbonyloxy)ethyl having from 4 to 7 carbon atoms, 1 -methyl- 1- (alkoxycarbonyloxy)βthyl having from 5 to 8 carbon atoms, N- (alkoxycarbonyl)aminomethyl having from 3 to 9 carbon atoms, 1-(N- (alkoxycarbonyl)amino)ethyl having from 4 to 10 carbon atoms, 3-phthalidyl, 4- crotonolactonyl, gamma-butyrolacton-4-yl, di-N,N-(C1-C2)alkylamino(C2-C3)alkyl (such as β-dimethylaminoethyl), carbamoyl-(Ci-C2)alkyl, N,N-di (Ci-
C2)alkylcarbamoyl-(C1-C2)alkyl and piperidino-, pyrrolidino- or morpholino(C2- C3)alkyl, and the like.
Similarly, if a compound of Formula (I) contains an alcohol functional group, a prodrug can be formed by the replacement of the hydrogen atom of the alcohol group with a group such as, for example, (Ci-C6)alkanoyloxymethyl, 1-((Ci- Ce)alkanoyloxy)ethyl, 1-methyl-1-((Ci-Ce)alkanoyloxy)ethyl, (Ci- C6)alkoxycarbonyloxymethyl, N-(Ci -Ce)alkoxycarbonylaminomethyl, succinoyl, (Ci- C6)alkanoyl, a-amino(Ci-C4)alkanyl, arylacyl and α-aminoacyl, or α-aminoacyl-α- aminoacyl, where each α-aminoacyl group is independently selected from the naturally occurring L-amino acids, P(O)(OH)2, -P(O)(O(Ci -Ce)alkyl)2 or glycosyl (the radical resulting from the removal of a hydroxyl group of the hemiacetal form of a carbohydrate), and the like.
If a compound of Formula (I) incorporates an amine functional group, a prodrug can be formed by the replacement of a hydrogen atom in the amine group with a group such as, for example, R-carbonyl, RO-carbonyl, NRR'-carbonyl where R and R' are each independently (Ci-CiO)alkyl, (C3-C7) cycloalkyl, benzyl, or R-carbonyl is a natural α-aminoacyl or natural α-aminoacyl, — C(OH)C(O)OY1 wherein Y1 is H, (Ci-C6)alkyl or benzyl, — C(OY2JY3 wherein Y2 is (Ci-C4) alkyl and Y3 is (Ci-C6)alkyl, carboxy (C1-C6JaIlCyI, amino(Ci-C4)alkyl or mono-N — or di-N,N-(Ci-C6)alkylaminoalkyl, -C(Y4JY5 wherein Y4 is H or methyl and Y5 is mono-N — or di-N,N-(Ci-C6)alkylamino morpholino, piperidin-1-yl or pyrrolidin-1-yl, and the like.
One or more compounds of the invention may exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like, and it is intended that the invention embrace both solvated and unsolvated forms. "Solvate" means a physical association of a compound of this invention with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate" encompasses both solution-phase and isolatable solvates. Non-limiting examples of suitable solvates include ethanolates, methanolates, and the like. "Hydrate" is a solvate wherein the solvent molecule is H2O. One or more compounds of the invention may optionally be converted to a solvate. Preparation of solvates is generally known. Thus, for example, M. Caira etaf, J. Pharmaceutical ScL, 93(3). 601-611 (2004) describe the preparation of the solvates of the antifungal fluconazole in ethyl acetate as well as from water. Similar preparations of solvates, hemisolvate, hydrates and the like are described by E. C. van Tonder etal, AAPS PharmSciTech., 5(1). article 12 (2004); and A. L. Bingham et af, Chem. Commun., 603-604 (2001). A typical, non-limiting, process involves dissolving the inventive compound in desired amounts of the desired solvent (organic or water or mixtures thereof) at a higher than ambient temperature, and cooling the solution at a rate sufficient to form crystals which are then isolated by standard methods. Analytical techniques such as, for example I. R. spectroscopy, show the presence of the solvent (or water) in the crystals as a solvate (or hydrate).
"Effective amount" or "therapeutically effective amount" is meant to describe an amount of compound or a composition of the present invention effective in inhibiting the above-noted diseases and thus producing the desired therapeutic, ameliorative, inhibitory or preventative effect. "Effective amount" or "therapeutically effective amount" can also further describe an amount of compound or a composition of the present invention effective in inhibiting aspartyl protease and/or inhibiting BAC E- 1 and thus producing the desired therapeutic effect in a suitable patient. The compounds of Formula I can form salts which are also within the scope of this invention. Reference to a compound of Formula I herein is understood to include reference to salts thereof, unless otherwise indicated. The term °salt(s)", as employed herein, denotes acidic salts formed with inorganic and/or organic acids, as well as basic salts formed with inorganic and/or organic bases. In addition, when a compound of Formula I contains both a basic moiety, such as, but not limited to a pyridine or imidazole, and an acidic moiety, such as, but not limited to a carboxylic acid, zwitte rions ("inner salts") may be formed and are included within the term nsalt(s)" as used herein. Pharmaceutically acceptable (i.e., non-toxic, physiologically acceptable) salts are preferred, although other salts are also useful. Salts of the compounds of the Formula I may be formed, for example, by reacting a compound of Formula I with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization. Exemplary acid addition salts include acetates, adipates, alginates, ascorbates, aspartates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphorsulfonates, cyclopentanepropionates, digluconates, dodecylsulfates, ethanesulfonates, fumarates, glucoheptanoates, glycerophosphates, hemisulfates, heptanoates, hexanoates, hydrochlorides, hydrobromides, hydroiodides, 2-hydroxyethanesulfonates, lactates, maleates, methanesulfonates, methyl sulfates, 2-naphthalenesulfonates, nicotinates, nitrates, oxalates, pamoates, pectinates, persulfates, 3-phenylpropionates, phosphates, picrates, pivalates, propionates, salicylates, succinates, bisulfates, sulfates, sulfonates (such as those mentioned herein), tartarates, thiocyanates, toluenesulfonates (also known as tosylates,) undecanoates, and the like.
Additionally, acids which are generally considered suitable for the formation of pharmaceutically useful salts from basic pharmaceutical compounds are discussed, for example, by P. Stahl era/, Camille G. (eds.) Handbook of Pharmaceutical Salts. Properties, Selection and Use. (2002) Zurich: Wϊley-VCH; S. Berge era/, Journal of Pharmaceutical Sciences (1977) 66(1) 1-19; P. Gould, International J. of
Pharmaceutics (1986) 33201-217; Anderson era/, The Practice of Medicinal Chemistry (1996), Academic Press, New York; and in The Orange Book (Food & Drug Administration, Washington, D.C. on their website). These disclosures are incorporated herein by reference thereto. Exemplary basic salts include ammonium salts, alkali metal salts such as sodium, lithium, and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, aluminum salts, zinc salts, salts with organic bases (for example, organic amines) such as benzathines, diethylamine, dicyclohexylamines, hydrabamines (formed with N,N-bis(dehydroabietyl)ethylenediamine), N-methyl-D- glucamines, N-methyl-D-glucamides, t-butyl amines, piperazine, phenylcyclohexylamine, choline, tromethamine, and salts with amino acids such as arginine, lysine and the like. Basic nitrogen-containing groups may be quarternized with agents such as lower alkyl halides (e.g. methyl, ethyl, propyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (e.g. dimethyl, diethyl, dibutyl, and diamyl sulfates), long chain halides (e.g. decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides), aralkyl halides (e.g. benzyl and phenethyl bromides), and others.
Basic nitrogen-containing groups may be quarternized with agents such as lower alkyl halides (e.g. methyl, ethyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (e.g. dimethyl, diethyl, and dibutyl sulfates), long chain halides (e.g. decyl, lauryl, and stearyl chlorides, bromides and iodides), aralkyl halides (e.g. benzyl and phenethyl bromides), and others.
All such acid salts and base salts are intended to be pharmaceutically acceptable salts within the scope of the invention and all acid and base salts are considered equivalent to the free forms of the corresponding compounds for purposes of the invention.
Pharmaceutically acceptable esters of the present compounds include the following groups: (1) carboxylic acid esters obtained by esterification of the hydroxy groups, in which the non-carbonyl moiety of the carboxylic acid portion of the ester grouping is selected from straight or branched chain alkyl (for example, acetyl, n- propyl, t-butyl, or n-butyl), alkoxyalkyl (for example, methoxymethyl), aralkyl (for example, benzyl), aryloxyalkyl (for example, phenoxy methyl), aryl (for example, phenyl optionally substituted with, for example, halogen, d^alkyl, or d-4alkoxy or amino); (2) sulfonate esters, such as alkyl- or aralkylsulfonyl (for example, methanesulfonyl); (3) amino acid esters (for example, L-valyl or L-isoleucyl); (4) phosphonate esters and (5) mono-, di- or triphosphate esters. The phosphate esters may be further esterified by, for example, a C1^O alcohol or reactive derivative thereof, or by a 2,3-di (Cβ-24)acyl glycerol. Compounds of Formula I, and salts, solvates, esters and prodrugs thereof, may exist in their tautomeric form (for example, as an amide or imino ether). All such tautomeric forms are contemplated herein as part of the present invention.
The compounds of Formula (I) may contain asymmetric or chiral centers, and, therefore, exist in different stereoisomeric forms. It is intended that all stereoisomeric forms of the compounds of Formula (I) as well as mixtures thereof, including racemic mixtures, form part of the present invention. In addition, the present invention embraces all geometric and positional isomers. For example, if a compound of Formula (I) incorporates a double bond or a fused ring, both the cis- and trans-forms, as well as mixtures, are embraced within the scope of the invention.
Diastereomeric mixtures can be separated into their individual diastereomers on the basis of their physical chemical differences by methods well known to those skilled in the art, such as, for example, by chromatography and/or fractional crystallization. Enantiomers can be separated by converting the enantiomeric mixture into a diastereomeric mixture by reaction with an appropriate optically active compound (e.g., chiral auxiliary such as a chiral alcohol or Mosher"s acid chloride), separating the diastereomers and converting (e.g., hydrolyzing) the individual diastereomers to the corresponding pure enantiomers. Also, some of the compounds of Formula (I) may be atropisomers (e.g., substituted biaryls) and are considered as part of this invention. Enantiomers can also be separated by use of chiral HPLC column.
It is also possible that the compounds of Formula (I) may exist in different tautomeric forms, and all such forms are embraced within the scope of the invention. Also, for example, ail keto-enol and imine-enamine forms of the compounds are included in the invention.
Individual stereoisomers of the compounds of the invention may, for example, be substantially free of other isomers, or may be admixed, for example, as racemates or with all other, or other selected, stereoisomers. The chiral centers of the present invention can have the S or R configuration as defined by the IUPAC 1974 Recommendations. The use of the terms "salt", "solvate", "ester", "prodrug" and the like, is intended to equally apply to the salt, solvate, ester and prodrug of enantiomers, stereoisomers, rotamers, tautomers, positional isomers, racemates or prodrugs of the inventive compounds. The present invention also embraces isotopicatly-labelled compounds of the present invention which are identical to those recited herein, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine and chlorine, such as 2H, 3H, 13C, 14C1 15N, 180, 17O1 31P, 32P, 35S, 18F1 and 36CI, respectively.
Certain isotopically-labelled compounds of Formula (I) (e.g., those labeled with 3H and 14C) are useful in compound and/or substrate tissue distribution assays. Tritiated (i.e., 3H) and carbon- 14 (i.e., 14C) isotopes are particularly preferred for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium (i.e., 2H) may afford certain therapeutic advantages resulting from greater metabolic stability (e.g., increased in vivo half-life or reduced dosage requirements) and hence may be preferred in some circumstances, lsotopically labelled compounds of Formula (I) can generally be prepared by following procedures analogous to those disclosed in the Schemes and/or in the Examples hereinbelow, by substituting an appropriate isotopically labelled reagent for a non-isotopically labelled reagent.
Polymoφhic forms of the compounds of Formula I, and of the salts, solvates, esters and prodrugs of the compounds of Formula I, are intended to be included in the present invention.
The compounds according to the invention have pharmacological properties; in particular, the compounds of Formula I can be inhibitors of asparty protease.
The term "pharmaceutical composition" is also intended to encompass both the bulk composition and individual dosage units comprised of more than one (e.g., two) pharmaceutically active agents such as, for example, a compound of the present invention and an additional agent selected from the lists of the additional agents described herein, along with any pharmaceutically inactive excipients. The bulk composition and each individual dosage unit can contain fixed amounts of the afore- said "more than one pharmaceutically active agents". The bulk composition is material that has not yet been formed into individual dosage units. An illustrative dosage unit is an oral dosage unit such as tablets, pills and the like. Similarly, the herein-described method of treating a patient by administering a pharmaceutical composition of the present invention is also intended to encompass the administration of the afore-said bulk composition and individual dosage units.
Compounds of formula I can be made using procedures known in the art. The following reaction schemes show typical procedures, but those skilled in the art will recognize that other procedures can also be suitable.
In the Schemes and in the EΞxample below, the following abbreviations are used: room temperature: r.t. high pressure liquid chromatography: HPLC reverse-phase HPLC: RP-HPLC liquid chromatography mass spectrometry: LCMS mass spectrometry: MS polytetrafluoroethylene: PTFE hour: h minute: min retention time: tR ethyl: Et methyl: Me benzyl: Bn lithium diisopropylamide: LDA
1-(3-dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride: EDCI
DIEA means N, N-diisopropylethylamine ethyl acetate: EtOAc
N.N-dimethylformamide: DMF methanol: MeOH
Ethanol: EtOH acetonitrile: CH3CN acetic acid: AcOH magnesium sulfate: MgSO4 copper iodide: CuI diisopropylamine: JPr2NH
Dichlorobis(tripheπylphosphine)palladium: PdCI2(PPh3J2 ammonium hydroxide: NH4OH trifluoroacetic acid: TFA benzyloxycarbonyl: Cbz tert-butoxycarbonyl: Boc
DCM: Dichloromethane
TMSCHN2: Trimethytsilyldiazomethane
Teoc-OSuiO-Trimethylsilylethoxycarbonyl N-hydroxylsuccinate
TBAF: Tetrabutylammonium Flouride
THF: Tetrahydrofurane
MCPBA: meta-Chloroperbenzoic acid
TsOHiToluenesulfonic acid.
PhIO: iodosobenzene
Pb(OAc)4; Lead tetra-acetate
Method A
Experimental (General Synthesis Scheme)
Figure imgf000041_0001
Detailed Example:
Figure imgf000041_0002
Procedure: To a round-bottomed flask fitted with reflux condenser was added 1 (20.5 g, 0.051 mol), 2 (12.3 g, 0.077 mol), 3 (1.04 g, 1.27 mmol), 4 (76.88 ml_), and 80 mL M3uOH. The reaction mixture was stirred at 650C for 45 minutes. After cooling to room temperature, the reaction mixture was poured to cold water and extracted by methylene chloride (6x100 mL) and dried over Na2SO4. The concentrated residue was purified by flash column chromatography (EA/H=0- 80%) to afford the Boc protected compound 5 as a white solid, which was stirred for one hour in a 250 mL of 40% trifluoroacetic acid/methylene chloride solution. The solution was then concentrated and purified by flash column chromatography (7M NH3/CH3OH/CH2Cl2=0-5%) to afford the de-protected free form 6 as a white solid, which was dissolved in 300 mL acetonitrile and 6.78 mL formic acid and stirred for 1 hour. The solution was concentrated down and put on vacuum to afford 7 as formate salt (white solid, 18.5 g, 94% overall yield). 7: 1H NMR (CD3OD, 400 MHz) δ 8.17 (s, 1H), 8.43 (s, 1 H), 8.08 (s, 1 H), 8.06 (s, 1 H), 7.82 (s, 1 H), 7.52 (s, 1 H), 3.47 (d, 1 H, J= 16.8 Hz), 3.24 (d, 1 H, J= 16.4 Hz) 3.23 (s, 3H), 2.09 (s, 3H), 1.84 (s, 3H). MS m/z 339 (M+H)+. LC-MS retention time 2.32 min.
The following examples were prepared in a similar manner as the above example:
Figure imgf000042_0001
Figure imgf000042_0002
Figure imgf000043_0001
Figure imgf000043_0002
Figure imgf000043_0003
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000045_0002
Figure imgf000045_0003
Figure imgf000045_0004
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000047_0003
Figure imgf000047_0002
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000049_0002
Figure imgf000049_0004
Figure imgf000049_0003
Figure imgf000049_0005
Figure imgf000050_0001
Figure imgf000051_0001
Human Cathepsin D FRET assay.
The substrate used below has been described (Y.Yasuda et al., J. Biochem. , 125, 1137 (1999)). Substrate and enzyme are commercially available. The assay can be run in a 30 μl final volume using a 384 well Nunc black plate.
8 concentrations of compound can be pre-incubated with enzyme for 30 mins at 37° C followed by addition of substrate with continued incubation at 37° C for 45 mins. The rate of increase in fluorescence is linear for over 1 h and is measured at the end of the incubation period using a Molecular Devices FLEX station plate reader. Kis are interpolated from the IC50S using a Km value of 4 μM and the substrate concentration of 2.5 μM.
Reagents
Na-Acetate pH 5 1% Brij-35 from 10% stock (Calbiochem) DMSO
Purified (>95%) human liver Cathepsin D (Athens Research & Technology Cat# 16-12- 030104)
Peptide substrate(Km=4uM) Mca-Gly-Lys-Pro-lle-Leu-Phe-Phe-Arg-Leu-Lys(Dnp)-D- Arg-NH2 Bachem Cat # M-2455
Pepstatin is used as a control inhibitor (Ki-0.5 nM) and is available from Sigma. Nunc 384 well black plates
Final Assay buffer conditions 100 mM Na Acetate pH 5.0 0.02% Brij-35 1% DMSO
Compound can be diluted to 3x final concentration in assay buffer containing 3% DMSO. 10 μl of compound will be added to 10 μl of 2.25 nM enzyme (3x) diluted in assay buffer without DMSO, mixed briefly, spun, and can be incubated at 37° C for 30 mins. 3x substrate (7.5 μM) is prepared in 1x assay buffer without DMSO. 10 μl of substrate will be added to each well mixed and spun briefly to initiate the reaction. Assay plates can be incubated at 37 C for 45 mins and read on 384 compatible fluorescence plate reader using a 328 nm Ex and 393 nm Em.
BACE-1 Cloning. Protein Expression and Purification. A predicted soluble form of human BACE1 (sBACEI , corresponding to amino acids 1-454) can be generated from the full length BACE1 cONA (full length human BACE1 cDNA in pCDNA4/mycHisA construct; University of Toronto) by PCR using the advantage-GC cDNA PCR kit (Clontech, Palo Alto, CA). A Hindlll/Pmel fragment from pCDNA4-sBACE1 myc/His can be blunt ended using Klenow and subcloned into the Stu I site of pFASTBACI(A) (Invitrogen). A sBACEI mycHis recombinant bacmid can be generated by transposition in DHIOBac cells(GIBCO/BRL). Subsequently, the sBACEI mycHis bacmid construct can be transfected into sf9 cells using CellFectin (Invitrogen, San Diego, CA) in order to generate recombinant baculovirus. Sf9 cells are grown in SF 900-II medium (Invitrogen) supplemented with 3% heat inactivated FBS and 0.5X penicillin/streptomycin solution (Invitrogen). Five milliliters of high titer plaque purified sBACEmyc/His virus is used to infect 1 L of logarithmically growing sf9 cells for 72 hours. Intact cells are pelleted by centrifugation at 3000xg for 15 minutes. The supernatant, containing secreted sBACEI , is collected and diluted 50% v/v with 100 mM HEPES, pH 8.0. The diluted medium is loaded onto a Q-sepharose column. The Q-sepharose column is washed with Buffer A (20 mM HEPES, pH 8.0, 50 mM NaCI).
Proteins, can be eluted from the Q-sepharose column with Buffer B (20 mM HEPES, pH 8.0, 500 mM NaCI). The protein peaks from the Q-sepharose column are pooled and loaded onto a Ni-NTA agarose column. The Ni-NTA column can be then washed with Buffer C (20 mM HEPES, pH 8.0, 500 mM NaCI). Bound proteins are then eluted with Buffer D (Buffer C+250 mM imidazole). Peak protein fractions as determined by the Bradford Assay (Biorad, CA) are concentrated using a Centricon 30 concentrator (Millipore). sBACEI purity is estimated to be -90% as assessed by SDS-PAGE and Commassie Blue staining. N-terminal sequencing indicates that greater than 90% of the purified sBACEI contained the prodomain; hence this protein is referred to as sproBACEL
Peptide Hydrolysis Assay. The inhibitor, 25 nM EuK-biotin labeled APPsw substrate (EuK- KTEEISEVNLDAEFRHDKC-biotin; CIS-Bio International, France), 5 μM unlabeled APPsw peptide (KTEEISEVNLD AEFRHDK; American Peptide Company, Sunnyvale, CA), 7 nM sproBACEI , 20 mM PIPES pH 5.0, 0.1%Brij-35 (protein grade, Calbiochem, San Diego, CA), and 10% glycerol are preincubated for 30 rήin at 30° C. Reactions are initiated by addition of substrate in a 5 μl aliquot resulting in a total volume of 25 μl. After 3 hr at 30* C reactions are terminated by addition of an equal volume of 2x stop buffer containing 50 mM Tris-HCI pH 8.0, 0.5 M KF, 0.001% Brij- 35, 20 μg/ml SA-XL665 (cross-linked allophycocyanin protein coupled to streptavidin; CIS-Bio International, France) (0.5 μg/well). Plates are shaken briefly and spun at 1200xg for 10 seconds to pellet all liquid to the bottom of the plate before the incubation. HTRF measurements are made on a Packard Discovery® HTRF plate reader using 337 nm laser light to excite the sample followed by a 50 μs delay and simultaneous measurements of both 620 nm and 665 nm emissions for 400 μs. IC50 determinations for inhibitors, (/). are determined by measuring the percent change of the relative fluorescence at 665 nm divided by the relative fluorescence at 620 nm, (665/620 ratio), in the presence of varying concentrations of / and a fixed concentration of enzyme and substrate. Nonlinear regression analysis of this data can be performed using GraphPad Prism 3.0 software selecting four parameter logistic equation, that allows for a variable slope. Y=Bottom + (Top-Bottom)/
(1+10yH(LogEC50-X)*Hill Slope)); X is the logarithm of concentration of I, Y is the percent change in ratio and Y starts at bottom and goes to top with a sigmoid shape.
Human mature Renin enzyme assay: Human Renin can be cloned from a human kidney cDNA library and C- terminally epitope-tagged with the V5-6His sequence into pCDNA3.1. pCNDA3.1- Renin-V5-6His is stably expressed in HEK293 cells and purified to >80% using standard Ni-Affinity chromatography. The prodomain of the recombinant human renin-V5-6His can be removed by limited proteolysis using immobilized TPCK-trypsin to give mature-human renin. Renin enzymatic activity can be monitored using a commercially available fluorescence resonance energy transfer (FRET) peptide substrate, RS-1 (Molecular Probes, Eugene, OR) in 50 mM Tris-HCI pH 8.0, 100 mM NaCI, 0.1%Brij-35 and 5% DMSO buffer for 40 mins at 30 "Celsius in the presence or absence of different concentrations of test compounds. Mature human Renin is present at approximately 200 nM. Inhibitory activity is defined as the percent decrease in renin induced fluorescence at the end of the 40 min incubation compared to vehicle controls and samples lacking enzyme. In the aspect of the invention relating to a combination of at least one compound of formula I with at least one cholinesterase inhibitor, acetyl- and/or butyrylcholinesterase inhibitors can be used. Examples of cholinesterase inhibitors are tacrine, donepezil, rivastigmine, galantamine, pyridostigmine and neostigmine, with tacrine, donepezil, rivastigmine and galantamine being preferred. Preferably, these combinations are directed to the treatment of Alzheimer's Disease.
In one aspect of the invention, a combination of at least one compound of formula I with at least one muscarinic mi agonist or m2 antagonist can be used. Examples of mi agonists are known in the art. Examples of m2 antagonists are also known in the art; in particular, m2 antagonists are disclosed in US patents 5,883,096; 6,037,352; 5,889,006; 6,043,255; 5,952,349; 5,935,958; 6,066,636; 5,977,138; 6,294,554; 6,043,255; and 6,458,812; and in WO 03/031412, all of which are incorporated herein by reference.
In other aspects of the invention relating to a combination of at least one compound of formula I and at least one other agent, for example a beta secretase inhibitor; a gamma secretase inhibitor; an HMG-CoA reductase inhibitor such as atorvastatin, lovastatin, simvastatin, pravastatin, fluvastatin and rosuvastatin; nonsteroidal anti-inflammatory agents such as, but not necessarily limited to ibuprofen, relafen or naproxen; N-methyl-D-aspartate receptor antagonists such as memantine; anti-amyloid antibodies including humanized monoclonal antibodies; vitamin E; nicotinic acetylcholine receptor agonists; CB1 receptor inverse agonists or CB1 receptor antagonists; antibiotics such as doxycycline; growth hormone secretagogues; histamine H3 antagonists; AMPA agonists; PDE4 inhibitors; GABAA inverse agonists; inhibitors of amyloid aggregation; glycogen synthase kinase beta inhibitors; promoters of alpha secretase activity. Preferably, these combinations are directed to the treatment of Alzheimer's Disease.
For preparing pharmaceutical compositions from the compounds described by this invention, inert, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories. The powders and tablets may be comprised of from about 5 to about 95 percent active ingredient. Suitable solid carriers are known in the art, e.g. magnesium carbonate, magnesium stearate, talc, sugar or lactose. Tablets, powders, cachets and capsules can be used as solid dosage forms suitable for oral administration. .Examples of pharmaceutically acceptable carriers and methods of manufacture for various compositions may be found in A. Gennaro (ed.), Remington's Pharmaceutical Sciences, 18th Edition, (1990), Mack Publishing Co., Easton, Pennsylvania.
Liquid form preparations include solutions, suspensions and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injection or addition of sweeteners and opacif iers for oral solutions, suspensions and emulsions. Liquid form preparations may also include solutions for intranasal administration.
Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier, such as an inert compressed gas, e.g. nitrogen.
Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration. Such liquid forms include solutions, suspensions and emulsions.
The compounds of the invention may also be deliverable transdermally. The transdermal compositions can take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.
Preferably the compound is administered orally.
Preferably, the pharmaceutical preparation is in a unit dosage form. In such form, the preparation is subdivided into suitably sized unit doses containing appropriate quantities of the active component, e.g., an effective amount to achieve the desired purpose.
The quantity of active compound in a unit dose of preparation may be varied or adjusted from about 1 mg to about 100 mg, preferably from about 1 mg to about 50 mg, more preferably from about 1 mg to about 25 mg, according to the particular application.
The actual dosage employed may be varied depending upon the requirements of the patient and the severity of the condition being treated. Determination of the proper dosage regimen for a particular situation is within the skill of the art. For convenience, the total daily dosage may be divided and administered in portions during the day as required.
The amount and frequency of administration of the compounds of the invention and/or the pharmaceutically acceptable salts thereof will be regulated according to the judgment of the attending clinician considering such factors as age, condition and size of the patient as well as severity of the symptoms being treated. A typical recommended daily dosage regimen for oral administration can range from about 1 mg/day to about 300 mg/day, preferably 1 mg/day to 50 mg/day, in two to four divided doses. When a compound of formula I is used in combination with a cholinesterase inhibitor to treat cognitive disorders, these two active components may be coadministered simultaneously or sequentially, or a single pharmaceutical composition comprising a compound of formula I and a cholinesterase inhibitor in a pharmaceutically acceptable carrier can be administered. The components of the combination can be administered individually or together in any conventional oral or parenteral dosage form such as capsule, tablet, powder, cachet, suspension, solution, suppository, nasal spray, etc. The dosage of the cholinesterase inhibitor can be determined from published material, and may range from 0.001 to 100 mg/kg body weight. When separate pharmaceutical compositions of a compound of formula I and a cholinesterase inhibitor are to be administered, they can be provided in a kit comprising in a single package, one container comprising a compound of formula I in a pharmaceutically acceptable carrier, and a separate container comprising a cholinesterase inhibitor in a pharmaceutically acceptable carrier, with the compound of formula I and the cholinesterase inhibitor being present in amounts such that the combination is therapeutically effective. A kit is advantageous for administering a combination when, for example, the components must be administered at different time intervals or when they are in different dosage forms.
While the present invention has been described in conjunction with the specific embodiments set forth above, many alternatives, modifications and variations thereof will be apparent to those of ordinary skill in the art. All such alternatives, modifications and variations are intended to fall within the spirit and scope of the present invention.

Claims

We claim:
1. A compound having the structural formula I
Figure imgf000058_0001
or a stereoisomer, tautomer, or pharmaceutically acceptable salt or solvate thereof, wherein
W is a bond, -C(=S)-, -S(O)-, -S(O)2-. -C(=O)-, -O-, -C(R6)(R7)-, -N(R5)- or -C(=N(R5))-; X is -O-, -N(R5)- or -C(R6J(R7)-;
U is a bond or -(C(R3)(R4))b-, wherein b is 1 or 2;
R1, R2 and R5 are independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, -OR15, -CN, -Ct=NR11JR8, -C(O)R8, -C(O)OR9, -S(O)R10, -S(O)2R10, -C(O)N(R11)(R12), -S(O)N(R11)(R12), -S(O)2N(R11J(R12), -NO2, -N=C(R8)2 and -N(R11)(R12), provided that R1 and R5 are not both selected from -NO2, -N=C(R8J2 and -N(R11J(R12); R3, R4 and R6 are independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylhβtβrocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, halo, -CH2-O-Si(R9)(R10)(R19), -SH, -CN, -OR9, -C(O)R8, -C(O)OR9, -C(O)N(R11KR12), -SR19, -S(O)N(R11)(R12), -S(O)2N(R11J(R12), -N(R11J(R12), -N(R11)C(O)Rβ, -N(R11JS(O)R10, -N(R11JS(O)2R10, -N(R11)C(O)N(R12)(R13), -N(R11JC(O)OR9 and -C(=NOH)R8;
R7 is independently selected from the group consisting of alkylene, arylalkylene, heteroarylalkylenβ, cycloalkylalkylene, heterocycloalkylalkylene, arylcycloalkylalkylene, heteroarylcycloalkylalkylene, arylheterocycloalkylalkylene, heteroarylheterocycloalkylalkylene, cycloalkylene, arylcycloalkylene, heteroarylcycloalkylene, heterocycloalkylene, arylheterocycloalkylene, heteroarylheterocycloalkylene, alkenylene, arylalkenylene, cycloalkenylene, arylcycloalkenylene, heteroarylcycloalkenylene, heterocycloalkenylene, arylheterocycloalkenylene, heteroarylheterocycloalkenylene, alkynylene, arylalkynylene, arylene, cycloalkylarylene, heterocycloalkylarylene, cycloalkenylarylene, heterocycloalkenylarylene, heteroarylene, cycloalkylheteroarylene, heterocycloalkylheteroarylene, cycloalkenylheteroarylene and heterocycloalkenylheteroarylene, wherein each of said R7 groups is independently unsubstituted or substituted at 1 to 3 hydrogens by 1 to 3 R21 groups; provided that when W is -O- or -N(R5)-, then R3 and R4 are not halo, -SH1 -OR9, -SR19, -S(O)N(R11J(R12), -S(O)2N(R11)(R12), -N(R11)(R12). -N(R11JC(O)R8, -N(R11)S(O)R10, -N(R11JC(O)N(R12J(R13), or -N(R11)C(O)OR9; or R3, R4, R6 and R7, together with the carbon to which they are attached, form a 3-7 membered cycloalkyl group optionally substituted by R14 or a 3-7 membered cycloalkylether optionally substituted by R14; or R3 and R4 together with the carbon to which they are attached, are combined to form multicyclic groups such as
Figure imgf000059_0001
wherein M is -CH2-, S, -N(R19)- or O, A and B are independently arylene or heteroarylene and q is 0, 1 or 2 provided that when q is 2, one M must be a carbon atom and when q is 2, M is optionally a double bond; and with the proviso that when R3 and R4 form said multicyclic groups; then adjacent R3 and R4 or R6 and R7 groups cannot be combined to form said multicyclic groups; or R6 and R7 together with the carbon to which they are attached, are combined to form multicyclic groups such as
Figure imgf000060_0001
wherein M is -CH2-, S, -N(R19)- or O, A and B are independently arylene or heteroarylene and q is 0, 1 or 2 provided that when q is 2, one M must be a carbon atom and when q is 2, M is optionally a double bond; and with the proviso that when R6 and R7 form said multicyclic groups, then adjacent R3 and R4 or R$ and R7 cannot be combined to form said multicyclic groups; R8 is independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, -OR15, -N(R15J(R16), -N(R15JC(O)R16, -N(R15JS(O)R16, -N(R15JS(O)2R16, -N(R15JS(O)2N(R16J(R17J, -N(R15JS(O)N(R16J(R17J, -N(R15JC(O)N(R16J(R17J and -N(R15JC(O)OR16;
R9 is independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, hβterocycloalkylheteroaryl, cycloalkenylheteroaryl, and heterocycloalkenylheteroaryl;
R10 is independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloaikyl, heteroarylhβterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl and -N(R15)(R16);
R11, R12 and R13 are independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloaikyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, -C(O)R8, -C(O)OR9, -S(O)R10, -S(O)2R10, -C(O)N(R15XR16), -S(O)N(R15HR16), -S(O)2N(R15)(R16) and -CN;
R14 is 1 -5 substituents independently selected from the group consisting of alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloaikyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, halo, -CN, -OR15, -C(O)R15, -C(O)OR15, -C(O)N(R15KR16), -SR15, -S(O)N(R15J(R16), -S(O)2N(R15J(R16), -C(=NOR15)R16, -P(O)(OR15J(OR16), -N(R15)(R16), -N(R15JC(O)R16, -N(R15)S(O)R16, -N(R15JS(O)2R16, -N(R15)S(O)2N(R16)(R17), -N(R15)S(O)N(R16)(R17), -N(R15)C(O)N(R16)(R17) and -N(R15)C(O)OR16;
R15, R16 and R17 are independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, R18-alkyl, R-arylalkyl, R18-heteroarylalkyl, R18-cycloalkylalkyl, R18-heterocycloalkylalkyl, R18-arylcycloalkylalkyl, R^-heteroarylcycloalkylalkyl. R-arylheterocycloalkylalkyl, R^-heteroarylheterocycloalkylalkyl, R18-cycloalkyl, R18-arylcycloalkyl, R18-heteroarylcycloalkyl, R18-heterocycloalkyl, R18-arylheterocycloalkyl, R18-heteroarylheterocycloalkyl. R-alkenyl, R18-arylalkenyl, R18-cycloalkenyl, R18-arylcycloalkenyl, R18-heteroarylcycloalkenyl, R18-heterocycloalkenyl, R18-arylheterocycloalkenyl, R18-heteroarylheterocycloalkenyl, R18-alkynyl, R18-arylalkynyl, R18-aryl, R18-cycloalkylaryl, R-heterocycloalkylaryl, R18-cycloalkenylaryl, R18-heterocycloalkenylaryl, R18-heteroaryl, R18-cycloalkylheteroaryl, R18-heterocycloalkylheteroaryl, R18-cycloalkenylheteroaryl, and R18-heterocycloalkenylheteroaryl; or R15, R16 and R17 are
Figure imgf000062_0001
wherein R23 numbers 0 to 5 substituents, m is 0 to 6 and n is 0 to 5;
R18 is 1-5 substituents independently selected from the group consisting of alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, -NO2, halo, HO-alkoxyalkyl, -CF3, -CN, alkyl-CN, -C(O)R19, -C(O)OH, -C(O)OR19, -C(O)NHR20, -C(O)NH2, -C(O)NH2-C(O)N(alkyl)2, -C(O)N(alkyl)(aryl), -C(O)N(alkyl)(heteroaryl), -SR19, -S(O)2R20, -S(O)NH2, -S(O)NH(alkyl), -S(O)N(alkyl)(alkyl), -S(O)N H(aryl), -S(O)2NH2, -S(O)2NHR19, -S(O)2NH(heterocycloalkyl), -S(O)2N(alkyl)2> -S(O)2N(alkyl)(aryl), -OCF3, -OH, -OR20, -O-heterocycloalkyl, -O-cycloalkylalkyl, -O-heterocycloalkylalkyl, -NH2, -NHR20, -N(alkyl)2, -N(arylalkyl)2, -N(arylalkyl)-(heteroarylalkyl), -NHC(O)R20, -NHC(O)NH2, -NHC(O)NH(alkyl), -NHC(O)N(alkyl)(alkyl), -N(alkyl)C(O)NH(alkyl), -N(alkyl)C(O)N(alkyl)(alkyl), -NHS(O)2R20, -NHS(O)2NH(alkyl). -NHS(O)2N(alkyl)(alkyl), -N(alkyl)S(O)2NH(alkyl) and -N(alkyl)S(O)2N(alkyl)(alkyl): or two R18 moieties on adjacent carbons can be linked together to form
Figure imgf000063_0001
R19 is alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl- heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl or heterocycloalkenylheteroaryl; R20 is halo substituted aryl, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, hetθrocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkyπyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl or heterocycloalkenylheteroaryl, and wherein each of the alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl or heterocycloalkenylheteroaryl groups in R1, R2, R3, R4, R5, R6, R8, R9, R10, R11, R12, R13 and R14 are independently unsubstituted or substituted by 1 to 5 R21 groups independently selected from the group consisting alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl , arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, halo, -CN, -C(=NR11)R15, -OR15, -C(O)R15, -C(O)OR15, -C(O)N(R15XR16), -SR15, -S(O)N(R15)(R16), -CH(R15)(R16), -S(O)2N(R15)(R16),
~C(=NOR15)R16, -P(O)(OR15J(OR16), -N(R15J(R16), -alkyl-N(R15)(R16), -N(R15)C(O)R16, -CH2-N(R15)C(O)R16, -CH2-N(R15)C(O)N(R16)(R17), -CH2-R15; -CH2N(R15J(R16), -N(R15)S(O)R16, -N(R15)S(O)2R16, -CH2-N(R15JS(O)2R16, -N(R15JS(O)2N(R16J(R17J, -N(R15)S(O)N(R16)(R17), -N(R15)C(O)N(R16)(R17), -CH2-N(R15)C(O)N(R16)(R17), -N(R15JC(O)OR16, -CH2-N(R15)C(O)OR16, -S(O)R15, -N3, -NO2 and -S(O)2R15; and wherein each of the alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloaikyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroaryJheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkβnylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl or heterocycloalkenylheteroaryl groups in R21 are independently unsubstituted or substituted by 1 to 5 R22 groups independently selected from the group consisting of alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloaikyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, halo, -CN, -C(=NR11)R15, -OR15, -C(O)R15, -C(O)OR15, -C(O)N(R15XR16), -SR15, -S(O)N(R15)(R16), -CH(R15)(R16), -S(O)2N(R15J(R16), -C(=NOR15)R16, -P(O)(OR15)(OR16), -N(R15J(R16), -alkyl- N(R15XR16), -N(R15JC(O)R16, -CH2-N(R15)C(O)R16, -CH2-N(R15)C(O)N(R16)(R17), -CH2- R15; -CH2N(R15J(R16), -N(R15JS(O)R16, -N(R15JS(O)2R16, -CH2-N(R15JS(O)2R16, -N(R15JS(O)2N(R16J(R17), -N(R15JS(O)N(R16J(R17J1 -N(R15JC(O)N(R16XR17), -CH2-N(R15)C(O)N(R16)(R17), -N(R15JC(O)OR16, -CH2-N(R15JC(O)OR16, -S(O)R15, -N3, -NO2 and -S(O)2R15;
R23 is 1 to 5 groups independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloaikyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, halo, -CN, -OR24, -C(O)R24, -C(O)OR24, -C(O)N(R24)(R25), -SR24, -S(O)N(R24XR25), -S(O)2N(R24J(R25),
-C(=NOR24)R25, -P(O)(OR24J(OR25), -N(R24J(R25), -alkyf-N(R24)(R25), -N(R24)C(O)R25, -CH2-N(R24JC(O)R25, -N(R24JS(O)R25, -N(R24JS(O)2R25, -CH2-N(R24JS(O)2R25, -N(R24JS(OJ2N(R25J(R26J, -N(R24JS(O)N(R25J(R26J, -N(R24JC(O)N(R25J(R26J, -CH2-N(R24JC(O)N(R25J(R26J, -N(R24JC(O)OR25, -CH2-N(R24JC(O)OR25, -S(O)R24 and -S(O)2R24; and wherein each of the alkyl, arylalkyl, heteroarylalkyl, cycJoalkylalkyl, heterocycloalkylalkyl, aryfcycloalkylalkyl, heteroarylcycloalkylalkyl, arylhθtθrocycloalkylalkyl. heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylhβterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl and heterocycloalkenylheteroaryl groups in R23 are independently unsubstituted or substituted by 1 to 5 R27 groups independently selected from the group consisting of alkyl, arylalkyl, heteroarylalkyl, cycioalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyi, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, halo, -CF3, -CN, -OR24, -C(O)R24, -C(O)OR24, alkyl-C(O)OR24, -C(O)N(R24J(R25), -SR24, -S(O)N(R24)(R25), -S(O)2N(R24J(R25J, -C(=NOR24)R25, -P(O)(OR24J(OR25J, -N(R24J(R25J,
-alkyl-N(R24)(R25), -N(R24JC(O)R25, -CH2-N(R24JC(O)R25, -N(R24JS(O)R25, -N(R24JS(O)2R25, -CH2-N(R24JS(O)2R25, -N(R24JS(O)2N(R25J(R26J, -N(R24JS(O)N(R25J(R26J1 -N(R24JC(O)N(R25KR26J, -CH2-N(R24JC(O)N(R25J(R26J, -N(R24JC(O)OR25, -CH2-N(R24JC(O)OR25, -S(O)R24 and -S(O)2R24; R24, R25 and R26 are independently selected from the group consisting of H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl. arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, hβterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, R^-alkyl, R27-arylalkyl, R27-heteroarylalkyl, R27-cycloalkylalkyl, R27-heterocycloalkylalkyl, R^-arylcycloalkylalkyl, R^-heteroarylcycloalkylalkyl, R27-arylheterocycloalkylalkyl, R^-heteroarylheterocycloalkylalkyl, R27-cycloalkyl, R27-arylcycloalkyl, R27-heteroarylcycloalkyl, R27-heterocycloalkyl, R27-arylheterocycloalkyl, R27-heteroarylheterocycloalkyl, R27-alkenyl, R27-arylalkenyl, R27-cycloalkenyl, R27-arylcycloalkenyl, R27-heteroarylcycloalkenyl, R27-heterocycloalkenyl, R27-arylheterocycloalkenyl, R27-heteroarylheterocycloalkenyl, R27-alkynyl, R27-arylalkynyl, R27-aryl, R27-cycloalkylaryl, R^-heterocycloalkylaryl, R27-cycloalkenylaryl, R27-heterocycloalkenylaryl, R27-heteroaryl, R27-cycloalkylheteroaryl, R27-heterocycloalkylheteroaryl, R27-cycloalkenylheteroaryl and R27-heterocycloalkenylheteroaryl;
R27 is 1 -5 substituents independently selected from the group consisting of alkyl, arylalkyl, heteroarylalkyl. cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl, heterocycloalkenylheteroaryl, -NO2, halo, -CF3, -CN, alkyl-CN, -C(O)R28, -C(O)OH, -C(O)OR28, -C(O)NHR29, -C(O)N(alkyl)2, -C(O)N(alkyl)(aryl), -C(O)N(alkyl)(heteroaryl), -SR28, -S(O)2R29, -S(O)NH2, -S(O)NH(alkyl). -S(O)N(alkyl)(alkyl), -S(O)NH(aryl). -S(O)2NH2, -S(O)2NHR28, -S(O)2NH(aryl), -S(O)2NH(heterocycloalkyl), -S(O)2N(alkyl)2, -S(O)2N(alkyl)(aryl), -OH, -OR29, -O-heterocycloalkyl, -O-cycloalkylalkyl, -O-heterocycloalkylalkyl, -NH2, -NHR29, -N(alkyl)2, -N(arylalkyl)2. -N(arylalkyl)(heteroarylalkyl), -NHC(O)R29, -NHC(O)NH2, -NHC(O)NH(alkyl), -NHC(O)N(alkyl)(alkyl). -N(alkyl)C(O)NH(alkyl). -N(alkyl)C(O)N(alkyl)(alkyl), -NHS(O)2R29, -NHS(O)2NH(alkyl),
-NHS(O)2N(alkyl)(alky0. -N(alkyl)S(O)2NH(alkyl) and -N(alkyl)S(O)2N(alkyl)(alkyl); R28 is alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyt, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl, cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylhθterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, hetβroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl or heterocycloalkenylhθteroaryl;
R29 is alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, arylcycloalkylalkyl, heteroarylcycloalkylalkyl, arylheterocycloalkylalkyl, heteroarylheterocycloalkylalkyl. cycloalkyl, arylcycloalkyl, heteroarylcycloalkyl, heterocycloalkyl, arylheterocycloalkyl, heteroarylheterocycloalkyl, alkenyl, arylalkenyl, cycloalkenyl, arylcycloalkenyl, heteroarylcycloalkenyl, heterocycloalkenyl, arylheterocycloalkenyl, heteroarylheterocycloalkenyl, alkynyl, arylalkynyl, aryl, cycloalkylaryl, heterocycloalkylaryl, cycloalkenylaryl, heterocycloalkenylaryl, heteroaryl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, cycloalkenylheteroaryl or heterocycloalkenylheteroaryl; R30 is independently selected from the group consisting of alkylene, arylalkylene, heteroarylalkylene, cycloalkylaikylene, heterocycloalkylalkylene, arylcycloalkylalkylene, heteroarylcycloalkylalkylene, arylheterocycloalkylalkylene, heteroarylheterocycloalkylalkylene, cycloalkylene, arylcycloalkylene, heteroarylcycloalkylene, heterocycloalkylene, arylheterocycloalkylene, heteroarylhβterocycloalkylene, alkenylene, arylalkenylene, cycloalkenylene, arylcycloalkenylene, heteroarylcycloalkenylene, heterocycloalkenylene, arylheterocycloalkenylene, heteroarylheterocycloalkenylene, alkynylene, arylalkynylene, arylene, cycloalkylarylene, heterocycloalkylarylene, cycloalkenylarylene, heterocycloalkenylarylene, heteroarylene, cycloalkylheteroarylene, heterocycloalkylheteroarylene, cycloalkenylheteroarylene and heterocycloalkenylheteroarylene, wherein each of said R30 groups is independently unsubstituted or substituted at 1 to 3 hydrogens by 1 to 3 R21 groups; and R31 is
Figure imgf000069_0001
wherein T is a bond, -O-((C(R23)(R23))-, -8-((C(R23XR23))-, -N^(C(R23J(R23))- or -((C(R23XR23)),-^
2. A compound of claim 1 having the following structure
Figure imgf000069_0002
3. A compound of claim 1 having the following structure
Figure imgf000069_0003
4. A compound of claim 1 having the following structure
Figure imgf000070_0001
5. A compound of claim 1 wherein R1 is H1 alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocylocalkylalkyl or cycloalkyl.
6. A compound of claim 1 wherein R2 is H.
7. A compound of claim 1 wherein R3 is H, alkyl, aryl, aryl substituted with 1 to 5 R21 groups, heteroaryl, heteroaryl substituted with 1 to 5 R21 groups, cycloalkyl, heterocycloalkyl, halo, -OR9, cycloalkyl, or -SR19.
8. A compound of claim 1 wherein R3 is H, -CH3 F, Cl, Br, -OCH3, -SCH3, \=/,
Figure imgf000070_0002
9. A compound of claim 1 wherein R4 is H, alkyl, aryl, aryl substituted with 1 to 5 R21 groups, heteroaryl, heteroaryl substituted with 1 to 5 R21 groups, cycloalkyl, heterocycloalkyl, halo, -OR9, cycloalkyl, or -SR19.
10. A compound of claim 1 wherein R4 is H, -CH3, F, Cl, Br1 -OCH3, -SCH3,
Figure imgf000071_0001
Figure imgf000071_0002
11. A compound of claim 1 wherein W is -C(O)-.
12. A compound of claim 1 wherein X is -N(R5)-.
13. A compound of claim 12 wherein R5 is H.
14. A compound of claim 1 wherein R6 is H, alkyl, cycloalkyl or cycloalkylalkyl.
15. A compound of claim 1 wherein R is -CH3 or U^.
16. A compound of claim 1 wherein R7 is arylene, heteroarylene, cycloalkylene, heterocycloalkylene or alkylene, wherein each of said R7 groups is independently unsubstituted or substituted at 1 to 3 hydrogens by 1 to 3 R21 groups.
of claim 1 wherein R is
Figure imgf000071_0003
,
Figure imgf000071_0004
Figure imgf000072_0001
and
R21 is -CN1 -NO2, NH2, -CH3 or halo.
18. A compound of claim 1 wherein R6 and R7 are combined to form
Figure imgf000072_0002
19. A compound of claim 1 wherein R30 is arylene, heteroarylene, cycloalkylene, heterocycloalkylene or alkylene, wherein each of said R30 groups is independently unsubstituted or substituted at 1 to 3 hydrogens by 1 to 3 R21 groups.
Figure imgf000072_0003
* ^>R2I , wherein R21 is -CN, -NO2, NH2, -CH3 or halo.
21. A compound of claim 1 wherein T is a bond or -CH2-.
22. A compound of claim 1 wherein R31 is
Figure imgf000072_0004
23. A compound of claim 1 wherein R23 is H, alkyl, alkyl substituted with 1 to 5 R27 groups, cycloalkyl, aryl, heteroaryl, cycloalkyl substituted with 1 to 5 R27 groups, aryl substituted with 1 to 5 R27 groups or heteroaryl substituted with 1 to 5 R27 groups.
24. A compound of claim 1 wherein W is -C(O)-; X is -N(R5)-;
R1 is H, alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, heterocylocalkylalkyl or cycloalkyl; R2 is H;
R5 is H;
R3 is H1 alkyl, aryl, aryl substituted with 1 to 5 R21 groups, heteroaryl, heteroaryl substituted with 1 to 5 R21 groups, cycloalkyl, heterocycloalkyl, halo, -OR9, cycloalkyl, or -SR19; R4 is H, alkyl, aryl, aryl substituted with 1 to 5 R21 groups, heteroaryl, heteroaryl substituted with 1 to 5 R21 groups, cycloalkyl, heterocycloalkyl, halo, -OR9, cycloalkyl, or -SR19;
R6 is H, alkyl, cycloalkyl or cycloalkylalkyl;
R7 is arylene, heteroarylene, cycloalkylene, heterocycloalkylene or alkylene, wherein each of said R7 groups is independently unsubstituted or substituted at 1 to 3 hydrogens by 1 to 3 R21 groups;
Figure imgf000073_0001
R30 is arylene, heteroarylene, cycloalkylene, heterocycloalkylene or alkylene, wherein each of said R30 groups is independently unsubstituted or substituted at 1 to 3 hydrogens by 1 to 3 R21 groups; T is a bond or -CH2-;
Figure imgf000073_0002
and R23 is H, alkyl, alkyl substituted with 1 to 5 R27 groups, cycloalkyl, aryl, heteroaryl, cycloalkyl substituted with 1 to 5 R27 groups, aryl substituted with 1 to 5 R27 groups or heteroaryl substituted with 1 to 5 Regroups.
25. A compound of claim 24 wherein R3 is H, -CH3. F, Cl1 Br, -OCH3, -SCH3,
Figure imgf000074_0001
R4 is H, -CH3. F, Cl, Br, -OCH3, -SCH3, \=/,
Figure imgf000074_0002
Figure imgf000074_0003
Figure imgf000074_0004
, wherein R21 is -CN, -NO2, NH2, -CH3 or halo;
Figure imgf000075_0001
NH2, -CH3 or halo; and
R23 is H, -CH3, -CF3, -CH2-O-CH3, -CH2-CH2-CH3, -CH2-CH2-(CH)-(CH3)2l
Figure imgf000075_0002
26. A compound selected from the group consisting of:
Figure imgf000075_0003
Figure imgf000075_0004
Figure imgf000076_0001
Figure imgf000077_0001
Figure imgf000077_0002
Figure imgf000077_0004
Figure imgf000077_0003
Figure imgf000078_0001
Figure imgf000078_0002
Figure imgf000078_0003
Figure imgf000078_0004
Figure imgf000079_0001
Figure imgf000079_0003
Figure imgf000079_0004
Figure imgf000079_0002
Figure imgf000079_0005
Figure imgf000079_0007
Figure imgf000079_0006
Figure imgf000080_0001
Figure imgf000081_0001
Figure imgf000082_0001
Figure imgf000082_0003
Figure imgf000082_0002
Figure imgf000082_0004
Figure imgf000083_0001
Figure imgf000084_0001
27. A pharmaceutical composition comprising an effective amount of a compound of claim 1 and a pharmaceutically effective carrier.
28. A pharmaceutical composition comprising an effective amount of a compound of claim 26 and a pharmaceutically effective carrier.
29. A method of inhibiting aspartyl protease comprising administering to a patient in need of such treatment an effective amount of a compound of claim 1.
30. A method of inhibiting aspartyl protease comprising administering to a patient in need of such treatment an effective amount of a compound of claim 26.
31. A method of treating cardiovascular diseases, cognitive and neurodegenerative diseases, and the methods of inhibiting of Human Immunodeficiency Virus, plasmepins, cathepsin D and protozoal enzymes comprising administering to a patient in need of such treatment an effective amount of a compound of claim 1.
32. The method of claim 31 wherein a cognitive or neurodegenerative disease is treated.
33. The method of claim 32 wherein Alzheimer's Disease is treated.
34. A method of treating cardiovascular diseases, cognitive and neurodegenerative diseases, and the methods of inhibiting of Human Immunodeficiency Virus, plasmepins, cathepsin D and protozoal enzymes comprising administering to a patient in need of such treatment an effective amount of a compound of claim 1.
35. The method of claim 34 wherein a cognitive or neurodegenerative disease is treated.
36. The method of claim 35 wherein Alzheimer's Disease is treated.
37. A pharmaceutical composition comprising an effective amount of a compound of claim 1 , and an effective amount of a cholinesterase inhibitor or a muscarinic mi agonist or m2 antagonist in a pharmaceutically effective carrier.
38. A pharmaceutical composition comprising an effective amount of a compound of claim 26, and an effective amount of a cholinesterase inhibitor or a muscarinic m, agonist or m2 antagonist in a pharmaceutically effective carrier.
39. A method of treating a cognitive or neurodegenerative disease comprising administering to a patient in need of such treatment an effective amount of a compound of claim 1 in combination with an effective amount of a cholinesterase inhibitor.
40. The method of claim 39 wherein Alzheimer's Disease is treated.
41. A method of treating a cognitive or neurodegenerative disease comprising administering to a patient in need of such treatment an effective amount of a compound of claim 26 in combination with an effective amount of a cholinesterase inhibitor.
42. The method of claim 41 wherein Alzheimer's Disease is treated.
43. A method of treating a cognitive or neurodegenerative disease comprising administering to a patient in need of such treatment an effective amount of a compound of claim 1 in combination with an effective amount of a gamma secretase inhibitor, an HMG-CoA reductase inhibitor or non-steroidal anti-inflammatory agent.
44. The method of claim 43 wherein said HMG-CoA reductase inhibitor is atorvastatin, lovastatin, simvastatin, pravastatin, fluvastatin or rosuvastatin.
45. The method of claim 44 wherein Alzheimer's Disease is treated.
46. The method of claim 43 wherein said non-steroidal anti-inflammatory agent is ibuprofen, relafen or naproxen.
47. The method of claim 46 wherein Alzheimer's Disease is treated.
48. A method of treating a cognitive or neurodegenerative disease comprising administering to a patient in need of such treatment an effective amount of a compound of claim 26 in combination with an effective amount of a gamma secretase inhibitor, an HMG-CoA reductase inhibitor or non-steroidal anti-inflammatory agent.
49. The method of claim 48 wherein said HMG-CoA reductase inhibitor is atorvastatin, lovastatin, simvistatin, pravastatin, fluvastatin or rosuvastatin.
50 The method of claim 49 wherein Alzheimer's Disease is treated.
51. The method of claim 48 wherein said non-steroidal anti-inflammatory agent is ibuprofen, relafen or naproxen.
52. The method of claim 51 wherein Alzheimer's Disease is treated.
53. A pharmaceutical composition comprising an effective amount of a compound of claim 1 , and an effective amount of a gamma secretase inhibitor; an HMG-CoA reductase inhibitor or a non-steroidal anti-inflammatory agent.
54. A pharmaceutical composition comprising an effective amount of a compound of claim 26, and an effective amount of a gamma secretase inhibitor; an HMG-CoA reductase inhibitor or a non-steroidal anti-inflammatory agent.
55. A method of treating a cognitive or neurodegenerative disease comprising administering to a patient in need of such treatment an effective amount of at least one compound of claim 1 in combination with an effective amount of one or more compounds selected from the group consisting of a cholinesterase inhibitor, muscarinic mi agonist or m2 antagonist, gamma secretase inhibitor, an HMG-CoA reductase inhibitor and non-steroidal anti-inflammatory agent.
56. A method of treating a cognitive or neurodegenerative disease comprising administering to a patient in need of such treatment an effective amount of at least one compound of claim 26 in combination with an effective amount of one or more compounds selected from the group consisting of a cholinesterase inhibitor, muscarinic m-j agonist or m2 antagonist, gamma secretasθ inhibitor, an HMG-CoA reductase inhibitor and non-steroidal anti-inflammatory agent.
PCT/US2007/013684 2006-06-12 2007-06-07 Heterocyclic aspartyl protease inhibitors WO2007146225A2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BRPI0712780-4A BRPI0712780A2 (en) 2006-06-12 2007-06-07 heterocyclic aspartyl protease inhibitors
CA002653650A CA2653650A1 (en) 2006-06-12 2007-06-07 Heterocyclic aspartyl protease inhibitors
AU2007258435A AU2007258435A1 (en) 2006-06-12 2007-06-07 Heterocyclic aspartyl protease inhibitors
JP2009515439A JP2009539983A (en) 2006-06-12 2007-06-07 Heterocyclic aspartyl protease inhibitors
MX2008015956A MX2008015956A (en) 2006-06-12 2007-06-07 Heterocyclic aspartyl protease inhibitors.
EP07795971A EP2032542A2 (en) 2006-06-12 2007-06-07 Heterocyclic aspartyl protease inhibitors
IL195592A IL195592A0 (en) 2006-06-12 2008-11-27 Heterocyclic aspartyl protease inhibitors
NO20090144A NO20090144L (en) 2006-06-12 2009-01-09 Heterocyclic aspartyl protease inhibitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81274406P 2006-06-12 2006-06-12
US60/812,744 2006-06-12

Publications (2)

Publication Number Publication Date
WO2007146225A2 true WO2007146225A2 (en) 2007-12-21
WO2007146225A3 WO2007146225A3 (en) 2008-03-06

Family

ID=38713565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/013684 WO2007146225A2 (en) 2006-06-12 2007-06-07 Heterocyclic aspartyl protease inhibitors

Country Status (18)

Country Link
US (2) US8168641B2 (en)
EP (2) EP2032542A2 (en)
JP (1) JP2009539983A (en)
KR (1) KR20090015967A (en)
CN (1) CN101484429A (en)
AR (1) AR061264A1 (en)
AU (1) AU2007258435A1 (en)
BR (1) BRPI0712780A2 (en)
CA (1) CA2653650A1 (en)
CL (1) CL2007001674A1 (en)
EC (1) ECSP088959A (en)
IL (1) IL195592A0 (en)
MX (1) MX2008015956A (en)
NO (1) NO20090144L (en)
PE (1) PE20080155A1 (en)
RU (1) RU2009100074A (en)
TW (1) TW200815365A (en)
WO (1) WO2007146225A2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008103351A2 (en) * 2007-02-23 2008-08-28 Schering Corporation Heterocyclic aspartyl protease inhibitors
US7592348B2 (en) 2003-12-15 2009-09-22 Schering Corporation Heterocyclic aspartyl protease inhibitors
US7629356B2 (en) 2007-05-15 2009-12-08 Astrazeneca Ab Substituted pyrrolo[3,4-b]pyridinamines and pharmaceutical compositions
WO2009151098A1 (en) 2008-06-13 2009-12-17 塩野義製薬株式会社 SULFUR-CONTAINING HETEROCYCLIC DERIVATIVE HAVING β-SECRETASE-INHIBITING ACTIVITY
US7700603B2 (en) 2003-12-15 2010-04-20 Schering Corporation Heterocyclic aspartyl protease inhibitors
WO2010047372A1 (en) 2008-10-22 2010-04-29 塩野義製薬株式会社 2-aminopyridin-4-one and 2-aminopyridine derivative both having bace1-inhibiting activity
US7759354B2 (en) 2005-06-14 2010-07-20 Schering Corporation Bicyclic guanidine derivatives as asparyl protease inhibitors, compositions, and uses thereof
US7855213B2 (en) 2006-06-22 2010-12-21 Astrazeneca Ab Compounds
US7868000B2 (en) 2005-06-14 2011-01-11 Schering Corporation Aspartyl protease inhibitors
WO2011044181A1 (en) 2009-10-08 2011-04-14 Schering Corporation Iminothiadiazine dioxide compounds as bace inhibitors, compositions, and their use
WO2011044187A1 (en) 2009-10-08 2011-04-14 Schering Corporation Iminothiadiazine dioxide compounds as bace inhibitors, compositions, and their use
WO2011044185A2 (en) 2009-10-08 2011-04-14 Schering Corporation Pentafluorosulfur imino heterocyclic compounds as bace-1 inhibitors, compositions, and their use
US8030500B2 (en) 2008-11-14 2011-10-04 Astrazeneca Ab Substituted isoindoles for the treatment and/or prevention of Aβ- related pathologies
US8168641B2 (en) 2006-06-12 2012-05-01 Schering Corporation Aspartyl protease inhibitors
US8168630B2 (en) 2007-04-24 2012-05-01 Shionogi & Co., Ltd. Aminodihydrothiazine derivatives substituted with a cyclic group
US8173642B2 (en) 2005-10-25 2012-05-08 Shionogi & Co., Ltd. Aminodihydrothiazine derivatives
WO2012138734A1 (en) 2011-04-07 2012-10-11 Merck Sharp & Dohme Corp. C5-c6 oxacyclic-fused thiadiazine dioxide compounds as bace inhibitors, compositions, and their use
WO2013028670A1 (en) 2011-08-22 2013-02-28 Merck Sharp & Dohme Corp. 2-spiro-substituted iminothiazines and their mono-and dioxides as bace inhibitors, compositions and their use
US8541427B2 (en) 2008-04-22 2013-09-24 Merck, Sharp & Dohme, Corp. Phenyl-substituted 2-imino-3-methyl pyrrolo pyrimidinone compounds as BACE-1 inhibitors, compositions, and their use
US8557826B2 (en) 2009-10-08 2013-10-15 Merck Sharp & Dohme Corp. Pentafluorosulfur imino heterocyclic compounds as BACE-1 inhibitors, compositions, and their use
AU2013234424B2 (en) * 2009-10-08 2014-02-27 Merck Sharp & Dohme Llc Iminothiadiazine dioxide compounds as BACE inhibitors, compositions, and their use
WO2014062549A1 (en) 2012-10-17 2014-04-24 Merck Sharp & Dohme Corp. Tricyclic substituted thiadiazine dioxide compounds as bace inhibitors, compositions, and their use
WO2014062553A1 (en) 2012-10-17 2014-04-24 Merck Sharp & Dohme Corp. Tricyclic substituted thiadiazine dioxide compounds as bace inhibitors, compositions, and their use
US9145426B2 (en) 2011-04-07 2015-09-29 Merck Sharp & Dohme Corp. Pyrrolidine-fused thiadiazine dioxide compounds as BACE inhibitors, compositions, and their use
EP2934149A4 (en) * 2012-12-20 2016-06-15 Merck Sharp & Dohme C6-azaspiro iminothiadiazine dioxides as bace inhibitors
US9489013B2 (en) 2012-12-20 2016-11-08 Merck Sharp & Dohme Corp. C6-azaspiro iminothiadiazine dioxides as bace inhibitors, compositions, and their use
US9580396B2 (en) 2012-12-21 2017-02-28 Merck Sharp & Dohme Corp. C6-spiro iminothiadiazine dioxides as BACE inhibitors, compositions, and their use
US9656974B2 (en) 2009-12-11 2017-05-23 Shionogi & Co., Ltd. Oxazine derivatives
WO2017089453A1 (en) * 2015-11-25 2017-06-01 Ucb Biopharma Sprl Iminotetrahydropyrimidinone derivatives as plasmepsin v inhibitors
US9745324B2 (en) 2013-12-18 2017-08-29 Merck Sharp & Dohme Corp. Iminothiadiazepane dioxide compounds as BACE inhibitors, compositions, and their use
US9758513B2 (en) 2012-10-24 2017-09-12 Shionogi & Co., Ltd. Dihydrooxazine or oxazepine derivatives having BACE1 inhibitory activity
US9802928B2 (en) 2013-12-18 2017-10-31 Merck Sharp & Dohme Corp. C-6 spirocarbocyclic iminothiadiazine dioxides as BACE inhibitors, compositions, and their use
US10548882B2 (en) 2012-06-21 2020-02-04 Astrazeneca Ab Camsylate salt
EP3607946A1 (en) 2012-03-19 2020-02-12 Buck Institute for Research on Aging App specific bace inhibitors (asbis) and uses thereof
EP3653609A1 (en) 2013-02-12 2020-05-20 Buck Institute for Research on Aging Hydantoins that modulate bace-mediated app processing
US11766435B2 (en) 2016-02-18 2023-09-26 Merck Sharp & Dohme Llc N3-substituted iminopyrimidinones as antimalarial agents

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2436795T3 (en) * 2005-06-14 2014-01-07 Merck Sharp & Dohme Corp. Aspartyl protease heterocyclic inhibitors, preparation and use thereof
US8093254B2 (en) 2006-12-12 2012-01-10 Schering Corporation Aspartyl protease inhibitors
EP2061771A1 (en) * 2006-12-12 2009-05-27 Schering Corporation Aspartyl protease inhibitors containing a tricyclic ring system
EP2151435A4 (en) 2007-04-24 2011-09-14 Shionogi & Co Pharmaceutical composition for treatment of alzheimer's disease
MX2010005028A (en) 2007-11-05 2010-05-27 Schering Corp Gamma secretase modulators.
WO2010021680A2 (en) * 2008-08-19 2010-02-25 Vitae Pharmaceuticals, Inc. Inhibitors of beta-secretase
US8426447B2 (en) * 2008-09-11 2013-04-23 Amgen Inc. Spiro-tricyclic ring compounds as beta-secretase modulators and methods of use
AR075854A1 (en) 2009-03-13 2011-05-04 Vitae Pharmaceuticals Inc BETA-SECRETASA INHIBITORS
GB0912777D0 (en) 2009-07-22 2009-08-26 Eisai London Res Lab Ltd Fused aminodihydropyrimidone derivatives
GB0912778D0 (en) 2009-07-22 2009-08-26 Eisai London Res Lab Ltd Fused aminodihydro-oxazine derivatives
CN102812005B (en) 2010-02-24 2014-12-10 生命医药公司 Inhibitors of beta-secretase
JP5584352B2 (en) 2010-03-15 2014-09-03 アムジエン・インコーポレーテツド Amino-dihydrooxazine and amino-dihydrothiazine spiro compounds as β-secretase modulators and their medical use
US8883782B2 (en) 2010-03-15 2014-11-11 Amgen Inc. Spiro-tetracyclic ring compounds as beta-secretase modulators and methods of use
US8921363B2 (en) 2010-08-05 2014-12-30 Amgen Inc. Derivatives of 1 H-isoindol-3-amine, 1 H-iso-aza-indol-3amine, 3,4-dihydroisoquinolin-1-amine, and 1,4-dihydroisoquinolin-3-amine as beta-secretase inhibitors
US8927721B2 (en) 2010-10-29 2015-01-06 Shionogi & Co., Ltd. Naphthyridine derivative
EP2634188A4 (en) 2010-10-29 2014-05-07 Shionogi & Co Fused aminodihydropyrimidine derivative
EP2643325A1 (en) 2010-11-23 2013-10-02 Amgen Inc. Spiro-amino-imidazolone and spiro-amino-dihydro-pyrimidinone compounds as beta-secretase modulators and methods of use
GB201100181D0 (en) 2011-01-06 2011-02-23 Eisai Ltd Fused aminodihydrothiazine derivatives
GB201101139D0 (en) 2011-01-21 2011-03-09 Eisai Ltd Fused aminodihydrothiazine derivatives
GB201101140D0 (en) 2011-01-21 2011-03-09 Eisai Ltd Fused aminodihydrothiazine derivatives
EP2673279A1 (en) 2011-02-07 2013-12-18 Amgen Inc. 5-amino-oxazepine and 5-amino-thiazepane compounds as beta-secretase antagonists and methods of use
US8962859B2 (en) 2011-02-15 2015-02-24 Amgen Inc. Spiro-amino-imidazo-fused heterocyclic compounds as beta-secretase modulators and methods of use
RU2013150349A (en) 2011-04-13 2015-05-20 Мерк Шарп И Доум Корп. 5-SUBSTITUTED IMINOTIAZINES AND THEIR MONO- AND DIOXIDES AS YOUR INHIBITORS CONTAINING THEIR COMPOSITIONS AND THEIR APPLICATION
WO2012147763A1 (en) 2011-04-26 2012-11-01 塩野義製薬株式会社 Oxazine derivative and bace 1 inhibitor containing same
WO2013044092A1 (en) 2011-09-21 2013-03-28 Amgen Inc. Amino-oxazines and amino-dihydrothiazine compounds as beta-secretase modulators and methods of use
TWI557112B (en) 2012-03-05 2016-11-11 百靈佳殷格翰國際股份有限公司 Inhibitors of beta-secretase
TW201422592A (en) 2012-08-27 2014-06-16 Boehringer Ingelheim Int Inhibitors of beta-secretase
EP2900650A1 (en) 2012-09-28 2015-08-05 Vitae Pharmaceuticals, Inc. Inhibitors of beta-secretase
US9725469B2 (en) 2012-11-15 2017-08-08 Amgen, Inc. Amino-oxazine and amino-dihydrothiazine compounds as beta-secretase modulators and methods of use
US9365589B2 (en) 2012-12-20 2016-06-14 Merck Sharp & Dohme Corp. C5, C6 oxacyclic-fused thiazine dioxide compounds as BACE inhibitors, compositions, and their use
CA2902080A1 (en) 2013-02-25 2014-08-28 Merck Patent Gmbh 2-amino-3,4-dihydroquinazoline derivatives and the use thereof as cathepsin d inhibitors
CA2979905A1 (en) 2015-04-21 2016-10-27 Allgenesis Biotherapeutics, Inc. Compounds and their use as bace1 inhibitors
CN105646466A (en) * 2016-01-27 2016-06-08 上海宣创生物科技有限公司 B crystal form for heterocyclic ring aspartic protease inhibitor and preparing method thereof
CN105524054A (en) * 2016-01-27 2016-04-27 上海宣创生物科技有限公司 Crystal form A of heterocyclic radix asparagi aminoprotease inhibitor and preparation method of crystal form A
CN105541820A (en) * 2016-01-27 2016-05-04 上海宣创生物科技有限公司 C crystal form of heterocyclic radix asparagi amino protease inhibitor and preparing method thereof
US11034669B2 (en) 2018-11-30 2021-06-15 Nuvation Bio Inc. Pyrrole and pyrazole compounds and methods of use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005058311A1 (en) * 2003-12-15 2005-06-30 Schering Corporation Heterocyclic aspartyl protease inhibitors
WO2006138264A2 (en) * 2005-06-14 2006-12-28 Schering Corporation Aspartyl protease inhibitors
WO2006138217A1 (en) * 2005-06-14 2006-12-28 Schering Corporation Aspartyl protease inhibitors
WO2007114771A1 (en) * 2006-04-05 2007-10-11 Astrazeneca Ab 2-AMINOPYRIMIDIN-4-ONES AND THEIR USE FOR TREATING OR PREVENTING Aβ-RELATED PATHOLOGIES

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492408B1 (en) 1999-07-21 2002-12-10 Boehringer Ingelheim Pharmaceuticals, Inc. Small molecules useful in the treatment of inflammatory disease
CA2416906A1 (en) 2000-08-09 2002-02-14 Boehringer Ingelheim Pharmaceuticals, Inc. Synthesis of (r)-3-(4-bromobenzyl)-1-(3,5-dichlorophenyl)-5-iodo-3-methyl-1-h-imidazo[1,2-a]imidazol-2-one
US6673821B2 (en) 2001-10-22 2004-01-06 Enanta Pharmaceuticals, Inc. Nitrogen heterocycle inhibitors of aspartyl protease
MXPA06001558A (en) 2003-08-08 2006-05-15 Schering Corp Cyclic amine base-1 inhibitors having a heterocyclic substituent.
US7662816B2 (en) 2003-08-08 2010-02-16 Schering Corporation Cyclic amine BACE-1 inhibitors having a benzamide substituent
US7763609B2 (en) 2003-12-15 2010-07-27 Schering Corporation Heterocyclic aspartyl protease inhibitors
US7592348B2 (en) * 2003-12-15 2009-09-22 Schering Corporation Heterocyclic aspartyl protease inhibitors
JP2007533740A (en) 2004-04-22 2007-11-22 イーライ リリー アンド カンパニー Amides as BACE inhibitors
EP1756087B1 (en) * 2004-06-16 2009-10-07 Wyeth Amino-5,5-diphenylimidazolone derivatives for the inhibition of beta-secretase
WO2006014762A1 (en) 2004-07-22 2006-02-09 Schering Corporation Substituted amide beta secretase inhibitors
ES2306200T3 (en) 2004-07-28 2008-11-01 Schering Corporation BETA-SECRETASA MACROCICLIC INHIBITORS.
PT1789398E (en) 2004-08-06 2010-10-21 Janssen Pharmaceutica Nv 2-amino-quinazoline derivatives useful as inhibitors of b-secretase (bace)
JP5046932B2 (en) 2004-08-06 2012-10-10 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Novel 2-amino-quinazoline derivatives useful as inhibitors of β-secretase (BACE)
US8436006B2 (en) 2004-08-06 2013-05-07 Jansssen Pharmaceutica N.V. 2-amino-quinazoline derivatives useful as inhibitors of β-secretase (BACE)
WO2006023774A2 (en) * 2004-08-20 2006-03-02 Imquest Biosciences, Inc. Plasma or serum fraction for treatment and prevention of viral infections and related conditions
US20090062282A1 (en) * 2004-10-15 2009-03-05 Astrazeneca Ab Substituted Amino-Pyrimidones and Uses Thereof
WO2006041404A1 (en) * 2004-10-15 2006-04-20 Astrazeneca Ab Substituted amino-compounds and uses thereof
WO2006076284A2 (en) 2005-01-14 2006-07-20 Wyeth AMINO-IMIDAZOLONES FOR THE INHIBITION OF ß-SECRETASE
AU2006259574A1 (en) 2005-06-14 2006-12-28 Schering Corporation The preparation and use of compounds as aspartyl protease inhibitors
AR054618A1 (en) 2005-06-14 2007-07-04 Schering Corp AZETIDINE COMPOUNDS AND ITS USE AS PROTEASE INHIBITORS
ES2436795T3 (en) 2005-06-14 2014-01-07 Merck Sharp & Dohme Corp. Aspartyl protease heterocyclic inhibitors, preparation and use thereof
PE20070078A1 (en) 2005-06-14 2007-03-08 Schering Corp MACROCICLIC HETEROCYCLIC COMPOUNDS AS ASPARTILE PROTEASE INHIBITORS
KR20080031189A (en) 2005-06-14 2008-04-08 쉐링 코포레이션 Aspartyl protease inhibitors
TW200738683A (en) * 2005-06-30 2007-10-16 Wyeth Corp Amino-5-(5-membered)heteroarylimidazolone compounds and the use thereof for β-secretase modulation
AU2006266167A1 (en) * 2005-06-30 2007-01-11 Wyeth Amino-5-(6-membered)heteroarylimidazolone compounds and the use thereof for beta-secretase modulation
TW200730523A (en) * 2005-07-29 2007-08-16 Wyeth Corp Cycloalkyl amino-hydantoin compounds and use thereof for β-secretase modulation
JP2009509957A (en) * 2005-09-26 2009-03-12 ワイス Amino-5- [4- (difluoromethoxy) phenyl] -5-phenylimidazolone compounds as β-secretase inhibitors
CN103936690B (en) 2005-10-25 2016-06-08 盐野义制药株式会社 Aminodihydrothiazinederivative derivative
ES2360957T3 (en) * 2005-10-25 2011-06-10 Janssen Pharmaceutica Nv DERIVATIVES OF 2-AMINO-3,4-DIHIDRO-PIRIDO (3,4-D) -PIRIMIDINE USEFUL AS INHIBITORS OF THE BETA-SECRETASE (BACE).
DE602006016314D1 (en) 2005-10-27 2010-09-30 Schering Corp HETEROCYCLIC ASPARTYL PROTEASE HEMMER
US7560451B2 (en) * 2005-10-31 2009-07-14 Schering Corporation Aspartyl protease inhibitors
AR058381A1 (en) * 2005-12-19 2008-01-30 Astrazeneca Ab COMPOUNDS DERIVED FROM 2-AMINOPIRIDIN-4-ONAS AND A PHARMACEUTICAL COMPOSITION
JP2009520027A (en) * 2005-12-19 2009-05-21 ワイス 2-Amino-5-piperidinylimidazolone compounds and their use in the regulation of β-secretase
WO2007092839A2 (en) 2006-02-06 2007-08-16 Janssen Pharmaceutica N.V. Macrocycle derivatives useful as inhibitors of beta-secretase (bace)
US7868022B2 (en) 2006-02-06 2011-01-11 Janssen Pharmaceutica Nv 2-amino-quinoline derivatives useful as inhibitors of β-secretase (BACE)
US7776882B2 (en) * 2006-02-06 2010-08-17 Baxter Ellen W 2-amino-3,4-dihydro-quinoline derivatives useful as inhibitors of β-secretase (BACE)
WO2007100536A1 (en) * 2006-02-24 2007-09-07 Wyeth DIHYDROSPIRO[DIBENZO[A,D][7]ANNULENE-5,4'-IMIDAZOL] COMPOUNDS FOR THE INHIBITION OF β-SECRETASE
AR061264A1 (en) 2006-06-12 2008-08-13 Schering Corp ASPARTILE-PROTEASES INHIBITORS DERIVED FROM PYRIMIDINE, PHARMACEUTICAL COMPOSITIONS THAT CONTAIN THEM AND USES TO TREAT COGNITIVE OR NEURODEGENERATIVE DISEASES, AND AS HIV VIRUS INHIBITORS.
US20080051420A1 (en) * 2006-06-14 2008-02-28 Astrazeneca Ab New Compounds 317
TW200815449A (en) * 2006-06-14 2008-04-01 Astrazeneca Ab Novel compounds II
TW200815447A (en) * 2006-06-14 2008-04-01 Astrazeneca Ab Novel compounds IV
TW200815349A (en) 2006-06-22 2008-04-01 Astrazeneca Ab New compounds
TW200817406A (en) 2006-08-17 2008-04-16 Wyeth Corp Imidazole amines as inhibitors of β-secretase
US8093254B2 (en) 2006-12-12 2012-01-10 Schering Corporation Aspartyl protease inhibitors
EP2061771A1 (en) 2006-12-12 2009-05-27 Schering Corporation Aspartyl protease inhibitors containing a tricyclic ring system
TW200831484A (en) * 2006-12-20 2008-08-01 Astrazeneca Ab New compounds
MX2009011498A (en) 2007-04-24 2009-11-10 Shionogi & Co Aminodihydrothiazine derivatives substituted with cyclic groups.
EP2151435A4 (en) 2007-04-24 2011-09-14 Shionogi & Co Pharmaceutical composition for treatment of alzheimer's disease
UY31083A1 (en) * 2007-05-15 2009-01-05 Astrazeneca Ab SULFOXIMINAL DERIVATIVES FOR THE INHIBITION OF B-SECRETASE
TW200902499A (en) * 2007-05-15 2009-01-16 Astrazeneca Ab New compounds
WO2009005470A1 (en) 2007-07-05 2009-01-08 Astrazeneca Ab Aryl and heteroaryl substituted isoindole derivatives as bace inhibitors
WO2009005471A1 (en) 2007-07-05 2009-01-08 Astrazeneca Ab Aryl and heteroaryl substituted isoindole derivatives as bace inhibitors
US8222264B2 (en) 2007-07-06 2012-07-17 Boehringer Ingelheim International Gmbh Substituted amino-quinazolinones, medicaments comprising said compound, their use and their method of manufacture
RU2476431C2 (en) 2008-01-18 2013-02-27 Эйсай Ар Энд Ди Менеджмент Ко., Лтд. Condensed aminohydrothiazine derivative
JP2011510030A (en) 2008-01-22 2011-03-31 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Substituted amino-benzimidazoles, medicaments containing said compounds, their use and methods for their production
BRPI0906625A2 (en) 2008-01-28 2015-07-14 Janssen Pharmaceutica Nv Thio-2-amino-quinoline-6-substituted derivatives useful as beta-secretase (bace) inhibitors
AU2009209147B2 (en) 2008-01-29 2013-03-14 Janssen Pharmaceutica Nv 2-amino-quinoline derivatives useful as inhibitors of beta-secretase (BACE)
BRPI0907563A2 (en) * 2008-02-18 2015-08-04 Hoffmann La Roche 4,5-Dihydroxazol-2-ylamine derivatives
JP2011514342A (en) 2008-02-28 2011-05-06 メルク・シャープ・エンド・ドーム・コーポレイション 2-aminoimidazole beta-secretase inhibitor for the treatment of Alzheimer's disease
JP2011518225A (en) 2008-04-22 2011-06-23 シェーリング コーポレイション Phenyl-substituted 2-imino-3-methylpyrrolopyrimidinone compounds, compositions, and uses thereof as BACE-1 inhibitors
TWI431004B (en) 2008-05-02 2014-03-21 Lilly Co Eli Bace inhibitors
KR20130018370A (en) 2008-06-13 2013-02-20 시오노기세야쿠 가부시키가이샤 SULFUR-CONTAINING HETEROCYCLIC DERIVATIVE HAVING β-SECRETASE-INHIBITING ACTIVITY
AU2009277485B2 (en) 2008-07-28 2013-05-02 Eisai R&D Management Co., Ltd. Spiroaminodihydrothiazine derivatives
WO2010013302A1 (en) 2008-07-28 2010-02-04 エーザイ・アール・アンド・ディー・マネジメント株式会社 Spiroaminodihydrothiazine derivative
EP2332943B1 (en) 2008-09-30 2015-04-22 Eisai R&D Management Co., Ltd. Novel fused aminodihydrothiazine derivative
JPWO2010047372A1 (en) 2008-10-22 2012-03-22 塩野義製薬株式会社 2-Aminopyrimidin-4-one and 2-aminopyridine derivatives having BACE1 inhibitory activity
WO2010056194A1 (en) 2008-11-14 2010-05-20 Astrazeneca Ab 5h-pyrrolo [ 3, 4-b] pyridin derivatives and their use
EP2376083A4 (en) 2008-11-20 2012-06-20 Purdue Research Foundation Quinazoline inhibitors of bace 1 and methods of using

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005058311A1 (en) * 2003-12-15 2005-06-30 Schering Corporation Heterocyclic aspartyl protease inhibitors
WO2006138264A2 (en) * 2005-06-14 2006-12-28 Schering Corporation Aspartyl protease inhibitors
WO2006138217A1 (en) * 2005-06-14 2006-12-28 Schering Corporation Aspartyl protease inhibitors
WO2007114771A1 (en) * 2006-04-05 2007-10-11 Astrazeneca Ab 2-AMINOPYRIMIDIN-4-ONES AND THEIR USE FOR TREATING OR PREVENTING Aβ-RELATED PATHOLOGIES

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700603B2 (en) 2003-12-15 2010-04-20 Schering Corporation Heterocyclic aspartyl protease inhibitors
US9416108B2 (en) 2003-12-15 2016-08-16 Merck Sharp & Dohme Corp. Heterocyclic aspartyl protease inhibitors
US7592348B2 (en) 2003-12-15 2009-09-22 Schering Corporation Heterocyclic aspartyl protease inhibitors
US7868000B2 (en) 2005-06-14 2011-01-11 Schering Corporation Aspartyl protease inhibitors
US7759354B2 (en) 2005-06-14 2010-07-20 Schering Corporation Bicyclic guanidine derivatives as asparyl protease inhibitors, compositions, and uses thereof
US8173642B2 (en) 2005-10-25 2012-05-08 Shionogi & Co., Ltd. Aminodihydrothiazine derivatives
US9029358B2 (en) 2005-10-25 2015-05-12 Shionogi & Co., Ltd. Aminodihydrothiazine derivatives
US8168641B2 (en) 2006-06-12 2012-05-01 Schering Corporation Aspartyl protease inhibitors
US8629155B2 (en) 2006-06-12 2014-01-14 Merck Sharp & Dohme, Corp. Aspartyl protease inhibitors
US7855213B2 (en) 2006-06-22 2010-12-21 Astrazeneca Ab Compounds
US8829036B2 (en) 2007-02-23 2014-09-09 Merck Sharp & Dohme Corp. Heterocyclic aspartyl protease inhibitors
WO2008103351A2 (en) * 2007-02-23 2008-08-28 Schering Corporation Heterocyclic aspartyl protease inhibitors
WO2008103351A3 (en) * 2007-02-23 2009-07-23 Schering Corp Heterocyclic aspartyl protease inhibitors
US8168630B2 (en) 2007-04-24 2012-05-01 Shionogi & Co., Ltd. Aminodihydrothiazine derivatives substituted with a cyclic group
US7629356B2 (en) 2007-05-15 2009-12-08 Astrazeneca Ab Substituted pyrrolo[3,4-b]pyridinamines and pharmaceutical compositions
US8541427B2 (en) 2008-04-22 2013-09-24 Merck, Sharp & Dohme, Corp. Phenyl-substituted 2-imino-3-methyl pyrrolo pyrimidinone compounds as BACE-1 inhibitors, compositions, and their use
US9650371B2 (en) 2008-06-13 2017-05-16 Shionogi & Co., Ltd. Sulfur-containing heterocyclic derivative having beta secretase inhibitory activity
WO2009151098A1 (en) 2008-06-13 2009-12-17 塩野義製薬株式会社 SULFUR-CONTAINING HETEROCYCLIC DERIVATIVE HAVING β-SECRETASE-INHIBITING ACTIVITY
WO2010047372A1 (en) 2008-10-22 2010-04-29 塩野義製薬株式会社 2-aminopyridin-4-one and 2-aminopyridine derivative both having bace1-inhibiting activity
US8030500B2 (en) 2008-11-14 2011-10-04 Astrazeneca Ab Substituted isoindoles for the treatment and/or prevention of Aβ- related pathologies
JP2017002052A (en) * 2009-10-08 2017-01-05 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. Iminothiadiazine dioxide compounds as bace inhibitors, compositions, and their use
US9687494B2 (en) 2009-10-08 2017-06-27 Merck Sharp & Dohme Corp. Iminothiadiazine dioxide compounds as BACE inhibitors, compositions, and their use
US8569310B2 (en) 2009-10-08 2013-10-29 Merck Sharp & Dohme Corp. Pentafluorosulfur imino heterocyclic compounds as BACE-1 inhibitors, compositions and their use
US8557826B2 (en) 2009-10-08 2013-10-15 Merck Sharp & Dohme Corp. Pentafluorosulfur imino heterocyclic compounds as BACE-1 inhibitors, compositions, and their use
AU2013234424B2 (en) * 2009-10-08 2014-02-27 Merck Sharp & Dohme Llc Iminothiadiazine dioxide compounds as BACE inhibitors, compositions, and their use
AU2010303591B2 (en) * 2009-10-08 2014-02-27 Merck Sharp & Dohme Llc Iminothiadiazine dioxide compounds as BACE inhibitors, compositions, and their use
AU2013234422B2 (en) * 2009-10-08 2014-02-27 Merck Sharp & Dohme Llc Iminothiadiazine dioxide compounds as BACE inhibitors, compositions, and their use
US8563543B2 (en) 2009-10-08 2013-10-22 Merck Sharp & Dohme Corp. Iminothiadiazine dioxide compounds as bace inhibitors, compositions, and their use
WO2011044181A1 (en) 2009-10-08 2011-04-14 Schering Corporation Iminothiadiazine dioxide compounds as bace inhibitors, compositions, and their use
US8729071B2 (en) 2009-10-08 2014-05-20 Merck Sharp & Dohme Corp. Iminothiadiazine dioxide compounds as BACE inhibitors, compositions and their use
WO2011044187A1 (en) 2009-10-08 2011-04-14 Schering Corporation Iminothiadiazine dioxide compounds as bace inhibitors, compositions, and their use
US8940748B2 (en) 2009-10-08 2015-01-27 Merck Sharp & Dohme Corp. Iminothiadiazine dioxide compounds as BACE inhibitors, compositions, and their use
US9029362B2 (en) 2009-10-08 2015-05-12 Merck Sharp & Dohme Corp. Iminothiadiazine dioxide compounds as brace inhibitors, compositions, and their use
US9475785B2 (en) 2009-10-08 2016-10-25 Merck Sharp & Dohme Corp. Iminothiadiazine dioxide compounds as BACE inhibitors, compositions and their use
US9428475B2 (en) 2009-10-08 2016-08-30 Merck Sharp & Dohme Corp. Iminothiadiazine dioxide compounds as BACE inhibitors, compositions, and their use
WO2011044185A2 (en) 2009-10-08 2011-04-14 Schering Corporation Pentafluorosulfur imino heterocyclic compounds as bace-1 inhibitors, compositions, and their use
EP3034080A1 (en) 2009-10-08 2016-06-22 Merck Sharp & Dohme Corp. Iminothiadiazine dioxide compounds as bace inhibitors, compositions, and their use
US9656974B2 (en) 2009-12-11 2017-05-23 Shionogi & Co., Ltd. Oxazine derivatives
US9221839B2 (en) 2011-04-07 2015-12-29 Merck Sharp & Dohme Corp. C5-C6 oxacyclic-fused thiadiazine dioxide compounds as BACE inhibitors, compositions, and their use
US9145426B2 (en) 2011-04-07 2015-09-29 Merck Sharp & Dohme Corp. Pyrrolidine-fused thiadiazine dioxide compounds as BACE inhibitors, compositions, and their use
WO2012138734A1 (en) 2011-04-07 2012-10-11 Merck Sharp & Dohme Corp. C5-c6 oxacyclic-fused thiadiazine dioxide compounds as bace inhibitors, compositions, and their use
US9181236B2 (en) 2011-08-22 2015-11-10 Merck Sharp & Dohme Corp. 2-spiro-substituted iminothiazines and their mono-and dioxides as bace inhibitors, compositions and their use
WO2013028670A1 (en) 2011-08-22 2013-02-28 Merck Sharp & Dohme Corp. 2-spiro-substituted iminothiazines and their mono-and dioxides as bace inhibitors, compositions and their use
EP3607946A1 (en) 2012-03-19 2020-02-12 Buck Institute for Research on Aging App specific bace inhibitors (asbis) and uses thereof
US10548882B2 (en) 2012-06-21 2020-02-04 Astrazeneca Ab Camsylate salt
WO2014062553A1 (en) 2012-10-17 2014-04-24 Merck Sharp & Dohme Corp. Tricyclic substituted thiadiazine dioxide compounds as bace inhibitors, compositions, and their use
WO2014062549A1 (en) 2012-10-17 2014-04-24 Merck Sharp & Dohme Corp. Tricyclic substituted thiadiazine dioxide compounds as bace inhibitors, compositions, and their use
US9758513B2 (en) 2012-10-24 2017-09-12 Shionogi & Co., Ltd. Dihydrooxazine or oxazepine derivatives having BACE1 inhibitory activity
EP2934149A4 (en) * 2012-12-20 2016-06-15 Merck Sharp & Dohme C6-azaspiro iminothiadiazine dioxides as bace inhibitors
US9489013B2 (en) 2012-12-20 2016-11-08 Merck Sharp & Dohme Corp. C6-azaspiro iminothiadiazine dioxides as bace inhibitors, compositions, and their use
US9580396B2 (en) 2012-12-21 2017-02-28 Merck Sharp & Dohme Corp. C6-spiro iminothiadiazine dioxides as BACE inhibitors, compositions, and their use
EP3653609A1 (en) 2013-02-12 2020-05-20 Buck Institute for Research on Aging Hydantoins that modulate bace-mediated app processing
US9745324B2 (en) 2013-12-18 2017-08-29 Merck Sharp & Dohme Corp. Iminothiadiazepane dioxide compounds as BACE inhibitors, compositions, and their use
US9802928B2 (en) 2013-12-18 2017-10-31 Merck Sharp & Dohme Corp. C-6 spirocarbocyclic iminothiadiazine dioxides as BACE inhibitors, compositions, and their use
WO2017089453A1 (en) * 2015-11-25 2017-06-01 Ucb Biopharma Sprl Iminotetrahydropyrimidinone derivatives as plasmepsin v inhibitors
EA034196B1 (en) * 2015-11-25 2020-01-16 Юсб Байофарма Спрл Iminotetrahydropyrimidinone derivatives as plasmepsin v inhibitors
CN108290860A (en) * 2015-11-25 2018-07-17 Ucb生物制药私人有限公司 Imino group tetrahydropyrimidine ketone derivatives as PLASMEPSIN V inhibitor
US11136310B2 (en) 2015-11-25 2021-10-05 UCB Biopharma SRL Iminotetrahydropyrimidinone derivatives as plasmepsin V inhibitors
US11766435B2 (en) 2016-02-18 2023-09-26 Merck Sharp & Dohme Llc N3-substituted iminopyrimidinones as antimalarial agents

Also Published As

Publication number Publication date
EP2644600A1 (en) 2013-10-02
AU2007258435A1 (en) 2007-12-21
BRPI0712780A2 (en) 2012-09-11
US20070287692A1 (en) 2007-12-13
AR061264A1 (en) 2008-08-13
RU2009100074A (en) 2010-07-20
CL2007001674A1 (en) 2008-01-18
CA2653650A1 (en) 2007-12-21
ECSP088959A (en) 2009-01-30
EP2032542A2 (en) 2009-03-11
PE20080155A1 (en) 2008-03-10
NO20090144L (en) 2009-03-04
US8629155B2 (en) 2014-01-14
IL195592A0 (en) 2009-09-01
TW200815365A (en) 2008-04-01
US8168641B2 (en) 2012-05-01
JP2009539983A (en) 2009-11-19
KR20090015967A (en) 2009-02-12
EP2644600B1 (en) 2017-01-11
WO2007146225A3 (en) 2008-03-06
CN101484429A (en) 2009-07-15
US20120232064A1 (en) 2012-09-13
MX2008015956A (en) 2009-01-09

Similar Documents

Publication Publication Date Title
EP2644600B1 (en) Heterocyclic aspartyl protease inhibitors
EP1902057B1 (en) Macrocyclic heterocyclic aspartyl protease inhibitors
EP1896478B1 (en) Aspartyl protease inhibitors
EP1896477B1 (en) Aspartyl protease inhibitors
US7560451B2 (en) Aspartyl protease inhibitors
US7759353B2 (en) Substituted spiro iminopyrimidinones as aspartyl protease inhibitors, compositions, and methods of treatment
EP1896430B1 (en) The preparation and use of compounds as aspartyl protease inhibitors
EP1896406A2 (en) The preparation and use of compounds as protease inhibitors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780021852.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007795971

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07795971

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007258435

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 573131

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2653650

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08129403

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 12008502705

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2009515439

Country of ref document: JP

Ref document number: MX/A/2008/015956

Country of ref document: MX

Ref document number: 1020087030210

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 6836/CHENP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007258435

Country of ref document: AU

Date of ref document: 20070607

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2009100074

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0712780

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081211