WO2007144856A2 - Cleaning and / or treatment compositions comprising mutant alpha-amylases - Google Patents

Cleaning and / or treatment compositions comprising mutant alpha-amylases Download PDF

Info

Publication number
WO2007144856A2
WO2007144856A2 PCT/IB2007/052309 IB2007052309W WO2007144856A2 WO 2007144856 A2 WO2007144856 A2 WO 2007144856A2 IB 2007052309 W IB2007052309 W IB 2007052309W WO 2007144856 A2 WO2007144856 A2 WO 2007144856A2
Authority
WO
WIPO (PCT)
Prior art keywords
mixtures
group
agents
composition
seq
Prior art date
Application number
PCT/IB2007/052309
Other languages
French (fr)
Other versions
WO2007144856A3 (en
Inventor
Eva Maria Perez-Prat Vinuesa
Colin Ure
Andre Cesar Baeck
Philip Frank Souter
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to CA002652665A priority Critical patent/CA2652665A1/en
Priority to MX2008016230A priority patent/MX2008016230A/en
Priority to EP07789707.2A priority patent/EP2029737B1/en
Priority to BRPI0713288-3A priority patent/BRPI0713288A2/en
Priority to JP2009513842A priority patent/JP2009540043A/en
Publication of WO2007144856A2 publication Critical patent/WO2007144856A2/en
Publication of WO2007144856A3 publication Critical patent/WO2007144856A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • C11D3/42Brightening agents ; Blueing agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • C12N9/2417Alpha-amylase (3.2.1.1.) from microbiological source

Definitions

  • compositions comprising enzymes and processes for making and using such compositions.
  • compositions that comprise certain ⁇ -amylases are formulated in accordance with the teachings of the present invention, such compositions can provide improved cleaning.
  • This invention relates to compositions comprising certain ⁇ -amylase enzymes and processes for making and using such products.
  • cleaning composition includes, unless otherwise indicated, granular or powder-form all-purpose or "heavy-duty” washing agents, especially laundry detergents; liquid, gel or paste- form all-purpose washing agents, especially the so-called heavy- duty liquid types; liquid fine-fabric detergents; hand dishwashing agents or light duty dishwashing agents, especially those of the high- foaming type; machine dishwashing agents, including the various tablet, granular, liquid and rinse-aid types for household and institutional use; liquid cleaning and disinfecting agents, including antibacterial hand-wash types, laundry bars, mouthwashes, denture cleaners, car or carpet shampoos, bathroom cleaners; hair shampoos and hair-rinses; shower gels and foam baths and metal cleaners; as well as cleaning auxiliaries such as bleach additives and "stain-stick" or pre-treat types.
  • test methods disclosed in the Test Methods Section of the present application must be used to determine the respective values of the parameters of Applicants' inventions.
  • component or composition levels are in reference to the active level of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources.
  • the enzymes of the present invention are expressed in terms of active protein level and are exclusive of impurities, for example, residual solvents or byproducts, which may be present in commercially available sources.
  • compositions comprising an amylase and: a.) a sufficient amount of calcium to provide a wash liquor comprising said composition with a free calcium concentration as determined by Test Method 1 of from about 0.1 ppm to about 500 ppm, from about 0.2 ppm to about 200 ppm, from about 1 ppm to about 150 ppm, or from about 2 ppm to about 100 ppm, or even from about 3 ppm to about 50 ppm; b.) based on total product weight, less than 15%, less than 10%, less than 8% or even from about 0.01% to about 7% builder; and/or c.) having an enzyme deposition index as defined in Test Method 2 of at least 2.5, at least 2.6, or even from about 2.7 to about 50 is disclosed.
  • composition may comprise, based on total composition weight, from about 0.0001% to about 2%, from about 0.0005% to about 1%, from about 0.001% to about 0.5% or even from about 0.002% to about 0.25% of said enzyme.
  • Such compositions may be cleaning and/or treatment compositions. Thus it is understood that they may be solids or fluids.
  • said amylase includes ⁇ -amylases derived from Bacillus licheniformis having Sequence LD. 5 or 6, or an enzyme that is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or even 99% identical to said Sequence LD. 5 or 6.
  • Such ⁇ -amylases having at least one of the following mutations at positions corresponding to the positions corresponding to Sequence LD. 5 or 6: 15, 23, 133, 188, 209, 475 or combinations of said positions.
  • said amylase enzymes include ⁇ -amylases derived from Bacillus licheniformis having Sequence LD. 5 (SEQ ID No.5 herein being equivalent to SEQ ID No 34 in US 5,958,739) or an enzyme having at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or even 99% identity to said Sequence LD. 5.
  • ⁇ -amylases having one or more of the following mutations: M15T, H133Y, N188S or T, A209V or G475R.
  • said amylase enzymes include ⁇ -amylases derived from Bacillus licheniformis having Sequence 6 (SEQ ID No.6 herein being equivalent to SEQ ID NO. 2 in US 6,436,888 Bl) or an enzyme having at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or even 99% identity to said Sequence LD. 6.
  • ⁇ -amylases having one or more of the following mutations: M15T, H133Y, N188S or T, A209V or G475R; and optionally R23K.
  • said amylase enzymes include an amylase selected from the group consisting of: a.) an amylase having Seq. LD. 5, said amylase having one of the following groups of mutations: (i) M15T+H133Y+N188S+A209V; (ii) M15T+H133Y+N188T+A209V; (iii) H133Y+N188S+G475R; or (iv) H133Y+N188S; b.) an amylase having Seq. LD. 6, said amylase having one of the following groups of mutations:
  • a composition comprising an amylase belonging to EC 3.2.1.1 such as an enzyme having Seq. LD. 1 and: a.) a sufficient amount of calcium to provide a wash liquor comprising said composition with a free calcium concentration as determined by Test Method 1 of from about 0.1 ppm to about 500 ppm, from about 0.2 ppm to about 200 ppm, from about 1 ppm to about 150 ppm, or from about 2 ppm to about 100 ppm, or even from about 3 ppm to about 50 ppm; b.) based on total product weight, less than 15%, less than 10%, less than 8% or even from about 0.01% to about 7% builder; and/or c.) having an enzyme deposition index as defined in Test Method 2 of at least 2.5, at least 2.6, or even from about 2.7 to about 50 is disclosed.
  • composition may comprise, based on total composition weight, from about 0.0001% to about 2%, from about 0.0005% to about 1%, from about 0.001% to about 0.5% or even from about 0.002% to about 0.25% of said enzyme.
  • Such compositions may be cleaning and/or treatment compositions. Thus it is understood that they may be solids or fluids.
  • compositions described in the present specification may comprise a material selected from the group consisting of surfactants, builders, chelating agents, dye transfer inhibiting agents, dispersants, additional enzymes, and enzyme stabilizers, catalytic materials, bleaching agents, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, perfumes, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids, solvents, pigments, hueing agents, structurants, and mixtures thereof.
  • a material selected from the group consisting of surfactants, builders, chelating agents, dye transfer inhibiting agents, dispersants, additional enzymes, and enzyme stabilizers, catalytic materials, bleaching agents, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, perfumes, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids, solvents, pigments, hueing agents, structurant
  • compositions described in the present specification may comprise an additional enzyme selected from the group consisting of hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, mannanases, pectate lyases, keratinases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, amylases, or mixtures thereof.
  • an additional enzyme selected from the group consisting of hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases,
  • such additional enzyme may be selected from the group consisting of: lipases, including "first cycle lipases” described in U.S. Patent 6,939,702 Bl (SEQ ID No.2 in the present specification being equivalent to SEQ ID NO:1 in U.S. Patent 6,939,702 Bl), a variant of SEQ ID No. 2, a variant of SEQ ID No. 2 having at least 90% identity to SEQ ID No.
  • subtilisins EC 3.4.21.62
  • Bacillus lentus B. alkalophilus
  • B. subtilis B. amyloliquefaciens described in US 6,312,936 Bl, US 5,679,630, US 4,760,025
  • microbial-derived endoglucanases exhibiting endo-beta-l,4-glucanase activity (E.C.
  • compositions described in the present specification may comprise a surfactant, including a surfactant selected from the group of anionic surfactants including anionic surfactants selected from the group consisting of linear alkylbenzene- sulfonate (LAS), alcohol ethoxysulfate (AES), mid-branched alkyl sulfates (HSAS) and mixtures thereof; non-ionic surfactants including alcohol ethoxylates, for example alcohol ethoxylates having a chain length of from 1 to 14 carbons, or 12 to 14 carbons; amine oxides and mixtures thereof.
  • anionic surfactants selected from the group consisting of linear alkylbenzene- sulfonate (LAS), alcohol ethoxysulfate (AES), mid-branched alkyl sulfates (HSAS) and mixtures thereof
  • non-ionic surfactants including alcohol ethoxylates, for example alcohol ethoxylates having a chain length of from 1 to 14 carbons, or
  • compositions described in the present specification may comprise a polymer, including polymers selected from the group consisting of polyacrylates, maleic/acrylic acid copolymers, cellulose-derived polymers, including carboxymethylcellulose and methyl hydroxyethylcellulose, polyethyleneimine polymers and mixtures thereof.
  • a builder selected from the group consisting of citric acid, Ci 2 -Ci 8 fatty acid, aluminosilicates, including zeolites A, X and/or Y, sodium tripolyphosphate and mixtures thereof.
  • compositions described in the present specification may comprise a material selected from the group consisting of a photobleach, a fabric hueing agent and mixtures thereof.
  • compositions described in the present specification may comprise a photobleach being selected from the group consisting of xanthene dyes and mixtures thereof; sulfonated zinc phthalocyanine, sulfonated aluminium phthalocyanine, Eosin Y, Phoxine B, Rose Bengal, C.I.
  • compositions described in the present specification may comprise, based on total product weight, from about 0% to about 3%, from about 0.0001% to about 0.5%, or even from about 0.0005% to about 0.3% photobleach and/or from about 0.00003% to about 0.3%, from about 0.00008% to about 0.05%, or even from about 0.0001% to about 0.04% hueing agent.
  • Enzymes suitable for use in the present compositions can be obtained from Genencor International, Palo Alto, California, U.S.A; Novozymes A/S, Bagsvaerd, Denmark; Amersham Pharmacia Biotech., Piscataway, New Jersey, U.S.A; Sigma-Aldrich Company Ltd, Dorset, UK.
  • An enzyme having Seq. ID 1 is sold under the tradename Optisize® HT Plus by Genencor International, Palo Alto, California, U.S.A.
  • An enzyme having at least 90% identity to Seq. ID 2 is sold under the tradename Lipex® by Novozymes A/S, Bagsvaerd, Denmark.
  • An enzyme having at least 90% identity with Seq. ID 3 is sold under the tradename Natalase® by Novozymes A/S, Bagsvaerd, Denmark.
  • An enzyme having at least 90% identity to Seq. ID 4 is sold under the tradename CellucleanTM by Novozymes A/S, Bagsvaerd, Denmark.
  • ID 5 is sold under the tradename of Purastar® by Genencor International, Palo Alto, California, U.S.A.
  • An enzyme having Seq. ID 6 is sold under the tradename of Termamyl® by Novozymes A/S, Bagsvaerd, Denmark.
  • Surfactants suitable for use in the present compositions can be obtained from Stepan, Northfield, Illinois, USA; Huntsman, Salt Lake City, Utah, USA; Procter & Gamble Chemicals, Cincinnati, Ohio, USA.
  • Builders suitable for use in the present compositions can be obtained from Rhodia, Paris, France; Industrial Zeolite (UK) Ltd, Grays, Essex, UK; Koma, Nestemica, Czech Republic.
  • Polymers suitable for use in the present compositions can be obtained from BASF, Ludwigshafen, Germany, CP Kelco, Arnhem, Netherlands.
  • Photobleaches suitable for use in the present compositions can be obtained from Aldrich, Milwaukee, Wisconsin, USA; Frontier Scientific, Logan, Utah, USA; Ciba Specialty Chemicals, Basel, Switzerland; BASF, Ludwigshafen, Germany; Lamberti S.p.A, Gallarate, Italy; Dayglo Color Corporation, Mumbai, India; Organic Dyestuffs Corp., East Buffalo, Rhode Island, USA.
  • Hueing agents suitable for use in the present compositions can be obtained from Aldrich, Milwaukee, Wisconsin, USA; Ciba Specialty Chemicals, Basel, Switzerland; BASF, Ludwigshafen, Germany; Dayglo Color Corporation, Mumbai, India; Organic Dyestuffs Corp., East Lexington, Rhode Island, USA; Dystar, Frankfurt, Germany; Lanxess, Leverkusen, Germany; Megazyme, Wicklow, Ireland; Clariant, Muttenz, Switzerland.
  • adjuncts illustrated hereinafter are suitable for use in the instant compositions and may be desirably incorporated in certain embodiments of the invention, for example to assist or enhance cleaning performance, for treatment of the substrate to be cleaned, or to modify the aesthetics of the cleaning composition as is the case with perfumes, colorants, dyes or the like.
  • the precise nature of these additional components, and levels of incorporation thereof, will depend on the physical form of the composition and the nature of the cleaning operation for which it is to be used.
  • Suitable adjunct materials include, but are not limited to, additional surfactants, additional builders, additional polymers, additional hueing agents, additional photobleaches, chelating agents, dye transfer inhibiting agents, dispersants, additional enzymes, and enzyme stabilizers, catalytic materials, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, perfumes, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids, solvents, additional hueing agents, structurants and/or pigments.
  • suitable examples of such other adjuncts and levels of use are found in U.S. Patent Nos. 5,576,282, 6,306,812 Bl and 6,326,348 Bl that are incorporated by reference.
  • adjunct ingredients are not essential to Applicants' compositions.
  • certain embodiments of Applicants' compositions do not contain one or more of the following adjuncts materials: additional surfactants, additional builders, additional polymers, additional photobleaches, chelating agents, dye transfer inhibiting agents, dispersants, additional enzymes, and enzyme stabilizers, catalytic materials, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids, polymeric dispersing agents, clay soil removal/anti- redeposition agents, brighteners, suds suppressors, dyes, perfumes, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids, solvents, additional hueing agents, structurants and/or pigments.
  • the cleaning compositions of the present invention may comprise one or more bleaching agents.
  • Suitable bleaching agents other than bleaching catalysts include photobleaches, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, pre-formed peracids and mixtures thereof.
  • the compositions of the present invention may comprise from about 0.1% to about 50% or even from about 0.1% to about 25% bleaching agent by weight of the subject cleaning composition.
  • suitable bleaching agents include:
  • Suitable preformed peracids include, but are not limited to, compounds selected from the group consisting of percarboxylic acids and salts, percarbonic acids and salts, perimidic acids and salts, peroxymonosulfuric acids and salts, for example, Oxone ®, and mixtures thereof.
  • inorganic perhydrate salts including alkali metal salts such as sodium salts of perborate (usually mono- or tetra-hydrate), percarbonate, persulphate, perphosphate, persilicate salts and mixtures thereof.
  • the inorganic perhydrate salts are selected from the group consisting of sodium salts of perborate, percarbonate and mixtures thereof.
  • inorganic perhydrate salts are typically present in amounts of from 0.05 to 40 wt%, or 1 to 30 wt% of the overall composition and are typically incorporated into such compositions as a crystalline solid that may be coated. Suitable coatings include, inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as water-soluble or dispersible polymers, waxes, oils or fatty soaps; and
  • suitable leaving groups are benzoic acid and derivatives thereof - especially benzene sulphonate.
  • Suitable bleach activators include dodecanoyl oxybenzene sulphonate, decanoyl oxybenzene sulphonate, decanoyl oxybenzoic acid or salts thereof, 3,5,5-trimethyl hexanoyloxybenzene sulphonate, tetraacetyl ethylene diamine (TAED) and nonanoyloxybenzene sulphonate (NOBS).
  • TAED tetraacetyl ethylene diamine
  • NOBS nonanoyloxybenzene sulphonate
  • Suitable bleach activators are also disclosed in WO 98/17767. While any suitable bleach activator may be employed, in one aspect of the invention the subject cleaning composition may comprise NOBS, TAED or mixtures thereof.
  • the peracid and/or bleach activator is generally present in the composition in an amount of from about 0.1 to about 60 wt%, from about 0.5 to about 40 wt % or even from about 0.6 to about 10 wt% based on the composition.
  • One or more hydrophobic peracids or precursors thereof may be used in combination with one or more hydrophilic peracid or precursor thereof.
  • the amounts of hydrogen peroxide source and peracid or bleach activator may be selected such that the molar ratio of available oxygen (from the peroxide source) to peracid is from 1:1 to 35:1, or even 2:1 to 10:1.
  • the cleaning compositions according to the present invention may comprise a surfactant or surfactant system wherein the surfactant can be selected from nonionic surfactants, anionic surfactants, cationic surfactants, ampholytic surfactants, zwitterionic surfactants, semi-polar nonionic surfactants and mixtures thereof.
  • surfactant is typically present at a level of from about 0.1% to about 60%, from about 1% to about 50% or even from about 5% to about 40% by weight of the subject composition.
  • the cleaning compositions of the present invention may comprise one or more detergent builders or builder systems.
  • Builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates, alkali metal silicates, alkaline earth and alkali metal carbonates, aluminosilicate builders and polycarboxylate compounds, ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2, 4, 6-trisulphonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, citric acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-
  • the cleaning compositions herein may contain a chelating agent.
  • Suitable chelating agents include copper, iron and/or manganese chelating agents and mixtures thereof.
  • the subject composition may comprise from about 0.005% to about 15% or even from about 3.0% to about 10% chelating agent by weight of the subject composition.
  • the cleaning compositions of the present invention may also include one or more dye transfer inhibiting agents.
  • Suitable polymeric dye transfer inhibiting agents include, but are not limited to, polyvinylpyrrolidone polymers, polyamine N- oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof.
  • the dye transfer inhibiting agents may be present at levels from about 0.0001% to about 10%, from about 0.01% to about 5% or even from about 0.1% to about 3% by weight of the composition.
  • Brighteners - The cleaning compositions of the present invention can also contain additional components that may tint articles being cleaned, such as fluorescent brighteners.
  • Suitable fluorescent brightener levels include lower levels of from about 0.01, from about 0.05, from about 0.1 or even from about 0.2 wt % to upper levels of 0.5 or even 0.75 wt %.
  • compositions of the present invention can also contain dispersants.
  • Suitable water-soluble organic materials include the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • Enzymes - The cleaning compositions can comprise one or more enzymes which provide cleaning performance and/or fabric care benefits.
  • suitable enzymes include, but are not limited to, hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, mannanases, pectate lyases, keratinases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, amylases, or mixtures thereof.
  • a typical combination is an enzyme cocktail that may comprise, for example, a protease and lipase in conjunction with amylase.
  • the aforementioned additional enzymes may be present at levels from about 0.00001% to about 2%, from about 0.0001% to about 1% or even from about 0.001% to about 0.5% enzyme protein by weight of the composition.
  • Enzyme Stabilizers - Enzymes for use in detergents can be stabilized by various techniques.
  • the enzymes employed herein can be stabilized by the presence of water-soluble sources of calcium and/or magnesium ions in the finished compositions that provide such ions to the enzymes.
  • a reversible protease inhibitor such as a boron compound, can be added to further improve stability.
  • Catalytic Metal Complexes - Applicants' cleaning compositions may include catalytic metal complexes.
  • One type of metal-containing bleach catalyst is a catalyst system comprising a transition metal cation of defined bleach catalytic activity, such as copper, iron, titanium, ruthenium, tungsten, molybdenum, or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrate having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water- soluble salts thereof.
  • Such catalysts are disclosed in U.S. 4,430,243.
  • compositions herein can be catalyzed by means of a manganese compound.
  • a manganese compound Such compounds and levels of use are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. 5,576,282.
  • Cobalt bleach catalysts useful herein are known, and are described, for example, in U.S. 5,597,936; U.S. 5,595,967. Such cobalt catalysts are readily prepared by known procedures, such as taught for example in U.S. 5,597,936, and U.S. 5,595,967.
  • compositions herein may also suitably include a transition metal complex of ligands such as bispidones (WO 05/042532 Al) and/or macropolycyclic rigid ligands - abbreviated as "MRLs".
  • ligands such as bispidones (WO 05/042532 Al) and/or macropolycyclic rigid ligands - abbreviated as "MRLs”.
  • MRLs macropolycyclic rigid ligands
  • Suitable transition-metals in the instant transition-metal bleach catalyst include, for example, manganese, iron and chromium.
  • Suitable MRLs include 5,12-diethyl-l,5,8,12- tetraazabicyclo[6.6.2]hexadecane.
  • Suitable transition metal MRLs are readily prepared by known procedures, such as taught for example in WO 00/32601, and U.S. 6,225,464.
  • Solvents - Suitable solvents include water and other solvents such as lipophilic fluids.
  • suitable lipophilic fluids include siloxanes, other silicones, hydrocarbons, glycol ethers, glycerine derivatives such as glycerine ethers, perfluorinated amines, perfluorinated and hydrofluoroether solvents, low-volatility nonfluorinated organic solvents, diol solvents, other environmentally-friendly solvents and mixtures thereof.
  • compositions of the present invention can be formulated into any suitable form and prepared by any process chosen by the formulator, non-limiting examples of which are described in Applicants' examples and in U.S. 4,990,280; U.S. 20030087791A1; U.S. 20030087790A1; U.S. 20050003983 Al; U.S. 20040048764A1; U.S. 4,762,636; U.S. 6,291,412; U.S. 20050227891 Al; EP 1070115A2; U.S. 5,879,584; U.S. 5,691,297; U.S. 5,574,005; U.S. 5,569,645; U.S. 5,565,422; U.S. 5,516,448; U.S. 5,489,392; U.S. 5,486,303.
  • the present invention includes a method for cleaning and /or treating a situs inter alia a surface or fabric.
  • Such method includes the steps of optionally washing and/or rinsing said surface or fabric, contacting said surface or fabric with a composition of the present invention in neat or diluted form such as in a wash liquor and then optionally washing and/or rinsing said surface or fabric.
  • washing includes but is not limited to, scrubbing, and mechanical agitation.
  • the cleaning compositions of the present invention are ideally suited for use in laundry applications. Accordingly, the present invention includes a method for laundering a fabric.
  • the method may comprise the steps of contacting a fabric to be laundered with a said cleaning laundry solution comprising at least one embodiment of Applicants' cleaning composition, cleaning additive or mixture thereof.
  • the fabric may comprise most any fabric capable of being laundered in normal consumer use conditions.
  • the solution may have in one aspect a pH of from about 7.5 to about 10.5 or even a pH of from about 8 to about 10.5.
  • the compositions may be employed at concentrations of from about 500 ppm to about 15,000 ppm in solution.
  • the water temperatures typically range from about 5 0 C to about 90 0 C.
  • the water to fabric ratio is typically from about 1:1 to about 30:1.
  • Test Method 1 Procedure for determining the concentration of free CALCIUM (Ca ++ ) Basis of method
  • Free calcium is assayed by using an ion specific electrode that is specific for calcium.
  • This measurement technique is well known and is exemplified in many literature references, such as Analytical Chemistry, VoI 46, No 1, 1974, p. 12 -15, and manuals exemplifying the use of such electrodes are broadly known and available (e.g. from Metrohm of Buckinghamshire, UK and from HACH LANGE LTD, Manchester, UK). The description below shows how such a technique may be applied to measurements of free calcium for detergents.
  • the electrodes Before use, the electrodes must be calibrated. This may be done by measuring a series of known standard solutions, made by serial dilution of the 1000 ppm Calcium standard solution. For a full calibration, prepare 100ml of solutions containing 1000, 100, 10, 1, and O.lppm Ca 2+ .
  • Ion-selective calcium electrodes are broadly available. The one used for this test is sourced from VWR International Ltd., Leicestershire, UK and comprises the following parts: Ion-Selective Electrode for calcium ion (such as ELIT 8041 PVC membrane); Reference electrode: single junction silver chloride (such as ELIT 001); Dual electrode head (such as ELIT 201); ELIT Computer Interface/Ion Analyser attached to a Dell PC.
  • the 1000 ppm calcium chloride solution can be made by dissolving calcium chloride (sourced from Sigma Aldrich of Milwaukee, US) in deionized water, and the buffer solution (ISAB) comprising 4 Molar KCl can be sourced from VWR International Ltd., Leicestershire, UK.
  • ISAB buffer solution
  • Standard Tergotometer (e.g. models available from Copley Scientific, Nottingham, UK such as that sold under catalogue number Dissolution Tester DIS 8000).
  • This method compares the residual enzyme concentration of various amylases detectable by standard Double Antibody Sandwich ELISA (DAS-ELISA) methods, well known to those skilled in the art, by reaction with the appropriate antibodies (DAS-ELISA technique is exemplified in various patents, e.g. US5188937 & US6818804, and in various literature articles, e.g. L.S. Miller, "A robotic immunoassay system for detergent enzymes.” Laboratory Information Management, 1994, VoI 26, pgs 79-87; Butler, J.E. "The immunochemistry of sandwich ELISA's: principles and applications for the quantitative determination of immunoglobulins.” In “ELISA and Other Solid Phase Immunoassays. Theoretical and Practical Aspects” Eds Kemeny, D.M. and Challacombe, SJ. John Wiley and Sons, NY. 1988, pgs. 155- 180 and references incorporated therein.) Standard calibration methods are used.
  • the enzyme deposition index is the ratio of the (mass of test alpha-amylase protein extracted/ g fabric) and the (mass of Termamyl® protein extracted/ g fabric).
  • the equation for cotton fabric is Equation 1. This method may be used, for example, to determine the suitability of an enzyme for use as a detergent ingredient and/or predict the performance of an enzyme in, for example, a detergent application.
  • the swatches are removed and hand squeezed to remove excess liquor and then allowed to air dry at room temperature for 3 - 5 hours.
  • An extraction buffer comprising of:
  • Each swatch of known weight is placed in a separate 50 ml extraction tube and 25 ml of extraction buffer is added.
  • the tube is hand shaken vigorously for 1 minute (+/-10s) then left to stand for 15 minutes (+/-1 minute) then shaken vigorously again for 1 minute (+/-10s).
  • the tube is allowed to stand for a further 15 minutes (+/-1 minute) before given a final vigorous shaking for 1 minute (+/-10s).
  • the resultant solution is assayed via standard ELISA methods using a Rosys Plato 7381 analyzer (Supplier Rosys Anthos GmbH Feldbachstr CH-8634 Hombrechtikon Switzerland or equivalent ELISA equipment such as those supplied by Dynex Technologies of Virginia, USA or Biotech of Vermont, USA).
  • the mass of amylase protein detected can be determined and the mass of enzyme extracted/ g of fabric can be calculated.
  • Steps 1 - 12 The whole process (Steps 1 - 12) is repeated 3 more times to generate further sets of data.
  • the enzyme deposition index is then calculated by taking the average of 12 readings expressed in ng amylase protein/g fabric (these twelve readings come from the three pieces of cloth per pot from each of the four runs) for each enzyme and indexing such value to that observed for Termamyl® protein as shown in Equation 1.
  • Standard Tergotometer e.g. models available from Copley Scientific, Nottingham, UK such as that sold under catalogue number Dissolution Tester DIS 8000.
  • Granular laundry detergent compositions designed for hand washing or top-loading washing machines.
  • Granular laundry detergent compositions designed for front-loading automatic washing machines.
  • compositions is used to launder fabrics at a concentration of 7000 to 10000 ppm in water, 20-90 0 C, and a 5:1 wate ⁇ cloth ratio.
  • the typical pH is about 10.
  • Ci 2-I4 Dimethylhydroxyethyl ammonium chloride supplied by Clariant GmbH, Sulzbach, Germany
  • AE3S is Co-is alkyl ethoxy (3) sulfate supplied by Stepan, Northfield, Illinois, USA
  • AE7 is C 12 - 15 alcohol ethoxylate, with an average degree of ethoxylation of 7, supplied by Huntsman, Salt Lake City, Utah, USA
  • Zeolite A is supplied by Industrial Zeolite (UK) Ltd, Grays, Essex, UK
  • Polyacrylate MW 4500 is supplied by BASF, Ludwigshafen, Germany
  • Carboxy Methyl Cellulose is Finnfix® BDA supplied by CP Kelco, Arnhem, Netherlands
  • Suitable chelants are, for example, diethylenetetraamine pentaacetic acid (DTPA) supplied by Dow Chemical, Midland, Michigan, USA or Hydroxyethane di phosphonate (HEDP) supplied by Solutia, St Louis, Missouri, USA Bagsvaerd, Denmark
  • DTPA diethylenetetraamine pentaacetic acid
  • HEDP Hydroxyethane di phosphonate
  • a suitable amylase is, for example, Optisize® HT Plus supplied by Genencor International, Palo Alto, California, USA, or any of the other amylases specifically described in the present specification.
  • Fluorescent Brightener 1 is Tinopal® AMS
  • Fluorescent Brightener 2 is Tinopal® CBS- X
  • Sulphonated zinc phthalocyanine and Direct Violet 9 is Pergasol® Violet BN-Z all supplied by Ciba Specialty Chemicals, Basel, Switzerland
  • Sodium perborate is supplied by Degussa, Hanau, Germany
  • NOBS sodium nonanoyloxybenzenesulfonate, supplied by Eastman, Batesville, Arkansas, USA
  • TAED is tetraacetylethylenediamine, supplied under the Peractive® brand name by Clariant GmbH, Sulzbach, Germany
  • S-ACMC is carboxymethylcellulose conjugated with C.I. Reactive Blue 19, sold by Megazyme, Wicklow, Ireland under the product name AZO-CM-CELLULOSE, product code S- ACMC.
  • Soil release agent is Repel-o-tex® PF, supplied by Rhodia, Paris, France
  • Acrylic Acid/Maleic Acid Copolymer is molecular weight 70,000 and acrylate:maleate ratio 70:30, supplied by BASF, Ludwigshafen, Germany
  • HEDP Hydroxyethane di phosphonate
  • HSAS Suds suppressor agglomerate is supplied by Dow Corning, Midland, Michigan, USA
  • HSAS is mid-branched alkyl sulfate as disclosed in US 6,020,303 and US 6,060,443 Ci 2-I4 dimethyl Amine Oxide is supplied by Procter & Gamble Chemicals, Cincinnati,
  • Liquitint® Violet CT is supplied by Milliken, Spartanburg, South Carolina, USA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

This invention relates to compositions comprising certain amylase variants and processes for making and using such compositions including the use of such compositions to clean and/or treat a situs.

Description

CLEANING AND/OR TREATMENT COMPOSITIONS
FIELD OF INVENTION
Compositions comprising enzymes and processes for making and using such compositions.
BACKGROUND OF THE INVENTION
The appearance of enzymes suitable for cleaning and/or treatment applications gave the formulator a new approach to clean and/or treat hard surfaces and fabrics. Unfortunately, even when enzymes are employed, performance issues remain. For example, in certain matrices and/or use conditions, enzymes do not deposit as efficiently as required to provide the desired performance. Thus, the use of this technology continues to be limited.
Surprisingly, when cleaning compositions that comprise certain α-amylases are formulated in accordance with the teachings of the present invention, such compositions can provide improved cleaning.
SUMMARY OF THE INVENTION
This invention relates to compositions comprising certain α-amylase enzymes and processes for making and using such products.
DETAILED DESCRIPTION OF THE INVENTION Definitions
As used herein, the term "cleaning composition" includes, unless otherwise indicated, granular or powder-form all-purpose or "heavy-duty" washing agents, especially laundry detergents; liquid, gel or paste- form all-purpose washing agents, especially the so-called heavy- duty liquid types; liquid fine-fabric detergents; hand dishwashing agents or light duty dishwashing agents, especially those of the high- foaming type; machine dishwashing agents, including the various tablet, granular, liquid and rinse-aid types for household and institutional use; liquid cleaning and disinfecting agents, including antibacterial hand-wash types, laundry bars, mouthwashes, denture cleaners, car or carpet shampoos, bathroom cleaners; hair shampoos and hair-rinses; shower gels and foam baths and metal cleaners; as well as cleaning auxiliaries such as bleach additives and "stain-stick" or pre-treat types.
As used herein, the phrase "is independently selected from the group consisting of " means that moieties or elements that are selected from the referenced Markush group can be the same, can be different or any mixture of elements.
As used herein, articles, for example, "a" and "an" when used in a claim, are understood to mean one or more of what is claimed or described.
As used herein, the terms "include", "includes" and "including" are meant to be non- limiting.
The test methods disclosed in the Test Methods Section of the present application must be used to determine the respective values of the parameters of Applicants' inventions.
Unless otherwise noted, all component or composition levels are in reference to the active level of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources.
Unless otherwise noted, the enzymes of the present invention are expressed in terms of active protein level and are exclusive of impurities, for example, residual solvents or byproducts, which may be present in commercially available sources.
All percentages and ratios are calculated by weight unless otherwise indicated. All percentages and ratios are calculated based on the total composition unless otherwise indicated.
It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
Compositions In one aspect, a composition comprising an amylase and: a.) a sufficient amount of calcium to provide a wash liquor comprising said composition with a free calcium concentration as determined by Test Method 1 of from about 0.1 ppm to about 500 ppm, from about 0.2 ppm to about 200 ppm, from about 1 ppm to about 150 ppm, or from about 2 ppm to about 100 ppm, or even from about 3 ppm to about 50 ppm; b.) based on total product weight, less than 15%, less than 10%, less than 8% or even from about 0.01% to about 7% builder; and/or c.) having an enzyme deposition index as defined in Test Method 2 of at least 2.5, at least 2.6, or even from about 2.7 to about 50 is disclosed.
Such composition may comprise, based on total composition weight, from about 0.0001% to about 2%, from about 0.0005% to about 1%, from about 0.001% to about 0.5% or even from about 0.002% to about 0.25% of said enzyme. Such compositions may be cleaning and/or treatment compositions. Thus it is understood that they may be solids or fluids.
In one aspect, said amylase includes α-amylases derived from Bacillus licheniformis having Sequence LD. 5 or 6, or an enzyme that is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or even 99% identical to said Sequence LD. 5 or 6. Such α-amylases having at least one of the following mutations at positions corresponding to the positions corresponding to Sequence LD. 5 or 6: 15, 23, 133, 188, 209, 475 or combinations of said positions.
In another aspect, said amylase enzymes include α-amylases derived from Bacillus licheniformis having Sequence LD. 5 (SEQ ID No.5 herein being equivalent to SEQ ID No 34 in US 5,958,739) or an enzyme having at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or even 99% identity to said Sequence LD. 5. Such α-amylases having one or more of the following mutations: M15T, H133Y, N188S or T, A209V or G475R.
In another aspect, said amylase enzymes include α-amylases derived from Bacillus licheniformis having Sequence 6 (SEQ ID No.6 herein being equivalent to SEQ ID NO. 2 in US 6,436,888 Bl) or an enzyme having at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or even 99% identity to said Sequence LD. 6. Such α-amylases having one or more of the following mutations: M15T, H133Y, N188S or T, A209V or G475R; and optionally R23K.
In another aspect, said amylase enzymes include an amylase selected from the group consisting of: a.) an amylase having Seq. LD. 5, said amylase having one of the following groups of mutations: (i) M15T+H133Y+N188S+A209V; (ii) M15T+H133Y+N188T+A209V; (iii) H133Y+N188S+G475R; or (iv) H133Y+N188S; b.) an amylase having Seq. LD. 6, said amylase having one of the following groups of mutations:
(i) M15T+R23K+H133Y+N188S+A209V; (ii) M15T+R23K+H133Y+N188T+A209V; (iii) R23K+H133Y+N188S+G475R; (iv) R23K+H133Y+N188S; (v) M15T+H133Y+N188S+A209V (vi) M15T+H133Y+N188T+A209V; (vii) H133Y+N188S+G475R; or (viii) H133Y+N188S and combinations thereof.
In one aspect, a composition comprising an amylase belonging to EC 3.2.1.1 such as an enzyme having Seq. LD. 1 and: a.) a sufficient amount of calcium to provide a wash liquor comprising said composition with a free calcium concentration as determined by Test Method 1 of from about 0.1 ppm to about 500 ppm, from about 0.2 ppm to about 200 ppm, from about 1 ppm to about 150 ppm, or from about 2 ppm to about 100 ppm, or even from about 3 ppm to about 50 ppm; b.) based on total product weight, less than 15%, less than 10%, less than 8% or even from about 0.01% to about 7% builder; and/or c.) having an enzyme deposition index as defined in Test Method 2 of at least 2.5, at least 2.6, or even from about 2.7 to about 50 is disclosed.
Such composition may comprise, based on total composition weight, from about 0.0001% to about 2%, from about 0.0005% to about 1%, from about 0.001% to about 0.5% or even from about 0.002% to about 0.25% of said enzyme. Such compositions may be cleaning and/or treatment compositions. Thus it is understood that they may be solids or fluids.
Any of the aspects of said compositions described in the present specification may comprise a material selected from the group consisting of surfactants, builders, chelating agents, dye transfer inhibiting agents, dispersants, additional enzymes, and enzyme stabilizers, catalytic materials, bleaching agents, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, perfumes, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids, solvents, pigments, hueing agents, structurants, and mixtures thereof.
Any of the aspects of said compositions described in the present specification may comprise an additional enzyme selected from the group consisting of hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, mannanases, pectate lyases, keratinases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, amylases, or mixtures thereof.
In one aspect, such additional enzyme may be selected from the group consisting of: lipases, including "first cycle lipases" described in U.S. Patent 6,939,702 Bl (SEQ ID No.2 in the present specification being equivalent to SEQ ID NO:1 in U.S. Patent 6,939,702 Bl), a variant of SEQ ID No. 2, a variant of SEQ ID No. 2 having at least 90% identity to SEQ ID No. 2 comprising a substitution of an electrically neutral or negatively charged amino acid with R or K at any of positions 3, 224, 229, 231 and 233, or even a variant comprising T231R and N233R mutations, such variant being sold under the tradename Lipex®; alpha-amylases, including a variant of SEQ ID No. 3 (SEQ ID No. 3 corresponding to SEQ ID No. 2 in U.S. patent 5,856,164 ), a variant of SEQ ID No. 3 having at least 90% identity to SEQ ID No. 3 (such variant disclosed in US 6,187,576) comprising two deletions at positions 183 and 184 and sold under the tradename Natalase ®; serine proteases, including neutral or alkaline microbial serine proteases, such as subtilisins (EC 3.4.21.62), including those derived from Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens described in US 6,312,936 Bl, US 5,679,630, US 4,760,025; microbial-derived endoglucanases exhibiting endo-beta-l,4-glucanase activity (E.C. 3.2.1.4), including a bacterial polypeptide endogenous to a member of the genus Bacillus which has a sequence of at least 90%, 94%, 97% and even 99% identity to the amino acid sequence of SEQ ID No. 4 (SEQ ID No.4 herein being equivalent to SEQ ID NO:2 in US 2005/0112749 Al) - such an enzyme being commercially available under the tradename Celluclean™ by Novozymes A/S, and mixtures thereof. Any of the aspects of the compositions described in the present specification may comprise a surfactant, including a surfactant selected from the group of anionic surfactants including anionic surfactants selected from the group consisting of linear alkylbenzene- sulfonate (LAS), alcohol ethoxysulfate (AES), mid-branched alkyl sulfates (HSAS) and mixtures thereof; non-ionic surfactants including alcohol ethoxylates, for example alcohol ethoxylates having a chain length of from 1 to 14 carbons, or 12 to 14 carbons; amine oxides and mixtures thereof.
Any of the aspects of the compositions described in the present specification may comprise a polymer, including polymers selected from the group consisting of polyacrylates, maleic/acrylic acid copolymers, cellulose-derived polymers, including carboxymethylcellulose and methyl hydroxyethylcellulose, polyethyleneimine polymers and mixtures thereof. Any of the aspects of said compositions described in the present specification may comprise a builder selected from the group consisting of citric acid, Ci2-Ci8 fatty acid, aluminosilicates, including zeolites A, X and/or Y, sodium tripolyphosphate and mixtures thereof.
Any of the aspects of the compositions described in the present specification may comprise a material selected from the group consisting of a photobleach, a fabric hueing agent and mixtures thereof.
Any of the aspects of the compositions described in the present specification may comprise a photobleach being selected from the group consisting of xanthene dyes and mixtures thereof; sulfonated zinc phthalocyanine, sulfonated aluminium phthalocyanine, Eosin Y, Phoxine B, Rose Bengal, C.I. Food Red 14 and mixtures thereof; water soluble phthalocyanine; and/or a fabric hueing agent selected from the group consisting of dyes, including small molecule dyes such as small molecule dyes selected from the group consisting of Colour Index (Society of Dyers and Colourists, Bradford, UK) numbers Direct Violet 9, Direct Violet 35, Direct Violet 48, Direct Violet 51, Direct Violet 66, Direct Blue 1, Direct Blue 71, Direct Blue 80, Direct Blue 279, Acid Red 17, Acid Red 73, Acid Red 88, Acid Red 150, Acid Violet 15, Acid Violet 17, Acid Violet 24, Acid Violet 43, Acid Violet 49, Acid Blue 15, Acid Blue 17, Acid Blue 25, Acid Blue 29, Acid Blue 40, Acid Blue 45, Acid Blue 75, Acid Blue 80, Acid Blue 83, Acid Blue 90 and Acid Blue 113, Acid Black 1, Basic Violet 1, Basic Violet 3, Basic Violet 4, Basic Violet 10, Basic Violet 35, Basic Blue 3, Basic Blue 16, Basic Blue 22, Basic Blue 47, Basic Blue 66, Basic Blue 75, Basic Blue 159 and mixtures thereof, polymeric dyes and mixtures thereof, dye-clay conjugates comprising at least one cationic/basic dye and a smectite clay and mixtures thereof. Any of the aspects of the compositions described in the present specification may comprise, based on total product weight, from about 0% to about 3%, from about 0.0001% to about 0.5%, or even from about 0.0005% to about 0.3% photobleach and/or from about 0.00003% to about 0.3%, from about 0.00008% to about 0.05%, or even from about 0.0001% to about 0.04% hueing agent.
Enzymes suitable for use in the present compositions can be obtained from Genencor International, Palo Alto, California, U.S.A; Novozymes A/S, Bagsvaerd, Denmark; Amersham Pharmacia Biotech., Piscataway, New Jersey, U.S.A; Sigma-Aldrich Company Ltd, Dorset, UK.
An enzyme having Seq. ID 1 is sold under the tradename Optisize® HT Plus by Genencor International, Palo Alto, California, U.S.A. An enzyme having at least 90% identity to Seq. ID 2 is sold under the tradename Lipex® by Novozymes A/S, Bagsvaerd, Denmark. An enzyme having at least 90% identity with Seq. ID 3 is sold under the tradename Natalase® by Novozymes A/S, Bagsvaerd, Denmark. An enzyme having at least 90% identity to Seq. ID 4 is sold under the tradename Celluclean™ by Novozymes A/S, Bagsvaerd, Denmark. An enzyme having Seq. ID 5 is sold under the tradename of Purastar® by Genencor International, Palo Alto, California, U.S.A. An enzyme having Seq. ID 6 is sold under the tradename of Termamyl® by Novozymes A/S, Bagsvaerd, Denmark.
Surfactants suitable for use in the present compositions can be obtained from Stepan, Northfield, Illinois, USA; Huntsman, Salt Lake City, Utah, USA; Procter & Gamble Chemicals, Cincinnati, Ohio, USA.
Builders suitable for use in the present compositions can be obtained from Rhodia, Paris, France; Industrial Zeolite (UK) Ltd, Grays, Essex, UK; Koma, Nestemica, Czech Republic.
Polymers suitable for use in the present compositions can be obtained from BASF, Ludwigshafen, Germany, CP Kelco, Arnhem, Netherlands.
Photobleaches suitable for use in the present compositions can be obtained from Aldrich, Milwaukee, Wisconsin, USA; Frontier Scientific, Logan, Utah, USA; Ciba Specialty Chemicals, Basel, Switzerland; BASF, Ludwigshafen, Germany; Lamberti S.p.A, Gallarate, Italy; Dayglo Color Corporation, Mumbai, India; Organic Dyestuffs Corp., East Providence, Rhode Island, USA.
Hueing agents suitable for use in the present compositions can be obtained from Aldrich, Milwaukee, Wisconsin, USA; Ciba Specialty Chemicals, Basel, Switzerland; BASF, Ludwigshafen, Germany; Dayglo Color Corporation, Mumbai, India; Organic Dyestuffs Corp., East Providence, Rhode Island, USA; Dystar, Frankfurt, Germany; Lanxess, Leverkusen, Germany; Megazyme, Wicklow, Ireland; Clariant, Muttenz, Switzerland.
Adjunct Materials
While not essential for the purposes of the present invention, the non-limiting list of adjuncts illustrated hereinafter are suitable for use in the instant compositions and may be desirably incorporated in certain embodiments of the invention, for example to assist or enhance cleaning performance, for treatment of the substrate to be cleaned, or to modify the aesthetics of the cleaning composition as is the case with perfumes, colorants, dyes or the like. The precise nature of these additional components, and levels of incorporation thereof, will depend on the physical form of the composition and the nature of the cleaning operation for which it is to be used. Suitable adjunct materials include, but are not limited to, additional surfactants, additional builders, additional polymers, additional hueing agents, additional photobleaches, chelating agents, dye transfer inhibiting agents, dispersants, additional enzymes, and enzyme stabilizers, catalytic materials, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, perfumes, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids, solvents, additional hueing agents, structurants and/or pigments. In addition to the disclosure below, suitable examples of such other adjuncts and levels of use are found in U.S. Patent Nos. 5,576,282, 6,306,812 Bl and 6,326,348 Bl that are incorporated by reference.
As stated, the adjunct ingredients are not essential to Applicants' compositions. Thus, certain embodiments of Applicants' compositions do not contain one or more of the following adjuncts materials: additional surfactants, additional builders, additional polymers, additional photobleaches, chelating agents, dye transfer inhibiting agents, dispersants, additional enzymes, and enzyme stabilizers, catalytic materials, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids, polymeric dispersing agents, clay soil removal/anti- redeposition agents, brighteners, suds suppressors, dyes, perfumes, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids, solvents, additional hueing agents, structurants and/or pigments. However, when one or more adjuncts are present, such one or more adjuncts may be present as detailed below: Bleaching Agents - The cleaning compositions of the present invention may comprise one or more bleaching agents. Suitable bleaching agents other than bleaching catalysts include photobleaches, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, pre-formed peracids and mixtures thereof. In general, when a bleaching agent is used, the compositions of the present invention may comprise from about 0.1% to about 50% or even from about 0.1% to about 25% bleaching agent by weight of the subject cleaning composition. Examples of suitable bleaching agents include:
(1) photobleaches
(2) preformed peracids: Suitable preformed peracids include, but are not limited to, compounds selected from the group consisting of percarboxylic acids and salts, percarbonic acids and salts, perimidic acids and salts, peroxymonosulfuric acids and salts, for example, Oxone ®, and mixtures thereof. Suitable percarboxylic acids include hydrophobic and hydrophilic peracids having the formula R-(C=O)O-O-M wherein R is an alkyl group, optionally branched, having, when the peracid is hydrophobic, from 6 to 14 carbon atoms, or from 8 to 12 carbon atoms and, when the peracid is hydrophilic, less than 6 carbon atoms or even less than 4 carbon atoms; and M is a counter ion, for example, sodium, potassium or hydrogen;
(3) sources of hydrogen peroxide, for example, inorganic perhydrate salts, including alkali metal salts such as sodium salts of perborate (usually mono- or tetra-hydrate), percarbonate, persulphate, perphosphate, persilicate salts and mixtures thereof. In one aspect of the invention the inorganic perhydrate salts are selected from the group consisting of sodium salts of perborate, percarbonate and mixtures thereof. When employed, inorganic perhydrate salts are typically present in amounts of from 0.05 to 40 wt%, or 1 to 30 wt% of the overall composition and are typically incorporated into such compositions as a crystalline solid that may be coated. Suitable coatings include, inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as water-soluble or dispersible polymers, waxes, oils or fatty soaps; and
(4) bleach activators having R-(C=O)-L wherein R is an alkyl group, optionally branched, having, when the bleach activator is hydrophobic, from 6 to 14 carbon atoms, or from 8 to 12 carbon atoms and, when the bleach activator is hydrophilic, less than 6 carbon atoms or even less than 4 carbon atoms; and L is leaving group. Examples of suitable leaving groups are benzoic acid and derivatives thereof - especially benzene sulphonate. Suitable bleach activators include dodecanoyl oxybenzene sulphonate, decanoyl oxybenzene sulphonate, decanoyl oxybenzoic acid or salts thereof, 3,5,5-trimethyl hexanoyloxybenzene sulphonate, tetraacetyl ethylene diamine (TAED) and nonanoyloxybenzene sulphonate (NOBS). Suitable bleach activators are also disclosed in WO 98/17767. While any suitable bleach activator may be employed, in one aspect of the invention the subject cleaning composition may comprise NOBS, TAED or mixtures thereof.
When present, the peracid and/or bleach activator is generally present in the composition in an amount of from about 0.1 to about 60 wt%, from about 0.5 to about 40 wt % or even from about 0.6 to about 10 wt% based on the composition. One or more hydrophobic peracids or precursors thereof may be used in combination with one or more hydrophilic peracid or precursor thereof.
The amounts of hydrogen peroxide source and peracid or bleach activator may be selected such that the molar ratio of available oxygen (from the peroxide source) to peracid is from 1:1 to 35:1, or even 2:1 to 10:1.
Surfactants - The cleaning compositions according to the present invention may comprise a surfactant or surfactant system wherein the surfactant can be selected from nonionic surfactants, anionic surfactants, cationic surfactants, ampholytic surfactants, zwitterionic surfactants, semi-polar nonionic surfactants and mixtures thereof. When present, surfactant is typically present at a level of from about 0.1% to about 60%, from about 1% to about 50% or even from about 5% to about 40% by weight of the subject composition.
Builders - The cleaning compositions of the present invention may comprise one or more detergent builders or builder systems. Builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates, alkali metal silicates, alkaline earth and alkali metal carbonates, aluminosilicate builders and polycarboxylate compounds, ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2, 4, 6-trisulphonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, citric acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5- tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof. Chelating Agents - The cleaning compositions herein may contain a chelating agent. Suitable chelating agents include copper, iron and/or manganese chelating agents and mixtures thereof. When a chelating agent is used, the subject composition may comprise from about 0.005% to about 15% or even from about 3.0% to about 10% chelating agent by weight of the subject composition.
Dye Transfer Inhibiting Agents - The cleaning compositions of the present invention may also include one or more dye transfer inhibiting agents. Suitable polymeric dye transfer inhibiting agents include, but are not limited to, polyvinylpyrrolidone polymers, polyamine N- oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof. When present in a subject composition, the dye transfer inhibiting agents may be present at levels from about 0.0001% to about 10%, from about 0.01% to about 5% or even from about 0.1% to about 3% by weight of the composition.
Brighteners - The cleaning compositions of the present invention can also contain additional components that may tint articles being cleaned, such as fluorescent brighteners. Suitable fluorescent brightener levels include lower levels of from about 0.01, from about 0.05, from about 0.1 or even from about 0.2 wt % to upper levels of 0.5 or even 0.75 wt %.
Dispersants - The compositions of the present invention can also contain dispersants. Suitable water-soluble organic materials include the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
Enzymes - The cleaning compositions can comprise one or more enzymes which provide cleaning performance and/or fabric care benefits. Examples of suitable enzymes include, but are not limited to, hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, mannanases, pectate lyases, keratinases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, amylases, or mixtures thereof. A typical combination is an enzyme cocktail that may comprise, for example, a protease and lipase in conjunction with amylase. When present in a cleaning composition, the aforementioned additional enzymes may be present at levels from about 0.00001% to about 2%, from about 0.0001% to about 1% or even from about 0.001% to about 0.5% enzyme protein by weight of the composition.
Enzyme Stabilizers - Enzymes for use in detergents can be stabilized by various techniques. The enzymes employed herein can be stabilized by the presence of water-soluble sources of calcium and/or magnesium ions in the finished compositions that provide such ions to the enzymes. In case of aqueous compositions comprising protease, a reversible protease inhibitor, such as a boron compound, can be added to further improve stability.
Catalytic Metal Complexes - Applicants' cleaning compositions may include catalytic metal complexes. One type of metal-containing bleach catalyst is a catalyst system comprising a transition metal cation of defined bleach catalytic activity, such as copper, iron, titanium, ruthenium, tungsten, molybdenum, or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrate having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water- soluble salts thereof. Such catalysts are disclosed in U.S. 4,430,243.
If desired, the compositions herein can be catalyzed by means of a manganese compound. Such compounds and levels of use are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. 5,576,282.
Cobalt bleach catalysts useful herein are known, and are described, for example, in U.S. 5,597,936; U.S. 5,595,967. Such cobalt catalysts are readily prepared by known procedures, such as taught for example in U.S. 5,597,936, and U.S. 5,595,967.
Compositions herein may also suitably include a transition metal complex of ligands such as bispidones (WO 05/042532 Al) and/or macropolycyclic rigid ligands - abbreviated as "MRLs". As a practical matter, and not by way of limitation, the compositions and processes herein can be adjusted to provide on the order of at least one part per hundred million of the active MRL species in the aqueous washing medium, and will typically provide from about 0.005 ppm to about 25 ppm, from about 0.05 ppm to about 10 ppm, or even from about 0.1 ppm to about 5 ppm, of the MRL in the wash liquor.
Suitable transition-metals in the instant transition-metal bleach catalyst include, for example, manganese, iron and chromium. Suitable MRLs include 5,12-diethyl-l,5,8,12- tetraazabicyclo[6.6.2]hexadecane. Suitable transition metal MRLs are readily prepared by known procedures, such as taught for example in WO 00/32601, and U.S. 6,225,464.
Solvents - Suitable solvents include water and other solvents such as lipophilic fluids. Examples of suitable lipophilic fluids include siloxanes, other silicones, hydrocarbons, glycol ethers, glycerine derivatives such as glycerine ethers, perfluorinated amines, perfluorinated and hydrofluoroether solvents, low-volatility nonfluorinated organic solvents, diol solvents, other environmentally-friendly solvents and mixtures thereof.
Processes of Making Compositions
The compositions of the present invention can be formulated into any suitable form and prepared by any process chosen by the formulator, non-limiting examples of which are described in Applicants' examples and in U.S. 4,990,280; U.S. 20030087791A1; U.S. 20030087790A1; U.S. 20050003983 Al; U.S. 20040048764A1; U.S. 4,762,636; U.S. 6,291,412; U.S. 20050227891 Al; EP 1070115A2; U.S. 5,879,584; U.S. 5,691,297; U.S. 5,574,005; U.S. 5,569,645; U.S. 5,565,422; U.S. 5,516,448; U.S. 5,489,392; U.S. 5,486,303.
Method of Use
The present invention includes a method for cleaning and /or treating a situs inter alia a surface or fabric. Such method includes the steps of optionally washing and/or rinsing said surface or fabric, contacting said surface or fabric with a composition of the present invention in neat or diluted form such as in a wash liquor and then optionally washing and/or rinsing said surface or fabric. For purposes of the present invention, washing includes but is not limited to, scrubbing, and mechanical agitation. As will be appreciated by one skilled in the art, the cleaning compositions of the present invention are ideally suited for use in laundry applications. Accordingly, the present invention includes a method for laundering a fabric. The method may comprise the steps of contacting a fabric to be laundered with a said cleaning laundry solution comprising at least one embodiment of Applicants' cleaning composition, cleaning additive or mixture thereof. The fabric may comprise most any fabric capable of being laundered in normal consumer use conditions. The solution may have in one aspect a pH of from about 7.5 to about 10.5 or even a pH of from about 8 to about 10.5. The compositions may be employed at concentrations of from about 500 ppm to about 15,000 ppm in solution. The water temperatures typically range from about 5 0C to about 90 0C. The water to fabric ratio is typically from about 1:1 to about 30:1.
TEST METHODS
Test Method 1 - Procedure for determining the concentration of free CALCIUM (Ca++) Basis of method
Free calcium is assayed by using an ion specific electrode that is specific for calcium. This measurement technique is well known and is exemplified in many literature references, such as Analytical Chemistry, VoI 46, No 1, 1974, p. 12 -15, and manuals exemplifying the use of such electrodes are broadly known and available (e.g. from Metrohm of Buckinghamshire, UK and from HACH LANGE LTD, Manchester, UK). The description below shows how such a technique may be applied to measurements of free calcium for detergents.
Calibration:
Before use, the electrodes must be calibrated. This may be done by measuring a series of known standard solutions, made by serial dilution of the 1000 ppm Calcium standard solution. For a full calibration, prepare 100ml of solutions containing 1000, 100, 10, 1, and O.lppm Ca2+.
Add 2 ml of Ionic Strength Adjustment Buffer (ISAB) solution to each standard and mix. Prepare a calibration graph.
Sample Preparation
a. To 6 separate IL volumetric flasks add, 0, 20, 30, 40, 50, 100 and 200ml of 1000 ppm calcium standard solution and add deionised water to make the volume to 1 liter to make solutions containing 0, 20, 30, 40, 50, 100 & 200 ppm of calcium. Transfer each 1 liter calcium solution to a 1 liter tergotometer pot and stir for 10 mins on a standard tergotometer.
b. To 50ml of each solution from Step a. above, add ImI of ISAB buffer and measure calcium. This serves to check that the initial solution contains the level of calcium expected. c. To each tergotometer pot from Step a. above add sufficient detergent to give a detergent solution having the same concentration as would be realized by adding the detergent manufacturer's recommended dose of detergent to the standard volume within a washing machine or median hand- wash practices. (For example formulations 1 - 6, typical detergent concentration would be 1.5 - 3g/liter; for example formulations 7 - 12, typical detergent concentration would be 8 - 9g/liter; for example formulations 13 - 16, typical detergent concentration would be 1.5g/liter; and for examples 17 & 18, typical detergent concentrations would be 8 - 9g/liter). Stir for 10 mins.
d. To 50ml of each solution from Step c, add 1ml of ISAB buffer, immerse the electrode and take the calcium reading, once equilibrated (typically takes several seconds). This is the free calcium reading for the detergent composition.
Apparatus Used:
Ion- Selective Calcium Electrode: Ion-selective calcium electrodes are broadly available. The one used for this test is sourced from VWR International Ltd., Leicestershire, UK and comprises the following parts: Ion-Selective Electrode for calcium ion (such as ELIT 8041 PVC membrane); Reference electrode: single junction silver chloride (such as ELIT 001); Dual electrode head ( such as ELIT 201); ELIT Computer Interface/Ion Analyser attached to a Dell PC.
Standard solutions: The 1000 ppm calcium chloride solution can be made by dissolving calcium chloride (sourced from Sigma Aldrich of Milwaukee, US) in deionized water, and the buffer solution (ISAB) comprising 4 Molar KCl can be sourced from VWR International Ltd., Leicestershire, UK.
Standard Tergotometer: (e.g. models available from Copley Scientific, Nottingham, UK such as that sold under catalogue number Dissolution Tester DIS 8000).
Test Method 2 - Procedure for determining enzyme deposition index
Basis of Method: This method compares the residual enzyme concentration of various amylases detectable by standard Double Antibody Sandwich ELISA (DAS-ELISA) methods, well known to those skilled in the art, by reaction with the appropriate antibodies (DAS-ELISA technique is exemplified in various patents, e.g. US5188937 & US6818804, and in various literature articles, e.g. L.S. Miller, "A robotic immunoassay system for detergent enzymes." Laboratory Information Management, 1994, VoI 26, pgs 79-87; Butler, J.E. "The immunochemistry of sandwich ELISA's: principles and applications for the quantitative determination of immunoglobulins." In "ELISA and Other Solid Phase Immunoassays. Theoretical and Practical Aspects" Eds Kemeny, D.M. and Challacombe, SJ. John Wiley and Sons, NY. 1988, pgs. 155- 180 and references incorporated therein.) Standard calibration methods are used.
The enzyme deposition index (EDI) is the ratio of the (mass of test alpha-amylase protein extracted/ g fabric) and the (mass of Termamyl® protein extracted/ g fabric). Thus, the equation for cotton fabric is Equation 1. This method may be used, for example, to determine the suitability of an enzyme for use as a detergent ingredient and/or predict the performance of an enzyme in, for example, a detergent application.
Equation 1: EDI = (Mass of test alpha-amylase protein extracted per g cotton) / (Mass of Termamyl® extracted per g cotton)
Sample preparation
1. To separate tergotometer pots add 980 ml of water containing 145 ± 10 ppm calcium and 2.0 g of sodium carbonate (sourced from SigmaAldrich of Milwaukee, USA). Stir for 10 minutes to dissolve. Allow to equilibrate to 400C.
2. Add 0.69 g of LAS (Linear alkylbenzenesulfonate having an average aliphatic carbon chain length Cn-Cn) and 0.38 g of AE3S (C12-15 alkyl ethoxy (3) sulfate), both supplied by Stepan, Northfield, Illinois, USA. Stir to dissolve.
3. Add liquid samples of the various enzymes to be studied to the different tergotometer pots to ensure 0.2 mg of amylase are present in each pot. One pot should contain 0.2 mg Termamyl® (available from Novozymes of Denmark) to act as the reference versus which the other enzymes are to be indexed. 4. Adjust the water volume in each pot to 1 liter, if needed, using water containing 145 ± 10 ppm calcium. The resultant solution should contain 690 ppm of LAS, 380 ppm AE3S, 2000 ppm of sodium carbonate and 0.2 ppm of the enzyme.
5. To each tergotometer pot, add three standard cotton swatches (sourced ex. Center for Test Materials (CFT) B.V. of Holland) with fabric code CN03, each weighing 3.5+ 0.3 g. The total weight of cotton should be 10.5+0.5 g per tergotometer pot.
6. Start the tergotometer run (conditions are 40+20C, 150 rpm and run time is 20 minutes).
7. After 20 minutes the fabrics are removed, hand squeezed until not excess liquid is visible and then rinsed for 5 minutes in a tergotometer in 1 liter of water containing 145 + 10 ppm calcium (conditions are 150 rpm agitation, with a water temperature of 25+2°C).
8. The swatches are removed and hand squeezed to remove excess liquor and then allowed to air dry at room temperature for 3 - 5 hours.
9. An extraction buffer is prepared comprising of:
a. 0.93g/L 2-Amino-2-(hydroxymethyl)-l,3-propanediol (otherwise known as Trizma base); b. 4.96g/L Sodium Thiosulphate pentahydrate; c. 0.147g/L Calcium Chloride dehydrate; d. 29.22g/L sodium Chloride; e. LOg Sodium Azide; and f. 1.0g/L Polyethylene glycol sorbitan monolaurate (otherwise known as Tween 20 with CAS# 9005-64-5)
The pH of the buffer is adjusted to pH = 8 using 0.1N hydrochloric acid prior to use. All reagents are available from Sigma Aldrich Company Ltd. Dorset, UK.
10. Each swatch of known weight is placed in a separate 50 ml extraction tube and 25 ml of extraction buffer is added. The tube is hand shaken vigorously for 1 minute (+/-10s) then left to stand for 15 minutes (+/-1 minute) then shaken vigorously again for 1 minute (+/-10s). The tube is allowed to stand for a further 15 minutes (+/-1 minute) before given a final vigorous shaking for 1 minute (+/-10s).
11. The resultant solution is assayed via standard ELISA methods using a Rosys Plato 7381 analyzer (Supplier Rosys Anthos GmbH Feldbachstr CH-8634 Hombrechtikon Switzerland or equivalent ELISA equipment such as those supplied by Dynex Technologies of Virginia, USA or Biotech of Vermont, USA).
12. From this assay by comparing to the standard calibration curve, the mass of amylase protein detected can be determined and the mass of enzyme extracted/ g of fabric can be calculated.
13. The whole process (Steps 1 - 12) is repeated 3 more times to generate further sets of data.
14. The enzyme deposition index is then calculated by taking the average of 12 readings expressed in ng amylase protein/g fabric (these twelve readings come from the three pieces of cloth per pot from each of the four runs) for each enzyme and indexing such value to that observed for Termamyl® protein as shown in Equation 1.
Equipment Used
Standard Tergotometer (e.g. models available from Copley Scientific, Nottingham, UK such as that sold under catalogue number Dissolution Tester DIS 8000).
EXAMPLES
Unless otherwise indicated, materials can be obtained from Aldrich, P.O. Box 2060, Milwaukee, WI 53201, USA.
Examples 1-6
Granular laundry detergent compositions designed for hand washing or top-loading washing machines.
Figure imgf000019_0001
Figure imgf000020_0001
* Balance to 100% for Examples 1-6
Examples 7-12
Granular laundry detergent compositions designed for front-loading automatic washing machines.
Figure imgf000020_0002
Figure imgf000021_0001
* Balance to 100% for Examples 7-12
Any of the above compositions is used to launder fabrics at a concentration of 7000 to 10000 ppm in water, 20-90 0C, and a 5:1 wateπcloth ratio. The typical pH is about 10.
Examples 13-18 Heavy Duty Liquid laundry detergent compositions Raw Materials and Notes For Composition Examples 1-18
Figure imgf000021_0002
Figure imgf000022_0001
Raw Materials and Notes For Composition Examples 1-18
Linear alkylbenzenesulfonate having an average aliphatic carbon chain length Cn-Cn supplied by Stepan, Northfield, Illinois, USA
Ci2-I4 Dimethylhydroxyethyl ammonium chloride, supplied by Clariant GmbH, Sulzbach, Germany
AE3S is Co-is alkyl ethoxy (3) sulfate supplied by Stepan, Northfield, Illinois, USA AE7 is C12-15 alcohol ethoxylate, with an average degree of ethoxylation of 7, supplied by Huntsman, Salt Lake City, Utah, USA
Sodium tripolyphosphate is supplied by Rhodia, Paris, France
Zeolite A is supplied by Industrial Zeolite (UK) Ltd, Grays, Essex, UK
1.6R Silicate is supplied by Koma, Nestemica, Czech Republic
Sodium Carbonate is supplied by Solvay, Houston, Texas, USA
Polyacrylate MW 4500 is supplied by BASF, Ludwigshafen, Germany
Carboxy Methyl Cellulose is Finnfix® BDA supplied by CP Kelco, Arnhem, Netherlands
Suitable chelants are, for example, diethylenetetraamine pentaacetic acid (DTPA) supplied by Dow Chemical, Midland, Michigan, USA or Hydroxyethane di phosphonate (HEDP) supplied by Solutia, St Louis, Missouri, USA Bagsvaerd, Denmark
Protease (examples 7-12) described in US 6,312,936 Bl supplied by Genencor International, Palo Alto, California, USA
Protease (examples 13-18) described in US 4,760,025 is supplied by Genencor International, Palo Alto, California, USA
* A suitable amylase is, for example, Optisize® HT Plus supplied by Genencor International, Palo Alto, California, USA, or any of the other amylases specifically described in the present specification.
Fluorescent Brightener 1 is Tinopal® AMS, Fluorescent Brightener 2 is Tinopal® CBS- X, Sulphonated zinc phthalocyanine and Direct Violet 9 is Pergasol® Violet BN-Z all supplied by Ciba Specialty Chemicals, Basel, Switzerland
Sodium percarbonate supplied by Solvay, Houston, Texas, USA
Sodium perborate is supplied by Degussa, Hanau, Germany
NOBS is sodium nonanoyloxybenzenesulfonate, supplied by Eastman, Batesville, Arkansas, USA
TAED is tetraacetylethylenediamine, supplied under the Peractive® brand name by Clariant GmbH, Sulzbach, Germany
S-ACMC is carboxymethylcellulose conjugated with C.I. Reactive Blue 19, sold by Megazyme, Wicklow, Ireland under the product name AZO-CM-CELLULOSE, product code S- ACMC. Soil release agent is Repel-o-tex® PF, supplied by Rhodia, Paris, France
Acrylic Acid/Maleic Acid Copolymer is molecular weight 70,000 and acrylate:maleate ratio 70:30, supplied by BASF, Ludwigshafen, Germany
Na salt of Ethylenediamine-N,N'-disuccinic acid, (S, S) isomer (EDDS) is supplied by
Octel, Ellesmere Port, UK
Hydroxyethane di phosphonate (HEDP) is supplied by Dow Chemical, Midland,
Michigan, USA
Suds suppressor agglomerate is supplied by Dow Corning, Midland, Michigan, USA HSAS is mid-branched alkyl sulfate as disclosed in US 6,020,303 and US 6,060,443 Ci2-I4 dimethyl Amine Oxide is supplied by Procter & Gamble Chemicals, Cincinnati,
Ohio, USA
Liquitint® Violet CT is supplied by Milliken, Spartanburg, South Carolina, USA)
1 as described in US 4,597,898.
2 available under the tradename LUTENSIT® from BASF and such as those described in WO 01/05874
All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention. To the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims

What is claimed is:
1. A composition comprising an amylase selected from the group consisting of: a.) an amylase having Seq. LD. 5, said amylase having one of the following groups of mutations: (i) M15T+H133Y+N188S+A209V; (ii) M15T+H133Y+N188T+A209V; (iii) H133Y+N188S+G475R; or (iv) H133Y+N188S; b.) an amylase having Seq. LD. 6, said amylase having one of the following groups of mutations:
(i) M15T+R23K+H133Y+N188S+A209V; (ii) M15T+R23K+H133Y+N188T+A209V; (iii) R23K+H133Y+N188S+G475R; (iv) R23K+H133Y+N188S; (v) M15T+H133Y+N188S+A209V; (vi) M15T+H133Y+N188T+A209V; (vii) H133Y+N188S+G475R; or (viii) H133Y+N188S and c.) combinations thereof preferably from 0.0001% to 2%, from 0.0005% to 1%, from 0.001% to 0.5% or even from 0.002% to 0.25% of said amylase and a sufficient amount of calcium to provide a wash liquor comprising said composition with a free calcium concentration of from 0.1 ppm to 500 ppm, from 0.2 ppm to 200 ppm, from 1 ppm to 150 ppm, from 2 ppm to 100 ppm, or even from 3 ppm to 50 ppm.
2. A composition according to Claim 1, said composition comprising an amylase having Seq. LD. 1.
3. A composition according to any one of the preceding claims comprising a material selected from the group consisting of surfactants, builders, chelating agents, dye transfer inhibiting agents, dispersants, additional enzymes, and enzyme stabilizers, catalytic materials, bleaching agents, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, perfumes, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids, solvents, pigments, hueing agents, photobleaches, structurants, and mixtures thereof.
4. A composition according to any one of the preceding claims wherein said additional enzyme is selected from the group consisting of hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, mannanases, pectate lyases, keratinases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, amylases, or mixtures thereof.
5. A composition according to any one of the preceding claims wherein said additional enzyme is selected from the group consisting of: a.) lipases, preferably lipases that are greater than 90% identical to Seq ID 2; b.) alpha-amylases, preferably alpha- amylases that are greater than 90% identical to
Seq ID 3; c.) serine proteases, preferably neutral or alkaline serine proteases, more preferably subtilisins (EC 3.4.21.62), preferably subtilisins derived from Bacillus lentus, B. alkalophilus, B. subtilis, and/or B. amyloliquefaciens; d.) microbial-derived endoglucanases, preferably alkaline bacterial-derived endoglucanases that are greater than 90% identical to Seq ID 4; and e.) mixtures thereof.
6. A composition according to any one of the preceding claims comprising a surfactant and/or a polymer: preferably said surfactant being selected from the group of: a.) anionic surfactants preferably anionic surfactants selected from the group consisting of linear alkylbenzene- sulfonate (LAS), alcohol ethoxysulfate (AES), mid-branched alkyl sulfates (HSAS) and mixtures thereof; b.) non ionic surfactants preferably alcohol ethoxylates, said alcohol ethoxylates preferably having a chain length of from 1 to 14 carbons; c.) amine oxides; and d.) mixtures thereof; and preferably said polymer being selected from the group consisting of a.) polyacrylates; b.) maleic/acrylic acid copolymers; c.) cellulose-derived polymers, preferably carboxymethylcellulose and methyl hydroxyethylcellulose; d.) polyethyleneimine polymer; and e.) mixtures thereof.
7. A composition according to any one of the preceding claims, said composition comprising, based on total product weight, less than 15%, less than 10%, less than 8% or even from 0.01% to 7% builder, preferably said builder being selected from the group consisting of a.) citric acid; b.) Ci2-Ci8 fatty acid; c.) aluminosilicates, preferably zeolites A, X and/or Y; d.) sodium tripolyphosphate; and e.) mixtures thereof.
8. A composition according to any one of the preceding claims, said composition comprising a material selected from the group consisting of a photobleach, a fabric hueing agent and mixtures thereof, preferably said photobleach being selected from the group consisting of a.) xanthene dyes; b.) sulfonated zinc phthalocyanine, sulfonated aluminium phthalocyanine, Eosin Y,
Phoxine B, Rose Bengal, C.I. Food Red 14 and mixtures thereof; c.) water soluble phthalocyanine; and d.) mixtures thereof; and said fabric hueing agent being preferably selected from the group consisting of a.) dyes, preferably small molecule dyes, polymeric dyes and mixtures thereof; b.) dye-clay conjugates comprising at least one cationic/basic dye and a smectite clay; and c.) mixtures thereof.
9. A composition comprising an amylase having Seq. LD. 1 and based on total product weight, less than 15%, less than 10%, less than 8% or even from 0.01% to 7% builder.
10. The composition of Claim 9, said composition comprising a material selected from the group consisting of surfactants, chelating agents, dye transfer inhibiting agents, dispersants, additional enzymes, and enzyme stabilizers, catalytic materials, bleaching agents, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, perfumes, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids, solvents, pigments, hueing agents, photobleaches, structurants, and mixtures thereof.
11. A composition according to any one of Claims 9-10 wherein said additional enzyme is selected from the group consisting of hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, mannanases, pectate lyases, keratinases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, amylases, and mixtures thereof.
12. A composition according to any one of Claims 9-11 wherein said additional enzyme is selected from the group consisting of: a.) lipases, preferably lipases that are greater than 90% identical to Seq ID 2; b.) alpha-amylases, preferably alpha- amylases that are greater than 90% identical to
Seq ID 3; c.) serine proteases, preferably neutral or alkaline serine proteases, more preferably subtilisins (EC 3.4.21.62), preferably subtilisins derived from Bacillus lentus, B. alkalophilus, B. subtilis, and/or B. amyloliquefaciens; d.) microbial-derived endoglucanases, preferably alkaline bacterial-derived endoglucanases that are greater than 90% identical to Seq ID 4; and e.) mixtures thereof.
13. A composition according to any one of Claims 9-12 comprising a surfactant and/or a polymer: preferably said surfactant being selected from the group of: a.) anionic surfactants preferably anionic surfactants selected from the group consisting of linear alkylbenzene- sulfonate (LAS), alcohol ethoxysulfate (AES), mid-branched alkyl sulfates (HSAS) and mixtures thereof; b.) non ionic surfactants preferably alcohol ethoxylates, said alcohol ethoxylates preferably having a chain length of from 1 to 14 carbons; c.) amine oxides; and d.) mixtures thereof; and preferably said polymer being selected from the group consisting of a.) polyacrylates; b.) maleic/acrylic acid copolymers; c.) cellulose-derived polymers, preferably carboxymethylcellulose and methyl hydroxyethylcellulose; d.) polyethyleneimine polymer; and e.) mixtures thereof.
14. A composition according to any one of Claims 9-13 comprising a material selected from the group consisting of a photobleach, a fabric hueing agent and mixtures thereof, preferably said photobleach being selected from the group consisting of a.) xanthene dyes; b.) sulfonated zinc phthalocyanine, sulfonated aluminium phthalocyanine, Eosin Y,
Phoxine B, Rose Bengal, C.I. Food Red 14 and mixtures thereof; c.) water soluble phthalocyanine; and d.) mixtures thereof and said fabric hueing agent being preferably selected from the group consisting of a.) dyes, preferably small molecule dyes, polymeric dyes and mixtures thereof; b.) dye-clay conjugates comprising at least one cationic/basic dye and a smectite clay; and c.) mixtures thereof.
15. A composition comprising an amylase enzyme having E.C. 3.2.1.1, and a material selected from the group consisting of surfactants, chelating agents, dye transfer inhibiting agents, dispersants, additional enzymes, and enzyme stabilizers, catalytic materials, bleaching agents, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, perfumes, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids, solvents, pigments, hueing agents, photobleaches, structurants, and mixtures thereof, said composition having an enzyme deposition index of at least 2.5, at least 2.6, or even from 2.7 to 50.
16. The composition of Claim 15, wherein said additional enzyme is selected from the group consisting of hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, mannanases, pectate lyases, keratinases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, amylases, or mixtures thereof.
17. A composition according to any one of Claims 15-16, wherein said additional enzyme is selected from the group consisting of: a.) lipases, preferably lipases that are greater than 90% identical to Seq ID 2; b.) alpha-amylases, preferably alpha- amylases that are greater than 90% identical to
Seq ID 3; c.) serine proteases, preferably neutral or alkaline serine proteases, more preferably subtilisins (EC 3.4.21.62), preferably subtilisins derived from Bacillus lentus, B. alkalophilus, B. subtilis, and/or B. amyloliquefaciens; d.) microbial-derived endoglucanases, preferably alkaline bacterial-derived endoglucanases that are greater than 90% identical to Seq ID 4; and e.) mixtures thereof.
18. A composition according to any one of Claims 15-17, comprising a surfactant and/or a polymer: preferably said surfactant being selected from the group of: a.) anionic surfactants preferably anionic surfactants selected from the group consisting of linear alkylbenzene- sulfonate (LAS), alcohol ethoxysulfate (AES), mid-branched alkyl sulfates (HSAS) and mixtures thereof; b.) non ionic surfactants preferably alcohol ethoxylates, said alcohol ethoxylates preferably having a chain length of from 1 to 14 carbons; c.) amine oxides; and d.) mixtures thereof; and preferably said polymer being selected from the group consisting of a.) polyacrylates; b.) maleic/acrylic acid copolymers; c.) cellulose-derived polymers, preferably carboxymethylcellulose and methyl hydroxyethylcellulose; d.) polyethyleneimine polymer; and e.) mixtures thereof.
19. A composition according to any one of Claims 15-18, said composition comprising, based on total product weight, less than 15%, less than 10%, less than 8% or even from 0.01% to 7% builder, preferably said builder being selected from the group consisting of a.) citric acid; b.) Ci2-Ci8 fatty acid; c.) aluminosilicates, preferably zeolites A, X and/or Y; d.) sodium tripolyphosphate; and e.) mixtures thereof.
20. A composition according to any one of Claims 15-19, said composition comprising a material selected from the group consisting of a photobleach, a hueing agent and mixtures thereof, preferably said photobleach being selected from the group consisting of a.) xanthene dyes; b.) sulfonated zinc phthalocyanine, sulfonated aluminium phthalocyanine, Eosin Y, Phoxine B, Rose Bengal, C.I. Food Red 14 and mixtures thereof; c.) water soluble phthalocyanine; and d.) mixtures thereof and said fabric hueing agent being preferably selected from the group consisting of a.) dyes, preferably small molecule dyes, polymeric dyes and mixtures thereof; b.) dye-clay conjugates comprising at least one cationic/basic dye and a smectite clay; and c.) mixtures thereof.
21. A method of treating and/or cleaning a surface or fabric comprising the steps of optionally washing and/or rinsing said surface or fabric, contacting said surface or fabric with a composition according to any one of the preceding claims, then optionally washing and/or rinsing said surface or fabric.
22. A method of determining the deposition index of an enzyme, said method comprising determining the enzyme deposition index of an enzyme according to Test Method 2.
PCT/IB2007/052309 2006-06-16 2007-06-15 Cleaning and / or treatment compositions comprising mutant alpha-amylases WO2007144856A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002652665A CA2652665A1 (en) 2006-06-16 2007-06-15 Cleaning and/or treatment compositions
MX2008016230A MX2008016230A (en) 2006-06-16 2007-06-15 Cleaning and/or treatment compositions.
EP07789707.2A EP2029737B1 (en) 2006-06-16 2007-06-15 Cleaning and/or treatment compositions comprising mutant alpha-amylases
BRPI0713288-3A BRPI0713288A2 (en) 2006-06-16 2007-06-15 cleaning and / or treatment compositions comprising mutant alpha-amylases
JP2009513842A JP2009540043A (en) 2006-06-16 2007-06-15 Cleaning and / or treatment composition comprising a mutant α-amylase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81444206P 2006-06-16 2006-06-16
US60/814,442 2006-06-16

Publications (2)

Publication Number Publication Date
WO2007144856A2 true WO2007144856A2 (en) 2007-12-21
WO2007144856A3 WO2007144856A3 (en) 2008-07-24

Family

ID=38832195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2007/052309 WO2007144856A2 (en) 2006-06-16 2007-06-15 Cleaning and / or treatment compositions comprising mutant alpha-amylases

Country Status (8)

Country Link
US (2) US7629158B2 (en)
EP (1) EP2029737B1 (en)
JP (1) JP2009540043A (en)
BR (1) BRPI0713288A2 (en)
CA (1) CA2652665A1 (en)
MX (1) MX2008016230A (en)
WO (1) WO2007144856A2 (en)
ZA (1) ZA200810074B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010019728A1 (en) * 2008-08-13 2010-02-18 The Procter & Gamble Company Particulate bleaching composition comprising enzymes
WO2010115021A3 (en) * 2009-04-01 2010-12-16 Danisco Us Inc. Compositions and methods comprising alpha-amylase variants with altered properties
JP2011511099A (en) * 2008-01-04 2011-04-07 ザ プロクター アンド ギャンブル カンパニー Composition comprising enzyme and fabric color preparation
US8999912B2 (en) 2007-07-09 2015-04-07 The Procter & Gamble Company Detergent compositions
US9592280B2 (en) 2014-10-10 2017-03-14 Rochal Industries Llc Compositions and kits for enzymatic debridement and methods of using the same
EP1867708B1 (en) 2006-06-16 2017-05-03 The Procter and Gamble Company Detergent compositions
US10238719B2 (en) 2014-10-10 2019-03-26 Rochal Industries, Llc Compositions and kits for enzymatic debridement and methods of using the same
US10688159B2 (en) 2014-10-10 2020-06-23 Rochal Industries, Llc Compositions and kits for treating pruritus and methods of using the same

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7629158B2 (en) * 2006-06-16 2009-12-08 The Procter & Gamble Company Cleaning and/or treatment compositions
BRPI0809096A2 (en) * 2007-03-23 2014-09-09 Danisco Us Inc Genecor Division INCREASED AMILASE PRODUCTION THROUGH N-TERMINAL ADDITION TO MATURE PROTEIN AMILASE
ES2647500T3 (en) * 2008-04-02 2017-12-21 The Procter & Gamble Company Detergent composition comprising non-ionic detersive surfactant and reagent dye
US20090298923A1 (en) * 2008-05-13 2009-12-03 Genmedica Therapeutics Sl Salicylate Conjugates Useful for Treating Metabolic Disorders
US20110146000A1 (en) * 2009-12-22 2011-06-23 Ecolab Usa Inc. Method of reducing the occurrence of spontaneous combustion of oil-soaked articles
AU2012275562B2 (en) * 2011-06-27 2016-10-20 Children's Healthcare Of Atlanta, Inc. Compositions, uses, and preparation of platelet lysates
EP2540824A1 (en) * 2011-06-30 2013-01-02 The Procter & Gamble Company Cleaning compositions comprising amylase variants reference to a sequence listing
US9929361B2 (en) 2015-02-16 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US11056657B2 (en) 2015-02-27 2021-07-06 University Display Corporation Organic electroluminescent materials and devices
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US11127905B2 (en) 2015-07-29 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
US10672996B2 (en) 2015-09-03 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US20170229663A1 (en) 2016-02-09 2017-08-10 Universal Display Corporation Organic electroluminescent materials and devices
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US10874303B2 (en) * 2016-05-17 2020-12-29 Rebound Therapeutics Corporation Methods and devices for color detection to localize the blood mass of an intracerebral hematoma
US10672997B2 (en) 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US10862054B2 (en) 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US10680187B2 (en) 2016-09-23 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11196010B2 (en) 2016-10-03 2021-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
US20180130956A1 (en) 2016-11-09 2018-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11780865B2 (en) 2017-01-09 2023-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US10844085B2 (en) 2017-03-29 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US12098157B2 (en) 2017-06-23 2024-09-24 Universal Display Corporation Organic electroluminescent materials and devices
US20190161504A1 (en) 2017-11-28 2019-05-30 University Of Southern California Carbene compounds and organic electroluminescent devices
EP3492480B1 (en) 2017-11-29 2021-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US11542289B2 (en) 2018-01-26 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
US11737349B2 (en) 2018-12-12 2023-08-22 Universal Display Corporation Organic electroluminescent materials and devices
JP2020158491A (en) 2019-03-26 2020-10-01 ユニバーサル ディスプレイ コーポレイション Organic electroluminescent materials and devices
US20210032278A1 (en) 2019-07-30 2021-02-04 Universal Display Corporation Organic electroluminescent materials and devices
US20210047354A1 (en) 2019-08-16 2021-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US20210135130A1 (en) 2019-11-04 2021-05-06 Universal Display Corporation Organic electroluminescent materials and devices
US20210217969A1 (en) 2020-01-06 2021-07-15 Universal Display Corporation Organic electroluminescent materials and devices
US20220336759A1 (en) 2020-01-28 2022-10-20 Universal Display Corporation Organic electroluminescent materials and devices
CN116261919A (en) 2020-09-18 2023-06-13 三星显示有限公司 Organic electroluminescent device
US20220162243A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A3 (en) 2021-02-26 2022-12-28 Universal Display Corporation Organic electroluminescent materials and devices
US20220298192A1 (en) 2021-03-05 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298190A1 (en) 2021-03-12 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20230133787A1 (en) 2021-06-08 2023-05-04 University Of Southern California Molecular Alignment of Homoleptic Iridium Phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
US20230292592A1 (en) 2022-03-09 2023-09-14 Universal Display Corporation Organic electroluminescent materials and devices
US20230337516A1 (en) 2022-04-18 2023-10-19 Universal Display Corporation Organic electroluminescent materials and devices
US20230389421A1 (en) 2022-05-24 2023-11-30 Universal Display Corporation Organic electroluminescent materials and devices
US20240107880A1 (en) 2022-08-17 2024-03-28 Universal Display Corporation Organic electroluminescent materials and devices

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430243A (en) 1981-08-08 1984-02-07 The Procter & Gamble Company Bleach catalyst compositions and use thereof in laundry bleaching and detergent compositions
US4760025A (en) 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
US4762636A (en) 1986-02-28 1988-08-09 Ciba-Geigy Corporation Process for the preparation of granules containing an active substance and to the use thereof as speckles for treating substrates
US4990280A (en) 1988-03-14 1991-02-05 Danochemo A/S Photoactivator dye composition for detergent use
US5486303A (en) 1993-08-27 1996-01-23 The Procter & Gamble Company Process for making high density detergent agglomerates using an anhydrous powder additive
US5489392A (en) 1994-09-20 1996-02-06 The Procter & Gamble Company Process for making a high density detergent composition in a single mixer/densifier with selected recycle streams for improved agglomerate properties
US5516448A (en) 1994-09-20 1996-05-14 The Procter & Gamble Company Process for making a high density detergent composition which includes selected recycle streams for improved agglomerate
US5565422A (en) 1995-06-23 1996-10-15 The Procter & Gamble Company Process for preparing a free-flowing particulate detergent composition having improved solubility
US5569645A (en) 1995-04-24 1996-10-29 The Procter & Gamble Company Low dosage detergent composition containing optimum proportions of agglomerates and spray dried granules for improved flow properties
US5574005A (en) 1995-03-07 1996-11-12 The Procter & Gamble Company Process for producing detergent agglomerates from high active surfactant pastes having non-linear viscoelastic properties
US5576282A (en) 1995-09-11 1996-11-19 The Procter & Gamble Company Color-safe bleach boosters, compositions and laundry methods employing same
US5595967A (en) 1995-02-03 1997-01-21 The Procter & Gamble Company Detergent compositions comprising multiperacid-forming bleach activators
US5597936A (en) 1995-06-16 1997-01-28 The Procter & Gamble Company Method for manufacturing cobalt catalysts
US5679630A (en) 1993-10-14 1997-10-21 The Procter & Gamble Company Protease-containing cleaning compositions
US5691297A (en) 1994-09-20 1997-11-25 The Procter & Gamble Company Process for making a high density detergent composition by controlling agglomeration within a dispersion index
WO1998017767A1 (en) 1996-10-18 1998-04-30 The Procter & Gamble Company Detergent compositions
US5856164A (en) 1994-03-29 1999-01-05 Novo Nordisk A/S Alkaline bacillus amylase
US5879584A (en) 1994-09-10 1999-03-09 The Procter & Gamble Company Process for manufacturing aqueous compositions comprising peracids
US5958739A (en) 1996-06-06 1999-09-28 Genencor International Inc. Mutant α-amylase
WO2000032601A2 (en) 1998-11-30 2000-06-08 The Procter & Gamble Company Process for preparing cross-bridged tetraaza macrocycles
EP1070115A2 (en) 1998-04-07 2001-01-24 Unilever Plc Coloured granular composition for use in particulate detergent compositions
US6187576B1 (en) 1997-10-13 2001-02-13 Novo Nordisk A/S α-amylase mutants
US6225464B1 (en) 1997-03-07 2001-05-01 The Procter & Gamble Company Methods of making cross-bridged macropolycycles
US6291412B1 (en) 1998-05-18 2001-09-18 Ciba Specialty Chemicals Corporation Water-soluble granules of phthalocyanine compounds
US6306812B1 (en) 1997-03-07 2001-10-23 Procter & Gamble Company, The Bleach compositions containing metal bleach catalyst, and bleach activators and/or organic percarboxylic acids
US6312936B1 (en) 1997-10-23 2001-11-06 Genencor International, Inc. Multiply-substituted protease variants
US6326348B1 (en) 1996-04-16 2001-12-04 The Procter & Gamble Co. Detergent compositions containing selected mid-chain branched surfactants
US6436888B1 (en) 1996-04-30 2002-08-20 Novozymes A/S α-amylase mutants
US20030087790A1 (en) 2001-08-20 2003-05-08 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Photobleach speckle and laundry detergent compositions containing it
US20030087791A1 (en) 2001-08-20 2003-05-08 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Photobleach speckle and laundry detergent compositions containing it
US20040048764A1 (en) 2002-09-11 2004-03-11 Kim Dong Gyu Complex salt for anti-spotting detergents
WO2005042532A1 (en) 2003-10-31 2005-05-12 Unilever Plc Bispidon-derivated ligands and complex for catalytically bleaching a substrate
US20050112749A1 (en) 2001-06-06 2005-05-26 Helle Outtrup Endo-beta-1,4-glucanase from bacillus
US6939702B1 (en) 1999-03-31 2005-09-06 Novozymes A/S Lipase variant
US20050227891A1 (en) 2002-09-04 2005-10-13 Pierre Dreyer Formulations comprising water-soluble granulates

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4597898A (en) * 1982-12-23 1986-07-01 The Proctor & Gamble Company Detergent compositions containing ethoxylated amines having clay soil removal/anti-redeposition properties
US5188937A (en) * 1989-04-06 1993-02-23 Becton, Dickinson And Company Layered sandwich assay method for chlamydia and materials therefor
US5736499A (en) 1995-06-06 1998-04-07 Genencor International, Inc. Mutant A-amylase
PH11997056158B1 (en) * 1996-04-16 2001-10-15 Procter & Gamble Mid-chain branched primary alkyl sulphates as surfactants
EG21623A (en) * 1996-04-16 2001-12-31 Procter & Gamble Mid-chain branced surfactants
ATE293696T1 (en) 1996-12-09 2005-05-15 Genencor Int MUTATED ALPHA-AMYLASE ENZYMES WITH INCREASED STABILITY
EP1159385A2 (en) * 1999-03-05 2001-12-05 Case Western Reserve University Hydrophobic liquid photobleaches
AU771572B2 (en) 1999-07-16 2004-03-25 Procter & Gamble Company, The Zwitterionic polyamines and a process for their production
US6818804B1 (en) * 1999-10-22 2004-11-16 Cornell Research Foundation, Inc. Tospovirus resistance in plants
DE60045255D1 (en) 1999-12-23 2010-12-30 Genencor Int CELLULASE OF T. REESEI WITH IMPROVED THERMOSTABILITY
US7226900B2 (en) * 2003-06-16 2007-06-05 The Proctor & Gamble Company Liquid laundry detergent composition containing boron-compatible cationic deposition aids
US7629158B2 (en) * 2006-06-16 2009-12-08 The Procter & Gamble Company Cleaning and/or treatment compositions

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430243A (en) 1981-08-08 1984-02-07 The Procter & Gamble Company Bleach catalyst compositions and use thereof in laundry bleaching and detergent compositions
US4760025A (en) 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
US4762636A (en) 1986-02-28 1988-08-09 Ciba-Geigy Corporation Process for the preparation of granules containing an active substance and to the use thereof as speckles for treating substrates
US4990280A (en) 1988-03-14 1991-02-05 Danochemo A/S Photoactivator dye composition for detergent use
US5486303A (en) 1993-08-27 1996-01-23 The Procter & Gamble Company Process for making high density detergent agglomerates using an anhydrous powder additive
US5679630A (en) 1993-10-14 1997-10-21 The Procter & Gamble Company Protease-containing cleaning compositions
US5856164A (en) 1994-03-29 1999-01-05 Novo Nordisk A/S Alkaline bacillus amylase
US5879584A (en) 1994-09-10 1999-03-09 The Procter & Gamble Company Process for manufacturing aqueous compositions comprising peracids
US5516448A (en) 1994-09-20 1996-05-14 The Procter & Gamble Company Process for making a high density detergent composition which includes selected recycle streams for improved agglomerate
US5489392A (en) 1994-09-20 1996-02-06 The Procter & Gamble Company Process for making a high density detergent composition in a single mixer/densifier with selected recycle streams for improved agglomerate properties
US5691297A (en) 1994-09-20 1997-11-25 The Procter & Gamble Company Process for making a high density detergent composition by controlling agglomeration within a dispersion index
US5595967A (en) 1995-02-03 1997-01-21 The Procter & Gamble Company Detergent compositions comprising multiperacid-forming bleach activators
US5574005A (en) 1995-03-07 1996-11-12 The Procter & Gamble Company Process for producing detergent agglomerates from high active surfactant pastes having non-linear viscoelastic properties
US5569645A (en) 1995-04-24 1996-10-29 The Procter & Gamble Company Low dosage detergent composition containing optimum proportions of agglomerates and spray dried granules for improved flow properties
US5597936A (en) 1995-06-16 1997-01-28 The Procter & Gamble Company Method for manufacturing cobalt catalysts
US5565422A (en) 1995-06-23 1996-10-15 The Procter & Gamble Company Process for preparing a free-flowing particulate detergent composition having improved solubility
US5576282A (en) 1995-09-11 1996-11-19 The Procter & Gamble Company Color-safe bleach boosters, compositions and laundry methods employing same
US6326348B1 (en) 1996-04-16 2001-12-04 The Procter & Gamble Co. Detergent compositions containing selected mid-chain branched surfactants
US6436888B1 (en) 1996-04-30 2002-08-20 Novozymes A/S α-amylase mutants
US5958739A (en) 1996-06-06 1999-09-28 Genencor International Inc. Mutant α-amylase
WO1998017767A1 (en) 1996-10-18 1998-04-30 The Procter & Gamble Company Detergent compositions
US6225464B1 (en) 1997-03-07 2001-05-01 The Procter & Gamble Company Methods of making cross-bridged macropolycycles
US6306812B1 (en) 1997-03-07 2001-10-23 Procter & Gamble Company, The Bleach compositions containing metal bleach catalyst, and bleach activators and/or organic percarboxylic acids
US6187576B1 (en) 1997-10-13 2001-02-13 Novo Nordisk A/S α-amylase mutants
US6312936B1 (en) 1997-10-23 2001-11-06 Genencor International, Inc. Multiply-substituted protease variants
EP1070115A2 (en) 1998-04-07 2001-01-24 Unilever Plc Coloured granular composition for use in particulate detergent compositions
US6291412B1 (en) 1998-05-18 2001-09-18 Ciba Specialty Chemicals Corporation Water-soluble granules of phthalocyanine compounds
WO2000032601A2 (en) 1998-11-30 2000-06-08 The Procter & Gamble Company Process for preparing cross-bridged tetraaza macrocycles
US6939702B1 (en) 1999-03-31 2005-09-06 Novozymes A/S Lipase variant
US20050112749A1 (en) 2001-06-06 2005-05-26 Helle Outtrup Endo-beta-1,4-glucanase from bacillus
US20030087790A1 (en) 2001-08-20 2003-05-08 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Photobleach speckle and laundry detergent compositions containing it
US20030087791A1 (en) 2001-08-20 2003-05-08 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Photobleach speckle and laundry detergent compositions containing it
US20050227891A1 (en) 2002-09-04 2005-10-13 Pierre Dreyer Formulations comprising water-soluble granulates
US20040048764A1 (en) 2002-09-11 2004-03-11 Kim Dong Gyu Complex salt for anti-spotting detergents
US20050003983A1 (en) 2002-09-11 2005-01-06 Kim Dong Gyu Complex salt for anti-spotting detergents
WO2005042532A1 (en) 2003-10-31 2005-05-12 Unilever Plc Bispidon-derivated ligands and complex for catalytically bleaching a substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANALYTICAL CHEMISTRY, vol. 46, no. 1, 1974, pages 12 - 15

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1867708B1 (en) 2006-06-16 2017-05-03 The Procter and Gamble Company Detergent compositions
US8999912B2 (en) 2007-07-09 2015-04-07 The Procter & Gamble Company Detergent compositions
JP2011511099A (en) * 2008-01-04 2011-04-07 ザ プロクター アンド ギャンブル カンパニー Composition comprising enzyme and fabric color preparation
WO2010019728A1 (en) * 2008-08-13 2010-02-18 The Procter & Gamble Company Particulate bleaching composition comprising enzymes
EP2157162A1 (en) * 2008-08-13 2010-02-24 The Procter and Gamble Company Particulate bleaching composition comprising enzymes
WO2010115021A3 (en) * 2009-04-01 2010-12-16 Danisco Us Inc. Compositions and methods comprising alpha-amylase variants with altered properties
WO2010115028A3 (en) * 2009-04-01 2010-12-16 Danisco Us Inc. Cleaning system comprising an alpha-amylase and a protease
US8852912B2 (en) 2009-04-01 2014-10-07 Danisco Us Inc. Compositions and methods comprising alpha-amylase variants with altered properties
US9592280B2 (en) 2014-10-10 2017-03-14 Rochal Industries Llc Compositions and kits for enzymatic debridement and methods of using the same
US10238719B2 (en) 2014-10-10 2019-03-26 Rochal Industries, Llc Compositions and kits for enzymatic debridement and methods of using the same
US10688159B2 (en) 2014-10-10 2020-06-23 Rochal Industries, Llc Compositions and kits for treating pruritus and methods of using the same

Also Published As

Publication number Publication date
US20090325852A1 (en) 2009-12-31
CA2652665A1 (en) 2007-12-21
MX2008016230A (en) 2009-03-09
EP2029737A2 (en) 2009-03-04
BRPI0713288A2 (en) 2012-03-06
JP2009540043A (en) 2009-11-19
US20080005851A1 (en) 2008-01-10
WO2007144856A3 (en) 2008-07-24
EP2029737B1 (en) 2014-04-02
ZA200810074B (en) 2009-12-30
US7629158B2 (en) 2009-12-08

Similar Documents

Publication Publication Date Title
EP2029737B1 (en) Cleaning and/or treatment compositions comprising mutant alpha-amylases
EP3101110B1 (en) Enzyme and fabric hueing agent containing compositions
US7790666B2 (en) Detergent compositions
EP2242830B2 (en) Enzyme and fabric hueing agent containing compositions
EP1976966B1 (en) Enzyme and photobleach containing compositions
EP1867708B1 (en) Detergent compositions
EP1876226B1 (en) Detergent compositions
WO2009090576A2 (en) Cleaning and/or treatment compositions
EP2247721A2 (en) Detergent composition comprising lipase
MX2008009426A (en) Detergent compositions
MX2008009425A (en) Detergent compositions
HUE032793T2 (en) Detergent compositions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2652665

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009513842

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007789707

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2008/016230

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

ENP Entry into the national phase

Ref document number: PI0713288

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081216