WO2007137105A1 - Polyurethane elastomer with enhanced hydrolysis resistance - Google Patents
Polyurethane elastomer with enhanced hydrolysis resistance Download PDFInfo
- Publication number
- WO2007137105A1 WO2007137105A1 PCT/US2007/069108 US2007069108W WO2007137105A1 WO 2007137105 A1 WO2007137105 A1 WO 2007137105A1 US 2007069108 W US2007069108 W US 2007069108W WO 2007137105 A1 WO2007137105 A1 WO 2007137105A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- polyester
- isocyanate
- weight percent
- chdm
- Prior art date
Links
- 229920003225 polyurethane elastomer Polymers 0.000 title claims description 7
- 230000007062 hydrolysis Effects 0.000 title description 12
- 238000006460 hydrolysis reaction Methods 0.000 title description 12
- 239000000203 mixture Substances 0.000 claims abstract description 56
- 229920000728 polyester Polymers 0.000 claims abstract description 48
- 229920001971 elastomer Polymers 0.000 claims abstract description 31
- 239000000806 elastomer Substances 0.000 claims abstract description 31
- 239000012948 isocyanate Substances 0.000 claims abstract description 31
- 150000002513 isocyanates Chemical class 0.000 claims abstract description 29
- 239000005056 polyisocyanate Substances 0.000 claims abstract description 25
- 229920001228 polyisocyanate Polymers 0.000 claims abstract description 25
- 238000006243 chemical reaction Methods 0.000 claims abstract description 19
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229920005862 polyol Polymers 0.000 claims description 89
- 150000003077 polyols Chemical class 0.000 claims description 86
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 53
- 238000000034 method Methods 0.000 claims description 38
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 31
- 239000002253 acid Substances 0.000 claims description 21
- -1 TDI Polymers 0.000 claims description 17
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 229920005906 polyester polyol Polymers 0.000 claims description 15
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical group C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 claims description 14
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 14
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 13
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 claims description 12
- 239000004604 Blowing Agent Substances 0.000 claims description 11
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 239000004970 Chain extender Substances 0.000 claims description 7
- 229960000250 adipic acid Drugs 0.000 claims description 7
- 235000011037 adipic acid Nutrition 0.000 claims description 7
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 claims description 7
- 239000007795 chemical reaction product Substances 0.000 claims description 6
- 150000002596 lactones Chemical class 0.000 claims description 6
- 239000001361 adipic acid Substances 0.000 claims description 5
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 claims description 4
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 claims description 4
- 229940035437 1,3-propanediol Drugs 0.000 claims description 4
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims description 4
- 125000003118 aryl group Chemical group 0.000 claims description 4
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 claims description 4
- 235000011187 glycerol Nutrition 0.000 claims description 4
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 claims description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 claims description 4
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 claims description 4
- 229920000166 polytrimethylene carbonate Polymers 0.000 claims description 4
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 claims description 4
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 claims description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 4
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 claims description 3
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 claims description 3
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 claims description 2
- BXGYYDRIMBPOMN-UHFFFAOYSA-N 2-(hydroxymethoxy)ethoxymethanol Chemical compound OCOCCOCO BXGYYDRIMBPOMN-UHFFFAOYSA-N 0.000 claims description 2
- 229920000538 Poly[(phenyl isocyanate)-co-formaldehyde] Polymers 0.000 claims description 2
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 claims description 2
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 claims description 2
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 claims description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 claims 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims 2
- 239000005058 Isophorone diisocyanate Substances 0.000 claims 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims 1
- LUSFFPXRDZKBMF-UHFFFAOYSA-N [3-(hydroxymethyl)cyclohexyl]methanol Chemical group OCC1CCCC(CO)C1 LUSFFPXRDZKBMF-UHFFFAOYSA-N 0.000 claims 1
- XBZSBBLNHFMTEB-UHFFFAOYSA-N cyclohexane-1,3-dicarboxylic acid Chemical compound OC(=O)C1CCCC(C(O)=O)C1 XBZSBBLNHFMTEB-UHFFFAOYSA-N 0.000 claims 1
- 239000001530 fumaric acid Substances 0.000 claims 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims 1
- 239000011976 maleic acid Substances 0.000 claims 1
- 239000001384 succinic acid Substances 0.000 claims 1
- 239000004814 polyurethane Substances 0.000 abstract description 13
- 229920002635 polyurethane Polymers 0.000 abstract description 12
- 230000003301 hydrolyzing effect Effects 0.000 abstract description 4
- 239000003054 catalyst Substances 0.000 description 19
- 229920000642 polymer Polymers 0.000 description 19
- 229920000570 polyether Polymers 0.000 description 12
- 239000004721 Polyphenylene oxide Substances 0.000 description 10
- 239000004094 surface-active agent Substances 0.000 description 10
- 150000007513 acids Chemical class 0.000 description 9
- 150000001412 amines Chemical class 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 238000009472 formulation Methods 0.000 description 7
- 230000000704 physical effect Effects 0.000 description 7
- 239000000654 additive Substances 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000004971 Cross linker Substances 0.000 description 5
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000003999 initiator Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 5
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- 230000006035 T cell-directed cellular cytotoxicity Effects 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 125000005442 diisocyanate group Chemical group 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 125000002524 organometallic group Chemical group 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 4
- IBOFVQJTBBUKMU-UHFFFAOYSA-N 4,4'-methylene-bis-(2-chloroaniline) Chemical compound C1=C(Cl)C(N)=CC=C1CC1=CC=C(N)C(Cl)=C1 IBOFVQJTBBUKMU-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229920006311 Urethane elastomer Polymers 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 150000008064 anhydrides Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 150000007519 polyprotic acids Polymers 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 3
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 2
- WZRNGGFHDMOCEA-UHFFFAOYSA-N 7-methyloxepan-2-one Chemical compound CC1CCCCC(=O)O1 WZRNGGFHDMOCEA-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229920002396 Polyurea Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Chemical compound [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 2
- 235000013877 carbamide Nutrition 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 125000002843 carboxylic acid group Chemical group 0.000 description 2
- PMMYEEVYMWASQN-IMJSIDKUSA-N cis-4-Hydroxy-L-proline Chemical compound O[C@@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-IMJSIDKUSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- 229940117969 neopentyl glycol Drugs 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- MSSNHSVIGIHOJA-UHFFFAOYSA-N pentafluoropropane Chemical compound FC(F)CC(F)(F)F MSSNHSVIGIHOJA-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229960004063 propylene glycol Drugs 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- HFVMEOPYDLEHBR-UHFFFAOYSA-N (2-fluorophenyl)-phenylmethanol Chemical compound C=1C=CC=C(F)C=1C(O)C1=CC=CC=C1 HFVMEOPYDLEHBR-UHFFFAOYSA-N 0.000 description 1
- YFMFNYKEUDLDTL-UHFFFAOYSA-N 1,1,1,2,3,3,3-heptafluoropropane Chemical compound FC(F)(F)C(F)C(F)(F)F YFMFNYKEUDLDTL-UHFFFAOYSA-N 0.000 description 1
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 1
- WZLFPVPRZGTCKP-UHFFFAOYSA-N 1,1,1,3,3-pentafluorobutane Chemical compound CC(F)(F)CC(F)(F)F WZLFPVPRZGTCKP-UHFFFAOYSA-N 0.000 description 1
- RDTZCQIUXDONLZ-UHFFFAOYSA-N 1,1,1-trichloro-2,2-difluoroethane Chemical compound FC(F)C(Cl)(Cl)Cl RDTZCQIUXDONLZ-UHFFFAOYSA-N 0.000 description 1
- ZXUJWPHOPHHZLR-UHFFFAOYSA-N 1,1,1-trichloro-2-fluoroethane Chemical compound FCC(Cl)(Cl)Cl ZXUJWPHOPHHZLR-UHFFFAOYSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- AJDIZQLSFPQPEY-UHFFFAOYSA-N 1,1,2-Trichlorotrifluoroethane Chemical compound FC(F)(Cl)C(F)(Cl)Cl AJDIZQLSFPQPEY-UHFFFAOYSA-N 0.000 description 1
- ZWVMLYRJXORSEP-UHFFFAOYSA-N 1,2,6-Hexanetriol Chemical compound OCCCCC(O)CO ZWVMLYRJXORSEP-UHFFFAOYSA-N 0.000 description 1
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- ROHUXHMNZLHBSF-UHFFFAOYSA-N 1,4-bis(isocyanatomethyl)cyclohexane Chemical compound O=C=NCC1CCC(CN=C=O)CC1 ROHUXHMNZLHBSF-UHFFFAOYSA-N 0.000 description 1
- 229940043375 1,5-pentanediol Drugs 0.000 description 1
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- DDHUNHGZUHZNKB-UHFFFAOYSA-N 2,2-dimethylpropane-1,3-diamine Chemical compound NCC(C)(C)CN DDHUNHGZUHZNKB-UHFFFAOYSA-N 0.000 description 1
- VOZKAJLKRJDJLL-UHFFFAOYSA-N 2,4-diaminotoluene Chemical class CC1=CC=C(N)C=C1N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 description 1
- PISLZQACAJMAIO-UHFFFAOYSA-N 2,4-diethyl-6-methylbenzene-1,3-diamine Chemical compound CCC1=CC(C)=C(N)C(CC)=C1N PISLZQACAJMAIO-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- GTEXIOINCJRBIO-UHFFFAOYSA-N 2-[2-(dimethylamino)ethoxy]-n,n-dimethylethanamine Chemical compound CN(C)CCOCCN(C)C GTEXIOINCJRBIO-UHFFFAOYSA-N 0.000 description 1
- VFDYEMVVNIPATA-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;propane-1,2,3-triol Chemical compound OCC(O)CO.CCC(CO)(CO)CO VFDYEMVVNIPATA-UHFFFAOYSA-N 0.000 description 1
- HQNOODJDSFSURF-UHFFFAOYSA-N 3-(1h-imidazol-2-yl)propan-1-amine Chemical class NCCCC1=NC=CN1 HQNOODJDSFSURF-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical class CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 239000011354 acetal resin Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000000655 anti-hydrolysis Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 159000000032 aromatic acids Chemical class 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 229940106691 bisphenol a Drugs 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- DIWSMVWJOBILHY-UHFFFAOYSA-N cyclohexane-1,1-dicarbaldehyde Chemical compound O=CC1(C=O)CCCCC1 DIWSMVWJOBILHY-UHFFFAOYSA-N 0.000 description 1
- RLMGYIOTPQVQJR-UHFFFAOYSA-N cyclohexane-1,3-diol Chemical compound OC1CCCC(O)C1 RLMGYIOTPQVQJR-UHFFFAOYSA-N 0.000 description 1
- VEIOBOXBGYWJIT-UHFFFAOYSA-N cyclohexane;methanol Chemical class OC.OC.C1CCCCC1 VEIOBOXBGYWJIT-UHFFFAOYSA-N 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940042935 dichlorodifluoromethane Drugs 0.000 description 1
- UMNKXPULIDJLSU-UHFFFAOYSA-N dichlorofluoromethane Chemical compound FC(Cl)Cl UMNKXPULIDJLSU-UHFFFAOYSA-N 0.000 description 1
- 229940099364 dichlorofluoromethane Drugs 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical class CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 1
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical class C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 1
- 229940113120 dipropylene glycol Drugs 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 150000002238 fumaric acids Chemical class 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- OHMBHFSEKCCCBW-UHFFFAOYSA-N hexane-2,5-diol Chemical compound CC(O)CCC(C)O OHMBHFSEKCCCBW-UHFFFAOYSA-N 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 150000002689 maleic acids Chemical class 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229940073584 methylene chloride Drugs 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- KMBPCQSCMCEPMU-UHFFFAOYSA-N n'-(3-aminopropyl)-n'-methylpropane-1,3-diamine Chemical class NCCCN(C)CCCN KMBPCQSCMCEPMU-UHFFFAOYSA-N 0.000 description 1
- OMKZWUPRGQMQJC-UHFFFAOYSA-N n'-[3-(dimethylamino)propyl]propane-1,3-diamine Chemical class CN(C)CCCNCCCN OMKZWUPRGQMQJC-UHFFFAOYSA-N 0.000 description 1
- KFIGICHILYTCJF-UHFFFAOYSA-N n'-methylethane-1,2-diamine Chemical class CNCCN KFIGICHILYTCJF-UHFFFAOYSA-N 0.000 description 1
- QHJABUZHRJTCAR-UHFFFAOYSA-N n'-methylpropane-1,3-diamine Chemical class CNCCCN QHJABUZHRJTCAR-UHFFFAOYSA-N 0.000 description 1
- JPJMSWSYYHNPLD-UHFFFAOYSA-N n-[2-(dimethylamino)ethyl]-n',n'-dimethylethane-1,2-diamine Chemical compound CN(C)CCNCCN(C)C JPJMSWSYYHNPLD-UHFFFAOYSA-N 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 150000003139 primary aliphatic amines Chemical class 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical class CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000005619 secondary aliphatic amines Chemical class 0.000 description 1
- 150000003335 secondary amines Chemical group 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 229960001124 trientine Drugs 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
- 229960004418 trolamine Drugs 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4205—Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
- C08G18/423—Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing cycloaliphatic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
- C08G18/12—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4202—Two or more polyesters of different physical or chemical nature
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4236—Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
- C08G18/4238—Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/721—Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/797—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing carbodiimide and/or uretone-imine groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0083—Foam properties prepared using water as the sole blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2410/00—Soles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
Definitions
- This invention relates to a process for improving the hydrolysis resistance of polyurethane microcellular elastomers, polyester polyols for implementing this process and urethane elastomers obtained by this process and their use.
- Microcellular elastomeric polyurethane polymer for applications such as, for example, shoe soles desirably exhibits good physical properties including especially abrasion resistance, flexibility and durability.
- elastomers are obtained by reaction of a prepolymer, which is the reaction product of a polyester polyols or polyether resin and an organic diisocyanate, with a hydroxylated compound consisting of at least one polyester or polyether polyol in the presence of a catalyst, blowing agent and surfactant.
- the preparation of polyurethane polymer by such procedures is described, for example, in patent publications EP. 235,888; EP. 175,733; U.S. Patents 3,591 ,532; 3,901 ,959; 4,647, 596 and 4,757,095.
- Polyurethane elastomers from polyesters have good physical properties, however; they are sensitive to water and physical properties suffer from humid aging due to hydrolytic attach on the ester bond. This is particularly disadvantageous when the elastomers are intended to form certain shoe soles or when used to produce parts requiring a good resistance to hydrolysis. Urethane elastomers based on polyethers are not sensitive to hydrolysis but generally possess poorer physical properties.
- anti-hydrolysis additives such as polycarbodiimides
- polycarbodiimides are added to the formulation for elastomer production.
- Such additives are relatively costly and do not systematically achieve an improvement in the resistance to hydrolysis.
- the present invention is a process for preparing a elastomer by contacting under reaction conditions: a) an isocyanate component comprising an isocyanate-terminated prepolymer having an isocyanate (NCO) content of 2 to 40 weight percent where the prepolymer is the reaction product of a stoichiometric excess of one or more di- or polyisocyanate with a first polyol composition; b) a second polyol composition; and c) an effective amount of a blowing agent to provide a polyurethane elastomer with a density from 200 to 1200 kg/m 3 ; wherein a) and b) are at an isocyanate index of from 85 to 1 15, and the first polyol composition, the second polyol composition, or both, contain a polyester based on a polycarboxylic acid or lactone component and glycol component, wherein the glycol component contains isomers of 1 ,3- and 1 ,4- cycloehexane dim
- the present invention is an isocyanate-terminated prepolymer having an isocyanate (NCO) content of 2 to 40 weight percent where the prepolymer is the reaction product of a stoichiometric excess of one or more di- or polyisocyanate with a polyol composition wherein the polyol composition contains at least one polyester wherein 1 ,3-/1 ,4-CHDM is from 7 to 60 weight percent of the polyester and the ratio of 1 ,3- to 1 ,4-isomers is from 35:65 to 65:35.
- the present invention is a process as above where both the first and second polyol composition each contain at least one polyester wherein 1 ,3-/1 ,4-CHDM is a portion of the glycol component.
- the present invention is a shoe sole prepared by the processes or prepolymer described above.
- polyols are those materials having at least one group containing an active hydrogen atom capable of undergoing reaction with an isocyanate.
- Preferred among such compounds are materials having at least two hydroxyls, primary or secondary, or at least two amines, primary or secondary, carboxylic acid, or thiol groups per molecule.
- Compounds having at least two hydroxyl groups or at least two amine groups per molecule are especially preferred due to their desirable reactivity with polyisocyanates.
- 1 ,3-/1 ,4-CHDM comprises from 1 to 30 weight percent of the elastomer.
- 1 ,3-/1 ,4-CHDM comprises from 3 to 25, preferably from 5-20 and more preferably from 7 to 16 weight percent of the elastomer.
- the polyesters based on 1 ,3-/1 ,4-CHDM are particularly suited for the production of microcellular elastomer, such polyester have applicability for use in the production of thermoplastic polyurethanes (TPUs), especially where it is desired to have polyester based systems with increased hydrolysis resistance.
- TPUs thermoplastic polyurethanes
- polyesters are produced by the reaction of one or more polycarboxylic acid or lactone with a glycol component, for example, 1 ,3-/1 ,4- CHDM or with 1 ,3-/1 ,4-CHDM and additional polyhydroxy compound(s).
- the ratio of the 1 ,3- to 1 ,4-isomer for use in the present invention is generally from 35:65 to 65:35.
- the 1 ,3- to 1 ,4-isomer ratio is from 40:60 to 60:40. More preferably the 1 ,3- to 1 ,4-isomer ratio is from 45:55 to 55:45.
- Suitable polycarboxylic acids can have two or more carboxylic acid groups or an equivalent number of anhydride groups on the basis that one anhydride group is equivalent to two acid groups.
- Such polycarboxylic acids are well known in the art.
- the polycarboxylic acid contains two carboxylic acid groups.
- suitable polycarboxylic acids include aliphatic dicarboxylic acids having 2 to 12, preferably 2 to 8 carbon atoms in the alkylene radical. These acids include, for example, aliphatic dicarboxylic acids such as adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedoic acid, dodecanadioic acid, succinic or hexanedioic acid; cycloaliphatic acids such as hexahydrophthalic acid and 1 ,3- and 1 ,4-cyclohexane dicarboxylic acid; 1 ,3- and 1 ,4-unsaturated alkane dioic acids such as fumaric or maleic acids; dimer acids; and aromatic acids such as phthalic acid and terephthalic.
- aliphatic dicarboxylic acids such as adipic acid, glutaric acid, pimelic acid, suberic acid, a
- the anhydrides of the aforementioned polybasic acids such as maleic anhydride or phthalic anhydride can also be used.
- a combination of two or more of the polybasic acids may also be used.
- succinic acid, adipic acid or a combination thereof it is preferred to use succinic acid, adipic acid or a combination thereof.
- lactone which may be reacted with the glycol compoenent include ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -methyl- ⁇ -caprolactone, and ⁇ -enantholactone.
- a preferred lactone is caprolactone.
- Additional polyhydroxy compounds which may be present in addition to the 1 ,3-/1 ,4-CHDM include dihydric to octohydric alcohols.
- di- and multifunctional alcohols are ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1 ,3-propanediol, 1 ,10-decanediol, glycerine, trimethylolpropane, 1 ,4-butanediol, and 1 ,6-hexanediol.
- trifunctional or higher alcohols are used for the manufacture of the polyester polyols, for the production of elastomer for shoe soles, their amount is generally chosen in such that the functionality of a blend is a maximum of 2.8, preferably from 2 to 2.3.
- ethylene glycol, diethylene glycol, butanediol, or a combination is used as an additional glycol component.
- a polyester may be made with 1 ,3-/1 ,4-CHDM as the sole glycol component and such polyester blended with other polyesters or polyethers to produce a final elastomer or TPU with the desired 1 ,3-/1 ,4-CHDM weight percent.
- 1 ,3-/1 ,4- CHDM will comprise at least 7, preferably at least 10, and more preferably at least 15 percent by weight of the polyester.
- the polyester may contain 50, up to 55 or even up to 60 weight percent by weight of 1 ,3-/1 ,4-CHDM.
- polyester polyols Processes for the production of polyester polyols is also well known in the art.
- the organic poycarboxylic acids are polycondensed with polyhydric alcohols.
- the polyester polyols can be subjected to distillation under reduced pressure, stripping with an inert gas, vacuum, etc.
- the polyurethane prepolymers used in producing the elastomers of the present invention include a polyisocyanate component and an isocyanate reactive component also known as an active hydrogen containing material or polyol.
- polyurethane includes polymers containing linkages known to those in the art associated with the formation of a polyurethane, such as urea or polyureas, allophonate, biuret, etc.
- the polyisocyanate component of the prepolymer formulations of the present invention can be advantageously selected from organic polyisocyanates, modified polyisocyanates, and mixtures thereof, and include aliphatic, aromatic and cycloaliphatic isocyanates.
- Aromatic polyisocyanates include, for example, 2,4- and 2,6-toluenediisocyanate (TDI) and the corresponding isomeric mixtures; 4,4'-, 2,4'- and 2,2'-diphenyl-methanediisocyanate (MDI) and the corresponding isomeric mixtures; polyphenyl polymethylene polyisocyanates (PMDI); and mixtures of the forgoing.
- aliphatic and cycloaliphatic isocyanate compounds include 1 ,6-hexamethylene-diisocyanate (HDI); isophorone diisocyanate (IPDI); 1 ,4- tetramethylene diisocyanate; 2,4- and 2,6-hexahydrotoluene-diisocyanate, the isomeric mixtures thereof; 4,4'-, 2,2'- and 2,4'-dicyclohexylmethanediisocyanate (H 12 MDI), the isomeric mixtures thereof; 1 ,3-tetramethylene xylene diisocyanate; norbane diisocyanate; and 1 ,3- and 1 ,4-bis(isocyanatomethyl)cyclohexane can also be used with the present invention. Mixtures of the aromatic, aliphatic and cycloaliphatic isocyanates may also be used.
- the polyisocyanate component of the formulations of the present invention can also include so-called modified multifunctional isocyanates, that is, products which are obtained through chemical reactions of the above diisocyanates and/or polyisocyanates.
- modified multifunctional isocyanates that is, products which are obtained through chemical reactions of the above diisocyanates and/or polyisocyanates.
- Exemplary are polyisocyanates containing esters, ureas, biurets, allophanates, carbodiimides and/or uretonimines; isocyanurate and/or urethane group containing diisocyanates or polyisocyanates.
- the isocyanate-terminated prepolymers are prepared with 4,4'-MDI, or other MDI blends containing a substantial portion of the 4,4'-isomer or MDI modified as described above.
- the MDI contains 90 and more preferably greater than 95 percent by weight of the 4,4'-isomer.
- the polyol component for producing a prepolymer, or polyol for second polyol component can be selected from polyether polyols, polyester polyols, polyhydroxy-terminated acetal resins, hydroxyl-terminated amines and polyamines. Examples of these and other suitable isocyanate-reactive materials are described more fully in U.S. Patent 4,394,491 .
- Alternative polyols that may be used include polyalkylene carbonate-based polyols and polyphosphate-based polyols.
- polyester polyols are as those described above.
- the polyester polyols contains 1 ,3-/1 -4-CHDM as the glycol component.
- the polyester, or other polyol used in making the prepolymer or in the second polyol composition generally has an equivalent hydroxyl molecular weight from 250 to 2000, preferably from 300 to 1500 and more preferably from 500 to 1 ,300.
- Suitable polyether polyols include those having a nominal functionality of from 2 to 8, preferably 2 to 6. Typically such polyether polyols may be obtained by reaction of an active hydrogen-containing initiator with a quantity of one or more alkylene oxides to give a product of desired hydroxyl nature and equivalent weight. Generally such alkylene oxides are C2 to C4 alkylene oxides and include butylenes oxide, ethylene oxide and propylene oxide or a mixture thereof.
- Exemplary initiators for polyether polyols include, for example, ethanediol, 1 ,2- and 1 ,3- propanediol, diethylene glycol, dipropylene glycol, tripropyleneglycol; polyethyleneglycol, polypropylene glycol; 1 ,4-butanediol, 1 ,6-hexanediol, glycerol, pentaerythritol, sorbitol, sucrose, neopentylglycol; 1 ,2-propylene glycol; trimethylolpropane glycerol; 1 ,6-hexanediol; 2,5-hexanediol; 1 ,4-butanediol; 1 ,4- cyclohexane diol; ethylene glycol; diethylene glycol; triethylene glycol; 9(1 )- hydroxymethyloctadecanol, 1 ,4-bis
- Catalysis for production of polyether polyols can be either anionic or cationic, with catalysts such as KOH, CsOH, boron trifluoride, a double metal cyanide complex (DMC) catalyst such as zinc hexacyanocobaltate or quaternary phosphazenium compound.
- catalysts such as KOH, CsOH, boron trifluoride, a double metal cyanide complex (DMC) catalyst such as zinc hexacyanocobaltate or quaternary phosphazenium compound.
- DMC double metal cyanide complex
- initiators for polyether polyols include linear and cyclic compounds containing an amine.
- Exemplary polyamine initiators include ethylene diamine, neopentyldiamine, 1 ,6-diaminohexane; bisaminomethyltricyclodecane; bisaminocyclohexane; diethylene triamine; bis-3-aminopropyl methylamine; triethylene tetramine various isomers of toluene diamine; diphenylmethane diamine; N-methyl-1 ,2-ethanediamine, N-Methyl-1 ,3-propanediamine, N, N- dimethyl-1 ,3-diaminopropane, N,N-dimethylethanolamine, 3,3'-diamino-N- methyldipropylamine, N,N-dimethyldipropylenetriamine, aminopropyl-imidazole.
- Polylactone polyols may also be used and are generally di-or tri- or tetra-hydroxyl in nature.
- Such polyol are prepared by the reaction of a lactone monomer; illustrative of which is ⁇ -valerolactone, ⁇ -caprolactone, ⁇ - methyl- ⁇ -caprolactone, ⁇ -enantholactone, and the like; with an initiator that has active hydrogen-containing groups; illustrative of which is ethylene glycol, diethylene glycol, propanediols, 1 ,4-butanediol, 1 ,6-hexanediol, trimethylolpropane, and the like.
- lactone polyols are the di-, tri-, and t ⁇ tra- hydroxy I functional ⁇ -caprolactone polyols known as polycaprolactone polyols.
- autocatalytic polyols may be added to enhance the demold time.
- autocatalytic polyols are generally part of the blend of the second polyol component. They will generally be used at a level of 0.05 to 10 weight percent of the second polyol component, preferably from 0.1 to 7 weight percent of the second polyol component.
- the total polyol by weight in the prepolymer and second polyol component will be at least 50 weight percent polyester.
- At least 60 percent polyester and more preferably at least 70 percent polyester Preferably at least 60 percent polyester and more preferably at least 70 percent polyester.
- the total polyol used in making the elastomers is generally 85 weight percent, up to 90, preferably up to 95 and even 100 percent polyester.
- the isocyanate-terminated prepolymer for use in the present inventions are prepared by standard procedures well known to a person skilled in the art and such as disclosed in U.S. Patents 4,294,951 ; 4,555,562; 4,182,825 or PCT Publication WO2004074343.
- the components are typically mixed together and heated to promote reaction of the polyols and the polyisocyanate.
- the reaction temperature will commonly be within the range of 30 °C to 150°C; a more preferred range being from 60 °C to 100°C.
- the reaction is advantageously performed in a moisture-free atmosphere.
- An inert gas such as nitrogen, argon or the like can be used to blanket the reaction mixture.
- an inert solvent can be used during preparation of the prepolymer, although none is needed.
- a catalyst to promote the formation of urethane bonds may also be used.
- the isocyanate is used in stoichiometric excess and reacted with the polyol component using conventional prepolymer reaction techniques to prepare prepolymers having from 2 to 40 weight percent free NCO groups.
- the prepolymers generally have from 2 to 30 weight percent free NCO groups,, preferably from 5 to 25 weight percent, and more preferably from 10 to 25 weight percent.
- polymer polyols such as described in U.S. Patent 4,394,491 .
- useful polymer polyols are dispersions of polymer, especially vinyl monomers, particularly styrene/acrylonitrile copolymers, in a continuous polyether polyol, polyester polyol phase or a mixture of polyether and polyester polyols. .
- polyisocyanate polyaddition (PIPA) polyols (dispersions of polyurea-polyuretahne particles in a polyol) and the polyurea dispersion in polyol, such as, polyharnstoff (PHD) polyols.
- PIPA polyisocyanate polyaddition
- PHD polyharnstoff
- Copolymer polyols of the vinyl type are described in, for example, U.S. Patents 4,390,645; 4,463,107; 4,148,840 and 4,574,137.
- prepolymers containing polyesters based on 1 ,3-/1 ,4-CHDM such prepolymers will comprise at least 10 weight percent of the polyol component.
- the polyol component is a polyester based on 1 ,3-/1 ,4-CHDM as the glycol component.
- the 1 ,3-/1 ,4-CHDM based polyester will comprise at least 70 weight of the polyol component.
- such polyester will comprise at least 80 and more preferably at least 90 weight percent of the polyol component.
- the 1 ,3-/1 ,4-CHDM based polyester is 100 weight percent of the polyol component.
- a chain extender is a material having two isocyanate-reactive groups per molecule and an equivalent weight per isocyanate- reactive group of less than 400, preferably less than 300 and especially from 31 - 125 daltons.
- suitable chain-extending agents include polyhydric alcohols, aliphatic diamines including polyoxyalkylenediamines, aromatic diamines and mixtures thereof.
- the isocyanate reactive groups are preferably hydroxyl, primary aliphatic or aromatic amine or secondary aliphatic or aromatic amine groups.
- Representative chain extenders include amines ethylene glycol, diethylene glycol, 1 ,3-propane diol, 1 ,3- or 1 ,4-butanediol, dipropylene glycol, 1 ,2- and 2,3- butylene glycol, 1 ,6-hexanediol, neopentylglycol, tripropylene glycol, ethylene diamine, 1 ,4-butylenediamine, 1 ,6-hexamethylenediamine, phenylene diamine, 1 ,5- pentanediol, 1 ,6-hexanediol, bis(3-chloro-4-aminophenyl)methane, 3,3'-dichloro- 4,4-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, bisphenol-A; bisphenol-F, 1 ,3-propane di-p-amino
- the 1 ,3- and/or 1 ,4-cyclohexane dimethanol may also be used as chain extenders. If used, chain extenders are typically present in an amount from 0.5 to 20, especially 2 to 16 parts by weight per 100 parts by weight of the polyol component.
- Crosslinkers may be included in the second polyol component.
- crosslinkers are materials having three or more isocyanate-reactive groups per molecule and an equivalent weight per isocyanate- reactive group of less than 400.
- Crosslinkers preferably contain from 3-8, especially from 3-4 hydroxyl, primary amine or secondary amine groups per molecule and have an equivalent weight of from 30 to 200, especially from 50-125.
- suitable crosslinkers include diethanol amine, monoethanol amine, triethanol amine, mono- di- or tri(isopropanol) amine, glycerine, trimethylol propane, pentaerythritol, sorbitol and the like. If used, suitable amounts of crosslinkers are from 0.1 to 1 part by weight, especially from 0.25 to 0.5 part by weight, per 100 parts by weight of polyols.
- the elastomer is prepared in the presence of a blowing agent.
- the blowing agent is present in an amount effective to produce the desired density, generally in the range of 200 kg/m 3 to 1200 kg/m 3 .
- shoe soled consists of two or more layers, such a sole will generally have a compact wear layer with a density of 900 to 1 180 kg/m 3 and a comfort layer having a density of 300 to 500 kg/m 3 .
- water is used as the blowing agent, the amount of water may, is typically present from 0.01 parts to 2.0 parts and preferably 0.05 to 1 .5 parts by weight of the second polyol component. More preferably water is present from 0.05 to 1 .0 parts per 100 parts by weight of the second polyol component.
- low boiling point liquids may be used as physical blowing agents.
- such liquid is an inert organic compound that can vaporize under the influence of the reaction exotherm and typically has a boiling point of below 100° C.
- suitable organic compounds include halogenated hydrocarbons such as, for example, methylene chloride, trichlorofluoromethane, dichlorodifluoromethane, dichlorofluoromethane, dichlorotetrafluoroethane, 1 ,1 ,2-trichloro-1 ,2,2- trifluoroethane, 1 ,1 ,1 - trichloroethane, 1 ,1 ,1 -trichlorodifluoroethane, 1 ,1 ,1 - trichlorofluoroethane, 1 ,1 ,1 ,2- tetrafluoroethane (134a), 1 ,1 ,1 ,3,3-pentafluorobut
- hydrocarbons such as, for example, pentane (cyclopentane, isopentane, n-pentane), or entrained gases such as air, nitrogen or carbon dioxide may be used.
- Hydrocarbons and entrained gases may also be present in the absence of above mentioned types of low boiling liquids.
- Carbamates such as disclosed in U.S. Patents 5,789,451 and 6,316,662 and EP 1 097 954, which release carbon dioxide during the foaming process, may also be used to provide a physical blowing agent.
- such physical blowing agents are used in an amount of from 0.1 to 10, preferably from 1 to 8 and more preferably from 1 .5 to 6 weight percent by total weight of the second polyol component and optional chain-extending/cross-linking agent present.
- a combination of water and physical blowing agents may be used.
- the ratio of the isocyanate component to the second polyol component is preferably at an isocyanate index of 85 to 1 15.
- the isocyanate index is from 90 to 1 10 and more preferably from 95 to 105.
- the isocyanate index is defined as 100 times the ratio of NCO groups to reactive hydrogens contained in the reaction mixture.
- Suitable catalysts include the tertiary amine and organometallic compounds such as described in U.S. Pat. 4,495,081.
- an amine catalyst advantageously it is present in from 0.1 to 3, preferably from 0.1 to 1 and more preferably from 0.4 to 0.8 weight percent by total weight of polyol and optional chain extending agent.
- the catalyst is an organometallic catalyst, advantageously it is present in from 0.001 to 0.2, preferably from 0.
- catalysts include in the case of amine catalysts; triethylenediamine, bis(N,N- dimethylaminoethyl)ether and di(N,N- dimethylaminoethyl)amine and in the case of the organometallic catalysts; stannous octoate, dibutyltin dilaurate, and dibutyltin diacetate. Combinations of amine and organometallic catalysts advantageously may be employed.
- Suitable surfactants include the diverse silicone surfactants, preferably those which are block copolymers of a polysiloxane and a polyoxyalkylene. Exemplary of such surfactants are the products DC-193 and Q4- 3667 available from Dow Corning, Tegostab B8950 available from Goldschmidt; and GE L6900. When present, the amount of surfactants advantageously employed is from 0.1 to 2, and preferably from 0.2 to 1.3 percent by total weight of the polyol and optional chain extending agent. Other suitable surfactants also include non- silicone containing surfactants, such as poly(alkyleneoxides).
- Suitable pigments and fillers include for example calcium carbonate, graphite, carbon black, titanium dioxide, iron oxide, microspheres, alumina trihydrate, wollastonite, prepared glass fibers dropped or continuous, polyesters and other polymeric fibers.
- the polyurethane polymer prepared according to the process of this invention is preferably a microcellular polyurethane polymer.
- a polymer is typically prepared by intimately mixing the reaction components at room temperature or a slightly elevated temperature for a short period and then pouring the resulting mixture into an open mold, or injecting the resulting mixture into closed mold, which in either case is heated.
- the mixture on reacting out takes the shape of the mold to produce a polyurethane polymer of a predefined structure, which can then when sufficiently cured be removed from the mold with a minimum risk of incurring deformation greater than that permitted for its intended end application.
- Suitable conditions for promoting the curing of the polymer include a mold temperature of typically from 20 0 C.
- elastomers according to the invention are particularly suitable for use in applications where good energy-absorbing and fatigue properties are required and a good elastomeric behaviour over a broad temperature range, for example in the automotive and footwear industry.
- the elastomers can be used as in-soles, mid-soles and out-soles of shoes and boots and in steering wheels, sound insulation mats, air-filter seals and dashboard-skins.
- the polyesters of 1 ,3-/1 ,4-CHDM may also be used in the production of TPUs in a one-shot method or by the two-step method by the formation of a prepolymer.
- the one-shot method all of the components, isocyanate, polyol and additive, are mixed together at once an polymerization is allowed to proceed.
- the two-step prepolymer technique all or some of the polyol is pre-reacted with the isocyanate.
- the prepolymer is then reacted with the remaining polyol to form the polymer.
- the reacting polymer mass may be cast into sheets, oven cured to finish the polymerization or chopped into pellets for use.
- the polymer may be formed by reaction extrusion, in which the ingredients are fed to an extruder capable of intensive mixing. After polymerization in the extruder, the polymer extrudate is cooled, chopped directly and then packaged.
- Additional additives for TPU formulations include wax to aid in mold and a diatomaceous silica for added slip and as anti-blocking agents in films.
- Antioxidants such as hindered phenols, and UV stabilizers of the benzotriazole type are used for improved environmental resistance.
- the following examples illustrate the present invention but are not intended to limit the scope thereof. All parts and percentages are by weight unless otherwise indicated. Unless stated otherwise, all molecular weights expressed herein are weight average molecular weight. A description of the raw materials used in the examples is as follows.
- VORALAST GP 31 OO is a 1000 equivalent weight (EW) diol (polyester) produced from adipic acid, ethylene glycol and diethylene glycol, available from The Dow Chemical Company.
- EW equivalent weight
- Voralast is a Trademark of The Dow
- ISONATE M 125 is approximately a 98/2 weight percent of 4,4'-/2,4'-MDI available from TDCC. lsonate is a trademark of TDCC.
- ISONATE M 143 is a modified MDI containing MDI monomer and polycarbodiimide adducts, available from TDCC.
- DEG is diethylene glycol
- MEG is mono-ethylene glycol.
- Unoxol diol is 1 ,3-/1 ,4-cyclohexane dimethanol having a 1 ,3-/1 ,4- isomer ratio of approximately 58:42, available from The Dow Chemical Company.
- the melting point of Polyol 2 is found to be about 40 0 C.
- a similar polyol produced with 1,4-cyclohexane dimethanol in place of Unoxol has a melting point of about 93°C. This lower melting point allows for ease of handling in further processing, such as for use in footwear applications, while polyols based on 1,4- CHDM are difficult to process.
- Prepolymers of Example 2 are reacted with isocyanate reactive composition in mixture with catalyst, water and surfactants as given in Table 3.
- the quantity of prepolymer and isocyanate reactive composition that must react with each other are adjusted starting with NCO/OH equivalent ratio. Physical properties of the produced elastomers are given in Table 4.
- Catalyst is 33 percent triethylene diamine in monoethylene glycol; 2 Surfactant is DC-193 from Dow Coring Corporation.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
- Silicon Polymers (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0711012-0A BRPI0711012A2 (en) | 2006-05-18 | 2007-05-17 | process for preparing an isocyanate-terminated elastomer, footwear and prepolymer |
DE602007009671T DE602007009671D1 (en) | 2006-05-18 | 2007-05-17 | POLYURETHANE ELASTOMER WITH INCREASED HYDROLYSIS RESISTANCE |
MX2008014747A MX2008014747A (en) | 2006-05-18 | 2007-05-17 | Polyurethane elastomer with enhanced hydrolysis resistance. |
JP2009511230A JP2009537668A (en) | 2006-05-18 | 2007-05-17 | Polyurethane elastomer with enhanced hydrolysis resistance |
CA2652297A CA2652297C (en) | 2006-05-18 | 2007-05-17 | Polyurethane elastomer with enhanced hydrolysis resistance |
EP07783858A EP2024410B1 (en) | 2006-05-18 | 2007-05-17 | Polyurethane elastomer with enhanced hydrolysis resistance |
US12/300,579 US20090178306A1 (en) | 2006-05-18 | 2007-05-17 | Polyurethane elastomer with enhanced hydrolysis resistance |
AT07783858T ATE483742T1 (en) | 2006-05-18 | 2007-05-17 | POLYURETHANE ELASTOMER WITH INCREASED HYDROLYSIS RESISTANCE |
EG2008111878A EG26056A (en) | 2006-05-18 | 2008-11-18 | Polyurethane elastomer with enhanced hydrolysis resistance |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US80133506P | 2006-05-18 | 2006-05-18 | |
US60/801,335 | 2006-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007137105A1 true WO2007137105A1 (en) | 2007-11-29 |
Family
ID=38565435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/069108 WO2007137105A1 (en) | 2006-05-18 | 2007-05-17 | Polyurethane elastomer with enhanced hydrolysis resistance |
Country Status (11)
Country | Link |
---|---|
US (1) | US20090178306A1 (en) |
EP (1) | EP2024410B1 (en) |
JP (1) | JP2009537668A (en) |
CN (1) | CN101443376A (en) |
AT (1) | ATE483742T1 (en) |
BR (1) | BRPI0711012A2 (en) |
CA (1) | CA2652297C (en) |
DE (1) | DE602007009671D1 (en) |
EG (1) | EG26056A (en) |
MX (1) | MX2008014747A (en) |
WO (1) | WO2007137105A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013030147A2 (en) | 2011-08-29 | 2013-03-07 | Bayer Intellectual Property Gmbh | A process for preparing plastics with improved hydrolysis stability, the plastics prepared from the same and uses thereof |
US8598247B2 (en) | 2008-04-17 | 2013-12-03 | Dow Global Technologies Llc | Polyurethane elastomers from renewable resources |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7943725B2 (en) * | 2006-02-03 | 2011-05-17 | Dow Global Technologies Llc | 1,3/1,4-cyclohexane dimethanol based monomers and polymers |
EP2129700B1 (en) * | 2007-03-29 | 2014-05-14 | Lubrizol Advanced Materials, Inc. | Low haze thermoplastic polyurethane using mixture of chain extenders including 1,3-and 1,4-cyclohexanedimethanol |
EP2799876B1 (en) * | 2009-05-14 | 2021-11-03 | ShOx Science Limited | Clinical diagnosis of hepatic fibrosis using a novel panel of low abundant human plasma protein biomarkers |
JP6676356B2 (en) * | 2015-12-09 | 2020-04-08 | アキレス株式会社 | Polyurethane foam |
CN105504224A (en) * | 2016-01-08 | 2016-04-20 | 泉州盛达轻工有限公司 | Electric insulation resin material for safety shoes and preparing method thereof |
CN110945046A (en) * | 2017-07-05 | 2020-03-31 | 巴斯夫欧洲公司 | TPU pipe |
CN108129633B (en) * | 2017-12-14 | 2020-09-11 | 上海华峰新材料研发科技有限公司 | Folding-resistant high-transparency mirror polyurethane resin and preparation method and application thereof |
CN109322008B (en) * | 2018-10-09 | 2020-12-25 | 浙江华峰氨纶股份有限公司 | Method for improving performance stability of spandex product |
CN110655633A (en) * | 2019-09-30 | 2020-01-07 | 山西省化工研究所(有限公司) | Preparation method of PETG (polyethylene terephthalate glycol) based TPU (thermoplastic polyurethane) wire for 3D (three-dimensional) printing |
CN112778507B (en) * | 2020-12-30 | 2022-06-07 | 山东一诺威新材料有限公司 | Preparation method of hydrolysis-resistant hyperbranched polycaprolactone |
EP4444778A1 (en) * | 2021-12-08 | 2024-10-16 | Covestro Deutschland AG | Polyurethane elastomer with improved hydrolysis resistance |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5239038A (en) * | 1989-11-29 | 1993-08-24 | Miles Inc. | Cyclohexanedimethanoladipate based prepolymers and reaction injection molded products made therefrom |
US5760158A (en) * | 1997-09-23 | 1998-06-02 | Tse Industries, Inc. | Polyurethane rubbers vulcanizable by peroxides or sulphur with improved low temperature and low gas impermeability properties |
US20030032757A1 (en) * | 2001-08-02 | 2003-02-13 | Lin Nai W. | Polyurethane elastomers having improved abrasion resistance |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2956961A (en) * | 1958-04-11 | 1960-10-18 | Eastman Kodak Co | Polyester-urethanes derived from cyclohexanedimethanol and textile fabric coated therewith |
JPS5628212A (en) * | 1979-08-16 | 1981-03-19 | Takeda Chem Ind Ltd | Composition for preparation of semirigid foam or foamed elastomer |
US4902821A (en) * | 1982-12-27 | 1990-02-20 | King Industries, Inc. | Process for preparing linear, low molecular weight polyester-based polyol |
US5023367A (en) * | 1982-12-27 | 1991-06-11 | King Industries, Inc. | Linear, low-molecular-weight polyester-based polyol |
JPS60149623A (en) * | 1984-01-13 | 1985-08-07 | Toyobo Co Ltd | Production of polyurethane elastomer molding |
US4922002A (en) * | 1984-12-21 | 1990-05-01 | King Industries, Inc. | Linear, low-molecular-weight polyester-based polyol |
US4992002A (en) * | 1989-07-11 | 1991-02-12 | Dewitt Wayne | Apparatus for forming in-ground concrete pilings |
EP0676431B1 (en) * | 1994-04-06 | 2001-10-10 | PPG Industries Ohio, Inc. | Coating compositions comprising 1,4-cyclohexane dimethanol |
KR19990071778A (en) * | 1995-11-30 | 1999-09-27 | 앤쥼 쉐이크 바쉬어+마틴 험프리스 | Process for producing flexible polyurethane foam |
JPH10234884A (en) * | 1997-02-24 | 1998-09-08 | Kashiyuu Kk | Coating composition for golf ball, and golf ball using the same |
JP4572427B2 (en) * | 1998-06-26 | 2010-11-04 | 凸版印刷株式会社 | Adhesive for dry lamination and laminate using the same |
US6255523B1 (en) * | 1998-09-18 | 2001-07-03 | Mcwhorter Technologies, Inc. | Power coatings based on branched oligoesters and non-emissive uretdione polyisocyanates |
US6172159B1 (en) * | 2000-01-18 | 2001-01-09 | Accures Corporation | Water-reducible polyester resins and urethane coatings produced therefrom |
US6806314B2 (en) * | 2003-02-03 | 2004-10-19 | Ppg Industries Ohio, Inc. | Coating of Hydroxy-functional polymer(s), crosslinker, and 1,3- and 1,4-cyclohexane dimethanols |
CA2623318C (en) * | 2005-09-27 | 2013-12-31 | Dow Global Technologies Inc. | Polymers incorporating 1,3- and 1,4-cyclohexanedimethanol |
EP2035474B1 (en) * | 2006-05-18 | 2020-04-29 | Dow Global Technologies LLC | Polyurethane-urea polymers derived from cyclohexane dimethanol |
-
2007
- 2007-05-17 EP EP07783858A patent/EP2024410B1/en not_active Not-in-force
- 2007-05-17 WO PCT/US2007/069108 patent/WO2007137105A1/en active Application Filing
- 2007-05-17 US US12/300,579 patent/US20090178306A1/en not_active Abandoned
- 2007-05-17 JP JP2009511230A patent/JP2009537668A/en active Pending
- 2007-05-17 CA CA2652297A patent/CA2652297C/en not_active Expired - Fee Related
- 2007-05-17 AT AT07783858T patent/ATE483742T1/en not_active IP Right Cessation
- 2007-05-17 DE DE602007009671T patent/DE602007009671D1/en active Active
- 2007-05-17 MX MX2008014747A patent/MX2008014747A/en active IP Right Grant
- 2007-05-17 CN CNA2007800176350A patent/CN101443376A/en active Pending
- 2007-05-17 BR BRPI0711012-0A patent/BRPI0711012A2/en not_active Application Discontinuation
-
2008
- 2008-11-18 EG EG2008111878A patent/EG26056A/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5239038A (en) * | 1989-11-29 | 1993-08-24 | Miles Inc. | Cyclohexanedimethanoladipate based prepolymers and reaction injection molded products made therefrom |
US5760158A (en) * | 1997-09-23 | 1998-06-02 | Tse Industries, Inc. | Polyurethane rubbers vulcanizable by peroxides or sulphur with improved low temperature and low gas impermeability properties |
US20030032757A1 (en) * | 2001-08-02 | 2003-02-13 | Lin Nai W. | Polyurethane elastomers having improved abrasion resistance |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8598247B2 (en) | 2008-04-17 | 2013-12-03 | Dow Global Technologies Llc | Polyurethane elastomers from renewable resources |
WO2013030147A2 (en) | 2011-08-29 | 2013-03-07 | Bayer Intellectual Property Gmbh | A process for preparing plastics with improved hydrolysis stability, the plastics prepared from the same and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
US20090178306A1 (en) | 2009-07-16 |
DE602007009671D1 (en) | 2010-11-18 |
EG26056A (en) | 2013-01-17 |
EP2024410A1 (en) | 2009-02-18 |
ATE483742T1 (en) | 2010-10-15 |
CN101443376A (en) | 2009-05-27 |
BRPI0711012A2 (en) | 2011-08-23 |
EP2024410B1 (en) | 2010-10-06 |
CA2652297C (en) | 2014-09-02 |
MX2008014747A (en) | 2008-12-01 |
JP2009537668A (en) | 2009-10-29 |
CA2652297A1 (en) | 2007-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2652297C (en) | Polyurethane elastomer with enhanced hydrolysis resistance | |
EP2144944B1 (en) | Polyurethane elastomer with enhanced hydrolysis resistance | |
EP2268692B1 (en) | Polyurethane elastomers from renewable resources | |
EP0588981B1 (en) | A process for preparing a microcellular polyurethane elastomer from a soft-segment isocyanate-terminated prepolymer and microcellular polyurethane elastomer obtained thereby | |
US8686057B2 (en) | Polyurethanes made from hydroxy-methyl containing fatty acids or alkyl esters of such fatty acids | |
US5510054A (en) | Polyurethane elastomer and foam exhibiting improved abrasion resistance | |
US5246977A (en) | Microcellular polyurethane polymers prepared from isocyanate-terminated poly(oxytetramethylene) glycol prepolymers | |
EP0527174B1 (en) | Microcellular polyurethane polymers prepared from isocyanate-terminated poly(oxytetramethylene) glycol prepolymers | |
US20130005900A1 (en) | Gels and soft elastomers made with natural oil based polyols | |
GB2201961A (en) | Process for the preparation of rigid polyurethane | |
JP5824381B2 (en) | Method for producing polyurethane elastomer and polyurethane elastomer | |
JP2020029954A (en) | tube | |
IE921905A1 (en) | A process for preparing polyurethane elastomer from a¹soft-segment isocyanate-terminated prepolymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07783858 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2652297 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12300579 Country of ref document: US Ref document number: 2007783858 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200780017635.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009511230 Country of ref document: JP Ref document number: 6267/CHENP/2008 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2008/014747 Country of ref document: MX Ref document number: 2008111878 Country of ref document: EG |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: PI0711012 Country of ref document: BR Kind code of ref document: A2 Effective date: 20081118 |