WO2007137075A2 - Use of non-agrobacterium bacterial species for plant transformation - Google Patents
Use of non-agrobacterium bacterial species for plant transformation Download PDFInfo
- Publication number
- WO2007137075A2 WO2007137075A2 PCT/US2007/069053 US2007069053W WO2007137075A2 WO 2007137075 A2 WO2007137075 A2 WO 2007137075A2 US 2007069053 W US2007069053 W US 2007069053W WO 2007137075 A2 WO2007137075 A2 WO 2007137075A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- leguminosarum
- cell
- nucleic acid
- plant
- rhizobium
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8205—Agrobacterium mediated transformation
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H6/00—Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
- A01H6/54—Leguminosae or Fabaceae, e.g. soybean, alfalfa or peanut
- A01H6/542—Glycine max [soybean]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/41—Rhizobium
Definitions
- the present invention relates to the field of plant biotechnology.
- the invention relates to methods for producing transgenic plants and plant cells by using non-Agrobacterium bacterial species..
- Rhizobiales members of the Rhizobiales
- Rhizobium spp. are common soil bacteria, along with Rhizobium spp., Mesorhizobium spp., Sinorhizobium spp., and related species and genera.
- Rhizobium spp. is common soil bacteria, along with Rhizobium spp., Mesorhizobium spp., Sinorhizobium spp., and related species and genera.
- Agrobacterium tumefaciens and Agrobacterium rhizogenes harboring Ti or Ri plasmids can be used for gene transfer into plants.
- Phytohormone synthesis genes located in the T-DNA of wild type Agrobacteria harboring a Ti or Ri plasmid are expressed in plant cells following transformation, and cause tumor formation or a hairy root phenotype depending on the Agrobacterium strain or species.
- T-DNA of Agrobacteria can be engineered to replace many of its virulence and pathogenicity determinants with "genes of interest” while retaining the ability to be transferred into a plant cell and integrated into a plant genome.
- Strains containing such "disarmed" Ti plasmids are widely used for plant transformation.
- T-DNA transfer to plant cells by Agrobacterium has been well documented. Briefly, the T-DNA is delimited by two border regions, referred to as right border (RB) and left border (LB). The borders are nicked by virulence protein VirD2 which produces single stranded transferred DNA (the "T-strand") with covalent attachment of the VirD2 on its 5' end.
- RB right border
- LB left border
- Agrobacterium VirE2 protein exits Agrobacterium cells through the so- called Type 4 secretion system (T4SS, both virulence protein and ssDNA transporter), and is transferred into plant cells and integrated in the plant genome with the help of both Agrobacterium virulence proteins and plant factors.
- T4SS Type 4 secretion system
- Agrobacterium- mediated vectors to introduce DNA into plant cells is well known in the art. See, for example, the methods described by Fraley et al, (1985), Rogers et al, (1987) and U.S. Patent No. 5,563,055, specifically incorporated herein by reference in its entirety.
- Agrobacterium-mQdiatQd transformation is efficient in many dicotyledonous plants including Arabidopsis, tobacco, and tomato. Methods for Agrobacterium- mediated transformation of other species have also been devised ⁇ e.g. U.S. Patent No.
- Agrobacterium-mQdiatQd transformation techniques made the technique applicable to monocotyledonous plants as well.
- Agrobacterium-mQdiatQd transformation techniques have been applied to rice (Hiei et ⁇ l, 1997; Zhang et ⁇ l,
- Agrobacterium has additional plasmid mobilization systems that can also transfer and integrate plasmids, such as the IncQ plasmid pRSFlOlO, between bacterial cells and into the plant genome with lower frequency via conjugal transfer (Buchanan- Wo llaston et al. 1987,
- conjugal transfer protein For example, the conjugal transfer protein
- MobA in conjunction with MobB and MobC proteins of the RSFlOlO plasmid, cleaves the oriT (origin of transfer) site, attaches to the 5' end and transfers the ssDNA into cells independent of the T4SS system (Bravo-Angel et al. 1999 and references therein).
- Conjugal transfer systems are widely present in bacteria, resulting in exchange of genetic information between bacterial cells.
- Rhizobium phylogenetically related but distinct from Agrobacterium (Spaink, et al, (ed.), 1998; Farrand et al, 2003), the conjugal transfer system has been partially characterized in some species (Freiberg et al, 1997; Turner et al 2002, Tun-Garrido et al 2003, Perez-Mendoza et al 2004).
- the conjugal system requires an oriT as the nicking site and TraA or Mob as a nicking enzyme, which is different from the conventional elements used in T-DNA mobilization (VirD2 and RB and LB sites, respectively).
- Rhizobiales other than Agrobacterium sp. such as Rhizobium spp.
- Rhizobium spp. are known to symbiotically associate with plant roots in specialized nitrogen- fixing nodules ⁇ e.g. Long, 2001).
- some plant growth promoting effects by members of the Rhizobiales are known in the absence of nodulation ⁇ e.g. Noel et al, 1996).
- Recently, reports have been published describing transformation of plants by bacteria other than Agrobacterium sp. ⁇ e.g. Broothaerts et al, 2005; U.S.
- Broothaerts et al reported transformation by Rhizobium sp., Mesorhizobium loti, and Sinorhizobium meliloti strains that was limited to Arabidopsis, tobacco, and rice.
- Weller et al 2004, 2005 reported that several bacteria, including strains of Rhizobium sp. and Ochrobactrum sp. that harbored Ri plasmids apparently transformed hydroponically grown cucumber and tomato plants, leading to a hairy root phenotype.
- FIG. 1 Schematic map of pMON96033.
- FIG. 2 Schematic map of pMON96036.
- FIG. 3 Schematic map of pMON101316.
- FIG. 4 Transient GUS assay of Rhizobium-mQdiatQd transformation in soybean with Mesorhizobium loti (ML), Rhizobium leguminosarum (RL), Sinorhizobium fredii (SF), Sinorhizobium meliloti (SM) with either disarmed Ti- plasmid (pTiBo542G or pTi4404kan).
- RL4404 R. leguminosarum strain Madison with pTi4404kan; ML542G: M. loti USDA3471 with pTiBo542G; ML4404: M. loti USDA3471 with pTi4404kan; 2370LBA: R.
- FIG. 5 Germline transmission of gus transgene in soy produced through
- FIG. 6 Schematic map of pMON96913.
- FIG. 7 Schematic map of pMON96914.
- FIG. 8 Schematic map of pMON96026.
- FIG. 9 Rhizobia-mediated transformation of canola with several strains as shown by GUS transient assay.
- the % of explants with GUS positive sectors are shown in parentheses.
- FIG. 10 Stable transgenic canola calli transformation with several strains of Rhizobia.
- the % of explants with GUS positive sectors are shown in parentheses.
- FIG. 11 Southern blot detection of the CP4 transgene in canola plants derived from Rhizobium-mediatGd transformation. Lane 1 : BN_A22 line; lane 2: BN_A24 line; lane 3: BN_A28 line; and lane 4: BN_A35 line.
- FIG. 12 Cotton transformation by Rhizobia containing pMON101316: A) ML542C (47.8%); B) RL2370G (56%); C) RL2370LBA (31.4%); D) SF542C(23.2%); E) SF4404(31.5%); and F) SM542C (44.4%).
- RL2370 was used as a negative control; Agrob ⁇ cte ⁇ um tumef ⁇ ciens ABI strain was used as a positive control. The percentage of GUS staining positive explants are written in parentheses above.
- FIG. 13 Stable transformation of cotton calli by several Rhizobia strains: A) ML542C; B) SF542C; C) SM542C; D) SF4404; E) RL2370LBA; and F) RL2370G.
- FIG. 14 Detection of the gus transgene by Southern hybridization in cotton calli derived from Rhizobium-mediatGd transformation.
- RL2370LBA R. leguminos ⁇ rum 2370 with LBA4404 Ti helper plasmid;
- SF542 Sinorhizobium fredii
- FIG. 15 Rhizobia-mediated corn transformation as shown by transient expression of a gus gene in corn immature embryos.
- ABI A. tumef ⁇ ciens
- RL2370LBA Rhizobium leguminos ⁇ rum USDA2370 with LBA4404 Ti plasmid
- SM542C Sinorhizobium meliloti USDA1002 with pTiBo542; ML542G:
- FIG. 16 Corn calli expressing the gfp marker after transformation with Rhizobia strains.
- FIG. 17 Southern hybridization analysis of transgene integration in corn plants derived from Rhizobium-mediatGd transformation. DIG-labeled gus probe was used to detect the transgene. Lane 1-2 and 11-12: lines derived after transformation with M. loti ML542G/pMON96036; lane 3-9: lines derived after transformation with A. tumefaciens ABI control; lane 13-17: lines derived after transformation with S. fredii SF4404/pMON96033; Lane 18-19: lines derived after transformation with S. fredii SF542C/pMON96036.
- the invention provides a method for transforming a plant cell, comprising: (a) contacting at least a first plant cell with a bacterium other than Agrobacterium sp. comprising: (i) a first nucleic acid comprising a vir gene region of a Ti plasmid wherein the vir gene region acts to introduce a nucleic acid coding for a sequence of interest into the plant cell in a VirD2-dependent manner; and (ii) a second nucleic acid comprising one or more T-DNA border sequence(s) operably linked to a nucleic acid of interest; and (b) selecting at least a first plant cell transformed with the nucleic acid of interest, wherein the plant cell is a soybean, canola, corn, or cotton plant cell.
- the invention provides a method for transforming a plant cell, comprising: (a) contacting at least a first plant cell with a bacterium other than Agrobacterium comprising (i) a first nucleic acid required for conjugative transfer of DNA sequences independent of VirD2 function, and (ii) a second nucleic acid comprising a nucleic acid of interest; wherein the plant cell is a soybean, canola, corn, or cotton plant cell and wherein polypeptides encoded by the nucleic acid required for conjugative transfer act to transfer the nucleic acid of interest into the plant cell; and (b) selecting at least a first plant cell transformed with the nucleic acid of interest.
- the conjugative transfer may be traA, tral, or moM-dependent
- the first nucleic acid comprises oriT.
- the first nucleic acid may lack left and right T- DNA border sequences.
- the bacterium may be Rhizobia cell.
- the Rhizobia is grown under suitable conditions to minimize polysaccharide production by the Rhizobia cells.
- the Rhizobia cell may be grown in the presence of acetosyringone or other compound, such as a phenolic compound, that induces vir gene function prior to contacting the plant cell.
- the Rhizobia cell may be selected from the group consisting of: Rhizobium spp., Sinorhizobium spp., Mesorhizobium spp., Phyllobacterium spp. Ochrobactrum spp. and Bradyrhizobium spp.
- the Rhizobia cell is a Rhizobium leguminosarum cell and may further be a cell of R. leguminosarum bv. trifolii, R. leguminosarum bv. phaseoli or Rhizobium leguminosarum. bv. viciae.
- a plant cell that is transformed may be comprised in an explant from a plant seed, for example, from a seedling, callus, cell suspension, cotyledon, meristem, leaf, root, or stem.
- the explant may comprise an embryonic meristem explant; callus; cell suspension; cotyledon; or tissue from leaves, roots, or stems.
- a bacterium used for transformation in accordance with the invention may comprise nucleic acids introduced, for example, by electroporation.
- the sequences may comprise nucleic acid required for conjugative transfer independent of VirD2 function.
- the nucleic acids may include first and second nucleic acids.
- a transformation method provided herein may comprise selecting a plant cell transformed with a nucleic acid of interest in the absence of a selection agent.
- Selecting a plant cell transformed with a nucleic acid of interest may comprise culturing the plant cell in the presence of a selection agent, wherein the nucleic acid of interest confers tolerance to the selection agent or is operably linked to a further nucleic acid that confers tolerance to the selection agent.
- selection agents include glyphosate, kanamycin, bialaphos or dicamba.
- the nucleic acid of interest or further nucleic acid encodes EPSP synthase and in a still further embodiment encodes the EPSP synthase protein CP4.
- the selection agent is glyphosate.
- the sequence of interest may be defined as not physically linked to a selectable marker gene.
- the marker gene and nucleic acid of interest may genetically segregate in progeny of a plant regenerated from the plant cell transformed with the nucleic acid of interest.
- a bacterium in accordance with the invention may comprise at least a third nucleic acid comprising a further nucleic acid of interest, wherein the plant cell is transformed with the third nucleic acid.
- a plant may be regenerated a transgenic plant cell, wherein the plant comprises the sequence of interest.
- Regenerating a plant may comprise inducing formation of one or more shoots from an explant comprising the plant cell and cultivating at least a first shoot into a whole fertile plant.
- the plant may be a corn or cotton plant.
- regeneration occurs by organogenesis.
- the plant is a soybean or canola plant.
- the invention provides a Rhizobia cell selected from the group consisting of: Rhizobium spp., Sinorhizobium spp., Mesorhizobium spp., Phyllobacterium spp. Ochrobactrum spp.
- the cell comprising (i) a first nucleic acid comprising a vir gene region of a Ti plasmid wherein the vir gene region acts to introduce a nucleic acid coding for a sequence of interest into a plant cell in a VirD2-dependent manner; and (ii) a second nucleic acid comprising one or more T-DNA border sequence(s) operably linked to a nucleic acid coding for a sequence of interest.
- the cell is further defined as comprising a selectable marker.
- the Rhizobia cell is selected from the group consisting of: Rhizobium sp., Rhizobium sp.
- leguminosarum bv. trifolii Rhizobium etli USDA 9032, R. etli bv. phaseoli, Rhizobium tropici, Mesorhizobium sp., Mesorhizobium loti ML542G, M. loti ML4404, Sinorhizobium sp., Sinorhizobium meliloti SD630, S. meliloti USDA1002, Sinorhizobium fredii USDA205, S. fredii SF542G, S. fredii SF4404, S.
- the cell is a Rhizobium leguminosarum cell and may further be.
- a DNA construct is provided competent for virD2-independent transfer from Rhizobia and lacking T-DNA border sequence, the construct comprising an oriT sequence and traA or mob sequence operably linked to a nucleic acid of interest.
- the invention further provides a Rhizobia cell transformed with such a DNA construct of claim 35, wherein the Rhizobia is selected from the group consisting of: Rhizobium spp., Sinorhizobium spp., Mesorhizobium spp., Phyllobacterium spp. Ochrobactrum spp. and Bradyrhizobium spp.
- the Rhizobia cell is selected from the group consisting of: Rhizobium sp., Rhizobium sp. NGR234, Rhizobium leguminosarum Madison, R. leguminosarum USDA2370, R. leguminosarum USDA2408, R. leguminosarum USDA2668, R. leguminosarum 2370G, R. leguminosarum 2370LBA, R. leguminosarum 2048G, R. leguminosarum 2048LBA, R. leguminosarum bv. phaseoli, R. leguminosarum bv. phaseoli 2668G, R. leguminosarum bv. phaseoli 2668LBA, R.
- leguminosarum RL542C R. leguminosarum bv. viciae, R. leguminosarum bv. trifolii, Rhizobium etli USDA 9032, R. etli bv. phaseoli, Rhizobium tropici, Mesorhizobium sp., Mesorhizobium loti ML542G, M. loti ML4404, Sinorhizobium sp., Sinorhizobium meliloti SD630, S. meliloti USDA1002, Sinorhizobium fredii USDA205, S. fredii SF542G, S. fredii SF4404, S.
- the cell is a Rhizobium leguminosarum cell, and in still further embodiments, may be a R. leguminosarum bv. trifolii, R. leguminosarum bv. phaseoli or Rhizobium leguminosarum. bv. viciae cell.
- the present invention provides methods and compositions for the efficient genetic transformation of plant cells of important crop species by Rhizobia.
- the invention overcomes substantial limitations in the art, including limited transformation efficiency and failure to describe techniques amenable to transformation of important crop plants by use of non-Agrobacterial strains. For example, while use of bacteria other than Agrobacterium has been discussed for several plant varieties, transformation frequencies have been low. In the case of rice, transformation frequencies of 0.6% and lower have been reported, with only one transformed plant obtained from 687 inoculated calli (Broothaerts et al., 2005). This contrasts to 50-80% transformation frequencies using Agrobacterium. Even using model organisms easily transformed by Agrobacterium, transformation frequencies were only a fraction of those obtained by Agrobacterium -mediated transformation.
- the present invention overcomes limitations in the art by providing, in one embodiment, techniques for the use of Rhizobia to transform important crop plants that were not previously known to be transformable by Rhizobia, including canola, corn, cotton, and soybean.
- the invention also provides techniques for the efficient transformation of plants using Rhizobia, including those already known to be amenable to transformation by Rhizobia at a low frequency.
- the invention also provides methods for the transformation of tissue targets differing from those of Agrob ⁇ cterium. For example, while Agrob ⁇ cterium typically requires a wound site to infect plants, some other members of the Rhizobiales, including Rhizobi ⁇ ce ⁇ e such as Rhizobium, naturally infect plant roots via infection threads that penetrate plant tissues, allowing for use of non- wounded tissue as a transformation target.
- Rhizobi ⁇ ce ⁇ e such as Rhizobium
- plant growth regulator or "plant hormone” refers to compounds that affect plant growth.
- Plant growth regulators include, but are not limited to, auxins, cytokinins, ABA, gibberellins, ethylene, brassinosteroids, and polyamines.
- auxins affect the elongation of shoots and roots at low concentration but inhibit growth at higher levels.
- Commonly used auxins include picloram (4-amino- 3,5,6-trichloropicolinic acid), 2,4-D (2,4-dichlorophenoxyacetic acid), IAA (indole-3- acetic acid), NAA ( ⁇ -naphthaleneacetic acid), and dicamba (3,6-dichloroanisic acid).
- Cytokinins cause cell division, cell differentiation, and shoot differentiation. Commonly used cytokinins include kinetin, BA (6-benzylaminopurine), 2-ip (2- isopentenyladenine), BAP (6-benzylaminopurine ), thidiazuron (TDZ), zeatin riboside, and zeatin.
- Coding sequence refers to a region of continuous sequential nucleic acid triplets encoding a protein, polypeptide, or peptide sequence.
- Dicot or “dicotyledonous” refers to plants having two cotyledons.
- Examples include, without limitation, plants such as alfalfa, beans, broccoli, cabbage, canola, carrot, cauliflower, celery, cotton, cucumber, eggplant, lettuce, melon, pea, pepper, potato, pumpkin, radish, rapeseed, spinach, soybean, squash, tomato, and watermelon.
- Endogenous refers to materials originating from within the organism or cell.
- exogenous refers to materials originating from outside of the organism or cell. As used herein, exogenous is intended to refer to any nucleic acid from a source other than the recipient cell or tissue, regardless of whether a similar (but not identical) nucleic acid may already be present in the recipient cell or tissue.
- Explant refers to a plant part that is capable of being transformed and subsequently regenerated into a transgenic plant. Examples include embryos, callus, cell suspensions, cotyledons, meristems, seedlings, seeds, leaves, stems or roots. "Monocot” or “monocotyledonous” refers to plants having a single cotyledon. Examples include, without limitation, onions, corn, rice, sorghum, wheat, rye, millet, sugarcane, oat, triticale, barley and turfgrass.
- Nucleic acid refers to deoxyribonucleic acid (DNA) or ribonucleic acid (RNA).
- Phenotype refers to a trait exhibited by an organism resulting from the expression (or lack of expression) of nucleic acids in the genome (including non- genomic DNA and RNA such as plasmids and artificial chromosomes) and/or organelles of the organism.
- plant encompasses any higher plant and progeny thereof, including monocots (e.g., corn, rice, wheat, barley, etc.), dicots (e.g., soybean, cotton, tomato, potato, Arabidopsis, tobacco, etc.), gymnosperms (pines, firs, cedars, etc) and includes parts of plants, including reproductive units of a plant (e.g., seeds, bulbs, tubers, meristematic tissues, or other parts or tissues from that the plant can be reproduced), fruits and flowers.
- monocots e.g., corn, rice, wheat, barley, etc.
- dicots e.g., soybean, cotton, tomato, potato, Arabidopsis, tobacco, etc.
- gymnosperms pines, firs, cedars, etc
- reproductive units of a plant e.g., seeds, bulbs, tubers, meristematic tissues, or other parts or tissues from that the plant can be reproduced
- fruits and flowers e.g
- Polyadenylation signal or “polyA signal” refers to a nucleic acid sequence located 3' to a coding region that promotes the addition of adenylate nucleotides to the 3' end of an mRNA transcribed from the coding region.
- Promoter or “promoter region” refers to a nucleic acid sequence, usually found 5' to a coding sequence, that alters expression of the coding sequence by providing a recognition site for RNA polymerase and/or other recognition sites for other transcription-related factors utilized to produce RNA and/or initiate transcription at the correct site on the DNA.
- Recombinant nucleic acid vector or “vector” or “construct” refers to any agent such as a plasmid, cosmid, virus, autonomously replicating sequence, phage, or linear or circular single- or double-stranded DNA or RNA nucleotide segment, derived from any source, capable of genomic integration or autonomous replication, comprising a nucleic acid molecule in which one or more nucleic acid sequences have been linked in a functionally operative manner.
- Such recombinant nucleic acid vectors or constructs typically comprise a 5' regulatory sequence or promoter region and a coding sequence encoding for a desired gene product.
- the vectors are typically designed such that once delivered into a cell or tissue, the coding sequence is transcribed into mRNA, which is optionally translated into a polypeptide or protein.
- Rhizobia refers without limitation to bacterial genera, species, and strains that may be assigned to the order Rhizobiales other than Agrobacterium bacterial strains comprising the taxonomic families Rhizobiaceae ⁇ e.g. Rhizobium spp., Sinorhizobium spp.); Phyllobacteriaceae ⁇ e.g. Mesorhizobium spp., Phyllobacterium spp.); Brucellaceae ⁇ e.g. Ochrobactrum spp.); Bradyrhizobiaceae ⁇ e.g.
- Bradyrhizobium spp. Bradyrhizobium spp.
- Xanthobacteraceae ⁇ e.g. Azorhizobium spp
- “Rhizobia” does not include, biovars, or species.
- Taxonomic assignment may be done as is known in the art, for instance by comparison of 16S rDNA sequences or other classification methods. Wild type strains of many Rhizobium species are typically able to induce formation of nitrogen fixing nodules in root tissues of host plants such as leguminous plants (Fabaceae). However, the ability to nodulate roots of a given plant species is not required for i?/zzzo ⁇ zwm -mediated DNA transfer into cells of the plant species.
- Selectable marker or “screenable marker” refers to a nucleic acid sequence whose expression confers a phenotype facilitating identification of cells, tissues, or plants containing the nucleic acid sequence.
- Transcription refers to the process of producing an RNA copy from a DNA template.
- Transformation refers to a process of introducing an exogenous nucleic acid sequence into a cell or tissue.
- the transformation may be transient or stable.
- part or all of the exogenous nucleic acid is incorporated (e.g., integrated or stably maintained) in the nuclear genomic DNA, plastid DNA, or is capable of autonomous replication in the nucleus or plastid.
- Transgenic refers to organisms into which an exogenous nucleic acid sequence has been stably transformed.
- one or more genetic components are selected that will be introduced into the plant cell or tissue.
- Genetic components can include any nucleic acid that is introduced into a plant cell or tissue using the method according to the invention.
- Genetic components can include non- plant DNA, plant DNA or synthetic DNA.
- the genetic components are incorporated into a DNA composition such as a recombinant, double-stranded plasmid or vector molecule comprising at least one or more of following types of genetic components: (a) a promoter that functions in plant cells to cause the production of an RNA sequence, (b) a structural DNA sequence that causes the production of an RNA sequence that encodes a product of agronomic utility, and (c) a 3' non-translated DNA sequence that functions in plant cells to cause the addition of polyadenylated nucleotides to the 3' end of the RNA sequence.
- a promoter that functions in plant cells to cause the production of an RNA sequence
- a structural DNA sequence that causes the production of an RNA sequence that encodes a product of agronomic utility
- a 3' non-translated DNA sequence that functions in plant cells to cause the addition of polyadenylated nucleotides to the 3' end of the RNA sequence.
- the vector may contain a number of genetic components to facilitate transformation of the plant cell or tissue and to regulate expression of the structural nucleic acid sequence.
- the genetic components are oriented so as to express a mRNA, that in an optional embodiment can be translated into a protein.
- a plant structural coding sequence (a gene, cDNA, synthetic DNA, or other DNA) that exists in double-stranded form involves transcription of messenger RNA (mRNA) from one strand of the DNA by RNA polymerase enzyme and subsequent processing of the mRNA primary transcript inside the nucleus. This processing involves a 3' non-translated region that adds polyadenylated nucleotides to the 3' ends of the mRNA.
- Vectors typically consist of a number of genetic components, including but not limited to regulatory elements such as promoters, leaders, introns, and terminator sequences. Regulatory elements are also referred to as cis- or trans-regulatory elements, depending on the proximity of the element to the sequences or gene(s) they control. Transcription of DNA into mRNA is regulated by a region of DNA usually referred to as the "promoter”.
- the promoter region contains a sequence of bases that signals RNA polymerase to associate with the DNA and to initiate the transcription into mRNA using one of the DNA strands as a template to make a corresponding complementary strand of RNA.
- promoters that are active in plant cells have been described in the literature. Such promoters would include but are not limited to the nopaline synthase (NOS) and octopine synthase (OCS) promoters that are carried on Ti plasmids of Agrobacterium tumefaciens, the caulimovirus promoters such as the cauliflower mosaic virus (CaMV) 19S and 35S promoters and the Figwort mosaic virus (FMV) 35 S promoter, and the enhanced CaMV35S promoter (e35S).
- NOS nopaline synthase
- OCS octopine synthase
- CaMV cauliflower mosaic virus
- FMV Figwort mosaic virus
- e35S enhanced CaMV35S promoter
- the particular promoter selected should be capable of causing sufficient expression to result in the production of an effective amount of the gene product of interest.
- Examples describing such promoters include without limitation U.S. Patent 6,437,217 (maize RS81 promoter), U.S. Patent 5,641,876 (rice actin promoter, OsActl), U.S. Patent 6,426,446 (maize RS324 promoter), U.S. Patent 6,429,362 (maize PR-I promoter), U.S. Patent 6,232,526 (maize A3 promoter), U.S. Patent 6,177,611 (constitutive maize promoters), U.S.
- Patents 5,322,938, 5,352,605, 5,359,142 and 5,530,196 (35S promoter), U.S. Patent 6,433,252 (maize L3 oleosin promoter), U.S. Patent 6,429,357 (rice actin 2 promoter as well as a rice actin 2 intron), U.S. Patent 5,837,848 (root specific promoter), U.S. Patent 6,294,714 (light inducible promoters), U.S. Patent 6,140,078 (salt inducible promoters), U.S. Patent 6,252,138 (pathogen inducible promoters), U.S. Patent 6,175,060 (phosphorus deficiency inducible promoters), U.S.
- Patent 6,635,806 gamma-coixin promoter
- U.S. Patent 7,151,204 miize chloroplast aldolase promoter
- Additional promoters that may find use are a nopaline synthase (NOS) promoter (Ebert et al., 1987), the octopine synthase (OCS) promoter (which is carried on tumor-inducing plasmids of Agrobacterium tumefaciens), the caulimovirus promoters such as the cauliflower mosaic virus (CaMV) 19S promoter (Lawton et al., 1987), the CaMV 35S promoter (Odell et al, 1985), the figwort mosaic virus 35S-promoter (Walker et al, 1987; U.S.
- NOS nopaline synthase
- OCS octopine synthase
- caulimovirus promoters such as the cauliflower mosaic virus (CaMV) 19S promoter (Lawt
- Patents 6,051,753; 5,378,619) the sucrose synthase promoter (Yang et al, 1990), the R gene complex promoter (Chandler et al, 1989), and the chlorophyll a/b binding protein gene promoter, PClSV (US Patent 5,850,019).
- CaMV35S with enhancer sequences e35S; U.S. Patent Nos. 5,322,938; 5,352,605; 5,359,142; and 5,530,196
- FMV35S U.S. Patents 6,051,753; 5,378,619
- peanut chlorotic streak caulimovirus PClSV; U.S.
- At.Act 7 (Accession # U27811), AtANTl (U.S. Patent Application 20060236420), FMV.35S-EFla (U.S. Patent Application Publication 2005/0022261), eIF4A10 (Accession # X79008) and AGRtu.nos (GenBank Accession V00087; Depicker et al, 1982; Bevan et al, 1983), rice cytosolic triose phosphate isomerase (OsTPI; U.S. Patent No. 7,132,528), and rice actin 15 gene (OsActl5; U.S. Patent Application Publication 2006/0162010 promoters may be of particular benefit. In some instances, e.g. OsTPI and OsAct 15, a promoter may include a 5 'UTR and/or a first intron. Promoter hybrids can also be constructed to enhance transcriptional activity
- Promoters that function in plants include but are not limited to promoters that are inducible, viral, synthetic, constitutive as described, and temporally regulated, spatially regulated, and spatio-temporally regulated. Other promoters that are tissue-enhanced, tissue- specific, or developmentally regulated are also known in the art and envisioned to have utility in the practice of this invention.
- the promoters used in the DNA constructs ⁇ i.e. chimeric/recombinant plant genes) of the present invention may be modified, if desired, to affect their control characteristics. Promoters can be derived by means of ligation with operator regions, random or controlled mutagenesis, etc. Furthermore, the promoters may be altered to contain multiple "enhancer sequences" to assist in elevating gene expression.
- the mRNA produced by a DNA construct of the present invention may also contain a 5' non-translated leader sequence.
- This sequence can be derived from the promoter selected to express the gene and can be specifically modified so as to increase or decrease translation of the mRNA.
- the 5' non-translated regions can also be obtained from viral RNAs, from suitable eukaryotic genes, or from a synthetic gene sequence. Such "enhancer" sequences may be desirable to increase or alter the translational efficiency of the resultant mRNA.
- the present invention is not limited to constructs wherein the non-translated region is derived from both the 5' non-translated sequence that accompanies the promoter sequence.
- non-translated leader sequence can be derived from unrelated promoters or genes (see, for example U.S. Patent No. 5,362,865).
- non-translation leader sequences include maize and petunia heat shock protein leaders (U.S. Patent No. 5,362,865), plant virus coat protein leaders, plant rubisco leaders, GmHsp (U.S. Patent 5,659,122), PhDnaK (U.S. Patent No. 5,362,865), AtAntl, TEV (Carrington and Freed, 1990), OsActl (U.S. Patent No. 5,641,876), OsTPI (U.S. Patent No. 7,132,528), and OsActl5 (U.S. Publication No. 20060162010), and AGRtu.nos (GenBank Accession V00087; Bevan et al., 1983).
- Other genetic components that serve to enhance expression or affect transcription or translational of a gene are also envisioned as genetic components.
- Intron sequences are known in the art to aid in the expression of transgenes in monocot plant cells.
- Examples of introns include the corn actin intron (U.S. Patent 5,641,876), the corn HSP70 intron (ZmHSP70; U.S. Patent 5,859,347; U.S. Patent 5,424,412), and rice TPI intron (OsTPI; U.S. Patent No. 7,132,528) and are of benefit in practicing this invention.
- Termination of transcription may be accomplished by a 3' non-translated DNA sequence operably linked to a recombinant transgene ⁇ e.g. the gene of interest, the identification sequence comprising a screenable gene, or the plant selectable marker gene).
- the 3' non-translated region of a recombinant DNA molecule contains a polyadenylation signal that functions in plants to cause the addition of adenylate nucleotides to the 3' end of the RNA.
- the 3' non-translated region can be obtained from various genes that are expressed in plant cells.
- the nopaline synthase 3' untranslated region (Fraley et al, 1983), is commonly used in this capacity.
- the vector contains a selectable, screenable, or scoreable marker gene.
- genetic components are also referred to herein as functional genetic components, as they produce a product that serves a function in the identification of a transformed plant, or a product of agronomic utility.
- the DNA that serves as a selection or screening device may function in a regenerable plant tissue to produce a compound that would confer upon the plant tissue resistance to an otherwise toxic compound.
- a number of screenable or selectable marker genes are known in the art and can be used in the present invention. Examples of selectable markers and genes providing resistance against them are disclosed in Miki and McHugh, 2004.
- Genes of interest for use as a selectable, screenable, or scoreable marker would include but are not limited to gus, gfp (green fluorescent protein), luciferase (LUX), genes conferring tolerance to antibiotics like kanamycin (Dekeyser et al, 1989), neomycin, kanamycin, paromomycin, G418, aminoglycosides, spectinomycin, streptomycin, hygromycin B, bleomycin, phleomycin, sulfonamides, streptothricin, chloramphenicol, methotrexate, 2-deoxyglucose, betaine aldehyde, S- aminoethyl L-cysteine, 4-methyltryptophan, D-xylose, D-mannose, benzyladenine-N- 3 -glucuronidase, genes that encode enzymes that give tolerance to herbicides like glyphosate ⁇ e.g.
- EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
- EPSPS Della- Cioppa et al, 1987; U.S. Patent 5,627,061; U.S. Patent 5,633,435; U.S. Patent 6,040,497; U.S. Patent 5,094,945; WO04074443, and WO04009761; glyphosate oxidoreductase (GOX; U.S. Patent 5,463,175); glyphosate decarboxylase (WO05003362 and US Patent Application 20040177399; or glyphosate N- acetyltransferase (GAT): Castle et al, U.S.
- Patent Publication 20030083480 dalapon ⁇ e.g. dehl encoding 2,2- dichloropropionic acid dehalogenase conferring tolerance to 2,2-dichloropropionic acid (Dalapon; WO9927116)), bromoxynil (haloarylnitrilase (Bxn) for conferring tolerance to bromoxynil (WO8704181A1 ; US 4,810,648; WO8900193A)), sulfonyl herbicides ⁇ e.g.
- acetohydroxyacid synthase or acetolactate synthase conferring tolerance to acetolactate synthase inhibitors such as sulfonylurea, imidazolinone, triazolopyrimidine, pyrimidyloxybenzoates and phthalide; (US 6,225,105; US 5,767,366, U.S. 4,761,373; U.S. 5,633,437; U.S. 6,613,963; US 5,013,659; US 5,141,870; US 5,378,824; US 5,605,011)); encoding ALS, GST-II), bialaphos or phosphinothricin or derivatives ⁇ e.g.
- phosphinothricin acetyltransferase ⁇ bar conferring tolerance to phosphinothricin or glufosinate (US 5,646,024, US 5,561,236, EP 275,957; US 5,276,268; US 5,637, 489; US 5,273, 894), atrazine (encoding GST-III), dicamba (dicamba monooxygenase (DMO); US Patent Applications 20030115626, 20030135879), or sethoxydim (modified acetyl- coenzyme A carboxylase for conferring tolerance to cyclohexanedione (sethoxydim) and aryloxyphenoxypropionate (haloxyfop) (U.S.
- the present invention can be used with any suitable plant transformation plasmid or vector containing a selectable or screenable marker and associated regulatory elements as described, along with one or more nucleic acids expressed in a manner sufficient to confer a particular desirable trait.
- suitable structural genes of agronomic interest envisioned by the present invention would include but are not limited to genes for disease, insect, or pest tolerance, herbicide tolerance, genes for quality improvements such as yield, nutritional enhancements, environmental or stress tolerances, or any desirable changes in plant physiology, growth, development, morphology or plant product(s) including starch production (U.S. Patents 6,538,181; 6,538,179; 6,538,178; 5,750,876; 6,476,295), modified oils production (U.S. Patents 6,444,876; 6,426,447; 6,380,462), high oil production (U.S. Patents 6,495,739; 5,608,149; 6,483,008; 6,476,295), modified fatty acid content (U.S.
- Patent 6,072,103 pharmaceutical peptides and secretable peptides
- U.S. Patents 6,812,379; 6,774,283; 6,140,075; 6,080,560 improved processing traits
- U.S. Patent 6,476,295 improved digestibility
- U.S. Patent 6,531,648 low raff ⁇ nose
- U.S. Patent 6,166,292 industrial enzyme production
- improved flavor U.S. Patent 6,011,199
- nitrogen fixation U.S. Patent 5,229,114
- hybrid seed production U.S. Patent 5,689,041
- fiber production U.S.
- DNA sequences of interest can affect these phenotypes by the inhibition of expression of an endogenous gene via gene silencing technologies such cosuppression, antisense, RNAi, expression of miRNAs (natural or engineered), expression of trans-acting siRNAs, and expression of ribozymes (see e.g., U.S. Patent
- exogenous is also intended to refer to genes that are not normally present in the cell being transformed, or perhaps simply not present in the form, structure, etc., as found in the transforming DNA segment or gene, or genes that are normally present yet that one desires, e.g., to have over-expressed.
- exogenous gene or DNA is intended to refer to any gene or DNA segment that is introduced into a recipient cell, regardless of whether a similar gene may already be present in such a cell.
- the type of DNA included in the exogenous DNA can include DNA that is already present in the plant cell, DNA from another plant, DNA from a different organism, or a DNA generated externally, such as a DNA sequence containing an antisense message of a gene, or a DNA sequence encoding a synthetic or modified version of a gene.
- the nucleic acid molecule prepared as a DNA composition in vitro, is introduced into a suitable host such as E. coli and mated into another suitable host such as Rhizobia, including Rhizobium, or directly transformed
- Rhizobia e.g. electroporated
- the Ti or Ri plasmid may be naturally transferred into nitrogen-fixing Rhizobium and may induce tumors or hairy roots, respectively (Hooykaas et al. 1977, Weller et al. 2004). Such Ti or Ri plasmid may alternatively be "disarmed", and unable to cause plant cell proliferation. Since Rhizobium and Agrobacterium have differing infection mechanisms, deep infection by Rhizobium or other Rhizobia through its infection thread may increase the frequency of germ line transformation of a gene of interest during soybean transformation once the Ti or Ri helper plasmid is introduced.
- the present invention encompasses the use of bacterial strains to introduce one or more genetic components into plants.
- the hosts contain disarmed Ti or Ri plasmids that do not contain the oncogenes that cause tumorigenesis or rhizogenesis, derivatives of which are used as the vectors and contain the genes of interest that are subsequently introduced into plants.
- the bacteria transfer DNA into plant cells by means of a T4SS- independent mechanism, namely o ⁇ T-mediated conjugal transfer. Functions needed for T4SS-independent DNA transfer may reside on the plasmid containing the DNA to be transferred, or may reside on the chromosome or another plasmid, including a Ti or Ri plasmid, also present in such a bacterial cell.
- Bacterial species and strains include but are not limited to Rhizobium sp., Rhizobium sp. NGR234, Rhizobium leguminosarum Madison, R. leguminosarum USDA2370, R. leguminosarum USDA2408, R. leguminosarum USDA2668, R. leguminosarum 2370G, R. leguminosarum 2370LBA, R. leguminosarum 2048G, R. leguminosarum 2048LBA, R. leguminosarum bv. phaseoli, R. leguminosarum bv. phaseoli 2668G, R. leguminosarum bv. phaseoli 2668LBA, R.
- leguminosarum RL542C R. leguminosarum bv. viciae, R. leguminosarum bv. trifolii, Rhizobium etli USDA 9032, R. etli bv phaseoli, Rhizobium tropici, Mesorhizobium sp., Mesorhizobium loti ML542G, M. loti ML4404, Sinorhizobium sp., Sinorhizobium meliloti SD630, S. meliloti USDA1002, Sinorhizobium fredii USDA205, S. fredii SF542G, S. fredii SF4404, S.
- Any suitable plant culture medium can be used to develop or maintain a plant tissue culture, supplemented as appropriate with additional plant growth regulators including but not limited to auxins such as picloram (4-amino-3,5,6-trichloropicolinic acid), 2,4-D (2,4-dichlorophenoxyacetic acid) and dicamba (3,6-dichloroanisic acid); cytokinins such as BAP (6-benzylaminopurine) and kinetin; ABA; and gibberellins.
- auxins such as picloram (4-amino-3,5,6-trichloropicolinic acid), 2,4-D (2,4-dichlorophenoxyacetic acid) and dicamba (3,6-dichloroanisic acid)
- cytokinins such as BAP (6-benzylaminopurine) and kinetin
- ABA gibberellins.
- Other media additives can include but are not limited to amino acids, macro elements, iron, microelements, inositol, vitamins and organics, carbohydrates, undefined media components such as casein hydrolysates, with or without an appropriate gelling agent such as a form of agar, such as a low melting point agarose or Gelrite if desired.
- tissue culture media which when supplemented appropriately, support plant tissue growth and development and are suitable for plant transformation and regeneration. These tissue culture media can either be purchased as a commercial preparation, or custom prepared and modified.
- Examples of such media would include but are not limited to Murashige and Skoog (1962), N6 (Chu et al., 1975), Linsmaier and Skoog (1965), Uchimiya and Murashige (1962), Gamborg's media (Gamborg et al, 1968), D medium (Duncan et al, 1985), McCown's Woody plant media (McCown and Lloyd, 1981), Nitsch and Nitsch (1969), and Schenk and Hildebrandt (1972) or derivations of these media supplemented accordingly.
- media and media supplements such as nutrients and growth regulators for use in transformation and regeneration and other culture conditions such as light intensity during incubation, pH, and incubation temperatures that can be optimized for the particular variety of interest.
- transformable plant tissue is isolated or developed in tissue culture, or transformable plant tissue is identified and/or prepared in planta
- the next step of the method is introducing the genetic components into the plant tissue. This process is also referred to herein as "transformation.”
- the plant cells are transformed and optionally subject to a selection step.
- the independent transformants are referred to as transgenic events.
- a number of methods utilizing Agrobacterium strains have been reported and can be used to insert genetic components into transformable plant tissue. However, non-Agrobacterium spp. had not typically been utilized to transform plants.
- Rhizobia to be used can be prepared either by inoculating a liquid medium such as TY or YEM media (Beringer et al, 1974) directly from a glycerol stock or streaking the bacteria onto a solidified media from a glycerol stock, allowing the bacteria to grow under the appropriate selective conditions.
- the Rhizobia may be "pre-induced” by growth under nutritional or cultural conditions including the presence of acetosyringone in an amount that facilitates transformation.
- Those of skill in the art are familiar with procedures for growth and suitable culture conditions for bacteria as well as subsequent inoculation procedures.
- the density of the bacterial culture used for inoculation and the ratio of the number of bacterial cells to amount of explant tissue can vary from one system to the next, and therefore optimization of these parameters for any transformation method is expected.
- the next stage of the transformation process is the inoculation. In this stage the suitably prepared plants, plant tissues, or explants, and the bacterial cell suspension are mixed together. The duration and condition of the inoculation and bacterial cell density will vary depending on the plant transformation system. Growth or inoculation of transforming bacteria may occur in the presence of acetosyringone, or other known inducer of expression of the virulence genes located on Ti or Ri plasmids. In certain embodiments, growing of the bacterium other than Agrobacterium sp.
- the carbon source used to minimize polysaccharide production during Rhizobia growth in induction medium is glucose in AB-TY medium, or L-arabinose and potassium gluconate in ATA medium.
- the co-culture refers to the time post-inoculation and prior to transfer to an optional delay or selection medium. Any number of plant tissue culture media can be used for the co-culture step. Plant tissues after inoculation with bacteria may be cultured in a liquid or semi-solid media. The co-culture is typically performed for about one to four days.
- the inoculated plant tissues or explants can optionally be placed directly onto selective media. Alternatively, after co-culture with bacteria, they could be placed on media without the selective agent and subsequently placed onto selective media.
- Typical selective agents include but are not limited to antibiotics such as geneticin (G418), kanamycin and paromomycin, or the herbicides glyphosate, glufosinate, and DICAMBA. Additional appropriate media components can be added to the selection or delay medium to inhibit bacterial growth.
- Such media components can include, but are not limited to, antibiotics such as carbenicillin or cefotaxime.
- the cultures are subsequently transferred to a medium suitable for the recovery of transformed plantlets.
- Those of skill in the art are aware of the number of methods to recover transformed plants. A variety of media and transfer requirements can be implemented and optimized for each plant system for plant transformation and recovery of transgenic plants. Consequently, such media and culture conditions disclosed in the present invention can be modified or substituted with nutritionally equivalent components, or similar processes for selection and recovery of transgenic events, and still fall within the scope of the present invention.
- plant cells in the tissue may be transformed, and independently transformed plant cells are selected. The independent transformants are referred to as transgenic events.
- Agrobacterium- mediated transformation and regeneration systems for many monocot and dicot plant species are known in the art (e.g.
- transformants produced, and their progeny may subsequently be analyzed to determine the presence or absence of a particular nucleic acid of interest contained on the transformation vector.
- Molecular analyses can include but are not limited to
- the above-described techniques may be suitable for any plant and is especially useful for plants such as alfalfa, barley, beans, beet, broccoli, cabbage, carrot, canola, cauliflower, celery, Chinese cabbage, corn, cotton, cucumber, dry bean, eggplant, fennel, garden beans, gourd, leek, lettuce, melon, oat, okra, onion, pea, pepper, pumpkin, peanut, potato, pumpkin, radish, rice, sorghum, soybean, spinach, squash, sweet corn, sugarbeet, sunflower, tomato, watermelon, and wheat.
- plants such as alfalfa, barley, beans, beet, broccoli, cabbage, carrot, canola, cauliflower, celery, Chinese cabbage, corn, cotton, cucumber, dry bean, eggplant, fennel, garden beans, gourd, leek, lettuce, melon, oat, okra, onion, pea, pepper, pumpkin, peanut, potato, pumpkin, radish, rice, sorghum, soybean, spinach,
- Example 1 Rhizobium and Agro bacterium strains Agrobacterium tumefaciens AGLO was obtained from ATCC (ATCC Number:
- Rhizobium leguminosarum strain Madison and Sinorhizobium meliloti SD630 were isolated from weed clover in a home garden in Madison, WI, USA, and confirmed by sequencing the PCR product of a 16S rRNA amplified with the following primers: 5' GAGAGTTTGATCCTGGCTCAG 3' (Xd578; SEQ ID NO:1) and 5' AAGGAGGTGATCCAGCCGCAG 3' (Xd579; SEQ ID NO:2).
- Other Rhizobium strains were obtained from USDA Rhizobium collection center (Table 1). Rhizobium strains were grown in TY or MAG medium and Agrobacterium in LB medium. Strains are shown below and 16s rRNA sequences amplified in strains isolated are provided as SEQ ID NOs:24-30.
- the Agrobacterium competent cells were prepared by washing a log phase culture in LB medium with chilled deionized water and 10% glycerol, and stored at - 80 0 C. Fifty microliters of thawed competent cells were mixed with 1 or 2 ⁇ l DNA on ice and electroporated in 1 mm gap curvet with 200 ohm resistance, 25 ⁇ F capacity and 1.8 kv using a BIO-RAD Gene Pulser® II device (BIO-RAD, Hercules, CA).
- Example 3 Construction of Ti plasmids with an antibiotic selectable marker gene
- a homologous sequence was amplified from a corresponding Ti plasmid and inserted into a kanamycin resistance vector. The homologous sequence was used to integrate the kanamycin resistance gene into the Ti plasmid by homologous recombination.
- the entire virC gene (Genbank accession number AB027257) from the AGLO Agrobacterium strain was amplified with PCR using the following primers 5' ACAATAATGTGTGTTGTTAAGTCTTGTTGC 3'
- Agrobacterium strain by standard electroporation as outlined above, and plated on
- Kanamycin 50 mg/1 LB medium to select for a single crossover event Since the integration vector is not maintained in AGLO cells, the resistant colonies were presumably due to integration of the vector into a Ti plasmid by homologous recombination. The resulting strain was designated AGLOC.
- LBA4404 was PCR amplified with primers 5' TCAGCAGGATGACGCCGTTATCG
- SEQ ID NO: 8 (sequence from Genbank AF242881) with Pfu polymerase, and inserted into pMON67402.
- the intermediate vector was further ligated to a trfA fragment from pCGN 11206 digested with PvuII/MscI, which resulted in construct pMON96914 (FIG. 7).
- This plasmid vector was introduced into LBA4404 by electroporation and selected on LB medium with kanamycin 50 mg/1 to select for a single crossover event.
- the modified Ti plasmids, pTiBo542C, pTiBo542G, pTi4404kan and pTiC58 were extracted from the modified Agrobacterium strains AGLOC, AGLOG,
- the cell pellet was washed with cold sterile deionized water, and with 10% cold glycerol and resuspended in 10% cold glycerol.
- the cell suspension was aliquoted at 50 ⁇ l/tube for immediate use or frozen in liquid nitrogen and stored at -80 ° C.
- Electroporation of the modified Ti plasmids into Rhizobia strains Fifty microliters of the competent cells were thawed on ice, mixed with 1 or 2 ⁇ ls of the prepared Ti plasmid, and kept on ice for 30 min. The mixture was transferred into a chilled 1 mm-gap electroporation cuvette.
- the electroporation parameters (BIO-RAD Gene Pulser® II) were set as follows: 2 KV/400 ⁇ resistance/25 ⁇ F capacity or 1.5 KV/400 ⁇ resistance/25 ⁇ F capacity or 1.5 KV/800 ⁇ resistance/10 ⁇ F capacity.
- the cuvette was kept on ice for 5-10 min before adding 1 ml of TY or MAG medium and transferring into a 14-ml Falcon tube. The tube was cultured for 3 hours at 30 0 C, plated onto TY or MAG solid medium with 50 mg/1 kanamycin and cultured at 30 0 C for three days to recover resistant colonies.
- Rhizobia transformed with Ti plasmids The kanamycin resistant colonies were transferred into 3 mis of liquid TY or MAG medium with 50 mg/1 kanamycin and cultured overnight. One microliter of culture was directly amplified with YieldAce® Taq polymerase following manufacturer's instructions (Stratagene). To detect pTiBo542C or pTiBo542G in Rhizobia strains, the virC primers 5'
- ACAATAATGTGTGTTGTTAAGTCTTGTTGC 3' (Xd683; SEQ ID NO:3) and 5' CAATTGCATTTGGCTCTTAATTATCTGG 3' (Xd684a; SEQ ID NO:11) or virG primers 5' AGATCTGGCTCGCGGCGGACGCAC 3' (Xd681; SEQ ID NO:5) and 5' CGCTCGCGTCATTCTTTGCTGGAG 3' (Xd682; SEQ ID NO:6) were used to amplify a 2.35 kb or a 1.2 kb fragment, respectively.
- the following primers were used: 5'
- GCATGCCCGATCGCGCTCAAGTAATC 3' (Xd699; SEQ ID NO: 12) and 5' TCTAGGTCCCCCCGCGCCCATCG 3' (Xd700; SEQ ID NO: 13)) amplifies a 1274 bp vzVD2 coding sequence for the octopine Ti plasmid; 5' CCATGGATCTTTCTGGCAATGAGAAATC 3' (Xd701; SEQ ID NO: 14) and 5' GTCAAAAGCTGTTGACGCTTTGGCTACG 3' (Xd702: SEQ ID NO: 15) amplifies a 1602 bp vzrE2 fragment; 5' ACGGGAGAGGCGGTGTTAGTTGC 3' (Xd703; SEQ ID NO: 16) and 5' CGAT AGCGAC AATGCCGAGAACG 3' (Xd704; SEQ ID NO: 17) amplifies approximately a 0.9 kb virBl fragment.
- CTACAGACTGTTTACGGTTGGGC 3' (Xd688; SEQ ID NO:21) amplifies a 1670bp vzVE2 entire coding sequence; 5' GTGAGC AAAGCCGCTGCCAT ATC 3'
- SEQ ID NO:23 amplifies a 1102bp partial rep A fragment.
- Example 6 Media for bacterial growth Media used for Rhizobia growth in the Rhizobia-mediated transformation protocol employed to develop transformed plants were prepared using standard methods known to one skilled in the art. Media formulations are as follows:
- the ATA (AB minimal medium +TY +Arabinose) medium was modified from AB-
- Rhizobium transformation vectors were constructed using standard molecular techniques known to those skilled in the art. Plasmid constructs pMON96033 (FIG. 1; for soybean and canola transformation), pMON96036 (FIG. 2; for corn transformation), or pMON101316 (FIG. 3; for cotton transformation) were employed. All three constructs contain a pVSl replication origin, and either GUS, GFP, or both reporter genes. Recombinant plasmids were transferred into various modified Rhizobia strains by electroporation and confirmed by restriction enzyme digestion of miniprep DNA.
- the FMV CP4 gene used in constructing the plasmids has a promoter from Figwort Mosaic Virus (FMV) followed by the CP4syn gene, a synthetic gene encoding CP4 EPSP synthase. See, U.S. Patent No. 5,633,435, which is incorporated by reference herein. EPSP synthase, when expressed, confers a substantial degree of glyphosate resistance upon the plant cell and plants generated there from.
- the e35s GUS gene is a ⁇ -glucuronidase gene, which is typically used as a histochemical marker, behind the e35S promoter.
- the FMV GUS gene is the FMV promoter with GUS.
- the NOS NPTII gene has a neomycin phosphotransferase gene, which confers resistance to kanamycin, behind the promoter for the nopaline synthase gene (NOS).
- the Act 1 GFP gene has an actin promoter from rice and the gene for green fluorescence protein, which is a screenable marker.
- the e35s GFP gene is the gene for green fluorescence protein behind the e35S promoter. Overnight cultures of a Rhizobia strain containing the plasmid used were grown to log phase and then diluted to a final optical density of 0.3 to 0.6.
- Transformation was performed using an organogenesis process, as described by Martinell et al. (U.S. Patent 7,002,058), with modifications.
- pMON96033 containing the GUS and CP4 genes were transferred into various modified Rhizobia strains (e.g. Rhizobium sp., Mesorhizobium sp., Sinorhizobium sp.) by electroporation. Single colonies were recovered on MAG or TY medium with 50 mg/1 spectinomycin and 50 mg/1 kanamycin and inoculated in 20-50 mis of liquid TY medium with the same selection in a shaker at 30 0 C at 200 rpm.
- Rhizobia strains e.g. Rhizobium sp., Mesorhizobium sp., Sinorhizobium sp.
- Rhizobia culture The presence of plasmid in the Rhizobia culture was verified by restriction enzyme digestion of mini-prepared plasmid from 10 ml culture. The remaining liquid culture was mixed with glycerol to a final concentration of 20%, aliquoted and stored at -80 0 C as seed cultures.
- Rhizobia inoculum 0.25-1 ml frozen seed culture was inoculated into 250 or 500 mis of TY medium with the same antibiotic selection as above and grown overnight at 28°C with shaking at 200 rpm to mid-log growth phase. The culture was spun down and directly suspended in an inoculation medium (INO medium) at the concentration of OU66o about 0.3.
- INO medium inoculation medium
- Rhizobia culture was also used in soybean transformation.
- the overnight culture was resuspended in AB-TY medium at an OU 66 o of about 0.3 and acetosyringone was added to a final concentration of 100 ⁇ M.
- the culture was further shaken overnight at 28°C, spun down and re-suspended in the inoculation medium (INO medium) to a concentration of OU 66 o about 0.3.
- Soybean cultivar A3525 (U.S. Patent 7,002,058) was used for Rhizobia- mediated transformation.
- the method was modified for Rhizobia-mediated transformation as follows. Soybean seeds were germinated at room temperature in BGM medium and meristem explants from soy mature seeds were excised by machine (U.S. Application 20050005321). Soybean meristem explants in a PLANTCON lid were mixed with Rhizobia suspension in INO medium and sonicated in a W-113 Sonicator (Honda Electronics Co., Ltd, Aichi, Japan). After sonication, the explants were co-cultured in the same PLANTCON for 1-11 days at 23°C with a 16/8 hour light-dark photo period.
- the explants were then transferred onto the surface of the WPM selection medium containing 75 ⁇ M glyphosate. After 2 weeks, explants were transferred again to 75 ⁇ M glyphosate solid WPM medium. Shoots with fully expanded trifolia were recovered after 6-10 weeks post-inoculation and rooted in BRM medium (optionally with fungicide) containing 0.1 mg/1 IAA and 25 ⁇ M glyphosate selection. The rooted plantlets were transferred to the greenhouse for maturity.
- Table 2 Media components for soy transformation.
- the binary vector pMON96033 was transferred into Rhizobia strains and co- cultivated with soybean meristem explants, and GUS positive results were observed (Table 3 and FIG. 4).
- S. meliloti, S.fredii, M. loti and one R. leguminosarum showed T-DNA delivery into soybean explants demonstrated by small blue spots of GUS activity.
- Transgenic soybean plants were obtained from Rhizobia-mediated transformation experiments with various strains (Table 4). The transgenic nature of these soybean plants were confirmed by transgene copy number assay, where most of the transformants revealed 1-2 copy simple integration pattern. (Table 5).
- Rhizobia-mediated canola transformation To test if the gus transgene was transmitted to the seed progeny, seeds of two soy transgenic lines derived from Rhizobia-mediated transformation were stained in GUS solution (FIG. 5). The GM A9196D line was found to have one copy of the linked nos gene as assayed by the INVADER method. Twelve Rl seeds from this line were assayed for GUS by histochemical staining after imbibition and removal of seed coat, and 9 were GUS positive, indicating a segregation ratio of 3:1 for one copy insert. Example 9 Rhizobia- mediated canola transformation
- Rhizobium inoculum preparation A. Rhizobium inoculum preparation:
- Rhizobia strains with pMON96033 were used for canola transformation.
- the Rhizobia strains with the vector from a glycerol stock were inoculated into 10 mis of
- Canola transformation was done according to U.S. Patent 5,750,871 and Radke et ah, 1992. About 0.25g of canola seed, cv. Ebony, was transferred into a 1.5-ml Eppendorf tube and wetted with 95% ethanol. To sterilize the seeds, 1 ml of 1% sodium hypochlorite solution was added for 30 min. The bleaching solution was replaced with distilled water and the seeds were rinsed several times. The seeds were spread onto 1/10 MS germination medium and kept in a Percival incubator at 24°C with a 16 hour light photo period.
- Seed Germination Medium (1/10 MS medium): 1/1 OX MS minimal organics medium (Gibco BRL; final sucrose 0.3%), pyridoxine 50 ⁇ g/l, nicotinic acid 50 ⁇ g/l, glycine 200 ⁇ g/1, PHYTAGAR (Gibco Invitrogen) 6 g/1, pH 5.8; 20). Etiolated seedlings from 7-14 days old cultures were used as the explant source.
- Explants were inoculated in 1 x 10 8 bacteria/ml. Rhizobium suspension was drawn off, and the inoculated explants were placed onto co-cultivation plates on top of filter paper, and incubated for about 2 days at 24 0 C in continuous light. Co-cultivated explants were assayed for gus expression and found to contain blue spots indicating transformation of canola cells (FIG. 9).
- Co-cultivated explants were transferred to Callus Induction (B5-1) medium. for 6 days at 24 0 C in continuous light at ⁇ 100 ⁇ E/m 2 /s.
- Five strains from M. loti, R. leguminosarum, S. fredii and S. meliloti showed efficient gene transfer into canola explants with frequency of gus positive explants ranging from 21% to 73% (FIG. 10).
- B5-1 Gamborg's B5 salts (Caisson Labs), B5 vitamins (1 mg/1 nicotinic acid, 1 mg/1 pyridoxine-HCl, 10 mg/1 thiamine-HCl), 100 mg/1 inositol, 1 mg/1 2,4-D, sucrose 3%, carbenicillin (PhytoTechnology, Shawnee
- Mission, KS adjusted to final potency of 325 mg/1, 50 mg/1 Timentin, 7 g/1 PHYTAGAR (Gibco Invitrogen), pH5.8.
- Explants having callus were transferred to Shoot Regeneration medium (B5BZ) with AgNO 3 and incubated at 24 0 C in continuous light of 100 ⁇ E/m 2 /s for 14 days. Explants were next transferred to Shoot Regeneration medium (B5BZ) without AgNO 3 . Plants regenerated from glyphosate-selected calli were harvested ⁇ every two weeks. An example of early shoots showing gus expression is shown in FIG. 11.
- Gamborg's B5 salts (Caisson Labs), B5 vitamins (1 mg/1 nicotinic acid, 1 mg/1 pyridoxine-HCl, 10 mg/1 thiamine-HCl), 100 mg/1 inositol, BAP 3 mg/1 (Sigma), zeatin 1 mg/1 (Sigma), AgNO 3 , 3 mg/1 (Sigma), 45 mg/1 glyphosate (Monsanto, 96.5% dry acid,), sucrose 1%, carbenicillin (PhytoTechnology) with potency adjusted to 325 mg/1, 50 mg/1 Timentin, PHYTAGAR (Gibco Invitrogen) 7 mg/1, pH 5.8.
- B5BZ Gamborg's B5 salts (Caisson Labs), B5 vitamins (1 mg/1 nicotinic acid, 1 mg/1 pyridoxine-HCl, 10 mg/1 thiamine-HCl), 100 mg/1 inositol, BAP 3 mg/1 (Sigma, zeatin 1 mg/1 (Sigma), 45 mg/1 glyphosate, sucrose 1%, carbenicillin (PhytoTechnology) with potency adjusted to 325 mg/1, Timentin 50 mg/1, PHYTAGAR (Gibco Invitrogen) 7 mg/1, pH 5.8.
- Rooting medium B5-0 + 2IB A. Plants remained on Rooting medium until they formed roots Plants were maintained at 24 0 C, 16 hours light/day, -100 uE/m 2 /s.
- Rooting Medium (B5-0 + 2IB A): Gamborg's B5 salts (Caisson Labs), B5 vitamins (1 mg/1 nicotinic acid, 1 mg/1 pyridoxine-HCl, 10 mg/1 thiamine-HCl), 100 mg/1 inositol, IBA 2 mg/1 (indole-3 -butyric acid, Sigma) 150 mg/1 cefotaxime (PhytoTechnology), sucrose 1%, PHYTAGAR (Gibco Invitrogen) 6 g/1, pH 5.8.
- Rhizobia inoculum preparation pMON101316 was electroporated into Rhizobia strains, verified by restriction digestion of mini-prepared DNA and stored at -8O 0 C.
- the Rhizobia strains with the vector from the glycerol stock were inoculated into 10 mis of TY medium with kanamycin (50 mg/1) and spectinomycin (50 mg/1) in a 50 ml Falcon tube and shaken at 28°C overnight at 200 rpm.
- the overnight Rhizobia culture was pelleted by centrifugation, resuspended in 20 mis of MSO liquid medium and centrifuged again. The pellet was resuspended in 20 mis of MSO medium.
- the washed Rhizobia was diluted in MSO to an OU66o of about 1.0 for inoculation.
- hypocotyl explants were transferred onto a plate containing UMSEL 1629 selection medium, containing the appropriate selection agent. The plates were then covered with PARAFILM and cultured 28°C with a 16/8 hr. (day/night) photo period.
- the stably transformed calli were confirmed by X-Gluc staining for gus expression after 4 weeks on the selection medium (FIG. 13).
- All the hypocotyls were transferred to UMSEL 1788 medium, PARAFILMed and cultured for 7 days. Then the explants were transferred back onto UMSELl 629 for 4 weeks at 28°C with a 16/8 hr. (day/night) photo period.
- PHYTAGEL 1.7 ml (250 mg/ml) carbenicillin, ImI (100 mg/ml) cefotaxime, plus selection agent: kanamycin 40 mg/L final concentration.
- Carbenicillin, cefotaxime and selective agents were added post-autoclaving.
- Rhizobium inoculum preparation and media composition pMON96036 containing CP4, GUS and gfp expression cassettes was used for corn transformation.
- the vector was electroporated into various modified Rhizobia strains, verified, and stored at -80 0 C.
- Rhizobia containing the vector in a glycerol stock were streaked out on solid TY medium supplemented with antibiotics
- Rhizobia inoculation of the maize immature embryos Two days before Rhizobia inoculation of the maize immature embryos, one loopful of cells from a Rhizobia culture plate was inoculated into 25 mL of liquid TY medium supplemented with 62 mg/L of spectinomycin and 40 mg/L of kanamycin in a 250 niL flask. The flask was placed on a shaker at approximately 150-200 rpm and 27-28°C overnight. The Rhizobia culture was then diluted (1 to 5) in the same liquid medium and put back on the shaker. Several hours later, one day before inoculation, the Rhizobia cells were spun down at 3500 rpm for 15 min.
- the bacterial cell pellet was re-suspended in AB-TY or ATA induction broth with 200 ⁇ M of acetosyringone and 50 mg/L spectinomycin and 25 mg/L kanamycin and the cell density was adjusted to 0.2 at OU 660 -
- the bacterial cell culture (50 mL in each 250 mL flask) was then put back on the shaker and grown overnight. On the morning of inoculation day, the bacterial cells were spun down and washed with liquid 1/2 MS VI medium (U.S. Publ. 20040244075) supplemented with 200 ⁇ M of acetosyringone.
- the bacterial culture was centrifuged and the cell pellet was re-suspended in 1/2 MS PL medium (U.S. Publ. 20040244075) with 200 ⁇ M of acetosyringone and the cell density was adjusted to 1.0 at OU 66 o for inoculation.
- Reagents are commercially available and can be purchased from a number of suppliers (see, for example Sigma Chemical Co., St. Louis, Mo.).
- ears containing immature corn (Zea mays) embryos were isolated and transformed by bacterial co-culture as generally described by Cai et al. (U.S. Patent Application Publication 20040244075), except that the immature embryos were isolated from surface sterilized ears and directly dropped into the prepared Rhizobia cell suspension. After the Rhizobia cell suspension was removed, the immature embryos were transferred onto the co-culture medium (U.S. Publ. 20040244075).
- FIG. 15 represents GUS transient expression of corn immature embryos transformed with five Rhizobium strains of R. leguminosarum, M. loti, S. fredii and S. meliloti compared to Agrobacterium tumefaciens strain ABI using ATA induction medium. It was noted that routine AB minimal medium used for Agrobacterium growth and induction does not efficiently support Rhizobia growth. Rhizobia inoculums did not show significant growth in AB minimal medium without any selection after one week shaking with 220 rpm at 28°C.
- Table 7 Corn transformation frequency with different Rhizobia strains.
- the flowering transgenic corn plants were either selfed or outcrossed with the parental line of the corn genotype used for transformation (line LH244). Dry seeds were imbibed in water for 1 day for gus staining or 2 days for gfp counting, gus or gfp expression and segregation in the transgenic Rl seeds were confirmed (Table 8).
- Table 8 Transgene expression in the transgenic corn Rl seeds.
- Rhizobia strains may include Sinorhizobium spp., Mesorhizobium loti, Rhizobium leguminosarum and Rhizobium sp. NGR234, among others.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Botany (AREA)
- Medicinal Chemistry (AREA)
- Environmental Sciences (AREA)
- Developmental Biology & Embryology (AREA)
- Physiology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Immunology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Pretreatment Of Seeds And Plants (AREA)
- Cultivation Of Plants (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0711672-1A BRPI0711672A2 (en) | 2006-05-16 | 2007-05-16 | use of non-agrobacterium bacterial species for plant transformation |
AU2007253903A AU2007253903B2 (en) | 2006-05-16 | 2007-05-16 | Use of non-agrobacterium bacterial species for plant transformation |
CN2007800267523A CN101490266B (en) | 2006-05-16 | 2007-05-16 | Use of non-agrobacterium bacterial species for plant transformation |
CA2652377A CA2652377C (en) | 2006-05-16 | 2007-05-16 | Use of non-agrobacterium bacterial species for plant transformation |
EP07783830A EP2027275A2 (en) | 2006-05-16 | 2007-05-16 | Use of non-agrobacterium bacterial species for plant transformation |
JP2009511223A JP2009537150A (en) | 2006-05-16 | 2007-05-16 | Use of non-Agrobacterium species for plant transformation |
EP17159800.6A EP3196311B1 (en) | 2006-05-16 | 2007-05-16 | Use of non-agrobacterium bacterial species for plant transformation |
MX2008014663A MX2008014663A (en) | 2006-05-16 | 2007-05-16 | Use of non-agrobacterium bacterial species for plant transformation. |
EP19194116.0A EP3608413B1 (en) | 2006-05-16 | 2007-05-16 | Use of non-agrobacterium bacterial species for plant transformation |
EP14172424.5A EP2803728B1 (en) | 2006-05-16 | 2007-05-16 | Use of non-agrobacterium bacterial species for plant transformation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US80087206P | 2006-05-16 | 2006-05-16 | |
US60/800,872 | 2006-05-16 |
Publications (4)
Publication Number | Publication Date |
---|---|
WO2007137075A2 true WO2007137075A2 (en) | 2007-11-29 |
WO2007137075A3 WO2007137075A3 (en) | 2008-04-24 |
WO2007137075A8 WO2007137075A8 (en) | 2008-07-17 |
WO2007137075A9 WO2007137075A9 (en) | 2008-12-18 |
Family
ID=38723193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/069053 WO2007137075A2 (en) | 2006-05-16 | 2007-05-16 | Use of non-agrobacterium bacterial species for plant transformation |
Country Status (10)
Country | Link |
---|---|
US (6) | US7888552B2 (en) |
EP (6) | EP2027275A2 (en) |
JP (1) | JP2009537150A (en) |
CN (1) | CN101490266B (en) |
AU (1) | AU2007253903B2 (en) |
BR (1) | BRPI0711672A2 (en) |
CA (2) | CA2843961A1 (en) |
MX (1) | MX2008014663A (en) |
WO (1) | WO2007137075A2 (en) |
ZA (1) | ZA200809626B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007134234A2 (en) | 2006-05-12 | 2007-11-22 | Monsanto Technology Llc | Methods and compositions for obtaining marker-free transgenic plants |
WO2011076933A1 (en) * | 2009-12-23 | 2011-06-30 | Agriculture And Food Development Authority (Teagasc) | Method of transforming cells |
WO2016100832A1 (en) | 2014-12-19 | 2016-06-23 | AgBiome, Inc. | Sequences to facilitate incorporation of dna into the genome of an organism |
WO2017040343A1 (en) * | 2015-08-28 | 2017-03-09 | Pioneer Hi-Bred International, Inc. | Ochrobactrum-mediated transformation of plants |
WO2020128968A1 (en) | 2018-12-20 | 2020-06-25 | Benson Hill, Inc. | Pre-conditioning treatments to improve plant transformation |
WO2021260632A1 (en) | 2020-06-24 | 2021-12-30 | Benson Hill, Inc. | Plant cell treatments to improve plant transformation |
WO2022109289A1 (en) | 2020-11-20 | 2022-05-27 | AgBiome, Inc. | Compositions and methods for incorporation of dna into the genome of an organism |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7150993B2 (en) | 2003-08-05 | 2006-12-19 | Monsanto Technology Llc | Method for excision of plant embryos for transformation |
US7560611B2 (en) | 2003-08-05 | 2009-07-14 | Monsanto Technology Llc | Method and apparatus for substantially isolating plant tissues |
US8993846B2 (en) | 2005-09-06 | 2015-03-31 | Monsanto Technology Llc | Vectors and methods for improved plant transformation efficiency |
EP2027275A2 (en) | 2006-05-16 | 2009-02-25 | Monsanto Technology, LLC | Use of non-agrobacterium bacterial species for plant transformation |
US8030544B2 (en) * | 2007-03-09 | 2011-10-04 | Monsanto Technology Llc | Methods for plant transformation using spectinomycin selection |
EP2682403B1 (en) | 2008-05-08 | 2016-04-20 | Monsanto do Brasil LTDA | Genes and methods for increasing disease resistance in plants |
EP2302998A4 (en) * | 2008-06-20 | 2011-08-31 | Univ Georgia | Development of herbicide-resistant grass species |
US20110214196A1 (en) * | 2008-06-20 | 2011-09-01 | University Of Georgia Research Foundation | Development of herbicide-resistant grass species |
US8338665B2 (en) | 2008-07-16 | 2012-12-25 | Monsanto Technology Llc | Methods and vectors for producing transgenic plants |
WO2011116708A1 (en) * | 2010-03-26 | 2011-09-29 | 中国科学院上海生命科学研究院 | Method of changing plants' characters |
CN101818125B (en) * | 2010-04-19 | 2012-08-22 | 浙江省农业科学院 | Rhizobiumrhizogenes strain, bactericide and application thereof serving as seedling raising matrix in preventing and controlling tomato bacterial wilt |
BR112012032996A2 (en) * | 2010-06-24 | 2019-09-24 | Basf Plant Science Co Gmbh | method for accentuating plant performance traits in relation to control plants, plant, construct, use of contract, method for producing a transgenic plant, transgenic plant, harvestable parts of a plant, products derived from a plant, use of a nucleic acid, isolated nucleic acid, isolated polypeptide and isolated nucleic acid molecule |
BR122021012776B1 (en) | 2010-12-17 | 2022-08-16 | Monsanto Technology Llc | METHOD TO IMPROVE THE COMPETENCE OF A PLANT CELL FOR BACTERIAL-MEDIATED TRANSFORMATION |
US9392758B2 (en) * | 2011-08-26 | 2016-07-19 | Integrated Plant Genetics, Inc. | Transformation of mature citrus |
CN102503704B (en) * | 2011-11-21 | 2013-06-12 | 山东金正大生态工程股份有限公司 | Inoculation and fertilization integrated special controlled-release fertilizer for shamrocks, preparation and application thereof |
CN104245940A (en) | 2012-04-23 | 2014-12-24 | 拜尔作物科学公司 | Targeted genome engineering in plants |
WO2014071182A1 (en) | 2012-11-01 | 2014-05-08 | Massachusetts Institute Of Technology | Directed evolution of synthetic gene cluster |
BR112015017830A2 (en) | 2013-01-29 | 2017-11-21 | Bayer Cropscience Lp | processes and means to increase stress tolerance and biomass in plants |
US10173939B2 (en) * | 2013-03-12 | 2019-01-08 | Mid-America Distributing, Llc | Food-grade fertilizer for crops |
UA122386C2 (en) | 2013-07-01 | 2020-11-10 | Байєр Кропсаєнс Нв | Methods and means for modulating flowering time in monocot plants |
WO2016050512A1 (en) | 2014-10-03 | 2016-04-07 | Bayer Cropscience Nv | Methods and means for increasing stress tolerance and biomass in plants |
WO2017066164A1 (en) | 2015-10-16 | 2017-04-20 | Pioneer Hi-Bred International, Inc. | Methods and compositions for transformation comprising negative selection markers |
WO2018005491A1 (en) | 2016-06-28 | 2018-01-04 | Monsanto Technology Llc | Methods and compositions for use in genome modification in plants |
US20190225974A1 (en) | 2016-09-23 | 2019-07-25 | BASF Agricultural Solutions Seed US LLC | Targeted genome optimization in plants |
CN106755186B (en) * | 2017-02-14 | 2020-03-31 | 南京中医药大学 | Ochrobactrum intermedium exopolysaccharide and application thereof in soil improvement |
CN111373046A (en) | 2017-09-25 | 2020-07-03 | 先锋国际良种公司 | Tissue-preferred promoters and methods of use |
CN111587287A (en) | 2017-10-25 | 2020-08-25 | 皮沃特生物股份有限公司 | Methods and compositions for improved nitrogen-fixing engineered microorganisms |
US11377662B2 (en) | 2018-01-10 | 2022-07-05 | Wisconsin Alumni Research Foundation | Agrobacterium-mediated and particle bombardment transformation method for cowpea and dry bean meristem explants |
JP2021530968A (en) | 2018-05-24 | 2021-11-18 | モンサント テクノロジー エルエルシー | Genome editing in plants |
WO2020005933A1 (en) | 2018-06-28 | 2020-01-02 | Pioneer Hi-Bred International, Inc. | Methods for selecting transformed plants |
KR20210084557A (en) | 2018-10-31 | 2021-07-07 | 파이어니어 하이 부렛드 인터내쇼날 인코포레이팃드 | Compositions and methods for okrobacterum-mediated gene editing |
BR112021008329A2 (en) | 2018-10-31 | 2021-08-03 | Pioneer Hi-Bred International, Inc. | compositions and methods for ochrobactrum-mediated plant transformation |
CN109370956B (en) * | 2018-12-07 | 2019-12-24 | 康生元(肇庆)生物科技有限公司 | Slow-growing rhizobium japonicum strain, composition and application |
CA3123457A1 (en) | 2019-03-11 | 2020-09-17 | Pioneer Hi-Bred International, Inc. | Methods for clonal plant production |
WO2020190363A1 (en) | 2019-03-19 | 2020-09-24 | Massachusetts Institute Of Technology | Control of nitrogen fixation in rhizobia that associate with cereals |
WO2020198408A1 (en) | 2019-03-27 | 2020-10-01 | Pioneer Hi-Bred International, Inc. | Plant explant transformation |
EP3955730A1 (en) | 2019-04-18 | 2022-02-23 | Pioneer Hi-Bred International, Inc. | Embryogenesis factors for cellular reprogramming of a plant cell |
WO2020232448A1 (en) * | 2019-05-16 | 2020-11-19 | Purdue Research Foundation | Rhizobial trna-derived small rnas and uses thereof for regulating plant nodulation |
AU2021226415A1 (en) | 2020-02-28 | 2022-09-15 | Pioneer Hi-Bred International, Inc. | Sorghum doubled haploid production system |
CN111748572B (en) * | 2020-07-10 | 2022-04-15 | 科稷达隆(北京)生物技术有限公司 | Method for obtaining tandem enzyme function deletion mutant and application |
JP2023544016A (en) | 2020-09-30 | 2023-10-19 | パイオニア ハイ-ブレッド インターナショナル, インコーポレイテッド | Rapid transformation of monocot explants |
EP4231816A1 (en) | 2020-10-21 | 2023-08-30 | Pioneer Hi-Bred International, Inc. | Parthenogenesis factors and methods of using same |
CN116635529A (en) | 2020-10-21 | 2023-08-22 | 先锋国际良种公司 | Double haploid inducer |
CN113416739B (en) * | 2021-06-24 | 2022-04-19 | 黑龙江八一农垦大学 | Application of Saccharomyces rouxii gene in improving yield of HDMF (high-density multi-ferule) produced by microorganisms |
AU2022375817A1 (en) | 2021-11-01 | 2024-05-09 | Flagship Pioneering Innovations Vii, Llc | Polynucleotides for modifying organisms |
IL314307A (en) | 2022-01-20 | 2024-09-01 | Flagship Pioneering Innovations Vii Llc | Polynucleotides for modifying organisms |
WO2023183918A1 (en) | 2022-03-25 | 2023-09-28 | Pioneer Hi-Bred International, Inc. | Methods of parthenogenic haploid induction and haploid chromosome doubling |
CN115885846A (en) * | 2022-08-11 | 2023-04-04 | 南京农业大学 | Rapid tissue culture regeneration system for white carrots |
Family Cites Families (125)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5637A (en) | 1848-06-20 | Improvement in water-wheels | ||
US894A (en) | 1838-08-25 | Machinery for raising heavy bodies | ||
US47654A (en) | 1865-05-09 | Improvement in fluid-ejectors | ||
US489A (en) | 1837-11-25 | Improvement in the mode of constructing springs for carriages, wagons | ||
US5273A (en) | 1847-09-04 | George w | ||
US5094945A (en) | 1983-01-05 | 1992-03-10 | Calgene, Inc. | Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthase, production and use |
US5352605A (en) | 1983-01-17 | 1994-10-04 | Monsanto Company | Chimeric genes for transforming plant cells using viral promoters |
US4761373A (en) | 1984-03-06 | 1988-08-02 | Molecular Genetics, Inc. | Herbicide resistance in plants |
US6774283B1 (en) | 1985-07-29 | 2004-08-10 | Calgene Llc | Molecular farming |
NL8502948A (en) * | 1985-10-29 | 1987-05-18 | Rijksuniversiteit Leiden En Pr | METHOD FOR INCORPORATING "FOREIGN DNA" INTO THE NAME OF DICOTYLE PLANTS |
AU611080B2 (en) | 1986-01-08 | 1991-06-06 | Rhone-Poulenc Agrochimie | Haloarylnitrile degrading gene, its use, and cells containing the same |
US4810648A (en) | 1986-01-08 | 1989-03-07 | Rhone Poulenc Agrochimie | Haloarylnitrile degrading gene, its use, and cells containing the gene |
ES2018274T5 (en) | 1986-03-11 | 1996-12-16 | Plant Genetic Systems Nv | VEGETABLE CELLS RESISTANT TO GLUTAMINE SYNTHETASE INHIBITORS, PREPARED BY GENETIC ENGINEERING. |
US5107065A (en) | 1986-03-28 | 1992-04-21 | Calgene, Inc. | Anti-sense regulation of gene expression in plant cells |
US5750871A (en) | 1986-05-29 | 1998-05-12 | Calgene, Inc. | Transformation and foreign gene expression in Brassica species |
US5637489A (en) | 1986-08-23 | 1997-06-10 | Hoechst Aktiengesellschaft | Phosphinothricin-resistance gene, and its use |
US5273894A (en) | 1986-08-23 | 1993-12-28 | Hoechst Aktiengesellschaft | Phosphinothricin-resistance gene, and its use |
US5276268A (en) | 1986-08-23 | 1994-01-04 | Hoechst Aktiengesellschaft | Phosphinothricin-resistance gene, and its use |
US5605011A (en) | 1986-08-26 | 1997-02-25 | E. I. Du Pont De Nemours And Company | Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase |
US5378824A (en) | 1986-08-26 | 1995-01-03 | E. I. Du Pont De Nemours And Company | Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase |
US5013659A (en) | 1987-07-27 | 1991-05-07 | E. I. Du Pont De Nemours And Company | Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase |
US5359142A (en) | 1987-01-13 | 1994-10-25 | Monsanto Company | Method for enhanced expression of a protein |
US5322938A (en) | 1987-01-13 | 1994-06-21 | Monsanto Company | DNA sequence for enhancing the efficiency of transcription |
CN87100603A (en) | 1987-01-21 | 1988-08-10 | 昂科公司 | Vaccines against melanoma |
US5077209A (en) * | 1987-07-27 | 1991-12-31 | National Development Corporation | Dicarboxylic acid transport genes |
US5229114A (en) | 1987-08-20 | 1993-07-20 | The United States Of America As Represented By The Secretary Of Agriculture | Approaches useful for the control of root nodulation of leguminous plants |
US5597718A (en) | 1988-10-04 | 1997-01-28 | Agracetus | Genetically engineering cotton plants for altered fiber |
BR9007159A (en) | 1989-02-24 | 1991-12-10 | Monsanto Co | SYNTHETIC GENES OF PLANTS AND PROCESS FOR THE PREPARATION OF THE SAME |
US5106739A (en) | 1989-04-18 | 1992-04-21 | Calgene, Inc. | CaMv 355 enhanced mannopine synthase promoter and method for using same |
US5689041A (en) | 1989-08-10 | 1997-11-18 | Plant Gentic Systems N.V. | Plants modified with barstar for fertility restoration |
US6051753A (en) | 1989-09-07 | 2000-04-18 | Calgene, Inc. | Figwort mosaic virus promoter and uses |
ES2150900T3 (en) | 1989-10-31 | 2000-12-16 | Monsanto Co | PROMOTER FOR TRANSGENIC PLANTS. |
US5641876A (en) | 1990-01-05 | 1997-06-24 | Cornell Research Foundation, Inc. | Rice actin gene and promoter |
US5837848A (en) | 1990-03-16 | 1998-11-17 | Zeneca Limited | Root-specific promoter |
US6426447B1 (en) | 1990-11-14 | 2002-07-30 | Monsanto Technology Llc | Plant seed oils |
US5543576A (en) | 1990-03-23 | 1996-08-06 | Mogen International | Production of enzymes in seeds and their use |
US5969214A (en) | 1990-06-11 | 1999-10-19 | Calgene, Inc. | Glycogen biosynthetic enzymes in plants |
EP0536293B1 (en) | 1990-06-18 | 2002-01-30 | Monsanto Technology LLC | Increased starch content in plants |
US5498830A (en) | 1990-06-18 | 1996-03-12 | Monsanto Company | Decreased oil content in plant seeds |
AU655197B2 (en) | 1990-06-25 | 1994-12-08 | Monsanto Technology Llc | Glyphosate tolerant plants |
US6483008B1 (en) | 1990-08-15 | 2002-11-19 | Calgene Llc | Methods for producing plants with elevated oleic acid content |
US5633435A (en) | 1990-08-31 | 1997-05-27 | Monsanto Company | Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases |
US5427785A (en) * | 1990-11-21 | 1995-06-27 | Research Seeds, Inc. | Rhizosheric bacteria |
US5512466A (en) | 1990-12-26 | 1996-04-30 | Monsanto Company | Control of fruit ripening and senescence in plants |
US5767366A (en) | 1991-02-19 | 1998-06-16 | Louisiana State University Board Of Supervisors, A Governing Body Of Louisiana State University Agricultural And Mechanical College | Mutant acetolactate synthase gene from Ararbidopsis thaliana for conferring imidazolinone resistance to crop plants |
US5593874A (en) | 1992-03-19 | 1997-01-14 | Monsanto Company | Enhanced expression in plants |
EP0604662B1 (en) | 1992-07-07 | 2008-06-18 | Japan Tobacco Inc. | Method of transforming monocotyledon |
AU670316B2 (en) | 1992-07-27 | 1996-07-11 | Pioneer Hi-Bred International, Inc. | An improved method of (agrobacterium)-mediated transformation of cultured soybean cells |
US6011199A (en) | 1992-12-15 | 2000-01-04 | Commonwealth Scientific | Method for producing fruiting plants with improved fruit flavour |
US6414222B1 (en) | 1993-02-05 | 2002-07-02 | Regents Of The University Of Minnesota | Gene combinations for herbicide tolerance in corn |
US5362865A (en) | 1993-09-02 | 1994-11-08 | Monsanto Company | Enhanced expression in plants using non-translated leader sequences |
EP0670670A4 (en) | 1993-09-30 | 1996-04-24 | Agracetus | Transgenic cotton plants producing heterologous peroxidase. |
US6828475B1 (en) | 1994-06-23 | 2004-12-07 | Calgene Llc | Nucleic acid sequences encoding a plant cytoplasmic protein involved in fatty acyl-CoA metabolism |
US6140075A (en) | 1994-07-25 | 2000-10-31 | Monsanto Company | Method for producing antibodies and protein toxins in plant cells |
US6080560A (en) | 1994-07-25 | 2000-06-27 | Monsanto Company | Method for producing antibodies in plant cells |
US5750876A (en) | 1994-07-28 | 1998-05-12 | Monsanto Company | Isoamylase gene, compositions containing it, and methods of using isoamylases |
US5633437A (en) | 1994-10-11 | 1997-05-27 | Sandoz Ltd. | Gene exhibiting resistance to acetolactate synthase inhibitor herbicides |
US5716837A (en) | 1995-02-10 | 1998-02-10 | Monsanto Company | Expression of sucrose phosphorylase in plants |
US6091002A (en) | 1996-03-13 | 2000-07-18 | Monsanto Company | Polyhydroxyalkanoates of narrow molecular weight distribution prepared in transgenic plants |
US6946588B2 (en) | 1996-03-13 | 2005-09-20 | Monsanto Technology Llc | Nucleic acid encoding a modified threonine deaminase and methods of use |
US5958745A (en) | 1996-03-13 | 1999-09-28 | Monsanto Company | Methods of optimizing substrate pools and biosynthesis of poly-β-hydroxybutyrate-co-poly-β-hydroxyvalerate in bacteria and plants |
US6166292A (en) | 1996-04-26 | 2000-12-26 | Ajinomoto Co., Inc. | Raffinose synthetase gene, method of producing raffinose and transgenic plant |
US5985605A (en) | 1996-06-14 | 1999-11-16 | Her Majesty The Queen In Right Of Canada, As Represented By The Dept. Of Agriculture & Agri-Food Canada | DNA sequences encoding phytases of ruminal microorganisms |
US5998700A (en) | 1996-07-02 | 1999-12-07 | The Board Of Trustees Of Southern Illinois University | Plants containing a bacterial Gdha gene and methods of use thereof |
US5850019A (en) | 1996-08-06 | 1998-12-15 | University Of Kentucky Research Foundation | Promoter (FLt) for the full-length transcript of peanut chlorotic streak caulimovirus (PCLSV) and expression of chimeric genes in plants |
US5750848A (en) | 1996-08-13 | 1998-05-12 | Monsanto Company | DNA sequence useful for the production of polyhydroxyalkanoates |
US6140078A (en) | 1996-09-05 | 2000-10-31 | Unilever Patent Holdings | Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein |
CA2268263A1 (en) | 1996-10-29 | 1998-05-07 | Calgene Llc | Plant cellulose synthase and promoter sequences |
WO1998031822A1 (en) | 1997-01-20 | 1998-07-23 | Plant Genetic Systems, N.V. | Pathogen-induced plant promoters |
US5922564A (en) | 1997-02-24 | 1999-07-13 | Performance Plants, Inc. | Phosphate-deficiency inducible promoter |
US6040497A (en) | 1997-04-03 | 2000-03-21 | Dekalb Genetics Corporation | Glyphosate resistant maize lines |
US7105724B2 (en) | 1997-04-04 | 2006-09-12 | Board Of Regents Of University Of Nebraska | Methods and materials for making and using transgenic dicamba-degrading organisms |
US6171640B1 (en) | 1997-04-04 | 2001-01-09 | Monsanto Company | High beta-conglycinin products and their use |
AR013633A1 (en) | 1997-04-11 | 2001-01-10 | Calgene Llc | METHOD FOR THE ALTERATION OF THE COMPOSITION OF AVERAGE CHAIN FAT ACIDS IN VEGETABLE SEEDS THAT EXPRESS A THIOESTERASE THAT PREFERS HETEROLOGICAL VEGETABLE AVERAGE CHAIN. |
US5972664A (en) | 1997-04-11 | 1999-10-26 | Abbott Laboratories | Methods and compositions for synthesis of long chain poly-unsaturated fatty acids |
US6380466B1 (en) | 1997-05-08 | 2002-04-30 | Calgene Llc | Production of improved rapeseed exhibiting yellow-seed coat |
ATE323768T1 (en) | 1997-06-05 | 2006-05-15 | Calgene Llc | FAT ACYL-COA: FAT ACYL CARBON O-ACYL TRANSFERASE |
IL122270A0 (en) | 1997-11-20 | 1998-04-05 | Yeda Res & Dev | DNA molecules conferring to plants resistance to a herbicide and plants transformed thereby |
US6072103A (en) | 1997-11-21 | 2000-06-06 | Calgene Llc | Pathogen and stress-responsive promoter for gene expression |
US6506559B1 (en) | 1997-12-23 | 2003-01-14 | Carnegie Institute Of Washington | Genetic inhibition by double-stranded RNA |
US6653530B1 (en) | 1998-02-13 | 2003-11-25 | Calgene Llc | Methods for producing carotenoid compounds, tocopherol compounds, and specialty oils in plant seeds |
WO1999043819A1 (en) | 1998-02-26 | 1999-09-02 | Pioneer Hi-Bred International, Inc. | Family of maize pr-1 genes and promoters |
ES2273127T3 (en) | 1998-02-26 | 2007-05-01 | Pioneer Hi-Bred International, Inc. | ALFA-TUBULIN 3-18 CORN PROMOTER. |
AUPP249298A0 (en) | 1998-03-20 | 1998-04-23 | Ag-Gene Australia Limited | Synthetic genes and genetic constructs comprising same I |
US6635806B1 (en) | 1998-05-14 | 2003-10-21 | Dekalb Genetics Corporation | Methods and compositions for expression of transgenes in plants |
US6307123B1 (en) | 1998-05-18 | 2001-10-23 | Dekalb Genetics Corporation | Methods and compositions for transgene identification |
EP1084256A2 (en) | 1998-06-05 | 2001-03-21 | Calgene LLC | Acyl coa:cholesterol acyltransferase related nucleic acid sequences |
CA2330024C (en) | 1998-06-12 | 2012-01-24 | Calgene Llc | Polyunsaturated fatty acids in plants |
WO2000001713A2 (en) | 1998-07-02 | 2000-01-13 | Calgene Llc | Diacylglycerol acyl transferase proteins |
BR9912019A (en) | 1998-07-10 | 2002-02-19 | Calgene Llc | Expression of eukaryotic peptides in plant plastids |
JP2000083680A (en) | 1998-07-16 | 2000-03-28 | Nippon Paper Industries Co Ltd | Introduction of gene into plant utilizing adventitious bud redifferentiation gene put under control due to photoinduction type promoter as selection marker gene and vector for transduction of gene into plant used therefor |
US6476294B1 (en) | 1998-07-24 | 2002-11-05 | Calgene Llc | Plant phosphatidic acid phosphatases |
BR9912745A (en) | 1998-08-04 | 2001-11-06 | Cargill Inc | Promoters of plant fatty acid denaturase |
US6365802B2 (en) | 1998-08-14 | 2002-04-02 | Calgene Llc | Methods for increasing stearate content in soybean oil |
US6531648B1 (en) | 1998-12-17 | 2003-03-11 | Syngenta Participations Ag | Grain processing method and transgenic plants useful therein |
WO2000042207A2 (en) | 1999-01-14 | 2000-07-20 | Monsanto Technology Llc | Soybean transformation method |
AU776316B2 (en) | 1999-04-15 | 2004-09-02 | Monsanto Company | Nucleic acid sequences to proteins involved in tocopherol synthesis |
US6194636B1 (en) | 1999-05-14 | 2001-02-27 | Dekalb Genetics Corp. | Maize RS324 promoter and methods for use thereof |
US6429357B1 (en) | 1999-05-14 | 2002-08-06 | Dekalb Genetics Corp. | Rice actin 2 promoter and intron and methods for use thereof |
US6207879B1 (en) | 1999-05-14 | 2001-03-27 | Dekalb Genetics Corporation | Maize RS81 promoter and methods for use thereof |
US6232526B1 (en) | 1999-05-14 | 2001-05-15 | Dekalb Genetics Corp. | Maize A3 promoter and methods for use thereof |
US6489461B1 (en) | 1999-06-08 | 2002-12-03 | Calgene Llc | Nucleic acid sequences encoding proteins involved in fatty acid beta-oxidation and methods of use |
US6770465B1 (en) | 1999-06-09 | 2004-08-03 | Calgene Llc | Engineering B-ketoacyl ACP synthase for novel substrate specificity |
US7105730B1 (en) | 1999-07-12 | 2006-09-12 | Monsanto Technology L.L.C. | Nucleic acid molecules and other molecules associated with sterol synthesis and metabolism |
PT1240340E (en) | 1999-12-16 | 2012-08-01 | Monsanto Technology Llc | Dna constructs for expression of heterologous polypeptides in plants |
US6613963B1 (en) | 2000-03-10 | 2003-09-02 | Pioneer Hi-Bred International, Inc. | Herbicide tolerant Brassica juncea and method of production |
CA2412400A1 (en) | 2000-07-25 | 2002-01-31 | Calgene Llc | Nucleic acid sequences encoding beta-ketoacyl-acp synthase and uses thereof |
IL155599A0 (en) | 2000-10-30 | 2003-11-23 | Maxygen Inc | Polynucleotides encoding proteins which catalyze acetylation of glyphosate |
US7151204B2 (en) | 2001-01-09 | 2006-12-19 | Monsanto Technology Llc | Maize chloroplast aldolase promoter compositions and methods for use thereof |
US20030046733A1 (en) * | 2001-09-06 | 2003-03-06 | Dias Kalyani Mallika | Transformation of soybeans |
BR0312771A (en) | 2002-07-18 | 2005-05-03 | Monsanto Technology Llc | Methods for using artificial polynucleotides and compositions thereof to reduce transgene silencing |
CN1745173B (en) | 2002-12-18 | 2012-11-28 | 阿则耐克斯公司 | Genes conferring herbicide resistance |
AU2004213818B2 (en) | 2003-02-18 | 2008-06-05 | Monsanto Technology Llc | Glyphosate resistant class I 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) |
WO2005003362A2 (en) | 2003-03-10 | 2005-01-13 | Athenix Corporation | Methods to confer herbicide resistance |
US7682829B2 (en) | 2003-05-30 | 2010-03-23 | Monsanto Technology Llc | Methods for corn transformation |
CA2528876C (en) | 2003-06-16 | 2012-01-10 | Monsanto Technology Llc | Method and apparatus for preparation of genetically transformable plant tissue |
ATE385520T1 (en) | 2003-08-08 | 2008-02-15 | Monsanto Technology Llc | PROMOTOR MOLECULES FOR USE IN PLANTS |
WO2005030968A2 (en) | 2003-09-25 | 2005-04-07 | Monsanto Technology Llc | Actin regulatory elements for use in plants |
US20050289667A1 (en) | 2004-06-28 | 2005-12-29 | Cambia | Biological gene transfer system for eukaryotic cells |
US20050289672A1 (en) * | 2004-06-28 | 2005-12-29 | Cambia | Biological gene transfer system for eukaryotic cells |
EP1781082A4 (en) * | 2004-06-28 | 2008-08-27 | Cambia | Biological gene transfer system for eukaryotic cells |
WO2006023869A2 (en) | 2004-08-24 | 2006-03-02 | Monsanto Technology Llc | Adenylate translocator protein gene non-coding regulatory elements for use in plants |
NZ554410A (en) * | 2004-09-08 | 2010-05-28 | Simplot Co J R | Plant-specific genetic elements and transfer cassettes for plant transformation |
US20060200878A1 (en) | 2004-12-21 | 2006-09-07 | Linda Lutfiyya | Recombinant DNA constructs and methods for controlling gene expression |
EP2027275A2 (en) | 2006-05-16 | 2009-02-25 | Monsanto Technology, LLC | Use of non-agrobacterium bacterial species for plant transformation |
-
2007
- 2007-05-16 EP EP07783830A patent/EP2027275A2/en not_active Withdrawn
- 2007-05-16 EP EP14172424.5A patent/EP2803728B1/en active Active
- 2007-05-16 EP EP11155205A patent/EP2371964A1/en not_active Withdrawn
- 2007-05-16 CA CA2843961A patent/CA2843961A1/en not_active Abandoned
- 2007-05-16 CA CA2652377A patent/CA2652377C/en active Active
- 2007-05-16 WO PCT/US2007/069053 patent/WO2007137075A2/en active Application Filing
- 2007-05-16 MX MX2008014663A patent/MX2008014663A/en active IP Right Grant
- 2007-05-16 BR BRPI0711672-1A patent/BRPI0711672A2/en not_active Application Discontinuation
- 2007-05-16 EP EP19194116.0A patent/EP3608413B1/en active Active
- 2007-05-16 JP JP2009511223A patent/JP2009537150A/en active Pending
- 2007-05-16 EP EP11155228A patent/EP2361986A1/en not_active Withdrawn
- 2007-05-16 AU AU2007253903A patent/AU2007253903B2/en active Active
- 2007-05-16 EP EP17159800.6A patent/EP3196311B1/en active Active
- 2007-05-16 CN CN2007800267523A patent/CN101490266B/en active Active
- 2007-05-16 US US11/749,583 patent/US7888552B2/en active Active
-
2008
- 2008-11-11 ZA ZA200809626A patent/ZA200809626B/en unknown
-
2010
- 2010-12-21 US US12/975,259 patent/US20130160157A1/en not_active Abandoned
-
2014
- 2014-06-06 US US14/298,739 patent/US9365859B2/en active Active
-
2016
- 2016-05-10 US US15/151,383 patent/US10006035B2/en active Active
-
2018
- 2018-05-11 US US15/977,229 patent/US10724042B2/en active Active
-
2020
- 2020-06-24 US US16/910,854 patent/US20200385746A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007134234A2 (en) | 2006-05-12 | 2007-11-22 | Monsanto Technology Llc | Methods and compositions for obtaining marker-free transgenic plants |
WO2011076933A1 (en) * | 2009-12-23 | 2011-06-30 | Agriculture And Food Development Authority (Teagasc) | Method of transforming cells |
US9822375B2 (en) | 2009-12-23 | 2017-11-21 | University College Dublin, National University Of Ireland | Method of transforming cells |
WO2016100832A1 (en) | 2014-12-19 | 2016-06-23 | AgBiome, Inc. | Sequences to facilitate incorporation of dna into the genome of an organism |
US10947556B2 (en) | 2014-12-19 | 2021-03-16 | AgBiome, Inc. | Sequences to facilitate incorporation of DNA into the genome of an organism |
US11981907B2 (en) | 2014-12-19 | 2024-05-14 | AgBiome, Inc. | Sequences to facilitate incorporation of DNA into the genome of an organism |
WO2017040343A1 (en) * | 2015-08-28 | 2017-03-09 | Pioneer Hi-Bred International, Inc. | Ochrobactrum-mediated transformation of plants |
JP2018527931A (en) * | 2015-08-28 | 2018-09-27 | パイオニア ハイ−ブレッド インターナショナル, インコーポレイテッド | OCRROBACTRUM-mediated transformation of plants |
US11236347B2 (en) | 2015-08-28 | 2022-02-01 | Pioneer Hi-Bred International, Inc. | Ochrobactrum-mediated transformation of plants |
WO2020128968A1 (en) | 2018-12-20 | 2020-06-25 | Benson Hill, Inc. | Pre-conditioning treatments to improve plant transformation |
WO2021260632A1 (en) | 2020-06-24 | 2021-12-30 | Benson Hill, Inc. | Plant cell treatments to improve plant transformation |
WO2022109289A1 (en) | 2020-11-20 | 2022-05-27 | AgBiome, Inc. | Compositions and methods for incorporation of dna into the genome of an organism |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200385746A1 (en) | Use of non-agrobacterium bacterial species for plant transformation | |
EP3341483B1 (en) | Ochrobactrum-mediated transformation of plants | |
US6603061B1 (en) | Agrobacterium-mediated plant transformation method | |
WO2006004914A2 (en) | Biological gene transfer system for eukaryotic cells | |
WO1999010512A1 (en) | Improved agrobacterium-mediated transformation of plants | |
Rathore et al. | Capability of the plant-associated bacterium, Ensifer adhaerens strain OV14, to genetically transform its original host Brassica napus | |
CA2538987C (en) | A method for improving plant transformation efficiency by adding copper ion | |
US20050289667A1 (en) | Biological gene transfer system for eukaryotic cells | |
US20050289672A1 (en) | Biological gene transfer system for eukaryotic cells | |
Momtaz et al. | Transformation of Egyptian cotton tissue (Gossypium barbadense) using Agrobacterium tumefaciens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780026752.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07783830 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007253903 Country of ref document: AU Ref document number: 2007783830 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2008/014663 Country of ref document: MX Ref document number: 2652377 Country of ref document: CA Ref document number: 2009511223 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 9778/DELNP/2008 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2007253903 Country of ref document: AU Date of ref document: 20070516 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: PI0711672 Country of ref document: BR Kind code of ref document: A2 Effective date: 20081117 |