WO2007136075A1 - Fluorescent microscope - Google Patents

Fluorescent microscope Download PDF

Info

Publication number
WO2007136075A1
WO2007136075A1 PCT/JP2007/060466 JP2007060466W WO2007136075A1 WO 2007136075 A1 WO2007136075 A1 WO 2007136075A1 JP 2007060466 W JP2007060466 W JP 2007060466W WO 2007136075 A1 WO2007136075 A1 WO 2007136075A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
objective lens
microscope
light
shielding member
Prior art date
Application number
PCT/JP2007/060466
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Syono
Michihiro Nakamura
Original Assignee
The University Of Tokushima
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokushima filed Critical The University Of Tokushima
Priority to JP2008516710A priority Critical patent/JP4998804B2/en
Publication of WO2007136075A1 publication Critical patent/WO2007136075A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0008Microscopes having a simple construction, e.g. portable microscopes

Definitions

  • the present invention relates to a fluorescence microscope that improves operability and an easily portable fluorescence microscope that can observe observation objects such as viruses on site.
  • Patent Document 1 In order to observe a virus by the method described in Patent Document 1, a fluorescence microscope for observing the fluorescence emitted from the observation sample is required, but generally, the fluorescence emitted from the sample is extremely weak.
  • the fluorescent microscope is desired to be used in a dark room where external light is blocked to some extent.
  • Patent Document 2 discloses a technique related to a light-shielding member so that stray light around a sample can be reliably blocked, and an observer who looks at an eyepiece can clearly observe fluorescence.
  • Patent Document 1 International Publication No. 2003Z060519
  • Patent Document 2 JP 2005-345718
  • the microscope it is preferable to use a virus measuring method described in Patent Document 1 and to provide a fluorescent microscope that is small and light and easy to carry to the site. Also the microscope It is preferable that the fluorescence microscope be capable of performing fluorescence observation even in a dark room and having good operability. In addition, it is desirable that the microscope has a means for transmitting the data of observation images at the site to experts.
  • the object of the present invention is a fluorescent microscope that is easy to carry with a small size and light weight that solves the above-mentioned problems, and has good operability, and is preferably used in combination with the virus measurement method described in Patent Document 1.
  • the object is to provide an example fluorescence microscope.
  • the present invention provides a light source that generates excitation light, an illumination optical system that irradiates a sample placed at an observation position with excitation light from the light source via an objective lens, and the excitation
  • the shielding member includes an observation system that acquires the fluorescence generated by the sample by light irradiation and obtains a sample image, and a shielding member provided so as to cover an optical path between the objective lens and the sample.
  • a fluorescent member characterized in that it is made of a light-transmitting synthetic resin that absorbs light of a specific wavelength, and is a cylindrical member provided so as to cover a substantially cylindrical objective lens unit in which the objective lens is provided. Provide a microscope.
  • the portion covered by the shielding member is a substantially cylindrical objective lens unit in which the objective lens is provided and the optical path between the objective lens and the sample, and completely covers the microscope stage. Therefore, the visibility of the microscope stage and the operability of the microscope can be improved.
  • the shielding member absorbs light of a specific wavelength but transmits light of other wavelengths,
  • the transparency is such that the objective lens unit and the sample can be visually recognized through the shielding member. That is, since the position of the tip of the objective lens unit and the position of the sample can be confirmed through the shielding member, the operability of the microscope can be improved.
  • the shielding member absorbs light of a specific wavelength, for example, by setting the reflected light of the excitation light irradiated on the sample and the wavelength of the fluorescence emitted from the sample to this specific wavelength, The reflected light and fluorescence of the excitation light can be blocked inside and outside the shielding member.
  • the present invention provides the fluorescence microscope according to the first aspect, wherein the shielding member is movable up and down along the surface of the objective lens unit and is at an arbitrary position. And a fluorescence microscope characterized in that a fixing screw is provided for fixing to the objective lens unit.
  • the position of the shielding member relative to the objective lens unit can be arbitrarily adjusted. For this reason, even if the distance between the objective lens and the sample, that is, the focal length is changed, light of a specific wavelength can be appropriately blocked.
  • the shielding member when the shielding member is fixed to the objective lens unit at an appropriate position, it can function as a stopper when the objective lens unit is brought close to the microscope stage, and can be used as a reference for the focal length.
  • the fluorescence microscope according to the fifth aspect includes a microscope stage on which a sample is placed, and a sample mark for displaying the sample position is provided on the microscope stage.
  • the fluorescence microscope according to the sixth aspect includes a slide glass on which a sample is placed, and a sample mark for displaying the sample position is provided on the slide glass.
  • the sample mark is a fluorescent mark
  • the fluorescent microscope according to the eighth aspect the sample mark is a visible mark. This fluorescent microscope has a fluorescent mark and a visible mark, and the sample can be easily placed at an accurate position.
  • the present invention provides the fluorescence microscope according to the first aspect, wherein the light source is a semiconductor laser.
  • the straightness of the excitation light can be improved by using a semiconductor laser as the light source.
  • the semiconductor laser is as small as or smaller than that of a mercury lamp. Can be typed.
  • semiconductor lasers have a longer life and better energy efficiency in light emission than mercury lamps.
  • mercury lamps are vulnerable to vibration and unsuitable for carrying, and there is a concern that high-pressure mercury vapor will cause debris to scatter when the mercury lamp is damaged. Is suitable.
  • the semiconductor laser can include an irradiation intensity adjusting unit that can arbitrarily adjust the irradiation intensity of the laser.
  • the irradiation intensity of the semiconductor laser can be adjusted by the irradiation intensity adjusting means, the intensity of the excitation light irradiated to the sample, that is, the intensity of the fluorescence emitted from the sample can be adjusted to an intensity suitable for observation.
  • the illuminance adjustment of the light source is usually performed by replacing the ND filter (dark filter), so that the illuminance adjustment becomes stepwise.
  • the irradiation intensity of the excitation light can be adjusted steplessly in this viewpoint, it is possible to select an illuminance more suitable for observation.
  • the semiconductor laser can be powered by a portable small battery.
  • the portable microscope can be easily moved and carried by using a portable small battery as a power source for the semiconductor laser.
  • the observation system can capture the sample image with a digital camera.
  • a digital camera capable of converting a photographed image of a sample image into digital data, that is, electronic data, is used as an observation system.
  • Digital cameras include digital still cameras that record still images or digital video cameras that record moving images.
  • the digital camera means in a broad sense one that includes storage means for temporarily or permanently storing electronic data of a photographed image, and one that includes a sensor portion called an image sensor.
  • the observation system can include transmission means for transmitting electronic data of a sample image photographed by the digital camera by radio waves.
  • the transmission means inputs the electronic data of the sample image taken by the digital camera into an apparatus that can restore the electronic data such as a display. Transmit by radio wave so that you can
  • This transmission means is suitable when, for example, a device capable of recovering electronic data is located away from the fluorescence microscope.
  • this transmission means is suitable, for example, when an expert who can determine an observation image is in a place away from the fluorescent microscope and transmits electronic data to the expert by radio waves.
  • the present invention provides the fluorescence microscope according to the first aspect, wherein the observation system is configured to fluoresce a sample image photographing unit in which the digital camera and a display that projects the sample image are integrated.
  • a fluorescent microscope characterized in that it can be removed from the microscope.
  • the digital camera and the display for projecting the sample image are integrated to form a sample image photographing unit, and the sample image photographing unit can be attached to and detached from the fluorescence microscope. Since this sample image capturing unit is considered to be a relatively expensive part, it is effective for the management, maintenance, and compatibility of the sample image capturing unit to enable removal of the sample image capturing unit with the help of a fluorescence microscope. It becomes.
  • the number of the objective lens units can be one.
  • the size of the microscope can be reduced compared to the case where an objective lens unit with multiple magnifications can be switched by a revolver. can do.
  • the objective lens unit can be fixed to a lens barrel portion of the fluorescence microscope by screwing.
  • the objective lens unit is fixed to the lens barrel portion of the microscope with a screw, and can be replaced with an objective lens unit of another magnification by loosening the screw. For this reason, even if it is a single fluorescence microscope and only one objective lens unit can be attached at a time, it is possible to observe various magnifications by replacing the objective lens unit.
  • the illumination optical system and the optical filter of Z or the observation system can be replaced with optical filters having different light transmission characteristics.
  • the wavelength of the excitation light that is the optical filter of the illumination optical system is specified. Change the wavelength of the excitation light to be used and the fluorescent substance to be labeled on the sample by making it possible to replace the optical filter for specifying the wavelength of the fluorescence that is the optical filter for the observation system and the optical filter for the observation system It can respond to changes.
  • the microscope stage on which the sample is placed can be a microscope stage that can adjust only the position in the two horizontal axes.
  • the observation position of the sample can be finely adjusted by the microscope stage having the function of adjusting the position in the two horizontal axes. Also, in reducing the size of the microscope, a structure in which the objective lens unit is moved up and down is more suitable than a structure in which the focal length for sample observation is adjusted by moving the microscope stage up and down.
  • the microscope stage on which the sample is placed can be provided with a groove on which the slide glass is placed.
  • the position of the slide glass can be made almost constant by providing a groove for positioning the slide glass on the microscope stage.
  • the present invention provides the fluorescence microscope according to the first aspect, wherein the microscope stage on which the sample is placed is provided with means for detecting whether or not the sample is placed. Provide a microscope.
  • the excitation light is irradiated when the sample is not on the microscope stage. It is possible to stop.
  • the sample may be a virus or an antibody that is labeled with a fluorescent dye and aggregates by an aggregation reaction.
  • the sample to be observed is labeled with a fluorescent dye and is a virus or an antibody that aggregates by an agglutination reaction.
  • the present fluorescence microscope can be suitably used for observing viruses or antibodies that are labeled with a fluorescent dye and aggregate by an agglutination reaction.
  • the shielding member has a cylindrical shape and covers the substantially cylindrical objective lens unit, and the fluorescent microscope can be miniaturized.
  • the shielding member absorbs light of a specific wavelength, but is a light transmissive grease that can visually recognize the position of the objective lens unit and the sample. Therefore, it is easy to grasp the positional relationship between the objective lens unit and the sample, and the operability of the fluorescence microscope can be improved. Further, since it is a compact, lightweight, easy to carry, and good operability fluorescence microscope, it can be suitably combined with the virus measuring method described in Patent Document 1.
  • the shielding member can be, for example, an orange light-transmitting synthetic resin that absorbs light having a wavelength of 580 nm or less.
  • the orange light shielding member can prevent excitation light diffusely reflected from the sample from entering the eyes of the observer.
  • the orange shielding member allows light having the same wavelength as the fluorescence of 530 nm to be shielded by the orange shielding member. Can be prevented from entering from outside.
  • the shielding member absorbs light with a wavelength of 580 nm or less but transmits light with a wavelength of 580 nm or more. Therefore, the objective lens unit and the sample to be measured are visually observed even though the shielding member is installed. This makes it possible to check the position of the microscope, improving the operability of the microscope.
  • the shielding member is made of a synthetic resin such as acrylic, it can be lightweight and has a hardness that can withstand use, and can also be damaged by contact with the objective lens unit, slide glass, microscope stage, etc. No moderate elasticity can be obtained.
  • the shielding member has a cylindrical shape, but may have a cylindrical shape such as a perfect circle or an ellipse, or may have a cylindrical shape such as a polygonal cross section as long as it can cover the objective lens unit. Further, since the shielding member does not completely cover the microscope stage, the visibility of the microscope stage and the operability of the microscope can be improved.
  • the shielding member is a cylindrical member mainly covering the objective lens unit, and does not enclose so much that light of external force does not enter the sample to be measured at all. Temporarily, light from the outside In order to realize a means for enclosing the microscope stage, the sample, and the objective lens unit as a whole, a large shielding means such as a box-shaped openable cover that covers them together is required. In addition, the opening / closing operation of the shielding means is required. For this reason, it can be said that the shielding member of the present invention contributes to miniaturization of the microscope and improvement of operability.
  • a fixing screw having a screw hole and a knob combined therewith can be installed on the side surface of the cylindrical shielding member of the cylindrical shielding member. Since the shielding member can move up and down along the surface of the objective lens unit, by tightening the fixing screw, the tip of the fixing screw comes into contact with the side surface of the objective lens unit, and the shielding member can be moved to any desired position. It can be fixed to the objective lens unit at the position. This fixed position is an arbitrary force.
  • the distance between the shielding member and the microscope stage is a guideline for the focal point in sample observation, that is, the objective lens unit and the sample. It can be used as a guide for the distance.
  • the cylindrical shielding member can be produced with a length slightly shorter than the length of the objective lens unit.
  • This light-shielding member is installed so as to cover the objective lens unit, and is slid and fixed to a position away from the sample-side tip of the objective lens unit. That is, this state is a state where the sample-side tip of the objective lens unit is not hidden by the shielding member when viewed from the side.
  • visually observe the objective lens unit as close as possible to the sample together with the shielding member. At this time, care should be taken so that the cover glass placed on the upper surface of the sample does not come into contact with the objective lens unit.
  • the fixing screw of the shielding member is loosened, and the shielding member is lowered until it comes into contact with the upper surface of the slide glass. In this lowered state, tighten the fixing screw again to re-fix the shielding member to the objective lens tube. Then, the objective lens unit is focused by separating the sample force with the shielding member.
  • the objective lens unit is raised to replace the sample.
  • the shielding member remains fixed to the objective lens unit, and the fixing position remains unchanged.
  • the sample is exchanged, and the shielding member is lowered again to approach the sample.
  • the sample should be set on the same standard slide glass before and after replacement.
  • the objective lens unit is lowered until it comes into contact with the upper surface of the shielding member cast slide glass. Then, by gradually raising the objective lens, it is focused and observed. In other words, once the shielding member is positioned, attention when the objective lens unit is brought close to the sample can be reduced, and the measurement can be performed efficiently.
  • a semiconductor laser that emits ultraviolet laser light having a wavelength of 360 nm can be used as a light source that emits excitation light.
  • the straightness of the irradiated light can be improved compared to the case where a mercury lamp is used as the light source. Therefore, an observation image with good contrast can be obtained. Also, the lifetime of the light source is about 200 hours with a mercury lamp, and there is a risk that it will break when the lifetime is reached, and fragments may scatter. In addition to its long life, there is no need to worry about parts being separated when it breaks!
  • the output of the semiconductor laser used as the light source of the fluorescence microscope is about 40 to 80 mA
  • a semiconductor laser of that scale can reduce the power consumption more than the case of the mercury lamp, and it is related to the light source.
  • the size of the portion can also be reduced by not requiring a cooling fan.
  • the size of the semiconductor laser can be set below the microscope stage or on the back of the microscope.
  • the light source can be integrated with the fluorescent microscope, and the fluorescent microscope can be easily carried. At this time, if the fluorescent microscope is powered by a small portable battery such as a 9V battery, the fluorescent microscope can be easily carried.
  • the intensity of the excitation light that is, the intensity of the fluorescence emitted from the sample can be adjusted.
  • the intensity of the fluorescence emitted from the sample can be adjusted to an intensity that allows easy observation.
  • the intensity of the excitation light emitted from the fluorescent label is too strong, the emitted fluorescence will be attenuated immediately, so the intensity of the excitation light needs to be adjusted appropriately.
  • the use of ultraviolet laser light having a wavelength of 360 nm as excitation light can effectively excite blue fluorescence having a wavelength of around 470 nm from the sample when the fluorescent dye labeled on the sample is DAPI.
  • a semiconductor laser that emits laser light having a wavelength of 490 nm can be used as a light source that emits excitation light.
  • Using laser light with a wavelength of 490 nm as excitation light can effectively excite green fluorescence with a wavelength near 530 nm from the sample when the fluorescent dye labeled on the sample is FITC.
  • a digital camera can be used for an observation system for observing a sample image.
  • a digital camera to be used a digital still camera that records a still image of a sample image or a digital video camera that records a moving image of a sample image can be used.
  • a CCD camera or a CMOS camera (CMOS image sensor) can be used.
  • the use of a digital camera in the observation system means that the observed sample image can be recorded and transmitted as electronic data, which improves convenience for the observer.
  • data can be temporarily stored in a flash memory or the like, and compressed data of a captured image can be transmitted to other devices such as an image processing device via a LAN or radio wave.
  • Means for transmitting electronic data by radio waves are useful, for example, for quickly transmitting observation data to an expert in an outdoor microscope observation.
  • the camera and the display that projects the sample image can be integrated into the sample image capturing unit, and the microscope body force can be removed in place of the V-shaped eyepiece.
  • this sample image photographing unit is standardized so that it can be used for other fluorescent microscopes, it is not necessary to provide an expensive digital color and display for each microscope.
  • the sample image capturing unit is out of order, the range of compatibility with the sample image capturing unit of other microscopes is widened, and it is convenient in terms of management and maintenance of the sample shadow unit.
  • the display of the sample image photographing unit may be a liquid crystal display for a small and light weight display.
  • the sample image capturing unit has the function of transmitting data by radio waves together with the camera part and the liquid crystal display part as if it were a camera-equipped mobile phone, sample images can be captured because there are more electronic circuits and more expensive. This will be convenient for storage, management and compatibility.
  • Figure 7 shows a schematic diagram of the document image capture unit. In FIG.
  • FIG. 7 (a) shows a state in which the sample image photographing unit 17 is removed from the microscope body, and the lens part or sensor part of the digital camera 13 functions as an eyepiece lens of the microscope body. Connect as shown in (b). Further, the transmission antenna 18 may transmit the observation image electronic data.
  • the illustration of the shielding member provided so as to cover the optical path between the objective lens and the sample is omitted.
  • the objective lens unit can be one without any force.
  • the microscope can be reduced in size compared to the case where a plurality of objective lens units are attached using a so-called revolver.
  • the magnification of the objective lens is preferably such that the state of the virus can be observed, the field of view is not too small, and the position adjustment of the observation site is about 20 times.
  • the objective lens unit should be detachably attached to the microscope with screws. Then, it can replace
  • the illumination optical system and the observation system can be replaced with optical filters having different light transmission characteristics.
  • a fluorescent filter block that is a unit in which an excitation filter that is an illumination optical system filter and an absorption filter that is an observation system filter and a Dyke mouth is integrated is used, and this fluorescent filter block is optically transmitted.
  • the microscope stage is a so-called XY stage that can adjust the position only in two horizontal axes.
  • the vertical adjustment for focusing the sample observation should be performed with a microscope having a structure in which the objective lens cue is moved up and down instead of moving the microscope stage up and down. If the so-called XYZ stage, in which the microscope stage moves up and down, leaves a lot of space under the microscope stage, creating a space unnecessary for miniaturization of the microscope.
  • FIG. 6 shows a schematic diagram of a configuration example of the microscope stage 2 provided with the groove 2a for positioning the slide glass 3a.
  • a dial-type micrometer 2b is installed along two horizontal axes on each of two sides in the horizontal orthogonal biaxial direction on a rectangular parallelepiped microscope stage. For this reason, the vertical height of the microscope stage can be minimized, and the entire microscope can be The height of the body can be suppressed.
  • an optical sensor or a contact switch that detects the presence or absence of the slide glass can be installed on the part of the microscope stage where the slide glass is placed, and linked to the laser light emission of the semiconductor laser that is the light source.
  • a safety device can be provided to prevent the laser operator from being mistakenly irradiated with the laser beam.
  • the fluorescence microscope of the present invention is transported to a poultry farm where a virus is suspected to have occurred or to a marine area where a large number of fish have been killed, and the virus is observed in combination with the virus measuring method described in Patent Document 1.
  • the virus measurement method of Patent Document 1 the virus aggregates in about 1 to 60 seconds and becomes observable when irradiated with excitation light, so the result is immediately known.
  • the present invention in combination with a fluorescence microscope that does not require much operation time due to good operability, enables rapid virus measurement.
  • the fluorescence microscope of the present invention is provided with a shielding member that absorbs light of a specific wavelength around the objective lens unit, so that it is not necessary to limit the observation place to a dark room, and a virus is generated. It can be suitably used on site.
  • the observation data from the microscope is transmitted to the radio waves to the expert. If you attach a device that can be used for transmission, you can request instructions from experts more quickly. This can be useful for preventing the spread of virus infection.
  • FIG. 1, FIG. 2 and FIG. 3 show schematic views of the fluorescence microscope according to the first embodiment.
  • Fig. 1 is a schematic diagram viewed from the left side of the fluorescence microscope
  • Fig. 2 is a schematic diagram when viewed from the front
  • Fig. 3 is a diagram showing the optical path in the schematic diagram viewed from the front.
  • reference numeral 1 denotes a base, and a microscope stage 2 which is an XY stage is provided on the base 1.
  • the microscope stage 2 is provided with a dial for moving the stage in two horizontal axes. The description is omitted in any of FIGS. microscope
  • the sample 3 is placed on the stage 2, and the sample 3 is placed on the slide glass 3a and covered with the cover glass 3b.
  • a groove 2a for placing the slide glass 3a is provided on the microscope stage 2, and the depth of the groove 2a is the same as that when the slide glass 3a is placed on the microscope stage 2 and viewed from the side.
  • the upper surface of the glass 3a has a depth at which the upper surface force of the microscope stage 2 protrudes.
  • the sample 3 is placed at the center of the slide glass 3a, it can be positioned almost at the center on the microscope stage 2. Then, by rotating the dial of the microscope stage (not shown), the placement position of the sample 3 can be finely adjusted in two horizontal axes, the so-called XY direction.
  • the base 1 is provided with upright columns 4 upright.
  • a support arm 5 is provided on the support column 4 so as to be parallel to the base 1 through the focusing unit 6.
  • the focusing unit 6 is provided on the support column 4 via an elevating mechanism including a pion and a rack (not shown), and the support arm 5 can be moved up and down along the support column 4 by operating the focusing dial 6 a. .
  • the focusing unit 6 and the support arm 5 are hidden by the lens barrel 7 and cannot be confirmed.
  • the lens barrel 7 is fixed to the tip of the support arm 5.
  • a screw-in fixed objective lens unit 8 is attached to the lower end of the lens barrel 7 on the microscope stage 2 side.
  • This object lens unit 8 moves in the direction of the observation optical axis a by the vertical movement of the support arm 5 by the operation of the focusing unit 6 and changes the relative distance from the sample 3 so that the sample 3 can be focused. It has become.
  • a side holder of the lens barrel 7 is provided with a fine holder 9 for fixing the optical fiber.
  • the fiber holder 9 is disposed along a direction parallel to the support arm 5.
  • An optical fiber 9 a connected to the light source 10 is connected to one end of the fiber holder 9.
  • the light source 10 emits excitation light in fluorescence observation and has a semiconductor laser power.
  • the semiconductor laser can emit excitation light having a wavelength of 405 nm.
  • a 405 solid laser manufactured by Nichia Corporation equipped with means for adjusting the irradiation intensity of the laser was used.
  • FIG. 3 shows a fluorescent filter block 11 and shows that the fluorescent filter block 11 is composed of an excitation filter 11a, an absorption filter 1 lb, and a dichroic mirror 1 lc.
  • the excitation filter 11a selects light of a specific wavelength from the light source 10, and the dichroic mirror 11c reflects the light selected by the excitation filter 1 la as excitation light along the observation optical axis a. Irradiate Sample 3.
  • the dichroic mirror 11c transmits the fluorescence emitted from the sample 3 and the stray light of the excitation light reflected from the sample 3 through the objective lens unit 8 along the observation optical axis a.
  • the absorption filter l ib selects and transmits only light having a specific wavelength in order to remove light having a wavelength unnecessary for observation from the light transmitted by the dichroic mirror 11c.
  • the fluorescent filter block 11 is exchanged by opening and closing the fluorescent filter block exchange port 16 shown on the lens barrel 7 in FIGS.
  • the fluorescent filter block used is a Nikon fluorescent filter block.
  • An imaging lens 12 (not shown in FIGS. 1 and 2) is disposed on the observation optical axis a in the hollow portion of the lens barrel 7 and above the fluorescent filter block 11.
  • the imaging lens 12 and the state of the focal point are indicated by dotted lines.
  • a CCD camera 13a for taking an image that has passed through the imaging lens 12 is arranged on the observation optical axis a.
  • the CCD camera 13a for example, a CCD camera 13a provided with means for outputting a photographed image as electronic data can be used.
  • the captured image detected by the CCD camera 13a is displayed on the display 14 connected to the CCD camera 13a.
  • the CCD camera 13a used is a DE GITAL SIGHT DS—: L1, which is a set with the display 14.
  • the objective lens unit 8 is provided with a cylindrical shielding member 15 so as to cover the substantially cylindrical objective lens unit 8.
  • the shielding member 15 is shown in FIG. 1 and FIG. 2, and V is omitted in FIG.
  • a female screw is provided on the side surface of the shielding member 15, and a fixing screw 15a is assembled to the female screw.
  • the shielding member 15 can be fixed on the objective lens unit 8 by tightening the fixing screw 15a.
  • the length of the shielding member 15 is preferably about the same as the length of the objective lens unit 8 to about half.
  • the shielding member 15 is made of an orange transparent acrylic resin, and the state of the objective lens unit 8 and the microscope stage 2 can be confirmed through the shielding member 15. Since the shielding member 15 is orange, it can absorb light having a wavelength of about 580 nm or less.
  • FIG. 4 shows a schematic diagram of the shielding member 15 and the fixing screw 15a.
  • FIG. 5 (a) shows a schematic view of the shielding member 15 pulled up.
  • FIG. 5 (b) A schematic diagram of the objective lens unit 8 brought close to the sample 3 is shown in FIG. 5 (b).
  • FIG. 5 (c) shows a schematic diagram in which the shielding member 15 is fixed again.
  • the light source 10 was turned on and laser light was emitted.
  • the laser beam is emitted from a blue laser with a wavelength of 405 nm and passes through the optical fiber 9a and the fiber holder 9 as excitation light.
  • the fluorescent filter block 11 reflected the excitation light and entered the sample 3, and the sample 3 emitted green fluorescence.
  • the excitation light incident on the sample 3 is irregularly reflected in accordance with the uneven surface of the sample 3 which has a good linearity because it is a laser light source. If the shielding member 15 is not provided, the irregularly reflected excitation light may be directly incident on the observer's eyes, which is dangerous.
  • the objective lens unit 8 and the lens barrel 7 are raised together with the shielding member 15 by the rotation of the focusing dial 6 a, and focused by moving away from the sample 3.
  • the magnification of the objective lens unit 8 used is 20 times, and the amount by which the objective lens unit 8 is raised for focusing is the interval generated between the cover glass 3b and the tip of the objective lens unit 8 is 0.5.
  • the amount of increase is about lmm. For this reason, the gap generated between the slide glass 3a and the shielding member 15 is small, and the probability that the excitation light enters the human eye is extremely low.
  • Sample 3 emits fluorescence upon receiving excitation light. If sample 3 is labeled with FITC, fluorescence with a wavelength of about 530 nm is emitted by excitation light with a wavelength of 405 nm. However, when FITC is a label, light with a wavelength of 488 nm is the ideal excitation light. If sample 3 is labeled with DA PI (Hoechst 33258), fluorescence with a wavelength of about 470 nm is emitted. However, when DAPI is a label, the ideal excitation light is 365 nm light.
  • the fluorescence emitted from the sample 3 passes through the objective lens unit 8 along the observation optical axis a, passes through the fluorescence filter block 11, is imaged by the imaging lens 12, and is detected by the CCD camera 13a. It is.
  • the image detected by the CCD camera 13a is displayed by the display 14 connected to the CCD camera 13a.
  • a semiconductor laser is used as the light source 10, and if an image formed by the imaging lens 12 is observed with an eyepiece, it is dangerous because high-intensity light is directly viewed. . For this reason, it is suitable not to look directly at the observation image using a CCD camera or the like.
  • observation through the CCD camera 13a and the display 14 makes it easier to check the image compared with direct observation using an eyepiece because the contrast can be adjusted if the color is shaded! Has the advantage of being adjustable.
  • FIG. 8 shows a schematic cross-sectional view of the tip of the objective lens unit 8.
  • the objective lens unit 8a protrudes from the sample-side tip 8c of the substantially cylindrical objective lens barrel 8b at the tip of the objective lens unit 8. It is in a state of being hidden a little inside. This is also considered to be useful for blocking intrusion light having a gap between the shielding member 15 and the slide glass 3a.
  • the objective lens unit 8 is attached to the focusing dial 6a without changing the fixed relationship between the objective lens unit 8 and the shielding member 15. Raise by rotation. At this time, the output of the excitation light from the light source 10 is stopped. A schematic diagram at this time is shown in Fig. 5 (d).
  • the sample 3 is exchanged with another sample in a state where a sufficient gap is formed between the objective lens unit 8 and the microscope stage 2.
  • the samples before and after replacement are both samples placed on the same standard slide glass, and the overall height and shape are almost the same.
  • the objective lens unit 8 is lowered by the rotation of the focusing dial 6a until the lower end force S of the shielding member 15 fixed to the objective lens unit 8 comes into contact with the slide glass 3a.
  • the shielding member 15 plays a role of a stopper by contacting the slide glass 3a.
  • the degree of careful operation can be reduced.
  • the focal point is not much different from the position measured with the previous sample, so it can be easily adjusted by slightly raising the objective lens unit 8. Therefore, operation time I think that it can be realized significantly shortened.
  • FIG. 9 shows the observed fluorescent aggregation image of batteriophage M13K07.
  • FIGS. 10 and 11 show microscope stages 102 and 112 provided with sample marks 104 and 114 and slide glasses 123a and 133a.
  • the microscope stage shown in these figures is provided with a sample mark inside the positioning groove of the microscope stage.
  • the sample mark consists of a visible mark that can be seen directly by the eye and a fluorescent mark that emits fluorescence when excited by the light source.
  • the visible mark 104a and the fluorescent mark 104b are displayed as concentric circles, and the visible mark 104a is displayed as a larger circle than the fluorescent mark 104b.
  • the sample mark 114 in FIG. 11 is provided with a lattice-like fluorescent mark 114b inside a circular visible mark 114a.
  • a sample mark is provided in the positioning groove, that is, in the center of the sample stage on which the slide glass is placed.
  • the sample mark is provided with both a visible mark and a fluorescent mark.
  • the visual mark is first used to roughly align the sample visually, then the fluorescent microscope barrel is lowered to focus on the position of the fluorescent mark and the excitation laser beam is applied.
  • a 20x objective lens has a working distance of a few millimeters, which is sufficiently larger than the thickness of the slide glass (about 1.2 mm), so the sample can be aligned using this method.
  • Sample marks displaying both fluorescent and sample marks can be used more conveniently. This is because the focus alignment can be confirmed by the visible mark even when the sample does not necessarily emit fluorescence, and the fluorescence is not visible.
  • the sample mark can be either a visible mark or a fluorescent mark.
  • a fluorescence microscope in which a sample mark is provided on a microscope stage, which is a sample stage, is located at a position sufficiently away from the focus when the microscope is observed (when the sample is focused). Do not disturb the observation! ,.
  • sample marks 124 and 134 are provided on the slide glasses 123a and 133a.
  • Trial The material marks are provided with both visible marks 124a and 134a and fluorescent marks 124b and 134b.
  • the sample marks 124 and 134 provided on the slide glass can be used not only for sample positioning but also for focus positioning.
  • the sample marks 124 and 134 on the slide glass are placed outside the field of view of the sample so as not to disturb the observation of the sample.
  • the sample mark can be placed outside the sample and placed outside the field of view of the fluorescence microscope.
  • This slide glass is provided with a sample mark so that the sample can be easily placed at an accurate position, and there is no harmful effect of observation by the sample mark.
  • the above glass slide is provided with a sample mark consisting of both a visible mark and a fluorescent mark.
  • the sample mark can be either a visible mark or a fluorescent mark.
  • the sample mark can be provided by printing.
  • FIG. 1 is a schematic view of a fluorescence microscope according to Example 1 of the present invention.
  • FIG. 2 is a schematic view of a fluorescence microscope according to Example 1 of the present invention.
  • FIG. 3 is a schematic view of a fluorescence microscope according to Example 1 of the present invention.
  • FIG. 4 is a schematic view of a shielding member according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic operation diagram of the fluorescence microscope according to Example 1 of the present invention.
  • FIG. 6 is a schematic view of a microscope stage according to a ninth embodiment of the present invention.
  • FIG. 7 is a schematic view of a fluorescence microscope according to a sixth embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view of the distal end of the objective lens unit according to Example 1 of the present invention.
  • FIG. 9 is a photographed image of fluorescent aggregated images of Pacteriophage M13K07 with a fluorescence microscope according to Example 1 of the present invention.
  • FIG. 10 is a schematic view of a microscope stage of a fluorescence microscope that works on an example of the present invention.
  • FIG. 11 is a schematic view of a microscope stage of a fluorescence microscope that works on an example of the present invention.
  • FIG. 12 is a schematic view of a slide glass used in an example of the present invention.
  • FIG. 13 is a schematic view of a slide glass used in an example of the present invention.
  • Microscope stage 2a ... groove, 2b ... micrometer

Abstract

Provided are a fluorescent microscope having an excellent operability, and an easily portable fluorescent microscope capable of observing an observation target such as a virus on site. The fluorescent microscope comprises a light source for generating an excited light, an illuminating optical system for irradiating a sample placed at an observation position, with the excited light from the light source, an observation system for acquiring the fluorescent light emitted from the sample by the irradiation of the excited light, thereby to form a sample image, and a shielding member disposed to cover an optical path between the objective lens and the sample. The shielding member is a cylindrical member, which is made of an optically transparent synthetic resin for absorbing the light of a predetermined wavelength and which is disposed to cover the generally cylindrical objective lens unit having the objective lens mounted therein.

Description

明 細 書  Specification
蛍光顕微鏡  Fluorescence microscope
技術分野  Technical field
[0001] 本発明は、操作性を向上する蛍光顕微鏡および、ウィルスなどの観察対象を現地 にて観察できる持ち運び容易な蛍光顕微鏡に関する。  The present invention relates to a fluorescence microscope that improves operability and an easily portable fluorescence microscope that can observe observation objects such as viruses on site.
背景技術  Background art
[0002] 病原ウィルスの迅速な検出は感染症の治療や予防において極めて重要である。し 力 ウィルス培養は長時間を要し、光学的に不可視であるため迅速検出が困難であ る。そのため、ウィルス感染を疑ってもその場で診断ができず、迅速に適切な処理を 行うことができなかった。  [0002] Rapid detection of pathogenic viruses is extremely important in the treatment and prevention of infectious diseases. However, virus culture takes a long time and is optically invisible, making rapid detection difficult. As a result, even if a virus infection was suspected, the diagnosis could not be performed on the spot and appropriate processing could not be performed promptly.
[0003] また、ウィルスの迅速な測定ついては、測定対象であるウィルスに対応した抗体に 蛍光標識を施し、溶液中においてウィルスの凝集を観察する方法が知られている(特 許文献 1参照)。この方法は、光学的に不可視であるウィルスを、数マイクロリットルの 反応系にてわず力数秒で凝集させることができ、これにより光学的に観察することが できる特徴をもつ。  [0003] For rapid measurement of virus, a method is known in which an antibody corresponding to the virus to be measured is fluorescently labeled and the virus aggregation is observed in a solution (see Patent Document 1). This method has the feature that an optically invisible virus can be aggregated in a few microliters in a few seconds with a force of several seconds, thereby allowing optical observation.
[0004] また、特許文献 1記載の方法にてウィルス観察を行うには、観察試料から発せられ る蛍光を観察する蛍光顕微鏡が必要となるが、一般に、試料の発する蛍光が極めて 微弱なため、蛍光顕微鏡は、外部の光をある程度遮断した暗室での使用が望まれて いた。このため、特許文献 2では、試料周辺の迷光を確実に遮断し、接眼レンズを覼 く観察者が、蛍光を鮮明に観察するため遮光部材に関わる技術が示されている。 特許文献 1:国際公開第 2003Z060519号  [0004] In addition, in order to observe a virus by the method described in Patent Document 1, a fluorescence microscope for observing the fluorescence emitted from the observation sample is required, but generally, the fluorescence emitted from the sample is extremely weak. The fluorescent microscope is desired to be used in a dark room where external light is blocked to some extent. For this reason, Patent Document 2 discloses a technique related to a light-shielding member so that stray light around a sample can be reliably blocked, and an observer who looks at an eyepiece can clearly observe fluorescence. Patent Document 1: International Publication No. 2003Z060519
特許文献 2 :特開 2005— 345718号公報  Patent Document 2: JP 2005-345718
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ウィルス感染の疑いがある場合に、現地にてウィルス検出を行うことは有効である。 [0005] When there is a suspicion of virus infection, it is effective to perform virus detection on site.
そのためには、特許文献 1記載のウィルス測定方法を用いるとともに、小型軽量にて 、現地まで持ち運び容易な蛍光顕微鏡を提供することが好ましい。また、その顕微鏡 は、暗室でなくても蛍光観察を行えるとともに、操作性が良好な蛍光顕微鏡であるこ とが好ましい。また、その顕微鏡は、現地での観察像のデータを、専門家のもとへ送 信できる手段を有することが望まし 、。 For this purpose, it is preferable to use a virus measuring method described in Patent Document 1 and to provide a fluorescent microscope that is small and light and easy to carry to the site. Also the microscope It is preferable that the fluorescence microscope be capable of performing fluorescence observation even in a dark room and having good operability. In addition, it is desirable that the microscope has a means for transmitting the data of observation images at the site to experts.
[0006] 特許文献 2に記載される蛍光顕微鏡の遮光部材によると、暗室でなくても、蛍光観 察を良好に行うことができる。しかしながら、内部が可視化できない遮光部材によって 対物レンズと観察試料との間をすっぽりと覆ってしまうものであるため、対物レンズと 試料との距離を確認しづらいものであった。また、試料交換の際も、遮光部材を伸縮 させる操作が必要であった。  [0006] According to the light-shielding member of the fluorescence microscope described in Patent Document 2, the fluorescence observation can be performed well even in a dark room. However, since the inside of the objective lens and the observation sample is completely covered by the light shielding member whose inside cannot be visualized, it is difficult to confirm the distance between the objective lens and the sample. In addition, it was necessary to extend and contract the light shielding member when exchanging samples.
[0007] また、小型軽量にて現地まで持ち運び容易な蛍光顕微鏡を実現するには、機能や 構成要素を厳選および限定する必要がある。例えば、水銀ランプを光源として用いる 蛍光顕微鏡では、レンズや光学フィルタを構成する部分が大きくなつてしまう。また、 接眼レンズにっ 、てもスペースをとつてしまう。  [0007] In addition, in order to realize a fluorescent microscope that is small and light and easy to carry to the site, it is necessary to carefully select and limit functions and components. For example, in a fluorescent microscope using a mercury lamp as a light source, the parts constituting the lens and the optical filter become large. Even eyepieces take up space.
ゆえに本発明の目的は、上記課題を解決すベぐ小型軽量にて持ち運び容易であ り、操作性が良い蛍光顕微鏡であり、特許文献 1記載のウィルス測定方法と組み合わ せた使用が好適な使用例である蛍光顕微鏡を提供することにある。  Therefore, the object of the present invention is a fluorescent microscope that is easy to carry with a small size and light weight that solves the above-mentioned problems, and has good operability, and is preferably used in combination with the virus measurement method described in Patent Document 1. The object is to provide an example fluorescence microscope.
課題を解決するための手段  Means for solving the problem
[0008] 第 1の観点では、本発明は、励起光を発生する光源と、前記光源からの励起光を 対物レンズを介して観察位置に載置した試料に照射する照明光学系と、前記励起光 の照射により前記試料力 発する蛍光を取得して試料像を得る観察系と、前記対物 レンズと前記試料との間の光路を覆うように設けられる遮蔽部材とを含む蛍光顕微鏡 において、遮蔽部材は、特定の波長の光を吸収する光透過性の合成樹脂からなり、 前記対物レンズを内設する略円筒形状の対物レンズユニットを覆うように設けられる 筒状の部材であることを特徴とする蛍光顕微鏡を提供する。  [0008] In a first aspect, the present invention provides a light source that generates excitation light, an illumination optical system that irradiates a sample placed at an observation position with excitation light from the light source via an objective lens, and the excitation In the fluorescence microscope, the shielding member includes an observation system that acquires the fluorescence generated by the sample by light irradiation and obtains a sample image, and a shielding member provided so as to cover an optical path between the objective lens and the sample. A fluorescent member characterized in that it is made of a light-transmitting synthetic resin that absorbs light of a specific wavelength, and is a cylindrical member provided so as to cover a substantially cylindrical objective lens unit in which the objective lens is provided. Provide a microscope.
上記第 1の観点による蛍光顕微鏡では、遮蔽部材の覆う部分が対物レンズを内設 する略円筒形状の対物レンズユニットと、対物レンズと試料との間の光路であり、顕微 鏡ステージをすっぽりと覆うものでないため、顕微鏡ステージの視認性および、顕微 鏡の操作'性を向上できる。  In the fluorescence microscope according to the first aspect described above, the portion covered by the shielding member is a substantially cylindrical objective lens unit in which the objective lens is provided and the optical path between the objective lens and the sample, and completely covers the microscope stage. Therefore, the visibility of the microscope stage and the operability of the microscope can be improved.
また、遮蔽部材は、特定の波長の光を吸収するがその他の波長の光を透過して、 遮蔽部材越しに対物レンズユニットや試料の視認ができる程度の透過性を有する。 すなわち、対物レンズユニットの先端の位置や試料の位置を遮蔽部材越しに確認で きるため、顕微鏡の操作性を向上することができる。 The shielding member absorbs light of a specific wavelength but transmits light of other wavelengths, The transparency is such that the objective lens unit and the sample can be visually recognized through the shielding member. That is, since the position of the tip of the objective lens unit and the position of the sample can be confirmed through the shielding member, the operability of the microscope can be improved.
また、遮蔽部材は特定の波長の光を吸収することから、例えば、試料に照射する励 起光の試料からの反射光や、試料から発する蛍光の波長を、この特定の波長とする ことにより、遮蔽部材の内外で、励起光の反射光や蛍光を遮断することができる。  In addition, since the shielding member absorbs light of a specific wavelength, for example, by setting the reflected light of the excitation light irradiated on the sample and the wavelength of the fluorescence emitted from the sample to this specific wavelength, The reflected light and fluorescence of the excitation light can be blocked inside and outside the shielding member.
[0009] 第 4の観点では、本発明は、前記第 1の観点による蛍光顕微鏡において、前記遮 蔽部材は、前記対物レンズユニットの表面に沿って上下動可能であり、かつ、任意の 位置にて対物レンズユニットに固定する固定ネジを設けることを特徴とする蛍光顕微 鏡を提供する。  [0009] In a fourth aspect, the present invention provides the fluorescence microscope according to the first aspect, wherein the shielding member is movable up and down along the surface of the objective lens unit and is at an arbitrary position. And a fluorescence microscope characterized in that a fixing screw is provided for fixing to the objective lens unit.
上記第 4の観点による蛍光顕微鏡では、対物レンズユニットに対する遮蔽部材の位 置を任意に調整できる。このため、対物レンズと試料との距離すなわち焦点距離が変 更になつても、特定の波長の光を適切に遮断することができる。また、遮蔽部材は、 対物レンズユニットに適切な位置で固定すると、対物レンズユニットを顕微鏡ステー ジに近づける際のストッパーとして機能させることができ、また、焦点距離の目安とす ることちでさる。  In the fluorescence microscope according to the fourth aspect, the position of the shielding member relative to the objective lens unit can be arbitrarily adjusted. For this reason, even if the distance between the objective lens and the sample, that is, the focal length is changed, light of a specific wavelength can be appropriately blocked. In addition, when the shielding member is fixed to the objective lens unit at an appropriate position, it can function as a stopper when the objective lens unit is brought close to the microscope stage, and can be used as a reference for the focal length.
上記第 5の観点による蛍光顕微鏡では、試料を載置する顕微鏡ステージを備え、こ の顕微鏡ステージに試料位置を表示する試料マークを設けている。また、第 6の観点 における蛍光顕微鏡は、試料を載置するスライドガラスを備え、このスライドガラスに 試料位置を表示する試料マークを設けている。さらに、上記第 7の蛍光顕微鏡では、 試料マークを蛍光マークとし、第 8の観点による蛍光顕微鏡では、試料マークを可視 マークとしている。この蛍光顕微鏡は、蛍光マークや可視マークの試料マークでもつ て、試料を簡単に正確な位置に配置できる。  The fluorescence microscope according to the fifth aspect includes a microscope stage on which a sample is placed, and a sample mark for displaying the sample position is provided on the microscope stage. The fluorescence microscope according to the sixth aspect includes a slide glass on which a sample is placed, and a sample mark for displaying the sample position is provided on the slide glass. Further, in the seventh fluorescent microscope, the sample mark is a fluorescent mark, and in the fluorescent microscope according to the eighth aspect, the sample mark is a visible mark. This fluorescent microscope has a fluorescent mark and a visible mark, and the sample can be easily placed at an accurate position.
[0010] 第 9の観点では、本発明は、前記第 1の観点による蛍光顕微鏡において、前記光 源は、半導体レーザであることを特徴とする蛍光顕微鏡を提供する。 [0010] In a ninth aspect, the present invention provides the fluorescence microscope according to the first aspect, wherein the light source is a semiconductor laser.
上記第 9の観点による蛍光顕微鏡では、光源として半導体レーザを用いることにより 、励起光の直進性を向上することができる。また、半導体レーザは、レーザ光の出力 強度が水銀ランプと同等程度であれば、水銀ランプと同等かそれ以下の大きさに小 型化できる。また、半導体レーザは、水銀ランプと比べて発光におけるエネルギー効 率が良ぐ寿命も長い。また、水銀ランプは振動に弱く持ち運びに不向きであるととも に、水銀ランプの破損の際に高圧水銀蒸気により破片が飛び散る心配があるが、半 導体レーザにはこのような心配が無ぐ持ち運びに適している。 In the fluorescence microscope according to the ninth aspect, the straightness of the excitation light can be improved by using a semiconductor laser as the light source. In addition, if the output intensity of the laser beam is about the same as that of a mercury lamp, the semiconductor laser is as small as or smaller than that of a mercury lamp. Can be typed. In addition, semiconductor lasers have a longer life and better energy efficiency in light emission than mercury lamps. In addition, mercury lamps are vulnerable to vibration and unsuitable for carrying, and there is a concern that high-pressure mercury vapor will cause debris to scatter when the mercury lamp is damaged. Is suitable.
[0011] 本発明は、前記第 9の観点による蛍光顕微鏡において、前記半導体レーザは、レ 一ザの照射強度を任意に調整できる照射強度調整手段を備えることができる。 この蛍光顕微鏡では、照射強度調整手段により半導体レーザの照射強度を調整で きるため、試料に照射する励起光の強度の調整、すなわち、試料から発する蛍光の 強度を観察に適した強度に調整できる。また、水銀ランプを光源とする場合は、通常 、 NDフィルタ (減光フィルタ)の交換により光源の照度の調整を行うため、照度の調 整が段階的なものとなってしまう。し力しながら、本観点では励起光の照射強度を無 段階に調整できるため、より観察に適した照度を選択できる。  [0011] In the fluorescence microscope according to the ninth aspect of the present invention, the semiconductor laser can include an irradiation intensity adjusting unit that can arbitrarily adjust the irradiation intensity of the laser. In this fluorescence microscope, since the irradiation intensity of the semiconductor laser can be adjusted by the irradiation intensity adjusting means, the intensity of the excitation light irradiated to the sample, that is, the intensity of the fluorescence emitted from the sample can be adjusted to an intensity suitable for observation. Further, when a mercury lamp is used as the light source, the illuminance adjustment of the light source is usually performed by replacing the ND filter (dark filter), so that the illuminance adjustment becomes stepwise. However, since the irradiation intensity of the excitation light can be adjusted steplessly in this viewpoint, it is possible to select an illuminance more suitable for observation.
[0012] 本発明は、前記第 9の観点による蛍光顕微鏡において、前記半導体レーザは、携 帯可能な小型バッテリーを電源とすることができる。  [0012] In the fluorescence microscope according to the ninth aspect of the present invention, the semiconductor laser can be powered by a portable small battery.
この蛍光顕微鏡では、半導体レーザの電源として携帯可能な小型バッテリーを使 用することにより、蛍光顕微鏡を移動や持ち運びに容易な形とすることができる。  In this fluorescent microscope, the portable microscope can be easily moved and carried by using a portable small battery as a power source for the semiconductor laser.
[0013] 本発明は、前記第 1の観点による蛍光顕微鏡において、前記観察系は、前記試料 像をデジタルカメラにて撮影することができる。  [0013] In the fluorescence microscope according to the first aspect of the present invention, the observation system can capture the sample image with a digital camera.
この蛍光顕微鏡では、観察系に、試料像の撮影画像をデジタルデータすなわち電 子データに変換できるデジタルカメラを使用する。デジタルカメラは、静止画を記録 するデジタルスチルカメラまたは動画を記録するデジタルビデオカメラを含む。また、 デジタルカメラは、広義の意味で、撮影画像の電子データを一時的または恒久的に 保存する記憶手段を含むものや、イメージセンサと呼ばれるセンサ部分を含むものを 意味する。  In this fluorescence microscope, a digital camera capable of converting a photographed image of a sample image into digital data, that is, electronic data, is used as an observation system. Digital cameras include digital still cameras that record still images or digital video cameras that record moving images. In addition, the digital camera means in a broad sense one that includes storage means for temporarily or permanently storing electronic data of a photographed image, and one that includes a sensor portion called an image sensor.
[0014] 本発明は、前記第 1の観点による蛍光顕微鏡において、前記観察系は、前記デジ タルカメラにて撮影する試料像の電子データを電波にて送信する送信手段を含むこ とができる。 この蛍光顕微鏡では、送信手段が、デジタルカメラにて撮影された試料 像の電子データを、ディスプレイなどの電子データを復像することができる機器に入 力できるように、電波にて送信する。この送信手段は、例えば、電子データを復像す ることができる機器が蛍光顕微鏡と離れた場所にある場合に好適となる。また、この 送信手段は、例えば、観察像の判定ができる有識者が蛍光顕微鏡と離れた場所に 居て、有識者のもとへ電子データを電波にて送信する場合に好適となる。 [0014] In the fluorescence microscope according to the first aspect of the present invention, the observation system can include transmission means for transmitting electronic data of a sample image photographed by the digital camera by radio waves. In this fluorescent microscope, the transmission means inputs the electronic data of the sample image taken by the digital camera into an apparatus that can restore the electronic data such as a display. Transmit by radio wave so that you can This transmission means is suitable when, for example, a device capable of recovering electronic data is located away from the fluorescence microscope. In addition, this transmission means is suitable, for example, when an expert who can determine an observation image is in a place away from the fluorescent microscope and transmits electronic data to the expert by radio waves.
[0015] 第 10の観点では、本発明は、前記第 1の観点による蛍光顕微鏡において、前記観 察系は、前記デジタルカメラと試料像を投影するディスプレイとが一体となる試料像 撮影部を蛍光顕微鏡から取外し可能に設置することを特徴とする蛍光顕微鏡を提供 する。  [0015] In a tenth aspect, the present invention provides the fluorescence microscope according to the first aspect, wherein the observation system is configured to fluoresce a sample image photographing unit in which the digital camera and a display that projects the sample image are integrated. Provided is a fluorescent microscope characterized in that it can be removed from the microscope.
上記第 10の観点による蛍光顕微鏡では、前記デジタルカメラと試料像を投影する ディスプレイとが一体となり試料像撮影部を構成し、この試料像撮影部を蛍光顕微鏡 に着脱できる。この試料像撮影部は比較的高価な部品になると考えられるため、試 料像撮影部を蛍光顕微鏡力ゝら取外し可能にすることは、試料像撮影部の管理、メン テナンス、互換の上で有効となる。  In the fluorescence microscope according to the tenth aspect, the digital camera and the display for projecting the sample image are integrated to form a sample image photographing unit, and the sample image photographing unit can be attached to and detached from the fluorescence microscope. Since this sample image capturing unit is considered to be a relatively expensive part, it is effective for the management, maintenance, and compatibility of the sample image capturing unit to enable removal of the sample image capturing unit with the help of a fluorescence microscope. It becomes.
[0016] 本発明は、前記第 1の観点による蛍光顕微鏡において、前記対物レンズユニットは 、 1つとすることができる。 According to the present invention, in the fluorescence microscope according to the first aspect, the number of the objective lens units can be one.
この観点による蛍光顕微鏡では、設置する対物レンズを 1つの倍率に厳選すること により、例えば、レボルバーにより複数の倍率の対物レンズユニットを切り替え可能に 設置する場合に比べて顕微鏡の大きさを小さいものとすることができる。  In a fluorescence microscope based on this viewpoint, by carefully selecting the objective lens to be installed at a single magnification, for example, the size of the microscope can be reduced compared to the case where an objective lens unit with multiple magnifications can be switched by a revolver. can do.
[0017] 本発明は、前記第 1の観点による蛍光顕微鏡において、前記対物レンズユニットは 、ネジ止めにより蛍光顕微鏡の鏡筒部分に固定できる。 [0017] In the fluorescence microscope according to the first aspect of the present invention, the objective lens unit can be fixed to a lens barrel portion of the fluorescence microscope by screwing.
この観点による蛍光顕微鏡では、対物レンズユニットが顕微鏡の鏡筒部分にネジ止 めで固定されており、ネジを緩めることにより他の倍率の対物レンズユニットに交換で きる。このため、一台の蛍光顕微鏡であり、一度に装着できる対物レンズユニットが 1 つであっても、対物レンズユニットの交換により、様々な倍率の観察が可能となる。  In the fluorescence microscope according to this viewpoint, the objective lens unit is fixed to the lens barrel portion of the microscope with a screw, and can be replaced with an objective lens unit of another magnification by loosening the screw. For this reason, even if it is a single fluorescence microscope and only one objective lens unit can be attached at a time, it is possible to observe various magnifications by replacing the objective lens unit.
[0018] 本発明は、前記第 1のいずれかの観点による蛍光顕微鏡において、前記照明光学 系および Zまたは前記観察系の光学フィルタは、光透過特性の異なる光学フィルタ に交換可能にできる。  [0018] In the fluorescence microscope according to any one of the first aspect of the present invention, the illumination optical system and the optical filter of Z or the observation system can be replaced with optical filters having different light transmission characteristics.
この蛍光顕微鏡では、前記照明光学系の光学フィルタである励起光の波長を特定 するための光学フィルタや、前記観察系の光学フィルタである蛍光の波長を特定す るための光学フィルタを交換可能とすることにより、使用する励起光の波長の変更や 、試料に標識する蛍光物質の変更に対応できる。 In this fluorescence microscope, the wavelength of the excitation light that is the optical filter of the illumination optical system is specified. Change the wavelength of the excitation light to be used and the fluorescent substance to be labeled on the sample by making it possible to replace the optical filter for specifying the wavelength of the fluorescence that is the optical filter for the observation system and the optical filter for the observation system It can respond to changes.
[0019] 本発明は、前記第 1の観点による蛍光顕微鏡において、試料を載置する顕微鏡ス テージは、水平 2軸方向の位置のみを調整できる顕微鏡ステージにできる。  [0019] In the fluorescence microscope according to the first aspect of the present invention, the microscope stage on which the sample is placed can be a microscope stage that can adjust only the position in the two horizontal axes.
この蛍光顕微鏡では、顕微鏡ステージが水平 2軸方向の位置を調整する機能を有 することにより、試料の観察位置を微調整することができる。また、顕微鏡の小型化に おいては、試料観察の焦点距離の調整を顕微鏡ステージの上下動により行う構造よ りも、対物レンズユニットの上下動により行う構造のほうが適している。  In this fluorescence microscope, the observation position of the sample can be finely adjusted by the microscope stage having the function of adjusting the position in the two horizontal axes. Also, in reducing the size of the microscope, a structure in which the objective lens unit is moved up and down is more suitable than a structure in which the focal length for sample observation is adjusted by moving the microscope stage up and down.
[0020] 本発明は、前記第 1の観点による蛍光顕微鏡において、試料を載置する顕微鏡ス テージは、スライドガラスを載置する溝を設けることができる。  [0020] In the fluorescence microscope according to the first aspect of the present invention, the microscope stage on which the sample is placed can be provided with a groove on which the slide glass is placed.
この蛍光顕微鏡では、顕微鏡ステージ上にスライドガラスの位置決めをする溝を設 けることにより、スライドガラスの位置をほぼ定位置とすることができる。  In this fluorescent microscope, the position of the slide glass can be made almost constant by providing a groove for positioning the slide glass on the microscope stage.
[0021] 第 11の観点では、本発明は、前記第 1の観点による蛍光顕微鏡において、試料を 載置する顕微鏡ステージは、試料の載置の有無を検出する手段を設けることを特徴 とする蛍光顕微鏡を提供する。  [0021] In an eleventh aspect, the present invention provides the fluorescence microscope according to the first aspect, wherein the microscope stage on which the sample is placed is provided with means for detecting whether or not the sample is placed. Provide a microscope.
上記第 11の観点による蛍光顕微鏡では、顕微鏡ステージ上の試料の有無が検出 できる手段を設けることにより、例えば、光源のスィッチとの連動により、試料が顕微 鏡ステージ上にない時に励起光の照射を止めることが可能である。  In the fluorescence microscope according to the eleventh aspect, by providing means for detecting the presence or absence of the sample on the microscope stage, for example, by linking with the switch of the light source, the excitation light is irradiated when the sample is not on the microscope stage. It is possible to stop.
[0022] 本発明は、前記第 1の観点による蛍光顕微鏡において、前記試料は、蛍光色素に より標識されるとともに凝集反応により凝集するウィルス又は抗体とすることができる。 この蛍光顕微鏡では、観察する試料を蛍光色素により標識されるとともに凝集反応 により凝集するウィルス又は抗体とする。本蛍光顕微鏡は、蛍光色素により標識され るとともに凝集反応により凝集するウィルス又は抗体の観察に好適に使用できる。 発明の効果  [0022] In the fluorescence microscope according to the first aspect of the present invention, the sample may be a virus or an antibody that is labeled with a fluorescent dye and aggregates by an aggregation reaction. In this fluorescence microscope, the sample to be observed is labeled with a fluorescent dye and is a virus or an antibody that aggregates by an agglutination reaction. The present fluorescence microscope can be suitably used for observing viruses or antibodies that are labeled with a fluorescent dye and aggregate by an agglutination reaction. The invention's effect
[0023] 本発明によれば、遮蔽部材が筒状であり、略円筒形状の対物レンズユニットを覆う 形であり、蛍光顕微鏡を小型化することができる。また、遮蔽部材は、特定の波長の 光を吸収するが、対物レンズユニットや試料の位置を視認できる光透過性の榭脂で あるため、対物レンズユニットと試料との位置関係を把握しやすく蛍光顕微鏡の操作 性を向上できる。また、小型軽量にて持ち運び容易であり、操作性が良い蛍光顕微 鏡であることから、特許文献 1記載のウィルス測定方法と好適に組み合わすことがで きる。 [0023] According to the present invention, the shielding member has a cylindrical shape and covers the substantially cylindrical objective lens unit, and the fluorescent microscope can be miniaturized. The shielding member absorbs light of a specific wavelength, but is a light transmissive grease that can visually recognize the position of the objective lens unit and the sample. Therefore, it is easy to grasp the positional relationship between the objective lens unit and the sample, and the operability of the fluorescence microscope can be improved. Further, since it is a compact, lightweight, easy to carry, and good operability fluorescence microscope, it can be suitably combined with the virus measuring method described in Patent Document 1.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、本発明の実施形態を説明する。なお、これにより本発明が限定されるもので はない。  Hereinafter, embodiments of the present invention will be described. However, this does not limit the present invention.
[0025] (第 1の実施の形態)  [First Embodiment]
本発明の蛍光顕微鏡において、遮蔽部材は、例えば、波長 580nm以下の光を吸 収するオレンジ色の光透過性の合成樹脂とすることができる。例えば、励起光の波長 力 S405nmの波長の青色の光であれば、このオレンジ色の遮光部材により、試料から 乱反射する励起光が観察者の目に入ることを防ぐことができる。また、試料が発する 蛍光についても、例えば 530nmの緑色の蛍光を発する蛍光標識を施したものであ れば、このオレンジ色の遮蔽部材により、観察領域に 530nmの蛍光と同じ波長の光 が遮蔽部材の外部から侵入することを抑えることができる。これにより、試料の発する 蛍光を効率よく観察することができる。また、遮蔽部材は、波長 580nm以下の光を吸 収するが 580nm以上の波長の光を透過することから、遮蔽部材を設置しているにも 関わらず、目視にて対物レンズユニットおよび測定する試料の位置を確認することが でき、顕微鏡の操作性が向上する。  In the fluorescence microscope of the present invention, the shielding member can be, for example, an orange light-transmitting synthetic resin that absorbs light having a wavelength of 580 nm or less. For example, in the case of blue light having a wavelength of excitation light having a wavelength of S405 nm, the orange light shielding member can prevent excitation light diffusely reflected from the sample from entering the eyes of the observer. In addition, for the fluorescence emitted from the sample, for example, if a fluorescent label emitting green fluorescence of 530 nm is applied, the orange shielding member allows light having the same wavelength as the fluorescence of 530 nm to be shielded by the orange shielding member. Can be prevented from entering from outside. Thereby, the fluorescence emitted from the sample can be observed efficiently. The shielding member absorbs light with a wavelength of 580 nm or less but transmits light with a wavelength of 580 nm or more. Therefore, the objective lens unit and the sample to be measured are visually observed even though the shielding member is installed. This makes it possible to check the position of the microscope, improving the operability of the microscope.
また、遮蔽部材をアクリル等の合成樹脂にて作製すれば、軽量で使用に耐えうる硬 度を得ることができるとともに、対物レンズユニットやスライドガラスや、顕微鏡ステー ジなどとの接触において損傷を与えない適度な弾性を得ることができる。  In addition, if the shielding member is made of a synthetic resin such as acrylic, it can be lightweight and has a hardness that can withstand use, and can also be damaged by contact with the objective lens unit, slide glass, microscope stage, etc. No moderate elasticity can be obtained.
また、遮蔽部材は筒状であるが、真円や楕円などの円筒状であってもよいし、対物 レンズユニットを覆うことができれば断面が多角形などの筒状であってもよい。また、 遮蔽部材は、顕微鏡ステージをすっぽりと覆うものでないため、顕微鏡ステージの視 認性および、顕微鏡の操作性を向上できる。  The shielding member has a cylindrical shape, but may have a cylindrical shape such as a perfect circle or an ellipse, or may have a cylindrical shape such as a polygonal cross section as long as it can cover the objective lens unit. Further, since the shielding member does not completely cover the microscope stage, the visibility of the microscope stage and the operability of the microscope can be improved.
また、遮蔽部材は、主に対物レンズユニットを覆う筒状の部材であり、測定する試料 に外部力もの光が全く入らないように大きく囲むものではない。仮に、外部からの光 が全く入らな 、ように、顕微鏡ステージおよび試料および対物レンズユニットを一括 にて囲む手段を実現しょうとすると、例えば、それらを一体で覆う箱状の開閉可能な カバーなど、大きな遮蔽手段が必要となってしまうとともに、遮蔽手段の開閉の操作 を必要としてしまう。このため、本発明の遮蔽部材は顕微鏡の小型化と操作性の向上 に寄与すると言える。 Further, the shielding member is a cylindrical member mainly covering the objective lens unit, and does not enclose so much that light of external force does not enter the sample to be measured at all. Temporarily, light from the outside In order to realize a means for enclosing the microscope stage, the sample, and the objective lens unit as a whole, a large shielding means such as a box-shaped openable cover that covers them together is required. In addition, the opening / closing operation of the shielding means is required. For this reason, it can be said that the shielding member of the present invention contributes to miniaturization of the microscope and improvement of operability.
(第 2の実施の形態) (Second embodiment)
本発明の蛍光顕微鏡において、円筒形状の遮蔽部材の円筒形状の遮蔽部材の側 面に、ネジ穴と、それに組み合わせるつまみを有する固定ネジを設置することができ る。遮蔽部材は、前記対物レンズユニットの表面に沿って上下動可能であるため、こ の固定ネジを締めこむことにより、固定ネジの先端が対物レンズユニットの側面に接 触し、遮蔽部材を任意の位置にて対物レンズユニットに固定することができる。この固 定位置は、任意の位置である力 対物レンズユニットを顕微鏡ステージに近づける際 、遮蔽部材と顕微鏡ステージとの間隔にて、試料観察における焦点の目安、すなわ ち、対物レンズユニットと試料との距離の目安とすることができる。  In the fluorescent microscope of the present invention, a fixing screw having a screw hole and a knob combined therewith can be installed on the side surface of the cylindrical shielding member of the cylindrical shielding member. Since the shielding member can move up and down along the surface of the objective lens unit, by tightening the fixing screw, the tip of the fixing screw comes into contact with the side surface of the objective lens unit, and the shielding member can be moved to any desired position. It can be fixed to the objective lens unit at the position. This fixed position is an arbitrary force. When the objective lens unit is brought close to the microscope stage, the distance between the shielding member and the microscope stage is a guideline for the focal point in sample observation, that is, the objective lens unit and the sample. It can be used as a guide for the distance.
また、円筒形状の遮蔽部材の長さは、対物レンズユニットの長さよりも少し短い長さ にて作製することができる。この遮光部材を、対物レンズユニットを覆う形で設置し、 対物レンズユニットの試料側先端カゝら離れた位置にスライドして固定する。すなわち この状態は、側面視した際、対物レンズユニットの試料側先端が遮蔽部材に隠れな い状態である。次に、目視にて、対物レンズユニットを遮蔽部材ごと試料にぎりぎり近 づける。このとき、試料の上面に載置するカバーガラスと対物レンズユニットとが接触 しないように注意する。次に、この対物レンズユニットを試料に近づけた状態のままで 、遮蔽部材の固定ネジを緩め、遮蔽部材をスライドガラス上面に接触するまで降下さ せる。この降下させた状態にて、再び固定ネジを締め、遮蔽部材を対物レンズュ-ッ トに再固定する。そして、対物レンズユニットを遮蔽部材ごと試料力も離して行くことに より焦点を合わす。  Further, the cylindrical shielding member can be produced with a length slightly shorter than the length of the objective lens unit. This light-shielding member is installed so as to cover the objective lens unit, and is slid and fixed to a position away from the sample-side tip of the objective lens unit. That is, this state is a state where the sample-side tip of the objective lens unit is not hidden by the shielding member when viewed from the side. Next, visually observe the objective lens unit as close as possible to the sample together with the shielding member. At this time, care should be taken so that the cover glass placed on the upper surface of the sample does not come into contact with the objective lens unit. Next, with the objective lens unit kept close to the sample, the fixing screw of the shielding member is loosened, and the shielding member is lowered until it comes into contact with the upper surface of the slide glass. In this lowered state, tighten the fixing screw again to re-fix the shielding member to the objective lens tube. Then, the objective lens unit is focused by separating the sample force with the shielding member.
次に、試料の測定が終わり、他の試料に交換するため、対物レンズユニットを上昇 させる。このとき、遮蔽部材は、対物レンズユニットに固定したままで、固定位置も変 えないままとする。 そして、対物レンズユニットを遮蔽部材ごと上昇させた後、試料を交換し、再び、遮 蔽部材ごと下降させて試料に近づける。ただし、試料は交換前後で同一規格のスラ イドガラスにセットする。対物レンズユニットは、遮蔽部材カスライドガラス上面に接触 するまで降下させる。そして、徐々に対物レンズを上昇させることにより、焦点を合わ して観察する。すなわち、一度、遮蔽部材の位置決めをすると、対物レンズユニットを 試料に近づける際の注意を軽減することができ、測定を効率的に行うことができる。 (第 3の実施の形態) Next, when the measurement of the sample is completed, the objective lens unit is raised to replace the sample. At this time, the shielding member remains fixed to the objective lens unit, and the fixing position remains unchanged. Then, after raising the objective lens unit together with the shielding member, the sample is exchanged, and the shielding member is lowered again to approach the sample. However, the sample should be set on the same standard slide glass before and after replacement. The objective lens unit is lowered until it comes into contact with the upper surface of the shielding member cast slide glass. Then, by gradually raising the objective lens, it is focused and observed. In other words, once the shielding member is positioned, attention when the objective lens unit is brought close to the sample can be reduced, and the measurement can be performed efficiently. (Third embodiment)
本発明の蛍光顕微鏡において、励起光を発する光源として、波長 360nmの紫外 線レーザ光を発する半導体レーザを用いることができる。  In the fluorescence microscope of the present invention, a semiconductor laser that emits ultraviolet laser light having a wavelength of 360 nm can be used as a light source that emits excitation light.
光源に半導体レーザを用いることにより、光源に水銀ランプを用 、た場合に比べて 照射する光の直進性を良くすることができる。このためコントラストの良い観察像を得 ることができる。また、光源の寿命についても、水銀ランプでは約 200時間と短ぐ場 合によっては寿命が来たときに破損して破片が飛び散る危険性があるのに対し、半 導体レーザでは、 200時間をはるかに越える寿命であるとともに、破損時に部品が離 散する心配がな!、利点を有する。  By using a semiconductor laser as the light source, the straightness of the irradiated light can be improved compared to the case where a mercury lamp is used as the light source. Therefore, an observation image with good contrast can be obtained. Also, the lifetime of the light source is about 200 hours with a mercury lamp, and there is a risk that it will break when the lifetime is reached, and fragments may scatter. In addition to its long life, there is no need to worry about parts being separated when it breaks!
また、蛍光顕微鏡の光源として用いる半導体レーザの出力は 40〜80mA程度であ ればよぐその規模の半導体レーザであれば、水銀ランプの場合よりも消費電力を抑 えることができ、光源に関わる部分の大きさについても、冷却ファンを必要としないこ となどにより小さくすることができる。たとえば、半導体レーザを顕微鏡ステージの下に 設置したり、顕微鏡の背面に設置したりする大きさにすることも可能である。このことに より、蛍光顕微鏡に光源を一体ィ匕でき、蛍光顕微鏡の持ち運びが容易になる。なお 、このとき、蛍光顕微鏡の電源を、例えば 9V電池のように携帯可能な小型バッテリー とすることにより、より持ち運びが容易な蛍光顕微鏡とすることができる。  In addition, if the output of the semiconductor laser used as the light source of the fluorescence microscope is about 40 to 80 mA, a semiconductor laser of that scale can reduce the power consumption more than the case of the mercury lamp, and it is related to the light source. The size of the portion can also be reduced by not requiring a cooling fan. For example, the size of the semiconductor laser can be set below the microscope stage or on the back of the microscope. As a result, the light source can be integrated with the fluorescent microscope, and the fluorescent microscope can be easily carried. At this time, if the fluorescent microscope is powered by a small portable battery such as a 9V battery, the fluorescent microscope can be easily carried.
また、半導体レーザに、レーザの照射強度を任意に調整するつまみなどの照射強 度調整手段を備えると、励起光の強弱、すなわち、試料から発する蛍光の強弱を調 整することができる。これにより、試料から発する蛍光の強度を観察しやすい強度に 合わすことができる。また、蛍光標識は、照射する励起光の強度が強すぎると、発す る蛍光がすぐに減衰してしまうため、励起光の強度は適切に調整する必要がある。 また、波長が 360nmの紫外線レーザ光を励起光として用いることは、試料に標識 する蛍光色素が DAPIである場合、試料から 470nm付近の波長の青色の蛍光を効 果的に励起させることができる。 Further, if the semiconductor laser is provided with irradiation intensity adjusting means such as a knob for arbitrarily adjusting the irradiation intensity of the laser, the intensity of the excitation light, that is, the intensity of the fluorescence emitted from the sample can be adjusted. As a result, the intensity of the fluorescence emitted from the sample can be adjusted to an intensity that allows easy observation. In addition, if the intensity of the excitation light emitted from the fluorescent label is too strong, the emitted fluorescence will be attenuated immediately, so the intensity of the excitation light needs to be adjusted appropriately. In addition, the use of ultraviolet laser light having a wavelength of 360 nm as excitation light can effectively excite blue fluorescence having a wavelength of around 470 nm from the sample when the fluorescent dye labeled on the sample is DAPI.
[0028] (第 4の実施の形態) [0028] (Fourth embodiment)
本発明の蛍光顕微鏡において、励起光を発する光源として、波長 490nmのレーザ 光を発する半導体レーザを用いることができる。波長が 490nmのレーザ光を励起光 として用いることは、試料に標識する蛍光色素が FITCである場合、試料から 530nm 付近の波長の緑色の蛍光を効果的に励起させることができる。  In the fluorescence microscope of the present invention, a semiconductor laser that emits laser light having a wavelength of 490 nm can be used as a light source that emits excitation light. Using laser light with a wavelength of 490 nm as excitation light can effectively excite green fluorescence with a wavelength near 530 nm from the sample when the fluorescent dye labeled on the sample is FITC.
[0029] (第 5の実施の形態) [0029] (Fifth embodiment)
本発明の蛍光顕微鏡において、試料像を観察する観察系に、デジタルカメラを用 いることができる。用いるデジタルカメラとしては、試料像の静止画を記録するデジタ ルスチルカメラもしくは試料像の動画を記録するデジタルビデオカメラを用いることが できる。具体的には、例えば、 CCDカメラや CMOSカメラ(CMOSイメージセンサ)を 用いることができる。デジタルカメラを観察系に用いることは、観察した試料像を電子 データとして記録や送信できることを意味し、観察者にとって利便性が向上する。例 えば、フラッシュメモリなどにデータを一時保管することができるし、撮影画像の圧縮 データを LANや電波にて画像処理装置などの他の機器へ送信することもできる。電 子データを電波にて送信する手段は、例えば、屋外での顕微鏡観察において観察 データをいち早く有識者のもとへ送信するのに有用となる。  In the fluorescence microscope of the present invention, a digital camera can be used for an observation system for observing a sample image. As a digital camera to be used, a digital still camera that records a still image of a sample image or a digital video camera that records a moving image of a sample image can be used. Specifically, for example, a CCD camera or a CMOS camera (CMOS image sensor) can be used. The use of a digital camera in the observation system means that the observed sample image can be recorded and transmitted as electronic data, which improves convenience for the observer. For example, data can be temporarily stored in a flash memory or the like, and compressed data of a captured image can be transmitted to other devices such as an image processing device via a LAN or radio wave. Means for transmitting electronic data by radio waves are useful, for example, for quickly transmitting observation data to an expert in an outdoor microscope observation.
また、光源として半導体レーザを採用した際は、試料像の撮影にデジタルカメラを 用いることが、観察においてレーザ光を直視する危険の回避につながる。また、近年 の電子技術の進歩により、デジタルカメラの大きさを従来の蛍光顕微鏡の接眼レンズ 部分よりも小さくすることが容易である。このため、顕微鏡の小型化も可能となる。 また、デジタルカメラによる観察試料の電子データは、ディスプレイに復像する際、 コントラストや明るさやゲインなどの画像調整をすることもできる。このため、観察した 試料像が不鮮明なときは、確認しやすい画像に調整することができる。  When a semiconductor laser is used as the light source, using a digital camera for taking a sample image leads to avoiding the danger of directly viewing the laser beam during observation. Moreover, due to recent advances in electronic technology, it is easy to make the size of a digital camera smaller than the eyepiece part of a conventional fluorescent microscope. For this reason, it is possible to reduce the size of the microscope. In addition, the electronic data of the observation sample from the digital camera can be adjusted for image quality such as contrast, brightness, and gain when returning to the display. For this reason, when the observed sample image is unclear, it can be adjusted to an easy-to-confirm image.
[0030] (第 6の実施の形態) [0030] (Sixth embodiment)
本発明の蛍光顕微鏡において、観察系にデジタルカメラを採用する際、デジタル力 メラと試料像を投影するディスプレイとを一体として試料像撮影部とし、 Vヽゎゆる接眼 レンズ部分の替わりとして、顕微鏡本体力も取外し可能に設置することができる。たと えば、この試料像撮影部を、他の蛍光顕微鏡に転用できるように規格ィ匕すれば、高 価なデジタルカラおよびディスプレイを顕微鏡一台一台に備え付ける必要がなくなる 。これにより試料像撮影部が故障時に、他の顕微鏡の試料像撮影部との互換性の幅 を広げるとともに、試料影部の管理、メンテナンスの面で便利となる。 When adopting a digital camera in the observation system in the fluorescence microscope of the present invention, The camera and the display that projects the sample image can be integrated into the sample image capturing unit, and the microscope body force can be removed in place of the V-shaped eyepiece. For example, if this sample image photographing unit is standardized so that it can be used for other fluorescent microscopes, it is not necessary to provide an expensive digital color and display for each microscope. As a result, when the sample image capturing unit is out of order, the range of compatibility with the sample image capturing unit of other microscopes is widened, and it is convenient in terms of management and maintenance of the sample shadow unit.
また、試料像撮影部のディスプレイは、小型軽量ィ匕のために液晶ディスプレイを採 用することが考えられる。将来的には有機 ELなどのディスプレイを採用することも考 えられる。また、試料像撮影部を、カメラ付き携帯電話のような感覚で、カメラ部分と 液晶表示部分とともに電波にてデータ送信できる機能を有するものとすると、より電子 回路が多く集まり高価となる試料像撮影部を別途にて所持できることになり、保管や 管理や互換の面で好都合となる。図 7に、資料像撮影部の概略図を示す。図 7にお いて、 2は顕微鏡ステージ、 3aは試料を載置したスライドガラス、 7は鏡筒、 8は鏡筒 の下部に取り付けた対物レンズユニット、 6aは対物レンズユニット 8を上下させて焦点 を合わすための焦準ダイヤルである。試料像撮影部は、ディスプレイ 14とデジタル力 メラ 13とが一体となっており、いわゆるシェル形に開閉可能としても良い。図 7 (a)は、 試料像撮影部 17を顕微鏡本体から取外した状態を示すものであり、デジタルカメラ 1 3のレンズ部分又はセンサ部分が顕微鏡本体の接眼レンズの役割を果たすように、 図 7 (b)のように接続する。また、送信アンテナ 18により観察像の電子データを送信 できるものとしてもよい。なお、図 7では、対物レンズと試料との光路を覆うように設け る遮蔽部材の描写を省略して 、る。  In addition, the display of the sample image photographing unit may be a liquid crystal display for a small and light weight display. In the future, it is also possible to adopt displays such as organic EL. If the sample image capturing unit has the function of transmitting data by radio waves together with the camera part and the liquid crystal display part as if it were a camera-equipped mobile phone, sample images can be captured because there are more electronic circuits and more expensive. This will be convenient for storage, management and compatibility. Figure 7 shows a schematic diagram of the document image capture unit. In FIG. 7, 2 is a microscope stage, 3a is a slide glass on which a sample is placed, 7 is a lens barrel, 8 is an objective lens unit attached to the lower part of the lens barrel, and 6a is a focus by moving the objective lens unit 8 up and down. This is a focusing dial for adjusting the In the sample image photographing unit, the display 14 and the digital power camera 13 are integrated, and may be opened and closed in a so-called shell shape. FIG. 7 (a) shows a state in which the sample image photographing unit 17 is removed from the microscope body, and the lens part or sensor part of the digital camera 13 functions as an eyepiece lens of the microscope body. Connect as shown in (b). Further, the transmission antenna 18 may transmit the observation image electronic data. In FIG. 7, the illustration of the shielding member provided so as to cover the optical path between the objective lens and the sample is omitted.
(第 7の実施の形態) (Seventh embodiment)
本発明の蛍光顕微鏡において、対物レンズユニットは、一つし力設置しないものと することができる。対物レンズユニットを一つにすることにより、いわゆるレボルバーを 用いて複数の対物レンズユニットを取り付ける場合に比べて顕微鏡を小型化できる。 また、対物レンズの倍率については、ウィルスの様子を観察できる倍率であるとともに 、視野が小さくなり過ぎず、観察部位の位置調整がしゃすい 20倍程度が好ましい。 また、対物レンズユニットをネジ止めにより顕微鏡に取外し可能に取り付けるものと すると、他の倍率の対物レンズユニットに交換することができる。この際、対物レンズ ユニットを覆う形で設ける遮蔽部材についても、対物レンズユニットの大きさに合わせ て適宜交換することが好まし 、。 In the fluorescence microscope of the present invention, the objective lens unit can be one without any force. By using a single objective lens unit, the microscope can be reduced in size compared to the case where a plurality of objective lens units are attached using a so-called revolver. In addition, the magnification of the objective lens is preferably such that the state of the virus can be observed, the field of view is not too small, and the position adjustment of the observation site is about 20 times. In addition, the objective lens unit should be detachably attached to the microscope with screws. Then, it can replace | exchange for the objective lens unit of another magnification. At this time, it is preferable to replace the shielding member provided so as to cover the objective lens unit as appropriate in accordance with the size of the objective lens unit.
[0032] (第 8の実施の形態) [Eighth Embodiment]
本発明の蛍光顕微鏡において、前記照明光学系および前記観察系の光学フィル タを、光透過特性の異なる光学フィルタに交換できるものとする。たとえば、照明光学 系のフィルタである励起フィルタおよび観察系のフィルタである吸収フィルタと、ダイク 口イツクミ一とが一体となったユニットである蛍光フィルタブロックを採用し、この蛍光フ ィルタブロックを光透過特性の異なる蛍光フィルタブロックに交換することにより、使用 する励起光の波長の変更や、試料に標識する蛍光物質の変更に対応することができ る。  In the fluorescence microscope of the present invention, the illumination optical system and the observation system can be replaced with optical filters having different light transmission characteristics. For example, a fluorescent filter block that is a unit in which an excitation filter that is an illumination optical system filter and an absorption filter that is an observation system filter and a Dyke mouth is integrated is used, and this fluorescent filter block is optically transmitted. By changing to a fluorescence filter block with different characteristics, it is possible to cope with changes in the wavelength of the excitation light used and changes in the fluorescent substance labeled on the sample.
[0033] (第 9の実施の形態)  [0033] (Ninth embodiment)
本発明の蛍光顕微鏡において、顕微鏡ステージを水平 2軸方向のみの位置調整 ができる、いわゆる XYステージとする。このとき、試料観察のフォーカスを合わすため の垂直方向の調整は、顕微鏡ステージを上下動させるのではなぐ対物レンズュ-ッ トを上下動させる構造の顕微鏡とする。仮に、顕微鏡ステージが上下するいわゆる X YZステージであれば、顕微鏡ステージの下に多くのスペースを残すため、顕微鏡の 小型化にとって不要な空間を作り出すことになる。  In the fluorescence microscope of the present invention, the microscope stage is a so-called XY stage that can adjust the position only in two horizontal axes. At this time, the vertical adjustment for focusing the sample observation should be performed with a microscope having a structure in which the objective lens cue is moved up and down instead of moving the microscope stage up and down. If the so-called XYZ stage, in which the microscope stage moves up and down, leaves a lot of space under the microscope stage, creating a space unnecessary for miniaturization of the microscope.
また、顕微鏡ステージ上にスライドガラスの位置決めをする溝を設けると、スライドガ スの位置を測定の度にほぼ定位置とすることができる。これにより、スライドガラスの水 平直交二軸位置を対物レンズの位置に合わせて調整する手間を軽減することができ る。また、例えば、スライドガラスを、試料の載置位置が円にて記される特殊なものに すれば対物レンズの観察視野に対する試料の位置をほぼ一定とすることができ、顕 微鏡ステージの微調整量を少なくすることができる。図 6に、スライドガラス 3aの位置 決めの溝 2aを設けた顕微鏡ステージ 2の構成例を概略図にて示す。図 6では、 XY 方向の位置の調を行うため、直方体形状の顕微鏡ステージに水平直交二軸方向の それぞれ 2辺にダイヤル式のマイクロメータ 2bを水平二軸方向に沿って設置する。こ のため、顕微鏡ステージの上下方向の高さを最小限に抑えることができ、顕微鏡全 体の高さを抑えることができる。 In addition, if a groove for positioning the slide glass is provided on the microscope stage, the position of the slide gas can be made almost constant at every measurement. This can reduce the trouble of adjusting the horizontal orthogonal biaxial position of the slide glass according to the position of the objective lens. In addition, for example, if the slide glass is a special one in which the sample placement position is indicated by a circle, the sample position relative to the observation field of the objective lens can be made almost constant, and the microscope stage can be made fine. The amount of adjustment can be reduced. FIG. 6 shows a schematic diagram of a configuration example of the microscope stage 2 provided with the groove 2a for positioning the slide glass 3a. In Fig. 6, in order to adjust the position in the XY direction, a dial-type micrometer 2b is installed along two horizontal axes on each of two sides in the horizontal orthogonal biaxial direction on a rectangular parallelepiped microscope stage. For this reason, the vertical height of the microscope stage can be minimized, and the entire microscope can be The height of the body can be suppressed.
また、顕微鏡ステージ上の、スライドガラスを載置する部分に、スライドガラスの載置 の有無を検出する光センサや接触スィッチなどを設け、光源である半導体レーザの レーザ光放射と連動させることができる。これにより、例えば、試料が顕微鏡ステージ 上にない時にレーザ光の放射が止まるように動作させると、顕微鏡の操作者に誤つ てレーザ光を照射しないための安全装置とすることができる。  In addition, an optical sensor or a contact switch that detects the presence or absence of the slide glass can be installed on the part of the microscope stage where the slide glass is placed, and linked to the laser light emission of the semiconductor laser that is the light source. . Thus, for example, if the operation is performed so that the emission of the laser beam is stopped when the sample is not on the microscope stage, a safety device can be provided to prevent the laser operator from being mistakenly irradiated with the laser beam.
[0034] (第 10の実施の形態)  [0034] (Tenth embodiment)
本発明の蛍光顕微鏡を、ウィルスが発生した疑いのある養鶏場や、魚の大量死が 起こって 、る海域に運搬し、特許文献 1に記載のウィルス測定方法と組み合わせてゥ ィルスの観察を行う。特許文献 1のウィルス測定方法では、 1〜60秒ほどでウィルス が凝集し、励起光をあてた際に観察可能な状態となるため、即座に結果が判明する 。このため、本発明、操作性が良好なため操作時間が多くかからない蛍光顕微鏡と 組合せることにより、迅速なウィルス測定を可能とする。  The fluorescence microscope of the present invention is transported to a poultry farm where a virus is suspected to have occurred or to a marine area where a large number of fish have been killed, and the virus is observed in combination with the virus measuring method described in Patent Document 1. In the virus measurement method of Patent Document 1, the virus aggregates in about 1 to 60 seconds and becomes observable when irradiated with excitation light, so the result is immediately known. For this reason, the present invention, in combination with a fluorescence microscope that does not require much operation time due to good operability, enables rapid virus measurement.
また、本発明の蛍光顕微鏡は、対物レンズユニット周囲に特定の波長の光を吸収 する遮蔽部材を設けており、観察場所を暗室に限定する必要が無ぐウィルスの発生 して 、る屋外などの現場にて好適に使用できる。  In addition, the fluorescence microscope of the present invention is provided with a shielding member that absorbs light of a specific wavelength around the objective lens unit, so that it is not necessary to limit the observation place to a dark room, and a virus is generated. It can be suitably used on site.
また、本発明の蛍光顕微鏡を持ち込みウィルスの観察を行っている現地には、ウイ ルスの判断ができる有識者が不在の場合に、顕微鏡に、顕微鏡での観察データを有 識者のもとへ電波にて送信できる装置を付随させると、有識者からの指示をより早く 請うことができる。これにより、ウィルス感染拡大の防止に役立てることができる。  In addition, when there is no expert who can judge viruses in the field where the fluorescence microscope of the present invention is being used to observe viruses, the observation data from the microscope is transmitted to the radio waves to the expert. If you attach a device that can be used for transmission, you can request instructions from experts more quickly. This can be useful for preventing the spread of virus infection.
[0035] 以下、本発明の実施例を説明する。 Hereinafter, examples of the present invention will be described.
実施例 1  Example 1
[0036] 図 1および図 2および図 3に、実施例 1に係る蛍光顕微鏡の概略図を示す。図 1は 蛍光顕微鏡の左側から側面視した概略図、図 2は、正面視した際の概略図、図 3は、 正面視した概略図に光路を記入した図である。  FIG. 1, FIG. 2 and FIG. 3 show schematic views of the fluorescence microscope according to the first embodiment. Fig. 1 is a schematic diagram viewed from the left side of the fluorescence microscope, Fig. 2 is a schematic diagram when viewed from the front, and Fig. 3 is a diagram showing the optical path in the schematic diagram viewed from the front.
[0037] 図 1において、 1はベースで、このベース 1上には、 XYステージである顕微鏡ステー ジ 2が設けられている。顕微鏡ステージ 2は、水平 2軸方向にステージを動かすため のダイヤルを設ける力 図 1〜図 3のいずれにおいても記載を省略している。顕微鏡 ステージ 2の上には、試料 3を載置するが、試料 3は、スライドガラス 3aの上に載置し てカバーガラス 3bにて覆う形にて載置する。顕微鏡ステージ 2の上には、スライドガラ ス 3aを載置する溝 2aが設けられており、溝 2aの深さは、顕微鏡ステージ 2上にスライ ドガラス 3aを載置して側面視した場合、スライドガラス 3aの上面が顕微鏡ステージ 2 の上面力 突出する深さとなっている。 In FIG. 1, reference numeral 1 denotes a base, and a microscope stage 2 which is an XY stage is provided on the base 1. The microscope stage 2 is provided with a dial for moving the stage in two horizontal axes. The description is omitted in any of FIGS. microscope The sample 3 is placed on the stage 2, and the sample 3 is placed on the slide glass 3a and covered with the cover glass 3b. A groove 2a for placing the slide glass 3a is provided on the microscope stage 2, and the depth of the groove 2a is the same as that when the slide glass 3a is placed on the microscope stage 2 and viewed from the side. The upper surface of the glass 3a has a depth at which the upper surface force of the microscope stage 2 protrudes.
また、試料 3は、スライドガラス 3aの中央に載置するのであれば、顕微鏡ステージ 2 上のほぼ中央に位置させることができる。そして、図示しない顕微鏡ステージのダイ ャルを回転することにより、試料 3の載置位置を水平 2軸方向、いわゆる XY方向に微 調整できる。  Further, if the sample 3 is placed at the center of the slide glass 3a, it can be positioned almost at the center on the microscope stage 2. Then, by rotating the dial of the microscope stage (not shown), the placement position of the sample 3 can be finely adjusted in two horizontal axes, the so-called XY direction.
[0038] また、ベース 1には、支柱 4が直立して設けられている。この支柱 4には、焦準部 6を 介してベース 1上と平行になるように支持アーム 5が設けられている。焦準部 6は、不 図示のピ-オンとラックからなる昇降機構を介して支柱 4に設けられ、焦準ダイヤル 6 aの操作により支持アーム 5を支柱 4に沿って上下動可能にしている。なお、図 2およ び図 3においては、焦準部 6および支持アーム 5は鏡筒 7にて隠れるため確認できな い。  [0038] Further, the base 1 is provided with upright columns 4 upright. A support arm 5 is provided on the support column 4 so as to be parallel to the base 1 through the focusing unit 6. The focusing unit 6 is provided on the support column 4 via an elevating mechanism including a pion and a rack (not shown), and the support arm 5 can be moved up and down along the support column 4 by operating the focusing dial 6 a. . In FIGS. 2 and 3, the focusing unit 6 and the support arm 5 are hidden by the lens barrel 7 and cannot be confirmed.
[0039] 支持アーム 5の先端には、鏡筒 7が固定されている。この鏡筒 7の顕微鏡ステージ 2 側の下端部には、ねじ込み固定式の対物レンズユニット 8が装着されている。この対 物レンズユニット 8は、焦準部 6の操作による支持アーム 5の上下動により観察光軸 a 方向に移動し試料 3との相対距離を変化させることで、試料 3の焦点を合わせられる ようになっている。  The lens barrel 7 is fixed to the tip of the support arm 5. A screw-in fixed objective lens unit 8 is attached to the lower end of the lens barrel 7 on the microscope stage 2 side. This object lens unit 8 moves in the direction of the observation optical axis a by the vertical movement of the support arm 5 by the operation of the focusing unit 6 and changes the relative distance from the sample 3 so that the sample 3 can be focused. It has become.
[0040] 鏡筒 7の側面部には、光ファイバを固定するファイノ 一ホルダ 9が設けられている。  A side holder of the lens barrel 7 is provided with a fine holder 9 for fixing the optical fiber.
このファイバーホルダ 9は、支持アーム 5と平行な方向に沿って配置されている。ファ ィバーホルダ 9の一方端部には、光源 10に接続される光ファイバ 9aが接続される。 光源 10は、蛍光観察における励起光を発するものであり、半導体レーザ力もなつて いる。半導体レーザはたとえば、波長 405nmの励起光を発するものとできる。なお、 半導体レーザは、レーザの照射強度調整手段を備えた日亜化学工業製 405固体レ 一ザを使用した。  The fiber holder 9 is disposed along a direction parallel to the support arm 5. An optical fiber 9 a connected to the light source 10 is connected to one end of the fiber holder 9. The light source 10 emits excitation light in fluorescence observation and has a semiconductor laser power. For example, the semiconductor laser can emit excitation light having a wavelength of 405 nm. As the semiconductor laser, a 405 solid laser manufactured by Nichia Corporation equipped with means for adjusting the irradiation intensity of the laser was used.
[0041] 鏡筒 7の中空部には、光源 10の光源光軸 10a上に沿って、図 1および図 2におい ては不図示の蛍光フィルタブロック 11が配置されて 、る。図 3にお!/、ては蛍光フィル タブロック 11を図示しており、蛍光フィルタブロック 11が励起フィルタ 11aおよび吸収 フィルタ 1 lbおよびダイクロイツクミラー 1 lcにて構成されることを示して 、る。励起フィ ルタ 11aは光源 10からの光力も特定の波長の光を選択し、ダイクロイツクミラー 11cは 励起フィルタ 1 laにて選択された光を励起光として反射して、観察光軸 aに沿って試 料 3に照射する。また、ダイクロイツクミラー 11cは、試料 3より発せられる蛍光や試料 3 カゝら反射した励起光の迷光を観察光軸 aに沿って対物レンズユニット 8を介して入射 して透過する。吸収フィルタ l ibは、ダイクロイツクミラー 11cが透過した光から、観察 に不要な波長の光を除去するために特定の波長の光のみを選択して透過する。な お、蛍光フィルタブロック 11の交換は、図 1および図 2において鏡筒 7上に図示する 蛍光フィルタブロック交換口 16を開閉することにより行う。なお、使用した蛍光フィル タブロックは、ニコン製蛍光フィルタブロックである。 [0041] In the hollow portion of the lens barrel 7, along the light source optical axis 10a of the light source 10, in FIG. 1 and FIG. In this case, a fluorescent filter block 11 (not shown) is arranged. FIG. 3 shows a fluorescent filter block 11 and shows that the fluorescent filter block 11 is composed of an excitation filter 11a, an absorption filter 1 lb, and a dichroic mirror 1 lc. . The excitation filter 11a selects light of a specific wavelength from the light source 10, and the dichroic mirror 11c reflects the light selected by the excitation filter 1 la as excitation light along the observation optical axis a. Irradiate Sample 3. Further, the dichroic mirror 11c transmits the fluorescence emitted from the sample 3 and the stray light of the excitation light reflected from the sample 3 through the objective lens unit 8 along the observation optical axis a. The absorption filter l ib selects and transmits only light having a specific wavelength in order to remove light having a wavelength unnecessary for observation from the light transmitted by the dichroic mirror 11c. The fluorescent filter block 11 is exchanged by opening and closing the fluorescent filter block exchange port 16 shown on the lens barrel 7 in FIGS. The fluorescent filter block used is a Nikon fluorescent filter block.
[0042] 鏡筒 7の中空部であり蛍光フィルタブロック 11の上部には、図 1および図 2にて図示 しない結像レンズ 12を観察光軸 a上に配置する。図 3にて、結像レンズ 12および焦 点の様子を点線にて示す。鏡筒 7の上部には、結像レンズ 12を通過した像を撮影す る CCDカメラ 13aが観察光軸 a上に配置される。 CCDカメラ 13aは、例えば撮影像を 電子データとして出力する手段を備えた CCDカメラ 13aを用いることができる。 CCD カメラ 13aにて検出した撮影像は、 CCDカメラ 13aに接続するディスプレイ 14にて表 示する。なお、使用した CCDカメラ 13aは、ディスプレイ 14とセットである-コン製 DE GITAL SIGHT DS— : L1である。  An imaging lens 12 (not shown in FIGS. 1 and 2) is disposed on the observation optical axis a in the hollow portion of the lens barrel 7 and above the fluorescent filter block 11. In FIG. 3, the imaging lens 12 and the state of the focal point are indicated by dotted lines. On the upper part of the lens barrel 7, a CCD camera 13a for taking an image that has passed through the imaging lens 12 is arranged on the observation optical axis a. As the CCD camera 13a, for example, a CCD camera 13a provided with means for outputting a photographed image as electronic data can be used. The captured image detected by the CCD camera 13a is displayed on the display 14 connected to the CCD camera 13a. The CCD camera 13a used is a DE GITAL SIGHT DS—: L1, which is a set with the display 14.
[0043] 対物レンズユニット 8には、円筒状の遮蔽部材 15が略円筒状の対物レンズユニット 8を覆うように設けられる。遮蔽部材 15は、図 1および図 2において図示し、図 3にお V、ては図示を省略して!/、る。  The objective lens unit 8 is provided with a cylindrical shielding member 15 so as to cover the substantially cylindrical objective lens unit 8. The shielding member 15 is shown in FIG. 1 and FIG. 2, and V is omitted in FIG.
遮蔽部材 15の側面には雌ねじを設けており、雌ネジに固定ネジ 15aが組みつけて いる。遮蔽部材 15は、固定ネジ 15aを締めこむことにより対物レンズユニット 8上に固 定することができる。ここで、遮蔽部材 15は、対物レンズユニット 8上にて任意の位置 に上下動可能であることから、任意の位置にて固定できる。なお、遮蔽部材 15の長さ は、対物レンズユニット 8の長さと同等程度〜半分程度の長さであることが好ましい。 また、遮蔽部材 15は、オレンジ色をした透明のアクリル榭脂からなり、遮蔽部材 15越 しに対物レンズユニット 8および、顕微鏡ステージ 2の様子が確認できる。遮蔽部材 1 5はオレンジ色をしていることにより、およそ 580nm以下の波長の光を吸収することが できる。すなわち、円筒状の遮蔽部材 15の内側においては円筒の外側の光のうち波 長が 580nm以下の光を遮断することができるし、円筒状の遮蔽部材 15の外側にお いては、円筒の内側からの光のうち波長が 580nm以下の光を遮断することができる 。図 4に、遮蔽部材 15および固定ネジ 15aの概略図を示す。 A female screw is provided on the side surface of the shielding member 15, and a fixing screw 15a is assembled to the female screw. The shielding member 15 can be fixed on the objective lens unit 8 by tightening the fixing screw 15a. Here, since the shielding member 15 can be moved up and down at any position on the objective lens unit 8, it can be fixed at any position. The length of the shielding member 15 is preferably about the same as the length of the objective lens unit 8 to about half. Further, the shielding member 15 is made of an orange transparent acrylic resin, and the state of the objective lens unit 8 and the microscope stage 2 can be confirmed through the shielding member 15. Since the shielding member 15 is orange, it can absorb light having a wavelength of about 580 nm or less. That is, light having a wavelength of 580 nm or less can be blocked out of the light outside the cylinder inside the cylindrical shielding member 15, and the inside of the cylinder can be blocked outside the cylindrical shielding member 15. Can block light with a wavelength of 580 nm or less. FIG. 4 shows a schematic diagram of the shielding member 15 and the fixing screw 15a.
[0044] 次に、蛍光顕微鏡の使用例につ!、て説明する。特許文献 1に記載の凝集反応の測 定方法を用いて蛍光標識を施した試料 3を、スライドガラス 3a上に載置し、カバーガ ラス 3bにより覆った。次に、対物レンズユニット 8を顕微鏡ステージ 2から離れるように 上昇させたうえで、側面視にお!、て対物レンズユニット 8の試料 3側の先端部分が遮 蔽部材 15に覆われないように、遮蔽部材 15の位置を対物レンズユニット 8の上方に 引き上げて、固定ネジ 15aの締め込みにより固定した。この状態で、顕微鏡ステージ 2上の溝 2a上に試料 3を載置したスライドガラス 3aを設置した。この、遮蔽部材 15を 上方に引き上げた概略図を図 5 (a)に示す。  [0044] Next, a usage example of a fluorescence microscope will be described. Sample 3 that was fluorescently labeled using the method for measuring agglutination described in Patent Document 1 was placed on a slide glass 3a and covered with a cover glass 3b. Next, after raising the objective lens unit 8 away from the microscope stage 2, in a side view, the tip of the objective lens unit 8 on the sample 3 side is not covered by the shielding member 15. Then, the position of the shielding member 15 was raised above the objective lens unit 8 and fixed by tightening the fixing screw 15a. In this state, a slide glass 3a on which the sample 3 was placed was placed on the groove 2a on the microscope stage 2. FIG. 5 (a) shows a schematic view of the shielding member 15 pulled up.
[0045] 次に、対物レンズ 8に遮蔽部材 15を固定させたまま、対物レンズユニット 8を、焦準 ダイヤル 6aの回転により、目視にて、対物レンズユニット 8の先端部分がカバーガラス 3bに接触しないぎりぎりまで下降した。この、対物レンズユニット 8を試料 3に近づけた 概略図を図 5 (b)に示す。  [0045] Next, with the shielding member 15 fixed to the objective lens 8, the objective lens unit 8 is visually contacted with the cover glass 3b by rotating the focusing dial 6a. It went down to the last minute. A schematic diagram of the objective lens unit 8 brought close to the sample 3 is shown in FIG. 5 (b).
[0046] 次に、遮蔽部材 15の固定ネジ 15aをゆるめ、遮蔽部材 15と対物レンズユニット 8と の固定を解き、遮蔽部材 15を対物レンズユニット 8の表面に沿って、遮蔽部材 15の 下端がスライドガラス 3aに接触するまで下降させた。このとき、対物レンズユニット 8の 上下位置を動かさず、遮蔽部材 15のみを下降させてスライドガラス 3aに接触させるこ とが重要である。そして、この位置にて、遮蔽部材 15の固定ネジ 15aを再び締め付け 、対物レンズユニット 8と遮蔽部材 15とを固定した。この、遮蔽部材 15を再固定した 概略図を図 5 (c)に示す。  Next, the fixing screw 15a of the shielding member 15 is loosened, the fixation of the shielding member 15 and the objective lens unit 8 is released, and the lower end of the shielding member 15 is moved along the surface of the objective lens unit 8. The glass was lowered until it contacted the slide glass 3a. At this time, it is important that only the shielding member 15 is lowered and brought into contact with the slide glass 3a without moving the vertical position of the objective lens unit 8. At this position, the fixing screw 15a of the shielding member 15 is tightened again, and the objective lens unit 8 and the shielding member 15 are fixed. FIG. 5 (c) shows a schematic diagram in which the shielding member 15 is fixed again.
[0047] 次に、光源 10の電源を入れ、レーザ光を放射した。レーザ光は波長 405nmの青 色レーザが放射され、光ファイバ 9aおよびファイバーホルダ 9を通過して励起光とし て蛍光フィルタブロック 11に入射される。蛍光フィルタブロック 11は、励起光を反射し て、試料 3に入射され、試料 3は緑色の蛍光を発した。この際、試料 3に入射した励起 光は、レーザ光源であるため直進性が良ぐ試料 3の凹凸面に応じて乱反射する。仮 に、遮蔽部材 15が設けられていない場合は、この乱反射した励起光が観察者の目 に直接入射する恐れがあるため危険である。 Next, the light source 10 was turned on and laser light was emitted. The laser beam is emitted from a blue laser with a wavelength of 405 nm and passes through the optical fiber 9a and the fiber holder 9 as excitation light. Is incident on the fluorescent filter block 11. The fluorescent filter block 11 reflected the excitation light and entered the sample 3, and the sample 3 emitted green fluorescence. At this time, the excitation light incident on the sample 3 is irregularly reflected in accordance with the uneven surface of the sample 3 which has a good linearity because it is a laser light source. If the shielding member 15 is not provided, the irregularly reflected excitation light may be directly incident on the observer's eyes, which is dangerous.
[0048] 次に、対物レンズユニット 8および鏡筒 7を焦準ダイヤル 6aの回転により、遮蔽部材 15ごと上昇させ、試料 3から離して行くことによりフォーカスを合わす。なお、使用した 対物レンズユニット 8の倍率は 20倍であり、焦点を合わすために対物レンズユニット 8 を上昇させる量は、カバーガラス 3bと対物レンズユニット 8の先端の間に生じる間隔 が 0. 5〜lmmほどになる上昇量ですむ。このため、スライドガラス 3aと遮蔽部材 15と の間で生じる隙間は小さぐ励起光が人の目に入射する確率は極めて低い。  Next, the objective lens unit 8 and the lens barrel 7 are raised together with the shielding member 15 by the rotation of the focusing dial 6 a, and focused by moving away from the sample 3. Note that the magnification of the objective lens unit 8 used is 20 times, and the amount by which the objective lens unit 8 is raised for focusing is the interval generated between the cover glass 3b and the tip of the objective lens unit 8 is 0.5. The amount of increase is about lmm. For this reason, the gap generated between the slide glass 3a and the shielding member 15 is small, and the probability that the excitation light enters the human eye is extremely low.
[0049] また、試料 3は、励起光を受けて蛍光を発する。試料 3が FITCによる標識であれば 、波長が 405nmの励起光により、波長約 530nm付近の蛍光が発せられる。ただし F ITCが標識の場合は、波長 488nmの光が理想の励起光である。また、試料 3が DA PI (へキスト 33258)により標識であれば、波長約 470nm付近の蛍光が発せられる。 ただし DAPIが標識の場合は、理想の励起光は 365nmの光となる。  [0049] Sample 3 emits fluorescence upon receiving excitation light. If sample 3 is labeled with FITC, fluorescence with a wavelength of about 530 nm is emitted by excitation light with a wavelength of 405 nm. However, when FITC is a label, light with a wavelength of 488 nm is the ideal excitation light. If sample 3 is labeled with DA PI (Hoechst 33258), fluorescence with a wavelength of about 470 nm is emitted. However, when DAPI is a label, the ideal excitation light is 365 nm light.
試料 3が発する蛍光は、観察光軸 aに沿って対物レンズユニット 8を通過し、蛍光フ ィルタブロック 11を透過し、結像レンズ 12にて結像された後、 CCDカメラ 13aにて検 出される。 CCDカメラ 13aにて検出された画像は、 CCDカメラ 13aに接続するデイス プレイ 14により表示される。本実施例では、光源 10として半導体レーザを用いており 、仮に結像レンズ 12にて結像された像を接眼レンズにて観察するとなると、強度の高 い光を直視することになり危険である。このため、 CCDカメラ等を用いて、観察像を直 視しないことが適する。  The fluorescence emitted from the sample 3 passes through the objective lens unit 8 along the observation optical axis a, passes through the fluorescence filter block 11, is imaged by the imaging lens 12, and is detected by the CCD camera 13a. It is. The image detected by the CCD camera 13a is displayed by the display 14 connected to the CCD camera 13a. In this embodiment, a semiconductor laser is used as the light source 10, and if an image formed by the imaging lens 12 is observed with an eyepiece, it is dangerous because high-intensity light is directly viewed. . For this reason, it is suitable not to look directly at the observation image using a CCD camera or the like.
また、 CCDカメラ 13aおよびディスプレイ 14を介して観察することは、色合いゃコン トラスト等を調整することができるため、接眼レンズを用いた直視による観察に比べて 、画像をより確認しやす!ヽ状態に調整できる利点を有する。  In addition, observation through the CCD camera 13a and the display 14 makes it easier to check the image compared with direct observation using an eyepiece because the contrast can be adjusted if the color is shaded! Has the advantage of being adjustable.
[0050] また、試料 3が発する蛍光を観察している際、遮蔽部材 15の外側から遮蔽部材 15 の内側すなわち観察領域に、遮光部材 15が吸収しない波長の光が侵入する。また、 試料 3からは励起光の反射光である 、わゆる迷光にっ 、ても発せられる。しかしなが ら、 CCDカメラ 13aにて観察される光は、蛍光フィルタブロック 11を透過する波長の 光であるため、遮蔽部材 15に吸収されな力つた侵入光や励起光による迷光であって も蛍光フィルタブロック 11の吸収フィルタ 1 lbを透過しな 、波長の光であれば、観察 時にカットされる。ゆえに、 CCDカメラ 13aでの検出像は鮮明なものが得られる。 また、焦点を合わす際に、カバーガラス 3bと対物レンズユニット 8の先端との間に 0 . 5〜: Lmmほどの間隔が生じるのに伴い、遮蔽部材 15とスライドガラス 3aとの間にも わずかながら間隔が生じる。したがって、この遮蔽部材 15とスライドガラス 3aとの隙間 から、蛍光フィルタブロック 11の吸収フィルタ l ibを透過する波長の光が観察領域に 侵入し得る。し力しながら、隙間が小さいことから侵入光はわずかであり、侵入光の強 度が極端に強い場合を除いて観察の妨げとならない。また、図 8に対物レンズュ-ッ ト 8の先端断面概略図を示すが、対物レンズユニット 8の先端部において、略円筒状 の対物レンズ鏡筒 8bの試料側先端 8cから対物レンズ群 8aが突出せず、内側に少し 隠れる状態である。このことも、遮蔽部材 15とスライドガラス 3aの隙間力もの侵入光を 遮るのに役立っていると考える。 [0050] Further, when observing the fluorescence emitted from the sample 3, light having a wavelength that is not absorbed by the light shielding member 15 enters from the outside of the shielding member 15 into the inside of the shielding member 15, that is, the observation region. Also, The sample 3 emits even stray light that is reflected light of the excitation light. However, since the light observed by the CCD camera 13a is light having a wavelength that passes through the fluorescent filter block 11, even light that has been absorbed by the shielding member 15 or stray light caused by excitation light can be used. If light of a wavelength that does not pass through 1 lb of the absorption filter of the fluorescent filter block 11 is cut, it is cut during observation. Therefore, a clear image can be obtained by the CCD camera 13a. In addition, when focusing, there is a slight gap between the shielding member 15 and the slide glass 3a as a distance of about 0.5 to Lmm is generated between the cover glass 3b and the tip of the objective lens unit 8. However, an interval occurs. Therefore, light having a wavelength that passes through the absorption filter ib of the fluorescent filter block 11 can enter the observation region from the gap between the shielding member 15 and the slide glass 3a. However, since the gap is small, the amount of intrusion light is small and does not interfere with observation unless the intensity of the intrusion light is extremely strong. FIG. 8 shows a schematic cross-sectional view of the tip of the objective lens unit 8. The objective lens unit 8a protrudes from the sample-side tip 8c of the substantially cylindrical objective lens barrel 8b at the tip of the objective lens unit 8. It is in a state of being hidden a little inside. This is also considered to be useful for blocking intrusion light having a gap between the shielding member 15 and the slide glass 3a.
次に、顕微鏡ステージ 2に載置した試料 3を他の試料に交換する際は、対物レンズ ユニット 8と遮蔽部材 15との固定関係をそのままに、対物レンズユニット 8を焦準ダイ ャル 6aの回転により上昇させる。このとき、光源 10からの励起光の出力は止めておく 。このときの概略図を図 5 (d)に示す。  Next, when exchanging the sample 3 placed on the microscope stage 2 with another sample, the objective lens unit 8 is attached to the focusing dial 6a without changing the fixed relationship between the objective lens unit 8 and the shielding member 15. Raise by rotation. At this time, the output of the excitation light from the light source 10 is stopped. A schematic diagram at this time is shown in Fig. 5 (d).
次に、対物レンズユニット 8と顕微鏡ステージ 2との間に十分な隙間ができた状態に て、試料 3を他の試料と交換する。ただし、交換前後の試料は、どちらも同一規格の スライドガラスに載置した試料であり、全高と形状がほぼ同一とする。  Next, the sample 3 is exchanged with another sample in a state where a sufficient gap is formed between the objective lens unit 8 and the microscope stage 2. However, the samples before and after replacement are both samples placed on the same standard slide glass, and the overall height and shape are almost the same.
次に、対物レンズユニット 8を、焦準ダイヤル 6aの回転により、対物レンズユニット 8 に固定した遮蔽部材 15の下端部力 Sスライドガラス 3aに接するまで下降させる。この際 、遮蔽部材 15がスライドガラス 3aに接することでストッパーの役割を果たす。このため 、対物レンズユニット 8を下降させる操作において、操作を慎重に行う度合いを軽減 できる。焦点についても、先の試料にて測定した際の位置と大差がないため、対物レ ンズユニット 8のわずかな上昇にて容易に合わすことができる。したがって、操作時間 を大幅に短縮実現できると考える。なお、特許文献 1に記載の凝集反応の測定方法 では、攪拌後 1〜60秒ほどが観察可能な凝集反応の完了する時間であるため、観察 試料を交換してフォーカスを合わしているうちに観察可能になると考える。したがって 、迅速な測定が可能になると考える。図 9に、観察したバタテリオファージ M13K07 の蛍光凝集像を示す。 Next, the objective lens unit 8 is lowered by the rotation of the focusing dial 6a until the lower end force S of the shielding member 15 fixed to the objective lens unit 8 comes into contact with the slide glass 3a. At this time, the shielding member 15 plays a role of a stopper by contacting the slide glass 3a. For this reason, in the operation of lowering the objective lens unit 8, the degree of careful operation can be reduced. The focal point is not much different from the position measured with the previous sample, so it can be easily adjusted by slightly raising the objective lens unit 8. Therefore, operation time I think that it can be realized significantly shortened. In the method for measuring the agglutination reaction described in Patent Document 1, since 1 to 60 seconds after stirring is the observable agglomeration reaction completion time, observation is performed while the observation sample is replaced and focused. I think it will be possible. Therefore, we think that quick measurement is possible. FIG. 9 shows the observed fluorescent aggregation image of batteriophage M13K07.
[0052] 図 10と図 11は、試料マーク 104、 114を設けた顕微鏡ステージ 102、 112とスライ ドガラス 123a、 133aを示す。これらの図に示す顕微鏡ステージは、顕微鏡ステージ の位置決めの溝の内部に試料マークを設けている。試料マークは、目で直接に見る ことができる可視マークと、光源の励起光で蛍光を発する蛍光マークとからなる。図 1 0の試料マーク 104は、可視マーク 104aと蛍光マーク 104bを同心円とし、可視マー ク 104aを蛍光マーク 104bよりも大きな円として表示している。さらに、図 11の試料マ ーク 114は、円形の可視マーク 114aの内部に格子状の蛍光マーク 114bを設けて!/ヽ る。  FIGS. 10 and 11 show microscope stages 102 and 112 provided with sample marks 104 and 114 and slide glasses 123a and 133a. The microscope stage shown in these figures is provided with a sample mark inside the positioning groove of the microscope stage. The sample mark consists of a visible mark that can be seen directly by the eye and a fluorescent mark that emits fluorescence when excited by the light source. In the sample mark 104 of FIG. 10, the visible mark 104a and the fluorescent mark 104b are displayed as concentric circles, and the visible mark 104a is displayed as a larger circle than the fluorescent mark 104b. Furthermore, the sample mark 114 in FIG. 11 is provided with a lattice-like fluorescent mark 114b inside a circular visible mark 114a.
[0053] これ等の図に示す顕微鏡ステージは、位置決めの溝の内部、すなわちスライドガラ スを載置する試料台の中央部に試料マークを設けている。試料マークには、可視マ ークと蛍光マークの両方を設けている。この構造は、最初に可視マークを用いて目視 で大まかに試料の位置を合わせ、次に蛍光顕微鏡の鏡筒を下げて蛍光マークの位 置に焦点を合わせて励起光のレーザ光を当てる。たとえば、 20倍の対物レンズでは 、作動距離が数 mmあることから、スライドガラスの厚さ(1. 2mm程度)よりも十分大き いので、この方法で試料の位置合わせができる。蛍光マークと試料マークの両方を 表示している試料マークはより便利に使用できる。それは、試料は必ずしも蛍光を発 するわけではなぐ蛍光が見えない場合でも、可視マークにより焦点位置合わせが確 認できるからである。ただし、試料マークは可視マークと蛍光マークのいずれか一方 とすることちでさる。  In the microscope stage shown in these drawings, a sample mark is provided in the positioning groove, that is, in the center of the sample stage on which the slide glass is placed. The sample mark is provided with both a visible mark and a fluorescent mark. In this structure, the visual mark is first used to roughly align the sample visually, then the fluorescent microscope barrel is lowered to focus on the position of the fluorescent mark and the excitation laser beam is applied. For example, a 20x objective lens has a working distance of a few millimeters, which is sufficiently larger than the thickness of the slide glass (about 1.2 mm), so the sample can be aligned using this method. Sample marks displaying both fluorescent and sample marks can be used more conveniently. This is because the focus alignment can be confirmed by the visible mark even when the sample does not necessarily emit fluorescence, and the fluorescence is not visible. However, the sample mark can be either a visible mark or a fluorescent mark.
[0054] また、試料台である顕微鏡ステージに試料マークを設ける蛍光顕微鏡は、顕微鏡 観測時 (試料に焦点合わせをした時)には蛍光マークが焦点から十分外れた位置に あるので、これが試料の観測を妨げることがな!、。  [0054] In addition, a fluorescence microscope in which a sample mark is provided on a microscope stage, which is a sample stage, is located at a position sufficiently away from the focus when the microscope is observed (when the sample is focused). Do not disturb the observation! ,.
[0055] 図 12と図 13はスライドガラス 123a、 133aに試料マーク 124、 134を設けている。試 料マークは、可視マーク 124a、 134aと蛍光マーク 124b、 134bの両方を設けている 。スライドガラスに設けた試料マーク 124、 134は、試料位置合わせとともに、焦点位 置合わせにも供せられる。スライドガラスの試料マーク 124、 134は、試料の観測を妨 げないように、試料マークを試料の視野外に配置する。たとえば、試料マークは、試 料の外側に設けられて、蛍光顕微鏡の視野外に配置できる。このスライドガラスは、 試料マークを設けて試料を簡単に正確な位置に配置しながら、試料マークによる観 測の弊害がない。以上のスライドガラスは、可視マークと蛍光マークの両方からなる 試料マークを設けて 、るが、試料マークは可視マークと蛍光マークの 、ずれか一方と することもできる。 試料マークは、印刷して設けることができる。 In FIG. 12 and FIG. 13, sample marks 124 and 134 are provided on the slide glasses 123a and 133a. Trial The material marks are provided with both visible marks 124a and 134a and fluorescent marks 124b and 134b. The sample marks 124 and 134 provided on the slide glass can be used not only for sample positioning but also for focus positioning. The sample marks 124 and 134 on the slide glass are placed outside the field of view of the sample so as not to disturb the observation of the sample. For example, the sample mark can be placed outside the sample and placed outside the field of view of the fluorescence microscope. This slide glass is provided with a sample mark so that the sample can be easily placed at an accurate position, and there is no harmful effect of observation by the sample mark. The above glass slide is provided with a sample mark consisting of both a visible mark and a fluorescent mark. However, the sample mark can be either a visible mark or a fluorescent mark. The sample mark can be provided by printing.
図面の簡単な説明  Brief Description of Drawings
[0056] [図 1]本発明の実施例 1に係る蛍光顕微鏡の概略図である。 FIG. 1 is a schematic view of a fluorescence microscope according to Example 1 of the present invention.
[図 2]本発明の実施例 1に係る蛍光顕微鏡の概略図である。  FIG. 2 is a schematic view of a fluorescence microscope according to Example 1 of the present invention.
[図 3]本発明の実施例 1に係る蛍光顕微鏡の概略図である。  FIG. 3 is a schematic view of a fluorescence microscope according to Example 1 of the present invention.
[図 4]本発明の実施例 1に係る遮蔽部材の概略図である。  FIG. 4 is a schematic view of a shielding member according to Embodiment 1 of the present invention.
[図 5]本発明の実施例 1に係る蛍光顕微鏡の操作概略図である。  FIG. 5 is a schematic operation diagram of the fluorescence microscope according to Example 1 of the present invention.
[図 6]本発明の第 9の実施の形態に係る顕微鏡ステージの概略図である。  FIG. 6 is a schematic view of a microscope stage according to a ninth embodiment of the present invention.
[図 7]本発明の第 6の実施の形態に係る蛍光顕微鏡の概略図である。  FIG. 7 is a schematic view of a fluorescence microscope according to a sixth embodiment of the present invention.
[図 8]本発明の実施例 1に係る対物レンズユニットの先端断面概略図である。  FIG. 8 is a schematic cross-sectional view of the distal end of the objective lens unit according to Example 1 of the present invention.
[図 9]本発明の実施例 1に係る蛍光顕微鏡でのパクテリオファージ M13K07の蛍光 凝集像の撮影像である。  FIG. 9 is a photographed image of fluorescent aggregated images of Pacteriophage M13K07 with a fluorescence microscope according to Example 1 of the present invention.
[図 10]本発明の実施例に力かる蛍光顕微鏡の顕微鏡ステージの概略図である。  FIG. 10 is a schematic view of a microscope stage of a fluorescence microscope that works on an example of the present invention.
[図 11]本発明の実施例に力かる蛍光顕微鏡の顕微鏡ステージの概略図である。  FIG. 11 is a schematic view of a microscope stage of a fluorescence microscope that works on an example of the present invention.
[図 12]本発明の実施例にカゝかるスライドガラスの概略図である。  FIG. 12 is a schematic view of a slide glass used in an example of the present invention.
[図 13]本発明の実施例にカゝかるスライドガラスの概略図である。  FIG. 13 is a schematic view of a slide glass used in an example of the present invention.
符号の説明  Explanation of symbols
[0057] 1…ベース [0057] 1 ... Base
2· · ·顕微鏡ステージ、 2a…溝、 2b…マイクロメータ  2. Microscope stage, 2a ... groove, 2b ... micrometer
3· · ·試料、 3a…スライドガラス、 3b…カバーガラス 4…支柱 3 ··· Sample, 3a… Slide glass, 3b… Cover glass 4 ... post
5…支持アーム  5 ... Support arm
6···焦準部、 6a…焦準ダイヤル  6 ··· Focusing part, 6a… Focus dial
7 -mm  7 -mm
8…対物レンズユニット、 8a…対物レンズ群、  8 ... Objective lens unit, 8a ... Objective lens group,
8b…対物レンズ鏡筒、 8c…試料側先端 8b ... Objective lens barrel, 8c ... Sample side tip
9…ファイバーホルダ、 9a…光ファイバ 9 ... Fiber holder, 9a ... Optical fiber
10…光源、 10a…光源光軸 10 ... light source, 10a ... light source optical axis
11…蛍光フィルタブロック、 11a…励起フィルタ、 lib…吸収フィルタ lie- 'ダイクロイツクミラー  11… Fluorescence filter block, 11a… Excitation filter, lib… Absorption filter lie- 'Dichroic mirror
12…結像レンズ 12 ... imaging lens
13···デジタルカメラ、 13a -"CCDカメラ  13 ... Digital camera, 13a-"CCD camera
14…ディスプレイ  14… Display
15…遮蔽部材、 15a…固定ネジ  15… Shielding member, 15a… Fixing screw
16· ··蛍光フィルタブロック交換口  16 ··· Fluorescent filter block replacement port
17…試料像撮影部  17 ... Sample image photographing unit
18···送信アンテナ  18 ... Transmitting antenna
a'"¾l察光軸 a '"¾l observing optical axis
102···顕微鏡ステージ、 102a…溝  102 ... Microscope stage, 102a ... groove
104···試料マーク  104 ... Sample mark
104a…可視マーク  104a… Visible mark
104b…蛍光マーク  104b ... Fluorescent mark
112···顕微鏡ステージ、 112a…溝  112 ... Microscope stage, 112a ... Groove
114…試料マーク  114 ... Sample mark
114a…可視マーク  114a… Visible mark
114b…蛍光マーク  114b ... Fluorescent mark
123a…スライドガラス  123a ... slide glass
124···試料マーク 6 124 ··· Sample mark 6
124a…可視マーク 124a… Visible mark
124b…蛍光マーク 124b ... Fluorescent mark
133a…スライドガラス 133a ... slide glass
134…試料マーク 134 ... Sample mark
134a…可視マーク 134a… Visible mark
134b…蛍光マーク 134b ... Fluorescent mark

Claims

請求の範囲 The scope of the claims
[1] 励起光を発生する光源と、前記光源からの励起光は対物レンズを介して観察位置 に載置した試料に照射する照明光学系と、前記励起光の照射により前記試料から発 する蛍光を取得して試料像を得る観察系と、前記対物レンズと前記試料との間の光 路を覆うように設けられる遮蔽部材とを含む蛍光顕微鏡にぉ ヽて、  [1] A light source for generating excitation light, an illumination optical system for irradiating the excitation light from the light source to a sample placed at an observation position via an objective lens, and a fluorescence emitted from the sample by the irradiation of the excitation light A fluorescence microscope including an observation system that obtains a sample image by obtaining a sample image and a shielding member provided so as to cover an optical path between the objective lens and the sample,
前記遮蔽部材は、特定の波長の光を吸収する光透過性の合成樹脂からなり、前記 対物レンズを内設する対物レンズユニットを覆うように設けられる筒状の部材であるこ とを特徴とする蛍光顕微鏡。  The shielding member is made of a light-transmitting synthetic resin that absorbs light of a specific wavelength, and is a cylindrical member provided so as to cover an objective lens unit in which the objective lens is installed. microscope.
[2] 請求項 1に記載の蛍光顕微鏡にお!、て、前記遮蔽部材が試料に照射する励起光 の反射光を特定の波長の光として吸収することを特徴とする蛍光顕微鏡。  [2] The fluorescence microscope according to claim 1, wherein the shielding member absorbs the reflected light of the excitation light irradiated onto the sample as light of a specific wavelength.
[3] 請求項 1に記載の蛍光顕微鏡において、前記遮蔽部材が、試料から発する蛍光の 波長を特定の波長として吸収することを特徴とする蛍光顕微鏡。 [3] The fluorescence microscope according to claim 1, wherein the shielding member absorbs a wavelength of fluorescence emitted from the sample as a specific wavelength.
[4] 請求項 1に記載の蛍光顕微鏡にお!、て、前記遮蔽部材は、前記対物レンズュニッ トの表面に沿って上下動可能であり、かつ、任意の位置にて対物レンズユニットに固 定する固定ネジを設けることを特徴とする蛍光顕微鏡。 [4] In the fluorescence microscope according to claim 1, the shielding member can be moved up and down along the surface of the objective lens unit and fixed to the objective lens unit at an arbitrary position. A fluorescent microscope characterized in that a fixing screw is provided.
[5] 請求項 1に記載の蛍光顕微鏡にお!ヽて、試料を載置する顕微鏡ステージを備え、 この顕微鏡ステージに試料位置を表示する試料マークを設けていることを特徴とする 蛍光顕微鏡。 [5] The fluorescence microscope according to claim 1! A fluorescence microscope comprising a microscope stage on which a sample is placed, and a sample mark for displaying the sample position is provided on the microscope stage.
[6] 請求項 1に記載の蛍光顕微鏡にぉ 、て、試料を載置するスライドガラスを備え、こ のスライドガラスに試料位置を表示する試料マークを設けていることを特徴とする蛍 光顕微鏡。  [6] The fluorescence microscope according to claim 1, further comprising a slide glass on which the sample is placed, and a sample mark for displaying the sample position is provided on the slide glass. .
[7] 請求項 5又は 6に記載の蛍光顕微鏡において、試料マークを蛍光マークとすること を特徴とする蛍光顕微鏡。  7. The fluorescent microscope according to claim 5 or 6, wherein the sample mark is a fluorescent mark.
[8] 請求項 5又は 6に記載の蛍光顕微鏡において、試料マークを可視マークとすること を特徴とする蛍光顕微鏡。 [8] The fluorescence microscope according to claim 5 or 6, wherein the sample mark is a visible mark.
[9] 請求項 1に記載の蛍光顕微鏡にぉ 、て、前記光源は、半導体レーザであることを特 徴とする蛍光顕微鏡。 [9] The fluorescent microscope according to claim 1, wherein the light source is a semiconductor laser.
[10] 請求項 1に記載の蛍光顕微鏡において、前記観察系は、前記デジタルカメラと試 料像を投影するディスプレイとが一体となる試料像撮影部を蛍光顕微鏡力ゝら取外し 可能に設置することを特徴とする蛍光顕微鏡。 [10] The fluorescence microscope according to claim 1, wherein the observation system is connected to the digital camera. A fluorescent microscope characterized in that a sample image photographing unit integrated with a display for projecting a sample image is detachable from a fluorescent microscope.
請求項 1に記載の蛍光顕微鏡にお!、て、試料を載置する顕微鏡ステージを備え、 この顕微鏡ステージは、試料の載置の有無を検出する手段を設けることを特徴とする 蛍光顕微鏡。  The fluorescence microscope according to claim 1! A fluorescence microscope comprising a microscope stage on which a sample is placed, the microscope stage being provided with means for detecting whether or not the sample is placed.
PCT/JP2007/060466 2006-05-23 2007-05-22 Fluorescent microscope WO2007136075A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008516710A JP4998804B2 (en) 2006-05-23 2007-05-22 Fluorescence microscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-143441 2006-05-23
JP2006143441 2006-05-23

Publications (1)

Publication Number Publication Date
WO2007136075A1 true WO2007136075A1 (en) 2007-11-29

Family

ID=38723389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060466 WO2007136075A1 (en) 2006-05-23 2007-05-22 Fluorescent microscope

Country Status (2)

Country Link
JP (1) JP4998804B2 (en)
WO (1) WO2007136075A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145645A (en) * 2009-12-18 2011-07-28 Ihi Corp Microscope device and method for photographing specimen
WO2012102140A1 (en) * 2011-01-24 2012-08-02 ナノフォトン株式会社 Light-blocking member which is applicable to microscope
CN104964977A (en) * 2015-07-02 2015-10-07 济南大学 Fast microscopic detection device of microorganisms
CN110320655A (en) * 2019-07-11 2019-10-11 中国医学科学院北京协和医院 A kind of adjustable microscope light-shielding structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207177A (en) * 2001-01-09 2002-07-26 Nikon Corp Fluorescent microscope
JP2003004620A (en) * 2001-06-21 2003-01-08 Olympus Optical Co Ltd Scanning probe microscope
JP2004101871A (en) * 2002-09-10 2004-04-02 Olympus Corp Photographing apparatus for microscope image
JP2005221708A (en) * 2004-02-05 2005-08-18 Olympus Corp Microscope photographing apparatus, method and program for adjusting brightness
JP2005345718A (en) * 2004-06-02 2005-12-15 Olympus Corp Fluorescence microscope and shading member
JP2006071544A (en) * 2004-09-03 2006-03-16 Olympus Corp Camera obscura device for fluorescence observation, fluorescence observation system, and fluorescence observation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184737A (en) * 1994-12-27 1996-07-16 Nikon Corp Light source centering tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207177A (en) * 2001-01-09 2002-07-26 Nikon Corp Fluorescent microscope
JP2003004620A (en) * 2001-06-21 2003-01-08 Olympus Optical Co Ltd Scanning probe microscope
JP2004101871A (en) * 2002-09-10 2004-04-02 Olympus Corp Photographing apparatus for microscope image
JP2005221708A (en) * 2004-02-05 2005-08-18 Olympus Corp Microscope photographing apparatus, method and program for adjusting brightness
JP2005345718A (en) * 2004-06-02 2005-12-15 Olympus Corp Fluorescence microscope and shading member
JP2006071544A (en) * 2004-09-03 2006-03-16 Olympus Corp Camera obscura device for fluorescence observation, fluorescence observation system, and fluorescence observation method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145645A (en) * 2009-12-18 2011-07-28 Ihi Corp Microscope device and method for photographing specimen
WO2012102140A1 (en) * 2011-01-24 2012-08-02 ナノフォトン株式会社 Light-blocking member which is applicable to microscope
JP2012168492A (en) * 2011-01-24 2012-09-06 Nano Photon Kk Light-shielding member applied to microscope
EP2669728A1 (en) * 2011-01-24 2013-12-04 Nanophoton Corporation Light-blocking member which is applicable to microscope
EP2669728A4 (en) * 2011-01-24 2014-06-25 Nanophoton Corp Light-blocking member which is applicable to microscope
US9612373B2 (en) 2011-01-24 2017-04-04 Nanophoton Corporation Light blocking member applicable to microscope
CN104964977A (en) * 2015-07-02 2015-10-07 济南大学 Fast microscopic detection device of microorganisms
CN110320655A (en) * 2019-07-11 2019-10-11 中国医学科学院北京协和医院 A kind of adjustable microscope light-shielding structure
CN110320655B (en) * 2019-07-11 2021-06-25 中国医学科学院北京协和医院 Adjustable microscope shading structure

Also Published As

Publication number Publication date
JPWO2007136075A1 (en) 2009-10-01
JP4998804B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
US7612316B2 (en) Focus detection device and fluorescent observation device using the same
US7215426B2 (en) Dark box apparatus for fluoroscopy, fluoroscopy system, and fluoroscopy method
EP1780574B1 (en) Microscope systeme with an illuminatig unit
JP4370199B2 (en) Endoscope device and endoscope adapter
WO2009081498A1 (en) Organism image capturing device
WO2018061883A1 (en) Observation device
US7485878B2 (en) Laser microdissection unit
JP6688190B2 (en) microscope
JP4998804B2 (en) Fluorescence microscope
JP2006301599A (en) Feeble light imaging optical system, microscopic device equipped with the same and microscopic system equipped with microscopic device
JP2006296516A (en) Bright-field light source for fluorescence observation and surgical microscope loaded with the same
JP2007041510A (en) Observation apparatus and observation system provided with the same
JP2006180926A (en) Medical display device
JP2014059413A (en) Microscope
JP2020129149A (en) Light shielding device, microscope, and observation method
CN111338067A (en) Micro-imaging module of miniature fluorescence
US9140886B2 (en) Inverted microscope including a control unit configured to synchronize a switching operation between absorption filters with a switching operation between excitation filters
JP2009140827A (en) External light source apparatus
JP2005010296A (en) Fluorescent microscope
JP3995458B2 (en) Total reflection fluorescence microscope
RU2312326C1 (en) Spectral laser fluorescent microscope
JP2005049282A (en) Fluorescent observation apparatus and laser light irradiation device
JP3102954U (en) Fluorescence observation system with fiber pipette as excitation light source and built-in light intensity detector
JP4960915B2 (en) Attachment for surgical microscope
JP4686015B2 (en) Lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743900

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008516710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743900

Country of ref document: EP

Kind code of ref document: A1