WO2007126765A2 - Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases - Google Patents

Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases Download PDF

Info

Publication number
WO2007126765A2
WO2007126765A2 PCT/US2007/007485 US2007007485W WO2007126765A2 WO 2007126765 A2 WO2007126765 A2 WO 2007126765A2 US 2007007485 W US2007007485 W US 2007007485W WO 2007126765 A2 WO2007126765 A2 WO 2007126765A2
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
aromatic
compound
alkyl
alkenyl
Prior art date
Application number
PCT/US2007/007485
Other languages
French (fr)
Other versions
WO2007126765A3 (en
Inventor
Michael E. Jung
Charles L. Sawyers
Samedy Ouk
Chris Tran
John Wongvipat
Original Assignee
The Regents Of The University Of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38656005&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007126765(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP2009502925A priority Critical patent/JP5133975B2/en
Priority to EP18181743.8A priority patent/EP3412290B1/en
Priority to FIEP07754060.7T priority patent/FI2004181T6/en
Priority to EP21153358.3A priority patent/EP3835294A1/en
Priority to SI200731759A priority patent/SI2004181T1/en
Priority to PL16173574T priority patent/PL3100727T3/en
Priority to PL18181743T priority patent/PL3412290T3/en
Priority to NZ572335A priority patent/NZ572335A/en
Priority to BRPI0709771-9A priority patent/BRPI0709771B1/en
Priority to EP24159183.3A priority patent/EP4385574A3/en
Priority to AU2007243651A priority patent/AU2007243651C1/en
Priority to CN2007800196547A priority patent/CN101454002B/en
Priority to ES07754060T priority patent/ES2564388T7/en
Application filed by The Regents Of The University Of California filed Critical The Regents Of The University Of California
Priority to EP07754060.7A priority patent/EP2004181B3/en
Priority to DK07754060.7T priority patent/DK2004181T6/en
Priority to EP16173574.1A priority patent/EP3100727B1/en
Priority to US12/294,881 priority patent/US8445507B2/en
Priority to PL07754060.7T priority patent/PL2004181T6/en
Publication of WO2007126765A2 publication Critical patent/WO2007126765A2/en
Publication of WO2007126765A3 publication Critical patent/WO2007126765A3/en
Priority to HK09105350.4A priority patent/HK1126421A1/en
Priority to US13/615,085 priority patent/US8802689B2/en
Priority to US14/318,234 priority patent/US9388159B2/en
Priority to US15/181,030 priority patent/US9987261B2/en
Priority to US15/969,147 priority patent/US10857139B2/en
Priority to CY181101115T priority patent/CY1120828T1/en
Priority to US17/093,047 priority patent/US11771687B2/en
Priority to CY20211100418T priority patent/CY1124147T1/en
Priority to US18/375,628 priority patent/US20240293383A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention relates to hydantoins, thiohydantoins, dithiohydantoins, hydantoinimines and thiohydantoinimines compounds, methods of using such compounds in the treatment of androgen receptor-associated conditions, such as age-related diseases, for example, prostate cancer, and to pharmaceutical compositions containing such compounds.
  • Prostate cancer is the most common incidence of cancer and the second leading cause of cancer death in Western men.
  • the cancer When the cancer is confined locally, the disease can be cured by surgery or radiation.
  • 30% of such cancer relapses with distant metastatic disease and others have advanced disease at diagnoses.
  • Advanced disease is treated by castration and/or administration of anti-androgens, the so-called androgen deprivation therapy. Castration lowers the circulating levels of androgens and reduces the activity of androgen receptor (AR).
  • Administration of anti-androgens blocks AR function by competing away androgen binding and therefore reduces the AR activity. Although initially effective, these treatments quickly fail and the cancer becomes hormone refractory.
  • Bicalutamide (Brand name: Casodex) is the most commonly used anti- androgen. While it has inhibitory effect on AR in hormone sensitive prostate cancer, it fails to suppress AR when the cancer becomes hormone refractory.
  • Two weaknesses of current antiandrogens are blamed for the failure to prevent prostate cancer progression from hormone sensitive stage to hormone refractory disease and to effectively treat hormone refractory prostate cancer.
  • Nonsteroidal anti-androgens have been preferred over steroidal compounds for prostate cancer because they are more selective and have fewer side effects.
  • a wide variety of such compounds were described in U.S. patent numbers 4,097,578, 5,411,981, and 5,705,654, U.S. published applications 2004/0009969 and 2007/0004753, and PCT international applications published as WO 97/00071, WO 00/17163 and WO 06/124118.
  • a compound is according to formula II.
  • Het represents a heterocyclic unit of 5 or 6 atoms.
  • a and B are independently selected from oxygen, sulfur, and N-R 9 , with R 9 being selected from hydrogen, aryl, substituted aryl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, substituted cycloalkyl, substituted cycloalkyl, SO 2 Rn, NRuRi 2 , NRn(CO)ORn, NH(CO)NR, ,R 12 , NRi 2 (CO)Ri ,, 0(CO)R n , O(CO)OR,
  • R n and R 12 are independently selected from hydrogen, alkyl, substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, aryl, substituted aryl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, or substituted heterocyclic aromatic or non-aromatic.
  • Ri is selected from hydrogen, aryl, substituted aryl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, substituted cycloalkyl, substituted cycloalkyl, SO 2 Rn, NR, ,R 12 , NRi 2 (CO)ORn, NH(CO)NR 1 ,R, 2 , NR 12 (CO)R 11 , 0(CO)R n , 0(CO)OR, , 0(CS)R n , NR 12 (CS)R n , NH(CS)NR n R 12 , OrNR
  • R 2 and R 3 are independently selected from hydrogen, aryl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, or substituted cycloalkyl, or, together with the carbon to which they are linked, form a cycle which can be cycloalkyl, substituted cycloalkyl, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic.
  • Ri and R 2 can be connected to form a cycle which can be heterocyclic aromatic or non aromatic, substituted heterocyclic aromatic or non aromatic.
  • Rn and R 12 can be connected to form a cycle which can be heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic, cycloalkyl, or substituted cycloalkyl.
  • the compound can be A51 or A52.
  • a pharmaceutical composition includes a therapeutically effective amount of a compound according to Formula II, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier, diluent, or adjuvant.
  • the pharmaceutical composition can include a solution of dimethyl sulfoxide, phosphate buffered saline solution, and water.
  • the pharmaceutical composition can include dimethylsulfoxide, a carboxymethylcellulose, a polysorbate, and water.
  • An embodiment of a method includes preventing or treating a disease or disorder related to nuclear receptor activity.
  • a method for preventing or treating a hyperproliferative disorder can include administering a compound according to Formula II, or a pharmaceutically acceptable_salt_ thereof, to a subject in need of such prevention or treatment, thereby preventing or treating the hyperproliferative disorder.
  • the compound can be administered at a dosage in the range of from about 1 mg per kg body weight per day to about 50 mg per kg body weight per day.
  • the compound can be administered, for example, by intravenous injection, by injection into tissue, intraperitoneally, orally, or nasally.
  • the compound according to Formula II is an antagonist of a nuclear receptor or an antagonist of an androgen receptor.
  • Figure 1 is a bar chart depicting the antagonist effect of compounds A51 and A52 on HS cancer cells.
  • Figure 2 is a bar chart depicting the antagonist effect of compounds A51 and A52 on HS cancer cells.
  • Figure 3 is a bar chart depicting the antagonist effect of compounds A51 and A52 on HR cancer cells.
  • Figure 4 is a graph depicting the pharmacokinetic behavior of compound
  • Figure 5 is a graph depicting the effect of compound A52 on LnCaP- AR- overexpressed tumor size at 10 mg/kg.
  • Figure 6 presents images depicting the disappearance of Luciferase activity after 17 days of treatment with compound A52. DETAILED DESCRIPTION
  • the present invention relates to the compounds of formula II, methods of using such compounds as modulators of androgen receptors and to pharmaceutical compositions containing such compounds and salts thereof.
  • Compounds of formula II can be used to agonize or antagonize the function of the nuclear receptor.
  • the compounds can be used to antagonize the androgen receptor.
  • Use of the compounds is not limited to affecting the androgen receptor, but can, for example, also be useful for the treatment of other diseases related to nuclear receptor function.
  • Formula II can be represented as the structure
  • Het is a heterocyclic unit of 5 and 6 atoms.
  • Preferred heterocyclic units are selected from compounds represented by the structures and the like. However, the invention is not intended to be limited to compounds having these structures.
  • R 4 , R 5 , R 6 , and R 7 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, arylalkyl, arylalkenyl, arylalkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, halogen, CN, NO 2 , ORu, SRn, NR 11 R 12 , NH(CO)OR M , NH(CO)NR 11 R 12 , NR I2 (CO)R U , O(CO)R,,, 0(CO)OR n , O(CS)R M , NRi 2 (CS)R n , NH(CS)NR 11 R 12 , NR 12 (CS)ORn.
  • R 4 is preferably CN or NO 2 - R 5 is preferably trifluoromethyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl and halogen.
  • R$ and R7 are preferably hydrogen, alkyl or halogen.
  • R 4 , Rs, R 6 , and R 7 can be independently connected to form a cycle which can be aromatic, substituted aromatic, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, substituted cycloalkyl.
  • X is selected from sulfur (S), oxygen (O), NR 8 wherein N is nitrogen and R « is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, arylalkyl, arylalkenyl, arylalkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, halogen, (CO)R 11 , (CO)OR 11 , (CS)Rn, (CS)OR 11 .
  • R 1 is selected from hydrogen, aryl, substituted aryl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl,. substituted . alkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, substituted cycloalkyl, substituted cycloalkyl, SO 2 Rn, NRnR 12 , NRI 2 (CO)ORH, NH(CO)NR I ,R I2 , NR 12 (CO)R n , 0(CO)R n , 0(CO)OR n , 0(CS)Rn, NR 12 (CS)R 11 , NH(CS)NR 11 R 12 , NRi
  • R2 and R 3 are independently selected from hydrogen, aryl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, substituted cycloalkyl.
  • R 2 and R 3 can be connected to form a cycle which can be heterocyclic aromatic or non aromatic, substituted heterocyclic aromatic or non aromatic, cycloalkyl, substituted cycloalkyl.
  • Ri and R 2 can be connected to form a cycle which can be heterocyclic aromatic or non aromatic, substituted heterocyclic aromatic or non aromatic.
  • a and B are independently selected from oxygen (O), sulfur (S) and N-R 9 .
  • R 9 is selected from hydrogen, aryl, substituted aryl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non- aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, substituted cycloalkyl, SO 2 R 11 , NR 11 Ri 2 , NRi 2 (CO)OR n , NH(CO)NR, ,Rt 2 , NR 12 (CO)R n , 0(CO)R n , 0(CO)OR n , 0(CS)R n , NR 12 (CS)R 11 , NH(CS)NR n R 12 , NR 12 (CS)OR n
  • R 11 and R] 2 are independently selected from hydrogen, alkyl, substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, aryl, substituted aryl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic.
  • R n and R 12 can be connected to form a cycle which can be heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic, cycloalkyl, substituted cycloalkyl.
  • alkyl denotes branched or unbranched hydrocarbon chains, preferably having about 1 to about 8 carbons, such as, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, 2-methylpentyl, pentyl, hexyl, isohexyl, heptyl, 4,4-dimethylpentyl, octyl, 2,2,4-trimethylpentyl and the like.
  • Substituted alkyl includes an alkyl group optionally substituted with one or more functional groups which are attached commonly to such chains, such as, hydroxyl, bromo, fluoro, chloro, iodo, mercapto or thio, cyano, alkylthio, heterocyclyl, aryl, heteroaryl, carboxyl, carbalkoyl, alkyl, alkenyl, nitro, amino, alkoxyl, amido, and the like to form alkyl groups such as trifluoromethyl, 3 -hydroxy hexyl, 2-carboxypropyl, 2-fluoroethyl, carboxymethyl, cyanobutyl and the like.
  • functional groups which are attached commonly to such chains, such as, hydroxyl, bromo, fluoro, chloro, iodo, mercapto or thio, cyano, alkylthio, heterocyclyl, aryl, heteroaryl, carboxyl, carbalk
  • cycloalkyl as employed herein alone or as part of another group includes saturated or partially unsaturated (containing 1 or more double bonds) cyclic hydrocarbon groups containing 1 to 3 rings, including monocycloalkyl, bicycloalkyl and tricycloalkyl, containing a total of 3 to 20 carbons forming the rings, preferably 3 to 10 carbons, and which can be fused to 1 or 2 aromatic rings as described for aryl, which include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl and cyclododecyl, cyclohexenyl.
  • Substituted cycloalkyl includes a cycloalkyl group optionally substituted with 1 or more substituents such as halogen, alkyl, alkoxy, hydroxy, aryl, aryloxy, arylalkyl, cycloalkyl, alkylamido, alkanoylamino, oxo, acyl, arylcarbonylamino, amino, nitro, cyano, thiol and/or alkylthio and/or any of the substituents included in the definition of "substituted alkyl.”
  • substituents such as halogen, alkyl, alkoxy, hydroxy, aryl, aryloxy, arylalkyl, cycloalkyl, alkylamido, alkanoylamino, oxo, acyl, arylcarbonylamino, amino, nitro, cyano, thiol and/or alkylthio and/or any of the substitu
  • alkenyl refers to straight or branched chain radicals of 2 to 20 carbons, preferably 2 to 12 carbons, and more preferably 2 to 8 carbons in the normal chain, which include one or more double bonds in the normal chain, such as vinyl, 2-propenyl, 3- butenyl, 2-butenyl, 4-pentenyl, 3-pentenyl, 2-hexenyl, 3-hexenyl, 2-heptenyl, 3-heptenyl,
  • Substituted alkenyl includes an alkenyl group optionally substituted with one or more substituents, such as the substituents included above in the definition of "substituted alkyl” and “substituted cycloalkyl. "
  • alkynyl refers to straight or branched chain radicals of 2 to 20 carbons, preferably 2 to 12 carbons and more preferably 2 to 8 carbons in the normal chain, which include one or more triple bonds in the normal chain, such as 2-propynyl, 3-butynyl, 2- butynyl, 4-pentynyI, 3-pentynyl, 2-hexynyl, 3-hexynyl, 2-heptynyl, 3-heptynyl, 4- heptynyl, 3-octynyl, 3-nonynyl, 4-decynyl, 3-undecynyl, 4-dodecynyl and the like.
  • Substituted alkynyl includes an alkynyl group optionally substituted with one or more substituents, such as the substituents included above in the definition of "substituted alkyl” and “substituted cycloalkyl.”
  • arylalkyl refers to alkyl, alkenyl and alkynyl groups as described above having an aryl substituent.
  • Representative examples of arylalkyl include, but are not limited to, benzyl, 1- and 2-phenylethyl, 2- and 3-phenylpropyl, benzhydryl and naphthylmethyl and the like.
  • Substituted arylalkyl includes arylalkyl groups wherein the aryl portion is optionally substituted with one or more substituents, such as the substituents included above in the definition of "substituted alkyl” and “substituted cycloalkyl.”
  • halogen or "halo” as used herein alone or as part of another group refers to chlorine, bromine, fluorine, and iodine.
  • halogenated alkyl halogenated alkenyl
  • halogenated alkynyl as used herein alone or as part of another group refers to "alkyl”, “alkenyl” and “alkynyl” which are substituted by one or more atoms selected from fluorine, chlorine, bromine, and iodine.
  • aryl or “Ar” as employed herein alone or as part of another group refers to monocyclic and polycyclic aromatic groups containing 6 to 10 carbons in the ring portion (such as phenyl or naphthyl including 1-naphthyl and 2-naphthyl) and can optionally include one to three additional rings fused to a carbocyclic ring or a heterocyclic ring (such as aryl, cycloalkyl, heteroaryl or cycloheteroalkyl rings).
  • Substituted aryl includes an aryl group optionally substituted with one or more functional groups, such as halo, alkyl, haloalkyl, alkoxy, haloalkoxy, alkenyl, trifluoromethyl, trifluoromethoxy, alkynyl, cycloalkyl, cycloalkylalkyl, cycloheteroalkyl, cycloheteroalkylalkyl, aryl, heteroaryl, arylalkyl, aryloxy, aryloxyalkyl, arylalkoxy, alkoxycarbonyl, arylcarbonyl, arylalkenyl, aminocarbonylaryl, arylthio, arylsulfinyl, arylazo, heteroarylalkyl, heteroarylalkenyl, heteroarylheteroaryl, heteroaryloxy, hydroxy, nitro, cyano, amino, substituted amino wherein the amino wherein the amino where
  • heterocyclic represents an unsubstituted or substituted stable 5- to 10-membered monocyclic ring system which can be saturated or unsaturated, and which consists of carbon atoms and from one to four heteroatoms selected from N, O, or S, and wherein the nitrogen and sulfur heteroatoms can optionally be oxidized, and the nitrogen heter ⁇ at ⁇ m can optionally be quaternized.
  • the heterocyclic ring can be attached at any heteroatom or carbon atom which results in the creation of a stable structure.
  • heterocyclic groups include, but are not limited to, piperidinyl, piperazinyl, oxopiperazinyl, oxopiperidinyl, oxopyrrolidinyl, azepinyl, oxoazepinyl, pyrrolyl, pyrrolidinyl, furanyl, thienyl, pyrazolyl, pyrazolidinyl, imidazolyl, imidazolinyl, imidazolidinyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, oxazolyl, oxazolidinyl, isoxazolyl, isoxazolidinyl, mo ⁇ holinyl, thiazolyl, thiazolidinyl, isothiazolyl, thiadiazolyl, tetrahydropyranyl, thiamorpholinyl, thiamorpholinyl,
  • heterocyclic aromatic refers to a 5- or 7-membered aromatic ring which includes 1, 2, 3 or 4 hetero atoms such as nitrogen, oxygen or sulfur and such rings fused to an aryl, cycloalkyl, heteroaryl or heterocycloalkyl ring (e.g., benzothiophenyl, indolyl), and includes possible N-oxides.
  • “Substituted heteroaryl” includes a heteroaryl group optionally substituted with 1 to 4 substituents, such as the substituents included above in the definition of "substituted alkyl” and “substituted cycloalkyl.” Examples of heteroaryl groups include the following:
  • the compounds of formula II can be present as salts, which are also within the scope of this invention.
  • Pharmaceutically acceptable (i.e., non-toxic, physiologically acceptable) salts are preferred.
  • the compounds of formula II have, for example, at least one basic center, they can form acid addition salts ⁇ These are formed, for example ⁇ with strong inorganic acids, such as mineral acids, for example sulfuric acid, phosphoric acid or a hydrohalic acid, with strong organic carboxylic acids, such as alkanecarboxylic acids of 1 to 4 carbon atoms which are unsubstituted or substituted, for example, by halogen, for example acetic acid, such as saturated or unsaturated dicarboxylic acids, for example oxalic, malonic, succinic, maleic, fumaric, phthalic or terephthalic acid, such as hydroxycarboxylic acids, for example ascorbic, glycolic, lactic, malic, tartaric or citric acid, such as amino acids, (for example as as
  • Corresponding acid addition salts can also be formed having, if desired, an additionally present basic center.
  • the compounds of formula II having at least one acid group can also form salts with bases.
  • Suitable salts with bases are, for example, metal salts, such as alkali metal or alkaline earth metal salts, for example sodium, potassium or magnesium salts, or salts with ammonia or an organic amine, such as morpholine, thiomorpholine, piperidine, pyrrolidine, a mono, di or tri- lower alkylamine, for example ethyl, tert-butyl, diethyl, diisopropyl, triethyl, tributyl or dimethyl-propylamine, or a mono, di or trihydroxy lower alkylamine, for example mono, di or triethanolamine.
  • Corresponding internal salts can furthermore be formed. Salts which are unsuitable for pharmaceutical uses but which can be employed, for example, for the isolation or purification of free compounds of formula II or their pharmaceutically acceptable salts, are also included. Preferred salts of the compounds of formula II which contain a basic group include monohydrochloride, hydrogensulfate, methanesulfonate, phosphate or nitrate. Preferred salts of the compounds of formula II which contain an acid group include sodium, potassium and magnesium salts and pharmaceutically acceptable organic amines.
  • modulator used in this invention refers to a chemical compound with capacity to either enhance (e.g., "agonist” activity) or inhibit (e.g., "antagonist” activity) a functional property of biological activity or process (e.g., enzyme activity or receptor binding); such enhancement or inhibition can be contingent on the occurrence of a specific event, such as activation of a signal transduction pathway, and/or can be manifest only in particular cell types: ⁇ " ⁇ "
  • prodrug esters as employed herein includes imines, esters and carbonates formed by reacting one or more hydroxyls of compounds of formula II with alkyl, alkoxy, or aryl substituted acylating agents employing procedures known to those skilled in the art to generate acetates, pivalates, methylcarbonates, benzoates and the like.
  • prodrug any compound that can be converted in vivo to provide the bioactive agent (i.e., the compound of formula II) is a prodrug within the scope and spirit of the invention.
  • Various forms of prodrugs are well known in the art. A comprehensive description of prodrugs and prodrug derivatives are described in: (1) The Practice of Medicinal Chemistry, Camille G. Wermuth et al., Ch 31, (Academic Press, 1996); (2) Design of Prodrugs, edited by H. Bundgaard, (Elsevier, 1985); (3) A Textbook of Drug Design and Development, P. Krogsgaard-Larson and H. Bundgaard, eds. Ch 5, pgs 113-191 (Harwood Academic Publishers, 1991).
  • compounds of formula A4 can be prepared from intermediate A3 with an appropriate electrophile.
  • Intermediates of formula A3 can be obtained by reacting intermediates Al with A2 in an appropriate solvent such as N,N- dimethylformamide.
  • Intermediates Al and A2 can be obtained commercially, can be prepared by methods known in the literature, or can be readily prepared by one skilled in the art.
  • Compounds of formula A3 can be treated with acid to afford compounds of formula A5.
  • Compounds of formula A5 can be treated with Lawesson's reagent to obtain compounds of formula A6.
  • Trimethylsilyl cyanide (0.93 ml, 7 mmol) was added dropwise to a mixture of /7-toluidine (0.535 g, 5 mmol) and cyclobutanone (0.42 g, 6 mmol). The reaction mixture was stirred at room temperature for 6 h and then concentrated under vacuum to obtain a brown liquid which was subjected to chromatography (dichloromethane) to yield Bl (0.912 g, 4.9 mmol, 98%) as a yellowish solid.
  • a mixture of A12 (0.03 g, 0.13 mmol) and B2 (0.032 g, 0.13 mmol) in DMF (0.5 ml) was heated under microwave irradiation at 80 0 C for 20 hours.
  • the second mixture was refluxed for 2 hours.
  • the reaction mixture was poured into cold water (10 ml) and extracted with ethyl acetate (15 ml). The organic layer was dried over MgS ⁇ 4, concentrated and chromatographed (dichloromethane:acetone, 95:5) to yield A52 (0.022 g, 0.046 mmol, 35%) as a white powder.
  • the present invention is directed to the method of synthesizing A52 described below.
  • Examples 1-8 can be performed sequentially to synthesize A52.
  • this invention is not limited to the steps in Examples 1-8 as equivalent steps to those below are also encompassed by the present invention. Persons skilled in the art will recognize additional compounds that can be prepared utilizing similar methodology. Synthesis of 3-(trifluoromethyl)pyridin-2 ⁇ HVone. 2
  • 5-Amino-3-(trifluoromethyl)pyridine-2-carbonitrile 8 (1.141 g, 6.1 mmol) is mixed with chloroform (5 ml) and water (40 ml) to give a white suspension.
  • Thiophosgene (0.701 ml, 9.15 mmol) is added and the reaction stirred for 2 hours at 22 0 C to give a clear biphasic system.
  • Chloroform (20 ml) is added and the phases are separated.
  • the aqueous layer is extracted with chloroform (30 ml) and the combined organic is washed with saturated aqueous NaHCO 3 and water, dried over MgSO 4 and the solvent is removed under reduced pressure.
  • the crude 5-isothiocyanato-3- (trifluoromethyl) pyridine-2-carbonitrile 9 is dried under vacuum and used as such in the next step, for example, in the step described in Example 8 below.
  • 5-nitro-3-(trifluoromethyl)pyridin-2(lH)-one 3 is obtained by the routes provided in Examples 1 and 2 of Scheme 3, above. [0068] A mixture of 5-nitro-3-(trifluoromethyl)pyridin-2(lH)-one 3, POBr 3 (1.5 equivalents), PBr 3 (4 equivalents), and Br 2 (2 equivalents) is heated to about 90-110 0 C and is then poured into ice water. The mixture is neutralized and extracted. The combined organic phases are dried over Na 2 SC> 4 and all solvents removed under reduced pressure to obtain 2-bromo-5-nitro-3-(trifluoromethyl)pyridine 21 in a yield of 88%.
  • a solution of 2-hydroxy-3-(trifluoromethyl)pyridine C in a mixture of N- iodosuccinimide (NIS), acetonitrile, and dimethylformamide (DMF) is heated at 80 0 C for 2 hours to produce 2-hydroxy-3-trifluoromethyl-5-(iodo)pyridine I (greater than 80% yield).
  • the 2-hydroxy-3-trifluoromethyl-5-(iodo)pyridine I is then mixed with POCI 3 in DMF and heated to 130 0 C in a microwave for 20 minutes to produce 2-chloro-3- trifluoromethyl-5-(iodo)pyridine J (yield of 50 to 55%).
  • the 2-chloro-3-trifluoromethyl- 5-(iodo)pyridine K is reacted in a solution of pMBnNH 2 , palladium(II) acetate, 2,2'- bis(diphenylphosphino)-l,l'-binaphthyl (BINAP), triethylamine, and cesium carbonate in toluene ⁇ to produce - 5-((4-methoxyphenyl))methylamino)-2-chloro ⁇ 3- (trifluoromethyl)pyridine K (yield of 40%).
  • the 2-cyano-3-trifluoromethyl-5-(amino)pyridine H is reacted with thiophosgene in water at 25 0 C for 2 hours to provide 5-isothiocyanato-3- (trifluoromethyl)pyridine-2-carbonitrile A (yield of 74% to 95%).
  • a solution of 2,4-difluoro-benzoylchloride D in a solution of methylamine and tetrahydrofuran (THF) is allowed to react to produce 2,4-difiuoro-N- methylbenzamide M (quantitative yield).
  • the 2,4-difluoro-N-methylbenzamide M is mixed with in a solution of acetonitrile and 4-methoxy-benzenemethanamine and heated in a microwave for 20 minutes at 190 0 C to produce 2-fluoro-4-(4-methoxybenzylamino)- N-methylbenzamide S (yield of 40%).
  • the 2-fluoro-4-(4-methoxybenzylamino)-N- methylbenzamide S is reacted in a solution of dichloromethane and trifiuoroacetic acid to produce 2-fluoro-4-amino-N-methylbenzamide T (yield greater than 95%).
  • the 2-fluoro- 4-amino-N-methylbenzamide T is reacted with a solution of sodium cyanide and cyclobutanone to produce 4-(l-cyanocyclobutylamino)-2-fluoro-N-methylbenzamide B.
  • the compounds of the present invention modulate the function of the nuclear hormone receptors, particularly the androgen receptor, and include compounds which are, for example, selective agonists or selective antagonists of the androgen receptor (AR).
  • AR androgen receptor
  • the present compounds are useful in the treatment of AR-associated conditions.
  • An "AR-associated condition,” as used herein, denotes a condition or disorder which can be treated by modulating the function or activity of an AR in a subject, wherein treatment comprises prevention, partial alleviation or cure of the condition or disorder. Modulation can occur locally, for example, within certain tissues of the subject, or more extensively throughout a subject being treated for such a condition or disorder.
  • the compounds with potent antagonistic activity are used for the treatment of androgen related prostate cancer.
  • the present invention includes within its scope pharmaceutical compositions comprising, as an active ingredient, a therapeutically effective amount of at least one of the compounds of formula II, alone or in combination with a pharmaceutical carrier or diluent.
  • a pharmaceutical carrier or diluent e.g., a pharmaceutically acceptable carrier or diluent.
  • compounds of the present invention can be used alone, in combination with other compounds of the invention, or in combination with one or more other therapeutic agent(s), e.g., an antibiotic or other pharmaceutically active material.
  • the compounds in this invention were identified through screening on hormone sensitive and hormone refractory prostate cancer cells for antagonistic and agonistic activities.
  • the compounds with antagonist activity are potential drugs for the treatment of prostate cancer, both hormone sensitive and hormone refractory.
  • PSA prostate specific antigen
  • LNCaP cells (or LNCaP/AR cells) were maintained in Iscove's medium containing 10% FBS. Five days prior to drug treatment, the cells were grown in Iscove's medium containing 10% CS-FBS to deprive of androgens. The cells were split and grown in Iscove's medium containing 10% CS- FBS with appropriate concentrations of Rl 881 and the test compounds. After 5 days of incubation, secreted PSA levels were assayed using PSA ELISA kits (American Qualex, San Clemente, CA) (See Fig. 1 and Fig. 3). The MTS assay was also used to examine the growth inhibition of the compounds of formula II (See Fig. 2).
  • FVB mice which were purchased from Charles River Laboratories. Mice were divided into groups of three for each time point (See Fig. 4). Two mice were not treated with
  • mice were treated with vehicle solution. Each group was treated with 10 mg per kilogram of body weight.
  • the drug was dissolved in a mixture 50 : 10 : 1 : 989 of DMSO : Carboxymethylcellulose : T Tween 80 : H2O (Vehicle solution) and was administered orally. After drug administration, the animals were euthanized via CO 2 inhalation at different timepoints: 1 min, 5 min, 15 min, 30 min, 2 h, 4 h, 8h, 16 h. Animals were immediately bleed after exposure to CO2 via cardiac puncture (1 ml BD syringe + 27G 5/8 needle).
  • the serum samples were analyzed to determine the drug's concentration by the HPLC which (Waters 600 pump, Waters 600 controller and Waters 2487 detector) was equipped with an Alltima Cl 8 column (3 ⁇ , 150 mm> ⁇ 4.6 mm). All RD compounds were detected at 254 run wave length and bicalutamide was detected at 270 nm wave length.
  • the filtrate was dried under an argon flow to dryness.
  • the sample was reconstructed to 80 ⁇ l with acetonitrile before analyzing by HPLC to determine the drug concentration.
  • LNCaP-AR and LNCaP-vector cells were maintained in RPMI medium supplemented with 10% FBS.
  • 10 6 cells in 100 ⁇ l of 1 :1 Matrigel to RPMI medium were injected subcutaneously into the flanks of intact or castrated male SCID mice. Tumor size was measured weekly in three dimensions (length x width x depth) using calipers. Mice were randomized to treatment groups when tumor size reached approximately 100 mm 3 . Drugs were given orally everyday at the dose of 10 mg/kg. (See Fig. 5 and Fig. 6) At a daily dose of 10 mg/kg, compounds A51 and A52 were found to completely retard tumor growth.
  • Prostate cancer cell lines were used for xenografts. For example, a LNCaP xenograft, LAPC4 xenograft, LAPC9 xenograft, and xenografts of the hormone refractory counterparts of these cell lines were made. Other cell lines included V-cap, CWR22 and LAPC4 cell lines. Two cell lines that over express the androgen receptor were generated, LNCaP AR and LAPC4 AR. Prostate cancer progression in these engineered cell lines was found to differ from their parental counterparts. Under androgen ablation, the LNCaP AR and LAPC4 AR lines continued to grow, thus behaving like hormone refractory cells.
  • LAPC4 cell line was found to be very difficult to grow in animals.
  • LAPC4 requires from about 25%-50% Matrigel, for example, 50% Matrigel, but can be grafted successfully at a lower concentration at 10 cells.
  • An alternative method to help prevent leakage from needle pullout can be to warm the Matrigel:media:cells filled syringe a couple of seconds to produce a gel-like form. When injecting the gel-like liquid, no leakage should occur. However, allowing the Matrigel to heat for too long a time can cause the suspension to solidify and become uninjectable.
  • the compounds of the invention are useful as pharmaceutical compositions prepared with a therapeutically effective amount of a compound of the invention, as defined herein, and a pharmaceutically acceptable carrier or diluent.
  • the compounds of the invention can be formulated as pharmaceutical compositions and administered to a subject in need of treatment, for example a mammal, such as a human patient, in a variety of forms adapted to the chosen route of administration, for example, orally, nasally, intraperitoneally, or parenterally, by intravenous, intramuscular, topical or subcutaneous routes, or by injection into tissue.
  • Such compositions and preparations should contain at least 0.01% of a compound or compounds of the invention.
  • the percentage of the compositions and preparations may, of course, be varied and may, for example, be between about 0.05% to about 2% of the weight of a given unit dosage form.
  • compositions is such that an effective dosage level will be obtained.
  • compounds of the invention may be systemically administered, e.g., orally, in combination with a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier, or by inhalation or insufflation. They may be enclosed in hard or soft shell gelatin capsules, may be compressed into tablets, or may be incorporated directly with the food of the patient's diet.
  • a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier, or by inhalation or insufflation.
  • the compounds may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.
  • compositions and preparations should contain at least 0.1% of a compound or compounds of the invention.
  • the percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2% to about 60% of the weight of a given unit dosage form.
  • the amount of compounds in such therapeutically useful compositions is such that an effective dosage level will be obtained.
  • the tablets, troches, pills, capsules, and the like may also contain the following: binders such as gum tragacanth, acacia, com starch, or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid, and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, fructose, lactose, or aspartame, or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring may be added.
  • binders such as gum tragacanth, acacia, com starch, or gelatin
  • excipients such as dicalcium phosphate
  • a disintegrating agent such as corn starch, potato starch, alginic acid, and the like
  • a lubricant such as magnesium stearate
  • a sweetening agent such as sucrose, fructose, lactos
  • the unit dosage form When the unit dosage form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier, such as a vegetable oil or a polyethylene glycol. Various other materials may be present as coatings or to otherwise modify the physical form of the solid unit dosage form. For instance, tablets, pills, or capsules may be coated with gelatin, wax, shellac, sugar, and the like. A syrup or elixir may contain the active compound, sucrose or fructose as a sweetening agent, methyl and propylparabens as preservatives, a dye, and flavoring such as cherry or orange flavor. Of course, any material used in preparing any unit dosage form should be pharmaceutically acceptable and substantially non-toxic in the amounts employed.
  • the compounds of the invention may be incorporated into sustained-release preparations and devices. For example, the compounds may be incorporated into time release capsules, time release tablets, and time release pills.
  • the compounds of the invention may also be administered intravenously or intraperitoneally by infusion or injection.
  • Solutions of the compounds can be prepared in water, optionally mixed with a nontoxic surfactant.
  • Dispersions can also be prepared in glycerol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations can contain a preservative to prevent the growth of microorganisms.
  • the pharmaceutical dosage forms suitable for injection or infusion can include sterile aqueous solutions or dispersions or sterile powders comprising the compounds of the invention which are adapted for the extemporaneous preparation of sterile injectable or infusible solutions or dispersions, optionally encapsulated in liposomes.
  • the ultimate dosage form should be sterile, fluid, and stable under the conditions of manufacture and storage.
  • the liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof.
  • the proper fluidity can be maintained, for example, by the formation of liposomes, by the maintenance of the required particle size in the case of dispersions, or by the use of surfactants.
  • the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, buffers, or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
  • Sterile injectable solutions are prepared by incorporating the compounds of the invention in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization.
  • the preferred methods of preparation are vacuum drying and freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient present in the previously sterile-filtered solutions.
  • the compounds of the invention may be applied in pure form. However, it will generally be desirable to administer them to the skin as compositions or formulations, in combination with a dermatologically acceptable carrier, which may be a solid or a liquid.
  • a dermatologically acceptable carrier which may be a solid or a liquid.
  • Useful solid carriers include finely divided solids such as talc, clay, microcrystalline cellulose, silica, alumina, and the like. Other solid carriers include nontoxic polymeric nanoparticles or microparticles.
  • Useful liquid carriers include water, alcohols, or glycols or water/alcohol/glycol blends, in which the compounds of the invention can be dissolved or dispersed at effective levels, optionally with the aid of nontoxic surfactants.
  • Adjuvants such as fragrances and additional antimicrobial agents can be added to optimize the properties for a given use.
  • the resultant liquid compositions can be applied from absorbent pads, used to impregnate bandages and other dressings, or sprayed onto the affected area using pump-type or aerosol sprayers.
  • Examples of useful dermato logical compositions which can be used to deliver the compounds of the present invention to the skin are known to the art; for example, see Jacquet et al. (U.S. Pat. No. 4,608,392), Geria (U.S. Pat No. 4,992,478), Smith et al. (U.S. Pat. No. 4,559,157), and Wortzman (U.S. Pat. No. 4,820,508), all of which are hereby incorporated by reference.
  • Useful dosages of the compounds of Formula II can be determined by comparing their in vitro activity, and by comparing their in vivo activity in animal models. Methods for the extrapolation of effective dosages in mice and other animals to humans are known to the art; for example, see U.S. Pat. No. 4,938,949, which is hereby incorporated by reference.
  • composition such as a lotion
  • concentration in a semi-solid or solid composition such as a gel or a powder can be from about 0.1 to about 5% by weight, or from about 0.5 to about 2.5% by weight.
  • the amount of the compounds of the invention required for use in treatment will vary not only with the particular salt selected but also with the route of administration, the nature of the condition being treated and the age and condition of the patient and will be ultimately at the discretion of the attendant physician or clinician.
  • Effective dosages and routes of administration of agents of the invention are conventional.
  • the exact amount (effective dose) of the agent will vary from subject to subject, depending on, for example, the species, age, weight, and general or clinical condition of the subject, the severity or mechanism of any disorder being treated, the particular agent or vehicle used, the method and scheduling of administration, and the like.
  • a therapeutically effective dose can be determined empirically, by conventional procedures known to those of skill in the art. See, e.g., The Pharmacological Basis of
  • an effective dose can be estimated initially either in cell culture assays or in suitable animal models.
  • the animal model may also be used to determine the appropriate concentration ranges and routes of administration. Such information can then be used to determine useful doses and routes for administration in humans.
  • a therapeutic dose can also be selected by analogy to dosages for comparable therapeutic agents.
  • the particular mode of administration and the dosage regimen will be selected by the attending clinician, taking into account the particulars of the case (e.g., the subject, the disease, the disease state involved, and whether the treatment is prophylactic). Treatment may involve daily or multi-daily doses of compound(s) over a period of a few days to months, or even years.
  • a suitable dose will be in the range of from about
  • a suitable dose may be about 1 mg/kg, 10 mg/kg, or 50 mg/kg of body weight per day.
  • the compounds of the invention are conveniently administered in unit dosage form; for example, containing from about 0.0005 to about 500 mg, from about 0.01 to about 50 mg, from about 0.05 to about 10 mg, or about 5 mg of active ingredient per unit dosage form.
  • the compounds of the invention can be administered to achieve peak plasma concentrations of, for example, from about 0.5 to about 75 ⁇ M, about 1 to 50 ⁇ M, about 2 to about 30 ⁇ M, or about 5 to about 25 ⁇ M.
  • Exemplary desirable plasma concentrations include at least or no more than 0.25, 0.5, 1, 5, 10, 25, 50, 75, 100 or 200 ⁇ M. This may be achieved, for example, by the intravenous injection of a 0.05 to 5% solution of the compounds of the present invention, optionally in saline, or orally administered as a bolus containing about 1-1000 mg of the compounds.
  • Desirable blood levels may be maintained by continuous infusion to provide from about 0.0005 to about 25 mg per kg body weight per hour, for example at least or no more than 0.0005, 0.005, 0.05, 0.5, 5, or 25 mg/kg/hr.
  • such levels can be obtained by intermittent infusions containing from about 0.002 to about 100 mg per kg body weight, for example, at least or no more than 0.002, 0.02, 0.2, 2, 20, 50, or 100 mg of the compounds per kg of body weight.
  • the compounds of the invention may conveniently be presented in a single dose or as divided doses administered at appropriate intervals, for example, as two, three, four or more sub-doses per day.
  • the sub-dose itself may be further divided, e.g., into a number of discrete loosely spaced administrations; such as multiple inhalations from an insufflator.
  • a compound presently disclosed, for example, compound A51 or A52 can be in a formulation suitable for intravenous dosing.
  • the compound is dissolved in from about 10% to about 25% dimethylsulfoxide (DMSO).
  • DMSO dimethylsulfoxide
  • IX phosphate buffered saline (PBS) is then mixed into the solution as the balance, and the solution is sonicated with a water bath sonicator until it is homogeneous.
  • PBS dimethylsulfoxide
  • ⁇ — At a compound concentration of 1.5 mg/mL, 5 minutes of sonication may be sufficient to dissolve the compound.
  • a polyethylene glcyol can be added to keep the compound in suspension.
  • PEG-400 a polyethylene glycol
  • 5-10% PEG-400 can be added.
  • mice Before administration, the above solution should be sonicated for a few minutes. A maximum appropriate administration volume for mice was found to be 0.2 mL.
  • mice were observed to lose 15% of body weight.
  • a compound presently disclosed, for example, compound A51 or A52, can be in a formulation suitable for oral administration.
  • the compound is dissolved in 100% DMSO.
  • Additional chemicals can be added, such as a carboxymethylcellulose, a polysorbate, or water.
  • the components of the solution other than A51 or A52 can be present at concentrations of from about 10% to about 20% DMSO, from about 1% to about 2% carboxymethylcellulose (CMC), and 0.1% Tween 80 (a polysorbate), with the balance being water.
  • the concentration of compound A51 or A52 in the oral foundation can be about 1.5 mg/mL.
  • the solution is mechanically homogenized for at least 30 seconds. The compound A51 or A52 was found to stay in suspension for only a couple of hours and, therefore, the oral formulation must be administered within a couple of hours of preparation.
  • CMC carboxymethylcellulose
  • Compounds A51 and A52 have a beneficial effect on tumors in an in vivo assay administered as described.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Reproductive Health (AREA)
  • Urology & Nephrology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pregnancy & Childbirth (AREA)
  • Endocrinology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

A hydantoin compound useful for the prevention or treatment of hyperproliferative diseases or disorders.

Description

ANDROGEN RECEPTOR MODULATOR FOR THE TREATMENT OF PROSTATE CANCER AND ANDROGEN RECEPTOR-AS S OCIATED
DISEASES
FIELD OF THE INVENTION
[0001] The present invention relates to hydantoins, thiohydantoins, dithiohydantoins, hydantoinimines and thiohydantoinimines compounds, methods of using such compounds in the treatment of androgen receptor-associated conditions, such as age-related diseases, for example, prostate cancer, and to pharmaceutical compositions containing such compounds.
BACKGROUND OF THE INVENTION
[0002] Prostate cancer is the most common incidence of cancer and the second leading cause of cancer death in Western men. When the cancer is confined locally, the disease can be cured by surgery or radiation. However, 30% of such cancer relapses with distant metastatic disease and others have advanced disease at diagnoses. Advanced disease is treated by castration and/or administration of anti-androgens, the so-called androgen deprivation therapy. Castration lowers the circulating levels of androgens and reduces the activity of androgen receptor (AR). Administration of anti-androgens blocks AR function by competing away androgen binding and therefore reduces the AR activity. Although initially effective, these treatments quickly fail and the cancer becomes hormone refractory.
[0003] Recently, overexpression of AR has been identified and validated as a cause of hormone refractory prostate cancer (Nat. Med, 2004, 10, 33-39). Overexpression of AR is sufficient to cause progression from hormone sensitive to hormone refractory prostate cancer, suggesting that better AR inhibitors than the current drugs can slow the progression of prostate cancer. It was demonstrated that AR and its ligand binding are necessary for growth of hormone refractory prostate cancer, indicating that AR is still a target for this disease. It was also demonstrated that overexpression of AR converts anti- androgens from antagonists to agonists in hormone refractory prostate cancer (an AR antagonist inhibits AR activity and an AR agonist stimulates AR activity). Data from this work explain why castration and anti-androgens fail to prevent prostate cancer progression and reveals un-recognized properties of hormone refractory prostate cancer.
[0004] Bicalutamide (Brand name: Casodex) is the most commonly used anti- androgen. While it has inhibitory effect on AR in hormone sensitive prostate cancer, it fails to suppress AR when the cancer becomes hormone refractory. Two weaknesses of current antiandrogens are blamed for the failure to prevent prostate cancer progression from hormone sensitive stage to hormone refractory disease and to effectively treat hormone refractory prostate cancer. One is their weak antagonistic activities and the other is their strong agonistic activities when AR is overexpressed in hormone refractory prostate cancer. Therefore, better AR inhibitors with more potent antagonistic activities and minimal agonistic activities are needed to delay disease progression and to treat the fatal hormone refractory prostate cancer.
[0005] Nonsteroidal anti-androgens, have been preferred over steroidal compounds for prostate cancer because they are more selective and have fewer side effects. A wide variety of such compounds were described in U.S. patent numbers 4,097,578, 5,411,981, and 5,705,654, U.S. published applications 2004/0009969 and 2007/0004753, and PCT international applications published as WO 97/00071, WO 00/17163 and WO 06/124118.
[0006] Accordingly, identification of compounds which have high potency to antagonize the androgen activity, and which have minimal agonistic activity would overcome the hormone refractory prostate cancer (HRPC) and avoid or slowdown the progression of hormone sensitive prostate cancer (HSPC). There is a need in the art for the identification of selective modulators of the androgen receptor, such as modulators which are non-steroidal, non-toxic, and tissue selective. SUMMARY OF THE INVENTION
[0007] A series of compounds that modulate the function of the nuclear hormone receptors, especially the androgen receptor are presented. These compounds can cause disappearance of prostate cancer cells and tumors. [0008] In an embodiment, a compound is according to formula II.
A HeUNAN_Ri
B ^3
R *:2
Formula II
Het represents a heterocyclic unit of 5 or 6 atoms. A and B are independently selected from oxygen, sulfur, and N-R9, with R9 being selected from hydrogen, aryl, substituted aryl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, substituted cycloalkyl, SO2Rn, NRuRi2, NRn(CO)ORn, NH(CO)NR, ,R12, NRi2(CO)Ri ,, 0(CO)Rn, O(CO)OR, ,, 0(CS)R1 ,, NR12(CS)R, u NH(CS)NR11R12, or NRi2(CS)OR11. Rn and R12 are independently selected from hydrogen, alkyl, substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, aryl, substituted aryl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, or substituted heterocyclic aromatic or non-aromatic. Ri is selected from hydrogen, aryl, substituted aryl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, substituted cycloalkyl, SO2Rn, NR, ,R12, NRi2(CO)ORn, NH(CO)NR1 ,R,2, NR12(CO)R11, 0(CO)Rn, 0(CO)OR, ,, 0(CS)Rn, NR12(CS)Rn, NH(CS)NRnR12, OrNR12(CS)OR11. R2 and R3 are independently selected from hydrogen, aryl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, or substituted cycloalkyl, or, together with the carbon to which they are linked, form a cycle which can be cycloalkyl, substituted cycloalkyl, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic.
[0009] Ri and R2 can be connected to form a cycle which can be heterocyclic aromatic or non aromatic, substituted heterocyclic aromatic or non aromatic. Rn and R12 can be connected to form a cycle which can be heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic, cycloalkyl, or substituted cycloalkyl. [0010] For example, the compound can be A51 or A52.
Figure imgf000006_0001
A51
Figure imgf000006_0002
A52
[0011] In an embodiment, a pharmaceutical composition includes a therapeutically effective amount of a compound according to Formula II, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier, diluent, or adjuvant.
[0012] The pharmaceutical composition can include a solution of dimethyl sulfoxide, phosphate buffered saline solution, and water. The pharmaceutical composition can include dimethylsulfoxide, a carboxymethylcellulose, a polysorbate, and water.
[0013] An embodiment of a method includes preventing or treating a disease or disorder related to nuclear receptor activity.
[0014] A method for preventing or treating a hyperproliferative disorder, such as hormone sensitive prostate cancer or hormone refractory prostate cancer, can include administering a compound according to Formula II, or a pharmaceutically acceptable_salt_ thereof, to a subject in need of such prevention or treatment, thereby preventing or treating the hyperproliferative disorder. The compound can be administered at a dosage in the range of from about 1 mg per kg body weight per day to about 50 mg per kg body weight per day. The compound can be administered, for example, by intravenous injection, by injection into tissue, intraperitoneally, orally, or nasally.
[0015] In an embodiment, the compound according to Formula II is an antagonist of a nuclear receptor or an antagonist of an androgen receptor.
[0016]
DESCRIPTION OF THE DRAWINGS
[0017] Figure 1 is a bar chart depicting the antagonist effect of compounds A51 and A52 on HS cancer cells.
[0018] Figure 2 is a bar chart depicting the antagonist effect of compounds A51 and A52 on HS cancer cells.
[0019] Figure 3 is a bar chart depicting the antagonist effect of compounds A51 and A52 on HR cancer cells.
[0020] Figure 4 is a graph depicting the pharmacokinetic behavior of compound
A52.
[0021] Figure 5 is a graph depicting the effect of compound A52 on LnCaP- AR- overexpressed tumor size at 10 mg/kg.
[0022] Figure 6 presents images depicting the disappearance of Luciferase activity after 17 days of treatment with compound A52. DETAILED DESCRIPTION
[0023] Embodiments of the invention are discussed in detail below. In describing embodiments, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. A person skilled in the relevant art will recognize that other equivalent parts can be employed and other methods developed without parting from the spirit and scope of the invention. AU references cited herein are incorporated by reference as if each had been individually incorporated.
[0024] The present invention relates to the compounds of formula II, methods of using such compounds as modulators of androgen receptors and to pharmaceutical compositions containing such compounds and salts thereof. Compounds of formula II can be used to agonize or antagonize the function of the nuclear receptor. The compounds can be used to antagonize the androgen receptor. Use of the compounds is not limited to affecting the androgen receptor, but can, for example, also be useful for the treatment of other diseases related to nuclear receptor function. Formula II can be represented as the structure
A HeUNAN,Ri
B
Formula II,
wherein, Het is a heterocyclic unit of 5 and 6 atoms. Preferred heterocyclic units are selected from compounds represented by the structures
Figure imgf000009_0001
and the like. However, the invention is not intended to be limited to compounds having these structures.
[0025] Herein, R4, R5, R6, and R7 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, arylalkyl, arylalkenyl, arylalkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, halogen, CN, NO2, ORu, SRn, NR11R12, NH(CO)ORM, NH(CO)NR11R12, NRI2(CO)RU, O(CO)R,,, 0(CO)ORn, O(CS)RM, NRi2(CS)Rn, NH(CS)NR11R12, NR12(CS)ORn. R4 is preferably CN or NO2- R5 is preferably trifluoromethyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl and halogen. R$ and R7 are preferably hydrogen, alkyl or halogen. R4, Rs, R6, and R7 can be independently connected to form a cycle which can be aromatic, substituted aromatic, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, substituted cycloalkyl. X is selected from sulfur (S), oxygen (O), NR8 wherein N is nitrogen and R« is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, arylalkyl, arylalkenyl, arylalkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, halogen, (CO)R11, (CO)OR11, (CS)Rn, (CS)OR11.
[0026] R1 is selected from hydrogen, aryl, substituted aryl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl,. substituted . alkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, substituted cycloalkyl, SO2Rn, NRnR12, NRI2(CO)ORH, NH(CO)NRI ,RI2, NR12(CO)Rn, 0(CO)Rn, 0(CO)ORn, 0(CS)Rn, NR12(CS)R11, NH(CS)NR11R12, NRi2(CS)ORn. Ri is preferably aryl, substituted aryl, alkyl, substituted alkyl, alkenyl, substituted alkenyl.
[0027] R2 and R3 are independently selected from hydrogen, aryl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, substituted cycloalkyl. R2 and R3 can be connected to form a cycle which can be heterocyclic aromatic or non aromatic, substituted heterocyclic aromatic or non aromatic, cycloalkyl, substituted cycloalkyl. Ri and R2 can be connected to form a cycle which can be heterocyclic aromatic or non aromatic, substituted heterocyclic aromatic or non aromatic.
[0028] A and B are independently selected from oxygen (O), sulfur (S) and N-R9.
R9 is selected from hydrogen, aryl, substituted aryl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non- aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, substituted cycloalkyl, SO2R11, NR11Ri2, NRi2(CO)ORn, NH(CO)NR, ,Rt2, NR12(CO)Rn, 0(CO)Rn, 0(CO)ORn, 0(CS)Rn, NR12(CS)R11, NH(CS)NRnR12, NR12(CS)ORn.
[0029] R11 and R]2, are independently selected from hydrogen, alkyl, substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, aryl, substituted aryl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic. Rn and R12 can be connected to form a cycle which can be heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic, cycloalkyl, substituted cycloalkyl. [0030] The following definitions apply to the terms as used throughout this specification, unless otherwise limited in specific instances.
[0031] As used herein, the term "alkyl" denotes branched or unbranched hydrocarbon chains, preferably having about 1 to about 8 carbons, such as, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, 2-methylpentyl, pentyl, hexyl, isohexyl, heptyl, 4,4-dimethylpentyl, octyl, 2,2,4-trimethylpentyl and the like. "Substituted alkyl" includes an alkyl group optionally substituted with one or more functional groups which are attached commonly to such chains, such as, hydroxyl, bromo, fluoro, chloro, iodo, mercapto or thio, cyano, alkylthio, heterocyclyl, aryl, heteroaryl, carboxyl, carbalkoyl, alkyl, alkenyl, nitro, amino, alkoxyl, amido, and the like to form alkyl groups such as trifluoromethyl, 3 -hydroxy hexyl, 2-carboxypropyl, 2-fluoroethyl, carboxymethyl, cyanobutyl and the like.
[0032] Unless otherwise indicated, the term "cycloalkyl" as employed herein alone or as part of another group includes saturated or partially unsaturated (containing 1 or more double bonds) cyclic hydrocarbon groups containing 1 to 3 rings, including monocycloalkyl, bicycloalkyl and tricycloalkyl, containing a total of 3 to 20 carbons forming the rings, preferably 3 to 10 carbons, and which can be fused to 1 or 2 aromatic rings as described for aryl, which include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl and cyclododecyl, cyclohexenyl. "Substituted cycloalkyl" includes a cycloalkyl group optionally substituted with 1 or more substituents such as halogen, alkyl, alkoxy, hydroxy, aryl, aryloxy, arylalkyl, cycloalkyl, alkylamido, alkanoylamino, oxo, acyl, arylcarbonylamino, amino, nitro, cyano, thiol and/or alkylthio and/or any of the substituents included in the definition of "substituted alkyl." For example,
Figure imgf000011_0001
and the like. [0033] Unless otherwise indicated, the term "alkenyl" as used herein by itself or as part of another group refers to straight or branched chain radicals of 2 to 20 carbons, preferably 2 to 12 carbons, and more preferably 2 to 8 carbons in the normal chain, which include one or more double bonds in the normal chain, such as vinyl, 2-propenyl, 3- butenyl, 2-butenyl, 4-pentenyl, 3-pentenyl, 2-hexenyl, 3-hexenyl, 2-heptenyl, 3-heptenyl,
4-heptenyl, 3-octenyl, 3-nonenyl, 4-decenyl, 3-undecenyl, 4-dodecenyl, 4,8,12- tetradecatrienyl, and the like. "Substituted alkenyl" includes an alkenyl group optionally substituted with one or more substituents, such as the substituents included above in the definition of "substituted alkyl" and "substituted cycloalkyl. "
[0034] Unless otherwise indicated, the term "alkynyl" as used herein by itself or as part of another group refers to straight or branched chain radicals of 2 to 20 carbons, preferably 2 to 12 carbons and more preferably 2 to 8 carbons in the normal chain, which include one or more triple bonds in the normal chain, such as 2-propynyl, 3-butynyl, 2- butynyl, 4-pentynyI, 3-pentynyl, 2-hexynyl, 3-hexynyl, 2-heptynyl, 3-heptynyl, 4- heptynyl, 3-octynyl, 3-nonynyl, 4-decynyl, 3-undecynyl, 4-dodecynyl and the like. "Substituted alkynyl" includes an alkynyl group optionally substituted with one or more substituents, such as the substituents included above in the definition of "substituted alkyl" and "substituted cycloalkyl."
[0035] The terms "arylalkyl", "arylalkenyl" and "arylalkynyl" as used alone or as part of another group refer to alkyl, alkenyl and alkynyl groups as described above having an aryl substituent. Representative examples of arylalkyl include, but are not limited to, benzyl, 1- and 2-phenylethyl, 2- and 3-phenylpropyl, benzhydryl and naphthylmethyl and the like. "Substituted arylalkyl" includes arylalkyl groups wherein the aryl portion is optionally substituted with one or more substituents, such as the substituents included above in the definition of "substituted alkyl" and "substituted cycloalkyl."
[0036] The term "halogen" or "halo" as used herein alone or as part of another group refers to chlorine, bromine, fluorine, and iodine. [0037] The terms "halogenated alkyl", "halogenated alkenyl" and "halogenated alkynyl" as used herein alone or as part of another group refers to "alkyl", "alkenyl" and "alkynyl" which are substituted by one or more atoms selected from fluorine, chlorine, bromine, and iodine.
[0038] Unless otherwise indicated, the term "aryl" or "Ar" as employed herein alone or as part of another group refers to monocyclic and polycyclic aromatic groups containing 6 to 10 carbons in the ring portion (such as phenyl or naphthyl including 1-naphthyl and 2-naphthyl) and can optionally include one to three additional rings fused to a carbocyclic ring or a heterocyclic ring (such as aryl, cycloalkyl, heteroaryl or cycloheteroalkyl rings).
[0039] "Substituted aryl" includes an aryl group optionally substituted with one or more functional groups, such as halo, alkyl, haloalkyl, alkoxy, haloalkoxy, alkenyl, trifluoromethyl, trifluoromethoxy, alkynyl, cycloalkyl, cycloalkylalkyl, cycloheteroalkyl, cycloheteroalkylalkyl, aryl, heteroaryl, arylalkyl, aryloxy, aryloxyalkyl, arylalkoxy, alkoxycarbonyl, arylcarbonyl, arylalkenyl, aminocarbonylaryl, arylthio, arylsulfinyl, arylazo, heteroarylalkyl, heteroarylalkenyl, heteroarylheteroaryl, heteroaryloxy, hydroxy, nitro, cyano, amino, substituted amino wherein the amino includes 1 or 2 substituents (which are alkyl, aryl or any of the other aryl compounds mentioned in the definitions), carbamoyl, alkyl carbamoyl, amidified carboxy, amidified carboxyalkyl, alkyl amidified carboxyalkyl, thiol, alkylthio, arylthio, heteroarylthio, arylthioalkyl, alkoxyarylthio, alkylcarbonyl, arylcarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aminocarbonyl, alkylcarbonyloxy, arylcarbonyloxy, alkylcarbonylamino, arylcarbonylamino, arylsulfinyl, arylsulfinylalkyl, arylsulfonylamino or arylsulfonaminocarbonyl and/or any of the alkyl substituents set out herein.
[0040] Unless otherwise indicated, the term "heterocyclic" or "heterocycle", as used herein, represents an unsubstituted or substituted stable 5- to 10-membered monocyclic ring system which can be saturated or unsaturated, and which consists of carbon atoms and from one to four heteroatoms selected from N, O, or S, and wherein the nitrogen and sulfur heteroatoms can optionally be oxidized, and the nitrogen heterόatόm can optionally be quaternized. The heterocyclic ring can be attached at any heteroatom or carbon atom which results in the creation of a stable structure. Examples of such heterocyclic groups include, but are not limited to, piperidinyl, piperazinyl, oxopiperazinyl, oxopiperidinyl, oxopyrrolidinyl, azepinyl, oxoazepinyl, pyrrolyl, pyrrolidinyl, furanyl, thienyl, pyrazolyl, pyrazolidinyl, imidazolyl, imidazolinyl, imidazolidinyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, oxazolyl, oxazolidinyl, isoxazolyl, isoxazolidinyl, moφholinyl, thiazolyl, thiazolidinyl, isothiazolyl, thiadiazolyl, tetrahydropyranyl, thiamorpholinyl, thiamorpholinyl sulfoxide, thiamorpholinyl sulfone, and oxadiazolyl. The term "heterocyclic aromatic" as used here in alone or as part of another group refers to a 5- or 7-membered aromatic ring which includes 1, 2, 3 or 4 hetero atoms such as nitrogen, oxygen or sulfur and such rings fused to an aryl, cycloalkyl, heteroaryl or heterocycloalkyl ring (e.g., benzothiophenyl, indolyl), and includes possible N-oxides. "Substituted heteroaryl" includes a heteroaryl group optionally substituted with 1 to 4 substituents, such as the substituents included above in the definition of "substituted alkyl" and "substituted cycloalkyl." Examples of heteroaryl groups include the following:
Figure imgf000014_0001
[0041 ] The compounds of formula II can be present as salts, which are also within the scope of this invention. Pharmaceutically acceptable (i.e., non-toxic, physiologically acceptable) salts are preferred. If the compounds of formula II have, for example, at least one basic center, they can form acid addition salts^These are formed, for example^with strong inorganic acids, such as mineral acids, for example sulfuric acid, phosphoric acid or a hydrohalic acid, with strong organic carboxylic acids, such as alkanecarboxylic acids of 1 to 4 carbon atoms which are unsubstituted or substituted, for example, by halogen, for example acetic acid, such as saturated or unsaturated dicarboxylic acids, for example oxalic, malonic, succinic, maleic, fumaric, phthalic or terephthalic acid, such as hydroxycarboxylic acids, for example ascorbic, glycolic, lactic, malic, tartaric or citric acid, such as amino acids, (for example aspartic or glutamic acid or lysine or arginine), or benzoic acid, or with organic sulfonic acids, such as (C1-C4) alkyl or arylsulfonic acids which are unsubstituted or substituted, for example by halogen, for example methyl- or p- toluene-sulfonic acid. Corresponding acid addition salts can also be formed having, if desired, an additionally present basic center. The compounds of formula II having at least one acid group (for example COOH) can also form salts with bases. Suitable salts with bases are, for example, metal salts, such as alkali metal or alkaline earth metal salts, for example sodium, potassium or magnesium salts, or salts with ammonia or an organic amine, such as morpholine, thiomorpholine, piperidine, pyrrolidine, a mono, di or tri- lower alkylamine, for example ethyl, tert-butyl, diethyl, diisopropyl, triethyl, tributyl or dimethyl-propylamine, or a mono, di or trihydroxy lower alkylamine, for example mono, di or triethanolamine. Corresponding internal salts can furthermore be formed. Salts which are unsuitable for pharmaceutical uses but which can be employed, for example, for the isolation or purification of free compounds of formula II or their pharmaceutically acceptable salts, are also included. Preferred salts of the compounds of formula II which contain a basic group include monohydrochloride, hydrogensulfate, methanesulfonate, phosphate or nitrate. Preferred salts of the compounds of formula II which contain an acid group include sodium, potassium and magnesium salts and pharmaceutically acceptable organic amines.
[0042] The term "modulator" used in this invention refers to a chemical compound with capacity to either enhance (e.g., "agonist" activity) or inhibit (e.g., "antagonist" activity) a functional property of biological activity or process (e.g., enzyme activity or receptor binding); such enhancement or inhibition can be contingent on the occurrence of a specific event, such as activation of a signal transduction pathway, and/or can be manifest only in particular cell types: ~ " ~ " [0043] The term "prodrug esters" as employed herein includes imines, esters and carbonates formed by reacting one or more hydroxyls of compounds of formula II with alkyl, alkoxy, or aryl substituted acylating agents employing procedures known to those skilled in the art to generate acetates, pivalates, methylcarbonates, benzoates and the like. Any compound that can be converted in vivo to provide the bioactive agent (i.e., the compound of formula II) is a prodrug within the scope and spirit of the invention. Various forms of prodrugs are well known in the art. A comprehensive description of prodrugs and prodrug derivatives are described in: (1) The Practice of Medicinal Chemistry, Camille G. Wermuth et al., Ch 31, (Academic Press, 1996); (2) Design of Prodrugs, edited by H. Bundgaard, (Elsevier, 1985); (3) A Textbook of Drug Design and Development, P. Krogsgaard-Larson and H. Bundgaard, eds. Ch 5, pgs 113-191 (Harwood Academic Publishers, 1991).
SYNTHESIS
[0044] The compounds of formula II of the invention can be prepared as shown in the following reaction schemes and description thereof, as well as relevant published literature procedures that can be used by one skilled in the art. Exemplary reagents and procedures for these reactions appear hereinafter and in the working Examples.
Scheme 1
Figure imgf000016_0001
B B
HeN -NΛN'^ Lawsson's Het-NΛN' R1 reagent
O R2 S R2 A5 A6- [0045] As illustrated in Scheme 1 , compounds of formula A4 can be prepared from intermediate A3 with an appropriate electrophile. Intermediates of formula A3 can be obtained by reacting intermediates Al with A2 in an appropriate solvent such as N,N- dimethylformamide. Intermediates Al and A2 can be obtained commercially, can be prepared by methods known in the literature, or can be readily prepared by one skilled in the art. Compounds of formula A3 can be treated with acid to afford compounds of formula A5. Compounds of formula A5 can be treated with Lawesson's reagent to obtain compounds of formula A6.
Scheme 2: Synthesis of ASl
Figure imgf000017_0001
B1
Synthesis of S-rtrifluoromethvDpyridine-N-oxide. A8
[0046] To a mixture of 3-(trifluoromethyl)pyridine A7 (1.47 g, 10 mmol) and methyltrioxorhenium (0.0025g, 0.01 mmol ) in dichloromethane (2 ml) was added 30% hydrogen peroxide (4 ml). The mixture was stirred at room temperature for 5 hours. A small portion of MnO2 (3 mg) was added and the medium was stirred for an additional 1 hour and then dichloromethane was added (50 ml). The medium was washed with brine, dried over MgSCλj and concentrated to obtain compound A8 as an off-white powder (1.56 g, 9.6 mmol, 96%). 1H NMR (400 MHz, CDCl3) δ 7.22-7.23 (m, 2H), 8.15 (d, J = 3.6, IH), 8.23 (s, IH); 13C NMR (100 MHz, CDCl3) δ 120.50 (q, J= 3.5 Hz), 121.58 (q, J = 271.4 Hz), 126.48, 130.10 (q, J= 34.5 Hz), 136.52 (q, J= 3.7 Hz), 141.89.
Synthesis of 2-cvano-3-(trifluoromethyl)pyridine. A9
[0047] To a solution of 3-(trifluoromethyl)pyridine-N -oxide A8 (1.3 g, 8 mmol) in acetonitrile was added trimethylsilyl cyanide (0.99 g, 10 mmol) and triethylamine (2.02 g, 20 mmol). The mixture was stirred at room temperature for 24 hours and then was washed with saturated Na2CO3 and extracted with dichloromethane. The organic layer was dried over MgSC>4 and concentrated to yield a brown residue which was chromatographed (EtOAc :Pentane, 1:2). Compound A9 was obtained as a light yellow solid (0.715g, 4.16 mmol, 52%). 1H NMR (400 MHz, CDCl3) δ 7.73 (dd, J, = 8.0 Hz, J2 = 4.8 Hz, IH), 8.15 (d, J = 8.0 Hz, IH), 8.91 (d, J = 4.8 Hz, IH); 13C NMR (100 MHz, CDCl3) δ 114.18, 121.74 (q, J = 272.3 Hz), 126.65, 130.45 (q, J = 33.8 Hz), 131.25, 134.66 (q, J= 4.2 Hz), 153.44.
Synthesis of 2-cvano-3-ftrifluoromethyl)-5-nitropyridine. AlO
[0048] To a mixture of A9 (0.688 g, 4 mmol) and tetramethylammonium nitrate (1.09 g, 8 mmol) in 1 ,2-dichloroethane was added trifluoroacetic anhydride (1.68 g, 8 mmol). The mixture was sealed and heated to 6O0C for 48 hours. The mixture was washed with saturated sodium bicarbonate and extracted with ethyl acetate. The organic layer was dried over MgSO4 and concentrated to yield a yellow residue which was chromatographed (EtOAc :pentane, 1:4) to yield compound AlO (0.095 g, 0.44 mmol, 11%) and the remaining starting material. 1H NMR (400 MHz, CDCl3) δ 8.91 (d, J= 2.4
Hz, IH), 9.69 (d, J= 2.4 Hz, IH); 13C NMR (100 MHz, CDCl3) δ 112.70, 120.65 (q, J =
273.5 Hz), 129.11, 130.40 (q, J= 4.4 Hz), 131.58 (q, J= 35.5 Hz), 144.22, 148.23.
Synthesis of 2-cyano-3-(trifluoromethyl)-5-aminopyridine. All
[0049] A mixture of 2-cyano-3-(trifluoromethyl)-5-nitropyridine AlO (0.095 g,
0.44 mmol) and iron powder (0.112 g, 2 mmol) in ethyl acetate (1 ml) and acetic acid (1 ml) was heated for 15 hours. The solid particle was filtered through Celite and the filtrate was concentrated and chromatographed (EtOAc:pentane, 1:1) to yield compound All (0.075 g, 0.4 mmol, 91%). 1H NMR (400 MHz, CDCl3) δ 6.36 (bs, 2H), 7.38 (d, J = 2.4 Hz, IH), 8.26 (d, J= 2.4 Hz, IH). [0050] Alternatively, 2-cyano-3-(trifluoromethyl)-5-nitropyridine AlO can be reacted with hydrogen over Raney-Ni to obtain 2-cyano-3-(trifluoromethyl)-5- aminopyridine, All.
Synthesis of 5-isoΦiocvanato-3-trifluoromethylpyridine-2-carbonitrile, A12
[0051 ] To a heterogeneous mixture of 2-cyano-3-(trifluoromethyl>5-nitropyridine
All (0.075 g, 0.4 mmol) in water (2 ml) was added thiophosgene (50 μl). The mixture was stirred for 2 hours and then washed with water and extracted with chloroform. The organic layer was dried over MgSO4 and concentrated to yield compound A12 (0.087g, 0.38 mmol, 95%). 1H NMR (400 MHz, CDCl3) δ 7.85 (d, J = 2.4 Hz, IH), 8.72 (d, J = 2.4 Hz, IH); 13C NMR (100 MHz, CDCl3) δ 113.61, 121.04 (q, J = 273.1 Hz), 127.41, 130.38 (q,J= 4.3 Hz), 131.44 (q, J = 34.4 Hz), 133.55, 144.75, 150.30.
Synthesis of l-(4-memylphenvDaminocyclobutanenitrile. Bl
[0052] Trimethylsilyl cyanide (0.93 ml, 7 mmol) was added dropwise to a mixture of /7-toluidine (0.535 g, 5 mmol) and cyclobutanone (0.42 g, 6 mmol). The reaction mixture was stirred at room temperature for 6 h and then concentrated under vacuum to obtain a brown liquid which was subjected to chromatography (dichloromethane) to yield Bl (0.912 g, 4.9 mmol, 98%) as a yellowish solid.
Synthesis of 5-(8-oxo-6-thioxo-5-(4-rnethylphenvD-5.7-diazaspiror3.41oct-7yl)-3- trifluoromethylpyridine-2-carbonitrile. A51
[0053] A mixture of A12 (0.057g, 0.265 mmol) and Bl (0.05 g, 0.265 mmol) in
DMF (0.5 ml) was stirred at room temperature for 24 h. To this mixture were added methanol (2 ml) and aq. 2N HCl (1 ml). The second mixture was refluxed for 2 h. After being cooled to room temperature, the reaction mixture was poured into cold water (10 ml) and extracted with ethyl acetate (20 ml). The organic layer was dried over MgSC>4, concentrated and chromatographed (dichloromethane) to yield compound ASl (0.066 g, 0.159 mmol, 60%) as a white powder.
Figure imgf000020_0001
1H NMR (CDCl3, 400 MHz) δ 1.63-1.73 (m, IH), 2.17-2.28 (m, IH), 2.47 (s, 3H), 2.55- 2.71 (m, 4H), 7.21 (d, J= 8.4 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 8.39 (d, J = 2.0 Hz, IH), 9.11 (d, J = 2.0 Hz, IH); 13C NMR (CDCl3, 100 MHz) δ 13.70, 21.38, 31.46, 67.61, 113.88, 121.36 (q, J = 272.9 Hz), 129.45, 129.73, 130.40 (q, J = 34.3 Hz), 130.86, 132.14, 132.53, 134.04 (q, J= 4.3 Hz), 140.33, 152.37, 174.74, 179.17.
iV-methyl-4-π -cyanocvclobutylamino'^-fluorobenzamide. B2
[0054] Sodium cyanide (1.47 g, 30 mmol) was added to a mixture of Λf-methyl 4- amino-2-fluorobenzamide (1.68 g, 10 mmol) and cyclobutanone (1.4 g, 20 mmol) in 90% acetic acid (20 ml). The reaction mixture was stirred at 80 0C for 24 hours. The mixture was washed with water and extracted with ethyl acetate. The organic layer was dried over magnesium sulfate and concentrated to dryness under vacuum. The solid was washed with a 50:50 mixture of ethyl ether and hexane (10 ml) to remove cyclobutanone cyanohydrin to afford after filtration B2 (2.19 g, 8.87 mmol, 89%). 1H NMR (CDCl3, 400 MHz) δ 1.87-1.95 (m, IH), 2.16-2.27 (m, IH), 2.35-2.41 (m, 2H), 2.76-2.83 (m, 2H), 2.97 (d, J= 4.4 Hz, 3H), 4.68 (bs, IH), 6.29 (dd, J = 14.3, 1.8 Hz, IH), 6.48 (dd, J= 8.3, 1.8 Hz, IH), 6.75 (q, J = 4.4 Hz, IH), 7.90 (dd, J= 8.3, 8.3 Hz, IH); 13C NMR (CDCl3, 100 MHz) δ 15.7, 26.7, 33.9, 49.4, 100.2 (d, J= 29.5 Hz), 110.6, 1 1 1.0 (d, J = 11.8 Hz), 133.1 (d, J = 4.2 Hz), 148.4 (d, J= 12.0 Hz), 162.0 (d, J = 244.1 Hz), 164.4 (d, J = 3.6 Hz). Synthesis of 4-f7-f6-cvano-5-trifluoromethylpyridin-3-yl)-8-oxo-6-thioxo-5.7- diazaspiror3.4]oct-5-yl1-2-fluoro-Af-methylbenzamide, A52
[0055] A mixture of A12 (0.03 g, 0.13 mmol) and B2 (0.032 g, 0.13 mmol) in DMF (0.5 ml) was heated under microwave irradiation at 80 0C for 20 hours. To this mixture was added methanol (2 ml) and aq. 2N HCl (1 ml). The second mixture was refluxed for 2 hours. After being cooled to room temperature, the reaction mixture was poured into cold water (10 ml) and extracted with ethyl acetate (15 ml). The organic layer was dried over MgSθ4, concentrated and chromatographed (dichloromethane:acetone, 95:5) to yield A52 (0.022 g, 0.046 mmol, 35%) as a white powder.
Figure imgf000021_0001
1H NMR (CDCl3, 400 MHz) δ 1.66-1.76 (m, IH), 2.19-2.31 (m, IH), 2.51-2.60 (m, 2H), 161-2.15 (m, 2H), 3.07 (d, J = 4.9 Hz, 3H), 6.75 (q, 7= 4.8 Hz, IH), 7.17 (dd, J= 11.4,
1.9 Hz, IH), 7.26 (dd, J = 8.3, 1.9 Hz, IH), 8.31 (dd, J = 8.3, 8.3 Hz, IH), 8.34 (d, J =
2.1 Hz, IH), 9.08 (d, J = 2.1 Hz, IH); 13C NMR (CDCl3, 100 MHz) δ 13.6, 27.0, 31.7,
67.6, 113.7, 118.1, 118.4, 121.4 (q, J = 272.9 Hz), 126.5, 130.0, 130.5 (q, J = 34.5 Hz),
132.2, 133.7, 134.0, (q, J= 4.2 Hz), 138.7 (d, J= 10.7 Hz), 152.2, 160.5 (d, J= 249.4 Hz), 162.6, 174.1, 179.0; 19F NMR (CDCl3, 100 MHz) δ -110.94, -62.57.
Scheme 3: Synthesis of A52
[0056] In other embodiments, the present invention is directed to the method of synthesizing A52 described below. In some embodiments, Examples 1-8 can be performed sequentially to synthesize A52. However, as one of skill in the art will appreciate, this invention is not limited to the steps in Examples 1-8 as equivalent steps to those below are also encompassed by the present invention. Persons skilled in the art will recognize additional compounds that can be prepared utilizing similar methodology. Synthesis of 3-(trifluoromethyl)pyridin-2πHVone. 2
Figure imgf000022_0001
1 2
[0057] A solution of 2-chloro-3-(trifluoromethyl)pyridine 1 (5.00 g, 27.54 mmol) in a mixture of glacial acetic acid (50 ml) and water (5 ml) was refluxed for 7 days. The mixture was diluted with water (100 ml) and 6N aqueous NaOH was added until a pH of about 5 to about 6 was reached. The mixture was extracted with ethyl acetate (3 x 40 ml), the combined organic phases were dried over NaSO^ and then all solvents were removed under reduced pressure. The resulting residue was dissolved in ethyl acetate and hexane was added to precipitate a product. After filtration, 3-(trifluoromethyl)pyridin-2(l//)-one
2 was obtained as an off-white powder (4.16 g, 25.51 mmol, 93%).
1H NMR (400 MHz, DMSO) δ 12.31 (bs, IH), 7.91 (d, J = 7.1 Hz, IH), 7.69 (d, J= 6.4 Hz, IH), 6.30 (t, J= 6.7 Hz, IH).1
Synthesis of 5-nitro-3-(trifluoromethyl)pyridin-2f lHVone. 3
Figure imgf000022_0002
[0058] A mixture of 3-(trifluoromethyl)pyridin-2(l//)-one 2 (2.00 g, 12.26 mmol) and sulfuric acid (H2SO4, 3.5 ml, 30%) was heated to 90 °C and nitric acid (HNO3, 2.5 ml, 65%) was added. The mixture was stirred at 90 0C for 8 hours and additional nitric acid (1 ml, 65%) was added. The mixture was stirred for an additional 6 hours at 90 0C and was then poured into a beaker containing ice (30 ml). The mixture was diluted with water (30 ml) and 6N aqueous NaOH was added until a pH of about 4 to about 5. The mixture was extracted with ethyl acetate (3 x 40 ml), the combined organic phases dried over Na2SO4 and all solvents were removed under reduced pressure. The residue was dissolved in ethyl acetate and the product precipitated by the addition of hexane. After filtration, 5-nitro-3-(trifluoromethyl)pyridin-2(lH)-one 3 was obtained as a yellow powder (1.58 g, 7.59 mmol, 62%).
1H NMR (400 MHz, DMSO) δ 13.47 (bs, IH), 8.95 (d, J = 2.7 Hz, IH), 8.46 (d, J = 2.5 Hz, IH).2
Synthesis of 2-chloro-5-nitro-3-(trifluoromethvDpyridine. 4
Figure imgf000023_0001
[0059] A mixture of 5-nitro-3-(trifluoromethyl)pyridin-2(l//)-one 3 (1.50 g, 7.21 mmol), POCl3 (2.76 g, 18.02 mmol) and PCl5 (1.4 g, 10.09 mmol) is heated to about 110- 120 0C for 8 hours and then poured into ice water. The mixture is neutralized with solid NaHCθ3 and extracted with ethyl acetate (3 x 40 ml). The combined organic phases is dried over Na2SO4 and all solvents removed under reduced pressure to obtain 2-chloro-5- nitro-3-(trifluoromethyl)pyridine 4.
Synthesis of 6-chloro-5-(trifluoromethyl)pyridin-3 -amine. 5
Figure imgf000023_0002
[0060] 2-Chloro-5-nitro-3-(trifluoromethyl)pyridine 4 (1.57 g, 6.93 mmol) is dissolved in tetrahydrofuran (THF) (10ml) and added to a suspension of Raney-Ni (200 mg) in THF (20 ml). Hydrogen gas is slowly bubbled through the stirred solution for 24 hours using a balloon. The mixture is filtered through Celite® (available from World Minerals, Inc., Lompoc, California) and the solvent is removed under reduced pressure to obtain 6-chloro-5-(trifluoromethyl)pyridin-3-amine 5. Synthesis of 1,1-dimethγlethyIcarbamate -V-6-chloro-5-ftrifluoromethyl)pyridin-3-yl. 6
Figure imgf000024_0001
5 6
[0061] The crude 6-chloro-5-(trifluoromethyl)pyridin-3-amine 5 (1.3 g crude,
6.61 mmol) is dissolved in pyridine (10 ml) and 4-dimethylaminopyridine (DMAP) (50 mg) is added. Di-fer/-butyl dicarbonate (2.17 g) is added dropwise and mixture stirred at 22 0C for 4 hours. Toluene (20 ml) is added and all solvents is removed under reduced pressure. The residue is filtered through a plug of silica gel (hexane/ethyl acetate 2:1) to obtain rert-butyl Λ/-6-chloro-5-(trifluoromethyl)pyridin-3-ylcarbamate 6.
Synthesis of 5-amino-3-(trifluoromemvDpyridine-2-carbonitrile. 8
Figure imgf000024_0002
[0062] The crude ter/-butyl iV-6-chloro-5-(trifluoromethyl)pyridin-3-yl carbamate
6 (2.4 g, 6.61 mmol) is dissolved in dimethylacetamide (DMA) (25 ml) and phenanthroline (120 mg, 0.66 mmol) is added. The mixture is heated to 80 0C and KCN (0.47 g, 7.27 mmol) is added. After stirring the mixture stirred for 10 min, CuCN (118 mg, 0.13 mmol) is added and the mixture stirred for 2 hours at 110 0C. The cooled mixture is poured into a phosphate buffer (150 ml, pH 7), ethyl acetate (50 ml) is added and the mixture is filtered through Celite®. The layers are separated and the aqueous phase is extracted with ethyl acetate (3 x 40 ml). The combined organic phases are washed with saturated aqueous NaCl (4 x 30 ml), dried over Na2SC«4 and all solvents removed under reduced pressure to produce the crude Λ/-t-butoxycarbonyl nitrile 7.
[0063] The crude Λf-t-butoxycarbonyl nitrile 7 is dissolved in dichloromethane (20 ml) and trifluoroacetic acid (TFA) (4 ml is added. The mixture is stirred for 3 hours and evaporated. The residue is purified by column chromatography on silica gel (hexane/ethyl acetate 2:1) to obtain 5-amino-3-(trifluoromethyl)pyridine-2-carbonitrile 8.
Synthesis of 5-isothiocvanato-3-(trifluoromethyl)pyridine-2-carbonitrile, 9
Figure imgf000025_0001
[0064] 5-Amino-3-(trifluoromethyl)pyridine-2-carbonitrile 8 (1.141 g, 6.1 mmol) is mixed with chloroform (5 ml) and water (40 ml) to give a white suspension. Thiophosgene (0.701 ml, 9.15 mmol) is added and the reaction stirred for 2 hours at 22 0C to give a clear biphasic system. Chloroform (20 ml) is added and the phases are separated. The aqueous layer is extracted with chloroform (30 ml) and the combined organic is washed with saturated aqueous NaHCO3 and water, dried over MgSO4 and the solvent is removed under reduced pressure. The crude 5-isothiocyanato-3- (trifluoromethyl) pyridine-2-carbonitrile 9 is dried under vacuum and used as such in the next step, for example, in the step described in Example 8 below.
Synthesis of 4-(7-(6-cvano-S-(trifluoromethy0pyridin-3-yl)-8-oxo-6-thioxo-5.7- diazaspirof3.41octan-5-yl')-2-fluoro-Λr-methylbenzamide 11. A52
Figure imgf000025_0002
[0065] Crude 5-isothiocyanato-3-(trifluoromethyl)picolinonitrile 9 (1.390 g, 6.07 mmol) is placed in a 50 mL round-bottomed flask and 4-(l-cyanocyclobutylamino)-2- fluoro-Λf-methylbenzamide 10 (0.5 g, 2.022 mmol) is added to the flask. The mixture is left under vacuum (using an oil pump) for 1 hour. N,N-dimethylformamide (DMF) (6 ml) is added, the flask sealed under argon with a- stopper and heated to 80 0C in~a CEM microwave reactor for 20 hours. Methanol (10 ml) and 2N HCl (6 ml) is added and the mixture is refluxed for 2 hours. The mixture is diluted with water (30 ml) and saturated aqueous NaHCU3 (30 ml) is added. The mixture is extracted with ethyl acetate (3 x 20 ml).
[0066] The combined organic layers is washed with saturated aqueous NaCl (20 ml), dried over Na2SO-I, filtered and concentrated under reduced pressure. The crude product is purified by column chromatography on silica gel (dichloromethane/acetone 95:5) to obtain 4-(7-(6-cyano-5-(trifluoromethyl)pyridin-3-yl)-8-oxo-6-thioxo-5,7- diazaspiro[3.4]octan-5-yl)-2-fluoro-Λf-methylbenzamide 11.
Scheme 4: Synthesis of A52
Example 1: Synthesis of 2-bromo-5-mtro-3-(trifluoromethyr)pyridine. 21
Figure imgf000026_0001
21
[0067] 5-nitro-3-(trifluoromethyl)pyridin-2(lH)-one 3 is obtained by the routes provided in Examples 1 and 2 of Scheme 3, above. [0068] A mixture of 5-nitro-3-(trifluoromethyl)pyridin-2(lH)-one 3, POBr3 (1.5 equivalents), PBr3 (4 equivalents), and Br2 (2 equivalents) is heated to about 90-110 0C and is then poured into ice water. The mixture is neutralized and extracted. The combined organic phases are dried over Na2SC>4 and all solvents removed under reduced pressure to obtain 2-bromo-5-nitro-3-(trifluoromethyl)pyridine 21 in a yield of 88%. [0069] Alternatively, POBr3 is substituted by POCl3 to yield a mixture in the product having a ratio of bromine to chlorine substituents of 6:1 or better. Synthesis of 5-mtro-3-(trifluoromethvDpvridine-2-carbonitrile. 22
Figure imgf000027_0001
21 22
[0070] The crude 2-bromo-5-nitro-3-(trifluoromethyl)pyridine 21 is dissolved in dimethylacetamide (DMA) and phenanthroline (0.2 equivalents) is added. The mixture is heated to 160 0C and CuCN (2 equivalents) is added. The mixture is stirred for 40 minutes. Chromatography is performed to produce the 5-nitro-3-
(trifluoromethyl)pyridine-2-carbonitrile 22 in a yield of 67%.
Synthesis of 5-amino-3-(trifluoromethyl')pyridine-2-carbonitrile. 8
Figure imgf000027_0002
22 8
[0071] A mixture of 5-nitro-3-(trifluoromethyl)pyridine-2-carbonitrile 22 and iron powder in acetic acid is heated. 5-amino-3-(trifluoromethyl)pyridine-2-carbonitrile, 8 is obtained in a yield of 91%.
Synthesis of 4-(7-(6-cvano-5 -(trifluoromethvDp yridin-3 -yl)-8-oxo-6-thioxo-5.7- diazaspiror3.41octan-5-yl)-2-fluoro-N-methylbenzamide 1 1. A52
[0072] 5-amino-3-(trifluoromethyl)pyridine-2-carbonitrile 8 is treated as discussed in Example 7 of Scheme 3, above, to obtain 5-isothiocyanato-3- (trifluoromethyl)pyridine-2-carbonitrile 9. . . . [0073] S-isothiocyanato-S-CtrifluoromethyOpyridine-l-carbonitrile, 9 is reacted with 4-(l-cyanocyclobutylamino)-2-fluoro-iV-methylbenzamide 10 as discussed in Example 8 of Scheme 3, above, to obtain 4-(7-(6-cyano-5-(trifluoromethyl)pvridin-3-yl)- 8-oxo-6-thioxo-5,7-diazaspiro[3.4]octan-5-yl)-2-fluoro-iV-methylbenzamide 11 (A52).
Scheme 5: Alternative Synthesis of A52
Synthesis of S-CtrifluoromemvD-S-isothiocvanatopyridine^-carbonitrile (A)
Figure imgf000028_0001
Figure imgf000028_0002
Figure imgf000028_0003
[0074] A solution of 2-hydroxy-3-(trifluoromethyl)pyridine C in a mixture of N- iodosuccinimide (NIS), acetonitrile, and dimethylformamide (DMF) is heated at 80 0C for 2 hours to produce 2-hydroxy-3-trifluoromethyl-5-(iodo)pyridine I (greater than 80% yield). The 2-hydroxy-3-trifluoromethyl-5-(iodo)pyridine I is then mixed with POCI3 in DMF and heated to 130 0C in a microwave for 20 minutes to produce 2-chloro-3- trifluoromethyl-5-(iodo)pyridine J (yield of 50 to 55%). The 2-chloro-3-trifluoromethyl- 5-(iodo)pyridine K is reacted in a solution of pMBnNH2, palladium(II) acetate, 2,2'- bis(diphenylphosphino)-l,l'-binaphthyl (BINAP), triethylamine, and cesium carbonate in toluene to produce - 5-((4-methoxyphenyl))methylamino)-2-chloro^3- (trifluoromethyl)pyridine K (yield of 40%). The 5-((4-methoxyphenyl))methylamino)-2- chloro-3-(trifluoromethyl)pyridine K is reacted in a solution of zinc cyanide, tris(dibenzylideneacetone)dipalladium (Pd2(dba>3), and 1,1 '-bis
(diphenylphosphino)ferrocene (dppf) in DMF to provide 5-(4-methoxybenzylamine)-2- cyano-3-(trifluoromethyl)pyridine K (yield of 92%). The 5-(4-methoxybenzylamine)-2- cyano-3-(trifluoromethyl)pyridine K is reacted in a solution of dichloromethane and trifiuoroacetic acid to provide 2-cyano-3-trifluoromethyl-5-(amino)pyridine H (yield greater than 95%). The 2-cyano-3-trifluoromethyl-5-(amino)pyridine H is reacted with thiophosgene in water at 25 0C for 2 hours to provide 5-isothiocyanato-3- (trifluoromethyl)pyridine-2-carbonitrile A (yield of 74% to 95%).
Synthesis of 4-(l-cvanc ino)-2-fluoro-Ar-methylbenzamide intermediate B
Figure imgf000029_0001
Figure imgf000029_0002
[0075] A solution of 2,4-difluoro-benzoylchloride D in a solution of methylamine and tetrahydrofuran (THF) is allowed to react to produce 2,4-difiuoro-N- methylbenzamide M (quantitative yield). The 2,4-difluoro-N-methylbenzamide M is mixed with in a solution of acetonitrile and 4-methoxy-benzenemethanamine and heated in a microwave for 20 minutes at 190 0C to produce 2-fluoro-4-(4-methoxybenzylamino)- N-methylbenzamide S (yield of 40%). The 2-fluoro-4-(4-methoxybenzylamino)-N- methylbenzamide S is reacted in a solution of dichloromethane and trifiuoroacetic acid to produce 2-fluoro-4-amino-N-methylbenzamide T (yield greater than 95%). The 2-fluoro- 4-amino-N-methylbenzamide T is reacted with a solution of sodium cyanide and cyclobutanone to produce 4-(l-cyanocyclobutylamino)-2-fluoro-N-methylbenzamide B. Coupling of A and B to produce 4-f 7-(6-cvano-5-(trifluoromethyDpyridin-3-vO-8-oxo-6- thioxo-5,7-diazasDiror3 Λioctan-S-yO^-fluoro-iV-methylbenzamide. A52
Figure imgf000030_0001
[0076] 5-isothiocyanato-3-(trifluoromethyl)pyτidine-2-carbonitrile, 9, A is reacted with 4-(l-cyanocyclobutylamino)-2-fluoro-N-methylbenzamide B in DMF solution by heating in a microwave at 80 0C for 20 hours. Methanol and hydrochloric acid are then added and the reaction allowed to proceed for 2 hours to produce 4-(7-(6-cyano-5- (trifluoromethyl)pyridin-3-yl)-8-oxo-6-thioxo-5,7-diazaspiro[3.4]octan-5-yl)-2-fluoro-iV- methylbenzamide, A52 (yield 35 to 87%).
ACTIVITY
Utility
[0077] The compounds of the present invention modulate the function of the nuclear hormone receptors, particularly the androgen receptor, and include compounds which are, for example, selective agonists or selective antagonists of the androgen receptor (AR). Thus, the present compounds are useful in the treatment of AR-associated conditions. An "AR-associated condition," as used herein, denotes a condition or disorder which can be treated by modulating the function or activity of an AR in a subject, wherein treatment comprises prevention, partial alleviation or cure of the condition or disorder. Modulation can occur locally, for example, within certain tissues of the subject, or more extensively throughout a subject being treated for such a condition or disorder. Preferably, the compounds with potent antagonistic activity are used for the treatment of androgen related prostate cancer.
Combination [0078] The present invention includes within its scope pharmaceutical compositions comprising, as an active ingredient, a therapeutically effective amount of at least one of the compounds of formula II, alone or in combination with a pharmaceutical carrier or diluent. Optionally, compounds of the present invention can be used alone, in combination with other compounds of the invention, or in combination with one or more other therapeutic agent(s), e.g., an antibiotic or other pharmaceutically active material.
Pharmacological Assay
[0079] The compounds in this invention were identified through screening on hormone sensitive and hormone refractory prostate cancer cells for antagonistic and agonistic activities. The compounds with antagonist activity are potential drugs for the treatment of prostate cancer, both hormone sensitive and hormone refractory.
[0080] The biological activity of the compound of formula II was measured by secreted levels of prostate specific antigen (PSA). It is well established that PSA levels are indicators of AR activities in prostate cancer. To examine if the compounds affect AR function in a physiological environment, we determined secreted levels of endogenous PSA induced by Rl 881 in the hormone sensitive (HS) and hormone refractory (HR) cancer cells. HR cells are LNCaP cells engineered to express elevated levels of androgen receptor protein (LNCaP/AR cells), analogous to levels observed in patients with HR cancer who relapse while taking current antiandrogens such as bicalutamide, which acquire agonist properties when AR is highly expressed. LNCaP cells (or LNCaP/AR cells) were maintained in Iscove's medium containing 10% FBS. Five days prior to drug treatment, the cells were grown in Iscove's medium containing 10% CS-FBS to deprive of androgens. The cells were split and grown in Iscove's medium containing 10% CS- FBS with appropriate concentrations of Rl 881 and the test compounds. After 5 days of incubation, secreted PSA levels were assayed using PSA ELISA kits (American Qualex, San Clemente, CA) (See Fig. 1 and Fig. 3). The MTS assay was also used to examine the growth inhibition of the compounds of formula II (See Fig. 2).
Pharmacokinetic data [0081] The pharmacokinetics of A52 was evaluated in vivo using 8 week-old
FVB mice which were purchased from Charles River Laboratories. Mice were divided into groups of three for each time point (See Fig. 4). Two mice were not treated with
-29-. .. . . drug and two other mice were treated with vehicle solution. Each group was treated with 10 mg per kilogram of body weight. The drug was dissolved in a mixture 50 : 10 : 1 : 989 of DMSO : Carboxymethylcellulose : T Tween 80 : H2O (Vehicle solution) and was administered orally. After drug administration, the animals were euthanized via CO2 inhalation at different timepoints: 1 min, 5 min, 15 min, 30 min, 2 h, 4 h, 8h, 16 h. Animals were immediately bleed after exposure to CO2 via cardiac puncture (1 ml BD syringe + 27G 5/8 needle).
[0082] The serum samples were analyzed to determine the drug's concentration by the HPLC which (Waters 600 pump, Waters 600 controller and Waters 2487 detector) was equipped with an Alltima Cl 8 column (3μ, 150 mm><4.6 mm). All RD compounds were detected at 254 run wave length and bicalutamide was detected at 270 nm wave length.
[0083] The samples for HPLC analysis were prepared according to the following procedure:
- Blood cells were separated from serum by centrifugation.
- To 400 μl of serum were added 80 μl of a 10 μM solution of RD75 in acetonitrile as internal standard and 520 μl of acetonitrile. Precipitation occurred. - The mixture was vortexed for 3 minutes and then placed under ultrasound for 30 minutes.
- The solid particles were filtered off or were separated by centrifugation.
- The filtrate was dried under an argon flow to dryness. The sample was reconstructed to 80 μl with acetonitrile before analyzing by HPLC to determine the drug concentration.
- Standard curve of drug was used to improve accuracy.
In vivo assay
[0084] All animal experiments were performed in compliance with the guidelines of the Animal Research Committee of the University of California at Los Angeles.
Animals were bought from Taconic and maintained in a laminar flow tower in a defined flora colony. LNCaP-AR and LNCaP-vector cells were maintained in RPMI medium supplemented with 10% FBS. 106 cells in 100 μl of 1 :1 Matrigel to RPMI medium were injected subcutaneously into the flanks of intact or castrated male SCID mice. Tumor size was measured weekly in three dimensions (length x width x depth) using calipers. Mice were randomized to treatment groups when tumor size reached approximately 100 mm3. Drugs were given orally everyday at the dose of 10 mg/kg. (See Fig. 5 and Fig. 6) At a daily dose of 10 mg/kg, compounds A51 and A52 were found to completely retard tumor growth.
[0085] Other doses were also tried. At a daily dose of 1 mg/kg, compounds A51 and A52 were found to have a mild effect. At a daily dose of 25-50 mg/kg, compounds A51 and A52 were found induce some tumor cytotoxicity.
[0086] Prostate cancer cell lines were used for xenografts. For example, a LNCaP xenograft, LAPC4 xenograft, LAPC9 xenograft, and xenografts of the hormone refractory counterparts of these cell lines were made. Other cell lines included V-cap, CWR22 and LAPC4 cell lines. Two cell lines that over express the androgen receptor were generated, LNCaP AR and LAPC4 AR. Prostate cancer progression in these engineered cell lines was found to differ from their parental counterparts. Under androgen ablation, the LNCaP AR and LAPC4 AR lines continued to grow, thus behaving like hormone refractory cells.
[0087] Some of the cell lines were found to not take well in mice in tumor formation when xenografted. However, with LNCaP, 2 million cells gave a 95% take. As few as 1 million cells can be used. These cells required at least 25% Matrigel but no more than 50%. Since high concentrations of cells are required for good tumor take rate, a 27G needle was found to be the smallest appropriate needle.
[0088] The LAPC4 cell line was found to be very difficult to grow in animals.
The cells need to be resuspended and filtered through a micron mesh filter, for example, a 40-100 micron mesh filter, because they frequently form large aggregates. Resuspending and running through a filter helps normalize the cell number between each animal and therefore gives more consistent results. LAPC4 requires from about 25%-50% Matrigel, for example, 50% Matrigel, but can be grafted successfully at a lower concentration at 10 cells.
[0089] Tumor take in SCID mice was found to be better than in nude mice. For example, the tumor take across individual animal in nude mice was found to be very inconsistent. CB 17 SCID mice were used in the study.
[0090] Injections were made subcutaneously on the right flank of the mouse.
Slow injection was found to help to produce a round tumor that was easier to measure and could be measured more accurately. In addition, because of the usage of Matrigel, injection of no more than 200 μl was found appropriate. Injection of 100-200 μl was found appropriate. Injecting too large a volume created leakage upon needle withdrawal.
[0091] An alternative method to help prevent leakage from needle pullout can be to warm the Matrigel:media:cells filled syringe a couple of seconds to produce a gel-like form. When injecting the gel-like liquid, no leakage should occur. However, allowing the Matrigel to heat for too long a time can cause the suspension to solidify and become uninjectable.
PHARMACEUTICAL COMPOSITIONS AND ADMINISTRATION
[0092] The compounds of the invention are useful as pharmaceutical compositions prepared with a therapeutically effective amount of a compound of the invention, as defined herein, and a pharmaceutically acceptable carrier or diluent.
[0093] The compounds of the invention can be formulated as pharmaceutical compositions and administered to a subject in need of treatment, for example a mammal, such as a human patient, in a variety of forms adapted to the chosen route of administration, for example, orally, nasally, intraperitoneally, or parenterally, by intravenous, intramuscular, topical or subcutaneous routes, or by injection into tissue. Such compositions and preparations should contain at least 0.01% of a compound or compounds of the invention. The percentage of the compositions and preparations may, of course, be varied and may, for example, be between about 0.05% to about 2% of the weight of a given unit dosage form. The amount of compounds in such therapeutically
-32- .. . . . useful compositions is such that an effective dosage level will be obtained.
[0094] Thus, compounds of the invention may be systemically administered, e.g., orally, in combination with a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier, or by inhalation or insufflation. They may be enclosed in hard or soft shell gelatin capsules, may be compressed into tablets, or may be incorporated directly with the food of the patient's diet. For oral therapeutic administration, the compounds may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. The compounds may be combined with a fine inert powdered carrier and inhaled by the subject or insufflated. Such compositions and preparations should contain at least 0.1% of a compound or compounds of the invention. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2% to about 60% of the weight of a given unit dosage form. The amount of compounds in such therapeutically useful compositions is such that an effective dosage level will be obtained.
[0095] The tablets, troches, pills, capsules, and the like may also contain the following: binders such as gum tragacanth, acacia, com starch, or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid, and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, fructose, lactose, or aspartame, or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring may be added. When the unit dosage form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier, such as a vegetable oil or a polyethylene glycol. Various other materials may be present as coatings or to otherwise modify the physical form of the solid unit dosage form. For instance, tablets, pills, or capsules may be coated with gelatin, wax, shellac, sugar, and the like. A syrup or elixir may contain the active compound, sucrose or fructose as a sweetening agent, methyl and propylparabens as preservatives, a dye, and flavoring such as cherry or orange flavor. Of course, any material used in preparing any unit dosage form should be pharmaceutically acceptable and substantially non-toxic in the amounts employed. In addition, the compounds of the invention may be incorporated into sustained-release preparations and devices. For example, the compounds may be incorporated into time release capsules, time release tablets, and time release pills.
[0096] The compounds of the invention may also be administered intravenously or intraperitoneally by infusion or injection. Solutions of the compounds can be prepared in water, optionally mixed with a nontoxic surfactant. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations can contain a preservative to prevent the growth of microorganisms.
[0097] The pharmaceutical dosage forms suitable for injection or infusion can include sterile aqueous solutions or dispersions or sterile powders comprising the compounds of the invention which are adapted for the extemporaneous preparation of sterile injectable or infusible solutions or dispersions, optionally encapsulated in liposomes. In all cases, the ultimate dosage form should be sterile, fluid, and stable under the conditions of manufacture and storage. The liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the formation of liposomes, by the maintenance of the required particle size in the case of dispersions, or by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, buffers, or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
[0098] Sterile injectable solutions are prepared by incorporating the compounds of the invention in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient present in the previously sterile-filtered solutions.
[0099] For topical administration, the compounds of the invention may be applied in pure form. However, it will generally be desirable to administer them to the skin as compositions or formulations, in combination with a dermatologically acceptable carrier, which may be a solid or a liquid.
[00100] Useful solid carriers include finely divided solids such as talc, clay, microcrystalline cellulose, silica, alumina, and the like. Other solid carriers include nontoxic polymeric nanoparticles or microparticles. Useful liquid carriers include water, alcohols, or glycols or water/alcohol/glycol blends, in which the compounds of the invention can be dissolved or dispersed at effective levels, optionally with the aid of nontoxic surfactants. Adjuvants such as fragrances and additional antimicrobial agents can be added to optimize the properties for a given use. The resultant liquid compositions can be applied from absorbent pads, used to impregnate bandages and other dressings, or sprayed onto the affected area using pump-type or aerosol sprayers.
[00101] Thickeners such as synthetic polymers, fatty acids, fatty acid salts and esters, fatty alcohols, modified celluloses, or modified mineral materials can also be employed with liquid carriers to form spreadable pastes, gels, ointments, soaps, and the like, for application directly to the skin of the user.
[00102] Examples of useful dermato logical compositions which can be used to deliver the compounds of the present invention to the skin are known to the art; for example, see Jacquet et al. (U.S. Pat. No. 4,608,392), Geria (U.S. Pat No. 4,992,478), Smith et al. (U.S. Pat. No. 4,559,157), and Wortzman (U.S. Pat. No. 4,820,508), all of which are hereby incorporated by reference.
[00103] Useful dosages of the compounds of Formula II can be determined by comparing their in vitro activity, and by comparing their in vivo activity in animal models. Methods for the extrapolation of effective dosages in mice and other animals to humans are known to the art; for example, see U.S. Pat. No. 4,938,949, which is hereby incorporated by reference.
[00104] For example, the concentration of the compounds in a liquid
-3.5r composition, such as a lotion, can be from about 0.1 to about 25% by weight, or from about 0.5 to about 10% by weight. The concentration in a semi-solid or solid composition such as a gel or a powder can be from about 0.1 to about 5% by weight, or from about 0.5 to about 2.5% by weight.
[00105] The amount of the compounds of the invention required for use in treatment will vary not only with the particular salt selected but also with the route of administration, the nature of the condition being treated and the age and condition of the patient and will be ultimately at the discretion of the attendant physician or clinician.
[00106] Effective dosages and routes of administration of agents of the invention are conventional. The exact amount (effective dose) of the agent will vary from subject to subject, depending on, for example, the species, age, weight, and general or clinical condition of the subject, the severity or mechanism of any disorder being treated, the particular agent or vehicle used, the method and scheduling of administration, and the like. A therapeutically effective dose can be determined empirically, by conventional procedures known to those of skill in the art. See, e.g., The Pharmacological Basis of
Therapeutics, Goodman and Gilman, eds., Macmillan Publishing Co., New York. For example, an effective dose can be estimated initially either in cell culture assays or in suitable animal models. The animal model may also be used to determine the appropriate concentration ranges and routes of administration. Such information can then be used to determine useful doses and routes for administration in humans. A therapeutic dose can also be selected by analogy to dosages for comparable therapeutic agents.
[00107] The particular mode of administration and the dosage regimen will be selected by the attending clinician, taking into account the particulars of the case (e.g., the subject, the disease, the disease state involved, and whether the treatment is prophylactic). Treatment may involve daily or multi-daily doses of compound(s) over a period of a few days to months, or even years.
[00108] In general, however, a suitable dose will be in the range of from about
0.01 to about 500 mg/kg per day, e.g., from about 0.1 to about 500 mg/kg of body weight per day, such as from about 0.1 to about 100 mg per kilogram body weight of the recipient per day. For example, a suitable dose may be about 1 mg/kg, 10 mg/kg, or 50 mg/kg of body weight per day.
[00109] The compounds of the invention are conveniently administered in unit dosage form; for example, containing from about 0.0005 to about 500 mg, from about 0.01 to about 50 mg, from about 0.05 to about 10 mg, or about 5 mg of active ingredient per unit dosage form.
[00110] The compounds of the invention can be administered to achieve peak plasma concentrations of, for example, from about 0.5 to about 75 μM, about 1 to 50 μM, about 2 to about 30 μM, or about 5 to about 25 μM. Exemplary desirable plasma concentrations include at least or no more than 0.25, 0.5, 1, 5, 10, 25, 50, 75, 100 or 200 μM. This may be achieved, for example, by the intravenous injection of a 0.05 to 5% solution of the compounds of the present invention, optionally in saline, or orally administered as a bolus containing about 1-1000 mg of the compounds. Desirable blood levels may be maintained by continuous infusion to provide from about 0.0005 to about 25 mg per kg body weight per hour, for example at least or no more than 0.0005, 0.005, 0.05, 0.5, 5, or 25 mg/kg/hr. Alternatively, such levels can be obtained by intermittent infusions containing from about 0.002 to about 100 mg per kg body weight, for example, at least or no more than 0.002, 0.02, 0.2, 2, 20, 50, or 100 mg of the compounds per kg of body weight.
[00111] The compounds of the invention may conveniently be presented in a single dose or as divided doses administered at appropriate intervals, for example, as two, three, four or more sub-doses per day. The sub-dose itself may be further divided, e.g., into a number of discrete loosely spaced administrations; such as multiple inhalations from an insufflator.
EXAMPLE: INTRAVENOUS FORMULATION
[00112] A compound presently disclosed, for example, compound A51 or A52, can be in a formulation suitable for intravenous dosing. In an embodiment, the compound is dissolved in from about 10% to about 25% dimethylsulfoxide (DMSO). IX phosphate buffered saline (PBS) is then mixed into the solution as the balance, and the solution is sonicated with a water bath sonicator until it is homogeneous. " ~ — [00113] At a compound concentration of 1.5 mg/mL, 5 minutes of sonication may be sufficient to dissolve the compound. At a compound concentration of 2 mg/ml, more than 5 minutes of sonication may be required to dissolve the compound and a polyethylene glcyol can be added to keep the compound in suspension. For example, 5 to 40% PEG-400 (a polyethylene glycol), such as, 5-10% PEG-400, can be added.
[00114] The above solution, including either A51 or A52, was found to be stable at room temperature for at least a week.
[00115] Before administration, the above solution should be sonicated for a few minutes. A maximum appropriate administration volume for mice was found to be 0.2 mL.
[00116] When administered to mice, hardening of the skin and skin irritation around the injection site was observed, and this was attributed to the use of DMSO. Although compounds A51 and A52 are soluble in ethanol, ethanol was found to reduce the stability of the compounds in vivo.
[00117] Over a period of 2 weeks following administration of the above solution, mice were observed to lose 15% of body weight.
EXAMPLE: ORAL FORMULATION
[00118] A compound presently disclosed, for example, compound A51 or A52, can be in a formulation suitable for oral administration. In an embodiment, the compound is dissolved in 100% DMSO.
[00119] Additional chemicals can be added, such as a carboxymethylcellulose, a polysorbate, or water. For example, the components of the solution other than A51 or A52 can be present at concentrations of from about 10% to about 20% DMSO, from about 1% to about 2% carboxymethylcellulose (CMC), and 0.1% Tween 80 (a polysorbate), with the balance being water. The concentration of compound A51 or A52 in the oral foundation can be about 1.5 mg/mL. The solution is mechanically homogenized for at least 30 seconds. The compound A51 or A52 was found to stay in suspension for only a couple of hours and, therefore, the oral formulation must be administered within a couple of hours of preparation.
[00120] When more than 2% carboxymethylcellulose (CMC) was included in the solution, the formulation was found to be very viscous, so that when administered to a test animal with a gavage syringe, much of the formulation was left behind on the walls of the syringe, preventing accurate drug administration. A solution of 10% DMSO that included CMC and Tween 80 was found to keep the compound in suspension when mechanical homogenization was applied. That is, more than 10% DMSO was not required. A minimum of DMSO should be used, because it was found to irritate the mice, and was associated with a loss of up to 10% of the bodyweight of the mice over a period of 2 weeks following administration.
[00121] A maximum appropriate administration volume for mice was found to be
0.2 mL.
[00122] The half life of the compound was found to be longer when it was administered intravenously than when it was administered orally. However, daily oral dosing resulted in an acceptable steady state serum concentration of the compound, comparable to the steady state concentration seen with bicalutamide. Oral administration may be more convenient than intravenous administration.
[00123] Compounds A51 and A52 have a beneficial effect on tumors in an in vivo assay administered as described.
[00124] The embodiments illustrated and discussed in this specification are intended only to teach those skilled in the art the best way known to the inventors to make and use the invention. Nothing in this specification should be considered as limiting the scope of the present invention. All examples presented are representative and non- limiting. The above-described embodiments of the invention may be modified or varied, without departing from the invention, as appreciated by those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the claims and their equivalents, the invention may be practiced otherwise than as specifically described.

Claims

WE CLAIlVI:
I . A compound according to formula II
Figure imgf000042_0001
Formula Il
wherein Het comprises a heterocyclic unit of 5 or 6 atoms, wherein A and B are independently selected from oxygen, sulfur, and N-R9, wherein R9 is selected from hydrogen, aryl, substituted aryl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, substituted cycloalkyl, SO2Rn, NRnRi2, NR12(CO)ORu, NH(CO)NRnRi2, NR12(CO)Rn, 0(CO)Rn, 0(CO)ORn, 0(CS)Rn, NR12(CS)Rn, NH(CS)NRnRi2, or NR12(CS)ORn, wherein Ri 1 and Rj2 are independently selected from hydrogen, alkyl, substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, aryl, substituted aryl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, or substituted heterocyclic aromatic or non-aromatic, wherein Ri 1 and Ri 2 can be connected to form a cycle which can be heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic, cycloalkyl, or substituted cycloalkyl, wherein Ri is selected from hydrogen, aryl, substituted aryl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, substituted cycloalkyl, SO2R1 1, NRnR12, NRi2(CO)ORn, NH(CO)NRnR12, NR12(CO)Rn, 0(CO)Rn, 0(CO)ORn, 0(CS)Rn, NR12(CS)R1 1, NH(CS)NRnR12,
NR12(CS)ORn, wherein R2 and R3 are independently selected from hydrogen, aryl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, or substituted cycloalkyl, or, together with the carbon to which they are linked, form a cycle which can be cycloalkyl, substituted cycloalkyl, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic; wherein R| and R2 can be connected to form a cycle which can be heterocyclic aromatic or non aromatic, substituted heterocyclic aromatic or non aromatic.
2. The compound of claim 1, wherein Ri is selected from the group consisting of alkyl, substituted alkyl, alkenyl, and substituted alkenyl.
3. The compound of claim 1, wherein Ri is selected from the group consisting of aryl and substituted aryl.
4. The compound of claim 3, wherein Ri is aryl substituted by at least one fluorine atom.
5. The compound of claim 1, wherein R| is a 5- to 8-membered heterocyclic aromatic or non aromatic ring.
6. The compound of claim 1 , wherein R2 and R3 are independently selected from the group consisting of methyl, ethyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, fluoromethyl, chloromethyl, and bromomethyl.
7. The compound of claim 1, wherein A and B are independently selected from the group consisting of oxygen and sulfur.
8. The compound of claim 1, wherein Het comprises a heterocyclic unit of 6 atoms, wherein the heterocyclic unit comprises 1 or 2 heteroatoms independently selected from the group consisting of nitrogen, oxygen, or sulfur, wherein Het comprises 0 or 1 double-bonded substituent on the heterocyclic unit selected from the group consisting of oxygen and sulfur; wherein Het comprises from 3 to 4 single-bonded substituents on the heterocyclic unit selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, arylalkyl, arylalkenyl, arylalkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, halogen, CN, NO2, OR1 1, SRn, NR1 1Ri2, NH(CO)OR1 1, NH(CO)NRnRi2, NRi2(CO)Rn, 0(CO)RI 13 O(CO)OR1 1 1 O(CS)RI N NR12(CS)R1 I 1 NH(CS)NR1 1R125 NR12(CS)OR1 1, wherein a single-bonded substituent can be connected to another single-bonded substituent to form a cycle which is aromatic, substituted aromatic, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, or substituted cycloalkyl.
9. A compound of claim 8, wherein Het is selected from the group consisting of 6-membered rings of the compounds
Figure imgf000044_0001
wherein R4, R5, R<,, and R7 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, arylalkyl, arylalkenyl, arylalkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, halogen, CN, NO2, ORn, SRn, NRnRi2, NH(CO)ORn, NH(CO)NR1 ,R12, NR12(CO)R, ,, 0(CO)R1 1, 0(CO)OR1 ,, 0(CS)R1 ,, NR12(CS)R, ,, NH(CS)NR1 ,R12, NR12(CS)OR1 ,, wherein any Of R4, Rs, R6, and R7 can be connected to any of R4, R5, Re, and R7 to form a cycle which can be aromatic, substituted aromatic, heterocyclic aromatic or non- aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, or substituted cycloalkyl.
10. A compound of claim 9, wherein R4 is selected from the group consisting of CN and NO2, wherein R5 is selected from the group consisting of trifluoromethyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, and halogen, and wherein R6, and R7 are independently selected from the group consisting of hydrogen, alkyl, and or halogen.
1 1. The compound of claim 10, wherein R5 is selected from the group consisting of trifluoromethyl and iodide and wherein R^ and R7 are independently selected from the group consisting of hydrogen and halogen.
12. The compound of claim 9, wherein Het is selected from the group consisting of
Figure imgf000045_0001
13. The compound of claim 12, having the formula
Figure imgf000046_0001
Figure imgf000046_0002
14. The compound of claim I, wherein Het comprises a heterocyclic unit of 5 atoms, wherein the heterocyclic unit comprises 1 or 2 heteroatoms independently selected from the group consisting of sulfur, oxygen, nitrogen, and NRe, wherein Rs is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, arylalkyl, arylalkenyl, arylalkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, halogen, (CO)R, , , (CO)OR1 , , (CS)R1 , , (CS)OR1 , , wherein Het comprises from 2 to 3 single-bonded substituents on the heterocyclic unit selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, arylalkyl, arylalkenyl, arylalkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, halogen, CN, NO2, OR1 ,, SRi ,, NRi |R,2, NH(CO)ORn, NH(CO)NR11R12, NR12(CO)Rn, 0(CO)Rn, 0(CO)ORn, 0(CS)R11, NR12(CS)Rn, NH(CS)NRnR12, NR12(CS)ORn, wherein a single-bonded substituent can be connected to another single-bonded substituent to form a cycle which is aromatic, substituted aromatic, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, or substituted cycloalkyl.
15. The compound of claim 14, wherein Het is selected from the group consisting of 5-membered rings of the compounds . . .
Figure imgf000047_0001
wherein R4, R5, and R6, are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, arylalkyl, arylalkenyl, arylalkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, halogen, CN, NO2, ORu, SRn, NRi 1R12, NH(CO)OR, 1, NH(CO)NR, ,R12, NR12(CO)Ri 1, 0(CO)Rn, 0(CO)ORn, O(CS)RH, NR12(CS)R1 ,, NH(CS)NR1 ,R12, NR12(CS)OR1 ,, . wherein any OfR4, R5, and R$ can be connected to any OfR4, R5, and R^ to form a cycle which can be aromatic, substituted aromatic, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, or substituted cycloalkyl, wherein X is selected from sulfur, oxygen, and NRs, and wherein Rs is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, arylalkyl, arylalkenyl, arylalkynyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, halogen, (CO)Ri 1, (CO)ORn, (CS)Ri 1, and (CS)OR1 ,.
16. A compound of claim 15, wherein R4 is selected from the group consisting of CN and NO2, wherein R5 is selected from the group consisting of trifluoromethyl, halogenated alkyl, halogenated alkenyl, halogenated alkynyl, and halogen, and wherein Re is selected from the group consisting of hydrogen, alkyl, and halogen.
17. A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier, diluent, or adjuvant.
18. A method for treating a disease or disorder related to nuclear receptor activity comprising administering a pharmaceutical composition according to claim 17.
19. A method for treating a hyperproliferative disorder comprising administering a compound of claim 1, or a pharmaceutically acceptable salt thereof, to a subject in need of such treatment, thereby treating the hyperproliferative disorder.
20. The method of claim 19, wherein the compound of claim 1, or a pharmaceutically acceptable salt thereof is administered at a dosage in the range of from about 0.01 mg per kg body weight per day to about 500 mg per kg body weight per day.
21. The method of claim 19, wherein the compound of claim 1, or a pharmaceutically acceptable salt thereof, is administered at a dosage in the range of from about 0.1 mg per kg body weight per day to about 200 mg per kg body weight per day.
22. The method of claim 19, wherein the compound of claim 1 , or a pharmaceutically acceptable salt thereof, is administered at a dosage in the range of from about 1 mg per kg body weight per day to about 50 mg per kg body weight per day.
23. The method of claim 19, wherein the compound of claim I, or a pharmaceutically acceptable salt thereof is administered at a dosage of about 10 mg per kg body weight per day.
24. The method of claim 19, wherein the hyperproliferative disorder is hormone sensitive prostate cancer or hormone refractory prostate cancer.
25. The method of claim 19, wherein the compound of claim 1 is administered by intravenous injection, by injection into tissue, intraperitoneal Iy, orally, or nasally.
26. The method of claim 19, wherein the compound of claim 1 has a form selected from the group consisting of a solution, dispersion, suspension, powder, capsule, tablet, pill, time release capsule, time release tablet, and time release pill.
27. A compound or a method of any one of the preceding claims, wherein the compound is an antagonist of a nuclear receptor.
28. A compound or a method of any one of the preceding claims, wherein the compound is an antagonist of an androgen receptor.
29. The pharmaceutical composition of claim 17, wherein the compound is A51.
30. The pharmaceutical composition of claim 17, wherein the compound is A52.
31. The pharmaceutical composition of claim 17, comprising a solution of dimethylsulfoxide and phosphate buffered saline solution.
32. The pharmaceutical composition of claim 17, comprising polyethylene glycol.
33. The pharmaceutical composition of claim 17, wherein the compound is at a concentration of from about 0.15 mg/mL to about 15 mg/mL and wherein the dimethylsulfoxide is from about 10% to about 25% of the solution.
34. The pharmaceutical composition of claim 17, wherein the compound is at a concentration of about 1.5 mg/mL.
35. The pharmaceutical composition of claim 17, comprising a solution of dimethylsulfoxide, a carboxymethylcellulose, a polysorbate, and water.
36. The pharmaceutical composition of claim 35, wherein the dimethylsulfoxide is from about 10% to 20% of the solution, wherein the carboxymethylcellulose is from about 1% to about 2% of the solution, and wherein the polysorbate is from about 0.05% to about 0.2% of the solution.
37. A method for treating a hyperproliferative disorder comprising administering compound A51 or A52, or a pharmaceutically acceptable salt thereof, to a subject in need of such treatment, thereby treating the hyperproliferative disorder.
PCT/US2007/007485 2006-03-27 2007-03-27 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases WO2007126765A2 (en)

Priority Applications (27)

Application Number Priority Date Filing Date Title
EP07754060.7A EP2004181B3 (en) 2006-03-27 2007-03-27 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
DK07754060.7T DK2004181T6 (en) 2006-03-27 2007-03-27 ANDROGEN RECEPTOR MODULATOR FOR THE TREATMENT OF PROSTATE CANCER AND ANDROGEN RECEPTOR-ASSOCIATED DISEASES
EP18181743.8A EP3412290B1 (en) 2006-03-27 2007-03-27 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
EP21153358.3A EP3835294A1 (en) 2006-03-27 2007-03-27 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
SI200731759A SI2004181T1 (en) 2006-03-27 2007-03-27 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
PL16173574T PL3100727T3 (en) 2006-03-27 2007-03-27 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
PL18181743T PL3412290T3 (en) 2006-03-27 2007-03-27 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
NZ572335A NZ572335A (en) 2006-03-27 2007-03-27 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
BRPI0709771-9A BRPI0709771B1 (en) 2006-03-27 2007-03-27 Compound and pharmaceutical composition
EP24159183.3A EP4385574A3 (en) 2006-03-27 2007-03-27 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
AU2007243651A AU2007243651C1 (en) 2006-03-27 2007-03-27 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
CN2007800196547A CN101454002B (en) 2006-03-27 2007-03-27 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
ES07754060T ES2564388T7 (en) 2006-03-27 2007-03-27 Androgen receptor modulator for the treatment of prostate cancer and diseases associated with the androgen receptor
JP2009502925A JP5133975B2 (en) 2006-03-27 2007-03-27 Androgen receptor modulators for the treatment of prostate cancer and androgen receptor related pathologies
PL07754060.7T PL2004181T6 (en) 2006-03-27 2007-03-27 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
FIEP07754060.7T FI2004181T6 (en) 2006-03-27 2007-03-27 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
EP16173574.1A EP3100727B1 (en) 2006-03-27 2007-03-27 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
US12/294,881 US8445507B2 (en) 2006-03-27 2007-03-27 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
HK09105350.4A HK1126421A1 (en) 2006-03-27 2009-06-16 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
US13/615,085 US8802689B2 (en) 2006-03-27 2012-09-13 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
US14/318,234 US9388159B2 (en) 2006-03-27 2014-06-27 Substituted diazaspiroalkanes as androgen receptor modulators
US15/181,030 US9987261B2 (en) 2006-03-27 2016-06-13 Substituted diazaspiroalkanes as androgen receptor modulators
US15/969,147 US10857139B2 (en) 2006-03-27 2018-05-02 Substituted diazaspiroalkanes as androgen receptor modulators
CY181101115T CY1120828T1 (en) 2006-03-27 2018-10-30 ANDROGEN RECEPTOR REGULATOR FOR THE TREATMENT OF PROSTATE CANCER AND ANDROGEN-RELATED DISEASES RELATED TO DISEASES
US17/093,047 US11771687B2 (en) 2006-03-27 2020-11-09 Substituted diazaspiroalkanes as androgen receptor modulators
CY20211100418T CY1124147T1 (en) 2006-03-27 2021-05-14 ANDROGEN RECEPTOR REGULATOR FOR THE THERAPEUTIC TREATMENT OF PROSTATE CANCER AND ANDROGEN RECEPTOR-RELATED DISEASES
US18/375,628 US20240293383A1 (en) 2006-03-27 2023-10-02 Substituted diazaspiroalkanes as androgen receptor modulators

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US78597806P 2006-03-27 2006-03-27
US60/785,978 2006-03-27
US83379006P 2006-07-28 2006-07-28
US60/833,790 2006-07-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/294,881 A-371-Of-International US8445507B2 (en) 2006-03-27 2007-03-27 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
US13/615,085 Continuation US8802689B2 (en) 2006-03-27 2012-09-13 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases

Publications (2)

Publication Number Publication Date
WO2007126765A2 true WO2007126765A2 (en) 2007-11-08
WO2007126765A3 WO2007126765A3 (en) 2008-11-06

Family

ID=38656005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/007485 WO2007126765A2 (en) 2006-03-27 2007-03-27 Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases

Country Status (20)

Country Link
US (7) US8445507B2 (en)
EP (8) EP2656841B1 (en)
JP (10) JP5133975B2 (en)
CN (1) CN101454002B (en)
AU (1) AU2007243651C1 (en)
BR (1) BRPI0709771B1 (en)
CY (7) CY1114623T1 (en)
DK (6) DK3412290T3 (en)
ES (6) ES2593379T3 (en)
FI (1) FI2004181T6 (en)
HK (4) HK1126421A1 (en)
HU (6) HUE031079T2 (en)
LT (5) LT2656842T (en)
LU (1) LUC00123I2 (en)
NL (1) NL300993I2 (en)
NZ (1) NZ572335A (en)
PL (6) PL2368550T3 (en)
PT (5) PT2656842T (en)
SI (6) SI2656842T1 (en)
WO (1) WO2007126765A2 (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008119015A2 (en) * 2007-03-27 2008-10-02 Sloan-Kettering Institute For Cancer Research Synthesis of thiohydantoins
US7709517B2 (en) 2005-05-13 2010-05-04 The Regents Of The University Of California Diarylhydantoin compounds
US7718684B2 (en) 2004-02-24 2010-05-18 The Regents Of The University Of California Methods and materials for assessing prostate cancer therapies and compounds
US8034548B2 (en) 2003-12-19 2011-10-11 The Regents Of The University Of California Methods and materials for assessing prostate cancer therapies
WO2011103202A3 (en) * 2010-02-16 2012-01-12 Aragon Pharmaceuticals, Inc. Androgen receptor modulators and uses thereof
CN102428073A (en) * 2009-04-17 2012-04-25 益普生制药股份有限公司 Imidazolidine-2,4-dione derivatives, and use thereof as a cancer drug
US20120259125A1 (en) * 2009-12-25 2012-10-11 Ishihara Sangyo Kaisha, Ltd. Processes for producing 2-chloro-3-trifluoromethylpyridine
EP2538785A1 (en) 2010-02-24 2013-01-02 Medivation Prostate Therapeutics, Inc. Processes for the synthesis of diarylthiohydantoin and diarylhydantoin compounds
WO2013087004A1 (en) * 2011-12-14 2013-06-20 Chen Yuanwei Imidazolidinedione compounds and their uses
WO2013128421A1 (en) 2012-03-02 2013-09-06 Novartis Ag Spirohydantoin compounds and their use as selective androgen receptor modulators
WO2013184681A1 (en) 2012-06-07 2013-12-12 Aragon Pharmaceuticals, Inc. Crystalline forms of an androgen receptor modulator
US8648105B2 (en) 2006-03-29 2014-02-11 The Regents Of The University Of California Diarylthiohydantoin compounds
US8722695B2 (en) 2009-12-11 2014-05-13 Autifony Therapeutics Limited Imidazolidinedione derivatives
US8802689B2 (en) 2006-03-27 2014-08-12 The Regents Of The University Of California Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
WO2015100617A1 (en) * 2013-12-31 2015-07-09 Beaufour-Ipsen (Tianjin) Pharmaceutical Co., Ltd. Novel imidazolidine-2,4-dione derivatives
US9133175B2 (en) 2010-12-06 2015-09-15 Autifony Therapeutics Limited Compounds
US9175291B2 (en) 2012-10-11 2015-11-03 Isis Pharmaceuticals Inc. Modulation of androgen receptor expression
US9193704B2 (en) 2011-06-07 2015-11-24 Autifony Therapeutics Limited Hydantoin derivatives as KV3 inhibitors
AU2014271290B2 (en) * 2010-02-16 2016-04-28 Aragon Pharmaceuticals, Inc. Androgen receptor modulators and uses thereof
US9340524B2 (en) 2013-01-15 2016-05-17 Aragon Pharmaceuticals, Inc. Androgen receptor modulator and uses thereof
WO2016100645A1 (en) * 2014-12-19 2016-06-23 Aragon Pharmaceuticals, Inc. Processes for the preparation of a diarylthiohydantoin compound
WO2016124149A1 (en) * 2015-02-06 2016-08-11 苏州晶云药物科技有限公司 New crystalline form of antiandrogen drug which treats prostate cancer, and preparation method for new crystalline form
US9422252B2 (en) 2012-05-22 2016-08-23 Autifony Therapeutics Limited Triazoles as Kv3 inhibitors
WO2016100652A3 (en) * 2014-12-19 2016-08-25 Aragon Pharmaceuticals, Inc. Process for the preparation of a diarylthiohydantoin compound
AU2014273618B2 (en) * 2013-05-29 2016-10-13 Hinova Pharmaceuticals Inc. Imidazole diketone compound and use thereof
US9669030B2 (en) 2012-05-22 2017-06-06 Autifony Therapeutics Limited Hydantoin derivatives as Kv3 inhibitors
AU2016208310B2 (en) * 2010-02-16 2017-10-05 Aragon Pharmaceuticals, Inc. Androgen receptor modulators and uses thereof
US9884054B2 (en) 2012-09-26 2018-02-06 Aragon Pharmaceuticals, Inc. Anti-androgens for the treatment of non-metastatic castrate-resistant prostate cancer
US9896437B2 (en) 2007-10-26 2018-02-20 The Regents Of The University Of California Diarylhydantoin compounds
US9951069B1 (en) 2017-01-11 2018-04-24 Rodin Therapeutics, Inc. Bicyclic inhibitors of histone deacetylase
CN108003093A (en) * 2017-12-07 2018-05-08 山东汇盟生物科技有限公司 Preparation method of 2-hydroxy-3-trifluoromethylpyridine
CN108047200A (en) * 2017-12-05 2018-05-18 上海丰瑞医药科技有限公司 A kind of Preparation Method And Their Intermediate of diaryl thiohydantoin class compound
CN108069869A (en) * 2016-11-09 2018-05-25 上海医药工业研究院 A kind of Preparation Method And Their Intermediate of Apalutamide
WO2018136001A1 (en) * 2017-01-18 2018-07-26 Scinopharm Taiwan, Ltd. Process for preparing apalutamide
EP3430907A1 (en) * 2011-07-29 2019-01-23 Medivation Prostate Therapeutics LLC Treatment of breast cancer
JP2019504836A (en) * 2016-01-11 2019-02-21 ヤンセン ファーマシューティカ エヌ.ベー. Substituted thiohydantoin derivatives as androgen receptor antagonists
WO2019054427A1 (en) 2017-09-14 2019-03-21 第一三共株式会社 Compound having cyclic structure
US10285948B2 (en) 2014-12-05 2019-05-14 Janssen Pharmaceutica Nv Anticancer compositions
US20190209469A1 (en) * 2016-08-20 2019-07-11 Ftf Pharma Private Limited Pharmaceutical composition comprising an androgen receptor inhibitor
US10421756B2 (en) 2015-07-06 2019-09-24 Rodin Therapeutics, Inc. Heterobicyclic N-aminophenyl-amides as inhibitors of histone deacetylase
US10513504B2 (en) 2018-03-08 2019-12-24 Apotex Inc. Processes for the preparation of apalutamide and intermediates thereof
WO2020095183A1 (en) 2018-11-05 2020-05-14 Pfizer Inc. Combination for treating cancer
US10702508B2 (en) 2017-10-16 2020-07-07 Aragon Pharmaceuticals, Inc. Anti-androgens for the treatment of non-metastatic castration-resistant prostate cancer
WO2021026454A1 (en) 2019-08-08 2021-02-11 Laekna Limited Method of treating cancer
US10919902B2 (en) 2015-07-06 2021-02-16 Alkermes, Inc. Hetero-halo inhibitors of histone deacetylase
US11186876B2 (en) 2014-12-12 2021-11-30 Medivation Prostate Therapeutics Llc Method for predicting response to breast cancer therapeutic agents and method of treatment of breast cancer
US11225475B2 (en) 2017-08-07 2022-01-18 Alkermes, Inc. Substituted pyridines as inhibitors of histone deacetylase
WO2022034504A1 (en) 2020-08-13 2022-02-17 Pfizer Inc. Combination therapy
WO2022049265A1 (en) 2020-09-04 2022-03-10 Synthon B.V. Improved process for preparation of apalutamide
CN114621184A (en) * 2020-12-10 2022-06-14 奥锐特药业股份有限公司 Preparation method of apatamide
WO2022200982A1 (en) 2021-03-24 2022-09-29 Pfizer Inc. Combination of talazoparib and an anti-androgen for the treatment of ddr gene mutated metastatic castration-sensitive prostate cancer
WO2024074959A1 (en) 2022-10-02 2024-04-11 Pfizer Inc. Combination of talazoparib and enzalutamide in the treatment of metastatic castration-resistant prostate cancer
WO2024127140A1 (en) 2022-12-17 2024-06-20 Pfizer Inc. Combination of talazoparib and enzalutamide in the treatment of metastatic castration-resistant prostate cancer

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2772579C (en) * 2009-09-10 2015-12-08 Youzhi Tong Thioimidazolidinone androgen receptor antagonists and uses thereof
WO2013055793A1 (en) 2011-10-12 2013-04-18 University Of Pittsburg-Of The Commonwealth System Of Higher Education Small molecules targeting androgen receptor nuclear localization and/or level in prostate cancer
WO2013056547A1 (en) * 2011-10-22 2013-04-25 Chen Degui Synthesis of a group of hydantoin derivatives and use thereof
WO2013152342A1 (en) 2012-04-06 2013-10-10 OSI Pharmaceuticals, LLC Anti-cancer mtor inhibitor and anti-androgen combination
CN109897004A (en) 2012-09-11 2019-06-18 麦迪威森前列腺医疗有限责任公司 The miscellaneous Shandong amine preparation of grace
AU2013334102B2 (en) 2012-10-26 2018-08-16 Memorial Sloan-Kettering Cancer Center Modulators of resistant androgen receptor
CN104341396A (en) * 2013-08-08 2015-02-11 上海医药集团股份有限公司 Diaryl hydantoin derivative, as well as preparation method, medicine composition and application thereof
WO2015042170A1 (en) 2013-09-17 2015-03-26 Wayne State University Compositions and uses of combinations of dim-related indoles and selected anti-androgen compounds
JP6346944B2 (en) * 2013-09-19 2018-06-20 グラクソスミスクライン・リミテッド・ライアビリティ・カンパニーGlaxoSmithKline LLC Combination drug therapy
US20160257657A1 (en) 2013-09-20 2016-09-08 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Small molecule inhibitors of the nuclear translocation of androgen receptor for the treatment of castration-resistant prostate cancer
JP6564380B2 (en) 2013-09-20 2019-08-21 ユニバーシティ オブ ピッツバーグ − オブ ザ コモンウェルス システム オブ ハイヤー エデュケイション Compounds for treating prostate cancer
CN103601671B (en) * 2013-10-22 2016-08-17 上海泰坦科技股份有限公司 The preparation method of iodo trifluoro methyl pyridine
AU2015218140A1 (en) 2014-02-14 2016-09-01 The University Of British Columbia Human androgen receptor DNA-binding domain (DBD) compounds as therapeutics and methods for their use
CN104003939B (en) * 2014-06-06 2017-07-07 山东大学 Diaryl substitution thiohydantoin class compound and preparation method and application
WO2015196144A2 (en) 2014-06-20 2015-12-23 England Pamela M Androgen receptor antagonists
WO2016090101A1 (en) * 2014-12-05 2016-06-09 Aragon Pharmaceuticals, Inc. Anticancer compositions
MA41107A (en) * 2014-12-05 2017-10-10 Aragon Pharmaceuticals Inc ANTI-CANCER COMPOSITIONS
WO2016141458A1 (en) 2015-03-12 2016-09-15 British Columbia Cancer Agency Branch Bisphenol ether derivatives and methods for using the same
US10980806B2 (en) 2016-03-24 2021-04-20 University of Pittsburgh—of the Commonwealth System of Higher Education Small molecule inhibitors of the nuclear translocation of androgen receptor for the treatment of castration-resistant prostate cancer
US20170298033A1 (en) 2016-04-15 2017-10-19 The University Of British Columbia Bisphenol derivatives and their use as androgen receptor activity modulators
CN107954936B (en) * 2016-10-17 2021-03-19 海创药业股份有限公司 Method for preparing deuterated imidazoldione compound
US11149017B2 (en) 2016-12-13 2021-10-19 Watson Laboratories Inc. Solid state forms of apalutamide
KR102658095B1 (en) * 2017-08-07 2024-04-19 치아타이 티안큉 파마수티컬 그룹 주식회사 Diarylthiohydantoin compounds as androgen receptor antagonists
CN107987055A (en) * 2017-12-19 2018-05-04 刘秀云 Thiocarbamoyl imidazole diones androgen receptor antagonists and application thereof
CN109988077A (en) * 2017-12-29 2019-07-09 上海法默生物科技有限公司 A kind of synthetic method and intermediate of A Palu amine
WO2019135254A1 (en) 2018-01-02 2019-07-11 Mylan Laboratories Limited Apalutamide polymorphs and their preparation thereof
US10807965B2 (en) * 2018-03-28 2020-10-20 Cadila Healthcare Limited Process for preparation of apalutamide
US10934269B2 (en) * 2018-03-28 2021-03-02 Cadila Healthcare Limited Process for preparation of apalutamide
CN108314646B (en) * 2018-04-11 2021-03-19 武汉慧敏科技中心 Method for preparing drug intermediate for urogenital system from high-dispersion bimetal nano material
CN108311155B (en) * 2018-05-14 2020-11-06 上海奥萝拉医药科技有限公司 Method for catalytically preparing apalumide intermediate serving as medicine for treating prostate cancer
WO2019226991A1 (en) 2018-05-25 2019-11-28 Essa Pharma, Inc. Androgen receptor modulators and methods for their use
CA3104026A1 (en) 2018-06-20 2019-12-26 Crystal Pharmaceutical (Suzhou) Co., Ltd. Crystal form of arn-509, preparation method therefor and use thereof
CN108976171B (en) * 2018-08-27 2020-06-16 长沙泽达医药科技有限公司 Compounds, compositions and their use in the manufacture of medicaments
WO2020049598A2 (en) 2018-09-08 2020-03-12 Cipla Limited Apalutamide polymorphs
US11292782B2 (en) 2018-11-30 2022-04-05 Nuvation Bio Inc. Diarylhydantoin compounds and methods of use thereof
CN113365623A (en) 2019-01-30 2021-09-07 阿拉贡药品公司 Antiandrogen for treating metastatic castration sensitive prostate cancer
IT201900003839A1 (en) 2019-03-15 2020-09-15 Olon Spa STABLE AMORPHOUS APALUTAMIDE SYNTHESIS
AU2020248105A1 (en) * 2019-03-28 2021-11-11 Essa Pharma, Inc. Pharmaceutical compositions and combinations comprising inhibitors of the androgen receptor and uses thereof
WO2020198712A1 (en) 2019-03-28 2020-10-01 Essa Pharma, Inc. Pharmaceutical compositions and combinations comprising inhibitors of the androgen receptor and uses thereof
IT201900010593A1 (en) 2019-07-01 2021-01-01 Dipharma Francis Srl CRYSTALLINE FORM OF AN ANDROGEN RECEPTOR INHIBITOR
WO2021033098A1 (en) * 2019-08-22 2021-02-25 Dr. Reddy’S Laboratories Limited Process for the preparation of apalutamide
IT201900015974A1 (en) 2019-09-10 2021-03-10 Olon Spa STABLE CRYSTALLINE APALUTAMIDE IN PURE FORM AND PROCESS FOR ITS PREPARATION
AU2021255723A1 (en) 2020-04-17 2022-12-08 Essa Pharma, Inc. Solid forms of an N-terminal domain androgen receptor inhibitor and uses thereof
WO2024088395A1 (en) * 2022-10-28 2024-05-02 南京明德新药研发有限公司 Bridged-ring compound and pharmaceutical use thereof
WO2024102706A1 (en) * 2022-11-09 2024-05-16 Bristol-Myers Squibb Company Combination therapy with substituted 3-((3-aminophenyl)amino)piperidine-2,6-dione compounds
WO2024121163A1 (en) 2022-12-06 2024-06-13 Cancer Research Technology Limited Combination of 10d1f and an androgen inhibitor for treatment and prevention of cancers

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE550650A (en) 1955-08-30
US3823240A (en) * 1970-10-06 1974-07-09 Rhone Poulenc Sa Fungicidal hydantoin derivatives
GB1472467A (en) * 1974-04-19 1977-05-04 Wyeth John & Brother Ltd Thiohydantoins
FR2329276A1 (en) 1975-10-29 1977-05-27 Roussel Uclaf NEW SUBSTITUTES IMIDAZOLIDINES, METHOD OF PREPARATION, APPLICATION AS A MEDICINAL PRODUCT AND COMPOSITIONS CONTAINING THEM
DE2614831A1 (en) 1976-04-06 1977-10-20 Bayer Ag 1,3,4-THIADIAZOLYL DERIVATIVES, PROCESS FOR THEIR PRODUCTION AND USE AS HERBICIDES
MC1220A1 (en) * 1977-10-28 1979-07-20 Hoffmann La Roche NEW DERIVATIVES OF IMIDAZOLIDINE
IL55774A (en) * 1977-10-28 1982-04-30 Sparamedica Ag Pharmaceutical compositions containing urea derivatives,certain such novel derivatives and their manufacture
DK543178A (en) 1977-12-01 1979-06-02 Wellcome Found THIODYDANTOIN DERIVATIVES
EP0004723A1 (en) * 1978-03-30 1979-10-17 Beecham Group Plc Deoxyhydantoins, processes for their preparation and pharmaceutical compositions containing them
FR2449448B1 (en) * 1979-02-20 1983-05-27 Inst Nat Radio Elements PHARMACEUTICAL COMPOSITION COMPRISING A PHENYLHYDANTOIN DERIVATIVE, DERIVATIVES IMPLEMENTED AND THEIR PREPARATION
FI801184A (en) 1979-04-24 1980-10-25 Hoffmann La Roche FOERFARANDE FOER FRAMSTAELLNING AV IMIDAZOLIDINDERIVAT
US4399216A (en) * 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
EP0070613A3 (en) * 1981-05-08 1984-05-09 Ace Coin Equipment Limited Video gaming or amusement machine
JPS57197268A (en) * 1981-05-29 1982-12-03 Sumitomo Chem Co Ltd Substituted phenylhydantoin derivative, its preparation, and herbicide containing the same as active ingredient
DE3382406D1 (en) * 1982-04-08 1991-10-17 Shell Int Research NEW HYDANTOINE, THEIR PRODUCTION AND USE.
US4473393A (en) * 1982-08-06 1984-09-25 Buffalo Color Corporation Pesticidal thiohydantoin compositions
US4559157A (en) 1983-04-21 1985-12-17 Creative Products Resource Associates, Ltd. Cosmetic applicator useful for skin moisturizing
JPS59210083A (en) * 1983-05-13 1984-11-28 Otsuka Chem Co Ltd 1,3,4-thiadiazol-5-one derivative, its preparation, and herbicide containing said derivative as active component
LU84979A1 (en) 1983-08-30 1985-04-24 Oreal COSMETIC OR PHARMACEUTICAL COMPOSITION IN AQUEOUS OR ANHYDROUS FORM WHOSE FATTY PHASE CONTAINS OLIGOMER POLYETHER AND NEW OLIGOMER POLYETHERS
JPS6092285A (en) * 1983-10-26 1985-05-23 Shionogi & Co Ltd Isoxazole-type cyclic urea compound
JPS60239737A (en) * 1984-05-14 1985-11-28 Konishiroku Photo Ind Co Ltd Silver halide photosensitive material
DE3604042A1 (en) * 1986-02-08 1987-08-13 Hoechst Ag IMIDAZOLIDIN (THI) ON DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE IN PLANT PROTECTION
US5071773A (en) * 1986-10-24 1991-12-10 The Salk Institute For Biological Studies Hormone receptor-related bioassays
US4820508A (en) 1987-06-23 1989-04-11 Neutrogena Corporation Skin protective composition
JPS649978A (en) * 1987-07-02 1989-01-13 Shionogi & Co Perfluoroalkylisoxazole derivative
US4859228A (en) * 1987-07-16 1989-08-22 Ici Americas Inc Novel 5-aminomethylene-2,4-imidazolidinediones and 5-aminomethylene-2-thionoimidazolidine-4-ones
US5010182A (en) * 1987-07-28 1991-04-23 Chiron Corporation DNA constructs containing a Kluyveromyces alpha factor leader sequence for directing secretion of heterologous polypeptides
FR2619381B1 (en) * 1987-08-13 1989-12-08 Roussel Uclaf NOVEL IMIDAZOLIDINES SUBSTITUTED BY A RADICAL HYDROXYMETHYL AND A RADICAL PHENYL SUBSTITUTED, THEIR PREPARATION METHOD, THEIR APPLICATION AS MEDICAMENTS, THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM AND AN INTERMEDIATE FOR THEIR PREPARATION
CA1331757C (en) 1988-02-29 1994-08-30 Janssen Pharmaceutica Naamloze Vennootschap 5-lipoxygenase inhibiting 4-(4-phenyl-1-piperazinyl)phenols
US5614620A (en) * 1988-03-30 1997-03-25 Arch Development Corporation DNA binding proteins including androgen receptor
US4992478A (en) 1988-04-04 1991-02-12 Warner-Lambert Company Antiinflammatory skin moisturizing composition and method of preparing same
US6307030B1 (en) * 1988-04-15 2001-10-23 The University Of North Carolina At Chapel Hill Androgen receptor proteins, recombinant DNA molecules coding for such, and use of such compositions
JPH0219363A (en) 1988-07-06 1990-01-23 Fujisawa Pharmaceut Co Ltd Imidazolidine derivative
AU4005289A (en) 1988-08-25 1990-03-01 Smithkline Beecham Corporation Recombinant saccharomyces
US4938949A (en) 1988-09-12 1990-07-03 University Of New York Treatment of damaged bone marrow and dosage units therefor
DE3835168A1 (en) * 1988-10-15 1990-04-19 Bayer Ag N-ARYL NITROGEN HETEROCYCLES, MULTIPLE METHODS FOR THE PRODUCTION THEREOF AND THEIR USE AS HERBICIDES
FR2646437B1 (en) 1989-04-28 1991-08-30 Transgene Sa NOVEL DNA SEQUENCES, THEIR APPLICATION AS A SEQUENCE ENCODING A SIGNAL PEPTIDE FOR THE SECRETION OF MATURE PROTEINS BY RECOMBINANT YEASTS, EXPRESSION CASSETTES, PROCESSED YEASTS AND PROCESS FOR PREPARING THE SAME
FR2656302B1 (en) * 1989-12-22 1992-05-07 Roussel Uclaf NEW PROCESS FOR THE PREPARATION OF ANANDRON AND ANANDRON DERIVATIVES.
USRE35956E (en) * 1991-01-09 1998-11-10 Roussel Uclaf Phenylimidazolidines having antiandrogenic activity
FR2693461B1 (en) 1992-07-08 1994-09-02 Roussel Uclaf New substituted phenylimidazolidines, process for their preparation, their use as medicaments and the pharmaceutical compositions containing them.
US5411981A (en) * 1991-01-09 1995-05-02 Roussel Uclaf Phenylimidazolidines having antiandrogenic activity
FR2671348B1 (en) 1991-01-09 1993-03-26 Roussel Uclaf NOVEL PHENYLIMIDAZOLIDINES, THEIR PREPARATION PROCESS, THEIR APPLICATION AS MEDICAMENTS AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM.
JP2845384B2 (en) 1991-11-14 1999-01-13 キヤノン株式会社 Image processing device
US5346913A (en) 1992-05-26 1994-09-13 Rohm And Haas Company N-iodopropargyl hydantoin compounds, compositions, preparation, and use as antimicrobial agents
FR2694290B1 (en) * 1992-07-08 1994-09-02 Roussel Uclaf New phenylimidazolidines which may be substituted, their preparation process, their use as medicaments and the pharmaceutical compositions containing them.
FR2715402B1 (en) 1994-01-05 1996-10-04 Roussel Uclaf New phenylimidazolines optionally substituted, their process and preparation intermediates, their use as medicaments and the pharmaceutical compositions containing them.
TW521073B (en) * 1994-01-05 2003-02-21 Hoechst Marion Roussel Inc New optionally substituted phenylimidazolidines, their preparation process, their use as anti-androgenic agent and the pharmaceutical compositions containing them
EP0748220A4 (en) * 1994-01-21 1997-09-10 Sepracor Inc Methods and compositions for treating androgen-dependent diseases using optically pure r-(-)-casodex
JPH089997A (en) 1994-06-28 1996-01-16 Shimadzu Corp Method for synthesizing nucleic acid and reagent kit used therefor
EP0721944B1 (en) 1994-07-29 2001-01-17 Suntory Limited Imidazolidine derivative and use thereof
FR2725206B1 (en) * 1994-09-29 1996-12-06 Roussel Uclaf NOVEL HETEROCYCLE SUBSTITUTED IMIDAZOLIDINES, THEIR PROCESS AND PREPARATION INTERMEDIATES, THEIR APPLICATION AS MEDICAMENTS AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
US5656651A (en) 1995-06-16 1997-08-12 Biophysica Inc. Androgenic directed compositions
DE19540027A1 (en) * 1995-10-27 1997-04-30 Gruenenthal Gmbh Substituted imidazolidine-2,4-dione compounds as active pharmaceutical ingredients
FR2741346B1 (en) * 1995-11-16 1997-12-19 Roussel Uclaf NEW PROCESS FOR THE PREPARATION OF PHENYLIMIDAZOLIDINE DERIVATIVES
FR2741342B1 (en) * 1995-11-22 1998-02-06 Roussel Uclaf NOVEL FLUORINATED OR HYDROXYLATED PHENYLIMIDAZOLIDINES, METHOD, PREPARATION MEDIA, APPLICATION AS MEDICAMENTS, NEW USE AND PHARMACEUTICAL COMPOSITIONS
TW418195B (en) * 1995-11-28 2001-01-11 American Home Prod 2-thioxo-imidazolidin-4-one derivatives
JP2000514401A (en) 1995-11-28 2000-10-31 アメリカン・ホーム・プロダクツ・コーポレイション 2- (Substituted sulfanyl) -3,5-dihydro-imidazol-4-one derivatives
US5554607A (en) * 1995-11-28 1996-09-10 American Home Products Corporation Use of 2-thioxo-imidazolin-4-one derivatives in the treatment of atherosclerosis
FR2742749B1 (en) * 1995-12-22 1998-02-06 Roussel Uclaf NOVEL PHENYLIMIDAZOLIDINES INCLUDING IN PARTICULAR A NITROOXY OR CARBONYLOXY RADICAL, PROCESS AND INTERMEDIATES FOR PREPARATION, APPLICATION AS MEDICAMENTS, NEW USES AND PHARMACEUTICAL COMPOSITIONS
US6489163B1 (en) * 1996-05-08 2002-12-03 Board Of Regents, The University Of Texas System Ribozyme mediated inactivation of the androgen receptor
JP3697320B2 (en) 1996-06-20 2005-09-21 株式会社日立製作所 Optical fiber sensor
US5726061A (en) * 1996-10-08 1998-03-10 Smithkline Beechum Corporation Method of diagnosing and monitoring colorectal cancer
US7053263B2 (en) * 1996-10-15 2006-05-30 The Regents Of The University Of California Mouse models of human prostate cancer progression
US6506607B1 (en) * 1997-12-24 2003-01-14 Millennium Pharmaceuticals, Inc. Methods and compositions for the identification and assessment of prostate cancer therapies and the diagnosis of prostate cancer
EP1087770A4 (en) * 1998-06-15 2001-11-14 Merck & Co Inc Inhibitors of prenyl-protein transferase
AU754529B2 (en) 1998-09-22 2002-11-21 Yamanouchi Pharmaceutical Co., Ltd. Cyanophenyl derivatives
ATE240944T1 (en) * 1998-09-22 2003-06-15 Degussa METHOD FOR PRODUCING IMIDAZOLIDINE-2,4-DIONE
WO2000026195A1 (en) * 1998-10-30 2000-05-11 G.D. Searle & Co. Novel amino acid heterocyclic amide derivatives useful as nitric oxide synthase inhibitors
US6472415B1 (en) * 1998-12-18 2002-10-29 Biophysica, Inc. Androgen receptor suppressors in the therapy and diagnosis of prostate cancer, alopecia and other hyper-androgenic syndromes
AU2847200A (en) * 1999-01-27 2000-08-18 G.D. Searle & Co. Novel hydroxyamidino carboxylate derivatives useful as nitric oxide synthase inhibitors
WO2001007048A1 (en) * 1999-07-21 2001-02-01 Boehringer Ingelheim Pharmaceuticals, Inc. Small molecules useful in the treatment of inflammatory disease
US6479063B2 (en) * 1999-12-27 2002-11-12 Kenneth Weisman Therapeutic uses of hormonal manipulation using combinations of various agents to treat atherosclerosis
KR100527290B1 (en) * 2000-05-31 2005-11-09 다나베 세이야꾸 가부시키가이샤 INHIBITORS OF αLβ2 MEDIATED CELL ADHESION
US6482829B2 (en) * 2000-06-08 2002-11-19 Hoffmann-La Roche Inc. Substituted heterocyclic siprodecane compound active as an antagonist of neurokinin 1 receptor
WO2002053155A1 (en) 2000-12-30 2002-07-11 Geron Corporation Telomerase inhibitor
FR2823209B1 (en) * 2001-04-04 2003-12-12 Fournier Lab Sa NOVEL THIOHYDANTOINS AND THEIR USE IN THERAPEUTICS
ATE447565T1 (en) 2001-10-01 2009-11-15 Bristol Myers Squibb Co SPIRO-HYDANTOIN COMPOUNDS SUITABLE AS ANTI-INFLAMMATORY AGENTS
EP1453516A2 (en) * 2001-10-17 2004-09-08 Boehringer Ingelheim Pharma GmbH & Co.KG Novel tri-substituted pyrimidines, method for production and use thereof as medicament
US6861432B2 (en) 2001-11-23 2005-03-01 Schering Aktiengesellschaft Piperazine derivatives that destabilize androgen receptors
GB0200283D0 (en) 2002-01-08 2002-02-20 Smithkline Beecham Plc Compounds
DE10218963A1 (en) 2002-04-27 2003-11-20 Aventis Pharma Gmbh Preparations for the topical application of antiandrogen active substances
TW200407324A (en) * 2002-05-17 2004-05-16 Bristol Myers Squibb Co Bicyclic modulators of androgen receptor function
EP1576131A4 (en) * 2002-08-15 2008-08-13 Genzyme Corp Brain endothelial cell expression patterns
AU2002951247A0 (en) * 2002-09-06 2002-09-19 Alchemia Limited Compounds that interact with kinases
FR2845384B1 (en) 2002-10-04 2004-12-31 Fournier Lab Sa COMPOUNDS DERIVED FROM 2-THIOHYDANTOIN AND THEIR USE IN THERAPEUTICS
FR2845385B1 (en) 2002-10-04 2004-12-31 Fournier Lab Sa COMPOUNDS DERIVED FROM 2-THIOHYDANTOIN AND THEIR USE IN THERAPEUTICS
CA2500662A1 (en) * 2002-10-03 2004-04-15 Cypress Bioscience, Inc. Dosage escalation and divided daily dose of anti-depressants to treat neurological disorders
CA2500977A1 (en) * 2002-10-04 2004-04-15 Laboratoires Fournier S.A. 2-thiohydantoine derivative compounds and use thereof in therapeutics
UA79504C2 (en) 2002-11-07 2007-06-25 Organon Nv Indols for treating diseases associated with androgen receptors
FR2850652B1 (en) * 2003-01-31 2008-05-30 Aventis Pharma Sa NOVEL CYCLIC UREA DERIVATIVES, THEIR PREPARATION AND THEIR PHARMACEUTICAL USE AS INHIBITORS OF KINASES
WO2004111012A1 (en) * 2003-06-12 2004-12-23 Chugai Seiyaku Kabushiki Kaisha Imidazolidine derivative
RU2337908C2 (en) * 2003-06-12 2008-11-10 Ново Нордиск А/С Pyridinyl carbamates as hormone-sensitive lipase inhibitors
TW200523252A (en) * 2003-10-31 2005-07-16 Takeda Pharmaceutical Pyridine compounds
US7256208B2 (en) * 2003-11-13 2007-08-14 Bristol-Myers Squibb Company Monocyclic N-Aryl hydantoin modulators of androgen receptor function
WO2005059109A2 (en) 2003-12-15 2005-06-30 The Regents Of The University Of California Molecular signature of the pten tumor suppressor
ATE502298T1 (en) 2003-12-19 2011-04-15 Univ California METHODS AND MATERIALS FOR ASSESSING PROSTATE CANCER THERAPIES
US7718684B2 (en) 2004-02-24 2010-05-18 The Regents Of The University Of California Methods and materials for assessing prostate cancer therapies and compounds
JP2007529533A (en) * 2004-03-15 2007-10-25 ピーティーシー セラピューティクス,インコーポレーテッド Tetracyclic carboline derivatives useful for inhibiting angiogenesis
ES2293178T3 (en) * 2004-03-18 2008-03-16 Institut Pasteur RECOMBINATING PROTEIN CONTAINING HUMAN PAPILOMAVIRUS EPITHOPES INSERTED IN A CYCLASS ADENYLATE PROTEIN OR A FRAGMENT OF THE SAME AND THERAPEUTIC USES OF THE SAME.
EP1621539A1 (en) * 2004-07-27 2006-02-01 Aventis Pharma S.A. Heterocycle -substituted cyclic urea derivatives, preparation thereof and pharmaceutical use thereof as kinase inhibitors
EP1621536A1 (en) 2004-07-27 2006-02-01 Aventis Pharma S.A. Amino cyclic urea derivatives, preparation thereof and pharmaceutical use thereof as kinase inhibitors
JP4912148B2 (en) * 2004-08-03 2012-04-11 中外製薬株式会社 New imidazolidine derivatives
CA2579886A1 (en) 2004-09-09 2006-03-16 Chugai Seiyaku Kabushiki Kaisha Novel imidazolidine derivative and use thereof
NZ564223A (en) * 2005-05-13 2011-03-31 Univ California Diarylhydantoin compounds for treating hormone refractory prostate cancer
US7709517B2 (en) 2005-05-13 2010-05-04 The Regents Of The University Of California Diarylhydantoin compounds
GB0521373D0 (en) 2005-10-20 2005-11-30 Kudos Pharm Ltd Pthalazinone derivatives
CN101032483B (en) * 2006-03-09 2011-05-04 陈德桂 Hydantoin derivative for adjusting estrogen receptor activity and application thereof
ES2593379T3 (en) 2006-03-27 2016-12-09 The Regents Of The University Of California Androgen receptor modulator for the treatment of prostate cancer and diseases associated with the androgen receptor
JP5350217B2 (en) 2006-03-29 2013-11-27 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Diarylthiohydantoin compounds
WO2008119015A2 (en) 2007-03-27 2008-10-02 Sloan-Kettering Institute For Cancer Research Synthesis of thiohydantoins

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034548B2 (en) 2003-12-19 2011-10-11 The Regents Of The University Of California Methods and materials for assessing prostate cancer therapies
US7718684B2 (en) 2004-02-24 2010-05-18 The Regents Of The University Of California Methods and materials for assessing prostate cancer therapies and compounds
US7709517B2 (en) 2005-05-13 2010-05-04 The Regents Of The University Of California Diarylhydantoin compounds
US9126941B2 (en) 2005-05-13 2015-09-08 The Regents Of The University Of California Treatment of hyperproliferative disorders with diarylhydantoin compounds
US8183274B2 (en) 2005-05-13 2012-05-22 The Regents Of The University Of California Treatment of hyperproliferative disorders with diarylhydantoin compounds
US11771687B2 (en) 2006-03-27 2023-10-03 The Regents Of The University Of California Substituted diazaspiroalkanes as androgen receptor modulators
US9388159B2 (en) 2006-03-27 2016-07-12 The Regents Of The University Of California Substituted diazaspiroalkanes as androgen receptor modulators
US9987261B2 (en) 2006-03-27 2018-06-05 The Regents Of The University Of California Substituted diazaspiroalkanes as androgen receptor modulators
US8802689B2 (en) 2006-03-27 2014-08-12 The Regents Of The University Of California Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
US10857139B2 (en) 2006-03-27 2020-12-08 The Regents Of The University Of California Substituted diazaspiroalkanes as androgen receptor modulators
US8648105B2 (en) 2006-03-29 2014-02-11 The Regents Of The University Of California Diarylthiohydantoin compounds
US9926291B2 (en) 2007-03-27 2018-03-27 Sloan-Kettering Institute For Cancer Research Synthesis of thiohydantoins
US8987452B2 (en) 2007-03-27 2015-03-24 Sloan-Kettering Institute For Cancer Research Synthesis of thiohydantoins
US8461343B2 (en) 2007-03-27 2013-06-11 Sloan-Kettering Institute For Cancer Research Synthesis of thiohydantoins
WO2008119015A3 (en) * 2007-03-27 2009-09-17 Sloan-Kettering Institute For Cancer Research Synthesis of thiohydantoins
WO2008119015A2 (en) * 2007-03-27 2008-10-02 Sloan-Kettering Institute For Cancer Research Synthesis of thiohydantoins
US9512103B2 (en) 2007-03-27 2016-12-06 Sloan-Kettering Institute For Cancer Research Synthesis of thiohydantoins
US9896437B2 (en) 2007-10-26 2018-02-20 The Regents Of The University Of California Diarylhydantoin compounds
CN102428073B (en) * 2009-04-17 2015-09-30 益普生制药股份有限公司 Imidazolidine-2,4-dione derivative and the purposes as cancer drug thereof
CN102428073A (en) * 2009-04-17 2012-04-25 益普生制药股份有限公司 Imidazolidine-2,4-dione derivatives, and use thereof as a cancer drug
US10632118B2 (en) 2009-12-11 2020-04-28 Autifony Therapeutics Limited Imidazolidinedione derivatives
US10058551B2 (en) 2009-12-11 2018-08-28 Autifony Therapeutics Limited Imidazolidinedione derivatives
US9849131B2 (en) 2009-12-11 2017-12-26 Autifony Therapeutics Limited Imidazolidinedione derivatives
US8722695B2 (en) 2009-12-11 2014-05-13 Autifony Therapeutics Limited Imidazolidinedione derivatives
US9216967B2 (en) 2009-12-11 2015-12-22 Autifony Therapeutics Limited Imidazolidinedione derivatives
EP2520569A4 (en) * 2009-12-25 2013-06-05 Ishihara Sangyo Kaisha Processes for producing 2-chloro-3-trifluoromethylpyridine
EP2520569A1 (en) * 2009-12-25 2012-11-07 Ishihara Sangyo Kaisha, Ltd. Processes for producing 2-chloro-3-trifluoromethylpyridine
US8691997B2 (en) 2009-12-25 2014-04-08 Ishihara Sangyo Kaisha, Ltd Processes for producing 2-chloro-3-trifluoromethylpyridine
US20120259125A1 (en) * 2009-12-25 2012-10-11 Ishihara Sangyo Kaisha, Ltd. Processes for producing 2-chloro-3-trifluoromethylpyridine
AU2018200071B2 (en) * 2010-02-16 2019-01-31 Aragon Pharmaceuticals, Inc. Androgen receptor modulators and uses thereof
AU2011218173B2 (en) * 2010-02-16 2014-10-02 Aragon Pharmaceuticals, Inc. Androgen receptor modulators and uses thereof
KR101972719B1 (en) 2010-02-16 2019-04-25 아라곤 파마슈티컬스, 인코포레이티드 Androgen receptor modulators and uses thereof
EP3124481A1 (en) * 2010-02-16 2017-02-01 Aragon Pharmaceuticals, Inc. Androgen receptor modulators and uses thereof
EP3357917A1 (en) * 2010-02-16 2018-08-08 Aragon Pharmaceuticals, Inc. Androgen receptor modulators and uses thereof
US10023556B2 (en) 2010-02-16 2018-07-17 Aragon Pharmaceuticals, Inc. Androgen receptor modulators and uses thereof
AU2011218173C1 (en) * 2010-02-16 2015-04-16 Aragon Pharmaceuticals, Inc. Androgen receptor modulators and uses thereof
AU2014271290B2 (en) * 2010-02-16 2016-04-28 Aragon Pharmaceuticals, Inc. Androgen receptor modulators and uses thereof
US9481664B2 (en) 2010-02-16 2016-11-01 Aragon Pharmaceuticals, Inc. Androgen receptor modulators and uses thereof
WO2011103202A3 (en) * 2010-02-16 2012-01-12 Aragon Pharmaceuticals, Inc. Androgen receptor modulators and uses thereof
EP2824102A1 (en) * 2010-02-16 2015-01-14 Aragon Pharmaceuticals, Inc. Androgen receptor modulators and uses thereof
AU2014271290C1 (en) * 2010-02-16 2016-10-27 Aragon Pharmaceuticals, Inc. Androgen receptor modulators and uses thereof
CN106983749A (en) * 2010-02-16 2017-07-28 亚拉冈制药公司 Androgen receptor modifier and application thereof
CN102884057A (en) * 2010-02-16 2013-01-16 亚拉冈制药公司 Androgen receptor modulators and uses thereof
KR20180006502A (en) * 2010-02-16 2018-01-17 아라곤 파마슈티컬스, 인코포레이티드 Androgen receptor modulators and uses thereof
KR101819199B1 (en) 2010-02-16 2018-01-16 아라곤 파마슈티컬스, 인코포레이티드 Androgen receptor modulators and uses thereof
CN103724322A (en) * 2010-02-16 2014-04-16 亚拉冈制药公司 Androgen receptor modulators and uses thereof
AU2016208310B2 (en) * 2010-02-16 2017-10-05 Aragon Pharmaceuticals, Inc. Androgen receptor modulators and uses thereof
EA023981B1 (en) * 2010-02-16 2016-08-31 Арагон Фармасьютикалс, Инк. Androgen receptor modulators and uses thereof
EP2538785A1 (en) 2010-02-24 2013-01-02 Medivation Prostate Therapeutics, Inc. Processes for the synthesis of diarylthiohydantoin and diarylhydantoin compounds
EP2538785B1 (en) * 2010-02-24 2018-03-21 Medivation Prostate Therapeutics LLC Processes for the synthesis of diarylthiohydantoin and diarylhydantoin compounds
EP3329775A1 (en) * 2010-02-24 2018-06-06 Medivation Prostate Therapeutics LLC Processes for the synthesis of diarylthiohydantoin and diarylhydantoin compounds
US9174943B2 (en) 2010-02-24 2015-11-03 Medivation Prostate Therapeutics, Inc. Processes for the synthesis of diarylthiohydantoin and diarylhydantoin compounds
US10835534B2 (en) 2010-12-06 2020-11-17 Autifony Therapeutics Limited Compounds
US10098881B2 (en) 2010-12-06 2018-10-16 Autifony Therapeutics Limited Compounds
US10555945B2 (en) 2010-12-06 2020-02-11 Autifony Therapeutics Limited Compounds
US9133175B2 (en) 2010-12-06 2015-09-15 Autifony Therapeutics Limited Compounds
US11583527B2 (en) 2010-12-06 2023-02-21 Autifony Therapeutics Limited Hydantoin derivatives useful as Kv3 inhibitors
US11541052B2 (en) 2010-12-06 2023-01-03 Autifony Therapeutics Limited Compounds
US11197859B2 (en) 2010-12-06 2021-12-14 Autifony Therapeutics Limited Hydantoin derivatives useful as Kv3 inhibitors
US9346790B2 (en) 2010-12-06 2016-05-24 Autifony Therapeutics Limited Hydantoin derivatives useful as Kv3 inhibitors
US10265316B2 (en) 2010-12-06 2019-04-23 Autifony Therapeuctics Limited Hydantoin derivatives useful as Kv3 inhibitors
US9422272B2 (en) 2010-12-06 2016-08-23 Autifony Therapeutics Limited Compounds
US9833452B2 (en) 2010-12-06 2017-12-05 Autifony Therapeutics Limited Compounds
US9193704B2 (en) 2011-06-07 2015-11-24 Autifony Therapeutics Limited Hydantoin derivatives as KV3 inhibitors
EP3430907A1 (en) * 2011-07-29 2019-01-23 Medivation Prostate Therapeutics LLC Treatment of breast cancer
EP3791724A1 (en) * 2011-07-29 2021-03-17 Medivation Prostate Therapeutics LLC Treatment of breast cancer
EP3610731A1 (en) * 2011-07-29 2020-02-19 Medivation Prostate Therapeutics LLC Treatment of breast cancer
CN104024228A (en) * 2011-12-14 2014-09-03 成都海创药业有限公司 Imidazolidinedione compounds and their uses
US9346764B2 (en) 2011-12-14 2016-05-24 Hinova Pharmaceuticals Inc. Imidazolidinedione compounds and their uses
CN104024228B (en) * 2011-12-14 2015-07-08 成都海创药业有限公司 Imidazolidinedione compounds and their uses
WO2013087004A1 (en) * 2011-12-14 2013-06-20 Chen Yuanwei Imidazolidinedione compounds and their uses
WO2013128421A1 (en) 2012-03-02 2013-09-06 Novartis Ag Spirohydantoin compounds and their use as selective androgen receptor modulators
US10611735B2 (en) 2012-05-22 2020-04-07 Autifony Therapeutics Limited Triazoles as Kv3 inhibitors
US9422252B2 (en) 2012-05-22 2016-08-23 Autifony Therapeutics Limited Triazoles as Kv3 inhibitors
US10160730B2 (en) 2012-05-22 2018-12-25 Autifony Therapeutics Limited Triazoles as KV3 inhibitors
US11180461B2 (en) 2012-05-22 2021-11-23 Autifony Therapeutics Limited Triazoles as Kv3 inhibitors
US9669030B2 (en) 2012-05-22 2017-06-06 Autifony Therapeutics Limited Hydantoin derivatives as Kv3 inhibitors
EP3348553A1 (en) * 2012-06-07 2018-07-18 Aragon Pharmaceuticals, Inc. Crystalline forms of an androgen receptor modulator
WO2013184681A1 (en) 2012-06-07 2013-12-12 Aragon Pharmaceuticals, Inc. Crystalline forms of an androgen receptor modulator
US9994545B2 (en) 2012-06-07 2018-06-12 Aragon Pharmaceuticals, Inc. Crystalline forms of an androgen receptor modulator
US12018008B2 (en) 2012-06-07 2024-06-25 Aragon Pharmaceuticals, Inc. Crystalline forms of an androgen receptor modulator
US9481663B2 (en) 2012-06-07 2016-11-01 Aragon Pharmaceuticals, Inc. Crystalline forms of an androgen receptor modulator
EP2858985A4 (en) * 2012-06-07 2016-05-25 Aragon Pharmaceuticals Inc Crystalline forms of an androgen receptor modulator
US10556882B2 (en) 2012-06-07 2020-02-11 Aragon Pharmaceuticals, Inc. Crystalline forms of an androgen receptor modulator
EP3348553B1 (en) 2012-06-07 2020-07-08 Aragon Pharmaceuticals, Inc. Crystalline forms of an androgen receptor modulator
US10526310B2 (en) 2012-06-07 2020-01-07 Aragon Pharmaceuticals Inc. Crystalline forms of an androgen receptor modulator
US10766875B2 (en) 2012-06-07 2020-09-08 Aragon Pharmaceuticals, Inc. Crystalline forms of an androgen receptor modulator
EP3533792A1 (en) * 2012-06-07 2019-09-04 Aragon Pharmaceuticals, Inc. Crystalline forms of an androgen receptor modulator
US10308630B2 (en) 2012-06-07 2019-06-04 Sloan-Kettering Institute For Cancer Research Crystalline forms of an androgen receptor modulator
EP2858985B1 (en) 2012-06-07 2018-04-18 Aragon Pharmaceuticals, Inc. Crystalline forms of an androgen receptor modulator
US10934271B2 (en) 2012-06-07 2021-03-02 Aragon Pharmaceuticals, Inc. Crystalline forms of an androgen receptor modulator
EP3922629A1 (en) * 2012-06-07 2021-12-15 Aragon Pharmaceuticals, Inc. Crystalline forms of an androgen receptor modulator
EP3533792B1 (en) 2012-06-07 2021-05-05 Aragon Pharmaceuticals, Inc. Crystalline forms of an androgen receptor modulator
USRE49353E1 (en) 2012-09-26 2023-01-03 Aragon Pharmaceuticals, Inc. Anti-androgens for the treatment of non-metastatic castrate-resistant prostate cancer
US10052314B2 (en) 2012-09-26 2018-08-21 Aragon Pharmaceuticals, Inc. Anti-androgens for the treatment of non-metastatic castrate-resistant prostate cancer
US10849888B2 (en) 2012-09-26 2020-12-01 Aragon Pharmaceuticals, Inc. Anti-androgens for the treatment of non-metastatic castrate-resistant prostate cancer
US9884054B2 (en) 2012-09-26 2018-02-06 Aragon Pharmaceuticals, Inc. Anti-androgens for the treatment of non-metastatic castrate-resistant prostate cancer
US10799488B2 (en) 2012-09-26 2020-10-13 Aragon Pharmaceuticals, Inc. Anti-androgens for the treatment of non-metastatic castrate-resistant prostate cancer
US10799489B2 (en) 2012-09-26 2020-10-13 Aragon Pharmaceuticals, Inc. Anti-androgens for the treatment of non-metastatic castrate-resistant prostate cancer
US9175291B2 (en) 2012-10-11 2015-11-03 Isis Pharmaceuticals Inc. Modulation of androgen receptor expression
US9340524B2 (en) 2013-01-15 2016-05-17 Aragon Pharmaceuticals, Inc. Androgen receptor modulator and uses thereof
AU2014273618B2 (en) * 2013-05-29 2016-10-13 Hinova Pharmaceuticals Inc. Imidazole diketone compound and use thereof
US9708289B2 (en) 2013-05-29 2017-07-18 Hinova Pharmaceuticals Inc. Imidazole diketone compound and use thereof
US9975880B2 (en) 2013-12-31 2018-05-22 Ipsen Pharma S.A.S. Imidazolidine-2,4-dione dervatives
WO2015100617A1 (en) * 2013-12-31 2015-07-09 Beaufour-Ipsen (Tianjin) Pharmaceutical Co., Ltd. Novel imidazolidine-2,4-dione derivatives
US10285948B2 (en) 2014-12-05 2019-05-14 Janssen Pharmaceutica Nv Anticancer compositions
US11911511B2 (en) 2014-12-05 2024-02-27 Aragon Pharmaceuticals, Inc. Anticancer compositions
US11224575B2 (en) 2014-12-05 2022-01-18 Aragon Pharmaceuticals, Inc. Anticancer compositions
US11186876B2 (en) 2014-12-12 2021-11-30 Medivation Prostate Therapeutics Llc Method for predicting response to breast cancer therapeutic agents and method of treatment of breast cancer
US11952634B2 (en) 2014-12-12 2024-04-09 Medivation Prostate Therapeutics Llc Method for predicting response to breast cancer therapeutic agents and method of treatment of breast cancer
US10316015B2 (en) 2014-12-19 2019-06-11 Aragon Pharmaceuticals, Inc. Processes for the preparation of a diarylthiohydantoin compound
EP3372584A1 (en) * 2014-12-19 2018-09-12 Aragon Pharmaceuticals, Inc. Process for the preparation of a diarylthiohydantoin compound
WO2016100645A1 (en) * 2014-12-19 2016-06-23 Aragon Pharmaceuticals, Inc. Processes for the preparation of a diarylthiohydantoin compound
TWI690520B (en) * 2014-12-19 2020-04-11 美商艾瑞岡醫藥公司 Processes for the preparation of a diarylthiohydantoin compound
CN107108507B (en) * 2014-12-19 2024-05-28 阿拉贡药品公司 Process for preparing diaryl thiohydantoin compounds
EP3372586A1 (en) * 2014-12-19 2018-09-12 Aragon Pharmaceuticals, Inc. Process for the preparation of a diarylthiohydantoin compound
KR102586087B1 (en) 2014-12-19 2023-10-05 아라곤 파마슈티컬스, 인코포레이티드 Processes for the preparation of a diarylthiohydantoin compound
KR102586059B1 (en) 2014-12-19 2023-10-05 아라곤 파마슈티컬스, 인코포레이티드 Process for the preparation of a diarylthiohydantoin compound
TWI683810B (en) * 2014-12-19 2020-02-01 美商艾瑞岡醫藥公司 Process for the preparation of a diarylthiohydantoin compound
US10723714B2 (en) 2014-12-19 2020-07-28 Aragon Pharmaceuticals, Inc. Processes for the preparation of a diarylthiohydantoin compound
TWI703132B (en) * 2014-12-19 2020-09-01 美商艾瑞岡醫藥公司 Process for the preparation of a diarylthiohydantoin compound
US9688655B2 (en) 2014-12-19 2017-06-27 Janssen Pharmaceutica Nv Process for the preparation of a diarylthiohydantoin compound
TWI689494B (en) * 2014-12-19 2020-04-01 美商艾瑞岡醫藥公司 Process for the preparation of a diarylthiohydantoin compound
EP3372585A1 (en) * 2014-12-19 2018-09-12 Aragon Pharmaceuticals, Inc. Process for the preparation of a diarylthiohydantoin compound
TWI768716B (en) * 2014-12-19 2022-06-21 美商艾瑞岡醫藥公司 Diarylthiohydantoin compound, intermediates thereof, and processes for preparing the same
TWI753336B (en) * 2014-12-19 2022-01-21 美商艾瑞岡醫藥公司 Process for the preparation of a diarylthiohydantoin compound
EA029666B1 (en) * 2014-12-19 2018-04-30 Арагон Фармасьютикалз, Инк. Processes for the preparation of a diarylthiohydantoin compound
WO2016100652A3 (en) * 2014-12-19 2016-08-25 Aragon Pharmaceuticals, Inc. Process for the preparation of a diarylthiohydantoin compound
KR20170095976A (en) * 2014-12-19 2017-08-23 아라곤 파마슈티컬스, 인코포레이티드 Process for the preparation of a diarylthiohydantoin compound
CN107108507A (en) * 2014-12-19 2017-08-29 阿拉贡药品公司 The method for preparing Diarylthiohydantoin compounds
US11040953B2 (en) 2014-12-19 2021-06-22 Aragon Pharmaceuticals, Inc. Process for the preparation of a diarylthiohydantoin compound
KR20170098870A (en) * 2014-12-19 2017-08-30 아라곤 파마슈티컬스, 인코포레이티드 Processes for the preparation of a diarylthiohydantoin compound
TWI731512B (en) * 2014-12-19 2021-06-21 美商艾瑞岡醫藥公司 Processes for the preparation of a diarylthiohydantoin compound
WO2016124149A1 (en) * 2015-02-06 2016-08-11 苏州晶云药物科技有限公司 New crystalline form of antiandrogen drug which treats prostate cancer, and preparation method for new crystalline form
US10421756B2 (en) 2015-07-06 2019-09-24 Rodin Therapeutics, Inc. Heterobicyclic N-aminophenyl-amides as inhibitors of histone deacetylase
US10919902B2 (en) 2015-07-06 2021-02-16 Alkermes, Inc. Hetero-halo inhibitors of histone deacetylase
US11858939B2 (en) 2015-07-06 2024-01-02 Alkermes, Inc. Hetero-halo inhibitors of histone deacetylase
US10981926B2 (en) 2016-01-11 2021-04-20 Janssen Pharmaceutica Nv Substituted thiohydantoin derivatives as androgen receptor antagonists
JP2019504836A (en) * 2016-01-11 2019-02-21 ヤンセン ファーマシューティカ エヌ.ベー. Substituted thiohydantoin derivatives as androgen receptor antagonists
US10501469B2 (en) 2016-01-11 2019-12-10 Janssen Pharmaceutica Nv Substituted thiohydantoin derivatives as androgen receptor antagonists
US20190209469A1 (en) * 2016-08-20 2019-07-11 Ftf Pharma Private Limited Pharmaceutical composition comprising an androgen receptor inhibitor
CN108069869A (en) * 2016-11-09 2018-05-25 上海医药工业研究院 A kind of Preparation Method And Their Intermediate of Apalutamide
US10696673B2 (en) 2017-01-11 2020-06-30 Rodin Therapeutics, Inc. Bicyclic inhibitors of histone deacetylase
US10793567B2 (en) 2017-01-11 2020-10-06 Rodin Therapeutics, Inc. Bicyclic inhibitors of histone deacetylase
US11225479B2 (en) 2017-01-11 2022-01-18 Alkermes, Inc. Bicyclic inhibitors of histone deacetylase
US9951069B1 (en) 2017-01-11 2018-04-24 Rodin Therapeutics, Inc. Bicyclic inhibitors of histone deacetylase
US11987580B2 (en) 2017-01-11 2024-05-21 Alkermes, Inc. Bicyclic inhibitors of histone deacetylase
US11286256B2 (en) 2017-01-11 2022-03-29 Alkermes, Inc. Bicyclic inhibitors of histone deacetylase
US10519149B2 (en) 2017-01-11 2019-12-31 Rodin Therapeutics, Inc. Bicyclic inhibitors of histone deacetylase
WO2018136001A1 (en) * 2017-01-18 2018-07-26 Scinopharm Taiwan, Ltd. Process for preparing apalutamide
US11225475B2 (en) 2017-08-07 2022-01-18 Alkermes, Inc. Substituted pyridines as inhibitors of histone deacetylase
US11912702B2 (en) 2017-08-07 2024-02-27 Alkermes, Inc. Substituted pyridines as inhibitors of histone deacetylase
WO2019054427A1 (en) 2017-09-14 2019-03-21 第一三共株式会社 Compound having cyclic structure
US11491149B2 (en) 2017-10-16 2022-11-08 Aragon Pharmaceuticals, Inc. Anti-androgens for the treatment of non-metastatic castration-resistant prostate cancer
US11160796B2 (en) 2017-10-16 2021-11-02 Aragon Pharmaceuticals, Inc. Anti-androgens for the treatment of non-metastatic castration-resistant prostate cancer
US10702508B2 (en) 2017-10-16 2020-07-07 Aragon Pharmaceuticals, Inc. Anti-androgens for the treatment of non-metastatic castration-resistant prostate cancer
CN108047200A (en) * 2017-12-05 2018-05-18 上海丰瑞医药科技有限公司 A kind of Preparation Method And Their Intermediate of diaryl thiohydantoin class compound
CN108003093A (en) * 2017-12-07 2018-05-08 山东汇盟生物科技有限公司 Preparation method of 2-hydroxy-3-trifluoromethylpyridine
US10513504B2 (en) 2018-03-08 2019-12-24 Apotex Inc. Processes for the preparation of apalutamide and intermediates thereof
WO2020095183A1 (en) 2018-11-05 2020-05-14 Pfizer Inc. Combination for treating cancer
WO2021026454A1 (en) 2019-08-08 2021-02-11 Laekna Limited Method of treating cancer
WO2022034504A1 (en) 2020-08-13 2022-02-17 Pfizer Inc. Combination therapy
WO2022049265A1 (en) 2020-09-04 2022-03-10 Synthon B.V. Improved process for preparation of apalutamide
CN114621184B (en) * 2020-12-10 2024-04-26 奥锐特药业股份有限公司 Preparation method of apatamide
CN114621184A (en) * 2020-12-10 2022-06-14 奥锐特药业股份有限公司 Preparation method of apatamide
WO2022200982A1 (en) 2021-03-24 2022-09-29 Pfizer Inc. Combination of talazoparib and an anti-androgen for the treatment of ddr gene mutated metastatic castration-sensitive prostate cancer
WO2024074959A1 (en) 2022-10-02 2024-04-11 Pfizer Inc. Combination of talazoparib and enzalutamide in the treatment of metastatic castration-resistant prostate cancer
WO2024127140A1 (en) 2022-12-17 2024-06-20 Pfizer Inc. Combination of talazoparib and enzalutamide in the treatment of metastatic castration-resistant prostate cancer

Also Published As

Publication number Publication date
EP3412290A1 (en) 2018-12-12
AU2007243651A1 (en) 2007-11-08
JP2016014069A (en) 2016-01-28
EP2656842A3 (en) 2014-04-02
ES2428291T3 (en) 2013-11-06
EP4385574A3 (en) 2024-10-02
HK1190928A1 (en) 2014-07-18
PL3100727T3 (en) 2019-01-31
ES2564388T3 (en) 2016-03-22
WO2007126765A3 (en) 2008-11-06
SI2656842T1 (en) 2016-10-28
ES2863798T3 (en) 2021-10-11
EP2368550B1 (en) 2013-09-04
US20180318276A1 (en) 2018-11-08
SI2004181T1 (en) 2016-07-29
US20110003839A1 (en) 2011-01-06
FI2004181T6 (en) 2023-09-01
LTPA2019512I1 (en) 2019-07-25
EP3835294A1 (en) 2021-06-16
EP2368550A1 (en) 2011-09-28
ES2689292T3 (en) 2018-11-13
CY1117958T1 (en) 2017-05-17
US9388159B2 (en) 2016-07-12
HUE032085T2 (en) 2017-09-28
JP2020193234A (en) 2020-12-03
US9987261B2 (en) 2018-06-05
US20130072511A1 (en) 2013-03-21
PL2656841T3 (en) 2017-01-31
LT3100727T (en) 2018-12-10
PL3412290T3 (en) 2021-09-06
LT3412290T (en) 2021-04-26
EP2656842A2 (en) 2013-10-30
LT2656841T (en) 2016-09-26
EP2004181A4 (en) 2010-11-10
JP2018065879A (en) 2018-04-26
HUS1900030I1 (en) 2020-04-28
HUE042037T2 (en) 2019-06-28
HUE027894T2 (en) 2016-11-28
EP2004181B3 (en) 2023-05-24
SI3412290T1 (en) 2021-09-30
PT3100727T (en) 2018-11-09
JP2012092149A (en) 2012-05-17
JP2017105845A (en) 2017-06-15
JP2014133755A (en) 2014-07-24
JP6422519B2 (en) 2018-11-14
LUC00123I2 (en) 2019-12-27
HK1126421A1 (en) 2009-09-04
PL2004181T3 (en) 2016-06-30
EP3100727B1 (en) 2018-08-22
EP3412290B1 (en) 2021-03-03
HUE031079T2 (en) 2017-06-28
LTC2368550I2 (en) 2020-01-10
LUC00123I1 (en) 2019-06-06
CN101454002B (en) 2011-06-08
ES2593379T3 (en) 2016-12-09
HK1231375A1 (en) 2017-12-22
US8802689B2 (en) 2014-08-12
EP3100727A1 (en) 2016-12-07
EP2004181A2 (en) 2008-12-24
DK2368550T3 (en) 2013-09-30
JP5133975B2 (en) 2013-01-30
US10857139B2 (en) 2020-12-08
US20210121450A1 (en) 2021-04-29
US20240293383A1 (en) 2024-09-05
NZ572335A (en) 2011-09-30
PL2004181T6 (en) 2023-09-04
CY2019028I2 (en) 2019-11-27
NL300993I2 (en) 2019-07-11
DK2004181T6 (en) 2023-08-21
JP6027662B2 (en) 2016-11-16
JP2016011315A (en) 2016-01-21
CY1120828T1 (en) 2019-12-11
DK2004181T3 (en) 2016-04-25
DK3412290T3 (en) 2021-04-19
CY1118026T1 (en) 2017-05-17
AU2007243651B2 (en) 2012-08-30
SI2368550T1 (en) 2013-11-29
EP2656842B1 (en) 2016-08-10
DK2656842T3 (en) 2016-11-07
CN101454002A (en) 2009-06-10
JP2019081815A (en) 2019-05-30
BRPI0709771A2 (en) 2011-07-26
EP2656841B1 (en) 2016-08-10
US11771687B2 (en) 2023-10-03
EP2004181B1 (en) 2016-02-24
EP2656841A1 (en) 2013-10-30
JP2009531439A (en) 2009-09-03
PT2368550E (en) 2013-12-03
CY1114623T1 (en) 2016-10-05
PT3412290T (en) 2021-04-19
ES2588606T3 (en) 2016-11-03
ES2564388T7 (en) 2023-12-21
PT2656841T (en) 2016-09-28
JP7257692B2 (en) 2023-04-14
SI2656841T1 (en) 2016-11-30
BRPI0709771B1 (en) 2022-01-25
CY1117540T1 (en) 2017-04-26
JP6057518B2 (en) 2017-01-11
DK3100727T3 (en) 2018-11-12
CY1124147T1 (en) 2022-05-27
PT2656842T (en) 2016-10-04
CY2019028I1 (en) 2019-11-27
PL2368550T3 (en) 2014-01-31
HUE053877T2 (en) 2021-07-28
DK2656841T3 (en) 2016-12-05
US8445507B2 (en) 2013-05-21
LT2656842T (en) 2016-09-26
JP6701237B2 (en) 2020-05-27
PL2656842T3 (en) 2017-01-31
JP2023001259A (en) 2023-01-04
HK1163495A1 (en) 2012-09-14
AU2007243651C1 (en) 2013-03-14
US20170014399A1 (en) 2017-01-19
US20140309262A1 (en) 2014-10-16
EP4385574A2 (en) 2024-06-19
SI3100727T1 (en) 2018-11-30

Similar Documents

Publication Publication Date Title
US11771687B2 (en) Substituted diazaspiroalkanes as androgen receptor modulators
AU2018241101B2 (en) Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
AU2013205325B2 (en) Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
AU2012241184B2 (en) Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780019654.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07754060

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009502925

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007243651

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 572335

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 9025/DELNP/2008

Country of ref document: IN

Ref document number: 2007754060

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007243651

Country of ref document: AU

Date of ref document: 20070327

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12294881

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0709771

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080929