WO2007126421A1 - Hydrogenation of aromatic compounds - Google Patents
Hydrogenation of aromatic compounds Download PDFInfo
- Publication number
- WO2007126421A1 WO2007126421A1 PCT/US2006/045173 US2006045173W WO2007126421A1 WO 2007126421 A1 WO2007126421 A1 WO 2007126421A1 US 2006045173 W US2006045173 W US 2006045173W WO 2007126421 A1 WO2007126421 A1 WO 2007126421A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- benzene
- catalyst
- hydrogenation
- cyclohexane
- process according
- Prior art date
Links
- 238000005984 hydrogenation reaction Methods 0.000 title claims abstract description 50
- 150000001491 aromatic compounds Chemical class 0.000 title claims abstract description 17
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims abstract description 216
- 239000003054 catalyst Substances 0.000 claims abstract description 54
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims abstract description 50
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000002904 solvent Substances 0.000 claims abstract description 21
- 230000008569 process Effects 0.000 claims abstract description 20
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 18
- 238000009835 boiling Methods 0.000 claims abstract description 17
- 229910052802 copper Inorganic materials 0.000 claims abstract description 17
- 239000011148 porous material Substances 0.000 claims abstract description 17
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000001257 hydrogen Substances 0.000 claims abstract description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 11
- 150000001923 cyclic compounds Chemical class 0.000 claims abstract description 9
- 230000007704 transition Effects 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims description 33
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 31
- 239000010949 copper Substances 0.000 claims description 19
- -1 copper modified nickel catalyst Chemical class 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052702 rhenium Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000003607 modifier Substances 0.000 claims description 3
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 30
- 239000000047 product Substances 0.000 description 26
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 22
- 239000012535 impurity Substances 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 16
- 239000006227 byproduct Substances 0.000 description 15
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 14
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methylcyclopentane Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 8
- 238000005470 impregnation Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 7
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 6
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 6
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 150000002816 nickel compounds Chemical class 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000004454 trace mineral analysis Methods 0.000 description 3
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 3
- AFABGHUZZDYHJO-UHFFFAOYSA-N 2-Methylpentane Chemical compound CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- FGNLEIGUMSBZQP-UHFFFAOYSA-N cadaverine dihydrochloride Chemical compound Cl.Cl.NCCCCCN FGNLEIGUMSBZQP-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000009615 deamination Effects 0.000 description 1
- 238000006481 deamination reaction Methods 0.000 description 1
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004508 fractional distillation Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- BMGNSKKZFQMGDH-FDGPNNRMSA-L nickel(2+);(z)-4-oxopent-2-en-2-olate Chemical compound [Ni+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O BMGNSKKZFQMGDH-FDGPNNRMSA-L 0.000 description 1
- HZPNKQREYVVATQ-UHFFFAOYSA-L nickel(2+);diformate Chemical compound [Ni+2].[O-]C=O.[O-]C=O HZPNKQREYVVATQ-UHFFFAOYSA-L 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000007420 reactivation Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000001577 simple distillation Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/889—Manganese, technetium or rhenium
- B01J23/8896—Rhenium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/68—Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
- C07C209/70—Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton by reduction of unsaturated amines
- C07C209/72—Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton by reduction of unsaturated amines by reduction of six-membered aromatic rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/883—Molybdenum and nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/892—Nickel and noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/02—Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of hydrogen atoms by amino groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/02—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
- C07C5/10—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/633—Pore volume less than 0.5 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/635—0.5-1.0 ml/g
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/74—Iron group metals
- C07C2523/75—Cobalt
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/74—Iron group metals
- C07C2523/755—Nickel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to a process for hydrogenation of aromatic compounds such as the hydrogenation of benzene to cyclohexane and the supported nickel catalyst modified with up to 0.9 wt.% Cu therefor.
- Cyclohexane is the main precursor for the production of nylon products and as such, the demand remains strong. Cyclohexane was first obtained by the direct fractional distillation of suitable crude petroleum refinery streams. Now the major portion of cyclohexane is obtained from the direct hydrogenation of benzene. Conventionally the reaction is carried out in vapor or mixed phase using a fixed bed reaction. The reactor temperature is controlled to be between 350 to 500 0 F. Higher temperatures can lead to thermodynamic limitations on benzene conversion, thermal cracking and increased by-product. In general, the amount of byproducts in the effluent stream from a hydrogenation reactor increases with hydrogenation temperature or conversion of benzene or both.
- Peterson in U.S. Pat. No. 2,373,501 discloses a liquid phase process for the hydrogenation of benzene to cyclohexane wherein a temperature differential is maintained between the top of the catalyst bed where benzene is fed and the outlet where substantially pure cyclohexane is withdrawn.
- the temperature differential is due to the change in the exothermic heat of reaction released as less and less benzene is converted as the concentration of benzene decreases.
- the top of the catalyst bed is at a higher temperature than the lower catalyst bed. Hydrogen is supplied countercurrenttothe benzene/cyclohexaneflow.
- Temperature control coils are disposed within the reactor to maintain the temperature differential if the exothermic heat of reaction is not sufficient or to cool the bed if too much heat is released.
- Peterson recognizes that although the bulk of his reaction takes place in the liquid phase a portion of the benzene and cyclohexane will be vaporized, especially near the top of the reactor where the benzene concentration is highest and conversion is highest.
- a reflux condenser is provided to condense the condensible material and return it to the reactor. Thus, a substantia! portion of the heat of reaction is removed by condensation of the reactants vaporized throughout the reaction.
- Peterson maintains a liquid level above the topmost catalyst bed but allows room for vapors to escape to the condenser where the heat of reaction is removed.
- Larkin, et al. in U.S. Pat. No. 5,189,233 disclose another liquid phase process for the hydrogenation of benzene to cyclohexane.
- Larkin, et al utilize high pressure (2500 psig) to maintain the reactants in the liquid state.
- Larkin, et al disclose the use of progressively more active catalyst as the concentration of benzene decreases to control the temperature and unwanted side reactions.
- Hui, et al. in U.S. Pat. No. 4,731 ,496 disclose a gas phase process for the hydrogenation of benzene to cyclohexane over a specific catalyst.
- the catalyst reported therein is nickel supported on a mixture of titanium dioxide and zirconium dioxide.
- US. Pat. No.6,750,374 discloses a process for the hydrogenation of benzene using hydrogen containing up to about 15 mole% impurities, such as carbon monoxide and light hydrocarbons with an alumina supported catalyst containing from about 15 to 35 wt.% Ni and from about 1 to 15 wt. % Cu.
- the catalyst may contain additional elements such as Mo, Zn, Co, Fe.
- the present invention is a process and a catalyst used in the process for hydrogenation of aromatic compounds, such as benzene, aniline, naphthalene, phenol and benzene polycarboxylates, by hydrogenating the aromatic compound in the presence of a catalyst comprising from 4 to 14wt.% Ni, preferably 9 tO 10 wt.% Ni and up to about 0.9 wt.% Cu, preferably about 0.2 to 0.4 wt.% Cu deposited on a transition alumina support having BET surface area of from about.40 to 180 m2/g, and pore volume of from about 0.3 to about 0.8 cc/g.
- the hydrogenation of aromatic compounds is advantageously carried out in the presence of a high boiling solvent.
- the preferred solvent will have at least 10° F higher boiling point than the aromatic compound to be hydrogenated and hydrogenated cyclic compound.
- the advantages of using a high boiling solvent are higher productivity of cyclohexane and keeping the temperature of catalytic reaction zone in a desired range.
- the high boiling solvent provides improvement in productivity of the reaction system whether or not the nickel catalyst is modified with copper.
- benzene is present in the reaction stream in an amount of 1 to 60 wt. %, preferentially of 3 to 40 wt.%.
- the hydrogen stream may be pure hydrogen or may contain up to 5 mole % impurities including carbon monoxide.
- the remaining components in the reaction stream can be cyclohexane, a high boiling solvent or a mixture of cyclohexane and a high boiling solvent. If a high boiling solvent is used, the solvent may comprise 10 to 90 wt.%, preferably 20 to 80 wt% of the reaction stream.
- the high boiling solvent may be recovered from the effluent recycle stream and recycled to hydrogenation reactor.
- the content of cyclohexane in the recycle solvent stream can be 0.0 to 80 wt.%, preferably from 0.5 to 30 wt%.
- the present invention also includes a copper modified nickel catalyst used in the hydrogenation of aromatic compound to produce a hydrogenated cyclic compound comprising 4 to 14 wt.% Ni and about 0.2 to 0.4 wt.% Cu deposited on a transition alumina support having BET surface area of from about 40 to 180 m2/g, and pore volume of from about 0.3 to about 0.8 cc/g.
- This invention pertains to a catalytic hydrogenation process of aromatic compounds such as benzene, aniline, naphthalene and phenol in the presence of improved copper modified nickel-based catalyst supported on a porous support. Hydrogenation of benzene yields cyclohexane. But the hydrogenation product stream from the catalytic reactor contains other undesired by-products such as pentane, cyclopentane, methyl cyclopentane, n-hexane and methyl cyclohexane. The product stream usually contains a trace amount of benzene, up to about 200 ppm by weight. Less than 10 ppm benzene is highly desirable for the production of high purity cyclohexane.
- the amount of by-products in the effluent stream from a hydrogenation reactor increases with hydrogenation temperature or conversion of benzene or both. Especially the amount of the by-products rapidly increases with hydrogenation temperature higher than about 340°F.
- the hydrogenation of aniline yields cyclohexylamine. But the undesired side reactions are deamination, formation of di and triphenylamine and various heavier products.
- An advantage of the present invention is reduced by-products so that simple distillation of hydrogenation product stream produces high purity cyclohexane product.
- the cyclohexane product contains no more than about 50 ppm, preferably no more 30 ppm by weight impurities including unconverted benzene excluding impurities came in with the feed benzene.
- the hydrogenation reactor effluent contains small amounts of cyclohexene. Since cyclohexene can easily be hydrogenated to cyclohexane by recycling the reactor effluent or using a small separate reactor without producing significant amounts of by-product, it is not considered as an undesired by-product.
- the present invention provides a significant improvement of the productivity of cyclohexane as well as reducing total impurities in the product cyclohexane stream from the catalytic reaction zone to less than 10 ppm, if the benzene hydrogenation is carried out in the presence of a heavy solvent such as decalin and decane.
- a heavy solvent such as decalin and decane.
- the hydrogenation reaction can be carried out in any physical device such as catalytic distillation column, fixed bed reactor, boiling point reactor, stirred tank reactor, trickle bed reactors or any combination of these. Since the benzene hydrogenation reaction is exothermic reaction, the hydrogenation reaction for the traditional fixed bed operation is preferably carried out by recycling the reactor effluent stream to dilute the fresh benzene feed, which dilutes the heat of reaction. Although recycling the reactor effluent is not necessary for the catalytic distillation reactor, one may choose to do so.
- the present catalysts preferably comprise Ni and Cu and optionally one or more elements selected from the group consisting of Ag, Ru, Re, Zn, Mo and Pd which are deposited on a support comprising transitional aluminas such as crystalline alumina of gamma, kappa, delta, theta and alpha or a mixture comprised of two or three selected therefrom.
- a preferred nickel content of the catalyst is from about 9 to 10 wt.% and a preferred copper contents is from about 0.2 to 0.4 wt.%.
- the catalyst used in this invention is prepared by depositing nickel and copper on a porous support. Copper serves to improve the catalyst activity and selectivity.
- the catalyst may contain one or more elements as the second optional modifiers from Ag, Ru, Re, Zn, Mo, and Pd.
- the deposition of active metal components can be carried out by any technique such as incipient impregnation, spray coating impregnation.
- the preferred support will have average of size from about 0.5 mm to about 3 mm, preferably from about 1 mm to about 2.5 mm.
- the transition alumina is obtained by calcining at about 850 to about 1200 0 C, and preferably having the following physical properties after calcining at from 850 to 1200 0 C: BET surface of from about 40 to about 180 m 2 /g, preferably from 50 to 120 m 2 /g and pore volume of from about 0.3 to about 0.8 cc/g..
- the transition alumina is the crystalline alumina of delta, theta, kappa or a mixture composed of two or three from gamma, kappa, delta, theta and alpha.
- the physical shapes of the preferred aluminas in this invention can be any shape such as spheres, extrudates, pellets and granules which preferably have diameters of less than about 1/4 inch, preferably 1/8 inch and less than about Vz inch length, and preferably less than 1/4 inch length for extrudates or pellets.
- Deposition of the nickel on a support can be carried out by single or multiple impregnations.
- a solution of the nickel compound is prepared by dissolving a nickel compound or an organo nickel compound in organic solvent or water.
- the examples of the nickel compounds are nickel salts such as nickel nitrate or organo metallic nickel compounds such as nickel acetate, nickel formate, nickel acetylacetonate and nickel alkoxides.
- the impregnation product is dried and calcined at temperature in a range from 200° to 600 0 C, preferably from 250° to 500 0 C.
- a commercial 28 wt. % Ni catalyst (1.2 mm diameter trilobe extrudates) was tested to hydrogenate of benzene.
- the crystal form of alumina support of this catalyst is gamma-alumina.
- the physical properties of this catalyst were 113 m 2 /g BET, 0.43 cc/g total nitrogen pore volume and an average pore diameter of 15 nm.
- 50 grams of the catalyst was loaded in a vertically mounted up-flow stainless steel fixed bed reactor (1 inch diameter x 20 inch long). Two thermocouples at each end of catalyst zone were installed to control the reactor temperature.
- the catalyst was supplied by the manufacturer as activated and passivated form, and recommended reactivation at 482°F in hydrogen gas flow.
- the catalyst was reactivated at 250 0 F in 300 cc/min gas flow of 33 volume % hydrogen gas in nitrogen for 1.5 hours and then 575 0 F for 5 hours in 350 cc/min flow of pure hydrogen gas.
- the hydrogenation of benzene was carried out under various conditions. The results are listed in Table 1.
- Example 2 A spherical gamma-alumina (1.68 mm diameter) support was calcined at 1100 0 C for 3 hours.
- the alumina spheres priortothe calcination had 145 m 2 /g BET surface area, a total nitrogen volume of 0.925 cc/g and an average pore diameter of 21.6nm.
- the diameter of alumina spheres was changed to 1.45 mm, which had 56 m 2 /g BET, a total nitrogen pore volume of 0.701 cc/g and an average pore diameter of 36.2nm. Its x-ray diffraction indicated mostly theta-alumina with minor amount of delta.
- a mixed solution of nickel nitrate and copper nitrate was prepared by dissolving 86.5 grams of Ni(NO 3 ) 2 .2.5H 2 O in 25.95 grams of water. 300 grams of the calcined alumina was placed in a rotary impregnator. The mixed solution was sprayed on rolling alumina spheres inside the rotary impregnator by using a liquid sprayer over a period of about 15 minutes. The content in the rotary impregnator was dried by blowing hot air in at about 200 0 C. The dried product was calcined at 350 0 C for 2 hours.
- the second mixed solution was prepared by dissolving 65 grams of Ni(NO 3 ) 2 .6H 2 O and 1.8 grams of Cu(NO 3 ) 2 .2.5H 2 0 in 19.5 grams of water.
- the second impregnation was performed on the first impregnation product in similar manner to the first impregnation.
- the dried impregnation product was calcined at 380 0 C for 2 hours.
- the finished catalyst would contain 9.22 wt % Ni and 0.35 wt. % Cu.
- the physical properties of this catalyst were 60 m 2 /g, 0.56 cc/g total nitrogen pore volume and an average pore diameter of 39 nm. 50 grams of this catalyst was loaded in the same reactor used in the Control Example 1. The catalyst was activated at 250 0 F in 300 cc/min gas flow of 33 volume % hydrogen gas in nitrogen for 1.5 hours and then for 3 hours at each 670 and 770 0 F by passing 350 cc/min of pure hydrogen gas. The hydrogenation of benzene was carried out under various conditions. The results are listed in Table 2. As shown in Table 2, the hydrogenation reaction product streams from the reactor do not contain any detectable amounts of by- products. The performance of this catalyst Is superior to the conventional nickel catalysts.
- a nickel catalyst was prepared according to US Publication No. 2005- 0033099-A1.
- Gamma-Alumina (1.3 mm diameter trilobe extrudates) was calcined at about 1000 0 C for 3 hours in air.
- the gamma-alumina had 252 m 2 /g BET, a total nitrogen pore volume of 0.571 cc/g and an average pore diameter of 8.85 nm.
- a solution of nickel nitrate was prepared by dissolving 183.6g Ni(NO 3 ) 2 .6H 2 O in 295 grams water.
- This example demonstrates the hydrogenation of benzene with recycle of reactor effluent in the absence of a heavy solvent.
- the feed to the reactor comprises fresh benzene feed and reactor effluent stream, which is cyclohexane.
- This experiment demonstrates hydrogenation of mixed feed stream to hydrogenation, where the mixed feed represents a stream obtained by mixing 1 weight portion of fresh benzene with 3 weight portion of the reactor effluent recycle steam.
- the same catalyst (50 grams) in the Example 2 was in the same reactor used in the Control Example 1.
- the catalyst was activated in same manner to the Example 2.
- a feed mixture of benzene and cyclohexane was prepared.
- the composition of the feed was 0.11 wt% lights, 25.41 wt% benzene and 74.48 wt% cyclohexane.
- the hydrogenation of benzene was carried out under various conditions.
- the impurities in the feed and product streams were analyzed with a trace go analysis method. The result is listed in Table 4.
- the impurities in product streams mostly originated from impurities in the feed.
- the total amount of various impurities (listed in Table 4) produced during the hydrogenation of benzene according to this invention is less than 10 ppm.
- the conversion of benzene could be forced so high that the benzene contents in the reactor effluent streams could be reduced to less than 35 ppm by weight.
- This example demonstrates that it is possible to obtain extremely high conversion (>99.99%) of benzene with a cyclohexane selectivity equivalent to about 99.999 mole %.
- the productivity of cyclohexane at two conditions of the two right columns in Table 4 were 29.2 and 31.8 m/fur per kg catalyst. This is a demonstration of superior catalyst performance compared to the prior art represented by Example 1.
- This example demonstrates the hydrogenation of benzene in the presence of decalin as high boiling solvent, where the conversions of benzene to cyclohexane are close to 100%.
- Example 2 50 grams of the catalyst prepared in the Example 2 was loaded in the same reactor used in the Control Example 1. The catalyst was activated in same manner to the Example 2.
- the feed was a mixture of 0.44 wt% lights, 25.26 wt% benzene and 74.30 wt% decalin.
- the hydrogenation of benzene was carried out under various conditions.
- the impurities in the feeds and product streams were analyzed with a regular gc analysis method and a trace gc analysis method. The results are listed in Table 5.
- the impurities in products under various conditions were mostly originated from impurities in feed.
- the total amount of various impurities produced during the hydrogenation of benzene according to this invention is less than 4 ppm by weight based on 100% cyclohexane.
- the trace amount of benzene in product stream can be reduced to less than 2 ppm in the product cyclohexane by adjusting the flow rate of hydrogen to the hydrogenation reactor at a given feed rate of benzene.
- This example demonstrates the hydrogenation of benzene in the presence of decane as high boiling solvent.
- the conversions of benzene were so high that the benzene contents in the product steams were close to undetectable.
- Example 2 50 grams of the catalyst prepared in the Example 2 was loaded in the same reactor used in the Control Example 1. The catalyst was activated in same manner to the Example 2.
- the feed was a mixture of 0.10 wt% lights, 30.26 wt% benzene and 69.64 wt% decane.
- the hydrogenation of benzene was carried out under various conditions.
- the impurities in the feeds and product streams were analyzed with a regular gc analysis method and a trace gc analysis method. The result is listed in Table 6.
- the impurities in products under various conditions mostly originated from impurities in the feed.
- the total amount of various impurities produced during the hydrogenation of benzene according to this invention is about 11 ppm based on 100% cyclohexane.
- the productivity of cyclohexane was equivalent or better than the case of performing the hydrogenation in the absence of a high boiling solvent in Example 4.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06844500A EP1999101A4 (en) | 2006-03-27 | 2006-11-22 | Hydrogenation of aromatic compounds |
JP2009502761A JP2009531426A (en) | 2006-03-27 | 2006-11-22 | Hydrogenation of aromatic compounds |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/389,955 US7348463B2 (en) | 2006-03-27 | 2006-03-27 | Hydrogenation of aromatic compounds |
US11/389,955 | 2006-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007126421A1 true WO2007126421A1 (en) | 2007-11-08 |
Family
ID=38534396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/045173 WO2007126421A1 (en) | 2006-03-27 | 2006-11-22 | Hydrogenation of aromatic compounds |
Country Status (8)
Country | Link |
---|---|
US (2) | US7348463B2 (en) |
EP (1) | EP1999101A4 (en) |
JP (1) | JP2009531426A (en) |
KR (1) | KR20080108140A (en) |
CN (2) | CN101045669B (en) |
RU (1) | RU2391326C1 (en) |
TW (1) | TW200736209A (en) |
WO (1) | WO2007126421A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103638949A (en) * | 2013-12-09 | 2014-03-19 | 江苏大学 | Preparation and application of nano-nickel/silver/copper (Ni/Ag/Cu) composite catalyst |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2203250B1 (en) * | 2007-10-19 | 2015-04-08 | Shell Internationale Research Maatschappij B.V. | Catalyst for the hydrogenation of unsaturated hydrocarbons and process for its preparation |
US8119558B2 (en) * | 2008-03-14 | 2012-02-21 | Süd-Chemie Inc. | Ultra high temperature shift catalyst with low methanation |
DE102008026094A1 (en) * | 2008-05-30 | 2009-12-03 | Süd-Chemie AG | Process for the preparation of nanocrystalline nickel oxides |
DE102008058971A1 (en) * | 2008-11-25 | 2010-07-15 | Süd-Chemie AG | Shell catalyst, process for its preparation and use |
CN103030487B (en) * | 2011-09-29 | 2016-02-10 | 中国石油化工股份有限公司 | The method that aromatic hydrogenation is saturated |
CN102516087B (en) * | 2011-10-25 | 2013-10-30 | 江苏诺盟化工有限公司 | Preparation method for high-purity dicyclohexyl amine |
CN102925935B (en) * | 2012-11-13 | 2015-05-20 | 上海应用技术学院 | Preparation method and application of nickel-copper-aluminum oxide catalysis separation composite membrane |
JP6306370B2 (en) * | 2014-02-25 | 2018-04-04 | 千代田化工建設株式会社 | Aromatic compound hydrogenation system and hydrogenation method |
JP6456204B2 (en) | 2015-03-24 | 2019-01-23 | 千代田化工建設株式会社 | Aromatic hydrocarbon hydrogenation catalyst and hydrotreating method using the same |
CN105126867B (en) * | 2015-08-03 | 2018-03-16 | 浙江大学 | A kind of carbon supporting Pt Ru Ni catalyst and its preparation method and application |
EP3474987A4 (en) | 2016-08-18 | 2020-01-08 | The University of Chicago | Metal oxide-supported earth-abundant metal catalysts for highly efficient organic transformations |
KR102327050B1 (en) | 2017-12-29 | 2021-11-15 | 한화솔루션 주식회사 | Method for selective hydrogenation |
FR3091659B1 (en) * | 2019-01-15 | 2023-04-14 | Ifp Energies Now | Process for the preparation of a catalyst for the hydrogenation of aromatics comprising a step of forming a NiCu alloy in pre-impregnation |
US11376567B2 (en) * | 2019-12-05 | 2022-07-05 | GM Global Technology Operations LLC | Methods for preparing catalytic systems |
CN114522717B (en) * | 2022-03-09 | 2023-09-05 | 北京海顺德钛催化剂有限公司 | Preparation method of hydrogenation benzene removal catalyst, catalyst and application |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6429338B1 (en) * | 2002-01-17 | 2002-08-06 | Air Products And Chemicals, Inc. | Hydrogenation of single ring aromatic diamines |
US20050209491A1 (en) * | 2004-03-19 | 2005-09-22 | Catalytic Distillation Technologies | Ni catalyst, process for making catalysts and selective hydrogenation process |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2373501A (en) * | 1942-04-18 | 1945-04-10 | Du Pont | Preparation of cyclohexane |
US3108888A (en) * | 1960-08-04 | 1963-10-29 | Du Pont | Colloidal, anisodiametric transition aluminas and processes for making them |
US3346340A (en) * | 1966-08-11 | 1967-10-10 | Universal Oil Prod Co | Production of bromine by oxidation of hydrogen bromide |
DE1667210B2 (en) * | 1966-12-20 | 1976-05-06 | Nippon Oil Co., Ltd., Tokio | PROCESS FOR PRODUCING A COPPER-NICKEL CATALYST SUITABLE FOR SELECTIVE HYDROGENATION OF HYDROACETYLENE CARBONS |
FR1549207A (en) * | 1967-03-24 | 1968-12-13 | ||
JPS4931433B1 (en) * | 1970-02-25 | 1974-08-21 | ||
US3706858A (en) * | 1971-04-14 | 1972-12-19 | Mc Graw Edison Co | Supervisory control system for selectively connecting recorders and transcribing stations |
FR2240905B1 (en) * | 1973-08-16 | 1980-01-04 | Inst Francais Du Petrole | |
US4034062A (en) * | 1975-03-20 | 1977-07-05 | Borden, Inc. | Removal of oxygen from gas stream with copper catalyst |
US4073750A (en) * | 1976-05-20 | 1978-02-14 | Exxon Research & Engineering Co. | Method for preparing a highly dispersed supported nickel catalyst |
JPS5414939A (en) * | 1977-07-07 | 1979-02-03 | Agency Of Ind Science & Technol | Hydrogenation of aromatic compound |
US4160745A (en) * | 1977-12-01 | 1979-07-10 | Exxon Research & Engineering Co. | Method of preparing highly active nickel catalysts and catalysts prepared by said method |
US4172810A (en) * | 1978-05-08 | 1979-10-30 | Exxon Research & Engineering Co. | Catalysts for the conversion of relatively low molecular weight hydrocarbons to high molecular weight hydrocarbons and the regeneration of the catalysts |
US4471144A (en) * | 1982-12-13 | 1984-09-11 | Uop Inc. | Theta-alumina as a hydrothermally stable support in hydrogenation |
FR2546078B1 (en) * | 1983-05-19 | 1987-05-07 | Pro Catalyse | PROCESS FOR THE MANUFACTURE OF CATALYSTS FOR THE TREATMENT OF EXHAUST GASES FROM INTERNAL COMBUSTION ENGINES |
DD217996A1 (en) * | 1983-08-04 | 1985-01-30 | Leuna Werke Veb | PROCESS FOR PREPARING A CATALYST FOR GLUCOSE HYDROGENATION |
US4731496A (en) * | 1986-07-25 | 1988-03-15 | Chinese Petroleum Corporation | Process for the hydrogenation of benzene to cyclohexane |
FR2619391B1 (en) * | 1987-08-14 | 1990-01-12 | Eurecat Europ Retrait Catalys | METHOD FOR REDUCING A REFINING CATALYST BEFORE IMPLEMENTING |
US4795733A (en) * | 1987-11-27 | 1989-01-03 | Gaf Corporation | Hydrogenation catalyst and process for its preparation |
US5189233A (en) * | 1991-08-23 | 1993-02-23 | Texaco Chemical Company | Process for the production of cyclohexane by liquid phase hydrogenation of benzene |
JP3023809B2 (en) * | 1991-12-24 | 2000-03-21 | 雪印乳業株式会社 | Method for hydrogenating and reducing cyclic organic compounds |
US5352835A (en) * | 1993-02-08 | 1994-10-04 | Texaco Chemical Company | Supported catalysts for amination |
CA2146906C (en) * | 1993-12-22 | 1999-03-16 | Stephen Wayne King | Reductive amination catalysts |
US5773670A (en) * | 1995-03-06 | 1998-06-30 | Gildert; Gary R. | Hydrogenation of unsaturated cyclic compounds |
US6022823A (en) * | 1995-11-07 | 2000-02-08 | Millennium Petrochemicals, Inc. | Process for the production of supported palladium-gold catalysts |
US5856602A (en) * | 1996-09-09 | 1999-01-05 | Catalytic Distillation Technologies | Selective hydrogenation of aromatics contained in hydrocarbon streams |
DE19734974A1 (en) * | 1997-08-13 | 1999-02-25 | Hoechst Ag | Production of supported catalyst for vinyl acetate production |
US6218326B1 (en) * | 1998-07-29 | 2001-04-17 | University Of Iowa Research Foundation | Supported molten-metal catalysts |
DE19932060A1 (en) * | 1999-07-12 | 2001-01-18 | Basf Ag | Process for the production of C¶5¶ / C¶6¶ olefins |
US6750374B2 (en) * | 1999-08-10 | 2004-06-15 | Huntsman Petrochemical Corporation | Manufacture of cyclohexane from benzene and a hydrogen source containing impurities |
US6607678B2 (en) * | 1999-08-17 | 2003-08-19 | Battelle Memorial Institute | Catalyst and method of steam reforming |
US6187980B1 (en) * | 1999-09-29 | 2001-02-13 | Catalytic Distillation Technologies | Hydrogenation of benzene to cyclohexane |
US6576588B2 (en) * | 2000-04-07 | 2003-06-10 | Catalytic Distillation Technologies | Process for selective hydrogenation of alkynes and catalyst therefor |
JP4339681B2 (en) * | 2000-09-29 | 2009-10-07 | 中国石油化工股▲分▼有限公司 | Selective hydrogenation catalyst for selective hydrogenation of unsaturated olefins and use thereof |
CN1281720C (en) * | 2001-10-15 | 2006-10-25 | 催化蒸馏技术公司 | Hydrogenation catalyst and hydrogenation process |
US6680419B2 (en) * | 2001-11-30 | 2004-01-20 | Bp Corporation North America Inc. | Process enhancing adsorbent capacity for acetylenic compounds |
US20030105376A1 (en) * | 2001-11-30 | 2003-06-05 | Foral Michael J. | Purification of polyolefin feedstocks using multiple adsorbents |
US6936568B2 (en) * | 2002-06-12 | 2005-08-30 | Sud-Chemie Inc. | Selective hydrogenation catalyst |
US20040030207A1 (en) * | 2002-08-08 | 2004-02-12 | Catalytic Distillation Technologies | Selective hydrogenation of acetylenes |
US6855853B2 (en) * | 2002-09-18 | 2005-02-15 | Catalytic Distillation Technologies | Process for the production of low benzene gasoline |
CA2500553A1 (en) * | 2002-10-16 | 2004-04-29 | Conocophillips Company | A stabilized transition alumina catalyst support from boehmite and catalysts made therefrom |
US7022645B2 (en) * | 2003-08-04 | 2006-04-04 | Catalytic Distillation Technologies | Ni hydrogenation catalysts, manufacture and use |
US7919431B2 (en) * | 2003-09-03 | 2011-04-05 | Synfuels International, Inc. | Catalyst formulation for hydrogenation |
US20050113614A1 (en) * | 2003-11-24 | 2005-05-26 | Lowe David M. | Catalyst and process for selective hydrogenation |
US7199273B2 (en) * | 2003-11-24 | 2007-04-03 | Exxonmobil Chemical Patents, Inc. | Selective hydrogenation of alkynes and/or diolefins |
DE102005019103B4 (en) * | 2004-04-26 | 2023-09-21 | Sasol Technology (Proprietary) Ltd. | Process for producing a cobalt-based catalyst for Fischer-Tropsch synthesis and process for producing a Fischer-Tropsch hydrocarbon product |
US20060166816A1 (en) * | 2004-06-23 | 2006-07-27 | Catalytic Solutions, Inc. | Catalysts and processes for selective hydrogenation of acetylene and dienes in light olefin feedstreams |
US20060084830A1 (en) * | 2004-10-20 | 2006-04-20 | Catalytic Distillation Technologies | Selective hydrogenation process and catalyst |
-
2006
- 2006-03-27 US US11/389,955 patent/US7348463B2/en not_active Expired - Fee Related
- 2006-11-22 WO PCT/US2006/045173 patent/WO2007126421A1/en active Application Filing
- 2006-11-22 RU RU2008142366/04A patent/RU2391326C1/en not_active IP Right Cessation
- 2006-11-22 KR KR1020087026050A patent/KR20080108140A/en active IP Right Grant
- 2006-11-22 EP EP06844500A patent/EP1999101A4/en not_active Ceased
- 2006-11-22 JP JP2009502761A patent/JP2009531426A/en active Pending
- 2006-12-07 TW TW095145722A patent/TW200736209A/en unknown
-
2007
- 2007-02-01 CN CN2007100063176A patent/CN101045669B/en not_active Expired - Fee Related
- 2007-02-01 CN CN2011100599847A patent/CN102172531A/en active Pending
-
2008
- 2008-01-29 US US12/021,809 patent/US20080139383A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6429338B1 (en) * | 2002-01-17 | 2002-08-06 | Air Products And Chemicals, Inc. | Hydrogenation of single ring aromatic diamines |
US20050209491A1 (en) * | 2004-03-19 | 2005-09-22 | Catalytic Distillation Technologies | Ni catalyst, process for making catalysts and selective hydrogenation process |
Non-Patent Citations (1)
Title |
---|
See also references of EP1999101A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103638949A (en) * | 2013-12-09 | 2014-03-19 | 江苏大学 | Preparation and application of nano-nickel/silver/copper (Ni/Ag/Cu) composite catalyst |
CN103638949B (en) * | 2013-12-09 | 2015-11-11 | 江苏大学 | A kind of preparation of nano nickel/silver/copper composite catalyst and application thereof |
Also Published As
Publication number | Publication date |
---|---|
EP1999101A4 (en) | 2009-08-19 |
EP1999101A1 (en) | 2008-12-10 |
CN101045669B (en) | 2011-07-13 |
US7348463B2 (en) | 2008-03-25 |
US20080139383A1 (en) | 2008-06-12 |
RU2008142366A (en) | 2010-05-10 |
JP2009531426A (en) | 2009-09-03 |
US20070225531A1 (en) | 2007-09-27 |
RU2391326C1 (en) | 2010-06-10 |
TW200736209A (en) | 2007-10-01 |
CN101045669A (en) | 2007-10-03 |
CN102172531A (en) | 2011-09-07 |
KR20080108140A (en) | 2008-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7348463B2 (en) | Hydrogenation of aromatic compounds | |
CA2899318C (en) | Production of higher alcohols | |
JP4094737B2 (en) | Process for producing acetaldehyde from acetic acid and catalyst used in this process | |
EP2809643B1 (en) | Ethyl acetate production | |
US8569549B2 (en) | Catalyst supports having crystalline support modifiers | |
US20050209491A1 (en) | Ni catalyst, process for making catalysts and selective hydrogenation process | |
CA2994846C (en) | Composition of catalysts for conversion of ethanol to n-butanol and higher alcohols | |
EP0404408B1 (en) | Use of coated catalysts for the hydrogenation of maleic anhydride to tetrahydrofuran and gammabutyrolactone | |
US20230322651A1 (en) | Composition of catalysts for conversion of ethanol to n-butanol and higher alcohols | |
WO2018039609A1 (en) | Production of higher alcohols | |
JP2004524273A (en) | Method for hydrogenating aromatic hydrocarbons by reactive distillation | |
WO2018108544A1 (en) | Hydrocarbon conversion catalyst system | |
US6750374B2 (en) | Manufacture of cyclohexane from benzene and a hydrogen source containing impurities | |
WO2001010802A1 (en) | Manufacture of cyclohexane from benzene and a hydrogen source containing impurities | |
WO2018020345A1 (en) | Process for producing oxo-synthesis syngas composition by high-pressure hydrogenation of c02 over spent chromium oxide/aluminum catalyst | |
WO2018080333A1 (en) | Process for production of acrylic acid, process for the selective oxidation of carbon monoxide, catalyst for the selective oxidation of carbon monoxide, process for producing the same | |
Pathan et al. | Transformation of Styrene Oxide on Bi-Functional Ni, Co and Cu Catalysts Supported on Zirconia-Alumina: Effect of Depositing Zirconia on Alumina | |
CN118788328A (en) | Catalyst and process for the hydrogenation of olefins | |
CN114728864A (en) | Process for producing dienes | |
WO2018015828A1 (en) | Process for high-pressure hydrogenation of carbon dioxide to syngas in the presence of used chromium oxide supported catalysts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06844500 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006844500 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 7479/DELNP/2008 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009502761 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020087026050 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2008142366 Country of ref document: RU Kind code of ref document: A |