WO2007125534A2 - Improved functional electrical stimulation systems - Google Patents
Improved functional electrical stimulation systems Download PDFInfo
- Publication number
- WO2007125534A2 WO2007125534A2 PCT/IL2007/000531 IL2007000531W WO2007125534A2 WO 2007125534 A2 WO2007125534 A2 WO 2007125534A2 IL 2007000531 W IL2007000531 W IL 2007000531W WO 2007125534 A2 WO2007125534 A2 WO 2007125534A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gait
- sensor
- modulation system
- electrical stimulation
- microprocessor
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36003—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of motor muscles, e.g. for walking assistance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/1036—Measuring load distribution, e.g. podologic studies
- A61B5/1038—Measuring plantar pressure during gait
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H3/00—Appliances for aiding patients or disabled persons to walk about
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/0404—Electrodes for external use
- A61N1/0408—Use-related aspects
- A61N1/0452—Specially adapted for transcutaneous muscle stimulation [TMS]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/0404—Electrodes for external use
- A61N1/0472—Structure-related aspects
- A61N1/0484—Garment electrodes worn by the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36014—External stimulators, e.g. with patch electrodes
- A61N1/3603—Control systems
- A61N1/36031—Control systems using physiological parameters for adjustment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/20—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/96—Touch switches
- H03K17/9625—Touch switches using a force resistance transducer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H3/00—Mechanisms for operating contacts
- H01H3/02—Operating parts, i.e. for operating driving mechanism by a mechanical force external to the switch
- H01H3/14—Operating parts, i.e. for operating driving mechanism by a mechanical force external to the switch adapted for operation by a part of the human body other than the hand, e.g. by foot
Definitions
- the present invention relates to functional electrical stimulation (FES) devices and systems and, more particularly, to an improved envelope for force-sensitive resistors of such devices, and to FES devices and systems having improved monitoring, analysis, control, safety, energy conservation, and communication features.
- FES functional electrical stimulation
- Drop foot describes the gait attributable to weak or uncoordinated activation of the ankle dorsi-flexors due to disease or trauma to the central nervous system.
- a patient suffering from drop foot tends to drag the foot during the swing phase of walking and usually try to compensate for this dragging by hiking the hip or swinging the affected leg in a circular motion.
- These patients tend to have impaired stability, are prone to frequent falls, and have walking movements that are unaesthetic and energy consuming.
- FES functional electrical stimulation
- Precisely timed bursts of short electrical pulses are applied to motor nerves to generate muscle contractions, which are synchronized with the gait of the patient, so as to improve the leg function and enhance the gait.
- the timing of these pulses is critical, and must be synchronized with the gait. This is advantageously achieved by sensing gait events such as a foot-floor force reaction, using a force-sensitive resistor (FSR) disposed beneath the heel region of the patient, and transmitting the information to the stimulator unit.
- FSR force-sensitive resistor
- U.S. Patent 6,507,757 to Swain, et al. discloses one typical foot sensor device of the prior art, in which a foot pressure switch, or sensor, is permanently disposed in the shoe of the affected leg.
- An electrical circuit is interrupted during the stance phase, when a significant weight is placed on the heel, and reconnects when the heel is lifted during the swing phase.
- Wires disposed under the clothing connect the sensor with an external stimulator unit that can be attached to the belt or kept in a pocket of the user.
- the stimulator unit is connected to the electrodes by additional electrical wires.
- the cumbersome wires may be obviated by using a radio frequency (RF) system in which the foot sensor device and other components of the FES orthotic system communicate in a wireless fashion.
- RF radio frequency
- the use of such an RF system necessitates integrating an RF transmitting unit, or head, within the foot sensor device.
- the RF communication with other components of the FES orthotic system must be robust and reliable, even in areas in which various types of wireless signals are prevalent, such as local area networks (LANs).
- LANs local area networks
- the FES orthotic system must also be robust and reliable in areas in FES clinics and the like, in which one or more additional wireless FES systems may be operating simultaneously.
- a gait modulation system utilizing functional electrical stimulation for improving lower- limb function of a patient having neuromuscular impairment of a lower limb
- the gait modulation system including: (a) a sensor device including at least one sensor adapted for associating with at least one lower limb of the patient, the sensor for transducing at least one parameter related to a gait of the patient, so as to obtain gait data related to the gait, and (b) a muscle stimulator including: (i) an electrical stimulation circuit, the circuit adapted to supply an electrical stimulation output to an electrode array for performing functional electrical stimulation of at least one muscle of the lower limb, and (ii) a microprocessor, operatively connected to the at least one sensor, the microprocessor adapted for: receiving a stream of gait information based on the gait data; processing the gait information, and controlling the stimulation output based on the processing of the gait information, and wherein the microprocessor is further adapted to identify a failure in the stream of ga
- the microprocessor is adapted to control the electrical stimulation circuit to provide the fail-safe stimulation output so as to reduce a falling risk of the patient.
- associated with the microprocessor is a timing mechanism for timing the stimulation output based on the stream of gait information.
- the microcontroller is adapted to make a prediction of a gait event of the patient based on the stream of gait information.
- the microcontroller is adapted to control the electrical stimulation circuit to deliver the fail-safe stimulation output at a time based on the prediction of the gait event.
- the prediction of the gait event is related to a prediction of a heel-contact event.
- the prediction of the gait event is related to a prediction of a heel-off event.
- the prediction of the gait event is related to a prediction of a SWING phase of the gait.
- the prediction of the gait event is related to a prediction of a STANCE phase of the gait.
- the failure includes a communication failure from a transmitting unit of the sensor device.
- the communication failure is a radio frequency communication failure.
- the sensor device further includes a microprocessor, electrically associated with the sensor, for receiving a signal pertaining to the parameter, and a transmitting unit for transmitting, in a wireless fashion, the gait information to a unit of the gait modulation system external to the sensor device.
- a microprocessor electrically associated with the sensor, for receiving a signal pertaining to the parameter, and a transmitting unit for transmitting, in a wireless fashion, the gait information to a unit of the gait modulation system external to the sensor device.
- a gait modulation system utilizing functional electrical stimulation for improving lower- limb function of a patient having neuromuscular impairment of a lower limb
- the gait modulation system including: (a) at least one sensor adapted for associating with at least one lower limb of the patient, the sensor for transducing at least one parameter related to a gait of the patient, so as to obtain gait data related to the gait; (b) a muscle stimulator including: (i) an electrical stimulation circuit, the circuit adapted to supply an electrical stimulation output to an electrode array for performing functional electrical stimulation of at least one muscle of the lower limb, and (c) a microprocessor, operatively connected to the at least one sensor, the microprocessor adapted for: receiving a signal containing gait information based on the gait data; processing the signal, and controlling the stimulation output based on the processing of the signal, wherein the sensor is a pressure sensor, and wherein the processing the signal includes: (i) calculating a dynamic range between maximal pressure values
- the microprocessor is further adapted to detect a deviation from an ambulating mode.
- the ambulating mode is a SWING state.
- the ambulating mode is a STANCE state.
- the microprocessor is further adapted to identify invalid peaks or valleys.
- the microprocessor is further adapted to determine whether the patient is in a SWING, STANCE, SITTING, or STANDING state.
- the microprocessor is further adapted to make a determination of an ambulating state of the patient, and to identify invalid peaks or valleys based on the determination.
- the microprocessor is further adapted to utilize the dynamic range in identifying the invalid peaks or valleys.
- the microprocessor has a plurality of different thresholds for determining peak validity or valley validity, the plurality of different thresholds based, at least in part, on an ambulating state of the patient.
- Figure 1 is a perspective view of the inventive sensor assembly
- Figure 2 is a schematic, exploded view of the inventive sensor assembly, including an envelope cover, an envelope base, an FSR sensor, an electrical connection unit, and an absorbent protective layer for disposing on the FSR sensor;
- Figure 3 A is a cross-sectional view of inventive envelope cover
- Figure 3B is a magnified view of a portion of Figure 3 A;
- Figure 3 C is a cross-sectional view of the inventive envelope showing the relative disposition of the envelope cover, envelope base, FSR sensor, and absorbent layer;
- Figure 3D is a schematic illustration of a preferred embodiment of the inventive envelope in which the envelope has a mechanism for advantageously securing FSR sensor to external wires;
- Figure 3E is a schematic illustration of the inventive sensor assembly disposed within a conventional shoe
- Figure 4 is a schematic electronic diagram of the inventive foot sensor device
- FIG. 5 is a schematic electronic diagram of one embodiment of the inventive functional electrical stimulation (FES) system, showing the internal workings of the foot sensor device, stimulator unit, and control unit, along with the communication between the components;
- FES functional electrical stimulation
- Figure 6 is a schematic plot showing the pressure exerted on a pressure transducer as a function of time, during gait assisted by one embodiment of the system of the present invention
- Figure 7 is an exemplary block diagram showing the logical sequence of analysis and control performed by a microcontroller unit of the present invention, based on data received from the pressure transducer;
- Figure 8 is a schematic, simplified plot showing the pressure exerted on the pressure sensor as a function of time, during gait assisted by a system of the present invention
- Figure 9 is a schematic plot of current as a function of time for a bipolar stimulation pulse of the prior art
- Figure 10 is a schematic plot of current as a function of time for successive bipolar stimulation pulses, showing exemplary sampling points;
- Figure 11 is a block diagram showing an exemplary embodiment of the inventive logical sequence of sampling, analysis and control performed by a microcontroller unit of the present invention
- Figure 12 is a schematic plot showing one embodiment of charge balancing — reduced phase amplitude of a negative current phase
- Figure 13 is a schematic plot showing another embodiment of charge balancing ⁇ reduced phase width (duration) of a negative current phase
- Figure 14 is a schematic plot showing yet another embodiment of charge balancing ⁇ increased current to a greater than nominal level during a low- impedance section of the positive current phase.
- the FSR sensor assembly and envelope of the present invention is designed, preferably, for inserting under the inner sole (insole) of the shoe, typically beneath the heel.
- the protective casing is made of a cover and a base, with the sensor fitting therebetween.
- An additional piece of absorbent material is disposed between the cover and the FSR sensor. Typically, the absorbent material is adhered to the cover.
- the cover and base of the sensor casing can be connected to each other by ultrasonic welding, gluing, heat welding, RF welding or by pins.
- FSR force-sensitive resistor
- the envelope is preferably made of acetal [also known as polyacetal, polyoxymethylene (POM), or polyformaldehyde] or polypropylene, but other materials may be engineered to provide the requisite physical and mechanical properties, e.g., polyethylene terephthalate (PET).
- acetal also known as polyacetal, polyoxymethylene (POM), or polyformaldehyde
- PET polyethylene terephthalate
- Figure 1 is a perspective view of one embodiment of a sensor assembly 25 of the present invention.
- FIG. 2 is a schematic, exploded view of sensor assembly 25, including an envelope 5 having an envelope cover 10 and an envelope base 20; a force-sensitive resistor (FSR) sensor 30; an electrical connection unit 40; and an absorbent protective layer 50 for disposing on FSR sensor 30.
- FSR force-sensitive resistor
- Base 20 forms sockets for FSR sensor 30 and for electrical connection unit 40.
- the sockets are preferably contoured to match the topographical features of the underside of the sensor and electrical connection unit.
- Base 20 has a circumferential rim for closely bounding FSR sensor 30, thereby determining the position of the sensor.
- the sockets enable precise, repeatable location of the sensor on the base.
- envelope base 20 is harder/less flexible than cover 10. This mechanical property reinforces the FSR sensor against bending forces, which can cause deviations in the sensor readings and can also cause excessive wear and damage to the sensor.
- Figure 3A is a cross-sectional view of envelope cover 10
- Figure 3B is a magnified view of a portion of envelope cover 10 shown in Figure 3 A
- Figure 3 C is a cross-sectional view of sensor assembly 25 showing the relative disposition of envelope cover 10, envelope base 20, FSR sensor 30, and absorbent layer 50.
- envelope cover 10 is supported around the circumference and largely unsupported towards the center. It is further evident from Figure 3 C that envelope cover 10, envelope base 20, and absorbent layer 50 are disposed such that a first void space 11 is situated between envelope cover 10 and absorbent layer 50, and such that a second void space 13 is situated between envelope cover 10 and envelope base 20.
- the flexibility of cover 10, along with the maneuverability provided by void spaces 11, 13, enables the cover to act like a membrane that collapses (bends) towards the center of the top face of FSR sensor 30, and transmits the pressure (force), via absorbent protective layer 50, thereto.
- the radius of cover 10 near the perimeter thereof is about 2-5mm and more preferably, 3 -4mm.
- the rims of cover 10 and base 20 are preferably contoured in complementary fashion.
- the closure of these rims is preferably made by ultrasonic welding.
- the bonding of the rims, coupled with the curved structure near the perimeter and the elevated rim thereunder, provide the requisite rigidity to the envelope. Consequently, routine forces exerted by the foot on the sensor will not collapse cover 10 near the envelope perimeter, and the collapsing is confined within the center area of the cover.
- the bonding of the rims actually generates a surface tension that allows the cover to collapse solely within that center area. This also eliminates distortion of the rims.
- Absorbent protective layer 50 for disposing on FSR sensor 30, is preferably made of Poron®, or another flexible, high density, microcellular material that exhibits, over long-term use, good resistance to compression set (collapse), high resiliency, and good impact absorption.
- the above-described features of the envelope and closure thereof allow more accurate, repeatable and reproducible collapse of cover 10 upon sensor 30. This permits repeatable readings of the sensor for a specific pressure (force). Perhaps more importantly, the above-described shape and structure eliminate or drastically reduce shear forces on sensor 30, and greatly contribute to the longevity of FSR sensor 30. The structure of the rims also improves the structural stability and durability of the envelope.
- the sensor is anchored to the base of the envelope within a specific socket structure in base 20.
- the wires are tightened by a metal crimp, which is positionally locked into the socket, thereby inhibiting movement of the sensor, as well as undesirable tension in the area of the wires (and especially to the welding points thereof) of electrical connection unit 40 as result of accidental pulling of the external wire.
- the senor is attached to the shoe inner surface by loop and hook fasteners such as Velcro ® .
- One fastening element is attached to the bottom of sensor base cover, and the complementary fastening element is attached to the shoe insole.
- a graphical symbol of a foot is preferably provided on cover 10, so as to direct the user to properly align the FSR sensor device within the shoe.
- the inventive envelope is easy and inexpensive to manufacture, and enables facile and reproducible assembly of the FSR sensor device.
- Figure 3D schematically illustrates a preferred embodiment of the present invention having an inventive mechanism for advantageously securing FSR sensor 30 to external wires 58.
- Wires 58 typically connect FSR sensor 30 with the head of the sensor device containing, inter alia, the microprocessor and radio frequency (RF) transceiver.
- RF radio frequency
- External wires 58 are anchored around protrusions such as protrusion 56, which juts out of a base 54 of FSR sensor 30. External wires 58 are wrapped around these protrusions in such a way that undesirable tension in the area of the wires (especially at the welding points 59) of the electrical connection is avoided.
- This anchoring mechanism enables the user to pull the envelope out of the shoe without inadvertently causing damage to the welding points in the area of the electrical connection.
- silicon is poured over the ends of wires 58 after wires 58 have been positioned, so as to maintain the positioning of the wires during assembly, as well as to further protect the welding area and to seal out water and dirt from the opening around the wire.
- Figure 3E is a schematic illustration of inventive sensor assembly 25 disposed within a conventional shoe or footwear 15.
- Sensor assembly 25 can be situated in various positions, e.g., under the foot/above the insole, between the insole and sole, and within the sole.
- footwear refers to any kind of foot covering that a foot being covered presses down upon during gait, including, but not limited to, shoes, boots, sandals, socks, and stockings.
- Figure 4 is a schematic electronic diagram of inventive foot sensor device 100.
- Sensor element 16 is connected to, and preferably powered by, electronics or communication unit 31 by means of wiring 21.
- Communication unit 31 includes a digital circuit and microcontroller unit 80, a radio frequency (RF) transceiver 82, and an antenna unit 83 having a matching network for converting the signal from the wired medium to a wireless medium, and from the wireless medium to the wired medium.
- RF radio frequency
- foot sensor device 100 is equipped with a voltage divider consisting of sensor element 16 and a bias resistor 81 (preferably disposed in unit 30), in order to measure the resistance of sensor element 16.
- a voltage is applied to the voltage divider, the voltage is divided according to the resistance ratio between sensor element 16 and bias resistor 81. This voltage is measured in order to assess the resistance of sensor element 16.
- Communication unit 31 is also equipped with a small coin battery 84 that provides power to microcontroller unit 80, RF transceiver 82, and sensor element 16.
- Digital circuit and microcontroller unit 80 controls and monitors the operation of foot sensor device 100 and executes the various algorithms (e.g., gait detection, RF control, and power management algorithms) thereof.
- microcontroller unit 80 communicates with RF transceiver 82 via a Serial Peripheral Interface (SPI).
- SPI Serial Peripheral Interface
- FIG. 5 is a schematic electronic diagram of one embodiment of the inventive functional electrical stimulation (FES) system 500, showing the internal workings of foot sensor device 100, stimulator unit 150, and control unit 250, and the communication therebetween.
- FES functional electrical stimulation
- foot sensor device 100 includes small coin battery 84 that provides power to microcontroller unit 80, RF transceiver 82, and sensor element 16.
- Coin battery 84 may also power an analog circuit 78 having sensor signal conditioning (such as amplification, filtering, and division) and an analog-to-digital signal converter.
- Stimulator unit 150 typically includes an RF transceiver 182 having an antenna 183 having a matching network, a digital circuit and microcontroller unit 180, and a stimulation circuit 195, all powered by a power supply 184b.
- Stimulation circuit 195 typically receives power from power supply 184b via high voltage circuit 190.
- Power supply 184b may be powered by a battery such as rechargeable battery 184a.
- a charging and battery monitor 184c is advantageously associated with rechargeable battery 184a, and interfaces with an external power supply, such as a regulated, preferably medical-grade, wall adapter.
- RF transceiver 82 communicates with RF transceiver 182 of stimulator unit 150.
- RF transceiver 182 transmits digital information to and receives digital information from digital circuit and microcontroller unit 180.
- microcontroller unit 180 and stimulation circuit 195 exchange digital information.
- Stimulation circuit 195 based on digital information from microcontroller unit 180, and powered by high voltage circuit 190, is configured to deliver electrical stimulation pulses to the patient by means of electrodes 196a, 196b disposed in the orthosis unit.
- Control unit 250 typically includes an RF transceiver 282 having an antenna 283 having a matching network, a digital circuit and microcontroller unit 280, and a user interface circuit 192, all powered by a power supply 284b.
- Power supply 284b may be powered by a battery such as rechargeable battery 284a.
- a charging and battery monitor 284c is advantageously associated with rechargeable battery 284a, and interfaces with an external power supply, such as a regulated, preferably medical-grade, wall adapter.
- RF transceiver 182 communicates with RP transceiver 282 of control unit 250.
- RF transceiver 282 transmits digital information to and receives digital information from digital circuit and microcontroller unit 280.
- microcontroller unit 280 and user interface circuit 192 exchange digital information.
- user preferences for various operating parameters can be communicated from user interface circuit 192 to microcontroller unit 280.
- Microcontroller unit 280 may be adapted to provide user interface circuit 192 with display information, including pertaining to stimulation parameters.
- PDAs such as PDA 450 are small, hand-held portable computers having a Central Processing Unit (CPU) and electronic memory, and are generally used for storing and organizing information and for providing tools for everyday tasks.
- the PDA may advantageously be operated by the Windows Mobile 5 software of Microsoft®.
- PDA 450 preferably has a database containing a gait log and various personal parameters of the patient, and is programmed to configure the stimulation parameters of the electrical stimulation system.
- PDA 450 and control unit 250 are preferably in digital and electrical communication, such that the orthosis system can be configured on-line by the clinician during actual usage of the orthosis by the patient.
- control unit 250 actually serves as the transmitter of PDA 450, enabling PDA 450, via control unit 250, to communicate with and command the other components of the electrical stimulation system.
- a microprocessor within the inventive system by means of the RF protocol software, implements a method for a Fast wireless Link Failure Identification (FLFI). If failure is identified, the system provides a fail-safe stimulation to promote gait stability.
- FLFI Fast wireless Link Failure Identification
- the term "stance time” refers to the time differential between a heel-off event and the previous heel-contact event.
- wing time refers to the time differential between a heel-contact event and the previous heel-off event.
- the situation of the user may be precarious: the stimulator resumes its 'heel-contact' activity and does not deliver stimulation, which may cause the patient to lose balance, to stumble, or even to fall.
- the system e.g., microcontroller unit 80 of foot sensor device 100 or in other possible embodiments, microcontroller unit 180 of stimulator unit 150
- microcontroller unit 80 calculates a 'keep-alive' duration, which is longer than the stance time.
- the 'keep-alive' duration is at least one hundredth of a second, more preferably, at least one tenth of a second, most preferably, at least 0.8 seconds.
- the 'keep-alive' duration is at least 0.01 times the stance time, preferably, at least 0.1 times the stance time, and most preferably, at least slightly longer than the stance time.
- Microcontroller unit 80 transmits this 'keep-alive' duration along with any heel event, to stimulator unit 150.
- microcontroller unit 80 If, after detecting a heel-contact event, microcontroller unit 80 does not detect a heel-off condition, microcontroller unit 80 transmits a 'keep-alive' message after the 'keep-alive' duration, so that stimulator unit 150 is aware that the link with foot sensor device 100 is functional, but that there are no events to report.
- microcontroller unit 180 recognizes that the link with foot sensor device 100 is not functional (no event message, nor 'keep-alive' message), and in the absence of gait event information, commands stimulation circuit 195 to apply a fail-safe stimulation for a pre-defined period of time.
- the fail-safe stimulation is delivered to the tissue slightly after the heel-off event should have been received, had no RF blocking occurred, since the 'keep-alive' duration is calculated based on the stance duration. This fail-safe stimulation helps the patient with dorsiflexion and reduces the risk of falling by substantially imitating the function of a mechanical orthosis (ankle-foot orthosis).
- FES system 500 employs a registration mechanism that enables several such systems to simultaneously operate in the same frequency channel.
- the registration is based on a unique identifier, preferably incorporated into the hardware of control unit 250, which serves as a digital 'family name' for all of the components of FES system 500: foot sensor device 100, stimulator unit 150, and control unit 250.
- Each transmission of each system component 100, 150, 250 preferably carries this identifier as a part of the payload.
- the transceiver first verifies that the transmitter belongs (is registered) to the same family, and only after verification proceeds to handle the transmitted data.
- the registration process also defines how the new component is introduced into an existing system, for example, as a replacement part.
- the end user moves the system to 'registration mode' by pressing a pre-defined key sequence on control unit 250.
- this key sequence is the same, regardless of the new component that is being introduced (registered) to FES system 500.
- a microcontroller unit such as microcontroller unit 80 of foot sensor device 100 (or another microcontroller unit within the system, such as microcontroller unit 180 of stimulator unit 150) is preferably configured to implement a 'Dynamic Gait Tracking' algorithm. This algorithm is designed to handle variable sensor response arising from various sources, including: • variations between sensors;
- Figure 6 is a schematic plot 400 showing, on the Y-axis, a magnitude or amplitude of pressure (or force) exerted on a pressure transducer (such as pressure transducer 16 shown in Figure 5) as a function of time, during gait assisted by an FES system of the present invention.
- the plot has a calculated dynamic range 402, which is a smoothed and or averaged differential between maximal or peak pressure values, and adjacent minimal or valley pressure values on pressure transducer 16. From the dynamic range are calculated a high threshold 404 and a low threshold 406, which serve as references for determining heel-contact events and heel-off events, respectively.
- Figure 6 is an exemplary block diagram showing the logical sequence of analysis and control performed by microcontroller unit 80 of foot sensor device 100, based on data received from pressure transducer 16.
- microcontroller unit 80 samples the signal of pressure transducer 16. If a peak or valley is detected (step 2), microcontroller unit 80 determines whether the peak or valley is a valid peak or valley, or an invalid peak or valley (step 3). If the peak or valley is found to be valid, the relevant trendline is updated (step 4), and the new dynamic range is calculated (step 5). As described hereinabove, high threshold 404 and low threshold 406 are recalculated based on the new dynamic range (step 6). Next, the signal sampled in step 1 is compared with high threshold 404 and low threshold 406 (step 7), and microcontroller unit 80 determines (using signal data from at least one previous sampling) whether high threshold 404 or low threshold 406 has been crossed (step 8).
- microcontroller unit 80 effects a change in the state of the system (step 9), from a STANCE state to a SWING state, triggering electrical stimulation, or from a SWING state to a STANCE state, triggering a cutting off of the stimulation.
- step 9 the state of the system
- step 2 the logical sequence preferably proceeds directly to step 7, in which the sampled signal is compared with high threshold 404 and low threshold 406.
- microcontroller unit 80 determines, in step 8, that high threshold 404 or low threshold 406 has not been crossed, the time elapsed within the current system state (STANCE or SWING) is evaluated (step 10). If the time elapsed exceeds a particular value, e.g., a calculated value based on the average stance/swing period, microcontroller unit 80 determines (step 11) that the user of the FES system is now in a STANDING state or in a SITTING state.
- STANCE or SWING the time elapsed within the current system state
- the particular value may be an absolute value, a calculated value based on the average stance/swing period, or based on a previous stance/swing period or periods, a function of the elapsed time of the previous peak or peaks, and/or a function of another gait parameter.
- step 1 The logical sequence of analysis and control returns to step 1, in which microcontroller unit 80 again samples the signal of pressure transducer 16.
- each of points 407 represents a crossing of high threshold 404; each of points 409 represents a crossing of low threshold 406.
- microcontroller unit 80 After determining that high threshold 404 has been crossed, microcontroller unit 80 effects a change in the state of the system from a SWING state 416 to a STANCE state 418. Similarly, upon determining that low threshold 406 has been crossed, microcontroller unit 80 effects a change in the state of the system from a STANCE state to a SWING state.
- stimulation circuit 195 is commanded to provide stimulation current during the course of SWING state 416.
- Peak 430 is characteristically long with respect to typical STANCE peaks during gait. If the time elapsed since crossing a high threshold point 429 exceeds a particular value (without crossing low threshold 406), microcontroller unit 80 determines that the state of the user of the FES system has changed from a STANCE state to a STANDING state.
- the particular value may be an absolute value, a calculated value based on the average stance/swing period or based on a previous stance/swing period or periods, a function of the elapsed time of the previous peak or peaks, and/or a function of another gait parameter.
- microcontroller unit 80 determines that the state of the user has changed from a SWING state to a SITTING state.
- microcontroller unit 80 determines whether a peak or valley is valid or invalid.
- Peak 414 is an example of a valid peak
- valley 416 is an example of a valid valley.
- An invalid peak such as invalid peak 420, has an amplitude that is less than a particular level. This pre-determined level is, at least in part, a function of the dynamic range. Thus, by way of example, a peak may be considered invalid if the peak amplitude is less than a pre-determined percentage of the dynamic range. Similarly, a valley may be an invalid valley such as invalid valley 420, if the amplitude of the valley (i.e., the drop in pressure from the previous peak to the valley is less than a pre-determined percentage of the dynamic range.
- Figure 8 is a schematic, simplified plot showing the pressure exerted on the pressure transducer as a function of time, during gait assisted by a system of the present invention.
- the time elapsed for valley 442 greatly exceeds the time elapsed for typical valleys such as valleys 444. Accordingly, microcontroller unit 80 determines that the state of the user has changed from a SWING state to a SITTING state.
- microcontroller unit 80 determines that the state of the user has changed from STANCE to STANDING.
- the determination of peak and valley validity is additionally and preferably dependent on the gait state.
- Each gait state preferably has an individual, dynamic threshold ⁇ typically a percentage or other function of the dynamic range — for determining peak and valley validity. This threshold should not to be confused with the heel-off and heel-contact thresholds described hereinabove.
- a relatively high threshold reduces the occurrence of false stimulation.
- the system is largely impervious to the effects of weight shifting while sitting, because the relatively low peaks generated by such weight shifting are considered invalid, and are not 'entered' into the trendline calculation. Consequently, these false gait peaks do not "pull" downward the peak trendline, do not decrease the dynamic range, and do not falsely sensitize the stimulation threshold (low threshold).
- the user enjoys a more quiet sitting, in which false stimulation while sitting is appreciably reduced.
- STANCE state valid peak amplitude > 25%-dynamic range
- STANDING state valid peak amplitude > 62.5%-dynamic range
- SWING state valid valley amplitude > 25%-dynamic range
- the software preferably samples the signals before and during each of the stimulation pulses.
- the monitored parameters and conditions may include:
- FIG 9 is a schematic plot of current as a function of time, for a bipolar stimulation pulse 450 of the prior art.
- Stimulation pulse 450 is substantially a square wave having a positive current phase 452 and a negative current phase 454.
- the inventors believe that this phenomenon is related to the dynamic impedance behavior of the tissue. Initially, the impedance of the tissue is relatively low, such that the requisite current can be delivered at an acceptably low voltage. With time, however, the impedance of the tissue may increase substantially, and to deliver constant current (so as to obtain a square wave), the voltage must be increased. According to Ohm's Law:
- V I Z
- I the current flowing through the impedance
- the voltage applied to the human body generally cannot be raised above a certain level, e.g., 120 Volts, consequently, as the impedance builds up, the current delivered may be limited — even severely limited — by the ceiling voltage.
- stimulator devices of the prior art are often constant voltage devices.
- positive current phase 452 is substantially a square wave.
- point B the impedance of the tissue has increased, but the source voltage still exceeds the multiplication product I • Z.
- the impedance of the tissue has increased to the point that the source voltage exactly equals the multiplication product I • Z.
- point E a further build-up in the impedance of the tissue forces the current delivered to drop (point D), monotonically, until positive current phase 452 is completed (point E).
- Positive current phase 452 is not, therefore, a perfect square wave, and the total charge delivered is substantially less than the calculated total current based on the square wave model. Consequently, the total charge delivered in negative current phase 454 tends to exceed the total charge delivered in positive current phase 452, which often results in skin irritation in the area through which the current is passed.
- Such stimulator devices of the prior art are of further disadvantage in that the use of constant voltage near the beginning of positive current phase 452 can be wasteful from an energy standpoint.
- FIG. 11 is a block diagram showing an exemplary embodiment of the inventive logical sequence of sampling, analysis and control performed by a microcontroller unit of the present invention. The sequence is designed to adjust or balance a bipolar digital stimulation current pulse 550 delivered by stimulation circuit 195.
- a positive current phase 552a of bipolar current pulse 550 is sampled/monitored over n preferably evenly-spaced sample points.
- the voltage is also sampled/monitored, and the impedance is calculated.
- the sampling/monitoring is preferably conducted at least 3 times, and more preferably, at least 5 times, over the duration of positive current phase 552a. In terms of timing, sampling is preferably conducted at least once every 10 microseconds over the duration of positive current phase 552a.
- a negative current phase 554a of bipolar current pulse 550 is sampled/monitored over m preferably evenly-spaced sample points.
- the voltage is also sampled/monitored.
- the charge in positive phase 552a and the charge in negative phase 554a are calculated based on the sampling points, and in some cases, the sampling times (steps 3 and 4), and these charges are then compared (step 5) to see if they are substantially equal, or that the charge differential is relatively small. If so, no balancing action is required, and the system waits for the next stimulation pulse.
- pulse balancing is performed (step 6), preferably on at least one of positive current phase 552b and negative current phase 554b of the next current pulse.
- the pulse balancing is performed by controlling at least one pulse parameter so as to improve charge balance between positive current phase 552a and a negative current phase such as negative current phase 554b.
- Various pulse parameters may be controlled to improve the charge balancing, including at least one of the following: current (positive phase or negative phase), positive current phase width, and negative current phase width.
- charge balancing is performed by controlling a pulse parameter of the negative phase.
- Some exemplary embodiments of the charge balancing are provided in Figure 12 ⁇ reduced phase amplitude of a negative current phase; Figure 13 ⁇ reduced phase width (duration) of a negative current phase; and Figure 14: increased current to a greater than nominal level, at least during a portion of the positive current phase.
- the voltage is adjusted to achieve substantially the minimum voltage satisfying Ohm's Law, so as to conserve energy/battery power.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Physical Education & Sports Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- General Physics & Mathematics (AREA)
- Physiology (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Rehabilitation Therapy (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Electrotherapy Devices (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2649663A CA2649663C (en) | 2006-05-01 | 2007-05-01 | Improved functional electrical stimulation systems |
US12/299,043 US8788049B2 (en) | 2006-05-01 | 2007-05-01 | Functional electrical stimulation systems |
AU2007245258A AU2007245258B2 (en) | 2006-05-01 | 2007-05-01 | Improved functional electrical stimulation systems |
JP2009517597A JP5324438B2 (en) | 2006-05-01 | 2007-05-01 | Improved functional electrical stimulation system |
MX2008013895A MX2008013895A (en) | 2006-05-01 | 2007-05-01 | Improved functional electrical stimulation systems. |
EP07736271A EP2012669B1 (en) | 2006-05-01 | 2007-05-01 | Improved functional electrical stimulation systems |
US14/333,184 US9415205B2 (en) | 2006-05-01 | 2014-07-16 | Functional electrical stimulation systems |
US15/237,208 US10016598B2 (en) | 2006-05-01 | 2016-08-15 | Functional electrical stimulation systems |
US16/030,065 US10543365B2 (en) | 2006-05-01 | 2018-07-09 | Functional electrical stimulation systems |
US16/773,610 US11247048B2 (en) | 2006-05-01 | 2020-01-27 | Functional electrical stimulation systems |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US74606006P | 2006-05-01 | 2006-05-01 | |
US60/746,060 | 2006-05-01 | ||
US80535906P | 2006-06-21 | 2006-06-21 | |
US60/805,359 | 2006-06-21 | ||
PCT/IL2006/001326 WO2007057899A2 (en) | 2005-11-16 | 2006-11-16 | Gait modulation system and method |
ILPCT/IL2006/001326 | 2006-11-16 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IL2006/001326 Continuation-In-Part WO2007057899A2 (en) | 2005-11-16 | 2006-11-16 | Gait modulation system and method |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/299,043 A-371-Of-International US8788049B2 (en) | 2006-05-01 | 2007-05-01 | Functional electrical stimulation systems |
US14/333,184 Division US9415205B2 (en) | 2006-05-01 | 2014-07-16 | Functional electrical stimulation systems |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007125534A2 true WO2007125534A2 (en) | 2007-11-08 |
WO2007125534A3 WO2007125534A3 (en) | 2009-04-16 |
Family
ID=40097453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IL2007/000531 WO2007125534A2 (en) | 2006-05-01 | 2007-05-01 | Improved functional electrical stimulation systems |
Country Status (7)
Country | Link |
---|---|
US (5) | US8788049B2 (en) |
EP (2) | EP2586489B1 (en) |
JP (1) | JP5324438B2 (en) |
AU (1) | AU2007245258B2 (en) |
CA (2) | CA2649663C (en) |
MX (1) | MX2008013895A (en) |
WO (1) | WO2007125534A2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITPD20090058A1 (en) * | 2009-03-24 | 2010-09-25 | Roberto Gabriotti | POSTURAL MONITORING SYSTEM FOR THE APPLICATION OF BIOFEEDBACK TECHNIQUES (RETRO BIOLOGICAL ACTION). |
GB2474239A (en) * | 2009-10-06 | 2011-04-13 | Salisbury Nhs Foundation Trust | Controller for a functional electrical stimulator |
US9333345B2 (en) | 2013-10-03 | 2016-05-10 | Ensilver Canada | Electrical stimulation for a functional electrical stimulation system |
US9364657B2 (en) | 2014-10-31 | 2016-06-14 | Ensilver Canada | Cuff unit for a functional electrical stimulation system |
US9375569B2 (en) | 2013-10-03 | 2016-06-28 | Ensilver Canada | Controller unit for a functional electrical stimulation (FES) orthotic system |
US9375570B2 (en) | 2013-10-03 | 2016-06-28 | Ensilver Canada | Sensor unit for a functional electrical stimulation (FES) orthotic system |
CN109998551A (en) * | 2019-04-11 | 2019-07-12 | 北京航空航天大学 | A kind of gait phase analysis method of segmented local peak detection |
Families Citing this family (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8972017B2 (en) | 2005-11-16 | 2015-03-03 | Bioness Neuromodulation Ltd. | Gait modulation system and method |
US7899556B2 (en) | 2005-11-16 | 2011-03-01 | Bioness Neuromodulation Ltd. | Orthosis for a gait modulation system |
US8209022B2 (en) * | 2005-11-16 | 2012-06-26 | Bioness Neuromodulation Ltd. | Gait modulation system and method |
US7632239B2 (en) * | 2005-11-16 | 2009-12-15 | Bioness Neuromodulation Ltd. | Sensor device for gait enhancement |
JP5324438B2 (en) | 2006-05-01 | 2013-10-23 | バイオネス ニューロモジュレイション リミテッド | Improved functional electrical stimulation system |
US8660656B2 (en) * | 2009-10-16 | 2014-02-25 | Hanger, Inc. | Cuff assembly |
US20110137375A1 (en) * | 2009-12-03 | 2011-06-09 | Mcbride Keith | System and method for detection of inversion and eversion of the foot using a multi-chamber insole |
US20130204545A1 (en) * | 2009-12-17 | 2013-08-08 | James C. Solinsky | Systems and methods for sensing balanced-action for improving mammal work-track efficiency |
US9470763B2 (en) | 2010-02-25 | 2016-10-18 | James C. Solinsky | Systems and methods for sensing balanced-action for improving mammal work-track efficiency |
WO2012003840A1 (en) * | 2010-07-09 | 2012-01-12 | Neurodan A/S | A system for stimulation of nerves |
JP5393634B2 (en) * | 2010-10-13 | 2014-01-22 | 本田技研工業株式会社 | Walking assist device |
CA2813656C (en) | 2010-10-29 | 2023-09-26 | Orpyx Medical Technologies Inc. | Peripheral sensory and supersensory replacement system |
KR101119904B1 (en) * | 2010-11-02 | 2012-02-29 | 이진욱 | Insole sheet for walk diagnosis, shoes system for walk diagnosis using thereof, and diagnosis service system for walk posture |
US9453772B2 (en) * | 2011-03-24 | 2016-09-27 | MedHab, LLC | Method of manufacturing a sensor insole |
WO2013025481A1 (en) * | 2011-08-12 | 2013-02-21 | Avex, Llc | Foot compression and electrical stimulation system |
GB2495967B (en) | 2011-10-27 | 2018-03-21 | Salisbury Nhs Found Trust | Wireless footswitch and functional electrical stimulation apparatus |
WO2013082473A1 (en) | 2011-12-02 | 2013-06-06 | Avex, Llc | Spring-driven foot compression system |
WO2013111137A2 (en) | 2012-01-26 | 2013-08-01 | Rainbow Medical Ltd. | Wireless neurqstimulatqrs |
US20150125839A1 (en) * | 2012-07-27 | 2015-05-07 | Tillges Technologies Llc | Wireless communication for pressure sensor readings |
US9524529B2 (en) | 2012-11-07 | 2016-12-20 | Cenergistic Llc | Interval analysis tool for energy consumption |
WO2014087337A1 (en) | 2012-12-06 | 2014-06-12 | Bluewind Medical Ltd. | Delivery of implantable neurostimulators |
CA2896800A1 (en) | 2013-01-21 | 2014-07-24 | Cala Health, Inc. | Devices and methods for controlling tremor |
WO2014138990A1 (en) * | 2013-03-15 | 2014-09-18 | Myndtec Inc. | Electrical stimulation system with pulse control |
BR112015028905A2 (en) * | 2013-05-21 | 2017-07-25 | Orpyx Medical Tech Inc | pressure data acquisition set and method of acquiring pressure data |
US9504407B2 (en) * | 2013-05-21 | 2016-11-29 | Chin Keong Lam | Method and system for processing runner data |
WO2015048563A2 (en) | 2013-09-27 | 2015-04-02 | The Regents Of The University Of California | Engaging the cervical spinal cord circuitry to re-enable volitional control of hand function in tetraplegic subjects |
US9867985B2 (en) * | 2014-03-24 | 2018-01-16 | Bioness Inc. | Systems and apparatus for gait modulation and methods of use |
US10016941B1 (en) | 2014-05-15 | 2018-07-10 | Feetz, Inc. | Systems and methods for measuring body parts for designing customized outerwear |
US10638927B1 (en) * | 2014-05-15 | 2020-05-05 | Casca Designs Inc. | Intelligent, additively-manufactured outerwear and methods of manufacturing thereof |
US10241498B1 (en) | 2014-05-15 | 2019-03-26 | Feetz, Inc. | Customized, additive-manufactured outerwear and methods for manufacturing thereof |
EP3148640B1 (en) | 2014-06-02 | 2024-01-24 | Cala Health, Inc. | Systems for peripheral nerve stimulation to treat tremor |
US11724101B2 (en) * | 2014-07-10 | 2023-08-15 | Hi-Dow Iphc, Inc. | Wireless electrical stimulation system |
US10004896B2 (en) | 2015-01-21 | 2018-06-26 | Bluewind Medical Ltd. | Anchors and implant devices |
US9764146B2 (en) | 2015-01-21 | 2017-09-19 | Bluewind Medical Ltd. | Extracorporeal implant controllers |
US10052062B2 (en) * | 2015-02-12 | 2018-08-21 | Hrl Laboratories, Llc | System and method for assistive gait intervention and fall prevention |
US10369075B2 (en) | 2015-03-03 | 2019-08-06 | Avex, Llc | Insole foot compression system and methods |
EP3283039B1 (en) | 2015-04-17 | 2019-05-15 | National University of Ireland Galway | Apparatus for management of a parkinson's disease patient's gait |
CN112914514A (en) | 2015-06-10 | 2021-06-08 | 卡拉健康公司 | System and method for peripheral nerve stimulation to treat tremor with a detachable treatment and monitoring unit |
US9782589B2 (en) | 2015-06-10 | 2017-10-10 | Bluewind Medical Ltd. | Implantable electrostimulator for improving blood flow |
US20200093400A1 (en) * | 2015-07-31 | 2020-03-26 | Cala Health, Inc. | Systems, devices, and method for the treatment of osteoarthritis |
WO2017053847A1 (en) | 2015-09-23 | 2017-03-30 | Cala Health, Inc. | Systems and methods for peripheral nerve stimulation in the finger or hand to treat hand tremors |
US10105540B2 (en) | 2015-11-09 | 2018-10-23 | Bluewind Medical Ltd. | Optimization of application of current |
US9713707B2 (en) | 2015-11-12 | 2017-07-25 | Bluewind Medical Ltd. | Inhibition of implant migration |
EP3399911B1 (en) | 2016-01-08 | 2020-03-04 | Nordic-Neurostim ApS | Gait detection method and apparatus |
AU2017206723B2 (en) | 2016-01-11 | 2021-11-25 | Bioness Inc. | Systems and apparatus for gait modulation and methods of use |
CN108778411B (en) | 2016-01-21 | 2022-06-03 | 卡拉健康公司 | Systems, methods, and devices for peripheral neuromodulation for treating diseases associated with overactive bladder |
USD795714S1 (en) * | 2016-04-25 | 2017-08-29 | VivaLnk, Inc. | Wearable thermometer having three electric pads |
USD795713S1 (en) * | 2016-04-25 | 2017-08-29 | VivaLnk, Inc. | Wearable thermometer having three electric pads |
WO2018009680A1 (en) | 2016-07-08 | 2018-01-11 | Cala Health, Inc. | Systems and methods for stimulating n nerves with exactly n electrodes and improved dry electrodes |
CN106377837A (en) * | 2016-09-19 | 2017-02-08 | 天津大学 | Functional muscle electrical stimulation walk-assisting device based on gait recognition and control method |
CN106345055A (en) * | 2016-09-19 | 2017-01-25 | 天津大学 | Gait recognition-based functional electrical muscular stimulation walking aid |
RU2021133948A (en) * | 2016-11-04 | 2021-12-02 | Ресторэйтив Терапиз | ERGOMETER FOR FUNCTIONAL ELECTRIC STIMULATION INCLUDING AUTOMATIC SPASM CONTROL |
US10124178B2 (en) | 2016-11-23 | 2018-11-13 | Bluewind Medical Ltd. | Implant and delivery tool therefor |
US11331480B2 (en) | 2017-04-03 | 2022-05-17 | Cala Health, Inc. | Systems, methods and devices for peripheral neuromodulation for treating diseases related to overactive bladder |
US20180353764A1 (en) | 2017-06-13 | 2018-12-13 | Bluewind Medical Ltd. | Antenna configuration |
EP3723692A4 (en) | 2017-12-15 | 2022-04-20 | Enlighten Mobility LLC | Medical walker |
KR102546547B1 (en) | 2018-01-11 | 2023-06-22 | 삼성전자주식회사 | Method and apparatus for assisting walking |
US11857778B2 (en) | 2018-01-17 | 2024-01-02 | Cala Health, Inc. | Systems and methods for treating inflammatory bowel disease through peripheral nerve stimulation |
JP7092336B2 (en) * | 2018-04-16 | 2022-06-28 | アニマ株式会社 | Load measurement shoes |
US11090801B2 (en) * | 2018-05-11 | 2021-08-17 | Arizona Board Of Regents On Behalf Of Northern Arizona University | Exoskeleton device |
KR102614779B1 (en) | 2018-09-14 | 2023-12-15 | 삼성전자주식회사 | Method and apparatus for assisting walking |
US20210106496A1 (en) * | 2018-10-28 | 2021-04-15 | Medical Feedback Technology Ltd | Cpr feedback device |
DE18205817T1 (en) * | 2018-11-13 | 2020-12-24 | Gtx Medical B.V. | SENSOR IN CLOTHING OF LIMBS OR FOOTWEAR |
US11484710B2 (en) | 2019-01-07 | 2022-11-01 | Evolution Devices, Inc. | Device and system for real-time gait modulation and methods of operation thereof |
RU2725090C1 (en) * | 2019-05-20 | 2020-06-29 | Общество с ограниченной ответственностью «Косима» (ООО «Косима») | Method for regulation and recovery of independent walking in patients with motor pathology of various geneses |
DE102019118402B4 (en) * | 2019-07-08 | 2024-08-22 | Markus Bresser | Targeted electromyostimulation |
US11890468B1 (en) | 2019-10-03 | 2024-02-06 | Cala Health, Inc. | Neurostimulation systems with event pattern detection and classification |
US11596828B1 (en) | 2019-10-18 | 2023-03-07 | Enlighten Mobility, LLC | Gait trainer attachment |
AT523133A1 (en) * | 2019-11-05 | 2021-05-15 | Andreas Muellner | Stimulation device |
USD1001749S1 (en) * | 2020-05-13 | 2023-10-17 | University Of South Florida | Base plate for a foot pedal |
TWI767528B (en) | 2021-01-22 | 2022-06-11 | 財團法人工業技術研究院 | Non-contact muscle signal detection and assistive device and method |
US11400299B1 (en) | 2021-09-14 | 2022-08-02 | Rainbow Medical Ltd. | Flexible antenna for stimulator |
Family Cites Families (151)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US494273A (en) | 1893-03-28 | Rudolph fuchs | ||
US3204637A (en) * | 1963-02-07 | 1965-09-07 | Erich J Frank | Stimulating apparatus |
US3344792A (en) * | 1965-01-13 | 1967-10-03 | Franklin F Offner | Method of muscular stimulation in human beings to aid in walking |
US3426748A (en) * | 1965-11-23 | 1969-02-11 | Gen Electric | Stimulator analyzer and locater |
US3881496A (en) * | 1967-12-22 | 1975-05-06 | Philips Corp | Apparatus and method for electrically stimulating leg muscles |
NL7102659A (en) * | 1971-02-27 | 1972-08-29 | ||
US4381012A (en) * | 1980-09-24 | 1983-04-26 | Wallant International Trade, Inc. | Electrode placement device |
US4432368A (en) * | 1980-09-24 | 1984-02-21 | Wallant International Trade, Inc. | Automatic electrode placement device |
US4528984A (en) * | 1983-04-25 | 1985-07-16 | Empi, Inc. | Autoprogrammable functional electrical stimulation apparatus and method |
US4569352A (en) * | 1983-05-13 | 1986-02-11 | Wright State University | Feedback control system for walking |
JPS60119949A (en) * | 1983-12-02 | 1985-06-27 | 三輪精機株式会社 | Walking aid apparatus by electric stimulation |
US4580569A (en) * | 1983-12-15 | 1986-04-08 | Wright State University | Apparatus and method for muscle stimulation |
US4558704A (en) | 1983-12-15 | 1985-12-17 | Wright State University | Hand control system |
US4586495A (en) * | 1984-07-02 | 1986-05-06 | Wright State University | Therapy system for acute patient care |
US4647918A (en) * | 1985-01-16 | 1987-03-03 | Goforth William P | Multi-event notification system for monitoring critical pressure points on persons with diminished sensation of the feet |
GB8510832D0 (en) * | 1985-04-29 | 1985-06-05 | Bio Medical Res Ltd | Electrical stimulation of muscle |
US4697808A (en) * | 1985-05-16 | 1987-10-06 | Wright State University | Walking assistance system |
GB2186191B (en) * | 1985-11-06 | 1990-01-10 | Univ Strathclyde | Hybrid orthosis |
NZ218499A (en) * | 1985-12-10 | 1990-04-26 | Genetic Systems Corp | Monoclonal antibodies against pseudomonas aeruginosa, pharmaceutical compositions and detection methods |
US5167229A (en) | 1986-03-24 | 1992-12-01 | Case Western Reserve University | Functional neuromuscular stimulation system |
US4745930A (en) * | 1986-10-16 | 1988-05-24 | Chattanooga Corporation | Force sensing insole for electro-goniometer |
US5016635A (en) * | 1988-11-29 | 1991-05-21 | Sigmedics, Inc. Of Delaware | Control of FNS via pattern variations of response EMG |
US5014705A (en) * | 1989-04-07 | 1991-05-14 | Sigmedics, Inc. Of Delaware | Microprocessor-controlled multiplexed functional electrical stimulator for surface stimulation in paralyzed patients |
US5081989A (en) * | 1989-04-07 | 1992-01-21 | Sigmedics, Inc. | Microprocessor-controlled enhanced multiplexed functional electrical stimulator for surface stimulation in paralyzed patients |
US4976264A (en) | 1989-05-10 | 1990-12-11 | Therapeutic Technologies Inc. | Power muscle stimulator |
US4996987A (en) * | 1989-05-10 | 1991-03-05 | Therapeutic Technologies Inc. | Power muscle stimulator |
IT1240362B (en) * | 1990-03-30 | 1993-12-10 | Medisan S.L.R. | PROCEDURE FOR THE ELECTROSTIMULATION OF A MUSCLE MASS IN ORDER TO IMPROVE THE AESTHETIC ASPECT, AND APPARATUS FOR IMPLEMENTING THE PROCEDURE |
EP0459945B1 (en) * | 1990-05-26 | 1997-11-19 | MED-EL Medical Electronics Elektro-medizinische Geräte GmbH | Neuromuscular electrical stimulation device |
IL97701A (en) * | 1991-03-28 | 1995-06-29 | Univ Ben Gurion | Device for generating hand function |
US5112296A (en) * | 1991-04-30 | 1992-05-12 | The Board Of Supervisors Of Louisiana State University | Biofeedback activated orthosis for foot-drop rehabilitation |
US5350414A (en) * | 1991-12-10 | 1994-09-27 | Electro Science Technologies, Inc. | Local application microprocessor based nerve and muscle stimulator |
JPH05293188A (en) | 1992-04-21 | 1993-11-09 | Nec San-Ei Instr Co Ltd | Living body function reformation system by electric stimulating device |
US5357696A (en) * | 1992-05-01 | 1994-10-25 | Gray Frank B | Device for measuring force applied to a wearer's foot |
US5300096A (en) | 1992-06-03 | 1994-04-05 | Hall H Eugene | Electromyographic treatment device |
US5449002A (en) * | 1992-07-01 | 1995-09-12 | Goldman; Robert J. | Capacitive biofeedback sensor with resilient polyurethane dielectric for rehabilitation |
US5318597A (en) | 1993-03-15 | 1994-06-07 | Cardiac Pacemakers, Inc. | Rate adaptive cardiac rhythm management device control algorithm using trans-thoracic ventilation |
US5487759A (en) * | 1993-06-14 | 1996-01-30 | Bastyr; Charles A. | Nerve stimulating device and associated support device |
US5476441A (en) * | 1993-09-30 | 1995-12-19 | Massachusetts Institute Of Technology | Controlled-brake orthosis |
GB9321086D0 (en) * | 1993-10-13 | 1993-12-01 | Univ Alberta | Hand stimulator |
US5664346A (en) * | 1994-05-04 | 1997-09-09 | Barker; Dale E. | Portable footwear illuminated |
US5408873A (en) * | 1994-07-25 | 1995-04-25 | Cleveland Medical Devices, Inc. | Foot force sensor |
US5540735A (en) * | 1994-12-12 | 1996-07-30 | Rehabilicare, Inc. | Apparatus for electro-stimulation of flexing body portions |
US5628722A (en) | 1995-03-03 | 1997-05-13 | Solomonow; Moshe | Method for maintaining knee stability of a user suffering from damage of a knee ligament |
US5566479A (en) * | 1995-03-21 | 1996-10-22 | Gray; Frank B. | Shoe contruction for use by diabetic persons |
JP3789136B2 (en) * | 1995-07-28 | 2006-06-21 | ユニリード インターナショナル インコーポレイテッド | Disposable dermatoelectric device |
US5748845A (en) * | 1995-07-31 | 1998-05-05 | Motorola, Inc. | FES method and system for controlling the movement of a limb |
US5643332A (en) * | 1995-09-20 | 1997-07-01 | Neuromotion Inc. | Assembly for functional electrical stimulation during movement |
US6236890B1 (en) | 1996-06-13 | 2001-05-22 | The Victoria University Of Manchester | Stimulation of muscles |
US6174294B1 (en) * | 1996-08-02 | 2001-01-16 | Orbital Technologies, Inc. | Limb load monitor |
IT1286236B1 (en) | 1996-09-24 | 1998-07-08 | Galaxy Top International Spa | PROCEDURE FOR THE CONTROLLED STIMULATION OF DEFAULT REGIONS OF THE HUMAN BODY THROUGH THE APPLICATION OF VARIABLE ELECTRICAL SIGNALS |
US5951598A (en) * | 1997-01-14 | 1999-09-14 | Heartstream, Inc. | Electrode system |
US6164284A (en) * | 1997-02-26 | 2000-12-26 | Schulman; Joseph H. | System of implantable devices for monitoring and/or affecting body parameters |
US5843142A (en) * | 1997-03-27 | 1998-12-01 | Sultan; Hashem | Voice activated loco motor device and method of use for spinal cord injuries |
US6064912A (en) * | 1997-03-28 | 2000-05-16 | Kenney; John P. | Orthotic/electrotherapy for treating contractures due to immobility |
AU7161598A (en) * | 1997-04-21 | 1998-11-13 | Virtual Technologies, Inc. | Goniometer-based body-tracking device and method |
US5861017A (en) * | 1997-06-06 | 1999-01-19 | Shriners Hospitals For Children | Portable functional electrical stimulation (FES) system for upper or lower extremity applications |
US6132386A (en) | 1997-07-01 | 2000-10-17 | Neurometrix, Inc. | Methods for the assessment of neuromuscular function by F-wave latency |
US5851191A (en) | 1997-07-01 | 1998-12-22 | Neurometrix, Inc. | Apparatus and methods for assessment of neuromuscular function |
US6876947B1 (en) * | 1997-10-02 | 2005-04-05 | Fitsense Technology, Inc. | Monitoring activity of a user in locomotion on foot |
DE19752939C1 (en) * | 1997-11-28 | 1999-08-26 | Kampel | Spill detector |
US5980472A (en) | 1998-02-20 | 1999-11-09 | Seyl; V. Craig | Joint movement monitoring system |
US6002965A (en) * | 1998-06-10 | 1999-12-14 | Katz; Amiram | Self applied device and method for prevention of deep vein thrombosis |
DE19830359A1 (en) | 1998-07-07 | 2000-01-20 | Helge Zwosta | Spatial position and movement determination of body and body parts for remote control of machine and instruments |
US6126355A (en) | 1998-08-31 | 2000-10-03 | Otto Bock, U.S., Inc. | Fastener for adjustable support device |
US7410471B1 (en) * | 1998-09-18 | 2008-08-12 | Becker Orthopedic Appliance Company | Orthosis knee joint and sensor |
AU3206900A (en) | 1998-12-31 | 2000-07-31 | Ball Semiconductor Inc. | Position sensing system |
JP3026007B1 (en) * | 1999-03-29 | 2000-03-27 | 学校法人 久留米大学 | Muscle strengthener |
US6195921B1 (en) * | 1999-09-28 | 2001-03-06 | Vinncente Hoa Gia Truong | Virtual intelligence shoe with a podiatric analysis system |
US6308102B1 (en) | 1999-09-29 | 2001-10-23 | Stimsoft, Inc. | Patient interactive neurostimulation system and method |
US6438428B1 (en) * | 1999-10-27 | 2002-08-20 | Axelgaard Manufacturing Co., Ltd. | Electrical stimulation compress |
US7403821B2 (en) * | 2000-02-17 | 2008-07-22 | Neurodan A/S | Method and implantable systems for neural sensing and nerve stimulation |
IL135175A0 (en) | 2000-03-20 | 2001-05-20 | Ness Neuromuscular Electrical Stimulation Systems Ltd | Electrode for muscle stimulation |
IL135585A (en) | 2000-04-11 | 2006-10-31 | Ness Neuromuscular Electrical Stimulation Systems Ltd | Electrode positioner for a splint to be used for muscle stimulation |
JP2001297318A (en) * | 2000-04-14 | 2001-10-26 | Omron Corp | Pedometer |
US6441747B1 (en) * | 2000-04-18 | 2002-08-27 | Motorola, Inc. | Wireless system protocol for telemetry monitoring |
US6393328B1 (en) * | 2000-05-08 | 2002-05-21 | International Rehabilitative Sciences, Inc. | Multi-functional portable electro-medical device |
JP3484398B2 (en) * | 2000-06-07 | 2004-01-06 | 株式会社第一クリエイト | Plastic jaws |
GB2368017B (en) * | 2000-06-20 | 2004-05-12 | Bournemouth University Higher | Apparatus for electrical stimulation of the leg |
JP2004505709A (en) * | 2000-08-14 | 2004-02-26 | ネオプラクシス プロプライエタリイ リミテッド | Muscle fatigue meter |
US6836744B1 (en) | 2000-08-18 | 2004-12-28 | Fareid A. Asphahani | Portable system for analyzing human gait |
JP3543778B2 (en) | 2000-10-16 | 2004-07-21 | オムロンヘルスケア株式会社 | Pedometer |
US6862481B1 (en) | 2000-11-20 | 2005-03-01 | Bassem M. Demian | Bunion treating device |
US6564103B2 (en) * | 2000-12-01 | 2003-05-13 | Visionquest Industries, Inc. | Electrical stimulator and method of use |
US20020077688A1 (en) * | 2000-12-15 | 2002-06-20 | Kirkland Thomas C. | Electrode-positioning body garment |
US6571115B2 (en) * | 2000-12-26 | 2003-05-27 | Axelgaard Manufacturing Company, Ltd. | Compress garment facilitating the use of medical electrodes |
JP2002200104A (en) | 2000-12-28 | 2002-07-16 | Japan Science & Technology Corp | Hybrid fes device used in combination with short lower limb appliance |
EP2263743A1 (en) * | 2001-01-16 | 2010-12-22 | BMR Research & Development Limited | Apparatus for stimulating a muscle of a subject |
US6587728B2 (en) * | 2001-03-30 | 2003-07-01 | Neurocontrol Corporation | Systems and methods for performing prosthetic or therapeutic neuromuscular stimulation using an external, battery powered controller with power conservation features |
WO2002085452A1 (en) * | 2001-04-24 | 2002-10-31 | Neurodan A/S | Functional electrical therapy system (fets) |
WO2002092164A2 (en) * | 2001-05-16 | 2002-11-21 | Fondation Suisse Pour Les Cybertheses | Therapeutic and/or training device for a person's lower limbs |
JP4611580B2 (en) * | 2001-06-27 | 2011-01-12 | 本田技研工業株式会社 | Torque application system |
JP3833921B2 (en) * | 2001-10-18 | 2006-10-18 | 本田技研工業株式会社 | Walking state determination apparatus and method |
WO2003032887A1 (en) * | 2001-10-19 | 2003-04-24 | The University Of Sydney | Improvements relating to muscle stimulation systems |
US6829510B2 (en) * | 2001-12-18 | 2004-12-07 | Ness Neuromuscular Electrical Stimulation Systems Ltd. | Surface neuroprosthetic device having an internal cushion interface system |
US6651352B2 (en) | 2002-01-04 | 2003-11-25 | Liberty Mutual | Wrist motion measurement device |
US6980112B2 (en) * | 2002-01-08 | 2005-12-27 | International Business Machines Corporation | Emergency call patient locating system for implanted automatic defibrillators |
US20030171706A1 (en) | 2002-03-11 | 2003-09-11 | Nelson Ronald E. | Adjustable size ankle brace |
US8974402B2 (en) * | 2002-04-12 | 2015-03-10 | Rxfunction, Inc. | Sensor prosthetic for improved balance control |
US7998092B2 (en) | 2002-07-11 | 2011-08-16 | Andante Medical Devices, Ltd. | Force sensor system for use in monitoring weight bearing |
USD494273S1 (en) * | 2002-09-19 | 2004-08-10 | Neurodan A/S (A Danish Company) | Pressure sensor |
JP4975249B2 (en) * | 2002-10-09 | 2012-07-11 | ボディーメディア インコーポレイテッド | Device for measuring an individual's state parameters using physiological information and / or context parameters |
US7162305B2 (en) * | 2002-10-23 | 2007-01-09 | The Hong Kong Polytechnic University | Functional electrical stimulation system |
US20070179560A1 (en) * | 2002-10-23 | 2007-08-02 | Kai-Yu Tong | Functional electrical stimulation system |
US6966882B2 (en) * | 2002-11-25 | 2005-11-22 | Tibion Corporation | Active muscle assistance device and method |
JP2004215735A (en) * | 2003-01-10 | 2004-08-05 | Kyushu Hitachi Maxell Ltd | Low-frequency treatment device |
ES2684379T3 (en) * | 2003-03-06 | 2018-10-02 | Trustees Of Boston University | Apparatus to improve balance and gait in humans and prevent foot injuries |
US20050043660A1 (en) * | 2003-03-31 | 2005-02-24 | Izex Technologies, Inc. | Orthoses |
CA2519771C (en) | 2003-04-02 | 2011-11-29 | Neurostream Technologies Inc. | Implantable nerve signal sensing and stimulation device for treating foot drop and other neurological disorders |
JP2004313555A (en) * | 2003-04-18 | 2004-11-11 | Roudou Fukushi Jigyodan | Functional electrostimulation walking assisting device |
JP4178186B2 (en) * | 2003-08-21 | 2008-11-12 | 国立大学法人 筑波大学 | Wearable motion assist device, control method for wearable motion assist device, and control program |
EP2064992A2 (en) | 2003-08-22 | 2009-06-03 | Alfred E. Mann Foundation for Scientific Research | A system for determining relative distance(s) and/or angle(s) between at least two points |
US20050049652A1 (en) * | 2003-08-25 | 2005-03-03 | Kai-Yu Tong | Functional electrical stimulation system |
JP4353409B2 (en) | 2003-10-10 | 2009-10-28 | ナブテスコ株式会社 | Prosthetic leg adjustment system |
US6978684B2 (en) * | 2003-11-10 | 2005-12-27 | Nike, Inc. | Apparel that dynamically, consciously, and/or reflexively affects subject performance |
US20050192645A1 (en) * | 2004-01-28 | 2005-09-01 | Stein Richard B. | Method to produce a balanced dorsiflexion during the gait of patients with foot drop |
US8070703B2 (en) | 2004-03-10 | 2011-12-06 | Vision Quest Industries Incorporated | Electrically stimulating orthotic device and segmented liner |
US7395113B2 (en) * | 2004-03-16 | 2008-07-01 | Medtronic, Inc. | Collecting activity information to evaluate therapy |
US7359751B1 (en) * | 2004-05-05 | 2008-04-15 | Advanced Neuromodulation Systems, Inc. | Clinician programmer for use with trial stimulator |
US7758523B2 (en) | 2004-05-24 | 2010-07-20 | Kineteks Corporation | Remote sensing shoe insert apparatus, method and system |
US7398255B2 (en) * | 2004-07-14 | 2008-07-08 | Shriners Hospitals For Children | Neural prosthesis with fuzzy logic control system |
JP2006166244A (en) * | 2004-12-09 | 2006-06-22 | Toshiba Corp | Network telephone system, and main device of the network telephone system |
EP1848380B1 (en) * | 2004-12-22 | 2015-04-15 | Össur hf | Systems and methods for processing limb motion |
KR100601981B1 (en) * | 2005-01-14 | 2006-07-18 | 삼성전자주식회사 | Method and apparatus for monitoring human activity pattern |
JP2008536583A (en) | 2005-04-18 | 2008-09-11 | バイオネス ディベロップメント,エルエルシー | System and associated method for determining dimensions between body positions |
US7878055B2 (en) | 2005-05-23 | 2011-02-01 | Alfiero Balzano | Sensor and analyzer for determining physiological limitations |
US20060276704A1 (en) | 2005-06-03 | 2006-12-07 | Mcginnis William J | Neurophysiological electrode placement apparel |
US9179862B2 (en) * | 2005-07-19 | 2015-11-10 | Board Of Regents Of The University Of Nebraska | Method and system for assessing locomotive bio-rhythms |
US20070173903A1 (en) * | 2005-08-30 | 2007-07-26 | Bioq, Inc. | Medical device for restoration of neurological function impaired by peripheral neuropathy |
JP2007105316A (en) * | 2005-10-14 | 2007-04-26 | Konica Minolta Sensing Inc | Bioinformation measuring instrument |
US8209022B2 (en) * | 2005-11-16 | 2012-06-26 | Bioness Neuromodulation Ltd. | Gait modulation system and method |
US7899556B2 (en) | 2005-11-16 | 2011-03-01 | Bioness Neuromodulation Ltd. | Orthosis for a gait modulation system |
US8972017B2 (en) | 2005-11-16 | 2015-03-03 | Bioness Neuromodulation Ltd. | Gait modulation system and method |
US7632239B2 (en) | 2005-11-16 | 2009-12-15 | Bioness Neuromodulation Ltd. | Sensor device for gait enhancement |
US7756585B2 (en) * | 2006-01-31 | 2010-07-13 | Good Samaritan Children's Therapy Unit | Muscle stimulation method and system to improve walking |
WO2007093941A1 (en) * | 2006-02-17 | 2007-08-23 | Koninklijke Philips Electronics N.V. | Orthosis and treatment method |
WO2007109745A2 (en) | 2006-03-22 | 2007-09-27 | Emotiv Systems, Pty Ltd. | Electrode and electrode headset |
JP5324438B2 (en) | 2006-05-01 | 2013-10-23 | バイオネス ニューロモジュレイション リミテッド | Improved functional electrical stimulation system |
US8500668B2 (en) | 2006-06-30 | 2013-08-06 | Drexel University | Orthosis and method of use for treatment and rehabilitation of dropfoot |
US7593776B2 (en) * | 2006-07-05 | 2009-09-22 | University Of Southern California | Flexible communication and control protocol for a wireless sensor and microstimulator network |
US8419713B1 (en) * | 2012-08-01 | 2013-04-16 | The University Of Utah Research Foundation | Carrier assembly with caps for medical connectors |
US20090043357A1 (en) * | 2007-08-07 | 2009-02-12 | The Hong Kong Polytechnic University | Wireless real-time feedback control functional electrical stimulation system |
US20110137375A1 (en) * | 2009-12-03 | 2011-06-09 | Mcbride Keith | System and method for detection of inversion and eversion of the foot using a multi-chamber insole |
US8452410B2 (en) | 2010-09-07 | 2013-05-28 | Aalborg Universitet | Method and device for reflex-based functional gait training |
US9095417B2 (en) * | 2011-02-07 | 2015-08-04 | Bioness Neuromodulation Ltd. | Adjustable orthosis for electrical stimulation of a limb |
KR20140013043A (en) | 2011-03-24 | 2014-02-04 | 캘리포니아 인스티튜트 오브 테크놀로지 | Neurostimulator |
US8868217B2 (en) | 2011-06-27 | 2014-10-21 | Bioness Neuromodulation Ltd. | Electrode for muscle stimulation |
US20130131555A1 (en) | 2011-11-17 | 2013-05-23 | William R. Hook | Gait analysis using angular rate reversal |
JP6168488B2 (en) | 2012-08-24 | 2017-07-26 | パナソニックIpマネジメント株式会社 | Body motion detection device and electrical stimulation device including the same |
CA2896800A1 (en) | 2013-01-21 | 2014-07-24 | Cala Health, Inc. | Devices and methods for controlling tremor |
US9867985B2 (en) | 2014-03-24 | 2018-01-16 | Bioness Inc. | Systems and apparatus for gait modulation and methods of use |
AU2017206723B2 (en) | 2016-01-11 | 2021-11-25 | Bioness Inc. | Systems and apparatus for gait modulation and methods of use |
-
2007
- 2007-05-01 JP JP2009517597A patent/JP5324438B2/en active Active
- 2007-05-01 WO PCT/IL2007/000531 patent/WO2007125534A2/en active Application Filing
- 2007-05-01 US US12/299,043 patent/US8788049B2/en active Active
- 2007-05-01 MX MX2008013895A patent/MX2008013895A/en unknown
- 2007-05-01 CA CA2649663A patent/CA2649663C/en active Active
- 2007-05-01 CA CA2956427A patent/CA2956427C/en active Active
- 2007-05-01 EP EP12197261.6A patent/EP2586489B1/en active Active
- 2007-05-01 EP EP07736271A patent/EP2012669B1/en active Active
- 2007-05-01 AU AU2007245258A patent/AU2007245258B2/en active Active
-
2014
- 2014-07-16 US US14/333,184 patent/US9415205B2/en active Active
-
2016
- 2016-08-15 US US15/237,208 patent/US10016598B2/en active Active
-
2018
- 2018-07-09 US US16/030,065 patent/US10543365B2/en active Active
-
2020
- 2020-01-27 US US16/773,610 patent/US11247048B2/en active Active
Non-Patent Citations (1)
Title |
---|
See references of EP2012669A4 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITPD20090058A1 (en) * | 2009-03-24 | 2010-09-25 | Roberto Gabriotti | POSTURAL MONITORING SYSTEM FOR THE APPLICATION OF BIOFEEDBACK TECHNIQUES (RETRO BIOLOGICAL ACTION). |
GB2474239A (en) * | 2009-10-06 | 2011-04-13 | Salisbury Nhs Foundation Trust | Controller for a functional electrical stimulator |
GB2474239B (en) * | 2009-10-06 | 2011-10-19 | Salisbury Nhs Foundation Trust | Apparatus for electrical stimulation of the body |
US9204822B2 (en) | 2009-10-06 | 2015-12-08 | Salisbury Nhs Foundation Trust | Apparatus for functional electrical stimulation of the body |
US9333345B2 (en) | 2013-10-03 | 2016-05-10 | Ensilver Canada | Electrical stimulation for a functional electrical stimulation system |
US9375569B2 (en) | 2013-10-03 | 2016-06-28 | Ensilver Canada | Controller unit for a functional electrical stimulation (FES) orthotic system |
US9375570B2 (en) | 2013-10-03 | 2016-06-28 | Ensilver Canada | Sensor unit for a functional electrical stimulation (FES) orthotic system |
US9364657B2 (en) | 2014-10-31 | 2016-06-14 | Ensilver Canada | Cuff unit for a functional electrical stimulation system |
CN109998551A (en) * | 2019-04-11 | 2019-07-12 | 北京航空航天大学 | A kind of gait phase analysis method of segmented local peak detection |
CN109998551B (en) * | 2019-04-11 | 2020-09-11 | 北京航空航天大学 | Gait phase analysis method for sectional type local peak detection |
Also Published As
Publication number | Publication date |
---|---|
MX2008013895A (en) | 2009-01-29 |
US10543365B2 (en) | 2020-01-28 |
US20170065815A1 (en) | 2017-03-09 |
EP2012669A4 (en) | 2010-04-21 |
CA2649663A1 (en) | 2007-11-08 |
EP2012669A2 (en) | 2009-01-14 |
US9415205B2 (en) | 2016-08-16 |
AU2007245258A1 (en) | 2007-11-08 |
US20190009086A1 (en) | 2019-01-10 |
US20090069865A1 (en) | 2009-03-12 |
WO2007125534A3 (en) | 2009-04-16 |
CA2649663C (en) | 2017-03-14 |
EP2586489B1 (en) | 2014-12-24 |
EP2586489A1 (en) | 2013-05-01 |
US11247048B2 (en) | 2022-02-15 |
US20200155842A1 (en) | 2020-05-21 |
JP2010509940A (en) | 2010-04-02 |
CA2956427C (en) | 2021-08-17 |
US20150080979A1 (en) | 2015-03-19 |
JP5324438B2 (en) | 2013-10-23 |
CA2956427A1 (en) | 2007-11-08 |
US10016598B2 (en) | 2018-07-10 |
EP2012669B1 (en) | 2013-03-13 |
AU2007245258B2 (en) | 2013-09-19 |
US8788049B2 (en) | 2014-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11247048B2 (en) | Functional electrical stimulation systems | |
JP6178359B2 (en) | Improved functional electrical stimulation system | |
US8382688B2 (en) | Sensor device for gait enhancement | |
US10076656B2 (en) | Gait modulation system and method | |
US8209022B2 (en) | Gait modulation system and method | |
AU2019200793B2 (en) | Improved functional electrical stimulation systems | |
AU2013273609B2 (en) | Improved Functional Electrical Stimulation Systems | |
AU2019202303A1 (en) | Gait modulation system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07736271 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007736271 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 194627 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2649663 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009517597 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12299043 Country of ref document: US Ref document number: MX/A/2008/013895 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007245258 Country of ref document: AU |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2007245258 Country of ref document: AU Date of ref document: 20070501 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: JP |