WO2007117026A1 - Moving speed detecting apparatus for mobile terminal - Google Patents

Moving speed detecting apparatus for mobile terminal Download PDF

Info

Publication number
WO2007117026A1
WO2007117026A1 PCT/JP2007/057997 JP2007057997W WO2007117026A1 WO 2007117026 A1 WO2007117026 A1 WO 2007117026A1 JP 2007057997 W JP2007057997 W JP 2007057997W WO 2007117026 A1 WO2007117026 A1 WO 2007117026A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
moving speed
pilot signal
maximum doppler
doppler frequency
Prior art date
Application number
PCT/JP2007/057997
Other languages
French (fr)
Japanese (ja)
Inventor
Akinori Ohashi
Kazuaki Ishioka
Takuya Sakaishi
Shinsuke Uga
Hiroo Omori
Original Assignee
Mitsubishi Electric Corporation
Ntt Docomo, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation, Ntt Docomo, Inc. filed Critical Mitsubishi Electric Corporation
Priority to JP2008509913A priority Critical patent/JP4876124B2/en
Publication of WO2007117026A1 publication Critical patent/WO2007117026A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/10Systems for determining distance or velocity not using reflection or reradiation using radio waves using Doppler effect
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the present invention relates to a moving speed detection apparatus for a mobile terminal that detects the moving speed of the mobile terminal from a received signal transmitted from a base station.
  • Conventional mobile terminal moving speed detection devices include a pilot signal extraction unit that extracts a pilot signal from a received signal, a frequency analysis unit that performs a fast Fourier transform in accordance with the extracted pilot signal, and a high-speed Based on the sample data after Fourier transform, it is composed of a maximum Doppler frequency estimator that estimates the maximum Doppler frequency and a moving speed calculator that calculates the moving speed from the estimated maximum Doppler frequency and the carrier frequency. There is something to do.
  • the maximum Doppler frequency estimation unit detects the frequency at which the power value of the pilot signal is maximum on the frequency axis based on the sample data after fast Fourier transform corresponding to the pilot signal, and performs maximum Doppler frequency estimation.
  • a force that estimates frequency The differentiation circuit that performs differentiation on sample data after high-speed Fourier transform, and the minimum value detector that detects the minimum value from the output of the differentiation circuit and estimates the maximum Doppler frequency (For example, see Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 7-140232
  • a conventional mobile terminal moving speed detection apparatus is configured as described above! Therefore, the frequency analysis unit performs fast Fourier transform in accordance with the pilot signal. This is one of the means for performing frequency analysis.
  • a mobile terminal moving speed detection device it is generally desired that a mobile terminal moving speed detection device be realized with as little calculation as possible for reasons such as power consumption and circuit scale.
  • the amount of calculation increases by performing fast Fourier transform.
  • the present invention has been made to solve the above-described problems. It is an object of the present invention to obtain a moving speed detection device for a mobile terminal that detects a moving speed by performing frequency analysis with a small amount of calculation. Target.
  • a moving speed detection apparatus for a mobile terminal includes a pilot signal extraction unit that extracts a pilot signal from a reception signal transmitted from a base station, and an octave division filter bank, and the pilot signal extraction unit A frequency analysis unit that calculates a power value for each frequency band corresponding to the extracted pilot signal, and a maximum Doppler frequency estimation unit that estimates the maximum Doppler frequency based on the power value for each frequency band calculated by the frequency analysis unit. And a moving speed calculating unit that calculates a moving speed from the maximum Doppler frequency estimated by the maximum Doppler frequency estimating unit and the carrier frequency of the pilot signal extracted by the pilot signal extracting unit.
  • FIG. 1 is a block diagram showing a moving speed detection device for a mobile terminal according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram showing an example when the frequency analysis unit divides the octave into eight bands.
  • FIG. 3 is a block diagram showing a filter bank corresponding to octave division.
  • FIG. 4 is a block diagram showing a specific example of HPF and LPF.
  • FIG. 5 is a graph showing an example of frequency band selection for calculating the maximum Doppler frequency.
  • FIG. 6 is a flowchart showing processing of a maximum Doppler frequency estimation unit.
  • FIG. 7 is a block diagram showing a moving speed detection device for a mobile terminal according to Embodiment 2 of the present invention.
  • FIG. 8 is a block diagram showing a moving speed detection device for a mobile terminal according to Embodiment 3 of the present invention.
  • FIG. 9 is a block diagram showing a moving speed detection apparatus for a mobile terminal according to Embodiment 4 of the present invention.
  • FIG. 10 is a flowchart showing processing of a maximum Doppler frequency estimation unit.
  • FIG. 11 is a block diagram showing a moving speed detection device for a mobile terminal according to Embodiment 6 of the present invention.
  • FIG. 12 is a configuration diagram showing details of a filter with a clip.
  • FIG. 1 is a configuration diagram showing a moving speed detection apparatus for a mobile terminal according to Embodiment 1 of the present invention.
  • a pilot signal extraction unit 1 extracts a pilot signal from a received signal transmitted from a base station. To do.
  • the frequency analysis unit 2 divides the extracted pilot signal into a predetermined frequency band by using an octave division filter bank, and calculates a power value for each frequency band.
  • the maximum Doppler frequency estimation unit 3 estimates the maximum Doppler frequency from the calculated power value for each frequency band.
  • the moving speed calculation unit 4 calculates the moving speed based on the estimated maximum Doppler frequency and the carrier frequency of the received signal.
  • a pilot signal extraction unit 1 extracts a pilot signal from a received signal that has also been transmitted with a base station power.
  • the frequency analysis unit 2 includes a filter bank that performs octave division of a pilot signal and a power calculation unit that calculates a power value for each divided frequency band.
  • the pilot signal is divided into octaves and the power value of each frequency band is calculated.
  • Fig. 2 is an explanatory diagram showing an example of octave division into eight bands in the frequency analysis unit.
  • the frequency band divided into octaves is 3.75 (kHz). It is.
  • the speed of light c 3. OX 10 8 (mZs), the maximum Doppler frequency fd (Hz), and the carrier frequency fc (Hz).
  • the octave division filter bank in the frequency analysis unit 2 includes the next high-pass filter (H PF) 21 and the first-order low-pass filter (LPF) 22 By connecting HPFZLPF in a tree shape as shown in Fig. 3, an octave division filter bank is realized.
  • the frequency analysis unit 2 divides the pilot signal into predetermined frequency bands in the octave division filter bank, calculates the power value for each frequency band in the power calculation unit 23, and then calculates the power value for each frequency band in the regularity processing unit 24. Perform regular processing to match the bandwidth.
  • (1) to (8) shown in FIG. 3 correspond to the frequency bands (1) to (8) shown in FIG. 2, and the calculated power value for each frequency band is the maximum Doppler frequency estimation unit.
  • Fig. 4 is a block diagram showing a specific example of HPF and LPF.
  • the first-order high-pass filter (HPF) 21 and the first-order low-pass filter (L PF ) 22 is the storage element 25 provided on one path where the input is branched, the downsampler 26 provided on both paths and the rate 1Z2 of each path, and the value of the other path provided on both paths. It consists of an adder 27 that adds and subtracts the value of this path.
  • the maximum Doppler frequency estimation unit 3 estimates the power value force maximum Doppler frequency for each frequency band obtained by the frequency analysis unit 2.
  • the maximum Doppler frequency estimation unit 3 calculates a candidate maximum Doppler frequency after selecting a plurality of frequency bands, and sequentially performs a check until the calculated frequency meets a condition. In addition, when multiple frequency bands are selected, the maximum Doppler frequency can be estimated more accurately by sequentially selecting higher frequency band forces in order to suppress the influence of direct waves in the rice fading environment.
  • FIG. 5 is a graph showing an example of selection of a frequency band for calculating the maximum Doppler frequency.
  • the frequency bands (4) to (6) are selected from (1) to (8).
  • the candidate maximum Doppler frequency is obtained from the power value of each frequency band.
  • a center of gravity point is obtained by weighting the power value of each frequency band, and this center of gravity point is determined as the maximum Doppler frequency. The method of making a candidate for If the calculated frequency is not within the selected frequency band, select a different band and calculate again.
  • FIG. 6 is a flowchart showing processing of the maximum Doppler frequency estimation unit.
  • the maximum Doppler frequency estimation unit 3 performs the following processing (ST1) to (ST3).
  • the movement speed calculation unit 4 calculates the movement speed using the maximum Doppler frequency estimated by the maximum Doppler frequency estimation unit 3 and the carrier frequency of the pilot signal extracted by the pilot signal extraction unit 1.
  • the maximum Doppler frequency estimation unit 3 sequentially selects the power value of a high frequency band, thereby suppressing the influence of the direct wave in the rice fading environment and estimating the more accurate maximum Doppler frequency.
  • FIG. 7 is a block diagram showing a moving speed detection apparatus for a mobile terminal according to Embodiment 2 of the present invention.
  • a pilot signal extraction unit 1 is used in a CDMA mobile terminal by using a multipath detection function. Then, the pilot signal is extracted from the received signal for each path or each antenna, and the frequency analysis unit 2 performs the frequency band according to the pilot signal extracted by the pilot signal extraction unit 1 for each path or each antenna. The power value is calculated, and the power combiner 5 combines the calculated power values for each frequency band.
  • the number of fingers is 8 and the number of antennas is 2. The other configurations are the same as those in FIG.
  • pilot signal extraction unit 1 extracts a pilot signal from the received signal for each path and each antenna
  • frequency analysis unit 2 applies to each pilot signal extracted for each path and each antenna.
  • the power combiner 5 combines the obtained power values for each frequency band.
  • the maximum Doppler frequency estimation unit 3 estimates the maximum Doppler frequency from the power in each frequency band
  • the moving speed calculation unit 4 detects the moving speed from the estimated maximum Doppler frequency and the carrier wave frequency.
  • the pilot signal is extracted from the received signal for each path or for each antenna in the pilot signal extraction unit 1 to perform frequency analysis.
  • the power value for each frequency band corresponding to the pilot signal extracted by the pilot signal extraction unit is calculated for each path or for each antenna, and synthesized in each frequency band in power combining unit 5, The power value of each frequency band can be obtained more accurately.
  • FIG. 8 is a block diagram showing a moving speed detection device for a mobile terminal according to Embodiment 3 of the present invention.
  • the low frequency suppression processing unit 31 is a high frequency band as preprocessing.
  • the maximum frequency Doppler frequency calculation unit 32 performs the same processing as the maximum Doppler frequency estimation unit 3 in the first embodiment.
  • Other configurations are the same as those in FIG.
  • the maximum Doppler frequency estimation unit 3 includes a low frequency suppression processing unit 31 and a maximum Doppler frequency calculation unit 32.
  • the low frequency suppression processing unit 31 suppresses leakage into the high and frequency bands due to the low frequency band.
  • the leakage due to the low frequency band and the high frequency band is caused by the fact that the frequency analysis unit 2 cannot accurately divide the frequency band by using HPFZLPF. Low frequency suppression As a result, the power value for each frequency band can be accurately obtained, and the maximum Doppler frequency can be estimated appropriately.
  • the maximum Doppler frequency calculation unit 32 performs the same processing as the maximum Doppler frequency estimation unit 3 in the first embodiment.
  • the maximum Doppler frequency estimator 3 performs the low frequency suppression process on the high frequency band as a pre-processing, so that the high frequency band by the low frequency band is obtained.
  • the power value for each frequency band corresponding to the pilot signal can be obtained more accurately.
  • FIG. 9 is a configuration diagram showing a moving speed detection apparatus for a mobile terminal according to Embodiment 4 of the present invention.
  • the power value correction unit 33 uses a high frequency band as an interference component.
  • the maximum Doppler frequency calculation unit 32 performs the same processing as the maximum Doppler frequency estimation unit 3 in the first embodiment. It is.
  • Other configurations are the same as those in FIG.
  • the maximum Doppler frequency estimation unit 3 includes a power value correction unit 33 and a maximum Doppler frequency calculation unit 32.
  • the power value correcting unit 33 regards the highest frequency component as interference power and corrects power values in other frequency bands.
  • the reason why the highest frequency component is the interference power is that the frequency band divided by the frequency analysis unit 2 is wider than the expected Doppler shift, so there is almost no Doppler shift to the highest frequency band. It is because it is considered. In the example of the frequency band to be divided by the octave in Fig. 2, it is necessary to move in the range of 931.5 to 1863 (kmZh) in order to doppler shift to the highest frequency band, and the speed is detected by the mobile terminal.
  • the maximum Doppler frequency calculation unit 32 performs the same processing as the maximum Doppler frequency estimation unit 3 in the first embodiment. Is what you do.
  • the maximum Doppler frequency estimation unit 3 uses the high frequency band as an interference component, and corrects the power value in the low frequency band according to the interference component.
  • the power value of each frequency band corresponding to the pilot signal can be obtained more accurately.
  • the maximum Doppler frequency estimation unit 3 in Embodiment 5 calculates quality information of the selected frequency bands after selecting a plurality of frequency bands, and determines a threshold value for determining whether the maximum Doppler frequency can be calculated for the quality information. To do. The rest of the configuration is the same as in Figure 1.
  • FIG. 10 is a flowchart showing the processing of the maximum Doppler frequency estimation unit.
  • the maximum Doppler frequency estimation unit 3 performs the following processing (ST1) to (ST5).
  • Quality information corresponding to the selected frequency band is calculated. For example, as the quality information, the signal power to interference power ratio (SIR) of the selected frequency band, the selected band power to total power ratio, etc. are calculated.
  • SIR signal power to interference power ratio
  • the obtained quality information is compared with a preset threshold value, and if the obtained quality information is equal to or greater than the preset threshold value, the requested quality information is preset to (ST2). If it is less than the threshold, return to (ST1) and reselect a different frequency band.
  • the maximum Doppler frequency estimation unit 3 calculates the quality information of the selected frequency band, and the threshold value for determining whether or not the maximum Doppler frequency can be calculated for the quality information. By making a decision, a more accurate maximum Doppler frequency can be estimated. [0033] Embodiment 6.
  • FIG. 11 is a block diagram showing a moving speed detection device for a mobile terminal according to Embodiment 6 of the present invention.
  • the filter 6 with a clip corresponds to the moving speed calculated by the moving speed calculation unit 4. Appropriate estimation is performed sequentially. The rest of the configuration is the same as in Figure 1.
  • the clipped filter 6 operates so as to converge successively to an appropriate estimated value in which the frequency distribution force of the detection speed is also expected.
  • FIG. 12 is a block diagram showing details of the filter with clip, and is a configuration example of a filter with clip (nonlinear IIR filter) that performs such processing simply and sequentially.
  • the filter with clip 6 shown in FIG. 12 includes a maximum speed clip processing unit 61, an acceleration clip processing unit 62, a storage element 63, adders 64 and 66, and a multiplier 65.
  • the maximum speed clip processing unit 61 performs a clipping process with a predetermined value when the detected speed as an input value is equal to or higher than a predetermined value.
  • the acceleration clip processing unit 62 performs acceleration clip processing by applying the filter function f (x) to the input value X to the acceleration clip processing unit 62.
  • filter function f (X) is defined as follows.
  • the storage element 63 sequentially stores the filter output.
  • the maximum speed clip processing unit 61 a predetermined speed is detected with respect to the detection speed that is the filter input value. Clip processing is performed for speed detection results that exceed the maximum speed.
  • the adder 64 calculates the acceleration by taking the difference between the result after processing by the maximum speed clip processing unit 61 and the previous filter output result from the storage element 63.
  • the multiplier 65 multiplies the acceleration obtained by the adder 64 by a filter coefficient K.
  • the acceleration clip processing unit 62 if the calculation result force by the multiplier 65 exceeds a predetermined maximum acceleration or minimum acceleration, clipping processing is performed with each value.
  • the adder 66 adds the acceleration after processing by the acceleration clip processing unit 62 and the previous filter output value from the storage element 63, and updates the value of the storage element 63 using the result as a filter value. As a result.
  • the detection is performed.
  • the accuracy of the moving speed can be improved.
  • the moving speed detection device can perform frequency analysis with a small amount of computation by using an octave division filter bank in the frequency analysis unit, it is possible to receive the signal transmitted from the base station. It is suitable for use in a moving speed detection device of a CDMA mobile terminal that detects a moving speed from a signal.

Abstract

A moving speed detecting apparatus for a mobile terminal is composed of: a pilot signal extracting section (1) for extracting a pilot signal from the received signal transmitted from a base station; a frequency analyzing section (2) formed by an octave division filter bank for computing the value of power for each frequency band according to the pilot signal extracted by the pilot signal extracting section (1); a maximum Doppler frequency estimating section (3) for estimating the maximum Doppler frequency on the basis of the power value for each frequency band computed by the frequency analyzing section (2); and a moving speed computing section (4) for computing moving speed from the maximum Doppler frequency estimated by the maximum Doppler frequency estimating section (3) and the carrier frequency of the pilot signal extracted by the pilot signal extracting section (1). The frequency can be analyzed with a small amount of computation to detect the moving speed by using the octave division filter bank for the frequency analyzing section (2).

Description

移動体端末の移動速度検出装置  Moving speed detection device for mobile terminal
技術分野  Technical field
[0001] この発明は、基地局から送信された受信信号より、当該移動体端末の移動速度を 検出する移動体端末の移動速度検出装置に関するものである。  The present invention relates to a moving speed detection apparatus for a mobile terminal that detects the moving speed of the mobile terminal from a received signal transmitted from a base station.
背景技術  Background art
[0002] 従来の移動体端末の移動速度検出装置としては、受信信号よりパイロット信号を抽 出するパイロット信号抽出部と、抽出されたパイロット信号に応じて高速フーリエ変換 を行う周波数解析部と、高速フーリエ変換後のサンプルデータに基づ 、て最大ドッブ ラー周波数を推定する最大ドップラー周波数推定部と、推定された最大ドップラー周 波数と搬送波周波数とから移動速度を算出する移動速度算出部とにより構成される ものがある。  [0002] Conventional mobile terminal moving speed detection devices include a pilot signal extraction unit that extracts a pilot signal from a received signal, a frequency analysis unit that performs a fast Fourier transform in accordance with the extracted pilot signal, and a high-speed Based on the sample data after Fourier transform, it is composed of a maximum Doppler frequency estimator that estimates the maximum Doppler frequency and a moving speed calculator that calculates the moving speed from the estimated maximum Doppler frequency and the carrier frequency. There is something to do.
[0003] また、その最大ドップラー周波数推定部は、パイロット信号に応じた高速フーリエ変 換後のサンプルデータに基づいて、周波数軸上においてパイロット信号の電力値が 極大となる周波数を検出し、最大ドップラー周波数を推定するものである力 高速フ 一リエ変換後のサンプルデータに対して微分処理を行う微分回路と、その微分回路 の出力より最小値を検出し、最大ドップラー周波数を推定する最小値検出部とを備え たものである(例えば、特許文献 1参照)。  [0003] Further, the maximum Doppler frequency estimation unit detects the frequency at which the power value of the pilot signal is maximum on the frequency axis based on the sample data after fast Fourier transform corresponding to the pilot signal, and performs maximum Doppler frequency estimation. A force that estimates frequency The differentiation circuit that performs differentiation on sample data after high-speed Fourier transform, and the minimum value detector that detects the minimum value from the output of the differentiation circuit and estimates the maximum Doppler frequency (For example, see Patent Document 1).
[0004] 特許文献 1 :特開平 7— 140232号公報 [0004] Patent Document 1: Japanese Patent Laid-Open No. 7-140232
[0005] 従来の移動体端末の移動速度検出装置は以上のように構成されて!、るので、周波 数解析部において、パイロット信号に応じて高速フーリエ変換を行う。これは、周波数 解析を行う手段の一つではある。また、移動体端末の移動速度検出装置では、一般 に消費電力や回路規模等の理由から、できる限り少ない演算量で実現することが望 まれる。し力しながら、高速フーリエ変換を行うことにより、演算量が増加してしまうな どの課題があった。  [0005] A conventional mobile terminal moving speed detection apparatus is configured as described above! Therefore, the frequency analysis unit performs fast Fourier transform in accordance with the pilot signal. This is one of the means for performing frequency analysis. In addition, it is generally desired that a mobile terminal moving speed detection device be realized with as little calculation as possible for reasons such as power consumption and circuit scale. However, there is a problem that the amount of calculation increases by performing fast Fourier transform.
[0006] この発明は上記のような課題を解決するためになされたもので、少ない演算量で周 波数解析し、移動速度を検出する移動体端末の移動速度検出装置を得ることを目 的とする。 [0006] The present invention has been made to solve the above-described problems. It is an object of the present invention to obtain a moving speed detection device for a mobile terminal that detects a moving speed by performing frequency analysis with a small amount of calculation. Target.
発明の開示  Disclosure of the invention
[0007] この発明に係る移動体端末の移動速度検出装置は、基地局から送信された受信 信号よりパイロット信号を抽出するパイロット信号抽出部と、オクターブ分割フィルタバ ンクにより構成され、パイロット信号抽出部により抽出されたパイロット信号に応じた周 波数帯域毎の電力値を算出する周波数解析部と、周波数解析部により算出された 周波数帯域毎の電力値に基づいて最大ドップラー周波数を推定する最大ドップラー 周波数推定部と、最大ドップラー周波数推定部により推定された最大ドップラー周波 数とパイロット信号抽出部により抽出されたパイロット信号のキャリア周波数とから移 動速度を算出する移動速度算出部とを備えたものである。  [0007] A moving speed detection apparatus for a mobile terminal according to the present invention includes a pilot signal extraction unit that extracts a pilot signal from a reception signal transmitted from a base station, and an octave division filter bank, and the pilot signal extraction unit A frequency analysis unit that calculates a power value for each frequency band corresponding to the extracted pilot signal, and a maximum Doppler frequency estimation unit that estimates the maximum Doppler frequency based on the power value for each frequency band calculated by the frequency analysis unit. And a moving speed calculating unit that calculates a moving speed from the maximum Doppler frequency estimated by the maximum Doppler frequency estimating unit and the carrier frequency of the pilot signal extracted by the pilot signal extracting unit.
[0008] この発明によれば、周波数解析部にオクターブ分割フィルタバンクを用いることによ り、少ない演算量で周波数解析し、移動速度を検出することができる効果がある。 図面の簡単な説明 [0008] According to the present invention, by using an octave division filter bank in the frequency analysis unit, there is an effect that frequency analysis can be performed with a small amount of calculation and a moving speed can be detected. Brief Description of Drawings
[0009] [図 1]この発明の実施の形態 1による移動体端末の移動速度検出装置を示す構成図 である。  FIG. 1 is a block diagram showing a moving speed detection device for a mobile terminal according to Embodiment 1 of the present invention.
[図 2]周波数解析部において 8つの帯域にオクターブ分割した時の例を示す説明図 である。  FIG. 2 is an explanatory diagram showing an example when the frequency analysis unit divides the octave into eight bands.
[図 3]オクターブ分割に対応するフィルタバンクを示す構成図である。  FIG. 3 is a block diagram showing a filter bank corresponding to octave division.
[図 4]HPFと LPFの具体例を示す構成図である。  FIG. 4 is a block diagram showing a specific example of HPF and LPF.
[図 5]最大ドップラー周波数を算出のための周波数帯域の選択例を示すグラフ図で ある。  FIG. 5 is a graph showing an example of frequency band selection for calculating the maximum Doppler frequency.
[図 6]最大ドップラー周波数推定部の処理を示すフローチャートである。  FIG. 6 is a flowchart showing processing of a maximum Doppler frequency estimation unit.
[図 7]この発明の実施の形態 2による移動体端末の移動速度検出装置を示す構成図 である。  FIG. 7 is a block diagram showing a moving speed detection device for a mobile terminal according to Embodiment 2 of the present invention.
[図 8]この発明の実施の形態 3による移動体端末の移動速度検出装置を示す構成図 である。  FIG. 8 is a block diagram showing a moving speed detection device for a mobile terminal according to Embodiment 3 of the present invention.
[図 9]この発明の実施の形態 4による移動体端末の移動速度検出装置を示す構成図 である。 [図 10]最大ドップラー周波数推定部の処理を示すフローチャートである。 FIG. 9 is a block diagram showing a moving speed detection apparatus for a mobile terminal according to Embodiment 4 of the present invention. FIG. 10 is a flowchart showing processing of a maximum Doppler frequency estimation unit.
[図 11]この発明の実施の形態 6による移動体端末の移動速度検出装置を示す構成 図である。  FIG. 11 is a block diagram showing a moving speed detection device for a mobile terminal according to Embodiment 6 of the present invention.
[図 12]クリップ付きフィルタの詳細を示す構成図である。  FIG. 12 is a configuration diagram showing details of a filter with a clip.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、この発明をより詳細に説明するために、この発明を実施するための最良の形 態について、添付の図面に従って説明する。 Hereinafter, in order to describe the present invention in more detail, the best mode for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態 1.  Embodiment 1.
図 1はこの発明の実施の形態 1による移動体端末の移動速度検出装置を示す構成 図であり、図において、パイロット信号抽出部 1は、基地局から送信された受信信号よ りパイロット信号を抽出するものである。周波数解析部 2は、オクターブ分割フィルタ バンクを用いることにより、抽出されたパイロット信号を所定の周波数帯域に分割し、 周波数帯域毎の電力値を算出するものである。最大ドップラー周波数推定部 3は、 算出された周波数帯域毎の電力値より、最大ドップラー周波数を推定するものである 。移動速度算出部 4は、推定された最大ドップラー周波数と受信信号のキャリア周波 数とにより、移動速度を算出するものである。  FIG. 1 is a configuration diagram showing a moving speed detection apparatus for a mobile terminal according to Embodiment 1 of the present invention. In the figure, a pilot signal extraction unit 1 extracts a pilot signal from a received signal transmitted from a base station. To do. The frequency analysis unit 2 divides the extracted pilot signal into a predetermined frequency band by using an octave division filter bank, and calculates a power value for each frequency band. The maximum Doppler frequency estimation unit 3 estimates the maximum Doppler frequency from the calculated power value for each frequency band. The moving speed calculation unit 4 calculates the moving speed based on the estimated maximum Doppler frequency and the carrier frequency of the received signal.
[0011] 次に動作について説明する。 Next, the operation will be described.
図 1において、パイロット信号抽出部 1は、基地局力も送信された受信信号よりパイ ロット信号を抽出する。  In FIG. 1, a pilot signal extraction unit 1 extracts a pilot signal from a received signal that has also been transmitted with a base station power.
[0012] 周波数解析部 2は、パイロット信号をオクターブ分割するフィルタバンクと、分割した 周波数帯域毎の電力値を算出する電力算出部とから構成される。周波数解析部 2で は、パイロット信号をオクターブ分割し、各周波数帯域の電力値を算出する。  [0012] The frequency analysis unit 2 includes a filter bank that performs octave division of a pilot signal and a power calculation unit that calculates a power value for each divided frequency band. In the frequency analysis unit 2, the pilot signal is divided into octaves and the power value of each frequency band is calculated.
[0013] 図 2は周波数解析部において 8つの帯域にオクターブ分割した時の例を示す説明 図であり、図 2に示した例では、オクターブ分割される周波数帯域は 3. 75 (kHz)ま でである。また、この例では搬送波周波数 fc = 2. 174 (GHz)としているため、移動 速度 v(mZs)が v=c XfdZfcにより求められることから、最大移動速度 1863 (kmZ h)まで検出することが可能となる。但し、光速 c = 3. O X 108 (mZs)、最大ドップラー 周波数 fd (Hz)、搬送波周波数 fc (Hz)である。 [0014] 図 3はオクターブ分割に対応するフィルタバンクを示す構成図であり、図において、 周波数解析部 2におけるオクターブ分割フィルタバンクは、次のハイパスフィルタ (H PF) 21と、 1次のローパスフィルタ(LPF) 22により構成される。 HPFZLPFを、図 3 に示したようにツリー状に繋ぐことにより、オクターブ分割フィルタバンクを実現する。 周波数解析部 2では、オクターブ分割フィルタバンクにおいて、パイロット信号を所定 の周波数帯域に分割し、電力算出部 23において周波数帯域毎の電力値を算出した 後、正規ィ匕処理部 24において周波数帯域毎に帯域を合わせるための正規ィ匕処理を 行う。図 3に示した(1)〜(8)は、図 2に示した(1)〜(8)の周波数帯域と対応しており 、算出した周波数帯域毎の電力値は、最大ドップラー周波数推定部 3へと出力される [0013] Fig. 2 is an explanatory diagram showing an example of octave division into eight bands in the frequency analysis unit. In the example shown in Fig. 2, the frequency band divided into octaves is 3.75 (kHz). It is. In this example, since the carrier frequency fc = 2.174 (GHz), the moving speed v (mZs) can be obtained from v = c XfdZfc, so it can be detected up to the maximum moving speed 1863 (kmZ h). It becomes. However, the speed of light c = 3. OX 10 8 (mZs), the maximum Doppler frequency fd (Hz), and the carrier frequency fc (Hz). FIG. 3 is a block diagram showing a filter bank corresponding to octave division. In the figure, the octave division filter bank in the frequency analysis unit 2 includes the next high-pass filter (H PF) 21 and the first-order low-pass filter (LPF) 22 By connecting HPFZLPF in a tree shape as shown in Fig. 3, an octave division filter bank is realized. The frequency analysis unit 2 divides the pilot signal into predetermined frequency bands in the octave division filter bank, calculates the power value for each frequency band in the power calculation unit 23, and then calculates the power value for each frequency band in the regularity processing unit 24. Perform regular processing to match the bandwidth. (1) to (8) shown in FIG. 3 correspond to the frequency bands (1) to (8) shown in FIG. 2, and the calculated power value for each frequency band is the maximum Doppler frequency estimation unit. Output to 3
[0015] 図 4は HPFと LPFの具体例を示す構成図であり、図において、この例では処理量 を削減するため、 1次のハイパスフィルタ(HPF) 21および 1次のローパスフィルタ(L PF) 22は、入力を分岐した一方の経路に設けられた蓄積要素 25と、両経路に設け られ、それぞれの経路のレート 1Z2にするダウンサンブラ 26と、両経路に設けられ、 他方の経路の値力 本経路の値を加減算する加算器 27とにより構成されている。 [0015] Fig. 4 is a block diagram showing a specific example of HPF and LPF. In this figure, in order to reduce the processing amount, in this example, the first-order high-pass filter (HPF) 21 and the first-order low-pass filter (L PF ) 22 is the storage element 25 provided on one path where the input is branched, the downsampler 26 provided on both paths and the rate 1Z2 of each path, and the value of the other path provided on both paths. It consists of an adder 27 that adds and subtracts the value of this path.
[0016] 最大ドップラー周波数推定部 3では、周波数解析部 2で得られた周波数帯域毎の 電力値力 最大ドップラー周波数を推定する。  The maximum Doppler frequency estimation unit 3 estimates the power value force maximum Doppler frequency for each frequency band obtained by the frequency analysis unit 2.
最大ドップラー周波数推定部 3は、複数の周波数帯域を選択した後、候補となる最 大ドップラー周波数を計算し、計算した周波数が条件に合うまで順次チ ックを行うも のである。また、複数の周波数帯域を選択する時、ライスフェージング環境における 直接波の影響を抑圧するため、高い周波数帯域力 順次選択することにより、より正 確に最大ドップラー周波数を推定することが可能となる。  The maximum Doppler frequency estimation unit 3 calculates a candidate maximum Doppler frequency after selecting a plurality of frequency bands, and sequentially performs a check until the calculated frequency meets a condition. In addition, when multiple frequency bands are selected, the maximum Doppler frequency can be estimated more accurately by sequentially selecting higher frequency band forces in order to suppress the influence of direct waves in the rice fading environment.
[0017] 図 5は最大ドップラー周波数を算出のための周波数帯域の選択例を示すグラフ図 であり、図において、(1)〜 (8)の周波数帯域にパイロット信号を周波数分割した場 合において、(1)〜(8)の中から、(4)〜(6)の周波数帯域を選択した例である。複 数の周波数帯域を選択後、各周波数帯域の電力値から候補となる最大ドップラー周 波数を求める。候補となる最大ドップラー周波数を求める方法として、例えば、各周 波数帯域の電力値を重みとした重心点を求め、この重心点を最大ドップラー周波数 の候補とする方法が挙げられる。この時求めた周波数が選択した周波数帯域内に無 ければ、異なる帯域を選択して再度計算する。 FIG. 5 is a graph showing an example of selection of a frequency band for calculating the maximum Doppler frequency. In the figure, when the pilot signal is frequency-divided into the frequency bands (1) to (8), In this example, the frequency bands (4) to (6) are selected from (1) to (8). After selecting multiple frequency bands, the candidate maximum Doppler frequency is obtained from the power value of each frequency band. As a method for determining the maximum Doppler frequency as a candidate, for example, a center of gravity point is obtained by weighting the power value of each frequency band, and this center of gravity point is determined as the maximum Doppler frequency. The method of making a candidate for If the calculated frequency is not within the selected frequency band, select a different band and calculate again.
[0018] 図 6は最大ドップラー周波数推定部の処理を示すフローチャートであり、最大ドッブ ラー周波数推定部 3にお 、て、以下に示す (ST1)〜(ST3)の処理を行う。  FIG. 6 is a flowchart showing processing of the maximum Doppler frequency estimation unit. The maximum Doppler frequency estimation unit 3 performs the following processing (ST1) to (ST3).
(ST1)複数の周波数帯域を選択する。例えば、高い周波数の帯域力 順に 3つの 帯域を選択する。  (ST1) Select multiple frequency bands. For example, select three bands in order of higher frequency band power.
(ST2)候補となる最大ドップラー周波数を計算する。  (ST2) A candidate maximum Doppler frequency is calculated.
(ST3)計算した周波数が選択帯域内であれば、最大ドップラー周波数とする。また 、選択帯域内でなければ、(ST1)へ戻り、周波数の低い帯域を再選択する。  (ST3) If the calculated frequency is within the selected band, the maximum Doppler frequency is set. If it is not within the selected band, the process returns to (ST1) to reselect a band having a low frequency.
[0019] 移動速度算出部 4では、最大ドップラー周波数推定部 3において推定した最大ドッ ブラー周波数と、パイロット信号抽出部 1において抽出されたパイロット信号の搬送波 周波数を用いて、移動速度を算出する。移動速度算出部 4は、移動速度 v (mZs)、 光速 c = 3. O X IO8 (m/s)、最大ドップラー周波数 f d (Hz)、搬送波周波数 fc (Hz) とした時、以下の式より移動速度を算出する。 The movement speed calculation unit 4 calculates the movement speed using the maximum Doppler frequency estimated by the maximum Doppler frequency estimation unit 3 and the carrier frequency of the pilot signal extracted by the pilot signal extraction unit 1. The moving speed calculation unit 4 uses the following formula when moving speed v (mZs), light speed c = 3. OX IO 8 (m / s), maximum Doppler frequency fd (Hz), carrier frequency fc (Hz) Calculate the moving speed.
v=c X fd/ fc  v = c X fd / fc
[0020] 以上のように、この実施の形態 1によれば、周波数解析部 2にオクターブ分割フィル タバンクを用いることにより、少ない演算量で周波数解析し、移動速度を検出すること ができる。  [0020] As described above, according to the first embodiment, by using the octave division filter bank in the frequency analysis unit 2, it is possible to perform frequency analysis with a small amount of calculation and detect the moving speed.
また、最大ドップラー周波数推定部 3において、高い周波数帯域の電力値力も順次 選択することにより、ライスフェージング環境における直接波の影響を抑圧し、より正 確な最大ドップラー周波数を推定することができる。  In addition, the maximum Doppler frequency estimation unit 3 sequentially selects the power value of a high frequency band, thereby suppressing the influence of the direct wave in the rice fading environment and estimating the more accurate maximum Doppler frequency.
[0021] 実施の形態 2. [0021] Embodiment 2.
図 7はこの発明の実施の形態 2による移動体端末の移動速度検出装置を示す構成 図であり、図において、 CDMA移動機端末において、マルチパス検出機能を用いる ことにより、パイロット信号抽出部 1は、パス毎、あるいはアンテナ毎に受信信号よりパ ィロット信号を抽出し、周波数解析部 2は、パス毎、あるいはアンテナ毎にパイロット信 号抽出部 1により抽出されたパイロット信号に応じた周波数帯域毎の電力値を算出し 、電力合成部 5は、それら算出された電力値を周波数帯域毎に合成するものである。 図 7に示した構成例では、フィンガ数 8、アンテナ数 2としたものであり、その他の構成 については図 1と同様である。 FIG. 7 is a block diagram showing a moving speed detection apparatus for a mobile terminal according to Embodiment 2 of the present invention. In the figure, a pilot signal extraction unit 1 is used in a CDMA mobile terminal by using a multipath detection function. Then, the pilot signal is extracted from the received signal for each path or each antenna, and the frequency analysis unit 2 performs the frequency band according to the pilot signal extracted by the pilot signal extraction unit 1 for each path or each antenna. The power value is calculated, and the power combiner 5 combines the calculated power values for each frequency band. In the configuration example shown in FIG. 7, the number of fingers is 8 and the number of antennas is 2. The other configurations are the same as those in FIG.
[0022] 次に動作について説明する。  Next, the operation will be described.
図 1において、パイロット信号抽出部 1は、パス毎、アンテナ毎に受信信号からパイ ロット信号を抽出し、周波数解析部 2は、パス毎、アンテナ毎に抽出したノ ィロット信 号に対して、それぞれオクターブ分割フィルタバンクを用いて周波数帯域を分割し、 各周波数帯域の電力値を算出する。電力合成部 5は、求めた電力値を周波数帯域 毎に合成する。最大ドップラー周波数推定部 3は、各周波数帯域の電力から最大ドッ ブラー周波数を推定し、移動速度算出部 4は、推定した最大ドップラー周波数と搬送 波周波数とから移動速度を検出する。  In Fig. 1, pilot signal extraction unit 1 extracts a pilot signal from the received signal for each path and each antenna, and frequency analysis unit 2 applies to each pilot signal extracted for each path and each antenna. Divide the frequency band using the octave division filter bank and calculate the power value of each frequency band. The power combiner 5 combines the obtained power values for each frequency band. The maximum Doppler frequency estimation unit 3 estimates the maximum Doppler frequency from the power in each frequency band, and the moving speed calculation unit 4 detects the moving speed from the estimated maximum Doppler frequency and the carrier wave frequency.
[0023] 以上のように、この実施の形態 2によれば、 CDMA移動体端末の場合、ノ ィロット 信号抽出部 1において、パス毎、あるいはアンテナ毎に受信信号よりパイロット信号を 抽出し、周波数解析部 2において、パス毎、あるいはアンテナ毎にパイロット信号抽 出部により抽出されたパイロット信号に応じた周波数帯域毎の電力値を算出し、電力 合成部 5において、周波数帯域毎に合成することにより、各周波数帯域の電力値をよ り正確に求めることができる。  As described above, according to the second embodiment, in the case of a CDMA mobile terminal, the pilot signal is extracted from the received signal for each path or for each antenna in the pilot signal extraction unit 1 to perform frequency analysis. In unit 2, the power value for each frequency band corresponding to the pilot signal extracted by the pilot signal extraction unit is calculated for each path or for each antenna, and synthesized in each frequency band in power combining unit 5, The power value of each frequency band can be obtained more accurately.
[0024] 実施の形態 3.  Embodiment 3.
図 8はこの発明の実施の形態 3による移動体端末の移動速度検出装置を示す構成 図であり、図の最大ドップラー周波数推定部 3において、低周波数抑圧処理部 31は 、前処理として高周波数帯域に対して低周波数抑圧処理を行うものであり、最大ドッ ブラー周波数算出部 32は、上記実施の形態 1における最大ドップラー周波数推定部 3と同様の処理を行うものである。その他の構成については図 1と同様である。  FIG. 8 is a block diagram showing a moving speed detection device for a mobile terminal according to Embodiment 3 of the present invention. In the maximum Doppler frequency estimation unit 3 in the figure, the low frequency suppression processing unit 31 is a high frequency band as preprocessing. The maximum frequency Doppler frequency calculation unit 32 performs the same processing as the maximum Doppler frequency estimation unit 3 in the first embodiment. Other configurations are the same as those in FIG.
[0025] 次に動作について説明する。  Next, the operation will be described.
図 8において、最大ドップラー周波数推定部 3は、低周波数抑圧処理部 31と、最大 ドップラー周波数算出部 32とにより構成される。低周波数抑圧処理部 31は、低い周 波数帯域による高 、周波数帯域への漏洩を抑圧するものである。この低 、周波数帯 域による高 、周波数帯域への漏洩は、周波数解析部 2にお 、て HPFZLPFを用い ることにより、周波数帯域を正確に分割できずに生じたものである。低周波数抑圧処 理を行うことにより、周波数帯域毎の電力値を正確に求めることができ、最大ドッブラ 一周波数を適切に推定することが可能となる。最大ドップラー周波数算出部 32は、 上記実施の形態 1における最大ドップラー周波数推定部 3と同様の処理を行うもので ある。 In FIG. 8, the maximum Doppler frequency estimation unit 3 includes a low frequency suppression processing unit 31 and a maximum Doppler frequency calculation unit 32. The low frequency suppression processing unit 31 suppresses leakage into the high and frequency bands due to the low frequency band. The leakage due to the low frequency band and the high frequency band is caused by the fact that the frequency analysis unit 2 cannot accurately divide the frequency band by using HPFZLPF. Low frequency suppression As a result, the power value for each frequency band can be accurately obtained, and the maximum Doppler frequency can be estimated appropriately. The maximum Doppler frequency calculation unit 32 performs the same processing as the maximum Doppler frequency estimation unit 3 in the first embodiment.
[0026] 以上のように、この実施の形態 3によれば、最大ドップラー周波数推定部 3において 、前処理として高周波数帯域に対して低周波数抑圧処理を行うことにより、低周波数 帯域による高周波数帯域への漏れ込みを抑圧し、パイロット信号に応じた各周波数 帯域毎の電力値をより正確に求めることができる。  As described above, according to the third embodiment, the maximum Doppler frequency estimator 3 performs the low frequency suppression process on the high frequency band as a pre-processing, so that the high frequency band by the low frequency band is obtained. The power value for each frequency band corresponding to the pilot signal can be obtained more accurately.
[0027] 実施の形態 4.  [0027] Embodiment 4.
図 9はこの発明の実施の形態 4による移動体端末の移動速度検出装置を示す構成 図であり、図の最大ドップラー周波数推定部 3において、電力値補正部 33は、高周 波数帯域を干渉成分とし、その干渉成分に応じて低周波数帯域の電力値を補正す るものであり、最大ドップラー周波数算出部 32は、上記実施の形態 1における最大ド ップラー周波数推定部 3と同様の処理を行うものである。その他の構成については図 1と同様である。  FIG. 9 is a configuration diagram showing a moving speed detection apparatus for a mobile terminal according to Embodiment 4 of the present invention. In the maximum Doppler frequency estimation unit 3 in the figure, the power value correction unit 33 uses a high frequency band as an interference component. The maximum Doppler frequency calculation unit 32 performs the same processing as the maximum Doppler frequency estimation unit 3 in the first embodiment. It is. Other configurations are the same as those in FIG.
[0028] 次に動作について説明する。  Next, the operation will be described.
図 9において、最大ドップラー周波数推定部 3は、電力値補正部 33と、最大ドッブラ 一周波数算出部 32とにより構成される。電力値補正部 33は、最も高い周波数成分を 干渉電力と見なし、他の周波数帯域における電力値を補正するものである。最も高 い周波数成分を干渉電力とする理由は、周波数解析部 2において分割する周波数 帯域が、予想されるドップラーシフトに比べて広帯域であることから、最も高い周波数 帯域にドップラーシフトすることは殆どないと考えられるためである。図 2におけるオタ ターブ分割する周波数帯域の例では、最も高い周波数帯域にドップラーシフトするた めには、 931. 5〜1863 (kmZh)の範囲で移動する必要があり、移動機端末に速 度検出装置を搭載する場合ではこのような移動速度は殆どないと考えられる。電力 値補正処理を行うことにより、周波数帯域毎の電力値を正確に求めることができ、最 大ドップラー周波数を適切に推定することが可能となる。最大ドップラー周波数算出 部 32は、上記実施の形態 1における最大ドップラー周波数推定部 3と同様の処理を 行うものである。 In FIG. 9, the maximum Doppler frequency estimation unit 3 includes a power value correction unit 33 and a maximum Doppler frequency calculation unit 32. The power value correcting unit 33 regards the highest frequency component as interference power and corrects power values in other frequency bands. The reason why the highest frequency component is the interference power is that the frequency band divided by the frequency analysis unit 2 is wider than the expected Doppler shift, so there is almost no Doppler shift to the highest frequency band. It is because it is considered. In the example of the frequency band to be divided by the octave in Fig. 2, it is necessary to move in the range of 931.5 to 1863 (kmZh) in order to doppler shift to the highest frequency band, and the speed is detected by the mobile terminal. In the case where the device is mounted, it is considered that there is almost no such moving speed. By performing the power value correction process, the power value for each frequency band can be accurately obtained, and the maximum Doppler frequency can be estimated appropriately. The maximum Doppler frequency calculation unit 32 performs the same processing as the maximum Doppler frequency estimation unit 3 in the first embodiment. Is what you do.
[0029] 以上のように、この実施の形態 4によれば、最大ドップラー周波数推定部 3において 、高周波数帯域を干渉成分とし、その干渉成分に応じて低周波数帯域の電力値を 補正することにより、パイロット信号に応じた各周波数帯域の電力値をより正確に求め ることがでさる。  As described above, according to the fourth embodiment, the maximum Doppler frequency estimation unit 3 uses the high frequency band as an interference component, and corrects the power value in the low frequency band according to the interference component. Thus, the power value of each frequency band corresponding to the pilot signal can be obtained more accurately.
[0030] 実施の形態 5. [0030] Embodiment 5.
この実施の形態 5における最大ドップラー周波数推定部 3では、複数の周波数帯域 を選択した後に、それら選択した周波数帯域の品質情報を算出し、その品質情報に 対して最大ドップラー周波数の算出可否の閾値判定するものである。その他の構成 については図 1と同様である。  The maximum Doppler frequency estimation unit 3 in Embodiment 5 calculates quality information of the selected frequency bands after selecting a plurality of frequency bands, and determines a threshold value for determining whether the maximum Doppler frequency can be calculated for the quality information. To do. The rest of the configuration is the same as in Figure 1.
[0031] 次に動作について説明する。 Next, the operation will be described.
図 10は最大ドップラー周波数推定部の処理を示すフローチャートであり、最大ドッ ブラー周波数推定部 3にお 、て、以下に示す (ST1)〜(ST5)の処理を行う。  FIG. 10 is a flowchart showing the processing of the maximum Doppler frequency estimation unit. The maximum Doppler frequency estimation unit 3 performs the following processing (ST1) to (ST5).
(ST1)複数の周波数帯域を選択する。例えば、高い周波数の帯域力 順に 3つの 帯域を選択する。  (ST1) Select multiple frequency bands. For example, select three bands in order of higher frequency band power.
(ST4)選択した周波数帯域に応じた品質情報を計算する。例えば、品質情報とし て、選択した周波数帯域の信号電力対干渉電力比 (SIR)や、選択帯域電力対全電 力比等を計算する。  (ST4) Quality information corresponding to the selected frequency band is calculated. For example, as the quality information, the signal power to interference power ratio (SIR) of the selected frequency band, the selected band power to total power ratio, etc. are calculated.
(ST5)求められた品質情報と予め設定された閾値とを比較し、求められた品質情 報が予め設定された閾値以上であれば (ST2)へ、求められた品質情報が予め設定 された閾値未満であれば (ST1)へ戻り、異なる周波数帯域を再選択する。  (ST5) The obtained quality information is compared with a preset threshold value, and if the obtained quality information is equal to or greater than the preset threshold value, the requested quality information is preset to (ST2). If it is less than the threshold, return to (ST1) and reselect a different frequency band.
(ST2)候補となる最大ドップラー周波数を計算する。  (ST2) A candidate maximum Doppler frequency is calculated.
(ST3)計算した周波数が選択帯域内であれば、最大ドップラー周波数とする。また 、選択帯域内でなければ、(ST1)へ戻り、周波数の低い帯域を再選択する。  (ST3) If the calculated frequency is within the selected band, the maximum Doppler frequency is set. If it is not within the selected band, the process returns to (ST1) to reselect a band having a low frequency.
[0032] 以上のように、この実施の形態 5によれば、最大ドップラー周波数推定部 3において 、選択した周波数帯域の品質情報を算出し、その品質情報に対して最大ドップラー 周波数の算出可否の閾値判定をすることにより、より正確な最大ドップラー周波数を 推定することができる。 [0033] 実施の形態 6. As described above, according to the fifth embodiment, the maximum Doppler frequency estimation unit 3 calculates the quality information of the selected frequency band, and the threshold value for determining whether or not the maximum Doppler frequency can be calculated for the quality information. By making a decision, a more accurate maximum Doppler frequency can be estimated. [0033] Embodiment 6.
図 11はこの発明の実施の形態 6による移動体端末の移動速度検出装置を示す構 成図であり、図において、クリップ付きフィルタ 6は、移動速度算出部 4により算出され た移動速度に対して逐次的に適切な推定を行うものである。その他の構成について は図 1と同様である。  FIG. 11 is a block diagram showing a moving speed detection device for a mobile terminal according to Embodiment 6 of the present invention. In the figure, the filter 6 with a clip corresponds to the moving speed calculated by the moving speed calculation unit 4. Appropriate estimation is performed sequentially. The rest of the configuration is the same as in Figure 1.
[0034] 次に動作について説明する。 Next, the operation will be described.
図 11において、クリップ付きフィルタ 6は、検出速度の度数分布力も予想される適切 な推定値へ、逐次的に収束するように動作するものである。  In FIG. 11, the clipped filter 6 operates so as to converge successively to an appropriate estimated value in which the frequency distribution force of the detection speed is also expected.
図 12はクリップ付きフィルタの詳細を示す構成図であり、このような処理を簡易的、 逐次的に行うクリップ付きフィルタ (非線形 IIRフィルタ)の構成例である。  FIG. 12 is a block diagram showing details of the filter with clip, and is a configuration example of a filter with clip (nonlinear IIR filter) that performs such processing simply and sequentially.
図 12に示したクリップ付きフィルタ 6は、最大速度クリップ処理部 61と、加速度クリツ プ処理部 62と、蓄積素子 63と、加算器 64, 66と、乗算器 65とにより構成される。 最大速度クリップ処理部 61では、入力値である検出速度が所定の値以上である場 合、所定の値でクリッピング処理を行うものである。加速度クリップ処理部 62では、加 速度クリップ処理部 62への入力値 Xに対してフィルタ関数 f (x)を適用することにより、 加速度クリップ処理を行うものである。  The filter with clip 6 shown in FIG. 12 includes a maximum speed clip processing unit 61, an acceleration clip processing unit 62, a storage element 63, adders 64 and 66, and a multiplier 65. The maximum speed clip processing unit 61 performs a clipping process with a predetermined value when the detected speed as an input value is equal to or higher than a predetermined value. The acceleration clip processing unit 62 performs acceleration clip processing by applying the filter function f (x) to the input value X to the acceleration clip processing unit 62.
[0035] ここで、フィルタ関数 f (X)は、以下のように定義される。 [0035] Here, the filter function f (X) is defined as follows.
[数 1]
Figure imgf000011_0001
[Number 1]
Figure imgf000011_0001
CI:最大加速度 (正の最大加速度) CI: Maximum acceleration (positive maximum acceleration)
C2:最小加速度 (負の最大加速度)  C2: Minimum acceleration (negative maximum acceleration)
蓄積素子 63では、逐次的にフィルタ出力を蓄積するものである。  The storage element 63 sequentially stores the filter output.
以下に、フィルタリング処理の流れを示す。  The flow of the filtering process is shown below.
1.最大速度クリップ処理  1.Maximum speed clip processing
最大速度クリップ処理部 61では、フィルタ入力値である検出速度に対して、所定の 最大速度以上の速度検出結果に対し、クリップ処理を行う。 In the maximum speed clip processing unit 61, a predetermined speed is detected with respect to the detection speed that is the filter input value. Clip processing is performed for speed detection results that exceed the maximum speed.
2.加速度算出  2.Acceleration calculation
加算器 64では、最大速度クリップ処理部 61による処理後の結果と、蓄積素子 63から の前回のフィルタ出力結果との差分を取り、加速度を算出する。  The adder 64 calculates the acceleration by taking the difference between the result after processing by the maximum speed clip processing unit 61 and the previous filter output result from the storage element 63.
3.フィルタ係数演算  3. Filter coefficient calculation
加算器 64により求められた加速度に対して、乗算器 65では、フィルタ係数 Kを乗算 する。  The multiplier 65 multiplies the acceleration obtained by the adder 64 by a filter coefficient K.
4.加速度クリップ処理  4.Acceleration clip processing
加速度クリップ処理部 62では、乗算器 65による計算結果力 所定の最大加速度もし くは最小加速度を超える場合は、それぞれの値でクリップ処理を行う。  In the acceleration clip processing unit 62, if the calculation result force by the multiplier 65 exceeds a predetermined maximum acceleration or minimum acceleration, clipping processing is performed with each value.
5.フィルタ値の更新  5. Update filter values
加算器 66では、加速度クリップ処理部 62による処理後の加速度と、蓄積素子 63から の前回のフィルタ出力値とを加算し、その結果をフィルタ値として蓄積素子 63の値を 更新すると同時に、フィルタ出力結果とする。  The adder 66 adds the acceleration after processing by the acceleration clip processing unit 62 and the previous filter output value from the storage element 63, and updates the value of the storage element 63 using the result as a filter value. As a result.
[0037] 以上のように、この実施の形態 6によれば、移動速度算出部 4により算出された移動 速度に対して逐次的に適切な推定を行うクリップ付きフィルタ 6を備えたことにより、検 出した移動速度の精度を向上することができる。 [0037] As described above, according to the sixth embodiment, since the clipped filter 6 that sequentially performs appropriate estimation on the moving speed calculated by the moving speed calculating unit 4 is provided, the detection is performed. The accuracy of the moving speed can be improved.
産業上の利用可能性  Industrial applicability
[0038] 以上のように、この発明に係る移動速度検出装置は、周波数解析部にオクターブ 分割フィルタバンクを用いることにより、少ない演算量で周波数解析することができる ので、基地局から送信された受信信号より移動速度を検出する CDMA移動体端末 の移動速度検出装置などに用いるのに適して 、る。 [0038] As described above, since the moving speed detection device according to the present invention can perform frequency analysis with a small amount of computation by using an octave division filter bank in the frequency analysis unit, it is possible to receive the signal transmitted from the base station. It is suitable for use in a moving speed detection device of a CDMA mobile terminal that detects a moving speed from a signal.

Claims

請求の範囲 The scope of the claims
[1] 基地局から送信された受信信号よりパイロット信号を抽出するパイロット信号抽出部 と、  [1] A pilot signal extraction unit that extracts a pilot signal from a received signal transmitted from a base station;
オクターブ分割フィルタバンクにより構成され、上記ノ ィロット信号抽出部により抽出 されたパイロット信号に応じた周波数帯域毎の電力値を算出する周波数解析部と、 上記周波数解析部により算出された周波数帯域毎の電力値に基づいて最大ドッブ ラー周波数を推定する最大ドップラー周波数推定部と、  A frequency analysis unit configured by an octave division filter bank, which calculates a power value for each frequency band corresponding to the pilot signal extracted by the pilot signal extraction unit, and a power for each frequency band calculated by the frequency analysis unit A maximum Doppler frequency estimator that estimates the maximum Doppler frequency based on the value;
上記最大ドップラー周波数推定部により推定された最大ドップラー周波数と上記パ ィロット信号抽出部により抽出されたパイロット信号のキャリア周波数とから移動速度 を算出する移動速度算出部とを備えた移動体端末の移動速度検出装置。  The moving speed of a mobile terminal comprising a moving speed calculating unit that calculates a moving speed from the maximum Doppler frequency estimated by the maximum Doppler frequency estimating unit and the carrier frequency of the pilot signal extracted by the pilot signal extracting unit. Detection device.
[2] パイロット信号抽出部は、  [2] The pilot signal extractor
パス毎、あるいはアンテナ毎に受信信号よりパイロット信号を抽出し、  Extract the pilot signal from the received signal for each path or each antenna,
周波数解析部は、  The frequency analyzer
パス毎、あるいはアンテナ毎に上記パイロット信号抽出部により抽出されたノイロッ ト信号に応じた周波数帯域毎の電力値を算出し、それら算出された電力値を周波数 帯域毎に合成することを特徴とする請求項 1記載の移動体端末の移動速度検出装 置。  A power value for each frequency band corresponding to the pilot signal extracted by the pilot signal extraction unit for each path or antenna is calculated, and the calculated power values are synthesized for each frequency band. The apparatus for detecting a moving speed of a mobile terminal according to claim 1.
[3] 最大ドップラー周波数推定部は、  [3] The maximum Doppler frequency estimator is
前処理として高周波数帯域に対して低周波数抑圧処理を行うことを特徴とする請求 項 1記載の移動体端末の移動速度検出装置。  2. The moving speed detection apparatus for a mobile terminal according to claim 1, wherein low frequency suppression processing is performed on the high frequency band as preprocessing.
[4] 最大ドップラー周波数推定部は、 [4] The maximum Doppler frequency estimator is
高周波数帯域を干渉成分とし、その干渉成分に応じて低周波数帯域の電力値を 補正することを特徴とする請求項 1記載の移動体端末の移動速度検出装置。  2. The moving speed detection device for a mobile terminal according to claim 1, wherein the high frequency band is an interference component, and the power value of the low frequency band is corrected according to the interference component.
[5] 最大ドップラー周波数推定部は、 [5] The maximum Doppler frequency estimator is
複数の周波数帯域を選択する時に、高い周波数帯域の電力値力 順次選択して 最大ドップラー周波数を推定することを特徴とする請求項 1記載の移動体端末の移 動速度検出装置。  2. The moving speed detection apparatus for a mobile terminal according to claim 1, wherein when selecting a plurality of frequency bands, the maximum Doppler frequency is estimated by sequentially selecting the power value of the high frequency band.
[6] 最大ドップラー周波数推定部は、 複数の周波数帯域を選択した後に、それら選択した周波数帯域の品質情報を算出 し、その品質情報に対して最大ドップラー周波数の算出可否の閾値判定することを 特徴とする請求項 1記載の移動体端末の移動速度検出装置。 [6] The maximum Doppler frequency estimator is The mobile terminal according to claim 1, wherein after selecting a plurality of frequency bands, quality information of the selected frequency bands is calculated, and a threshold value for determining whether or not the maximum Doppler frequency can be calculated is determined for the quality information. Moving speed detection device.
移動速度算出部により算出された移動速度に対して逐次的に適切な推定を行うク リップ付きフィルタを備えたことを特徴とする請求項 1記載の移動体端末の移動速度 検出装置。  2. The moving speed detection device for a mobile terminal according to claim 1, further comprising a clipped filter that sequentially performs appropriate estimation on the moving speed calculated by the moving speed calculation unit.
PCT/JP2007/057997 2006-04-11 2007-04-11 Moving speed detecting apparatus for mobile terminal WO2007117026A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008509913A JP4876124B2 (en) 2006-04-11 2007-04-11 Moving speed detection device for mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-108885 2006-04-11
JP2006108885 2006-04-11

Publications (1)

Publication Number Publication Date
WO2007117026A1 true WO2007117026A1 (en) 2007-10-18

Family

ID=38581295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057997 WO2007117026A1 (en) 2006-04-11 2007-04-11 Moving speed detecting apparatus for mobile terminal

Country Status (2)

Country Link
JP (1) JP4876124B2 (en)
WO (1) WO2007117026A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111076A (en) * 2015-12-18 2017-06-22 ソフトバンク株式会社 Terminal velocity estimation method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204179A (en) * 1987-02-18 1988-08-23 Sumitomo Electric Ind Ltd Doppler shift detection system
JPH07140232A (en) * 1993-11-19 1995-06-02 Nippon Motorola Ltd Device for detecting moving speed of moving body loaded with receiving unit
JPH08200112A (en) * 1995-01-18 1996-08-06 Mitsubishi Motors Corp Acceleration slip controller of vehicle
JP2001504670A (en) * 1996-11-27 2001-04-03 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) Mobile station speed estimation method in cellular communication system
JP2001237740A (en) * 2000-02-24 2001-08-31 Toshiba Corp Mobile radio unit and its path search circuit
JP2002141836A (en) * 2000-08-31 2002-05-17 Alcatel Receiver for mobile radio communication unit to use speed estimator
WO2004068749A1 (en) * 2003-01-30 2004-08-12 Fujitsu Limited Fading frequency estimation apparatus
JP2005020453A (en) * 2003-06-26 2005-01-20 Mitsubishi Electric Corp Transmitter
JP2005037274A (en) * 2003-07-16 2005-02-10 Kaiyo Denshi Kogyo Kk Frequency analyzer
JP2005083833A (en) * 2003-09-05 2005-03-31 Toshiba Corp Radar signal processor
JP2005099017A (en) * 2003-09-16 2005-04-14 Samsung Electronics Co Ltd Speed estimation device and method of mobile terminal in mobile communication system
JP2007043500A (en) * 2005-08-03 2007-02-15 Mitsubishi Electric Corp Automatic frequency control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2751888B2 (en) * 1995-09-13 1998-05-18 日本電気株式会社 Band division amplifier circuit
JP3461124B2 (en) * 1998-07-30 2003-10-27 株式会社エヌ・ティ・ティ・ドコモ Interference signal power measurement method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204179A (en) * 1987-02-18 1988-08-23 Sumitomo Electric Ind Ltd Doppler shift detection system
JPH07140232A (en) * 1993-11-19 1995-06-02 Nippon Motorola Ltd Device for detecting moving speed of moving body loaded with receiving unit
JPH08200112A (en) * 1995-01-18 1996-08-06 Mitsubishi Motors Corp Acceleration slip controller of vehicle
JP2001504670A (en) * 1996-11-27 2001-04-03 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) Mobile station speed estimation method in cellular communication system
JP2001237740A (en) * 2000-02-24 2001-08-31 Toshiba Corp Mobile radio unit and its path search circuit
JP2002141836A (en) * 2000-08-31 2002-05-17 Alcatel Receiver for mobile radio communication unit to use speed estimator
WO2004068749A1 (en) * 2003-01-30 2004-08-12 Fujitsu Limited Fading frequency estimation apparatus
JP2005020453A (en) * 2003-06-26 2005-01-20 Mitsubishi Electric Corp Transmitter
JP2005037274A (en) * 2003-07-16 2005-02-10 Kaiyo Denshi Kogyo Kk Frequency analyzer
JP2005083833A (en) * 2003-09-05 2005-03-31 Toshiba Corp Radar signal processor
JP2005099017A (en) * 2003-09-16 2005-04-14 Samsung Electronics Co Ltd Speed estimation device and method of mobile terminal in mobile communication system
JP2007043500A (en) * 2005-08-03 2007-02-15 Mitsubishi Electric Corp Automatic frequency control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111076A (en) * 2015-12-18 2017-06-22 ソフトバンク株式会社 Terminal velocity estimation method

Also Published As

Publication number Publication date
JPWO2007117026A1 (en) 2009-08-27
JP4876124B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP4130532B2 (en) Method for adaptive setting of path selection threshold for DS-CDMA receiver
US20040097197A1 (en) Mobile station speed estimation
US9065686B2 (en) Spur detection, cancellation and tracking in a wireless signal receiver
WO2011091671A1 (en) Method and device for implementing automatic frequency control
RU2269206C2 (en) Method for estimation of doppler distribution/speed in mobile wireless communication devices, variants
CN102243309B (en) GNSS cross-correlation interferences suppressing method and device
JP5231762B2 (en) Receiver and reception processing method
JP4551959B2 (en) Method and apparatus for calculating SIR of a time-varying signal in a wireless communication system
CN109923430B (en) Device and method for phase difference expansion
CN107135540B (en) Positioning device and method and electronic equipment
CA2230589C (en) Determining sir in a communications system
JP5093616B2 (en) Target signal detection apparatus, method and program
WO2007117026A1 (en) Moving speed detecting apparatus for mobile terminal
KR20050116010A (en) Velocity estimator in mobile communication system
CN100459764C (en) Method and system for estimating and regulating mobile terminal frequency deviation
CN107003383B (en) Method and device for obtaining time of arrival (TOA) when mobile terminal is positioned
CN115549709A (en) Satellite communication system and method for inhibiting multi-channel mutual interference
EP1443672B1 (en) Path searching circuit, method and program in a CDMA communication system
CN112946580B (en) Multiprocessor cooperative radiation source frequency parameter estimation device and method
KR20130034095A (en) Apparatus and method estimating doa/toa of mobile signal
KR20060121933A (en) Method of and apparatus for path-searcher window positioning
CN102833190A (en) Edge detection method and device for constant envelope same frequency interference
CN107294625A (en) Signal power method of estimation and device, receiver
WO2007011098A1 (en) High resolution ranging apparatus and method using uwb
JP2000138617A (en) Device for estimating characteristic of propagation path

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741433

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008509913

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741433

Country of ref document: EP

Kind code of ref document: A1