WO2007114345A1 - ダイカスト用Zn合金とその製造方法、ダイカスト合金用Al母合金 - Google Patents

ダイカスト用Zn合金とその製造方法、ダイカスト合金用Al母合金 Download PDF

Info

Publication number
WO2007114345A1
WO2007114345A1 PCT/JP2007/057122 JP2007057122W WO2007114345A1 WO 2007114345 A1 WO2007114345 A1 WO 2007114345A1 JP 2007057122 W JP2007057122 W JP 2007057122W WO 2007114345 A1 WO2007114345 A1 WO 2007114345A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
mass
rare earth
earth elements
die casting
Prior art date
Application number
PCT/JP2007/057122
Other languages
English (en)
French (fr)
Inventor
Kazutaka Nakashima
Hiroshi Ogawa
Yoshitsugu Matsuura
Hidekazu Kitakata
Original Assignee
Dowa Metals & Mining Co., Ltd.
Miwa Lock Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals & Mining Co., Ltd., Miwa Lock Co., Ltd. filed Critical Dowa Metals & Mining Co., Ltd.
Priority to JP2008508660A priority Critical patent/JP5202303B2/ja
Publication of WO2007114345A1 publication Critical patent/WO2007114345A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/027Casting heavy metals with low melting point, i.e. less than 1000 degrees C, e.g. Zn 419 degrees C, Pb 327 degrees C, Sn 232 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/02Alloys based on zinc with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent

Definitions

  • the present invention relates to a die-casting Zn alloy and a method for producing the same, and further relates to an A1 mother alloy for a die-casting alloy used in the producing method.
  • Zinc (Zn) alloys have excellent mechanical properties and forgeability, and are thin and have complex shapes and precise dimensions. Therefore, zinc (Zn) alloys are widely used as alloys for die casting after aluminum (A1) alloys. It is used widely. In addition, Zn alloy for die casting is applicable to a wide range of surface treatments, excellent corrosion resistance, and low melting point, enabling die casting in a hot chamber. It has the advantage of being. For this reason, zinc alloys for die casting are widely used in automobile-related parts, machine parts, building hardware, ornaments, etc.
  • Zn alloy for die casting As a Zn alloy for die casting that has been converted to JIS, two types of Zn alloy block for die casting in which A1 and magnesium (Mg) are added to Zn, and copper (Cu) of about lmass% are further added to this. There is one kind of Zn alloy lump for die casting. In addition, there are three types of die alloys that are not JIS-made, but include two types of Zn alloy ingots for die casting with about 3 mass% Cu added.
  • the Zn alloy has a drawback that the specific gravity is larger than other die-cast alloys such as A1 alloy and Mg alloy, and resin materials. For this reason, the share of zinc alloys for die casting is being squeezed under the influence of weight reduction of automobiles and machines. In order to make up for these drawbacks, it is necessary to manufacture as thin a Zn alloy die-cast product as possible and reduce its weight.
  • Patent Document 1 discloses a die-casting Zn alloy that can suppress the generation of cavity defects when commercialized by adding an appropriate amount of rare earth elements in addition to Al and Mg, and enables thinning. ing.
  • Patent Document 1 JP 2005-89862 A
  • the zinc alloy for die casting added with a rare earth element is excellent in the fluidity (melting fluidity) of the molten metal during die casting, and can suppress the generation of molten metal.
  • the manufactured Zn alloy die-cast product void defects are reduced, surface defects and blister defects are reduced, and mechanical properties such as strength, elongation, and Young's modulus are improved. For this reason, the thickness can be reduced and the product can be reduced in weight.
  • the amount of rare earth element added to suppress the occurrence of cavity defects is very small, and the rare earth element added to the molten Zn when the Zn alloy for die casting is melted.
  • the rare earth element added to the molten Zn when the Zn alloy for die casting is melted When not solidly dispersed and solidified, there was a problem that rare earth elements segregated in the Zn alloy.
  • rare earth elements do not dissolve and segregate. That is, when a conventional zinc alloy for die casting added with rare earth elements was subjected to EPMA measurement at any location, it was detected that rare earth elements were locally detected and segregated. If the rare earth elements are segregated in this way, the fluidity and hot water of the molten zinc will deteriorate. As a result, when it is commercialized, the generation of void defects cannot be sufficiently suppressed, and a homogeneous Zn alloy die-cast product cannot be obtained.
  • An object of the present invention is to provide a zinc alloy for die casting in which rare earth elements are uniformly dispersed without segregation, and a method for producing the same.
  • an A1 master alloy containing a rare earth element of 3 mass% or more and less than 10 mass% is added to the molten Zn. It was found that rare earth elements do not segregate in the Zn alloy when the rare earth elements are uniformly dispersed and solidified in the molten Zn. Add this A1 master alloy to melt The Zn alloy for die casting obtained by solidifying the obtained Zn alloy was found to have a crystal grain size of 10 ⁇ m or less.
  • the present invention has been devised based on powerful knowledge.
  • Al 3 to 5 mass%
  • Mg 0.03 to 0.06 mass%
  • one or more rare earth elements 0.01 to 0.5 mass%
  • the balance being
  • a Zn alloy for die casting is provided, which is composed of Zn and inevitable impurities and has a crystal grain size of 10 xm or less.
  • Al 3-5 mass%, Mg: 0.03-0.06 mass%, one or more rare earth elements: 0.0:!-0.5 mass%
  • Zn alloy for die casting characterized by containing Zn, the balance being inevitable impurities with Zn, and no intermetallic compound having a maximum intermetallic compound diameter of 20 ⁇ m or more.
  • Cu 0.5 to 5 mass% may be contained.
  • the difference between the crystal grain size on the surface and the crystal grain size on the inside is 10 when the forged product is solidified by melting again. Desirably within / o.
  • an Al master alloy containing at least 3 mass% and less than lOmass% of one or more rare earth elements and the balance of A1 and inevitable impurities is added, and Al: 3 ⁇ 5 mass%, Mg: 0.03 ⁇ 0.06 mass%, one or more rare earth elements: 0.01 ⁇ 0.5 mass%, the balance is Zn alloy consisting of Zn and inevitable impurities
  • Al 3 ⁇ 5 mass%
  • Mg 0.03 ⁇ 0.06 mass%
  • one or more rare earth elements 0.01 ⁇ 0.5 mass%
  • the balance is Zn alloy consisting of Zn and inevitable impurities
  • an A1 master alloy characterized by containing one or more rare earth elements in an amount of 3 mass% or more and less than lOmass%, with the balance being A1 and inevitable impurities. Is done.
  • the rare earth element can be uniformly mixed, and the rare earth element Zn alloy for die casting can be manufactured without segregating.
  • FIG. 1 SEM photograph of the die casting Zn alloy of Example 1.
  • A1 improves the fluidity of the molten metal during die casting.
  • Zn alloy for die casting is an alloy that can be used in hot chambers. If the content of A1 increases, the melting point becomes high and hot chambers may become difficult, so the amount of A1 added is 3-5 mass. % Is preferred.
  • Mg is contained in order to suppress intergranular corrosion. If the content is small, the suppression effect is low, but if the content is large, the impact strength of the Zn alloy die-cast product may be lowered. Therefore, the addition amount is preferably 0.03 to 0.06 mass%.
  • the addition of Cu can further improve the strength. However, if the addition amount increases, the fluidity and impact strength may be lowered. Therefore, when Cu is added, the addition amount is in the range of 0.5 to 5 mass%.
  • Rare earth elements are 15 elements from lanthanum (La) force to lutetium (Lu), and by adding one or more of these rare earth elements, the occurrence of "nest" which is a cavity defect And can improve the mechanical properties of Zn alloy die-cast products.
  • the rare earth element for example, misch metal is preferably added. Misch methanol is an aggregate or alloy of metals containing one or more rare earth elements. Examples of metal elements include La, cerium (Ce), neodymium (Nd), and praseodymium (Pr). is there. In particular, La is 15% and cerium (Ce) is 45. If it is at least 0 , the occurrence of cavity defects can be more reliably suppressed.
  • the content of the rare earth element is 0.01 to 0.5 mass%, and preferably less than 0.2 mass%.
  • the total content of these two or more rare earth elements is 0.01 to 0.5 mass%. More preferably, the total force of the contents of the two or more rare earth elements (for example, misch metal) is less than 0.2 mass%.
  • the total content of these two or more rare earth elements is set to a low content of 0.01 to 0.15 mass%, the effect of reducing the void defects and the improvement of the flowability of the molten metal are achieved. Is also prominent.
  • the melting time when producing an alloy ingot used for die casting can be shortened, which is preferable. It also contains rare earth elements. If the content exceeds 0.5 mass%, the dissolution time becomes longer, resulting in increased manufacturing costs and economic disadvantages.
  • Zn having a purity of 99% or more is melted in a melting furnace, and one or two of Al, for example, Misch metal, etc. is dissolved in the molten Zn.
  • Al 3 to 5 mass%, Mg: 0.03 to 0.06 mass%, one or more rare earth elements: 0.01 to 0.5 mass%, further, if necessary, Cu: A Zn alloy containing 0.5 to 5 mass% with the balance being Zn and inevitable impurities is melted.
  • Al mother alloy containing rare earth elements of 3 mass% or more and less than 10 mass% with the balance being Al and inevitable impurities the rare earth elements can be uniformly mixed.
  • a misch metal with a total of 50% or more of La and Ce is used as the rare earth element contained in this A1 master alloy, uniform mixing of the rare earth elements becomes easier and segregation is further suppressed, and the die-cast Zn alloy. Can be manufactured.
  • the rare earth element can be uniformly dispersed in the produced die-cast Zn alloy by using an A1 mother alloy having a rare earth element content of 3 mass% or more and less than 10 mass%. And the crystal grain size in the Zn die-cast alloy is 10 ⁇ m or less.
  • A1 mother alloy When manufacturing the A1 mother alloy, first, A1 is heated to 1000 ° C or higher and completely dissolved. One or more rare earth elements such as misch metal in the A1 molten metal Is added so that it becomes 3 mass% or more and less than 10 mass%. While maintaining the temperature of the molten metal at 1000 ° C or higher, magnetically stir for several hours and add misch metal. After that, the molten metal is cooled to 950 ° C and cast to make an A1 mother alloy with rare earth elements added.
  • rare earth elements such as misch metal in the A1 molten metal
  • the melt produced by melting the Zn alloy for die casting of the present invention thus produced has excellent fluidity (molten metal flow) and can suppress the occurrence of molten metal.
  • the uniform dispersion of rare earth elements reduces the number of void defects, the number of surface defects and blister defects, and the strength, elongation, and Young's modulus.
  • the mechanical properties are also improved. For this reason, the thickness can be reduced, and the weight of the product can be reduced. Therefore, it is possible to reduce the weight of the product.
  • a zinc alloy die-cast product produced using the zinc alloy for die-casting of the present invention is suitably used for, for example, automobile-related parts, machine parts, building hardware, ornaments and the like.
  • the raw material is melted and poured into a vertical mold, and then quenched with water. Therefore, the crystal grain size on the product surface becomes small, while the inside is not rapidly cooled, so it is difficult to make the crystal grain size as small as the surface.
  • the Zn alloy for die casting of the present invention by dispersing the rare earth element, the crystal grain size can be reduced to the inside of the die-cast product.
  • A1 master alloy In the melting furnace, Al was melted to obtain Al hot water. Next, the temperature of A1 hot water was raised to 1000 ° C. In this A1 hot water, add 53kg of Ce53%, La25% misch metal (rare earth element), stir and melt, and the composition of the A1 master alloy is 91mass% for A1, 9mass% for misch metal (rare earth element) It was. After confirming dissolution, the molten metal was poured from a melting furnace into a vertical mold at a temperature of 950 ° C, forged and cooled and solidified to obtain an A1 master alloy.
  • Fig. 1 shows an SEM photograph of a cross section of the Zn alloy for die casting of Example 1.
  • Figure 1 (a) is 2200 times and Figure 1 (b) is 1000 times.
  • the crystal grain size of the structure was measured from an SEM photograph of 1000 times. The grain size was 5 to 10 ⁇ m, and the crystal grain size was uniform.
  • the cross-sectional SEM photograph of the obtained Zn alloy was image-analyzed to obtain the shrinkage ratio. The shrinkage ratio was 0.20%, and the intermetallic compound with a maximum diameter of 1 / im or more was obtained. No generation was seen.
  • the cross section of the Zn alloy was analyzed by EPMA, no segregation of rare earth elements was observed.
  • Example 2 The same procedure as in Example 1 was performed except that the amount of misting metal applied in the A1 mother alloy was adjusted.
  • the metal composition of the A1 mother alloy of Example 2 was 97 mass% for A1 and 3 mass% for misch metal.
  • the composition of the die casting Zn alloy was the same as in Example 1.
  • the crystal grain size of the structure was measured from an SEM photograph of 1000 times. As a result, the grain size was 5 to 10 zm, and the crystal grain size was uniform. . In addition, the shrinkage ratio was 0.15%, and no formation of intermetallic compounds with a maximum diameter of more than m was observed.
  • the cross section of the Zn alloy was also analyzed by EPMA. No segregation was observed.
  • the flow length of this zinc alloy at 420 ° C was 275 mm.
  • Example 2 The same procedure as in Example 1 was performed except that the amount of misting metal applied in the A1 mother alloy was adjusted.
  • the metal composition of the A1 mother alloy of Example 3 was 94 mass% for A1 and 6 mass% for misch metal.
  • the composition of the die casting Zn alloy was the same as in Example 1.
  • the crystal grain size of the structure was measured from an SEM photograph of 1000 times.
  • the grain size was 5 to 10 zm, and the crystal grain size was evenly aligned.
  • the shrinkage ratio was 0.11%, and formation of intermetallic compounds with a maximum diameter of l x m or more was not observed.
  • the cross section of the Zn alloy was measured by EPMA, no segregation of rare earth elements was observed.
  • the flow length of this Zn alloy at 420 ° C was 275 mm.
  • a Zn alloy for die casting was prepared without adding misch metal.
  • the composition of the Zn alloy for die casting was the same as that of Example 1 except that no misch metal was added.
  • the crystal grain size of the structure was measured in the cross section of the Zn alloy for die casting of Comparative Example 1, the crystal grain size S was found to be 13 to 20 m, that is, ⁇ or more. Furthermore, the closing damage ij was high at 0.67%. The flow length of this Zn alloy at 420 ° C. was 290 mm.
  • Example 2 The same procedure as in Example 1 was conducted except that the misch metal content of the A1 mother alloy was adjusted.
  • the metal composition of the A1 master alloy of Comparative Example 2 was 88 mass% for A1 and 12 mass% for misch metal.
  • the composition of the die casting Zn alloy was the same as in Example 1.
  • Example 2 The same procedure as in Example 1 was conducted except that the misch metal content of the A1 mother alloy was adjusted. ratio The metal composition of the Al master alloy of Comparative Example 3 was 90 mass% for A1 and 10 mass% for misch metal. The composition of the die casting Zn alloy was the same as in Example 1.
  • FIG. 2 shows an SEM photograph of the die casting Zn alloy of Comparative Example 3.
  • Figure 2 (a) is 2200 times, Figure 2
  • (b) is 1000 times.
  • the crystal grain size of the structure was measured from an SEM photograph with a magnification of 1000 times. As a result, crystals with grain sizes of 5 to 15 ⁇ m and 10 ⁇ m or more were observed. The nest rate was 0.21%.
  • Fig. 2 (a) white spots are seen.
  • this part has a composition of Zn (about 77.5 mass%), La (about 15. Omass%), Ce (about 15. Omass%), segregated rare earth elements, It was found that an intermetallic compound was formed. It was observed that the intermetallic compound was dispersed in the Zn alloy, and it was confirmed that there was a large intermetallic compound having a maximum diameter of about 20 ⁇ m or more.
  • A1 master alloy added in melting the die casting Zn alloys of Examples 1 to 3 and Comparative Examples 1 to 3 (Comparative Example 1 is A1) and Misch metal concentration (MM concentration),
  • Figure 3 (Table 1) shows the crystal grain size and flow length at 420 ° C, the mischmetal concentration in the Zn alloy, the maximum diameter of the intermetallic compound, and the shrinkage ratio of the Zn alloy produced using the A1 master alloy.
  • the present invention can be applied to, for example, the manufacturing field of automobile-related parts, machine parts, building hardware, ornaments, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

明 細 書
ダイカスト用 Zn合金とその製造方法、ダイカスト合金用 A1母合金 技術分野
[0001] 本発明は、ダイカスト用 Zn合金とその製造方法に関し、更に、その製造方法に用い られるダイカスト合金用 A1母合金に関する。
背景技術
[0002] 亜鉛 (Zn)合金は、優れた機械的性質と铸造性を有し、薄肉で複雑な形状や精密 な寸法が得られるため、アルミニウム (A1)合金に次いで、ダイカスト用の合金として広 く利用されている。また、ダイカスト用 Zn合金は、幅広い表面処理が可能で耐食性に 優れ、融点が低いためにホットチャンバ一でのダイカストが可能で、金型の価格が安 くて済み、寿命も長くできるので経済的であるといった利点を兼ね備えている。このた めダイカスト用 Zn合金は、 自動車関連部品、機械部品、建築金具、装飾品等に幅広 く利用されている。
[0003] JIS化されてレ、るダイカスト用 Zn合金として、 Znに A1とマグネシウム(Mg)を添加し たダイカスト用 Zn合金塊 2種と、これに更に lmass%前後の銅(Cu)を添加したダイ カスト用 Zn合金塊 1種がある。また、 JIS化はされていなレ、が、ダイカスト用 Zn合金塊 2種に 3mass%前後の Cuを添カ卩した金型用合金 3種も知られている。
[0004] 一方、 Zn合金は、 A1合金や Mg合金といった他のダイカスト合金や、樹脂材料など に比べて比重が大きいといった欠点がある。このため、 自動車や機械等の軽量化に よる影響で、ダイカスト用 Zn合金のシェアが圧迫されつつある。このような欠点を補う ためには、なるべく薄肉の Zn合金ダイカスト製品を製造し、軽量化することが必要と なる。
[0005] また一方で、ダイカスト製品は、機械的強度や伸びを低下させる"巣"と呼ばれる空 洞欠陥が内部に発生しやすい。また、空洞欠陥が製品の表面に発生することによる 歩留りの低下や、製品薄肉部に発生した空洞欠陥によるフクレ欠陥を引起こす。 Zn 合金ダイカスト製品の場合、一般に lmm以下の厚さになると、空洞欠陥による表面 異常が目立つようになり、また、流動性不足による湯ジヮが発生し、生産性を低下さ せてしまう。そこで、特許文献 1には、 Al、 Mgに加えて適量の希土類元素を添加する ことにより、製品化した際の空洞欠陥の発生を抑制し、薄肉化を可能にしたダイカスト 用 Zn合金が開示されている。
特許文献 1 :特開 2005— 89862号公報
発明の開示
発明が解決しょうとする課題
[0006] このように希土類元素を添カ卩したダイカスト用 Zn合金は、ダイカスト時における溶湯 の流動性 (湯流れ性)に優れ、湯ジヮなどの発生を抑制できるようになる。その結果、 製造された Zn合金ダイカスト製品において、空洞欠陥が減少し、表面不良やフクレ 欠陥が少なくなり、強度や伸び、ヤング率といった機械的特性も向上する。このため、 薄肉化ができ、製品の軽量化も可能となる。
[0007] しかしながら、空洞欠陥の発生を抑制するために添加される希土類元素の添加量 はわずかであり、ダイカスト用 Zn合金を溶製する際に、その Zn溶湯中に添加した希 土類元素が均一に分散せず、凝固した際に、希土類元素が Zn合金中に偏析すると いった問題を生じた。ダイカスト用 Zn溶湯中に直接希土類元素を添加しても、希土 類元素は溶解せずに偏析してしまう。即ち、希土類元素を添加した従来のダイカスト 用 Zn合金について任意の場所を EPMA測定すると、希土類元素が局所的に検出さ れ、偏析していることが検出された。このように希土類元素が偏析すると、亜鉛溶湯の 流動性、湯まわりが悪くなる。それによつて、製品化した際に部分的に空洞欠陥の発 生を十分に抑制できなくなり、均質な Zn合金ダイカスト製品が得られなくなってしまう
[0008] 本発明の目的は、希土類元素が偏析せずに均一に分散したダイカスト用 Zn合金と その製造方法を提供することにある。
課題を解決するための手段
[0009] 本発明者らは、上記課題を解決するために種々検討した結果、 Zn合金を溶製する 際に、希土類元素を 3mass%以上 10mass%未満含有する A1母合金を Zn溶湯に 添加すると、希土類元素が Zn溶湯中に均一に分散し、凝固した際に、 Zn合金中に 希土類元素が偏析しなくなるという知見を得た。また、この A1母合金を添加して溶製 した Zn合金を凝固させて得たダイカスト用 Zn合金は、結晶粒径が 10 μ m以下である ことが判明した。
[0010] 本発明は力かる知見に基いて案出されたものである。本発明によれば、 Al : 3〜5m ass%、Mg : 0. 03〜0. 06mass%, 1種又は 2種以上の希土類元素: 0. 01〜0. 5 mass%を含有し、残部が Znと不可避の不純物からなり、結晶粒径が 10 x m以下で あることを特徴とする、ダイカスト用 Zn合金が提供される。
[0011] また、本発明によれば、 Al : 3〜5mass%、 Mg : 0. 03〜0. 06mass%、 1種又は 2 種以上の希土類元素: 0. 0:!〜 0. 5mass%を含有し、残部が Znと不可避の不純物 力 なり、金属間化合物の最大径が 20 μ m以上の金属間化合物がないことを特徴と する、ダイカスト用 Zn合金が提供される。
[0012] 更に、 Cu : 0. 5〜5mass%を含有しても良い。また、再度溶融して铸造を凝固させ た際に、表面の結晶粒径と内部の結晶粒径の差が 10。/o以内となることが望ましい。
[0013] また、本発明によれば、 1種または 2種以上の希土類元素を 3mass%以上 lOmass %未満含有し、残部が A1と不可避の不純物からなる A1母合金を添加して、 Al : 3〜5 mass%、Mg : 0. 03〜0. 06mass%、一種又は 2種以上の希土類元素: 0. 01〜0 . 5mass%を含有し、残部が Znと不可避の不純物からなる Zn合金を溶製し、凝固さ せることを特徴とする、ダイカスト用 Zn合金の製造方法が提供される。
[0014] 更に、本発明によれば、 1種または 2種以上の希土類元素を 3mass%以上 lOmass %未満含有し、残部が A1と不可避の不純物からなることを特徴とする、 A1母合金が 提供される。
発明の効果
[0015] 本発明によれば、希土類元素を 3mass%以上 10mass%未満含有する A1母合金 を添加して Zn合金を溶製することにより、希土類元素の均一な混合が可能となり、希 土類元素を偏析させずにダイカスト用 Zn合金を製造できるようになる。
図面の簡単な説明
[0016] [図 1]実施例 1のダイカスト用 Zn合金の SEM写真
[図 2]比較例 3のダイカスト用 Zn合金の SEM写真
[図 3]実施例:!〜 3および比較例:!〜 3を示す表 1 発明を実施するための最良の形態
[0017] 本発明のダイカスト用 Zn合金における各組成成分の意義は以下の通りである。
A1は、ダイカスト時における溶湯の流動性を改善する。但し、ダイカスト用 Zn合金は ホットチャンバ一が可能な合金であり、 A1の含有量が増加すると、融点が高くなつて ホットチャンバ一が困難になる場合があるので、 A1の添加量は 3〜5mass%が好まし レ、。
[0018] Mgは、粒間腐食を抑制させるために含有させる。含有量が少ないと抑制効果が低 いが、多くなると、 Zn合金ダイカスト製品の衝撃強度が低下する場合があるので、添 加量は 0. 03〜0. 06mass%が好ましい。
[0019] Cuを含有することは必須ではなレ、が、 Cuを添加することにより、より一層の強度向 上を図ることができる。但し、添加量が多くなると、流動性や衝撃強度を低下させる場 合があるので、 Cuを添加する場合、その添加量は 0· 5〜5mass%の範囲である。
[0020] 希土類元素は、ランタン (La)力らルテチウム(Lu)までの 15元素であり、これら希土 類元素の一種又は 2種以上を添加することにより、空洞欠陥である"巣"の発生を抑 制し、 Zn合金ダイカスト製品の機械的特性を向上させることができる。希土類元素と しては、例えばミッシュメタルを添カ卩することが好ましい。なお、ミッシュメタノレとは、希 土類元素の 1種以上を含む金属の集合体または合金であり、金属元素としては、 La 、セリウム(Ce)、ネオジゥム(Nd)、プラセォジゥム(Pr)等である。特に、 Laは、 15% 、セリウム(Ce)は、 45。/0以上であれば、空洞欠陥の発生をより確実に抑制できる。
[0021] 希土類元素の含有量は、 0. 01〜0. 5mass%であり、 0. 2mass%未満であること が好ましい。例えばミッシュメタルを添加する場合のように、 2種以上の希土類元素を 添加する場合は、それら 2種以上の希土類元素(例えばミッシュメタル)の含有量の合 計力 0. 01〜0. 5mass%であり、より好ましくは、それら 2種以上の希土類元素(例 えばミッシュメタル)の含有量の合計力 0. 2mass%未満である。更に、それら 2種以 上の希土類元素(例えばミッシュメタル)の含有量の合計を 0. 01〜0. 15mass%ま での低含有量とすれば、空洞欠陥の減少効果とともに湯流れ性の改善も顕著である 。希土類元素の含有量が 0. 2mass%以下とすることで、ダイカストに用いる合金イン ゴットを製造する時の溶解時間を短くすることができ好ましい。また、希土類元素の含 有量が 0. 5mass%を超えると溶解時間が長くなるため、製造コストが増大して経済 的な不利益が生じる。
[0022] 以上の組成を有する本発明のダイカスト用 Zn合金を製造するには、純度 99%以上 の Znを溶解炉で溶解し、その Zn溶湯に Al、例えばミッシュメタルなどの 1種または 2 種以上の希土類元素を 3mass%以上 10mass%未満含有し、残部が A1と不可避の 不純物からなる A1母合金、 Mgを添加する。また、必要な場合は Cuも添加する。なお 、 Mgは A1や A1母合金を添加した後に添加することが好ましレ、。こうして、 Al : 3〜5m ass%、 Mg : 0. 03〜0. 06mass%,一種又は 2種以上の希土類元素: 0. 01〜0. 5 mass%を含有し、更に、必要に応じて、 Cu: 0. 5〜5mass%を含有し、残部が Znと 不可避の不純物からなる Zn合金を溶製する。希土類元素を 3mass%以上超え 10m ass%未満含有し、残部が Alと不可避の不純物からなる Al母合金を用いることにより 、希土類元素の均一な混合が可能となる。特に、この A1母合金に含有される希土類 元素として、 La、 Ceが合計 50%以上であるミッシュメタルを用いれば、希土類元素の 均一な混合がより容易となり、より偏析を抑制してダイカスト Zn合金を製造できるよう になる。
[0023] 希土類元素の含有量が 3mass%未満である A1母合金を添加して Zn合金を溶製し た場合は、それ力 製造されたダイカスト Zn合金において、合金内部と合金表面の 結晶粒径の差が大きくなり、再度溶解して凝固させた際に、空洞欠陥を生じてしまう。
[0024] Zn合金を溶製する際に、希土類元素の含有量が 3mass%以上 10mass%未満の A1母合金を用いることにより、製造されたダイカスト Zn合金において、希土類元素を 均一に分散させることができ、 Znダイカスト合金中の結晶粒径が 10 β m以下になる。
[0025] 一方、希土類元素の含有量が 10mass%以上である A1母合金を添カ卩して Zn合金を 溶製した場合は、希土類元素が均一に混合されなくなり、それ力 製造されたダイ力 スト Zn合金において、希土類元素が組織内で偏析し、結晶粒径が 10 z mを超える 金属間化合物が生成されてしまレ、、結晶粒径の小さい(5〜: 10 z mの範囲の)ダイ力 スト Zn合金が製造できなくなる。
[0026] なお、 A1母合金を製造する場合は、先ず、 A1を 1000°C以上まで昇温して完全に 溶解させる。その A1溶湯内にミッシュメタルなどの 1種または 2種以上の希土類元素 を 3mass%以上 10mass%未満となるように添加する。溶湯の温度を 1000°C以上に 維持したまま、磁気攪拌を数時間行い、ミッシュメタルを添加する。その後、 950°Cに 溶湯を冷却して铸造を行い、希土類元素を添加した A1母合金とする。
[0027] そして、上記の要領で溶製した Al : 3〜5mass%、 Mg : 0. 03〜0. 06mass%、一 種又は 2種以上の希土類元素: 0. 01〜0. 5mass%を含有し、更に、必要に応じて 、 Cu : 0. 5〜5mass%を含有し、残部が Znと不可避の不純物からなる Zn合金の溶 湯を錡型に流し込み、凝固させて铸造することにより、本発明のダイカスト用 Zn合金 を製造することができる。こうして製造された本発明のダイカスト用 Zn合金は、結晶粒 径が 20 μ mを超えるような金属間化合物が偏析せず、結晶粒径が 10 μ m以下の範 囲となり、再度溶融して凝固させた際においても、表面の結晶粒径と内部の結晶粒 径の差が 10%以内となる。なお、 Cuを 0. 5〜5mass%添加することで、 Zn合金の機 械強度を向上することができる。
[0028] また、こうして製造された本発明のダイカスト用 Zn合金を溶融させた溶湯は流動性( 湯流れ性)に優れ、湯ジヮなどの発生を抑制できるようになる。また、希土類元素が均 一に分散していることにより、製造された Zn合金ダイカスト製品の全体において、空 洞欠陥が減少し、表面不良やフクレ欠陥が少なくなり、強度や伸び、ヤング率といつ た機械的特性も向上する。このため、薄肉化ができ、製品の軽量化も可能となる。よ つて、製品の軽量化も可能となる。本発明のダイカスト用 Zn合金を用いて製造される Zn合金ダイカスト製品は、例えば自動車関連部品、機械部品、建築金具、装飾品等 に好適に利用される。
[0029] なお、ダイカスト成形する場合、原料を溶融させて铸型に流し込んだ後、水をかけ て急冷させる。そのため、製品表面は結晶粒径が小さくなり、一方、内部は急冷され ないので、表面と同じように結晶粒径を小さくすることは困難である。本発明のダイ力 スト用 Zn合金によれば、希土類元素を分散させたことで、ダイカスト成形された製品 の内部まで結晶粒径を小さくすることができる。
実施例
[0030] (実施例 1)
(1)A1母合金の製造 溶融炉において Alを It溶融し Al湯を得た。次いで、 1000°Cに至るまで A1湯の温 度を昇温した。この A1湯に Ce53%、 La25%のミッシュメタル(希土類元素)を 90Kg を投入し、攪拌、溶解し、 A1母合金の組成を、 A1が 91mass%、ミッシュメタル (希土 類元素)が 9mass%とした。溶解を確認後、溶融炉から錡型に湯温を 950°Cで注湯 し、铸造、冷却固化し、 A1母合金を得た。
[0031] (2)ダイカスト用 Zn合金の製造
溶融炉にて Znを 2t、 500°Cにて溶融し、この中に、上記より得た A1母合金を約 10 Kg投入し、 Al、 Cu、 Mgを順次添カ卩し、攪拌し、溶解し、ミッシュメタル (希土類元素) の組成が 0. 05mass%となるダイカスト用 Zn合金 (ダイカスト製品)を製造した。この 溶解に費やした時間は、約 60分であった。溶解後は、溶製した Zn合金を錡型にて 铸造し、冷却後、铸型からダイカスト用 Zn合金を取り出した。
[0032] 実施例 1のダイカスト用 Zn合金の断面における SEM写真を図 1に示す。図 1 (a)は 2200倍、図 1 (b)は 1000倍である。実施例 1のダイカスト用 Zn合金の断面において 組織の結晶粒径を 1000倍の SEM写真から測定したところ、粒径は 5〜: 10 μ mとな り、結晶粒径は細力べ揃っていた。また、得られた Zn合金の断面 SEM写真を画像解 析し、引け巣の割合を求めたところ、引け巣割合は 0. 20%であり、最大径が 1 /i m 以上となる金属間化合物の生成も見られなかった。その Zn合金の断面を EPMAで 組成分析を行ったところ、希土類元素の偏析は見られなかった。
この亜鉛合金の 420°Cにおける流動長を MIT法により測定したところ、流動長さは 2 70mmであった。
[0033] (実施例 2)
A1母合金中のミッシュメタルの添力卩量を調整した以外は、実施例 1と同様に行った 。実施例 2の A1母合金の金属組成は、 A1が 97mass%、ミッシュメタルが 3mass%で あった。ダイカスト用 Zn合金の組成は、実施例 1と同様のものとした。
[0034] 実施例 2のダイカスト用 Zn合金の断面において組織の結晶粒径を 1000倍の SEM 写真から測定したところ、粒径は 5〜: 10 z mとなり、結晶粒径は細力べ揃っていた。ま た、引け巣割合は 0. 15%であり、最大径が: m以上となる金属間化合物の生成も 見られなかった。その Zn合金の断面を EPMAで組成分析においても、希土類元素 の偏析は見られなかった。
この亜鉛合金の 420°Cにおける流動長さは 275mmであった。
[0035] (実施例 3)
A1母合金中のミッシュメタルの添力卩量を調整した以外は、実施例 1と同様に行った 。実施例 3の A1母合金の金属組成は、 A1が 94mass%、ミッシュメタルが 6mass%で あった。ダイカスト用 Zn合金の組成は、実施例 1と同様のものとした。
[0036] 実施例 3のダイカスト用 Zn合金の断面において組織の結晶粒径を 1000倍の SEM 写真から測定したところ、粒径は 5〜: 10 z mとなり、結晶粒径は細力べ揃っていた。ま た、引け巣割合は 0. 11 %であり、最大径が l x m以上となる金属間化合物の生成も 見られなかった。その Zn合金の断面を EPMA測定したところ、希土類元素の偏析は 見られなかった。
この Zn合金の 420°Cでの流動長さは 275mmであった。
[0037] (比較例 1)
ミッシュメタルを添加せずにダイカスト用 Zn合金を作成した。ミッシュメタルが添加さ れていない以外は、ダイカスト用 Zn合金の組成は、実施例 1と同様のものとした。
[0038] 比較例 1のダイカスト用 Zn合金の断面において組織の結晶粒径を測定したところ、 粒径は 13〜20 mと ΙΟ μ ΐη以上となる結晶力 S見られた。さらに引け巢害 ij合は 0. 67 %と高くなつていた。この Zn合金の 420°Cでの流動長さは 290mmであった。
[0039] (比較例 2)
A1母合金のミッシュメタル含有量を調整した以外は、実施例 1と同様に行った。比 較例 2の A1母合金の金属組成は、 A1が 88mass%、ミッシュメタルが 12mass%であ つた。ダイカスト用 Zn合金の組成は、実施例 1と同様のものとした。
[0040] 比較例 2のダイカスト用 Zn合金の断面において組織の結晶粒径を 1000倍の SEM 写真から測定したところ、粒径は 12〜: 15 μ mと 10 μ m以上となる結晶が見られた。 また、引け巣割合は 0. 40。/oと高ぐ最大径が 20 z m以上となる金属間化合物の生 成が見られた。この Zn合金の 420°Cでの流動長さは 250mmと短い値となった。
[0041] (比較例 3)
A1母合金のミッシュメタル含有量を調整した以外は、実施例 1と同様に行った。比 較例 3の Al母合金の金属組成は、 A1が 90mass%、ミッシュメタルが 10mass%であ つた。ダイカスト用 Zn合金の組成は、実施例 1と同様のものとした。
[0042] 比較例 3のダイカスト用 Zn合金の SEM写真を図 2に示す。図 2 (a)は 2200倍、図 2
(b)は 1000倍である。比較例 3のダイカスト用 Zn合金の断面において組織の結晶粒 径を 1000倍の SEM写真から測定したところ、粒径は 5〜: 15 μ mと 10 μ m以上とな る結晶が見られ、引け巣割合は 0. 21 %であった。
最大径が 20 a m以上となる金属間化合物の生成が見られた。この Zn合金の 420°C での流動長さは 252mmと短い値となった。
また、図 2 (a)では白い箇所がみられる。その部分を EPMAによる組成分析の結果、 Zn (約 77. 5mass%)、 La (約 15. Omass%)、 Ce (約 15. Omass%)の組成を持ち 、希土類元素が偏析しており、金属間化合物を形成していることがわかった。その金 属間化合物は Zn合金中に分散して存在することが観測され、その最大径が約 20 μ m以上となる大きな金属間化合物が存在することが確認された。
[0043] これら実施例と比較例から、ミッシュメタルを添加した合金とすることで、引け巣が減 少したことが分かる。さらに A1母合金のミッシュメタル濃度を 3mass%以上 10mass% 未満とすることで、金属間化合物の大きさが減少し、流動長が長くなつた。
[0044] 実施例 1〜3および比較例 1〜3のダイカスト用 Zn合金を溶製する際に添加した A1 母合金 (比較例 1は A1)の A1濃度とミッシュメタル濃度(MM濃度)、その A1母合金を 用いて製造した Zn合金の結晶粒径と 420°Cにおける流動長、 Zn合金中のミッシュメ タル濃度、金属間化合物の最大径、引け巣割合を図 3 (表 1)に示す。
産業上の利用可能性
[0045] 本発明は、例えば自動車関連部品、機械部品、建築金具、装飾品等の製造分野 に適用できる。

Claims

請求の範囲
[1] Al:3〜5mass%、 Mg:0. 03〜0.06mass%、一種又は 2種以上の希土類元素: 0.01-0. 5mass%を含有し、残部が Znと不可避の不純物からなり、結晶粒径が 5 〜: 10 μ mであることを特徴とする、ダイカスト用 Zn合金。
[2] 更に、 Cu:0. 5〜5mass%を含有することを特徴とする、請求項 1のダイカスト用 Zn 合金。
[3] Al:3〜5mass%、 Mg:0. 03〜0.06mass%、一種又は 2種以上の希土類元素:
0.01-0. 5mass%を含有し、残部が Znと不可避の不純物からなり、結晶粒径が 2 0/ m以上の金属間化合物がないことを特徴とする、ダイカスト用 Zn合金。
[4] 更に、 Cu:0. 5〜5mass%を含有することを特徴とする、請求項 3のダイカスト用 Zn 合金。
[5] 1種または 2種以上の希土類元素を 3mass%以上 10mass%未満含有し、残部が A1と不可避の不純物からなる A1母合金を添加して、 Al:3〜5mass%、 Mg:0. 03〜 0.06mass%、一種又は 2種以上の希土類元素: 0.01〜0. 5mass%を含有し、残 部が Znと不可避の不純物からなる Zn合金を溶製し、凝固させることを特徴とする、ダ イカスト用 Zn合金の製造方法。
[6] 1種または 2種以上の希土類元素を 3mass%以上 10mass%未満含有し、残部が A1と不可避の不純物からなることを特徴とする、 A1母合金。
PCT/JP2007/057122 2006-03-31 2007-03-30 ダイカスト用Zn合金とその製造方法、ダイカスト合金用Al母合金 WO2007114345A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008508660A JP5202303B2 (ja) 2006-03-31 2007-03-30 ダイカスト用Zn合金とその製造方法、ダイカスト合金用Al母合金

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-099184 2006-03-31
JP2006099184 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007114345A1 true WO2007114345A1 (ja) 2007-10-11

Family

ID=38563613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057122 WO2007114345A1 (ja) 2006-03-31 2007-03-30 ダイカスト用Zn合金とその製造方法、ダイカスト合金用Al母合金

Country Status (3)

Country Link
JP (1) JP5202303B2 (ja)
CN (1) CN101437970A (ja)
WO (1) WO2007114345A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102011029B (zh) * 2010-12-08 2014-06-04 宁波博威合金材料股份有限公司 一种拉链牙带用锌合金及拉链牙带的制备方法
CN108546847B (zh) * 2018-05-09 2020-03-10 江苏法尔胜缆索有限公司 一种超高强度大直径钢丝主缆索股锚固材料及灌锚方法
CN110669962B (zh) * 2019-11-11 2021-03-09 湘潭大学 一种可降解生物医用Zn-Al-Mg-Nd锌合金及其制备方法
CN113275577A (zh) * 2021-04-20 2021-08-20 广州湘龙高新材料科技股份有限公司 一种锌合金增材的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338551A (ja) * 1986-08-01 1988-02-19 Sekisui Chem Co Ltd 希土類元素含有亜鉛基合金
JP2004523357A (ja) * 2000-05-15 2004-08-05 ワン,ル−ヤオ アルミニウム・シリコン合金の鋳造時にシリコンを球状化する方法
JP2005089862A (ja) * 2003-08-11 2005-04-07 Dowa Mining Co Ltd ダイカスト用Zn合金及びZn合金ダイカスト製品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338551A (ja) * 1986-08-01 1988-02-19 Sekisui Chem Co Ltd 希土類元素含有亜鉛基合金
JP2004523357A (ja) * 2000-05-15 2004-08-05 ワン,ル−ヤオ アルミニウム・シリコン合金の鋳造時にシリコンを球状化する方法
JP2005089862A (ja) * 2003-08-11 2005-04-07 Dowa Mining Co Ltd ダイカスト用Zn合金及びZn合金ダイカスト製品

Also Published As

Publication number Publication date
JP5202303B2 (ja) 2013-06-05
JPWO2007114345A1 (ja) 2009-08-20
CN101437970A (zh) 2009-05-20

Similar Documents

Publication Publication Date Title
CN105525158B (zh) 一种半固态压铸铝合金材料及使用该材料压铸成型的方法
US9074269B2 (en) Magnesium alloy
EP1882754A1 (en) Aluminium alloy
US9937554B2 (en) Grain refiner for magnesium and magnesium alloys and method for producing the same
JP6229130B2 (ja) 鋳造用アルミニウム合金及びそれを用いた鋳物
CN113322404B (zh) 一种高导热高强Mg-Al-La-Mn变形镁合金及其制备方法
EP4365323A1 (en) Die-casting aluminum alloy without heat-treatment and preparation method and application thereof
CN107937764B (zh) 一种液态模锻高强韧铝合金及其液态模锻方法
JP4145242B2 (ja) 鋳物用アルミニウム合金、アルミニウム合金製鋳物およびアルミニウム合金製鋳物の製造方法
CN103305731A (zh) 一种添加稀土钇的超高强变形铝合金
CN103305732A (zh) 制备含稀土钇的超高强变形铝合金的方法
EP2692883B1 (en) Mg-al-ca-based master alloy for mg alloys, and a production method therefor
JP2005272966A (ja) 半凝固成形用アルミニウム合金及び成形体の製造方法
JP5202303B2 (ja) ダイカスト用Zn合金とその製造方法、ダイカスト合金用Al母合金
CN108149083B (zh) 一种半固态压铸铝合金及制备半固态压铸铝合金铸件的方法
CN112030047A (zh) 一种高硬度细晶稀土铝合金材料的制备方法
CN111926220A (zh) 一种高性能薄壁3d打印砂型铸造用的铝合金材料及其制备方法
CN102418009A (zh) 一种可消解高硬度化合物的铝合金及其熔炼方法
JP3840400B2 (ja) 輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法
EP2476764B1 (en) Preparation method of al-zr-c master alloy
CN115418535A (zh) 铝合金材料及其制备方法和应用、铝合金制品
CN106011563A (zh) 一种熔体复合处理增强亚共晶铝-镁合金的方法
JP2017119890A (ja) 過共晶Al−Si系アルミニウム合金、及びそれからなる鋳造部材、並びに前記アルミニウム合金の製造方法
US8672020B2 (en) Method for producing aluminum-zirconium-carbon intermediate alloy
KR20110011228A (ko) 쌍롤주조법을 이용한 마그네슘-알루미늄-망간 합금 주편의 제조방법 및 이에 따라 제조되는 마그네슘-알루미늄-망간 합금 주편

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008508660

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200780012312.2

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 07740558

Country of ref document: EP

Kind code of ref document: A1