WO2007108474A1 - Wireless transmitting device and wireless transmitting method - Google Patents

Wireless transmitting device and wireless transmitting method Download PDF

Info

Publication number
WO2007108474A1
WO2007108474A1 PCT/JP2007/055686 JP2007055686W WO2007108474A1 WO 2007108474 A1 WO2007108474 A1 WO 2007108474A1 JP 2007055686 W JP2007055686 W JP 2007055686W WO 2007108474 A1 WO2007108474 A1 WO 2007108474A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
bit
users
modulation
symbol
Prior art date
Application number
PCT/JP2007/055686
Other languages
French (fr)
Japanese (ja)
Inventor
Zhanji Wu
Jifeng Li
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007108474A1 publication Critical patent/WO2007108474A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Definitions

  • the present invention relates to a wireless transmission device and a wireless transmission method, and more particularly to a wireless transmission device and a wireless transmission method to which a higher-order modulation scheme is applied.
  • Binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) are modulation techniques that are commonly used in the current communications field.
  • High-order modulation techniques such as 8PSK, 16QAM, 64QAM, and 256QAM have also been introduced (see Non-Patent Document 1).
  • 8PSK, 16QAM, 64QAM, and 256QAM are composed of 3, 4, 6, and 8 bits, respectively.
  • Golay mapping is usually used as the mapping from bit strings to modulation symbols!
  • Figure 1 shows the constellation map for 8PSK Golay coding. Each constellation point is represented by 3 bits (a a a), and the constellation is
  • Figure 2 shows the constellation map for 16QAM Golay coding, where each constellation point is represented by 4 bits (a a a a). Where X
  • the component of the axis is a a
  • the component of the Y axis is a a
  • Figure 3 is 64QAM Golay (Golay)
  • n each cons Talay Chillon point is a diagram showing a Konsuta rate Chillon map encoding 6 bits (aaaaaa)
  • the X-axis component is a a a and the Y-axis component is a a a.
  • Golay mapping the protection capability of each constituent bit in the bit string is uneven, and there are bits with strong protection capability and bits with weak protection capability.
  • each modulation symbol is information of the same user.
  • the quality of a certain user's channel is good, and the channel of each user is also unequal, as the channel of some users has a large signal-to-noise ratio (SNR).
  • SNR signal-to-noise ratio
  • the user is close to the base station and the line attenuation is small, so the SNR is generally high, but at the cell edge, the user is generally low in SNR because the line attenuation is large.
  • a perspective problem arises. Signals from users with inferior channels are often good channels! Users' signal strength is subject to severe interference. This type of problem is usually solved by power control. In other words, the base station increases the signal-to-interference noise ratio and improves the performance by increasing the transmission power to users with inferior channels.
  • FIG. 4 is a diagram illustrating a conventional multi-user high-order modulation multiple access transmission process. Each user independently performs coding, interleaving, parallel / serial conversion, high-order modulation, and power control, and then performs multiple access.
  • access methods include time division (TDM), frequency division (FDM), orthogonal frequency division multiplexing (OFDM), code division (CDM), etc.
  • FIG. 5 is a diagram illustrating a conventional multi-user higher order modulation multiple access release reception process. Each user independently performs multiple access disconnection, higher-order demodulation, normal / serial conversion, Dinter leave, and decoding.
  • Non-Patent Document 1 Stephen G. Wilson, Digital Modulation and Coding, Prentice-Hall, 19 96
  • An object of the present invention is to provide a wireless transmission device and a wireless transmission method for simultaneously transmitting wireless signals to a plurality of users, and to improve the throughput. Means for solving the problem
  • the wireless transmission device of the present invention assigns each constituent bit as a user's used bit based on the ease of error for each constituent bit of the unit bit string represented by one symbol and the channel status of each user,
  • a bit stream forming means for forming a bit stream addressed to the plurality of users by arranging elements of parallel data sequences addressed to the plurality of users in an order in accordance with the unit bit string of the bit stream.
  • a modulation means for forming the structure.
  • the wireless transmission method of the present invention includes the steps of assigning each constituent bit as a user use bit based on the ease of error for each constituent bit of the unit bit string represented by one symbol and the channel status of each user; Arranging elements of parallel data sequences addressed to a plurality of users in an order according to the assignment, forming a bitstream addressed to the plurality of users; and a modulation signal corresponding to the unit bit string of the bitstream Forming a step.
  • the present invention it is possible to provide a wireless transmission device and a wireless transmission method for simultaneously transmitting a wireless signal to a plurality of users, which can improve the throughput.
  • FIG. 1 A diagram showing a constellation map of 8PSK Golay coding.
  • FIG. 5 A diagram showing a conventional multi-user higher order modulation multiple access release reception process.
  • Figure showing a computer simulation curve of bit error rate [Figure 9] Diagram showing the main configuration of a transmitter that performs multi-access transmission in the multiuser higher-order modulation method
  • FIG. 10 is a diagram showing the main configuration of a transmission apparatus that performs multiple access transmission of 16-user 16QAM modulation method.
  • FIG. 11 Diagram for explaining multi-user higher-order modulation bitstream allocation multiplexing method
  • FIG. 12 Diagram for explaining 2-user 16QAM modulation bit-stream allocation multiplexing method
  • ⁇ 13 Multiple access of multi-user higher-order modulation method Diagram showing the main configuration of a receiving device that performs cancellation reception
  • FIG. 14 is a diagram showing the main configuration of a receiving apparatus that performs multiple-user disconnection reception of 16QAM modulation of two users
  • FIG. 16 Diagram showing a general image of multi-user high-order modulation symbol transmission by time division method
  • FIG.20 Diagram showing a general image of multi-user higher-order modulation symbol reception by frequency division method
  • FIG. 21 Diagram for explaining multi-user higher-order modulation symbol transmission by OFDM scheme
  • FIG. 22 Diagram for explanation of multi-user higher-order modulation symbol reception by OFDM scheme
  • FIG. 23 Multi-user higher-order modulation by OFDM scheme Diagram showing a general image of symbol transmission
  • FIG.24 Diagram showing a general image of multi-user higher-order modulation symbol reception using OFDM.
  • FIG. 26 is a diagram for explaining despread reception of multi-user high-order modulation using a code division scheme.
  • FIG.27 Diagram showing a general image of multi-user higher-order modulation symbol transmission by code division method
  • FIG.28 Diagram showing a general image of multi-user higher-order modulation symbol reception using OFDM
  • FIG. 30 A diagram showing reception of multi-user higher-order modulation symbols by the OFDMA system
  • FIG.31 Diagram showing time slot format (data / pilot) arrangement of multiuser higher-order modulation symbols by time division multiple access
  • FIG.32 Diagram showing time slot format (data / pilot) arrangement of multiuser higher-order modulation symbols by OFDM
  • FIG.33 Diagram showing time slot format (data / pilot) arrangement of multi-user higher-order modulation symbols using CDMA
  • FIG. 34 is a simple signaling flowchart of a multiuser high-order modulation method.
  • the bit error rate of each constituent bit of the bit string represented by the signal point of the higher-order modulation is the sum of the ming distance and the sum of the constituent bits in the signal point pair on the constellation with the smallest Euclidean distance.
  • the CQI (channel quality indicator) information of the different users fed back is used, and the channel conditions are good! They are divided into users (called strong users) and users with poor channel conditions (called weak users).
  • strong users users with a large signal to interference and noise ratio (SINR)
  • SINR signal to interference and noise ratio
  • the user who fed back the ACK signal is classified as a strong user, and the user who fed back the NACK signal is classified as a weak user. If the user feeds back a NACK signal, this user is clearly defined as a weak user because his channel is bad and accurate decoding is not possible.
  • weak users it is necessary to improve performance, so weak user data is mapped to strong bit positions in high-order modulation, and strong user data is mapped to weak bit positions in high-order modulation. .
  • multiple access interference (MAI) to strong users of weak users does not occur.
  • FIG. 6 is a diagram for explaining a method of distinguishing strong and weak constituent bits in high-order modulation.
  • a high-order modulation constellation map is determined based on a certain coding rule, and the minimum Euclidean distance between signal points on the constellation is found.
  • the sum of the Hamming distances is calculated for all the constituent bits for these pairs and arranged in order.
  • the bit error rate of each component bit and the sum of its ming distances approximate a linear direct proportional relationship. The bit error rate increases as the sum of the Hamming distances increases.
  • the minimum Euclidean distance between the constellation signal points is 2 sin (w Z8).
  • all constellation signal point pairs with the smallest Euclidean distance are (11 1, 110), (110, 100), (100, 101), (101,001), (001,000), (000,010) , (010,011), (011,111).
  • 1 2 is a strong bit and a bit is a weak bit.
  • the rate should be directly proportional to 1: 1: 2.
  • the minimum Euclidean distance between constellation points is 2.
  • the X-axis component is a a
  • Y-axis components are represented by a a and they are completely symmetric.
  • the ratio of the sum of the Hamming distances of 4 1 2 bits, a bits, and a bits is 1: 2: 1: 2. That is, a
  • a bit is a strong bit, a bit, a bit is a weak bit. And a bit, a bit
  • bit error rate of 3 2 4 1 2, a bit, a bit should be directly proportional to 1: 2: 1: 2. Also figure
  • the 4-bit error rate is equal to a and a bits, respectively.
  • Bit error rate curve is a judgment method
  • the Y-axis components are expressed as a a a, and they are completely symmetric.
  • a bit are strong bits
  • a bit is weak bits
  • a bit is strong bits
  • a bit is weak bits
  • a bit is in the middle. a bit, a bit, a bit, a bit, a bit, a bit, a bit, a bit, a bit
  • Figure 8 also shows the bit error rate for a 64-bit Q-A M Golay coded a-bit, a-bit, and a-bit AWGN channels.
  • the bit error rate of 4 5 6 is equal to a bit, a bit, and a bit, respectively.
  • the bit error rate curve is
  • FIG. 9 is a diagram illustrating a main configuration of a transmission apparatus that performs multiple access transmission of a general multiuser higher-order modulation method according to the present embodiment.
  • transmitting apparatus 100 includes N encoders 110-1 to 110-N that perform channel code processing on the source data sequences addressed to each user, and source data sequences after channel coding processing.
  • N interleavers 120-1 to N that perform interleaving processing, multi-user bitstream formation unit 130, serial Z parallel (SZP) conversion unit 140, modulation unit 150, and multiple access processing unit 160
  • SZP serial Z parallel
  • the multi-user bitstream forming unit 130 inputs the source data sequence of each user, and also inputs the modulation scheme information and the channel state information of each user in the modulation unit 150 at the subsequent stage.
  • the multi-user bitstream forming unit 130 assigns each constituent bit to the user based on the ease of error of the constituent bits of the bit string represented by one symbol in the modulation scheme represented by the modulation scheme information and the channel status of each user. Assigned as used bits.
  • the multi-user bit stream forming unit 130 uses the source data sequences addressed to a plurality of users, and arranges the bits that are the elements of the source data sequence in the order according to the above allocation, thereby Form.
  • each of the component bits is assigned the above-described allocation. It is configured by arranging the bits of the source data series addressed to the user according to the situation.
  • the serial Z parallel (SZP) conversion unit 140 converts the serial multi-user bit stream into the same number of parallel streams as the order corresponding to the modulation scheme information. Combining the bits of these multiple parallel streams results in a bit string represented by one symbol.
  • Modulating section 150 performs modulation corresponding to a symbol represented by a bit string obtained by combining the bits of the parallel stream to form a modulated signal.
  • the multiple access processing unit 160 performs multiple access and transmits a modulation signal.
  • the sequence U is obtained by first channel interleaving the source data sequence D (ie [1, N]) of each user with the channel code. Then, the multi-user bit data stream sequence V is obtained according to the bit stream allocation multiplexing method of multi-user higher-order modulation. Furthermore, if serial / parallel conversion is performed, corresponding high-order modulation mapping can be performed, and a modulation symbol sequence S can be obtained. Then, multiple access is performed and a multiple access transmission sequence Q is obtained.
  • Normal access schemes include time division (TDM), frequency division (FDM), orthogonal frequency division multiplexing (OFDM), and code division (CDM), all of which are applicable to this embodiment.
  • TDM time division
  • FDM frequency division
  • OFDM orthogonal frequency division multiplexing
  • CDDM code division
  • FIG. 10 shows one special example, and is a diagram showing a main configuration of a transmission apparatus that performs multi-access transmission of a 16-QAM modulation method for two users.
  • source data sequences D 2]) of users 1 and 2 are first encoded by channel encoder and interleaver in encoder 110, respectively.
  • Sequence U is obtained by performing channel interleaving at 120. Then, the multi-user bit data stream sequence V is obtained by the 16QAM modulation bit stream allocation multiplexing method of both users. Further, if serial / parallel conversion is performed and divided into four parallel branches (corresponding to the number of bits represented by one symbol in 16QAM), the corresponding 16QAM modulation mapping can be performed to obtain a modulation symbol sequence S.
  • a multi-access transmission sequence Q is obtained by performing a main connection.
  • FIG. 11 is a diagram for explaining a general multiuser high-order modulation bitstream allocation multiplexing method according to the present embodiment.
  • the signal-to-interference noise ratio, ACK / NACK feedback signal, etc. which channel state information that different users have fed back is received. Then, the users are arranged in order based on the channel state as feedback information. Furthermore, user D (i ⁇ [1, N]) is grouped according to the channel state. For example, if the signal-to-interference noise ratio is high, the user channel is a strong user group, the signal-to-interference noise ratio is low, and the user channel is a weak user group. Alternatively, the user who fed back the ACK signal is set to the strong user group, and the user who fed back the NACK signal is set to the weak user group.
  • the strong and weak users indicated by the channel status are assigned to the strong and weak bits of the higher-order modulation.
  • strong user data is mapped to the positions of weak bits in high-order modulation
  • weak user data is mapped to positions of strong bits in high-order modulation.
  • FIG. 12 is a diagram for explaining a bit stream allocation multiplexing method for 2-user 16QAM modulation in particular.
  • channel feedback information of users 1 and 2 is received. Assuming that the signal-to-interference noise ratio of user 1 is smaller than user 2, user 1 is a weak user and uses the strong bits (a bit, a bit) of the 16QAM modulation symbol. User 2 is a strong user, 16Q
  • K 16QAM
  • 64QAM 64QAM
  • user A There are two users A and B, and user A is located at the cell edge and has a signal-to-interference / noise ratio.
  • user B who is low, is close to the base station and has a high signal-to-interference and noise ratio.
  • the base station defines user A as a weak user and user B as a strong user based on the signal-to-interference noise ratio of each user.
  • User A's binary data block after encoding and interleaving in the channel is ⁇ a ⁇ , ie [0, N-1]
  • binary data block after encoding and interleaving in user B's channel is ⁇ b ⁇ , ie [0, N—l].
  • the multi-user bit data stream after allocation multiplexing is ⁇ c ⁇ , ie [0, 2N-1].
  • ⁇ c ⁇ is mapped to an 8PSK constellation diagram with one set of 3 bits, modulated, and a modulated signal is transmitted.
  • ⁇ c ⁇ is mapped to a 16QAM constellation diagram with a set of 4 bits, modulated, and a modulated signal is transmitted.
  • the base station Based on the signal-to-interference / noise ratio of each user, the base station defines user A as a weak user, user C as a strong user, and user B as an intermediate user.
  • the channel codes ⁇ and interleaved binary data blocks of users A, B, and C are ⁇ a ⁇ , ⁇ b ⁇ , ⁇ c ⁇ , i £ [0, N ⁇ 1], respectively.
  • the multiuser bit data stream after the multiplexing is ⁇ d ⁇ , ie [0, 3N-1].
  • Goreimatsu 64QAM is adopted, the multiplexing method represented by the following formula can be used.
  • ⁇ d ⁇ is mapped to a 64QAM constellation diagram with a set of 6 bits and modulated, and a modulated signal is transmitted.
  • FIG. 13 is a diagram illustrating a main configuration of a receiving apparatus that performs multiple access cancellation reception of a general multiuser higher-order modulation method according to the present embodiment.
  • the receiving apparatus 200 includes a multiple access cancellation processing unit 210, a demodulation unit 220, a parallel Z-serial (PZS) conversion unit 230, and a decoding unit, which perform a cancellation process corresponding to the multiple connection made on the transmission side. Interrino 240 and decoder 250.
  • PZS parallel Z-serial
  • Demodulation section 220 outputs demodulated data related only to the configuration bits assigned to the own apparatus on the transmission side to PZS conversion section 230.
  • the demodulator 220 performs other configuration bits, That is, a configuration is shown in which demodulation is performed even if the configuration bits assigned to another user on the transmission side are performed, and the demodulated data is discarded.
  • the transmission side is transmitted to another user. It is not always necessary to perform demodulation based on the configuration bits assigned in (1). That is, the demodulator 220 only needs to demodulate the configuration bits assigned to the own device on the transmission side.
  • the PZS conversion unit 230 converts a plurality of parallel demodulated data corresponding to the plurality of configuration bits into serial data. Data series. This data sequence corresponds to the source data sequence after interleaving on the transmitting side.
  • the Dinterleaver 240 performs Dinterleave corresponding to the interleave on the transmission side for the data series from the PZS conversion unit 230.
  • Decoder 250 performs a decoding process corresponding to the encoding on the transmission side on the data sequence after the Dinterleave.
  • each user terminal i receives the channel output sequence hat [Q], performs multiple access cancellation processing according to the transmission side, and obtains sequence hat [S]. Then, selective high-order demodulation and parallel / serial conversion are performed to obtain a sequence hat [U]. Then, Dinter leave and decryption are performed to finally obtain a judgment data sequence hat [D].
  • LLR Log Likelihood Ratio
  • FIG. 14 is a diagram showing a main configuration of a receiving apparatus that specifically performs two-user 16QAM modulation multiple access cancellation reception.
  • user A using 16QAM modulation is subjected to multiple access cancellation corresponding to the transmission side, selective higher-order demodulation, parallel / serial conversion, deinterleaving, and decoding. Determination data can be obtained.
  • LLR (') Ln -min i- 1
  • the complex vector Y ⁇ y, y ⁇ is an additive white gauss of the higher-order modulation symbol at a certain time.
  • k) ⁇ represents the kth constellation point on the 16QAM constellation diagram.
  • Y-s (k) II represents the Euclidean distance between ⁇ and s (k), and is expressed as follows.
  • b (k, j) is the j-th bit value represented by the k-th constellation point S (k), b
  • LLR (b) and LLR (b) need only be calculated for user B demodulation.
  • Multiuser high-order modulation is widely applied as multiuser high-order modulation under various multiple access technologies.
  • Conventional multiple access technology allocates multiple users orthogonally to resources in the time domain, frequency domain, code domain, spatial domain, etc., and multi-order higher-order modulation is based on this. This is a proof of the allocation of higher-order modulation bit resources.
  • Embodiment 2 is an embodiment in which multi-user higher-order modulation that assigns modulation bit resources based on the time domain is applied to a time division multiple access (TDMA) scheme.
  • TDMA time division multiple access
  • each modulation code in the time domain does not represent information of one user, but represents information of a plurality of users.
  • the receiving terminal of each user must receive all modulation symbols including the user's information in the time domain as a multiple access cancellation process. Assuming that the coding length of each user is the same, only a part of the configuration bits are allocated to each user in the bit string represented by each modulation symbol. More modulation symbols and more A lot of time diversity is possible.
  • FIG. 15 is a diagram for explaining multiuser higher-order modulation symbol transmission by a time division scheme.
  • the modulation symbol on time slot 1 represents user 1 and user 2 information.
  • the modulation symbols in timeslots 3 and 5 also represent user 1 and user 2 information.
  • time slots 2, 4, and 6 represent user 3 and user 4 information.
  • the receiving terminal of user 1 must receive the modulation symbols of the related time slots 1, 3, and 5 as the multiple connection cancellation process in the multiple connection cancellation processing section 210 of FIG.
  • the receiving terminal of user 2 receives the modulation symbols of the relevant time slots 1, 3, and 5, and the receiving terminals of users 3 and 4 must receive the modulation symbols of the relevant time slots 2, 4, and 6.
  • FIG. 16 is a diagram showing a general image of multiuser higher-order modulation symbol transmission by the time division scheme.
  • the high-order modulation symbol of the i-th time slot is Q, and there are N time slots in total. If the set of all users is U, u is a subset of U and u CU. If the number of users in u is m, the total number of users is L, and the order of higher-order modulation (number of bits in one symbol) is M, m satisfies the following relationship.
  • Embodiment 3 is a frequency division multiple access (FDMA) scheme! / ⁇ is a multi-user higher-order allocation that allocates modulation bit resources on the basis of the frequency domain as compared to the orthogonal frequency division multiple (OFDM) scheme. It is an embodiment which applies modulation.
  • FDMA frequency division multiple access
  • OFDM orthogonal frequency division multiple
  • each modulation symbol on each frequency band does not represent information of a single user, but represents information of a plurality of users.
  • the receiving terminal of each user performs coherent demodulation (in the case of FDM A) or FFT (in the case of OFDM) on the frequency domain as a process of multiple access cancellation, and all frequency domains including sub-user information (sub The modulation symbol on the carrier) is received.
  • each modulation symbol allocates some bits to each user. Therefore, compared to conventional FDMA or OFDM, each user occupies more frequency bands (subcarriers) and more frequency diversity is possible.
  • FIG. 17 is a diagram for explaining multiuser higher-order modulation symbol transmission by the frequency division scheme.
  • the modulation symbol on subcarrier 1 (input of the uppermost multiplier in the figure) represents user 1 and user 2 information.
  • the modulation symbols of subcarriers 3 and 5 also represent user and user 2 information.
  • the modulation symbols of subcarriers 2, 4, and 6 represent information of user 3 and user 4.
  • FIG. 18 is a diagram for explaining reception of multiuser higher-order modulation symbols by the frequency division scheme.
  • the receiving terminal of user 1 receives the modulation symbols of the related subcarriers after performing coherent demodulation on subcarriers 1, 3, and 5 as a multiple access cancellation process before higher order demodulation.
  • the receiving terminal of user 2 receives modulation symbols of related subcarriers 1, 3, and 5, and the receiving terminals of users 3 and 4 receive modulation symbols of related subcarriers 2, 4, and 6. There must be.
  • FIG. 19 is a diagram showing a general image of multi-user higher-order modulation symbol transmission by the frequency division scheme.
  • the higher-order modulation symbol transmitted on the i-th carrier f is Q N]), and there are N carriers in total.
  • u is a subset of U and u CU. If the number of users in u is m, the total number of users is L, and the order of higher-order modulation (number of bits in one symbol) is M, m satisfies the following relationship.
  • FIG. 20 is a diagram showing a general image of multi-user higher-order modulation symbol reception by the frequency division scheme.
  • F (u) For user j, first define the function F (u) as follows:
  • FIG. 21 is a diagram for explaining transmission of multiuser higher-order modulation symbols by the OFDM scheme.
  • the modulation symbol on subcarrier 1 (the uppermost input to the IFFT section in the figure) represents user 1 and user 2 information.
  • the modulation symbol of subcarrier 3 also represents user 1 and user 2 information.
  • the modulation symbols of subcarriers 2 and 4 represent the information of users 3 and 4.
  • the transmission sequence S (t) is obtained by IFFT calculation and parallel / serial conversion of the higher-order modulation symbol sequence.
  • FIG. 22 is a diagram for explaining reception of multiuser higher-order modulation symbols by the OFDM method.
  • the receiving terminal of user 1 selects the output signal number on subcarriers 1 and 3 after serial / parallel conversion and FFT calculation as the multiple connection cancellation process before higher order demodulation.
  • FIG. 23 is a diagram showing a general image of multi-user higher-order modulation symbol transmission by the OFDM scheme.
  • the higher-order modulation symbol transmitted on the i-th carrier f is Q N]), and there are N subcarriers in total.
  • the transmission sequence S (t) is obtained by converting Q into IFFT calculation and parallel / serial conversion. If the set of all users is U, u is a subset of U and u cu. If the number of users in u is m, the total number of users is L, and the order of higher-order modulation (number of bits in one symbol) is M, m satisfies the following relationship.
  • FIG. 24 is a diagram showing a general image of multi-user higher-order modulation symbol reception by the OFDM method.
  • F (u) For user j, first define the function F (u) as follows:
  • the fourth embodiment is an embodiment in which multi-user higher-order modulation that assigns modulation bit resources based on the code domain is applied to the code division multiple access (CDMA) system.
  • CDMA code division multiple access
  • each modulation symbol on the code area represented by the spreading code does not represent information of a single user, but represents information of a plurality of users.
  • Each user's receiving terminal performs a despreading process by matched filtering using a corresponding spreading code in the code area as a multiple access cancellation process, and all modulation symbols on the code area including the user information are received. Receive and take the average value.
  • FIG. 25 is a diagram for explaining the code division of multiuser higher-order modulation symbols by the code division scheme.
  • Modulation symbol Q represents user 1 and user 2 information
  • ⁇ X, y> represents obtaining the correlation value between the sequences X and y.
  • the information of user 1 and user 2 is also orthogonal in the code area, and it can be understood that the following relationship holds.
  • the modulation symbol Q represents the information of user 3 and user 4, respectively.
  • FIG. 26 is a diagram for explaining despread reception of multi-user high-order modulation using a code division scheme.
  • the spreading codes C and C are used to estimate the spreading codes
  • FIG. 27 is a diagram illustrating a general image of multi-user higher-order modulation symbol transmission by the code division scheme.
  • the high-order modulation symbol transmitted to the i-th user set u is Q (i ⁇ [1, N]), and there are N user sets in total. Entire user
  • FIG. 28 is a diagram showing a general image of multiuser higher-order modulation symbol reception by the OFDM scheme.
  • User j assume jE U.
  • User j's terminal uses all the spreading codes [C, ---, C] belonging to user set u as the multiple access release process before performing higher-order decoding, respectively, and performs matched filtering processing (despreading process).
  • Line ui (l) ui, mi) Take the average value.
  • Embodiment 5 multi-user higher-order modulation is performed for orthogonal frequency division 'code division multiple access system (OFCDMA), in which modulation bit resources are allocated on the basis of a code domain and a frequency domain two-dimensional domain. This is an embodiment to be applied.
  • OFDMA orthogonal frequency division 'code division multiple access system
  • each of the modulation symbols in the frequency domain 'code domain represented by spreading codes and subcarriers does not represent information of a single user, but represents information of a plurality of users.
  • the FFT process is performed in the frequency domain as a process of multiple access cancellation, and then the code domain is performed in the code domain, and the despreading process by matched filtering is performed using the spreading code.
  • the code domain and the frequency domain all modulation symbols including information on the user are received.
  • FIG. 29 is a diagram for explaining code division * frequency division of multiuser higher-order modulation symbols by the OFCDMA scheme. If the total number of OFDM subcarriers is Nc and the spreading factor of the spreading code is SF, Nc is an integer multiple of SF. Also, the higher-order modulation symbol transmitted to the i-th user set u is Q (i ⁇ [1, N]), and there are N user sets in total. If the set of all users is U, u is a subset of U and u CU. Further, assuming that the user sets are orthogonal, the following relationship is established.
  • FIG. 30 is a diagram illustrating reception of multiuser higher-order modulation symbols by the OFCDMA system.
  • User j assume jE U.
  • User j's terminal first performs serial / parallel conversion and FFT operation to obtain Nc parallel output signals.
  • SF signals can be grouped into Nc / SF groups in total.
  • despreading in the time domain is performed using all spreading codes [C,-, C] belonging to the user set u.
  • Addition is performed to obtain one output value.
  • Nc / SF output values By performing parallel / serial conversion on Nc / SF output values, a higher-order modulation symbol sequence hat [Q] related to user j is obtained.
  • the transmission side can synthesize and frame the different user time slot formats in the same modulation symbol to share pilot data.
  • channel estimation of the combined frame can be performed using pilot data shared by different users. Since the pilot data shared by multiple users is larger than the conventional pilot data dedicated to a single user, the accuracy of channel estimation increases.
  • FIG. 31 is a diagram showing a time slot format (data / pilot) arrangement of multiuser higher-order modulation symbols by time division multiple access.
  • time slot 1 As shown in the figure, in the conventional time division multiple access method, user 1 and user 2 occupy different time slots 1 and 2, respectively.
  • time slot 1 user 1 pilot p is placed in the middle of the time slot and data Q is at both ends.
  • pilot 2 of user 2 It has been placed. In timeslot 2, pilot 2 of user 2
  • modulation symbol Q represents information of user 1 and user 2
  • user 1 and user 2 are combined into a frame. And can share the same pilot P.
  • user 1 and user 2 share the same
  • the accuracy of channel estimation is higher. Also, it can be seen that the number of modulation symbols occupied by the user in the time domain is larger than in the conventional method, so that more time diversity is possible and the error correction performance is improved.
  • the higher-order modulation symbol transmitted to the i-th user set U is Q (i ⁇ [1, N]), and there are N user sets in total. If the set of all users is U, u is a subset of U and u CU. If the number of users in u is m, the total number of users is L, and the order of high-order modulation (number of bits in one symbol) is M, m satisfies the following relationship.
  • m time slots in the conventional method may be combined into a frame, and m same pilots p may be shared.
  • FIG. 32 is a diagram showing the time slot format (data / pilot) arrangement of multiuser higher-order modulation symbols by OFDM.
  • user 1 and user 2 occupy different frequency subbands 1 and 2 respectively.
  • user 1 pilot P is placed in the middle of the frequency subband.
  • Data Q is placed at both ends.
  • subband 2 user 2's pilot
  • P is placed in the middle of the frequency subband, and data Q is placed at both ends.
  • modulation symbol Q represents information of user 1 and user 2, and user 1 and user 2 are combined and framed.
  • Channel estimation can be performed using the same pilot P. Similarly frequency band utilization Since more pilot data can be used on the assumption that no change is made, the accuracy of channel estimation becomes higher. In addition, it can be seen that the number of modulation symbols occupied by the user in the frequency domain is larger than that of the conventional method, so that more frequency diversity is possible and the error correction performance is improved.
  • the higher-order modulation symbol transmitted to the second user set U is Q (i ⁇ [1, N]), and there are N user sets in total. If the set of all users is U, u is a subset of U and u CU. If the number of users in u is m , the total number of users is L, and the order of higher-order modulation (number of bits in one symbol) is M, m satisfies the following relationship.
  • m subbands in the conventional method may be combined and framed, and m identical pilots P may be shared.
  • FIG. 33 is a diagram showing a time slot format (data / pilot) arrangement of multi-user higher-order modulation symbols according to the CDMA scheme.
  • user 1 and user 2 occupy different orthogonal codes C and C, respectively, and are spread simultaneously.
  • Time slot 2 transmitted at the same time
  • the pilot P of user 2 is also placed in the middle of timeslot 2 and data Q
  • modulation symbol Q represents information of user 1 and user 2
  • user 1 and user 2 are combined and framed.
  • both User 1 and User 2 are C and P
  • the accuracy of channel estimation becomes higher. Also, it can be seen that the number of modulation symbols occupied by the user in the frequency domain is larger than in the conventional method, so that more code diversity is possible and the error correction performance is improved.
  • the higher-order modulation symbol transmitted to the i-th user set u is Q ⁇ ]), and there are ⁇ ⁇ ⁇ user sets in all. If the set of all users is U, u is a subset of U and u CU. Assuming that the user sets are orthogonal, the following relationship holds.
  • Equation 23 If the number of users in u is m , the total number of users is L, and the order of higher-order modulation (number of bits in one symbol) is M, m satisfies the following relationship.
  • FIG. 34 shows a simple signaling flowchart of the multi-user higher order modulation method.
  • the mobile station periodically transmits channel state information (CSI), eg, signal-to-interference and noise ratio (SINR), and ACKZNACK information to the base station.
  • CSI channel state information
  • SIRN signal-to-interference and noise ratio
  • the base station periodically analyzes and organizes information such as CSI and ACKZNACK of these mobile stations, and weak bits are given to users with good channels ('ACK signals with high SIRN). Users who are inferior (SINR is low and 'NACK signal) are assigned strong bits, and other multiple access resources such as time slot format, spreading code, frequency band, and nolot of each user are assigned.
  • the base station periodically sends multiple connection resources and bit correlation information to the mobile station via the control channel.
  • the base station transmits the multi-user high-order modulated data to the mobile station via the traffic channel.
  • the overall flow is an adaptive process for channel changes, and when changes occur in the channel of the mobile station, the base station accordingly sets the strong and weak bits in the higher-order modulation and the associated multiple access source. New allocation improves transmission performance for weak users and maximizes system throughput.
  • the base station can assign strong bits in higher-order modulation, and weak This has the same effect as improving the signal-to-interference and noise ratio, and can improve the transmission performance of weak users, helping alleviate the perspective problem.
  • the base station can still assign strong bits in higher-order modulation, and ARQ (automatic repeat request) It helps improve the performance of weak users in the process and increases throughput.
  • each user has more time Can be more frequency diversity (for frequency division systems) or more code diversity (for code division systems), and each user can Improve overall system throughput by sharing more pilot data with other users in the same group and providing more accurate channel estimation.
  • an unequal multiuser higher-order modulation method including the following steps. That is, the unequal multi-user high-order modulation method performs encoding and interleaving on source data sequences from a plurality of users to generate a plurality of interleaved code data sequences, A step of arranging the users in order based on the state of the fed back channel, a step of arranging the symbol bits in the modulation symbol in order based on the order of the strength of the protection capability, and a symbol bit based on the number of symbol bits and the number of users.
  • a step of dividing each user into symbol bit groups and user groups corresponding to each other, and interleaving code data sequences from user groups with good channel conditions are assigned to symbol bit groups with weak protection capability and multiplexed. And bad channel status! Interleaving code data sequences of ⁇ ⁇ by assigning them to symbol bit groups with strong protection capability, forming one modulation symbol from each parallel symbol bit, generating a modulation symbol sequence, and modulation symbols Performing multiple access to the sequence, and generating a multiple access transmission data sequence.
  • the channel state of the user is determined by the signal-to-interference and noise ratio. The higher the signal-to-interference / noise ratio, the better the channel state of the user.
  • the user's channel state is determined by the ACK / NACK feedback signal. If the user feeds back an ACK feedback signal, the user's channel condition is good, and if the user feeds back a NACK feedback signal, the user's channel condition is poor.
  • the level of protection capability of each symbol bit is determined by the sum of the symbol and symbol distance of each symbol bit. However, the greater the sum of the Hamming distances, the weaker the protection capability of the bit.
  • the multiple access is one of the following multiple access schemes: time division multiple access, frequency division multiple access, orthogonal frequency division multiple access, code division multiple access, orthogonal frequency 'code division multiple access Adopt one.
  • time slots, subbands, or spreading code spaces of a plurality of users within the same modulation symbol are combined into a frame. Multiple users in this modulation symbol share pilot data.
  • the multiple access cancellation higher-order demodulation method includes receiving multiple access transmission data sequences, performing multiple access cancellation processing on the received multiple access transmission data sequences, and generating multiple access cancellation modulation symbol sequences; For each multiple access cancellation modulation symbol in the disconnection modulation symbol sequence, the symbol bit corresponding to the reception user in the multiple access cancellation modulation symbol based on the correspondence between the reception user and the symbol bit.
  • a demodulating data sequence corresponding to the receiving user from the demodulated data by selectively demodulating the data, discarding symbol bits corresponding to other users in the multiple access modulation symbol, and And a step of performing deinterleaving and decoding on the demodulated data sequence to generate a decision data sequence.
  • the wireless transmission device and wireless transmission method of the present invention are a wireless transmission device and a wireless transmission method for simultaneously transmitting wireless signals to a plurality of users, and are useful for improving throughput.

Abstract

A wireless transmitting device and a wireless transmitting method are provided to simultaneously transmit a wireless signal to plural users with improved throughput. A transmitting device (100) is comprised of a multiple-user-bit stream forming unit (130) for allocating each structuring bit as a user usable bit in accordance with the degree of easiness for correcting errors per structuring bit in a unit bit train indicated by one symbol and situations in each user channel and for placing elements of parallel data series addressed to plural users in order following the allocation to form a bit stream addressed to the users; and a modulating unit (150) for forming a modulating signal in accordance with the unit bit train of the bit stream.

Description

明 細 書  Specification
無線送信装置および無線送信方法  Radio transmission apparatus and radio transmission method
技術分野  Technical field
[0001] 本発明は、無線送信装置および無線送信方法に関し、特に高次の変調方式が適 用される無線送信装置および無線送信方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a wireless transmission device and a wireless transmission method, and more particularly to a wireless transmission device and a wireless transmission method to which a higher-order modulation scheme is applied.
背景技術  Background art
[0002] 二位相偏移変調 (BPSK)と四位相偏移変調 (QPSK)は現在通信分野にお!、て 通常用いられている変調技術であるが、さらに周波数スペクトル利用効率を高めるた め、 8PSK、 16QAM、 64QAM、 256QAMなどの高次変調技術も導入されている (非特許文献 1参照)。高次変調方式のコンスタレーシヨン図上では、各変調シンボル はいくつかのビットで構成される。例えば、 8PSK、 16QAM、 64QAM、 256QAM の変調シンボルはそれぞれ 3、 4、 6、 8個のビットで構成される。ビット誤り率を低下さ せるため、ビット列から変調シンボルへのマッピングとしては通常 Golayマッピングが 用いられて!/、る。図 1に 8PSKゴレイ (Golay)符号化のコンスタレーシヨンマップを示 すが、各コンスタレーシヨン点は 3個のビット(a a a )で表され、コンスタレーシヨンは  [0002] Binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) are modulation techniques that are commonly used in the current communications field. In order to further improve the efficiency of frequency spectrum utilization, High-order modulation techniques such as 8PSK, 16QAM, 64QAM, and 256QAM have also been introduced (see Non-Patent Document 1). On the constellation diagram of the higher-order modulation system, each modulation symbol is composed of several bits. For example, 8PSK, 16QAM, 64QAM, and 256QAM modulation symbols are composed of 3, 4, 6, and 8 bits, respectively. In order to reduce the bit error rate, Golay mapping is usually used as the mapping from bit strings to modulation symbols! Figure 1 shows the constellation map for 8PSK Golay coding. Each constellation point is represented by 3 bits (a a a), and the constellation is
1 2 3  one two Three
単位円上にある。図 2は 16QAMゴレイ (Golay)符号化のコンスタレーシヨンマップを 示すが、各コンスタレーシヨン点は 4個のビット(a a a a )で表されている。ただし、 X  It is on the unit circle. Figure 2 shows the constellation map for 16QAM Golay coding, where each constellation point is represented by 4 bits (a a a a). Where X
1 2 3 4  1 2 3 4
軸の成分は a aで、 Y軸の成分は a aで表され、コンスタレーシヨン図のエネルギー  The component of the axis is a a, the component of the Y axis is a a, and the energy of the constellation diagram
1 2 3 4  1 2 3 4
正規化要素は c= 1Z 10である。図 3は 64QAMゴレイ (Golay)符号化のコンスタ レーシヨンマップを示す図である n各コンスタレーシヨン点は 6個のビット(a a a a a a ) The normalization element is c = 1Z10. Figure 3 is 64QAM Golay (Golay) n each cons Talay Chillon point is a diagram showing a Konsuta rate Chillon map encoding 6 bits (aaaaaa)
1 2 3 4 5 6 で表されている。ただし、 X軸成分は a a aで、 Y軸成分は a a aで表され、コンスタレ  1 2 3 4 5 6 However, the X-axis component is a a a and the Y-axis component is a a a.
1 2 3 4 5 6  1 2 3 4 5 6
ーシヨン図のエネルギー正規化要素は、 C= lZ 42である。 Golayマッピングでは 、ビット列中の各構成ビットの保護能力は不均等であり、強い保護能力を持つビットも あれば、保護能力の弱いビットもある。  The energy normalization factor of the cision diagram is C = lZ42. In Golay mapping, the protection capability of each constituent bit in the bit string is uneven, and there are bits with strong protection capability and bits with weak protection capability.
[0003] 従来のマルチユーザ伝送技術においては、各変調シンボルはすべて同一ユーザ の情報である。実際の運用上では、あるユーザのチャネルは品質がよぐ一部ユーザ のチャネルは信号雑音比(SNR)が大き 、と 、うように各ユーザのチャネルも不均等 である可能性がある。例えば、無線通信におけるマルチユーザ伝送の場合、基地局 に近 、ユーザは回線減衰が小さ 、ため一般に SNRが高 、が、セルエッジに 、るュ 一ザは回線減衰が大きいため一般に SNRが低いことから、遠近問題が生じる。チヤ ネルが劣るユーザの信号は往々にしてチャネルの良!、ユーザの信号力 深刻な干 渉を受ける。この種の問題に対しては、通常、電力制御によって解決をはかる。即ち 基地局はチャネルの劣るユーザへの送信電力を上げることにより、信号対干渉雑音 比を上げ、性能を改善させる。 [0003] In the conventional multi-user transmission technique, each modulation symbol is information of the same user. In actual operation, the quality of a certain user's channel is good, and the channel of each user is also unequal, as the channel of some users has a large signal-to-noise ratio (SNR). There is a possibility. For example, in the case of multi-user transmission in wireless communication, the user is close to the base station and the line attenuation is small, so the SNR is generally high, but at the cell edge, the user is generally low in SNR because the line attenuation is large. A perspective problem arises. Signals from users with inferior channels are often good channels! Users' signal strength is subject to severe interference. This type of problem is usually solved by power control. In other words, the base station increases the signal-to-interference noise ratio and improves the performance by increasing the transmission power to users with inferior channels.
[0004] 図 4は従来のマルチユーザ高次変調の多元接続送信プロセスを示す図である。各 ユーザが単独で符号化、インターリーブ、パラレル/シリアル変換、高次変調、電力制 御を行ってから、多元接続を行う。通常、アクセス方式には時分割 (TDM)、周波数 分割 (FDM)、直交周波数分割多重 (OFDM)、コード分割 (CDM)等の方式がある FIG. 4 is a diagram illustrating a conventional multi-user high-order modulation multiple access transmission process. Each user independently performs coding, interleaving, parallel / serial conversion, high-order modulation, and power control, and then performs multiple access. Usually, access methods include time division (TDM), frequency division (FDM), orthogonal frequency division multiplexing (OFDM), code division (CDM), etc.
[0005] 図 5は従来のマルチユーザ高次変調の多元接続解除受信プロセスを示す図である 。各ユーザが単独で多元接続解除、高次復調、ノ ラレル /シリアル変換、ディンターリ ーブ、復号化を行う。 FIG. 5 is a diagram illustrating a conventional multi-user higher order modulation multiple access release reception process. Each user independently performs multiple access disconnection, higher-order demodulation, normal / serial conversion, Dinter leave, and decoding.
非特許文献 1 : Stephen G. Wilson, Digital Modulation and Coding, Prentice-Hall, 19 96  Non-Patent Document 1: Stephen G. Wilson, Digital Modulation and Coding, Prentice-Hall, 19 96
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力しながら、上記従来技術のように単純にチャネルの劣るユーザへの送信電力を 上げると、そのユーザの性能は改善されるものの、チャネルの良いユーザに対しても 余計な多元接続干渉を起こし、チャネルの良!、ユーザの性能を低下させることから、 多元接続干渉 (MAI)の制約を受けるコード分割多元接続 (CDMA)システムにお ヽ ては特に、全体のスループット効率を改善することはできない。また、電力制御技術 は高次変調技術と有機的に結合されていないため、性能の向上には限界がある。  [0006] However, if the transmission power to a user with a poor channel is simply increased as in the conventional technique, the performance of the user is improved, but an extra multiple access is made even for a user with a good channel. Improve overall throughput efficiency, especially in code division multiple access (CDMA) systems that are subject to multiple access interference (MAI) constraints, because they cause interference, improve channel quality, and reduce user performance It is not possible. In addition, power control technology is not organically coupled with higher-order modulation technology, so there is a limit to improving performance.
[0007] 本発明の目的は、複数ユーザに同時に無線信号を送信する無線送信装置および 無線送信方法であって、スループットを向上する無線送信装置および無線送信方法 を提供することである。 課題を解決するための手段 [0007] An object of the present invention is to provide a wireless transmission device and a wireless transmission method for simultaneously transmitting wireless signals to a plurality of users, and to improve the throughput. Means for solving the problem
[0008] 本発明の無線送信装置は、 1つのシンボルが表す単位ビット列の構成ビットごとの 誤り易さ、および、各ユーザのチャネル状況に基づいて各構成ビットをユーザの使用 ビットとして割り当て、当該割り当てに従った順序に複数のユーザ宛の並列なデータ 系列の要素を並べることにより、前記複数のユーザ宛のビットストリームを形成するビ ットストリーム形成手段と、前記ビットストリームの前記単位ビット列に従って、変調信 号を形成する変調手段と、を具備する構成を採る。  [0008] The wireless transmission device of the present invention assigns each constituent bit as a user's used bit based on the ease of error for each constituent bit of the unit bit string represented by one symbol and the channel status of each user, A bit stream forming means for forming a bit stream addressed to the plurality of users by arranging elements of parallel data sequences addressed to the plurality of users in an order in accordance with the unit bit string of the bit stream. And a modulation means for forming the structure.
[0009] 本発明の無線送信方法は、 1つのシンボルが表す単位ビット列の構成ビットごとの 誤り易さ、および、各ユーザのチャネル状況に基づいて各構成ビットをユーザの使用 ビットとして割り当てるステップと、前記割り当てに従った順序に複数のユーザ宛の並 列なデータ系列の要素を並べることにより、前記複数のユーザ宛のビットストリームを 形成するステップと、前記ビットストリームの前記単位ビット列に応じた変調信号を形 成するステップと、を具備する。  [0009] The wireless transmission method of the present invention includes the steps of assigning each constituent bit as a user use bit based on the ease of error for each constituent bit of the unit bit string represented by one symbol and the channel status of each user; Arranging elements of parallel data sequences addressed to a plurality of users in an order according to the assignment, forming a bitstream addressed to the plurality of users; and a modulation signal corresponding to the unit bit string of the bitstream Forming a step.
発明の効果  The invention's effect
[0010] 本発明によれば、複数ユーザに同時に無線信号を送信する無線送信装置および 無線送信方法であって、スループットを向上する無線送信装置および無線送信方法 を提供することができる。  [0010] According to the present invention, it is possible to provide a wireless transmission device and a wireless transmission method for simultaneously transmitting a wireless signal to a plurality of users, which can improve the throughput.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]8PSKゴレイ(Golay)符号化のコンスタレーシヨンマップを示す図  [0011] [FIG. 1] A diagram showing a constellation map of 8PSK Golay coding.
[図 2]16QAMゴレイ符号化のコンスタレーシヨンマップを示す図  [Figure 2] Diagram showing the constellation map for 16QAM Golay coding
[図 3]64QAMゴレイ符号化のコンスタレーシヨンマップを示す図  [Figure 3] Diagram showing constellation map of 64QAM Golay coding
[図 4]従来のマルチユーザ高次変調の多元接続送信プロセスを示す図  [Fig.4] Diagram showing conventional multi-user high-order modulation multiple access transmission process
[図 5]従来のマルチユーザ高次変調の多元接続解除受信プロセスを示す図  [FIG. 5] A diagram showing a conventional multi-user higher order modulation multiple access release reception process.
[図 6]高次変調における強弱の構成ビットを区分する方法の説明に供する図  [Fig. 6] Diagram for explaining the method of distinguishing strong and weak constituent bits in high-order modulation
[図 7]16QAMゴレイ符号化の aビットと aビットの AWGNチャネルにおけるビット誤り  [Fig.7] Bit errors in 16-bit QAM Golay coded a-bit and a-bit AWGN channels
1 2  1 2
率のコンピュータシミュレーション曲線を示す図  Diagram showing computer simulation curve of rate
[図 8]64QAMゴレイ符号化の aビット、 aビット、 aビットの AWGNチャネルにおける  [Figure 8] 64QAM Golay coded a-bit, a-bit, a-bit AWGN channel
1 2 3  one two Three
ビット誤り率のコンピュータシミュレーション曲線を示す図 [図 9]マルチユーザ高次変調方法の多元接続送信を行う送信装置の主要構成を示 す図 Figure showing a computer simulation curve of bit error rate [Figure 9] Diagram showing the main configuration of a transmitter that performs multi-access transmission in the multiuser higher-order modulation method
[図 10]2ユーザの 16QAM変調方法の多元接続送信を行う送信装置の主要構成を 示す図  FIG. 10 is a diagram showing the main configuration of a transmission apparatus that performs multiple access transmission of 16-user 16QAM modulation method.
圆 11]マルチユーザ高次変調のビットストリーム割り当て多重方法の説明に供する図 [図 12]2ユーザ 16QAM変調のビットストリーム割り当て多重方法の説明に供する図 圆 13]マルチユーザ高次変調方法の多元接続解除受信を行う受信装置の主要構成 を示す図 圆 11] Diagram for explaining multi-user higher-order modulation bitstream allocation multiplexing method [Fig. 12] Diagram for explaining 2-user 16QAM modulation bit-stream allocation multiplexing method 圆 13] Multiple access of multi-user higher-order modulation method Diagram showing the main configuration of a receiving device that performs cancellation reception
[図 14]2ユーザの 16QAM変調の多元接続解除受信を行う受信装置の主要構成を 示す図  FIG. 14 is a diagram showing the main configuration of a receiving apparatus that performs multiple-user disconnection reception of 16QAM modulation of two users
圆 15]時分割方式によるマルチユーザ高次変調シンボル送信の説明に供する図 [図 16]時分割方式によるマルチユーザ高次変調シンボル送信の一般的イメージを示 す図 圆 15] Diagram for explaining multi-user high-order modulation symbol transmission by time division method [Fig. 16] Diagram showing a general image of multi-user high-order modulation symbol transmission by time division method
圆 17]周波数分割方式によるマルチユーザ高次変調シンボル送信の説明に供する 図 圆 17] Used to explain multi-user higher-order modulation symbol transmission by frequency division
圆 18]波数分割方式によるマルチユーザ高次変調シンボル受信の説明に供する図 [図 19]周波数分割方式によるマルチユーザ高次変調シンボル送信の一般的イメージ を示す図 圆 18] Diagram for explaining reception of multi-user higher-order modulation symbol by wave number division method [Fig. 19] Diagram showing a general image of multi-user higher-order modulation symbol transmission by frequency division method
[図 20]周波数分割方式によるマルチユーザ高次変調シンボル受信の一般的イメージ を示す図  [Fig.20] Diagram showing a general image of multi-user higher-order modulation symbol reception by frequency division method
[図 21]OFDM方式によるマルチユーザ高次変調シンボル送信の説明に供する図 [図 22]OFDM方式によるマルチユーザ高次変調シンボル受信の説明に供する図 [図 23]OFDM方式によるマルチユーザ高次変調シンボル送信の一般的イメージを 示す図  [Fig. 21] Diagram for explaining multi-user higher-order modulation symbol transmission by OFDM scheme [Fig. 22] Diagram for explanation of multi-user higher-order modulation symbol reception by OFDM scheme [Fig. 23] Multi-user higher-order modulation by OFDM scheme Diagram showing a general image of symbol transmission
[図 24]OFDM方式によるマルチユーザ高次変調シンボル受信の一般的イメージを 示す図  [Fig.24] Diagram showing a general image of multi-user higher-order modulation symbol reception using OFDM.
[図 25]コード分割方式によるマルチユーザ高次変調シンボルのコード分割の説明に 供する図 [図 26]コード分割方式によるマルチユーザ高次変調の逆拡散受信の説明に供する 図 [Fig.25] Diagram for explaining code division of multi-user higher-order modulation symbols by code division method FIG. 26 is a diagram for explaining despread reception of multi-user high-order modulation using a code division scheme.
[図 27]コード分割方式によるマルチユーザ高次変調シンボル送信の一般的イメージ を示す図  [Fig.27] Diagram showing a general image of multi-user higher-order modulation symbol transmission by code division method
[図 28]OFDM方式によるマルチユーザ高次変調シンボル受信の一般的イメージを 示す図  [Fig.28] Diagram showing a general image of multi-user higher-order modulation symbol reception using OFDM
[図 29]OFCDMA方式によるマルチユーザ高次変調シンボルのコード分割 '周波数 分割の説明に供する図  [Fig.29] Code division of multi-user higher-order modulation symbol by OFDMA 'Diagram used to explain frequency division
[図 30]OFCDMA方式によるマルチユーザ高次変調シンボルの受信を示す図  [FIG. 30] A diagram showing reception of multi-user higher-order modulation symbols by the OFDMA system
[図 31]時分割多元接続によるマルチユーザ高次変調シンボルのタイムスロットフォー マット (データ/パイロット)配置を示す図  [Fig.31] Diagram showing time slot format (data / pilot) arrangement of multiuser higher-order modulation symbols by time division multiple access
[図 32]OFDMによるマルチユーザ高次変調シンボルのタイムスロットフォーマット(デ ータ /パイロット)配置を示す図  [Fig.32] Diagram showing time slot format (data / pilot) arrangement of multiuser higher-order modulation symbols by OFDM
[図 33]CDMA方式によるマルチユーザ高次変調シンボルのタイムスロットフォーマツ ト(データ/パイロット)配置を示す図  [Fig.33] Diagram showing time slot format (data / pilot) arrangement of multi-user higher-order modulation symbols using CDMA
[図 34]マルチユーザ高次変調方法の簡単なシグナリングのフローチャート 発明を実施するための最良の形態  FIG. 34 is a simple signaling flowchart of a multiuser high-order modulation method. BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、実施 の形態において、同一の構成要素には同一の符号を付し、その説明は重複するの で省略する。ここに述べる実施例は説明の目的のためのものに過ぎず、本発明の範 囲を制限するものではないことを指摘しておく。ここに述べる各種の数値は本発明を 限定するためのものではなぐこれらの数値は当業者の必要に応じ適宜変更が可能 である。本明細書においては、 16QAM変調を例にとり本発明を記述する力 本発 明は 64QAMなどその他の M- QAM (M = 2m)変調方式を採用した通信システム に応用できることも自明である。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that, in the embodiments, the same components are denoted by the same reference numerals, and the description thereof is omitted because it is redundant. It should be pointed out that the embodiments described here are for illustrative purposes only and do not limit the scope of the invention. The various numerical values described here are not intended to limit the present invention, and these numerical values can be appropriately changed as necessary by those skilled in the art. In this specification, it is obvious that the present invention can be applied to communication systems employing other M-QAM (M = 2m) modulation schemes such as 64QAM.
[0013] (実施の形態 1)  [0013] (Embodiment 1)
以下、各実施の形態では、高次変調を、一様でないビットの保護能力(すなわち、 コンスタレーシヨン上の信号点(シンボル)が表すビット列を構成する構成ビットごとの 誤り易さ)及び複数ユーザのチャネル状況に効果的に結びつける技術について説明 する。 Hereinafter, in each of the embodiments, high-order modulation is performed for each of the constituent bits constituting the bit string represented by the non-uniform bit protection capability (that is, the signal point (symbol) on the constellation) This section describes the technology that effectively links to the ease of error) and the channel conditions of multiple users.
[0014] 送信側では、まず、異なる符号ィ匕マッピング方式による高次変調ごとに、各構成ビ ットの保護能力を明確にしなければならない。これに対応する、ある簡便な方法を提 示する。  [0014] On the transmission side, first, it is necessary to clarify the protection capability of each component bit for each high-order modulation using different code mapping methods. A simple method is proposed to deal with this.
[0015] すなわち、高次変調のコンスタレーシヨンマップ上で、ユークリッド距離が最小となる コンスタレーシヨン上の信号点のペアを全て見つけ、その中の各ビットのハミング距離 の和を計算する。各構成ビットの保護能力とそのノ、ミング距離の和は反比例するので 、和が大きければ弱いビット、和が小さければ強いビットと定義される。これは、高次 復調のシンボル誤り率が主としてその最小ユークリッド距離によって決まり、シンボル 誤り率が同一である条件下では、各ビットのビット誤り率はその平均ノ、ミング距離と比 例する力らである。このため、高次変調の信号点の表すビット列の各構成ビットのビッ ト誤り率は、ユークリッド距離が最小のコンスタレーシヨン上の信号点ペアの中の各構 成ビットのノ、ミング距離の和と正比例する。また、送信側では、フィードバックされた異 なるユーザの CQI (チャネル品質インジケータ)情報に従!、、チャネル条件の良!ヽュ 一ザ (強ユーザと呼ぶ)とチャネル条件の劣るユーザ (弱ユーザと呼ぶ)に区分する。 例えば、信号対干渉雑音比(SINR: signal to interference and noise ratio)の大きい ユーザを強ユーザと呼び、信号対干渉雑音比の小さいユーザを弱ユーザと呼ぶ。或 いは、 ACK信号をフィードバックしたユーザを強ユーザに、 NACK信号をフィードバ ックしたユーザを弱ユーザに区分する。もしユーザが NACK信号をフィードバックし た場合は、明らかにこのユーザのチャネルは劣悪であり、正確な復号化は不可能で あるので、このユーザは弱ユーザと定義される。弱ユーザに対しては、性能を向上さ せる必要があるので、弱ユーザのデータは高次変調における強 、ビット位置にマツピ ングし、強ユーザのデータは高次変調の弱いビット位置にマッピングする。このように 、一つの高次変調シンボルには複数のユーザの情報が含まれるので、弱ユーザの強 ユーザに対する多元接続干渉 (MAI)は生じな 、。  That is, all pairs of signal points on the constellation that minimize the Euclidean distance are found on the high-order modulation constellation map, and the sum of the hamming distances of each bit in the constellation is calculated. Since the sum of the protection capability of each constituent bit and its sum and ming distance are inversely proportional, it is defined as a weak bit if the sum is large and a strong bit if the sum is small. This is because the symbol error rate of high-order demodulation is mainly determined by the minimum Euclidean distance, and under the condition where the symbol error rate is the same, the bit error rate of each bit is a force proportional to its average and ming distance. is there. For this reason, the bit error rate of each constituent bit of the bit string represented by the signal point of the higher-order modulation is the sum of the ming distance and the sum of the constituent bits in the signal point pair on the constellation with the smallest Euclidean distance. Is directly proportional to On the transmitting side, the CQI (channel quality indicator) information of the different users fed back is used, and the channel conditions are good! They are divided into users (called strong users) and users with poor channel conditions (called weak users). For example, a user with a large signal to interference and noise ratio (SINR) is called a strong user, and a user with a small signal to interference and noise ratio is called a weak user. Alternatively, the user who fed back the ACK signal is classified as a strong user, and the user who fed back the NACK signal is classified as a weak user. If the user feeds back a NACK signal, this user is clearly defined as a weak user because his channel is bad and accurate decoding is not possible. For weak users, it is necessary to improve performance, so weak user data is mapped to strong bit positions in high-order modulation, and strong user data is mapped to weak bit positions in high-order modulation. . As described above, since information of a plurality of users is included in one high-order modulation symbol, multiple access interference (MAI) to strong users of weak users does not occur.
[0016] また、受信側では、異なるユーザに対し、相応の多元接続解除処理、選択的な高 次変調の復調、パラレル/シリアル変換、多重分離、ディンターリーブ、復号化を行い 、判定データを得ることができる。従来方法と異なるのは、ある特定のユーザの高次 復調をするためには、そのユーザのビットの復調をするだけでよいことである。すなわ ち、 Max-Log-Map復号ィ匕アルゴリズムを用いて対応する LLR (対数尤度比)が得 られ、一つの変調シンボル上のマッピングされたビット全ての復調を行う必要がな!、こ とである。 [0016] On the receiving side, for different users, corresponding multiple access cancellation processing, selective high-order modulation demodulation, parallel / serial conversion, demultiplexing, deinterleaving, and decoding are performed. Determination data can be obtained. The difference from the conventional method is that in order to perform high-order demodulation of a specific user, it is only necessary to demodulate the bit of that user. In other words, the corresponding LLR (Log Likelihood Ratio) is obtained using the Max-Log-Map decoding algorithm, and it is not necessary to demodulate all mapped bits on one modulation symbol! It is.
[0017] こうして、高次変調技術をマルチユーザ伝送のチャネル状況に効果的にマッチング させ、伝送チャネルの劣るユーザの性能を改善し、またマルチユーザ伝送における 全体のスループット効率を向上させることができる。  [0017] In this way, high-order modulation techniques can be effectively matched to the channel conditions of multi-user transmission, the performance of users with poor transmission channels can be improved, and the overall throughput efficiency in multi-user transmission can be improved.
[0018] 図 6は、高次変調における強弱の構成ビットを区分する方法の説明に供する図であ る。まず、一定の符号化規則に基づいて、高次変調のコンスタレーシヨンマップを確 定し、コンスタレーシヨン上の信号点間の最小ユークリッド距離を見つける。次に、最 小距離に該当する全てのコンスタレーシヨン上の信号点のペアを見つける。そして、 これらのペアについて全ての構成ビットそれぞれ関してハミング距離の和を計算し、 順番に並べる。得られた和が小さい場合、保護能力が強いことを表すので、強ビット と呼ぶ。得られた和が大きい場合、保護能力が弱いことを表すので、弱ビットと呼ぶ。 実際に各構成ビットのビット誤り率とそのノ、ミング距離の和は、直線的な正比例関係 を近似する。ハミング距離の和が大きいほど、ビット誤り率も高くなる。  [0018] FIG. 6 is a diagram for explaining a method of distinguishing strong and weak constituent bits in high-order modulation. First, a high-order modulation constellation map is determined based on a certain coding rule, and the minimum Euclidean distance between signal points on the constellation is found. Next, find a pair of signal points on all constellations corresponding to the minimum distance. Then, the sum of the Hamming distances is calculated for all the constituent bits for these pairs and arranged in order. When the obtained sum is small, it indicates that the protection capability is strong, so it is called a strong bit. When the obtained sum is large, it indicates that the protection capability is weak, so it is called a weak bit. Actually, the bit error rate of each component bit and the sum of its ming distances approximate a linear direct proportional relationship. The bit error rate increases as the sum of the Hamming distances increases.
[0019] (1)例えば、図 1に示す 8PSKゴレイ(Golay)符号化のコンスタレーシヨンマップでは 、コンスタレーシヨンの信号点間の最小ユークリッド距離は、 2sin ( w Z8)である。そ して、ユークリッド距離が最小である全てのコンスタレーシヨンの信号点のペアは、(11 1, 110)、(110, 100)、(100,101)、(101,001)、(001,000)、(000,010)、(010,011)、 (011,111) の 8つである。 (1) For example, in the 8PSK Golay coding constellation map shown in FIG. 1, the minimum Euclidean distance between the constellation signal points is 2 sin (w Z8). And all constellation signal point pairs with the smallest Euclidean distance are (11 1, 110), (110, 100), (100, 101), (101,001), (001,000), (000,010) , (010,011), (011,111).
[0020] 信号点が表すビット列のうちの第 1の構成ビットである aビットについては、(101,001)  [0020] For the a bit that is the first constituent bit in the bit string represented by the signal point, (101,001)
1  1
と (011, 111)において各信号点間で変化が発生する。 2つのペアのそれぞれでハミン グ距離が 1であるので、 aビットについてはハミング距離の和は 2である。 aビットにつ  And (011, 111) changes between signal points. Since the Hamming distance is 1 for each of the two pairs, the sum of the Hamming distances is 2 for the a bit. a bit
1 2 いては、(110,100)と (000,010)において変化が発生し、そのためノ、ミング距離の和は 2 である。 aビットについては、(111, 110)、(100, 101)、(001,000)、(010,011)において変  For 1 2, a change occurs at (110,100) and (000,010), so that the sum of the distances is 2. The a bit is changed in (111, 110), (100, 101), (001,000), (010,011).
3  Three
化が発生し、そのためハミング距離の和は 4である。したがって、 aビット、 aビット、 a ビットのノ、ミング距離の和の比は、 2 : 2 : 4= 1: 1:2となる。すなわち、 aビット、 aビット Therefore, the sum of Hamming distances is 4. Therefore, a bit, a bit, a The ratio of bit sum and ming distance sum is 2: 2: 4 = 1: 1: 2. Ie, a bit, a bit
1 2 は強ビットで、 aビットは弱ビットである。そして、 aビット、 aビット、 aビットのビット誤り  1 2 is a strong bit and a bit is a weak bit. And bit error of a bit, a bit, a bit
3 1 2 3  3 1 2 3
率は、 1 : 1 : 2で正比例するはずである。  The rate should be directly proportional to 1: 1: 2.
[0021] (2)図 2に示す 16QAMゴレイ (Golay)符号化の非正規化コンスタレーシヨンマップで は、コンスタレーシヨン点間の最小ユークリッド距離は 2である。 X軸成分は、 a aで、 (2) In the denormalized constellation map of 16QAM Golay coding shown in FIG. 2, the minimum Euclidean distance between constellation points is 2. The X-axis component is a a
1 2 1 2
Y軸成分は a aで表され、それらは完全に対称となっている。 Y-axis components are represented by a a and they are completely symmetric.
3 4  3 4
[0022] したがって、まず X軸のユークリッド距離が最小となる全てのコンスタレーシヨン点の ペアを見ると、(11,10)、(10,00)、(00,01)の 3対である。 aビットについては、(10,00)で  [0022] Therefore, when looking at all the constellation point pairs that minimize the Euclidean distance on the X axis, there are three pairs (11,10), (10,00), and (00,01). For the a bit, use (10,00)
1  1
変化が発生し、そのためハミング距離の和は 1である。 aビットについては、(11, 10)と(  A change occurs, so the sum of the Hamming distances is 1. For the a bit, (11, 10) and (
2  2
00,01)で変化が発生し、そのためハミング距離の和は 2である。同様に、 aビットのハミ  00,01), and the sum of the Hamming distances is 2. Similarly, a bit of Hami
3 ング距離の和は 1で、 aビットのハミング距離の和は 2である。したがって、 aビット、 a  The sum of 3 distances is 1, and the sum of a-bit Hamming distances is 2. Therefore, a bit, a
4 1 2 ビット、 aビット、 aビットのハミング距離の和の比は、 1 : 2 : 1 : 2となる。すなわち、 aビ The ratio of the sum of the Hamming distances of 4 1 2 bits, a bits, and a bits is 1: 2: 1: 2. That is, a
3 4 1 ット、 aビットは、強ビットで、 aビット、 aビットが、弱ビットである。そして、 aビット、 aビ3 4 1 bit, a bit is a strong bit, a bit, a bit is a weak bit. And a bit, a bit
3 2 4 1 2 ット、 aビット、 aビットのビット誤り率は、 1 : 2 : 1 : 2で正比例するはずである。また、図The bit error rate of 3 2 4 1 2, a bit, a bit should be directly proportional to 1: 2: 1: 2. Also figure
3 4 3 4
7には、 16QAMゴレイ符号化の aビットと aビットの AWGNチャネルにおけるビット  7 includes 16 bits in the 16QAM Golay coded a bit and a bit in the AWGN channel.
1 2  1 2
誤り率のコンピュータシミュレーション曲線を示す。対称性によって aビット、 aビットの  The computer simulation curve of an error rate is shown. A bit, a bit depending on symmetry
3 4 ビット誤り率はそれぞれ aビットと aビットと等しくなる。ビット誤り率曲線は、判定方法  3 The 4-bit error rate is equal to a and a bits, respectively. Bit error rate curve is a judgment method
1 2  1 2
の正確'性を証明している。  Has proved its accuracy.
[0023] (3)図 3に示す 64QAMゴレイ (Golay)符号化の非正規化コンスタレーシヨンマップで は、コンスタレーシヨン点間の最小ユークリッド距離は 2である。 X軸成分は、 a a aで [0023] (3) In the denormalized constellation map of 64QAM Golay coding shown in Fig. 3, the minimum Euclidean distance between constellation points is 2. X axis component is a a a
1 2 3 one two Three
、 Y軸成分は a a aで表され、それらは完全に対称となっている。 The Y-axis components are expressed as a a a, and they are completely symmetric.
4 5 6  4 5 6
[0024] したがって、まず X軸のユークリッド距離が最小となる全てのコンスタレーシヨン点の ペアを見ると、(111,110)、(110,100)、(100,101)、(101,001)、(001,000)、(000,010)、 (01 0,011)の 7対である。 aビットについては、(101,001)で変化が発生し、そのためハミン  [0024] Therefore, first, looking at all the constellation point pairs that minimize the Euclidean distance on the X axis, (111,110), (110,100), (100,101), (101,001), (001,000), (000,010) , (01 0,011) are 7 pairs. For the a bit, a change occurs at (101,001), so Hammin
1  1
グ距離の和は 1である。 aビットについては、(110, 100)と (000,010)で変化が発生し、そ  The sum of the distances is 1. For the a bit, a change occurs between (110, 100) and (000,010).
2  2
のためハミング距離の和は 2である。 aビットについては、(111,110)、(100,101)、 (001,  Therefore, the sum of the Hamming distances is 2. For the a bit, (111,110), (100,101), (001,
3  Three
000)、(010,011)で変化が発生し、そのためハミング距離の和は 4である。したがって、 aビット、 aビット、 aビットのノ、ミング距離の和の比は、 1 : 2 : 4となる。同様に、 aビット 、 aビット、 aビットのノ、ミング距離の和の比も、 1 : 2 : 4となる。したがって、 aビット、 a000) and (010,011), and the sum of the Hamming distances is 4. Therefore, the ratio of the sum of a bit, a bit, a bit, and ming distance is 1: 2: 4. Similarly, a bit The ratio of the sum of a bit, a bit, and ming distance is also 1: 2: 4. Therefore, a bit, a
5 6 1 2 ビット、 aビット、 aビット、 aビット、 aビットのノヽミング距離の禾口の it ίま、 1 : 2 : 4 : 1 : 2 : 45 6 1 2-bit, a-bit, a-bit, a-bit, a-bit Nominal distance of it, 1: 2: 4: 1: 2: 4
3 4 5 6 3 4 5 6
となる。このため、 aビット、 aビットが強ビットで、 aビット、 aビットが弱ビットであり、 a  It becomes. Therefore, a bit, a bit are strong bits, a bit, a bits are weak bits, a
1 4 3 6 2 ビット、 aビットはその中間である。 aビット、 aビット、 aビット、 aビット、 aビット、 aビッ 1 4 3 6 2 bits, a bit is in the middle. a bit, a bit, a bit, a bit, a bit, a bit
5 1 2 3 4 5 6 トのビット誤り率は、 1 : 2 : 4 : 1 : 2 : 4で正比例するはずである。また、図 8には、 64QA Mゴレイ符号化の aビット、 aビット、 aビットの AWGNチャネルにおけるビット誤り率 The bit error rate of 5 1 2 3 4 5 6 should be directly proportional to 1: 2: 4: 1: 2: 4. Figure 8 also shows the bit error rate for a 64-bit Q-A M Golay coded a-bit, a-bit, and a-bit AWGN channels.
1 2 3  one two Three
のコンピュータシミュレーション曲線を示す。対称性によって aビット、 aビット、 aビット  The computer simulation curve of is shown. A bit, a bit, a bit depending on symmetry
4 5 6 のビット誤り率は、それぞれ aビット、 aビット、 aビットと等しくなる。ビット誤り率曲線は  The bit error rate of 4 5 6 is equal to a bit, a bit, and a bit, respectively. The bit error rate curve is
1 2 3  one two Three
同様に判定方法の正確性を証明して 、る。  Similarly, prove the accuracy of the judgment method.
[0025] なお、上記方法は、ゴレイ符号ィ匕を適用した高次変調方法ば力りでなぐ任意の符 号ィ匕マッピングによる高次変調方法に対しても同様に適用できることを指摘しておく。  [0025] It should be pointed out that the above method can be similarly applied to a high-order modulation method based on arbitrary code mapping using a high-order modulation method using Golay codes. .
[0026] 図 9は、本実施の形態の、一般的マルチユーザ高次変調方法の多元接続送信を 行う送信装置の主要構成を示す図である。同図に示すように送信装置 100は、各ュ 一ザ宛のソースデータ系列にチャネル符号ィ匕処理を施す N個の符号化器 110— 1 〜Nと、チャネル符号化処理後のソースデータ系列にインターリーブ処理を施す N個 のインターリーバ 120— 1〜Nと、マルチユーザビットストリーム形成部 130と、シリア ル Zパラレル (SZP)変換部 140と、変調部 150と、多元接続処理部 160とを有する  [0026] FIG. 9 is a diagram illustrating a main configuration of a transmission apparatus that performs multiple access transmission of a general multiuser higher-order modulation method according to the present embodiment. As shown in the figure, transmitting apparatus 100 includes N encoders 110-1 to 110-N that perform channel code processing on the source data sequences addressed to each user, and source data sequences after channel coding processing. N interleavers 120-1 to N that perform interleaving processing, multi-user bitstream formation unit 130, serial Z parallel (SZP) conversion unit 140, modulation unit 150, and multiple access processing unit 160 Have
[0027] マルチユーザビットストリーム形成部 130は、各ユーザのソースデータ系列を入力 すると共に、後段の変調部 150における変調方式情報および各ユーザのチャネル状 況情報を入力する。マルチユーザビットストリーム形成部 130は、変調方式情報の表 す変調方式における 1つのシンボルが表すビット列の構成ビットの誤り易さ、および、 各ユーザのチャネル状況に基づ 、て、各構成ビットをユーザの使用ビットとして割り 当てる。マルチユーザビットストリーム形成部 130は、複数のユーザ宛のソースデータ 系列を用いて、上記割り当てに従った順序にソースデータ系列の要素であるビットを 並べることにより、複数のユーザ宛のマルチユーザビットストリームを形成する。すな わち、マルチユーザビットストリームは、変調方式情報と対応する次数と同数のビット 列(1シンボルを表すビット列に対応)ごとに着目すると、各構成ビットには上記割り当 てに応じたユーザ宛のソースデータ系列のビットが配置されることにより構成されてい る。 [0027] The multi-user bitstream forming unit 130 inputs the source data sequence of each user, and also inputs the modulation scheme information and the channel state information of each user in the modulation unit 150 at the subsequent stage. The multi-user bitstream forming unit 130 assigns each constituent bit to the user based on the ease of error of the constituent bits of the bit string represented by one symbol in the modulation scheme represented by the modulation scheme information and the channel status of each user. Assigned as used bits. The multi-user bit stream forming unit 130 uses the source data sequences addressed to a plurality of users, and arranges the bits that are the elements of the source data sequence in the order according to the above allocation, thereby Form. In other words, in the multi-user bitstream, when attention is paid to each bit string (corresponding to a bit string representing one symbol) of the same number as the order corresponding to the modulation scheme information, each of the component bits is assigned the above-described allocation. It is configured by arranging the bits of the source data series addressed to the user according to the situation.
[0028] シリアル Zパラレル(SZP)変換部 140は、シリアルなマルチユーザビットストリーム を、上記変調方式情報と対応する次数と同数の並列ストリームに変換する。この複数 の並列ストリームのビットを合わせると、 1つのシンボルが表すビット列になる。  [0028] The serial Z parallel (SZP) conversion unit 140 converts the serial multi-user bit stream into the same number of parallel streams as the order corresponding to the modulation scheme information. Combining the bits of these multiple parallel streams results in a bit string represented by one symbol.
[0029] 変調部 150は、並列ストリームのビットを合わせたビット列が表すシンボルに対応す る変調を行い、変調信号を形成する。多元接続処理部 160は、多元接続を行って変 調信号を送信する。  [0029] Modulating section 150 performs modulation corresponding to a symbol represented by a bit string obtained by combining the bits of the parallel stream to form a modulated signal. The multiple access processing unit 160 performs multiple access and transmits a modulation signal.
[0030] すなわち、各ユーザのソースデータ系列 D (ie [1, N])を、まずそれぞれチャネル 符号ィ匕とチャネルインターリーブをすることにより、系列 Uが得られる。そして、マルチ ユーザ高次変調のビットストリーム割り当て多重方法に従 、マルチユーザビットデー タストリーム系列 Vが得られる。さらにシリアル/パラレル変換を行えば、相応の高次変 調マッピングを行うことができ、変調シンボル系列 Sが得られる。そして多元接続を行 い、多元接続送信系列 Qが得られる。通常のアクセス方式には、時分割 (TDM)、周 波数分割 (FDM)、直交周波数分割多重 (OFDM)、コード分割 (CDM)などがあり、ど れも本実施の形態に適用できる。図 10は、その内一つの特別な例を示すもので、 2 ユーザの 16QAM変調方法の多元接続送信を行う送信装置の主要構成を示す図で ある。同図に示すように送信装置 100Aにおいては、ユーザ 1、 2のソースデータ系列 D 2])を、まずそれぞれ符号化器 110にてチャネル符号化とインターリーバ [0030] That is, the sequence U is obtained by first channel interleaving the source data sequence D (ie [1, N]) of each user with the channel code. Then, the multi-user bit data stream sequence V is obtained according to the bit stream allocation multiplexing method of multi-user higher-order modulation. Furthermore, if serial / parallel conversion is performed, corresponding high-order modulation mapping can be performed, and a modulation symbol sequence S can be obtained. Then, multiple access is performed and a multiple access transmission sequence Q is obtained. Normal access schemes include time division (TDM), frequency division (FDM), orthogonal frequency division multiplexing (OFDM), and code division (CDM), all of which are applicable to this embodiment. FIG. 10 shows one special example, and is a diagram showing a main configuration of a transmission apparatus that performs multi-access transmission of a 16-QAM modulation method for two users. As shown in the figure, in transmitting apparatus 100A, source data sequences D 2]) of users 1 and 2 are first encoded by channel encoder and interleaver in encoder 110, respectively.
120にてチャネルインターリーブをすることにより、系列 Uが得られる。そして、両ユー ザの 16QAM変調のビットストリーム割り当て多重方法により、マルチユーザビットデ 一タストリーム系列 Vが得られる。さらにシリアル/パラレル変換を行い 4つ(16QAM における 1つのシンボルが表すビット数に対応)の並列のブランチに分ければ、相応 の 16QAM変調マッピングを行って変調シンボル系列 Sを得ることができ、その後多 元接続を行って多元接続送信系列 Qが得られる。 Sequence U is obtained by performing channel interleaving at 120. Then, the multi-user bit data stream sequence V is obtained by the 16QAM modulation bit stream allocation multiplexing method of both users. Further, if serial / parallel conversion is performed and divided into four parallel branches (corresponding to the number of bits represented by one symbol in 16QAM), the corresponding 16QAM modulation mapping can be performed to obtain a modulation symbol sequence S. A multi-access transmission sequence Q is obtained by performing a main connection.
[0031] 図 11は、本実施の形態の、一般的なマルチユーザ高次変調のビットストリーム割り 当て多重方法の説明に供する図である。  FIG. 11 is a diagram for explaining a general multiuser high-order modulation bitstream allocation multiplexing method according to the present embodiment.
[0032] まず、送信側にお ヽて、信号対干渉雑音比や ACK/NACKフィードバック信号な どの、異なるユーザがフィードバックしてきたチャネル状態情報を受信する。そして、 フィードバック情報であるチャネル状態をもとにユーザを順番に並べる。さらにチヤネ ル状態に従ってユーザ D (i≡ [1, N])をグループ分けする。例えば、信号対干渉雑 音比の高 、ユーザチャネルを強ユーザグループに、信号対干渉雑音比の低!、ユー ザチャネルを弱ユーザグループにする。あるいは、 ACK信号をフィードバックしたュ 一ザを強ユーザグループに、 NACK信号をフィードバックしたユーザを弱ユーザグ ループにする。 [0032] First, on the transmission side, the signal-to-interference noise ratio, ACK / NACK feedback signal, etc. Which channel state information that different users have fed back is received. Then, the users are arranged in order based on the channel state as feedback information. Furthermore, user D (i≡ [1, N]) is grouped according to the channel state. For example, if the signal-to-interference noise ratio is high, the user channel is a strong user group, the signal-to-interference noise ratio is low, and the user channel is a weak user group. Alternatively, the user who fed back the ACK signal is set to the strong user group, and the user who fed back the NACK signal is set to the weak user group.
[0033] 次に、高次変調の強弱ビットに、チャネル状況が表す強弱ユーザを割り当てる。す なわち、強ユーザのデータを高次変調の弱ビットの位置にマッピングし、弱ユーザの データを高次変調の強ビットの位置にマッピングする。各ユーザのビットストリーム(ソ ースデータ系列)を受信した後、上述のマッチング結果 (割り当て結果)に基づいて 多重し、最終的なマルチユーザビットストリーム系列 Vを形成する。  [0033] Next, the strong and weak users indicated by the channel status are assigned to the strong and weak bits of the higher-order modulation. In other words, strong user data is mapped to the positions of weak bits in high-order modulation, and weak user data is mapped to positions of strong bits in high-order modulation. After receiving the bit stream (source data sequence) of each user, the final multi-user bit stream sequence V is formed by multiplexing based on the matching result (allocation result) described above.
[0034] 図 12は、特に、 2ユーザ 16QAM変調のビットストリーム割り当て多重方法の説明 に供する図である。  FIG. 12 is a diagram for explaining a bit stream allocation multiplexing method for 2-user 16QAM modulation in particular.
[0035] まずユーザ 1、 2のチャネルフィードバック情報を受信する。ユーザ 1の信号対干渉 雑音比がユーザ 2よりも小さいと仮定すると、ユーザ 1は弱ユーザであり、 16QAM変 調シンボルの強ビット (aビット、 aビット)を使用する。ユーザ 2は強ユーザであり、 16Q  First, channel feedback information of users 1 and 2 is received. Assuming that the signal-to-interference noise ratio of user 1 is smaller than user 2, user 1 is a weak user and uses the strong bits (a bit, a bit) of the 16QAM modulation symbol. User 2 is a strong user, 16Q
1 3  13
AM変調シンボルの強ビット (aビット、 aビット)を使用する。ユーザ 1のビットストリーム  Use the strong bit (a bit, a bit) of the AM modulation symbol. User 1 bitstream
2 4  twenty four
系列 Uとユーザ 2のビットストリーム系列 Uを受信し、両者の系列長さを共に Nとする Receive sequence U and user 2 bitstream sequence U, and set both sequence lengths to N
1 2 1 2
と、以下の式で多重化されたビットストリーム系列 Vが得られる。  Then, a bit stream sequence V multiplexed by the following equation is obtained.
[数 1] v (4k) =ul (k)、 v (4k+2) =ul (k+N/2)、  [Equation 1] v (4k) = ul (k), v (4k + 2) = ul (k + N / 2),
v (4k+l) =u2 (k)、 v (4k+3) =u2 (k+N/2)  v (4k + l) = u2 (k), v (4k + 3) = u2 (k + N / 2)
k e [0, N/2-1]  k e [0, N / 2-1]
[0036] 次に、マルチユーザ高次変調のビットストリーム割り当て多重方法のうち、特に 8PS[0036] Next, among multi-user higher-order modulation bitstream allocation multiplexing methods, in particular, 8PS
K、 16QAM、 64QAMの場合の実施例を以下説明する。 Examples for K, 16QAM, and 64QAM are described below.
[0037] (実施例 1) [0037] (Example 1)
2つのユーザ A及び Bが存在し、ユーザ Aはセルエッジに位置し信号対干渉雑音比 が低ぐユーザ Bは基地局に近く信号対干渉雑音比が高いと仮定する。基地局は各 ユーザの信号対干渉雑音比に基づき、ユーザ Aを弱ユーザに、ユーザ Bを強ユーザ に定義する。ユーザ Aの、チャネルにおける符号化とインターリーブを経た二進法デ 一タブロックを {a } , ie [0, N— 1]とし、ユーザ Bのチャネルにおける符号化とインタ 一リーブを経た二進法データブロックを {b }, ie [0, N—l]と仮定する。なお、 Nは、 ブロック長であり、 N = 0 (mod3)である。割り当て多重後のマルチユーザビットデータ ストリームは、 {c }, ie [0, 2N— 1]である。ゴレイマッピングの 8PSKを採用した場合 、以下の式で表される多重方式が使用できる。 There are two users A and B, and user A is located at the cell edge and has a signal-to-interference / noise ratio. Suppose that user B, who is low, is close to the base station and has a high signal-to-interference and noise ratio. The base station defines user A as a weak user and user B as a strong user based on the signal-to-interference noise ratio of each user. User A's binary data block after encoding and interleaving in the channel is {a}, ie [0, N-1], and binary data block after encoding and interleaving in user B's channel is { b}, ie [0, N—l]. N is a block length, and N = 0 (mod3). The multi-user bit data stream after allocation multiplexing is {c}, ie [0, 2N-1]. When Golay mapping 8PSK is adopted, the multiplexing method represented by the following formula can be used.
[数 2]  [Equation 2]
2N 2N
. N N
=み 'し [。,^  = Look at me. , ^
[0038] そして、 {c }に対し 3ビット一組で 8PSKのコンスタレーシヨン図にマッピングして変 調を行い、変調信号の送信を行う。 [0038] Then, {c} is mapped to an 8PSK constellation diagram with one set of 3 bits, modulated, and a modulated signal is transmitted.
[0039] (実施例 2) [0039] (Example 2)
2つのユーザ A及び Bが存在し、ユーザ Aはセルエッジに位置し信号対干渉雑音比 が低ぐユーザ Bは基地局に近く信号対干渉雑音比が高いと仮定する。基地局は各 ユーザの信号対干渉雑音比に基づき、ユーザ Aを弱ユーザに、ユーザ Bを強ユーザ に定義する。ユーザ Aの、チャネル符号ィ匕とインターリーブを経た二進法データブロ ックを {a } , i [0, N—l]とし、ユーザ Bのチャネル符号化とインターリーブを経た二 進法データブロックを {b } , i≡ [0, N—l]と仮定する。なお、 Nはブロック長であり、 N = 0 (mod2)である。割り当て多重後のマルチユーザビットデータストリームは、 {c } , i≡[0, 2N— 1]である。ゴレイマッピングの 16Q AMを採用した場合、以下の式で 表される多重方式が使用できる。  Assume that there are two users A and B, and user B is located at the cell edge and has a low signal-to-interference noise ratio. User B is close to the base station and has a high signal-to-interference noise ratio. The base station defines user A as a weak user and user B as a strong user based on the signal-to-interference noise ratio of each user. User A's binary data block that has been interleaved with channel code 匕 is {a}, i [0, N−l], and user B's binary data block that has undergone channel coding and interleaving is {b} }, i≡ [0, N—l]. N is a block length, and N = 0 (mod2). The multi-user bit data stream after the allocation multiplexing is {c}, i≡ [0, 2N−1]. When 16Q AM of Golay mapping is adopted, the multiplexing method represented by the following formula can be used.
[数 3] 4k = ak C4k+2 = ak+NI2 [Equation 3] 4k = a k C 4k + 2 = a k + NI2
C4k+1 = bk , C4k+3 =み ifc+W/ 2 C 4k + 1 = b k , C 4k + 3 = only ifc + W / 2
[0, 一 1]  [0, 1]
[0040] そして、 {c }に対し 4ビット一組で 16QAMのコンスタレーシヨン図にマッピングして 変調を行い、変調信号の送信を行う。 [0040] Then, {c} is mapped to a 16QAM constellation diagram with a set of 4 bits, modulated, and a modulated signal is transmitted.
[0041] (実施例 3)  [Example 3]
3つのユーザ A、 B及び Cが存在し、信号対干渉雑音比はその順に高くなると仮定 する。基地局は各ユーザの信号対干渉雑音比に基づき、ユーザ Aを弱ユーザ、ユー ザ Cを強ユーザ、ユーザ Bをその中間と定義する。ユーザ A、 B、 Cのチャネル符号ィ匕 及びインターリーブ後の二進法データブロックをそれぞれ {a } , {b } , {c } , i£ [0, N —1]と仮定する。なお、 Nはブロック長であり、 N = 0 (mod2)である。割り当て多重後 のマルチユーザビットデータストリームは {d } , ie [0, 3N— 1]である。ゴレイマツピン グの 64QAMを採用した場合、以下の式で表される多重方式が使用できる。 Three user A, and B and C are present, the signal to interference noise ratio is assumed to be higher in that order. Based on the signal-to-interference / noise ratio of each user, the base station defines user A as a weak user, user C as a strong user, and user B as an intermediate user. Assume that the channel codes 匕 and interleaved binary data blocks of users A, B, and C are {a}, {b}, {c}, i £ [0, N−1], respectively. N is a block length, and N = 0 (mod2). The multiuser bit data stream after the multiplexing is {d}, ie [0, 3N-1]. When Goreimatsu 64QAM is adopted, the multiplexing method represented by the following formula can be used.
画 dk = °k «t+3 = ak+N/2 dM = Dk = ° k «t + 3 = a k + N / 2 d M =
^k+l = °k+NI2 , = Ck , ^k+5 = Ck+N I2 ^ k + l = ° k + NI2, = C k, ^ k + 5 = C k + N I2
N  N
*e[o,†-i]  * e [o, † -i]
[0042] そして、 {d }に対し 6ビット一組で 64QAMのコンスタレーシヨン図にマッピングして 変調を行い、変調信号の送信を行う。 [0042] Then, {d} is mapped to a 64QAM constellation diagram with a set of 6 bits and modulated, and a modulated signal is transmitted.
[0043] 次に受信側について説明する。図 13は、本実施の形態の、一般的マルチユーザ 高次変調方法の多元接続解除受信を行う受信装置の主要構成を示す図である。同 図に示すように受信装置 200は、送信側でなされた多元接続と対応する解除処理を 行う多元接続解除処理部 210と、復調部 220と、パラレル Zシリアル (PZS)変換部 230と、ディンターリーノ 240と、復号器 250とを有する。  Next, the receiving side will be described. FIG. 13 is a diagram illustrating a main configuration of a receiving apparatus that performs multiple access cancellation reception of a general multiuser higher-order modulation method according to the present embodiment. As shown in the figure, the receiving apparatus 200 includes a multiple access cancellation processing unit 210, a demodulation unit 220, a parallel Z-serial (PZS) conversion unit 230, and a decoding unit, which perform a cancellation process corresponding to the multiple connection made on the transmission side. Interrino 240 and decoder 250.
[0044] 復調部 220は、送信側で自装置に割り当てられた構成ビットのみに関する復調デ ータを PZS変換部 230に出力する。図 13では、復調部 220でその他の構成ビット、 すなわち他のユーザに送信側で割り当てられた構成ビットにっ ヽても復調を行 、、そ の復調データを破棄する構成が示されているが、復調部 220では、他のユーザに送 信側で割り当てられた構成ビットにっ 、て復調を行うことは必ずしも必要ではな 、。 すなわち、復調部 220は、送信側で自装置に割り当てられた構成ビットに関してのみ 復調を行えばよい。 [0044] Demodulation section 220 outputs demodulated data related only to the configuration bits assigned to the own apparatus on the transmission side to PZS conversion section 230. In FIG. 13, the demodulator 220 performs other configuration bits, That is, a configuration is shown in which demodulation is performed even if the configuration bits assigned to another user on the transmission side are performed, and the demodulated data is discarded. In the demodulator 220, the transmission side is transmitted to another user. It is not always necessary to perform demodulation based on the configuration bits assigned in (1). That is, the demodulator 220 only needs to demodulate the configuration bits assigned to the own device on the transmission side.
[0045] PZS変換部 230は、送信側で自装置に複数の構成ビットが割り当てられて!/、る場 合には、その複数の構成ビットに対応する並列な複数の復調データをシリアルなデ ータ系列に変換する。このデータ系列は、送信側におけるインターリーブ後のソース データ系列に対応する。  [0045] When a plurality of configuration bits are assigned to the own device on the transmission side! /, The PZS conversion unit 230 converts a plurality of parallel demodulated data corresponding to the plurality of configuration bits into serial data. Data series. This data sequence corresponds to the source data sequence after interleaving on the transmitting side.
[0046] ディンターリーバ 240は、 PZS変換部 230からのデータ系列に対して、送信側のィ ンターリーブに対応するディンターリーブを行う。復号器 250は、ディンターリーブ後 のデータ系列に対して、送信側の符号化に対応する復号処理を行う。  [0046] The Dinterleaver 240 performs Dinterleave corresponding to the interleave on the transmission side for the data series from the PZS conversion unit 230. Decoder 250 performs a decoding process corresponding to the encoding on the transmission side on the data sequence after the Dinterleave.
[0047] すなわち、各ユーザ端末 iは、チャネル出力系列 hat[Q]を受信し、送信側に応じた 多元接続解除処理を行って系列 hat[S]を得る。そして、選択的な高次復調及びパ ラレル /シリアル変換を行って系列 hat [U ]を得る。そして、ディンターリーブと復号ィ匕 を行って最終的に判定データ系列 hat [D ]を得る。従来方法では、一つの高次変調 シンボル上の全てのビットの LLR (対数尤度比)値を出力する必要があった力 選択 的な高次復調では当該ユーザのビットの対数尤度比のみを出力するだけでよぐ他 のユーザのビットは破棄してかまわない。ここで、 hatは、図中の記号 Γ)に相当する  [0047] That is, each user terminal i receives the channel output sequence hat [Q], performs multiple access cancellation processing according to the transmission side, and obtains sequence hat [S]. Then, selective high-order demodulation and parallel / serial conversion are performed to obtain a sequence hat [U]. Then, Dinter leave and decryption are performed to finally obtain a judgment data sequence hat [D]. In the conventional method, it was necessary to output the LLR (Log Likelihood Ratio) value of all the bits on one higher order modulation symbol. In the power selective high order demodulation, only the log likelihood ratio of the bit of the user concerned is obtained. Other users' bits that just need to be output can be discarded. Where hat corresponds to the symbol Γ) in the figure
[0048] 図 14は、特に、 2ユーザの 16QAM変調の多元接続解除受信を行う受信装置の主 要構成を示す図である。上記実施例 2において 16QAM変調を用いたユーザ Aに対 し、送信側に対応した多元接続解除、選択的な高次復調、パラレル/シリアル変換、 ディンターリーブ、復号化を施し、最終的に次の判定データを得ることができる。 [0048] FIG. 14 is a diagram showing a main configuration of a receiving apparatus that specifically performs two-user 16QAM modulation multiple access cancellation reception. In the second embodiment, user A using 16QAM modulation is subjected to multiple access cancellation corresponding to the transmission side, selective higher-order demodulation, parallel / serial conversion, deinterleaving, and decoding. Determination data can be obtained.
[数 5]  [Equation 5]
LLR ( ') = Ln - min i- 1|7 - s(kf }— min {— ||r - S ( ) |2 } £[l,4], G[l,16] [0049] なお、複素ベクトル Y= {y , y }は、ある時点の高次変調シンボルの加法的白色ガ LLR (') = Ln -min i- 1 | 7-s (kf} — m i n {— || r-S () | 2 } £ [l, 4], G [l, 16] [0049] Note that the complex vector Y = {y, y} is an additive white gauss of the higher-order modulation symbol at a certain time.
I Q  I Q
ウス雑音 (AWGN)チャネル出力値を表す。また、複素ベクトル S (k) = {S (k) , S (  Represents the uss noise (AWGN) channel output value. The complex vector S (k) = (S (k), S (
I Q  I Q
k) }は、 16QAMコンスタレーシヨン図上の第 k番目のコンスタレーシヨン点を表す。  k)} represents the kth constellation point on the 16QAM constellation diagram.
[0050] Y=S (t) +Nと仮定すると、 Nは複素ガウス雑音を表し、 S (t)は送信コンスタレーシ ヨン点である。 [0050] Assuming Y = S (t) + N, N represents complex Gaussian noise and S (t) is the transmission constellation point.
[0051] また、 II Y- s (k) IIは、 γと s (k)間のユークリッド距離を表し、次のように表される。  [0051] II Y-s (k) II represents the Euclidean distance between γ and s (k), and is expressed as follows.
[数 6]  [Equation 6]
| - S(k)f = (y7 - S7 (k))2 + ( e - SQ (k)f |-S (k) f = (y 7 -S 7 (k)) 2 + ( e -S Q (k) f
[0052] また、 b (k, j)は、第 k番目のコンスタレーシヨン点 S (k)が表す第 j番目のビット値、 b [0052] b (k, j) is the j-th bit value represented by the k-th constellation point S (k), b
(k, j)≡{0, 1 }を表す。  (k, j) = represents {0, 1}.
[0053] 複雑度の低!、選択的復調技術として、ユーザ Aの復調には LLR (b )及び LLR (b  [0053] Low complexity! As a selective demodulation technique, user A demodulation uses LLR (b) and LLR (b
1 3 13
)を、ユーザ Bの復調には LLR (b )及び LLR(b )を計算するだけでよい。 ), LLR (b) and LLR (b) need only be calculated for user B demodulation.
2 4  twenty four
[0054] (実施の形態 2)  (Embodiment 2)
各種の多元接続技術の下でのマルチユーザ高次変調として、マルチユーザ高次 変調は広く適用されている。従来の多元接続技術は、時間領域、周波数領域、コー ド領域、空間領域などの資源に対して、複数ユーザを直交的に割り当てたもので、マ ルチューザ高次変調はそれを基礎とした上に、高次変調ビット資源の割り当てをカロ えたものである。  Multiuser high-order modulation is widely applied as multiuser high-order modulation under various multiple access technologies. Conventional multiple access technology allocates multiple users orthogonally to resources in the time domain, frequency domain, code domain, spatial domain, etc., and multi-order higher-order modulation is based on this. This is a proof of the allocation of higher-order modulation bit resources.
[0055] 実施の形態 2は、時分割多元接続 (TDMA)方式に対して、時間領域を基礎とした 上に変調ビット資源の割り当てを行うマルチユーザ高次変調を適用する実施の形態 である。  [0055] Embodiment 2 is an embodiment in which multi-user higher-order modulation that assigns modulation bit resources based on the time domain is applied to a time division multiple access (TDMA) scheme.
[0056] 送信側では、時間領域上の変調コードの各々は、一つのユーザの情報を表しては おらず、複数のユーザの情報を表している。各ユーザの受信端末では、多元接続解 除のプロセスとして、時間領域でそのユーザの情報を含む全ての変調シンボルを受 信しなければならない。各ユーザの符号化長さが同じであると仮定すると、各変調シ ンボルの表すビット列のうち各ユーザに対し一部の構成ビットを割り当てるだけなので 、従来の TDMAと比べ各ユーザが時間領域で占める変調シンボルは多くなり、より 多くの時間ダイバーシチが可能となる。 [0056] On the transmission side, each modulation code in the time domain does not represent information of one user, but represents information of a plurality of users. The receiving terminal of each user must receive all modulation symbols including the user's information in the time domain as a multiple access cancellation process. Assuming that the coding length of each user is the same, only a part of the configuration bits are allocated to each user in the bit string represented by each modulation symbol. More modulation symbols and more A lot of time diversity is possible.
[0057] 図 15は、時分割方式によるマルチユーザ高次変調シンボル送信の説明に供する 図である。タイムスロット 1上の変調シンボルは、ユーザ 1とユーザ 2の情報を表してい る。同様に、タイムスロット 3および 5の変調シンボルも、ユーザ 1とユーザ 2の情報を 表している。一方、タイムスロット 2、 4、 6は、ユーザ 3とユーザ 4の情報を表している。 ユーザ 1の受信端末では、図 13の多元接続解除処理部 210における多元接続解除 プロセスとして、関係するタイムスロット 1、 3、 5の変調シンボルを受信しなければなら ない。同様に、ユーザ 2の受信端末は関係するタイムスロット 1、 3、 5の変調シンボル を受信し、ユーザ 3及び 4の受信端末は関係するタイムスロット 2、 4、 6の変調シンポ ルを受信しなければならな 、。  FIG. 15 is a diagram for explaining multiuser higher-order modulation symbol transmission by a time division scheme. The modulation symbol on time slot 1 represents user 1 and user 2 information. Similarly, the modulation symbols in timeslots 3 and 5 also represent user 1 and user 2 information. On the other hand, time slots 2, 4, and 6 represent user 3 and user 4 information. The receiving terminal of user 1 must receive the modulation symbols of the related time slots 1, 3, and 5 as the multiple connection cancellation process in the multiple connection cancellation processing section 210 of FIG. Similarly, the receiving terminal of user 2 receives the modulation symbols of the relevant time slots 1, 3, and 5, and the receiving terminals of users 3 and 4 must receive the modulation symbols of the relevant time slots 2, 4, and 6. Goodbye
[0058] 図 16は、時分割方式によるマルチユーザ高次変調シンボル送信の一般的イメージ を示す図である。図 16において、第 i番目のタイムスロットの高次変調シンボルは Q であり、全部で N個のタイムスロットがある。ユーザ全体の集合を Uとすると、 uは、 U の部分集合で、 u CUである。 u中のユーザ数を mとし、ユーザ総数を Lとし、高次変 調の次数(一つのシンボル中のビット数)を Mとすると、 mは次の関係を満たす。  FIG. 16 is a diagram showing a general image of multiuser higher-order modulation symbol transmission by the time division scheme. In FIG. 16, the high-order modulation symbol of the i-th time slot is Q, and there are N time slots in total. If the set of all users is U, u is a subset of U and u CU. If the number of users in u is m, the total number of users is L, and the order of higher-order modulation (number of bits in one symbol) is M, m satisfies the following relationship.
[数 7]  [Equation 7]
\≤mi≤ miniM, ί \ ≤m i ≤ miniM, ί
[0059] (実施の形態 3) [Embodiment 3]
実施の形態 3は、周波数分割多元接続 (FDMA)方式ある!/ヽは直交周波数分割多 重 (OFDM)方式に対して、周波数領域の基礎の上に変調ビット資源の割り当てを 行うマルチユーザ高次変調を適用する実施の形態である。  Embodiment 3 is a frequency division multiple access (FDMA) scheme! / ヽ is a multi-user higher-order allocation that allocates modulation bit resources on the basis of the frequency domain as compared to the orthogonal frequency division multiple (OFDM) scheme. It is an embodiment which applies modulation.
[0060] 送信側では、各周波数帯域 (サブキャリア)上の変調シンボルの各々は、単独のュ 一ザの情報を表してはおらず、複数のユーザの情報を表している。各ユーザの受信 端末では、多元接続解除のプロセスとして、周波数領域上でコヒーレント復調 (FDM Aの場合)あるいは FFT(OFDMの場合)を行 、、そのユーザの情報を含む全ての周 波数領域 (サブキャリア)上の変調シンボルを受信する。各ユーザの符号化長さが同 じであると仮定すると、各変調シンボルは各ユーザに対し一部のビットを割り当てるだ けなので、従来の FDMAあるいは OFDMと比べ、各ユーザが占有する周波数帯域 (サブキャリア)はより多くなり、より多くの周波数ダイバーシチが可能となる。 [0060] On the transmission side, each modulation symbol on each frequency band (subcarrier) does not represent information of a single user, but represents information of a plurality of users. The receiving terminal of each user performs coherent demodulation (in the case of FDM A) or FFT (in the case of OFDM) on the frequency domain as a process of multiple access cancellation, and all frequency domains including sub-user information (sub The modulation symbol on the carrier) is received. Assuming that each user has the same coding length, each modulation symbol allocates some bits to each user. Therefore, compared to conventional FDMA or OFDM, each user occupies more frequency bands (subcarriers) and more frequency diversity is possible.
[0061] 図 17は、周波数分割方式によるマルチユーザ高次変調シンボル送信の説明に供 する図である。サブキャリア 1上の変調シンボル (同図における最上段の乗算器の入 力)は、ユーザ 1及びユーザ 2の情報を表す。同様に、サブキャリア 3及び 5の変調シ ンボルも、ユーザ 及びユーザ 2の情報を表す。一方、サブキャリア 2、 4、 6の変調シ ンボルは、ユーザ 3及びユーザ 4の情報を表す。 FIG. 17 is a diagram for explaining multiuser higher-order modulation symbol transmission by the frequency division scheme. The modulation symbol on subcarrier 1 (input of the uppermost multiplier in the figure) represents user 1 and user 2 information. Similarly, the modulation symbols of subcarriers 3 and 5 also represent user and user 2 information. On the other hand, the modulation symbols of subcarriers 2, 4, and 6 represent information of user 3 and user 4.
[0062] 図 18は、周波数分割方式によるマルチユーザ高次変調シンボル受信の説明に供 する図である。ユーザ 1の受信端末では、高次復調を行う前の多元接続解除プロセ スとして、サブキャリア 1、 3、 5にコヒーレント復調を行った後、関係するサブキャリアの 変調シンボルを受信する。同様に、ユーザ 2の受信端末では、関係するサブキャリア 1、 3、 5の変調シンボルを受信し、ユーザ 3及び 4の受信端末では、関連するサブキ ャリア 2、 4、 6の変調シンボルを受信しなければならない。  FIG. 18 is a diagram for explaining reception of multiuser higher-order modulation symbols by the frequency division scheme. The receiving terminal of user 1 receives the modulation symbols of the related subcarriers after performing coherent demodulation on subcarriers 1, 3, and 5 as a multiple access cancellation process before higher order demodulation. Similarly, the receiving terminal of user 2 receives modulation symbols of related subcarriers 1, 3, and 5, and the receiving terminals of users 3 and 4 receive modulation symbols of related subcarriers 2, 4, and 6. There must be.
[0063] 図 19は、周波数分割方式によるマルチユーザ高次変調シンボル送信の一般的ィメ ージを示す図である。図 19において、第 i番目のキャリア fで送信する高次変調シン ボルは、 Q N])であり、全部で N個のキャリアがある。ユーザ全体の集合を FIG. 19 is a diagram showing a general image of multi-user higher-order modulation symbol transmission by the frequency division scheme. In FIG. 19, the higher-order modulation symbol transmitted on the i-th carrier f is Q N]), and there are N carriers in total. The entire set of users
Uとすると、 uは、 Uの部分集合で、 u CUである。 u中のユーザ数を mとし、ユーザ総 数を Lとし、高次変調の次数(一つのシンボル中のビット数)を Mとすると、 mは次の 関係を満たす。 Assuming U, u is a subset of U and u CU. If the number of users in u is m, the total number of users is L, and the order of higher-order modulation (number of bits in one symbol) is M, m satisfies the following relationship.
[数 8]  [Equation 8]
\≤mi≤ mmiM ,L) \ ≤m i ≤ mmiM, L)
[0064] 図 20は、周波数分割方式によるマルチユーザ高次変調シンボル受信の一般的ィメ ージを示す図である。ユーザ jに対し、まず関数 F (u)を次のように定義する。 FIG. 20 is a diagram showing a general image of multi-user higher-order modulation symbol reception by the frequency division scheme. For user j, first define the function F (u) as follows:
[数 9] [0065] F (u) = 1のとき、回路はオンとなり、それ以外ではオフとなる。ユーザ jの端末では 、そのユーザの情報を含む全てのサブキャリア fに対しコヒーレント復調を行い、その 高次変調シンボル系列 Q N])を得る。 [Equation 9] [0065] When F (u) = 1, the circuit is on, otherwise it is off. The terminal of user j performs coherent demodulation on all subcarriers f including the user information, and obtains its higher-order modulation symbol sequence QN]).
[0066] 図 21は、 OFDM方式によるマルチユーザ高次変調シンボル送信の説明に供する 図である。サブキャリア 1上の変調シンボル (同図における IFFT部に対する最上段の 入力)は、ユーザ 1及びユーザ 2の情報を表す。同様に、サブキャリア 3の変調シンポ ルも、ユーザ 1及びユーザ 2の情報を表す。一方、サブキャリア 2及び 4の変調シンポ ルは、ユーザ 3及び 4の情報を表す。高次変調シンボル系列を、 IFFT計算とパラレ ル /シリアル変換することにより、送信系列 S (t)が得られる。  [0066] FIG. 21 is a diagram for explaining transmission of multiuser higher-order modulation symbols by the OFDM scheme. The modulation symbol on subcarrier 1 (the uppermost input to the IFFT section in the figure) represents user 1 and user 2 information. Similarly, the modulation symbol of subcarrier 3 also represents user 1 and user 2 information. On the other hand, the modulation symbols of subcarriers 2 and 4 represent the information of users 3 and 4. The transmission sequence S (t) is obtained by IFFT calculation and parallel / serial conversion of the higher-order modulation symbol sequence.
[0067] 図 22は、 OFDM方式によるマルチユーザ高次変調シンボル受信の説明に供する 図である。ユーザ 1の受信端末では、高次復調を行う前の多元接続解除プロセスとし て、シリアル/パラレル変換及び FFT計算の後、サブキャリア 1及び 3上の出力信号 番号を選択する。  FIG. 22 is a diagram for explaining reception of multiuser higher-order modulation symbols by the OFDM method. The receiving terminal of user 1 selects the output signal number on subcarriers 1 and 3 after serial / parallel conversion and FFT calculation as the multiple connection cancellation process before higher order demodulation.
[0068] 図 23は、 OFDM方式によるマルチユーザ高次変調シンボル送信の一般的ィメー ジを示す図である。図 23において、第 i番目のキャリア fで送信される高次変調シンポ ルは Q N])であり、全部で N個のサブキャリアがある。そして、 Qを IFFT計 算とパラレル/シリアル変換することにより、送信系列 S (t)が得られる。ユーザ全体の 集合を Uとすると、 uは、 Uの部分集合で、 u cuである。 u中のユーザ数を mとし、ュ 一ザ総数を Lとし、高次変調の次数(一つのシンボル中のビット数)を Mとすると、 m は次の関係を満たす。  [0068] FIG. 23 is a diagram showing a general image of multi-user higher-order modulation symbol transmission by the OFDM scheme. In FIG. 23, the higher-order modulation symbol transmitted on the i-th carrier f is Q N]), and there are N subcarriers in total. Then, the transmission sequence S (t) is obtained by converting Q into IFFT calculation and parallel / serial conversion. If the set of all users is U, u is a subset of U and u cu. If the number of users in u is m, the total number of users is L, and the order of higher-order modulation (number of bits in one symbol) is M, m satisfies the following relationship.
[数 10]  [Equation 10]
\≤mj≤ mini ,Z} \ ≤m j ≤ mini, Z}
[0069] 図 24は、 OFDM方式によるマルチユーザ高次変調シンボル受信の一般的ィメー ジを示す図である。ユーザ jに対し、まず関数 F (u)を次のように定義する。 [0069] FIG. 24 is a diagram showing a general image of multi-user higher-order modulation symbol reception by the OFDM method. For user j, first define the function F (u) as follows:
[数 11] ゾ [Equation 11]
Figure imgf000020_0001
"i [0070] F (u) = 1のとき、回路は接続し、それ以外では切断される。ユーザ jの端末では、 高次復調を行う前の多元接続解除プロセスとして、シリアル/パラレル変換と FFT計 算を経た後、そのユーザの情報を含む全てのサブキャリア上の出力信号番号を選択 する。
Figure imgf000020_0001
"i [0070] When F (u) = 1, the circuit is connected, otherwise it is disconnected. User j's terminal selects the output signal numbers on all subcarriers including the user's information after serial / parallel conversion and FFT computation as the multiple connection release process before higher order demodulation.
[0071] (実施の形態 4)  [Embodiment 4]
実施の形態 4は、コード分割多元接続 (CDMA)方式に対して、コード領域を基礎 とした上に変調ビット資源の割り当てを行うマルチユーザ高次変調を適用する実施の 形態である。  The fourth embodiment is an embodiment in which multi-user higher-order modulation that assigns modulation bit resources based on the code domain is applied to the code division multiple access (CDMA) system.
[0072] 送信側では、拡散コードで表されるコード領域上の変調シンボルの各々は、単独の ユーザの情報を表してはおらず、複数のユーザの情報を表している。各ユーザの受 信端末では、多元接続解除のプロセスとして、コード領域において相応の拡散コード を用いて、マッチドフィルタリングによる逆拡散処理を行い、そのユーザの情報を含む 全てのコード領域上の変調シンボルを受信し、またその平均値をとる。  [0072] On the transmission side, each modulation symbol on the code area represented by the spreading code does not represent information of a single user, but represents information of a plurality of users. Each user's receiving terminal performs a despreading process by matched filtering using a corresponding spreading code in the code area as a multiple access cancellation process, and all modulation symbols on the code area including the user information are received. Receive and take the average value.
[0073] 図 25は、コード分割方式によるマルチユーザ高次変調シンボルのコード分割の説 明に供する図である。変調シンボル Q はユーザ 1及びユーザ 2の情報を表し、ユー  FIG. 25 is a diagram for explaining the code division of multiuser higher-order modulation symbols by the code division scheme. Modulation symbol Q represents user 1 and user 2 information,
12  12
ザ 1の拡散コード Cとユーザ 2の拡散コード Cをそれぞれ用いて拡散を行い、時間領  Spread by using spreading code C of user 1 and spreading code C of user 2 respectively.
1 2  1 2
域上で加算する。通常の CDMAシステムと同様に、 Cと Cは直交しており、く C,C >  Add on the area. Like normal CDMA systems, C and C are orthogonal, and C, C>
1 2 1 2 1 2 1 2
=0である。〈x, y〉は、系列 Xと yの間の相関値を求めることを表す。本例において、 ユーザ 1とユーザ 2の情報はコード領域上でも直交しており、また次の関係の成り立 つことが理解できる。 = 0. <X, y> represents obtaining the correlation value between the sequences X and y. In this example, the information of user 1 and user 2 is also orthogonal in the code area, and it can be understood that the following relationship holds.
[数 12]  [Equation 12]
〈Q 1 2 C Q 1 2 C 2〉 = I Q i 2 I 2 Q i 2 < C 1 ? C 2 ) = 0 [0074] 同様に、変調シンボル Q は、ユーザ 3とユーザ 4の情報を表し、それぞれユーザ 3 <Q 1 2 CQ 1 2 C 2 > = IQ i 2 I 2 Q i 2 <C 1? C 2 ) = 0 [0074] Similarly, the modulation symbol Q represents the information of user 3 and user 4, respectively. User 3
34  34
の拡散コード PNとユーザ 4の拡散コード PNで拡散され、また時間領域上で加算さ  Spreading code PN and user 4 spreading code PN, and added in the time domain.
3 4  3 4
れる。ユーザ 1、 2、 3、 4の情報はコード領域上で 2つずつ直交していることがわかる 。例えば、ユーザ 1及びユーザ 3の情報のコード領域における相関値は、次の関係を 満たす。 [数 13] It is. It can be seen that the information of users 1, 2, 3, and 4 is orthogonal two by two on the code area. For example, the correlation value in the code area of user 1 and user 3 information satisfies the following relationship. [Equation 13]
( Q ^ C i , Q 3 4 C 2 ) = I Q 1 2 I 2 Q 4 < C 1 ; C 2 > = 0 ここで、 Q* は、 Q の複素共役である。 (Q ^ C i, Q 3 4 C 2 ) = IQ 1 2 I 2 Q 4 <C 1; C 2 > = 0 where Q * is the complex conjugate of Q.
34 34  34 34
[0075] 図 26は、コード分割方式によるマルチユーザ高次変調の逆拡散受信の説明に供 する図である。ユーザ 1に対しては、その拡散コード C及び Cを用いてそれぞれマツ  FIG. 26 is a diagram for explaining despread reception of multi-user high-order modulation using a code division scheme. For user 1, the spreading codes C and C are used to
1 2  1 2
チドフィルタリング処理 (逆拡散プロセス)を行い、その平均値を取る。上記コード領域 の直交性原理から、送信された変調シンボルが得られるため、図 13に示した多元接 続解除プロセスが完了する。  Perform tide filtering (despreading process) and take the average value. Since the transmitted modulation symbol is obtained from the orthogonality principle of the code area, the multiple disconnection process shown in FIG. 13 is completed.
[0076] 図 27は、コード分割方式によるマルチユーザ高次変調シンボル送信の一般的ィメ ージを示す図である。図 27において、第 i番目のユーザ集合 uに送信された高次変 調シンボルは、 Q (i≡ [1, N])であり、全部で N個のユーザ集合がある。ユーザ全体  FIG. 27 is a diagram illustrating a general image of multi-user higher-order modulation symbol transmission by the code division scheme. In FIG. 27, the high-order modulation symbol transmitted to the i-th user set u is Q (i≡ [1, N]), and there are N user sets in total. Entire user
U1  U1
の集合を Uとすると、 uは、 Uの部分集合で、 u CUである。また、ユーザ集合の間で 直交していると仮定すると、次の関係が成り立つ。  If the set of is U, u is a subset of U and u CU. Assuming that the user sets are orthogonal, the following relationship holds.
[数 14]  [Equation 14]
M- Π Μ. = Φ、 V/≠ j  M- Π Μ. = Φ, V / ≠ j
[0077] u中のユーザ数を mとし、ユーザ総数を Lとし、高次変調の次数(一つのシンボル中 のビット数)を Mとすると、 mは次の関係を満たす。 [0077] If the number of users in u is m, the total number of users is L, and the order of high-order modulation (number of bits in one symbol) is M, m satisfies the following relationship.
[数 15]  [Equation 15]
l≤mi≤ mm{M, L} l≤m i ≤ mm {M, L}
[0078] Qに対し、ユーザ集合 uに属する全ての拡散コード [C ,-,C ]を用いて拡散を [0078] For Q, spreading is performed using all spreading codes [C,-, C] belonging to the user set u.
ui 1 ui(l) ui(mi)  ui 1 ui (l) ui (mi)
行い、また時間領域上で加算する。このように、 N個のユーザ集合全てに対し拡散、 加算を行!ゝ、送信系列 S (t)を得る。  And add in the time domain. In this way, spreading and adding are performed for all N user sets, and a transmission sequence S (t) is obtained.
[0079] 図 28は、 OFDM方式によるマルチユーザ高次変調シンボル受信の一般的ィメー ジを示す図である。ユーザ jについて、 j E Uと仮定する。ユーザ jの端末では、高次復 調を行う前の多元接続解除プロセスとして、ユーザ集合 uに属する全ての拡散コード [C ,- --,C ]を用いて、それぞれマッチドフィルタリング処理 (逆拡散プロセス)を行 ui(l) ui、mi) い、その平均値を取る。 FIG. 28 is a diagram showing a general image of multiuser higher-order modulation symbol reception by the OFDM scheme. For user j, assume jE U. User j's terminal uses all the spreading codes [C, ---, C] belonging to user set u as the multiple access release process before performing higher-order decoding, respectively, and performs matched filtering processing (despreading process). ) Line ui (l) ui, mi) Take the average value.
[0080] (実施の形態 5)  [0080] (Embodiment 5)
実施の形態 5は、直交周波数分割'コード分割多元接続システム (OFCDMA)に 対し、コード領域と周波数領域の二次元領域の基礎の上に変調ビット資源の割り当 てを行うマルチユーザ高次変調を適用する実施の形態である。  In Embodiment 5, multi-user higher-order modulation is performed for orthogonal frequency division 'code division multiple access system (OFCDMA), in which modulation bit resources are allocated on the basis of a code domain and a frequency domain two-dimensional domain. This is an embodiment to be applied.
[0081] 送信側では、拡散コード及びサブキャリアで表される周波数領域'コード領域の変 調シンボルの各々は、単独のユーザの情報を表さず、複数のユーザの情報を表す。 各ユーザの受信端末では、多元接続解除のプロセスとして、周波数領域において F FT演算を行 、、次 、でコード領域にお!、て拡散コードを用いてマッチドフィルタリン グによる逆拡散プロセスを行 、、コード領域及び周波数領域にぉ 、てそのユーザの 情報を含む全ての変調シンボルを受信する。  [0081] On the transmission side, each of the modulation symbols in the frequency domain 'code domain represented by spreading codes and subcarriers does not represent information of a single user, but represents information of a plurality of users. At the receiving terminal of each user, the FFT process is performed in the frequency domain as a process of multiple access cancellation, and then the code domain is performed in the code domain, and the despreading process by matched filtering is performed using the spreading code. In the code domain and the frequency domain, all modulation symbols including information on the user are received.
[0082] 図 29は、 OFCDMA方式によるマルチユーザ高次変調シンボルのコード分割 *周 波数分割の説明に供する図である。 OFDMのサブキャリア総数を Nc、拡散コードの 拡散因子を SFとすると、 Ncは SFの整数倍となる。また、第 i番目のユーザ集合 uに 送信された高次変調シンボルは、 Q (i≡ [1, N])であり、全部で N個のユーザ集合 があるとする。ユーザ全体の集合を Uとすると、 uは、 Uの部分集合で、 u CUである。 また、ユーザ集合の間で直交していると仮定すると、次の関係が成り立つ。  [0082] FIG. 29 is a diagram for explaining code division * frequency division of multiuser higher-order modulation symbols by the OFCDMA scheme. If the total number of OFDM subcarriers is Nc and the spreading factor of the spreading code is SF, Nc is an integer multiple of SF. Also, the higher-order modulation symbol transmitted to the i-th user set u is Q (i≡ [1, N]), and there are N user sets in total. If the set of all users is U, u is a subset of U and u CU. Further, assuming that the user sets are orthogonal, the following relationship is established.
[数 16] w, Π Μ = Φ、 ≠ j  [Equation 16] w, Π Μ = Φ, ≠ j
[0083] u中のユーザ数を mとし、ユーザ総数を Lとし、高次変調の次数(一つのシンボル中 のビット数)を Mとすると、 mは次の関係を満たす。 [0083] If the number of users in u is m, the total number of users is L, and the order of high-order modulation (number of bits in one symbol) is M, m satisfies the following relationship.
[数 17]  [Equation 17]
\≤mi≤ min{ , } \ ≤m i ≤ min {,}
[0084] Q に対し、まずシリアル/パラレル変換を行い、 Nc/SF個の並列ブランチに分ける[0084] First, serial / parallel conversion is performed on Q and divided into Nc / SF parallel branches.
。各並列ブランチに対し、ユーザ集合 uに属する全ての拡散コード [C , - ,C ]を . For each parallel branch, all spreading codes [C,-, C] belonging to user set u
ノ 用いて拡散を行い、また同じチップ位相に対して時間領域上で加算し、 SF個の並列 出力信号を取得し、 IFFTの SF個の入力とする。このように、 Nc/SF個の並列ブラン チカ 全部で Nc個の並列出力信号が得られ、 Nc点の IFFT演算とパラレル/シリア ル変換を行って、ユーザ集合 uの送信系列が得られる。こうして、 N個のユーザ集合 の送信系列が求められ、時間領域上で加算されて、送信系列全体が得られる。 2) Spreading is performed, and the same chip phase is added in the time domain to obtain SF parallel output signals and used as IF inputs of IFFT. In this way, Nc / SF parallel Chic All Nc parallel output signals are obtained, and the Nc-point IFFT operation and parallel / serial conversion are performed to obtain the transmission sequence of the user set u. In this way, the transmission sequences of N user sets are obtained and added in the time domain to obtain the entire transmission sequence.
[0085] 図 30は、 OFCDMA方式によるマルチユーザ高次変調シンボルの受信を示す図 である。ユーザ jについて、 j E Uと仮定する。ユーザ jの端末では、まずシリアル/パラ レル変換と FFT演算が行われ、 Nc個の並列出力信号が得られる。そして、 SF個の 信号を 1組として、全部で Nc/SF組に分けられる。各組の信号に対し、ユーザ集合 u に属する全ての拡散コード [C ,-,C ]を用いてそれぞれ逆拡散と時間領域での [0085] FIG. 30 is a diagram illustrating reception of multiuser higher-order modulation symbols by the OFCDMA system. For user j, assume jE U. User j's terminal first performs serial / parallel conversion and FFT operation to obtain Nc parallel output signals. Then, SF signals can be grouped into Nc / SF groups in total. For each set of signals, despreading in the time domain is performed using all spreading codes [C,-, C] belonging to the user set u.
ui、l) ui(miノ  ui, l) ui (mi no
加算を行い、一つの出力値を得る。 Nc/SF個の出力値に対しパラレル/シリアル変 換を行いうことで、ユーザ jに関係する高次変調シンボル系列 hat [Q ]が得られる。  Addition is performed to obtain one output value. By performing parallel / serial conversion on Nc / SF output values, a higher-order modulation symbol sequence hat [Q] related to user j is obtained.
[0086] (実施の形態 6)  [0086] (Embodiment 6)
マルチユーザ高次変調にぉ 、ては、送信側では同一の変調シンボル内の異なる ユーザのタイムスロットフォーマットを合成してフレーム化し、パイロットデータを共有 することができる。受信側では、異なるユーザが共有するパイロットデータを利用して 合成フレームのチャネル推定を行うことができる。複数ユーザで共有するパイロットデ ータは、従来の単独のユーザ専用のパイロットデータより多くなることから、チャネル 推定の正確性が増す。  In the case of multi-user high-order modulation, the transmission side can synthesize and frame the different user time slot formats in the same modulation symbol to share pilot data. On the receiving side, channel estimation of the combined frame can be performed using pilot data shared by different users. Since the pilot data shared by multiple users is larger than the conventional pilot data dedicated to a single user, the accuracy of channel estimation increases.
[0087] 図 31は、時分割多元接続によるマルチユーザ高次変調シンボルのタイムスロットフ ォーマット(データ/パイロット)配置を示す図である。  FIG. 31 is a diagram showing a time slot format (data / pilot) arrangement of multiuser higher-order modulation symbols by time division multiple access.
[0088] 同図に示すように、従来の時分割多元接続方法においては、ユーザ 1及びユーザ 2はそれぞれ異なるタイムスロット 1及びタイムスロット 2を占有する。タイムスロット 1に おいて、ユーザ 1のパイロット pはタイムスロットの中間に置かれ、データ Qが両端に  As shown in the figure, in the conventional time division multiple access method, user 1 and user 2 occupy different time slots 1 and 2, respectively. In time slot 1, user 1 pilot p is placed in the middle of the time slot and data Q is at both ends.
1 1  1 1
置かれている。タイムスロット 2においては、ユーザ 2のパイロット Pがタイムスロットの  It has been placed. In timeslot 2, pilot 2 of user 2
2  2
中間に置かれ、データ Qが両端に置かれている。 Pと Pは同じでない可能性があり、  Placed in the middle, data Q is placed at both ends. P and P may not be the same,
2 1 2  2 1 2
上位のシグナリングによって指定される。受信側では、ユーザ 1は Pを用いてチヤネ  It is specified by higher level signaling. On the receiving side, User 1 uses P to channel
1  1
ル推定を行い、ユーザ 2は Pを用いてチャネル推定を行う。  User 2 performs channel estimation using P.
2  2
[0089] し力し、マルチユーザ高次変調の枠組みにぉ 、ては、図示するように変調シンボル Q がユーザ 1とユーザ 2の情報を表し、ユーザ 1及びユーザ 2は合成してフレーム化 し、同じパイロット P を共有できる。受信側では、ユーザ 1及びユーザ 2は共有する同 However, in the framework of multi-user high-order modulation, as shown in the figure, modulation symbol Q represents information of user 1 and user 2, and user 1 and user 2 are combined into a frame. And can share the same pilot P. On the receiving side, user 1 and user 2 share the same
12  12
じパイロット P を用いてチャネル推定を行うことができる。周波数帯域利用率を変え  Channel estimation can be performed using the same pilot P. Change frequency band utilization
12  12
ないという前提において、より多くのパイロットデータを使用できることから、チャネル 推定の精度はより高くなる。また、ユーザが時間領域で占有する変調シンボルの数も 従来方法より多いことが見て取れ、そのためより多くの時間ダイバーシチが可能であ り、誤り訂正性能が改善される。同様に、また第 i番目のユーザ集合 Uに送信された高 次変調シンボルは、 Q (i≡ [1, N])であり、全部で N個のユーザ集合があるとする。 ユーザ全体の集合を Uとすると、 uは、 Uの部分集合で、 u CUである。 u中のユーザ 数を mとし、ユーザ総数を Lとし、高次変調の次数(一つのシンボル中のビット数)を Mとすると、 mは次の関係を満たす。  Since more pilot data can be used on the assumption that there is no channel estimation, the accuracy of channel estimation is higher. Also, it can be seen that the number of modulation symbols occupied by the user in the time domain is larger than in the conventional method, so that more time diversity is possible and the error correction performance is improved. Similarly, the higher-order modulation symbol transmitted to the i-th user set U is Q (i≡ [1, N]), and there are N user sets in total. If the set of all users is U, u is a subset of U and u CU. If the number of users in u is m, the total number of users is L, and the order of high-order modulation (number of bits in one symbol) is M, m satisfies the following relationship.
[数 18] l≤ i≤ mm{ ,Z} [Equation 18] l≤ i ≤ mm {, Z}
[0090] 同様に、従来方法における m個のタイムスロットを合成してフレーム化し、 m個の同 じパイロット pを共有してもよい。 [0090] Similarly, m time slots in the conventional method may be combined into a frame, and m same pilots p may be shared.
[0091] (実施の形態 7)  [0091] (Embodiment 7)
図 32は、 OFDMによるマルチユーザ高次変調シンボルのタイムスロットフォーマツ ト(データ/パイロット)配置を示す図である。従来の OFDM方法においては、ユーザ 1及びユーザ 2はそれぞれ異なる周波数サブバンド 1及びサブバンド 2を占有してい る。サブバンド 1において、ユーザ 1のパイロット Pは周波数サブバンドの中間に置か  FIG. 32 is a diagram showing the time slot format (data / pilot) arrangement of multiuser higher-order modulation symbols by OFDM. In the conventional OFDM method, user 1 and user 2 occupy different frequency subbands 1 and 2 respectively. In subband 1, user 1 pilot P is placed in the middle of the frequency subband.
1  1
れ、データ Qは両端に置かれている。サブバンド 2においては、ユーザ 2のパイロット  Data Q is placed at both ends. In subband 2, user 2's pilot
1  1
Pは周波数サブバンドの中間に置かれ、データ Qは両端に置かれている。 Pと Pは P is placed in the middle of the frequency subband, and data Q is placed at both ends. P and P
2 2 1 2 同じでない可能性がある。受信側では、ユーザ 1は Pを用いてチャネル推定を行い、 2 2 1 2 May not be the same. On the receiving side, User 1 uses P to perform channel estimation,
1  1
ユーザ 2は Pを用いてチャネル推定を行う。  User 2 uses P to perform channel estimation.
2  2
[0092] し力し、マルチユーザ高次変調の枠組みにおいては、図示するように変調シンボル Q がユーザ 1とユーザ 2の情報を表し、ユーザ 1及びユーザ 2は合成してフレーム化 [0092] However, in the framework of multi-user high-order modulation, as shown in the figure, modulation symbol Q represents information of user 1 and user 2, and user 1 and user 2 are combined and framed.
12 12
し、同じパイロット P を共有できる。受信側では、ユーザ 1及びユーザ 2は共有する同  And can share the same pilot P. On the receiving side, user 1 and user 2 share the same
12  12
じパイロット P を用いてチャネル推定を行うことができる。同様に周波数帯域利用率 を変えないという前提において、より多くのパイロットデータを使用できることから、チ ャネル推定の精度はより高くなる。また、ユーザが周波数領域で占有する変調シンポ ルの数も従来方法より多いことが見て取れ、そのためより多くの周波数ダイバーシチ が可能であり、誤り訂正性能が改善される。同様に、また第潘目のユーザ集合 Uに 送信された高次変調シンボルは、 Q (i≡ [1, N] )であり、全部で N個のユーザ集合 があるとする。ユーザ全体の集合を Uとすると、 uは、 Uの部分集合で、 u CUである。 u中のユーザ数を mとし、ユーザ総数を Lとし、高次変調の次数(一つのシンボル中 のビット数)を Mとすると、 mは次の関係を満たす。 Channel estimation can be performed using the same pilot P. Similarly frequency band utilization Since more pilot data can be used on the assumption that no change is made, the accuracy of channel estimation becomes higher. In addition, it can be seen that the number of modulation symbols occupied by the user in the frequency domain is larger than that of the conventional method, so that more frequency diversity is possible and the error correction performance is improved. Similarly, the higher-order modulation symbol transmitted to the second user set U is Q (i≡ [1, N]), and there are N user sets in total. If the set of all users is U, u is a subset of U and u CU. If the number of users in u is m , the total number of users is L, and the order of higher-order modulation (number of bits in one symbol) is M, m satisfies the following relationship.
[数 19]  [Equation 19]
\≤mi≤ va \ ^L} \ ≤m i ≤ va \ ^ L}
[0093] 同様に、従来方法における m個のサブバンドを合成してフレーム化し、 m個の同じ ノ ィロット Pを共有してもよい。 [0093] Similarly, m subbands in the conventional method may be combined and framed, and m identical pilots P may be shared.
[0094] (実施の形態 8)  [0094] (Embodiment 8)
図 33は、 CDMA方式によるマルチユーザ高次変調シンボルのタイムスロットフォー マット(データ/パイロット)配置を示す図である。従来の CDMA方式においては、ュ 一ザ 1及びユーザ 2はそれぞれ異なる直交コード C及び Cを占有し、同時に拡散さ  FIG. 33 is a diagram showing a time slot format (data / pilot) arrangement of multi-user higher-order modulation symbols according to the CDMA scheme. In the conventional CDMA system, user 1 and user 2 occupy different orthogonal codes C and C, respectively, and are spread simultaneously.
1 2  1 2
せて送信する。タイムスロット 1において、ユーザ 1のパイロット Pはタイムスロット 1の  To send. In time slot 1, user 1 pilot P is in time slot 1.
1  1
中間に置かれ、データ Qは両端に置かれている。同時に送信されるタイムスロット 2  Located in the middle, data Q is placed at both ends. Time slot 2 transmitted at the same time
1  1
において、ユーザ 2のパイロット Pも同様にタイムスロット 2の中間に置かれ、データ Q  The pilot P of user 2 is also placed in the middle of timeslot 2 and data Q
2 2 は両端に置かれている。 Pと Pは同じでない可能性がある。受信側では、ユーザ 1は  2 2 is placed at both ends. P and P may not be the same. On the receiving side, user 1
1 2  1 2
まず Cを用いて逆拡散した後、 Pを用いて次式のような時間領域のチャネル推定を  First, despread using C, and then use P to estimate the time domain channel as
1 1  1 1
行う。  Do.
[数 20]  [Equation 20]
z γρ' r >  z γρ 'r>
I N ここで、〈x, y〉は系列 xと yの相関関数を表し、 Νは拡散長さ、 Yは受信した系列を 表す。同様に、ユーザ 2はまず Cを用いて逆拡散した後、 Ρを用いて次式のような時 間領域のチャネル推定を行う。 IN where <x, y> represents the correlation function between sequences x and y, Ν is the spreading length, and Y is the received sequence. Similarly, User 2 first despreads using C and then uses Ρ Inter-channel estimation is performed.
[数 21]  [Number 21]
, < 2> , < 2 >
|P2 |2 N | P 2 | 2 N
[0095] し力し、マルチユーザ高次変調の枠組みにぉ 、ては、図示するように変調シンボル Q はユーザ 1とユーザ 2の情報を表し、ユーザ 1及びユーザ 2は合成してフレーム化However, in the framework of multi-user high-order modulation, as shown in the figure, modulation symbol Q represents information of user 1 and user 2, and user 1 and user 2 are combined and framed.
12 12
し、同じパイロット P を共有できる。受信側では、ユーザ 1及びユーザ 2はともに Cと P  And can share the same pilot P. On the receiving side, both User 1 and User 2 are C and P
12 1 12 1
Ν Ν
2を用いて合成を解き、共有するノ ィロット P  Nolot P that uses 2 to solve and share the composition
12を用いて次式のような時間領域上でチ ャネル推定を行うことができる。  12 can be used for channel estimation in the time domain as shown below.
[数 22]  [Number 22]
H < > I <yp2 2> H <> I <yp 2 2 >
2| N 2\P2 \2 N 2 | N 2 \ P 2 \ 2 N
[0096] 同様に周波数帯域利用率を変えないという前提において、より多くのノ ィロットデー タを使用できることから、チャネル推定の精度はより高くなる。また、ユーザが周波数 領域で占有する変調シンボルの数も従来方法より多いことが見て取れ、そのためより 多くの符号ダイバーシチが可能であり、誤り訂正性能が改善される。同様に、また第 i 番目のユーザ集合 uに送信された高次変調シンボルは、 Q Ν])であり、全 部で Ν個のユーザ集合があるとする。ユーザ全体の集合を Uとすると、 uは、 Uの部分 集合で、 u CUである。また、ユーザ集合の間で直交していると仮定すると、次の関係 が成り立つ。 Similarly, on the premise that the frequency band utilization rate is not changed, since more lot data can be used, the accuracy of channel estimation becomes higher. Also, it can be seen that the number of modulation symbols occupied by the user in the frequency domain is larger than in the conventional method, so that more code diversity is possible and the error correction performance is improved. Similarly, the higher-order modulation symbol transmitted to the i-th user set u is Q Ν]), and there are ユ ー ザ user sets in all. If the set of all users is U, u is a subset of U and u CU. Assuming that the user sets are orthogonal, the following relationship holds.
[数 23]
Figure imgf000027_0001
u中のユーザ数を mとし、ユーザ総数を Lとし、高次変調の次数(一つのシンボル中 のビット数)を Mとすると、 mは次の関係を満たす。
[Equation 23]
Figure imgf000027_0001
If the number of users in u is m , the total number of users is L, and the order of higher-order modulation (number of bits in one symbol) is M, m satisfies the following relationship.
[数 24]  [Number 24]
1≤ mi≤ min{ ,Z} [0098] 同様に、従来方法における 個の拡散コード空間を合成してフレーム化し、 個の 同じパイロット pを共有してもよい。 1≤ m i ≤ min {, Z} [0098] Similarly, the number of spreading code spaces in the conventional method may be combined into a frame and the same number of pilots p may be shared.
[0099] 図 34は、マルチユーザ高次変調方法の簡単なシグナリングのフローチャートを示 す。第 1ステップで、移動局は定期的に基地局に対しチャネル状態情報 (CSI)、例え ば信号対干渉雑音比(SINR)と、 ACKZNACK情報を伝送する。第 2ステップで、 基地局は定期的にこれら移動局力ゝらの CSI及び ACKZNACK等の情報を分析整 理し、チャネルの良い(SIRNが高い 'ACK信号)ユーザには弱ビットを、チャンネル の劣る(SINRが低 ヽ 'NACK信号)ユーザには強ビットを割り当て、またその他の多 元接続資源、例えば各ユーザのタイムスロットフォーマット、拡散コード、周波数帯域 、ノ ィロットなどを割り当てる。第 3ステップで、基地局は制御チャネルを介して多元接 続資源及びビットの相関情報を定期的に移動局に送る。第 4ステップで、基地局はト ラフィックチャネルを介して移動局にマルチユーザ高次変調を行ったデータを伝送す る。全体のフローはチャネルの変化に対し適応的なプロセスであり、移動局のチヤネ ルに変化が生じた場合、基地局もそれに応じて高次変調における強弱ビット及びそ れに関連する多元接続ソースを新たに割り当てることで、弱ユーザの伝送性能を向 上させ、システムのスループットを最大化させる。  [0099] FIG. 34 shows a simple signaling flowchart of the multi-user higher order modulation method. In the first step, the mobile station periodically transmits channel state information (CSI), eg, signal-to-interference and noise ratio (SINR), and ACKZNACK information to the base station. In the second step, the base station periodically analyzes and organizes information such as CSI and ACKZNACK of these mobile stations, and weak bits are given to users with good channels ('ACK signals with high SIRN). Users who are inferior (SINR is low and 'NACK signal) are assigned strong bits, and other multiple access resources such as time slot format, spreading code, frequency band, and nolot of each user are assigned. In the third step, the base station periodically sends multiple connection resources and bit correlation information to the mobile station via the control channel. In the fourth step, the base station transmits the multi-user high-order modulated data to the mobile station via the traffic channel. The overall flow is an adaptive process for channel changes, and when changes occur in the channel of the mobile station, the base station accordingly sets the strong and weak bits in the higher-order modulation and the associated multiple access source. New allocation improves transmission performance for weak users and maximizes system throughput.
[0100] 以上各実施の形態にて説明を行った、不均等なマルチユーザ高次変調は、従来 方法との比較において以下のような利点と効果がある。  [0100] The non-uniform multi-user high-order modulation described in the above embodiments has the following advantages and effects in comparison with the conventional method.
[0101] 第 1に、チャネルの変化に適応できるプロセスであり、信号対干渉雑音比の低い移 動局に対しては、基地局は高次変調における強ビットを割り当てることができ、弱ュ 一ザの信号対干渉雑音比を向上させるに等しい効果があり、弱ユーザの伝送性能を 高めることができ、遠近問題の緩和に役立つ。 NACK信号をフィードバックした移動 局 (NACK信号は通常チャネル条件が悪いことを反映している)に対しては、基地局 はやはり高次変調における強ビットを割り当てることができ、 ARQ (自動再送要求)プ ロセスにおいて弱ユーザの性能を改善することに役立ち、スループットを向上させる。  [0101] First, it is a process that can adapt to channel changes. For mobile stations with low signal-to-interference and noise ratios, the base station can assign strong bits in higher-order modulation, and weak This has the same effect as improving the signal-to-interference and noise ratio, and can improve the transmission performance of weak users, helping alleviate the perspective problem. For mobile stations that have fed back a NACK signal (the NACK signal reflects that the channel condition is usually poor), the base station can still assign strong bits in higher-order modulation, and ARQ (automatic repeat request) It helps improve the performance of weak users in the process and increases throughput.
[0102] 第 2に、符号ィ匕長さと周波数スペクトル利用率が変わらない前提において、各高次 変調シンボルが有する各ユーザのビット数が減少するので、各ユーザが占有する変 調シンボルの数が多くなり、ダイバーシチ受信をする場合、各ユーザはより多くの時 間ダイバーシチ(時分割システムの場合)ある!、はより多くの周波数ダイバーシチ (周 波数分割システムの場合)、あるいはより多くの符号ダイバーシチ (コード分割システ ムの場合)が可能であり、また各ユーザは同じグループの他のユーザとより多くのパイ ロットデータを共有でき、より正確なチャネル推定を提供できることから、システム全体 のスループットを向上させる。 [0102] Secondly, on the assumption that the code length and the frequency spectrum utilization rate do not change, the number of bits of each user possessed by each higher-order modulation symbol decreases, so that the number of modulation symbols occupied by each user decreases. When receiving diversity and receiving diversity, each user has more time Can be more frequency diversity (for frequency division systems) or more code diversity (for code division systems), and each user can Improve overall system throughput by sharing more pilot data with other users in the same group and providing more accurate channel estimation.
[0103] 以上各実施の形態により、次のステップを具備する不均等なマルチユーザ高次変 調方法の提示を行った。即ち、前記不均等なマルチユーザ高次変調方法は、複数 のユーザからのソースデータ系列に対しそれぞれ符号化、インターリーブを施し、複 数のインターリーブ符号ィ匕データ系列を生成するステップと、各ユーザ力 フィードバ ックされたチャネルの状態に基づきユーザを順に並べるステップと、保護能力の強弱 の順序に基づき変調シンボルにおける各シンボルビットを順に並べるステップと、シ ンボルビットの個数とユーザ数に基づき、シンボルビットとユーザを一つ一つ対応す るシンボルビットグループとユーザグループに分けるステップと、チャネル状態の良好 なユーザグループからのインターリーブ符号ィ匕データ系列を、保護能力の弱 、シン ボルビットグループに引き当てて多重し、チャネル状態の悪!、ユーザグループからの インターリーブ符号ィ匕データ系列を保護能力の強いシンボルビットグループに引き当 てて多重するステップと、並列の各シンボルビットから一つの変調シンボルを構成し、 変調シンボル系列を生成するステップと、変調シンボル系列に対し多元接続を行 、、 多元接続送信データ系列を生成するステップを具備する。  [0103] According to each of the above embodiments, an unequal multiuser higher-order modulation method including the following steps has been presented. That is, the unequal multi-user high-order modulation method performs encoding and interleaving on source data sequences from a plurality of users to generate a plurality of interleaved code data sequences, A step of arranging the users in order based on the state of the fed back channel, a step of arranging the symbol bits in the modulation symbol in order based on the order of the strength of the protection capability, and a symbol bit based on the number of symbol bits and the number of users. A step of dividing each user into symbol bit groups and user groups corresponding to each other, and interleaving code data sequences from user groups with good channel conditions are assigned to symbol bit groups with weak protection capability and multiplexed. And bad channel status! Interleaving code data sequences of リ ー by assigning them to symbol bit groups with strong protection capability, forming one modulation symbol from each parallel symbol bit, generating a modulation symbol sequence, and modulation symbols Performing multiple access to the sequence, and generating a multiple access transmission data sequence.
[0104] 好ましくは、ユーザのチャネル状態は信号対干渉雑音比によって確定する。信号対 干渉雑音比が高いほど当該ユーザのチャネル状態は良い。或いは、ユーザのチヤネ ル状態は ACK/NACKフィードバック信号によって確定する。もしユーザが ACKフィ ードバック信号をフィードバックすれば、このユーザのチャネル状態は良好で、ユー ザが NACKフィードバック信号をフィードバックすれば、このユーザのチャネル状態 は劣っている。 [0104] Preferably, the channel state of the user is determined by the signal-to-interference and noise ratio. The higher the signal-to-interference / noise ratio, the better the channel state of the user. Alternatively, the user's channel state is determined by the ACK / NACK feedback signal. If the user feeds back an ACK feedback signal, the user's channel condition is good, and if the user feeds back a NACK feedback signal, the user's channel condition is poor.
[0105] 好ましくは、各シンボルビットの保護能力の強弱は各シンボルビットのノ、ミング距離 の和によって確定する。ただしハミング距離の和が大きいほど、当該ビットの保護能 力は弱くなる。 [0106] 好ましくは、前記多元接続は次の多元接続方式、即ち、時分割多元接続、周波数 分割多元接続、直交周波数分割多重多元接続、コード分割多元接続、直交周波数 'コード分割多元接続のうちの一つを採用する。 [0105] Preferably, the level of protection capability of each symbol bit is determined by the sum of the symbol and symbol distance of each symbol bit. However, the greater the sum of the Hamming distances, the weaker the protection capability of the bit. [0106] Preferably, the multiple access is one of the following multiple access schemes: time division multiple access, frequency division multiple access, orthogonal frequency division multiple access, code division multiple access, orthogonal frequency 'code division multiple access Adopt one.
[0107] 好ましくは、同一変調シンボル内の複数ユーザのタイムスロット、サブバンド、あるい は拡散コード空間を合成してフレーム化する。この変調シンボル内の複数ユーザは パイロットデータを共有する。  [0107] Preferably, time slots, subbands, or spreading code spaces of a plurality of users within the same modulation symbol are combined into a frame. Multiple users in this modulation symbol share pilot data.
[0108] これらに対応し、前述のマルチユーザ高次変調方法によって生成された多元接続 送信データ系列を受信する、次のステップを具備する多元接続解除高次復調方法 の提示を行った。即ち、前記多元接続解除高次復調方法は、多元接続送信データ 系列を受信し、受信した多元接続送信データ系列に対し多元接続解除処理を行い 、多元接続解除変調シンボル系列を生成するステップと、多元接続解除変調シンポ ル系列中の各多元接続解除変調シンボルにつ 、て、受信ユーザとシンボルビット間 の対応関係に基づ 、て、多元接続解除変調シンボル中の前記受信ユーザに対応す るシンボルビットを選択的に高次復調し、多元接続解除変調シンボル中の他のユー ザに対応するシンボルビットを破棄して、復調されたデータから前記受信ユーザに対 応した復調データ系列を構成するステップと、復調データ系列に対しディンターリー ブと復号化を行 、、判定データ系列を生成するステップを具備する。  [0108] Corresponding to these, a multiple access cancellation high-order demodulation method comprising the following steps for receiving a multiple access transmission data sequence generated by the above-described multiuser high-order modulation method was presented. That is, the multiple access cancellation higher-order demodulation method includes receiving multiple access transmission data sequences, performing multiple access cancellation processing on the received multiple access transmission data sequences, and generating multiple access cancellation modulation symbol sequences; For each multiple access cancellation modulation symbol in the disconnection modulation symbol sequence, the symbol bit corresponding to the reception user in the multiple access cancellation modulation symbol based on the correspondence between the reception user and the symbol bit. A demodulating data sequence corresponding to the receiving user from the demodulated data by selectively demodulating the data, discarding symbol bits corresponding to other users in the multiple access modulation symbol, and And a step of performing deinterleaving and decoding on the demodulated data sequence to generate a decision data sequence.
[0109] 2006年 3月 20日出願の第 200610071417. 2の中国出願に含まれる明細書、図 面および要約書の開示内容は、すべて本願に援用される。  [0109] The disclosures of the description, drawings and abstracts contained in the Chinese application of No. 200610071417.2 filed on March 20, 2006 are hereby incorporated by reference.
産業上の利用可能性  Industrial applicability
[0110] 本発明の無線送信装置および無線送信方法は、複数ユーザに同時に無線信号を 送信する無線送信装置および無線送信方法であって、スループットを向上するものと して有用である。 [0110] The wireless transmission device and wireless transmission method of the present invention are a wireless transmission device and a wireless transmission method for simultaneously transmitting wireless signals to a plurality of users, and are useful for improving throughput.

Claims

請求の範囲 The scope of the claims
[1] 1つのシンボルが表す単位ビット列の構成ビットごとの誤り易さ、および、各ユーザ のチャネル状況に基づ 、て各構成ビットをユーザの使用ビットとして割り当て、当該 割り当てに従った順序に複数のユーザ宛の並列なデータ系列の要素を並べることに より、前記複数のユーザ宛のビットストリームを形成するビットストリーム形成手段と、 前記ビットストリームの前記単位ビット列に従って、変調信号を形成する変調手段と を具備する無線送信装置。  [1] Based on the ease of error of each constituent bit of the unit bit string represented by one symbol and the channel status of each user, each constituent bit is assigned as a user's use bit, and multiple bits are arranged in the order according to the assignment. By arranging elements of parallel data sequences addressed to a plurality of users, bit stream forming means for forming a bit stream addressed to the plurality of users, and modulation means for forming a modulation signal according to the unit bit string of the bit stream; A wireless transmission device comprising:
[2] 前記ビットストリーム形成手段は、前記チャネル状況が悪!、ユーザに対して、誤り難 V、構成ビットを使用ビットとして割り当てる請求項 1に記載の無線送信装置。  2. The radio transmission apparatus according to claim 1, wherein the bit stream forming means assigns the error bit V and the constituent bits as used bits to the user because the channel condition is bad!
[3] 1つのシンボルが表す単位ビット列の構成ビットごとの誤り易さ、および、各ユーザ のチャネル状況に基づ 、て各構成ビットをユーザの使用ビットとして割り当てるステツ プと、  [3] A step of assigning each constituent bit as a user use bit based on the ease of error of each constituent bit of the unit bit string represented by one symbol and the channel status of each user,
前記割り当てに従った順序に複数のユーザ宛の並列なデータ系列の要素を並べる ことにより、前記複数のユーザ宛のビットストリームを形成するステップと、  Forming a bitstream addressed to the plurality of users by arranging elements of parallel data sequences addressed to the plurality of users in an order according to the assignment; and
前記ビットストリームの前記単位ビット列に応じた変調信号を形成するステップと、 を具備する無線送信方法。  Forming a modulated signal corresponding to the unit bit string of the bit stream.
PCT/JP2007/055686 2006-03-20 2007-03-20 Wireless transmitting device and wireless transmitting method WO2007108474A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2006100714172A CN101043484A (en) 2006-03-20 2006-03-20 Non-equal multi-user high order modulation approach
CN200610071417.2 2006-03-20

Publications (1)

Publication Number Publication Date
WO2007108474A1 true WO2007108474A1 (en) 2007-09-27

Family

ID=38522501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055686 WO2007108474A1 (en) 2006-03-20 2007-03-20 Wireless transmitting device and wireless transmitting method

Country Status (2)

Country Link
CN (1) CN101043484A (en)
WO (1) WO2007108474A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183547A (en) * 2013-03-21 2014-09-29 Advanced Telecommunication Research Institute International Radio communication system, radio communication device and radio communication method
JP2014183532A (en) * 2013-03-21 2014-09-29 Advanced Telecommunication Research Institute International Radio communication system, radio communication device and radio communication method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674129B (en) * 2008-09-09 2013-02-13 华为技术有限公司 Method, device and system for sharing same channel by multiple users
CN101478368B (en) * 2009-01-16 2014-07-16 中兴通讯股份有限公司 Processing method, terminal, base station for feedback information
CN106160827B (en) * 2015-04-21 2020-12-25 中兴通讯股份有限公司 Multi-user information processing method and device
CN106788582B (en) * 2016-07-07 2019-04-30 北京展讯高科通信技术有限公司 Transmitter, receiver, base station, user equipment and user equipment access method
CN109218792A (en) * 2017-06-29 2019-01-15 上海数字电视国家工程研究中心有限公司 Deplexing method
CN110012543B (en) * 2019-03-29 2022-12-06 深圳职业技术学院 Data transmission method, system and storage medium for low control overhead in Internet of things
CN115276895A (en) * 2021-04-30 2022-11-01 维沃移动通信有限公司 Data transmission method, device, equipment and storage medium
CN113727283B (en) * 2021-05-26 2022-09-23 中南大学 Zero-delay correlated information source broadcast communication method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045086A (en) * 1999-06-30 2001-02-16 Texas Instr Inc <Ti> Communication unit and method for coding digital information
JP2002198930A (en) * 2000-11-20 2002-07-12 Sony Internatl Europ Gmbh Method and system for transmitting radio multi-carriers
JP2004080340A (en) * 2002-08-16 2004-03-11 Nippon Telegr & Teleph Corp <Ntt> Multicarrier transmission reception method and transmitter and receiver therefor
JP2005065335A (en) * 2004-11-08 2005-03-10 Mitsubishi Electric Corp Radio communication method and mobile terminal used therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045086A (en) * 1999-06-30 2001-02-16 Texas Instr Inc <Ti> Communication unit and method for coding digital information
JP2002198930A (en) * 2000-11-20 2002-07-12 Sony Internatl Europ Gmbh Method and system for transmitting radio multi-carriers
JP2004080340A (en) * 2002-08-16 2004-03-11 Nippon Telegr & Teleph Corp <Ntt> Multicarrier transmission reception method and transmitter and receiver therefor
JP2005065335A (en) * 2004-11-08 2005-03-10 Mitsubishi Electric Corp Radio communication method and mobile terminal used therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183547A (en) * 2013-03-21 2014-09-29 Advanced Telecommunication Research Institute International Radio communication system, radio communication device and radio communication method
JP2014183532A (en) * 2013-03-21 2014-09-29 Advanced Telecommunication Research Institute International Radio communication system, radio communication device and radio communication method

Also Published As

Publication number Publication date
CN101043484A (en) 2007-09-26

Similar Documents

Publication Publication Date Title
US10103862B2 (en) Method, apparatus, and system for transmitting and receiving information of an uncoded channel in an orthogonal frequency division multiplexing system
WO2007108474A1 (en) Wireless transmitting device and wireless transmitting method
RU2242087C2 (en) Method and device for data transmission and reception in mobile communication system using antenna array
KR100939524B1 (en) Asymmetric mode of operation in multi?carrier communications systems
JP6465810B2 (en) Signal transmission / reception method and apparatus using multiple modulation techniques in wireless communication system
KR100926020B1 (en) Method and apparatus for decoding data in a layered modulation system
JP5144686B2 (en) Method and apparatus for improving performance and enabling fast decoding of transmissions with multiple code blocks
TWI452859B (en) Layer mapping method and data transmission method for mimo system
JP3679775B2 (en) Multicarrier transmission apparatus, multicarrier reception apparatus, and multicarrier transmission method
WO2003088537A1 (en) Multi-carrier communication device and multi-carrier communication method
EP2326055A1 (en) Transmitter, transmission method, receiver, and reception method
US20060250944A1 (en) Apparatus and method for transmitting bit-interleaved coded modulation signals in an orthogonal frequency division multiplexing system
KR20070114386A (en) Transmitting apparatus, transmitting method, receiving apparatus and receiving method
CN1484899A (en) Differential space-time block coding
WO2006035841A1 (en) Transmitting apparatus, receiving apparatus, communication system and communication method
KR20080022104A (en) Techniques to improve redundancy for multi-carrier wireless systems
JP2008547303A (en) Method and apparatus for space-time turbo channel encoding / decoding in a wireless network
US8588153B2 (en) Method and apparatus for transmitting uplink control channel in a mobile communication system
US7379416B2 (en) Forward packet data channel with parallel sub-packets
WO2004040832A1 (en) Transmitting device and transmitting method
WO2005018126A1 (en) Radio transmitting apparatus and radio transmitting method
JP2005269670A (en) Multicarrier transmitter, multicarrier receiver, and multicarrier transmitting method
WO2020034942A1 (en) Multiple access method and apparatus, and terminal
KR20080035416A (en) Method and apparatus for transmitting/receiving control segment bit map in an orthogonal frequency division multiple system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP