WO2007108430A1 - Wireless communication device and wireless communication system - Google Patents

Wireless communication device and wireless communication system Download PDF

Info

Publication number
WO2007108430A1
WO2007108430A1 PCT/JP2007/055481 JP2007055481W WO2007108430A1 WO 2007108430 A1 WO2007108430 A1 WO 2007108430A1 JP 2007055481 W JP2007055481 W JP 2007055481W WO 2007108430 A1 WO2007108430 A1 WO 2007108430A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
communication
control means
antennas
communication device
Prior art date
Application number
PCT/JP2007/055481
Other languages
French (fr)
Japanese (ja)
Inventor
Shinya Fukuoka
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Publication of WO2007108430A1 publication Critical patent/WO2007108430A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems

Definitions

  • the present invention relates to a wireless communication apparatus that can be used in a multiple input multiple output (MIMO) type wireless communication system and a wireless communication system including the same.
  • MIMO multiple input multiple output
  • the MIMO scheme in a multipath environment can have min (M, N) independent channels, so the availability of space can be increased by increasing the number of transmit / receive antennas.
  • the transmission performance of the MIMO scheme at this time can be grasped by obtaining channel characteristics by using the eigenvalues of the correlation matrix.
  • the weighting control means calculates a channel matrix that reduces eigenvalue variations, and controls the directivity of the adaptive array antenna so that the current channel matrix approaches the channel matrix. In this way, the channel capacity is improved.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-45351 (paragraph numbers 0037 to 0055, FIGS. 9 to 11) Disclosure of the Invention
  • the channel capacity that can be used for actual communication is not used.
  • the focus is on improvement.
  • the variation in channel capacity corresponding to these eigenvalues is also reduced, and as a result, the channel capacity corresponding to all eigenvalues is effectively used for actual communication. It can be done.
  • the problems to be solved by the present invention include the above-described problems as an example.
  • the invention according to claim 1 is a wireless communication apparatus that can be used in a multiple-input multiple-output wireless communication system, wherein m is an integer of 2 or more, and a plurality of The initial control means for controlling each antenna so that the m antennas each having an antenna element and the directivity realized by all these m antennas are in a predetermined initial state, and the initial control means.
  • Communication condition control means for setting a communication condition in communication with the other wireless communication device according to the content of initial communication with the other wireless communication device in the realized initial state.
  • the invention according to claim 11 is a wireless communication system including a wireless transmission device and a wireless reception device, and capable of multi-input multiple-output communication, wherein the wireless transmission And at least one of the apparatus and the wireless receiving apparatus, when m is an integer greater than or equal to 2, m antennas each having a plurality of antenna elements enclosed or loaded in a dielectric and arranged at predetermined intervals from each other;
  • the directivity realized by all these m antennas is an initial control means for controlling each antenna so as to be in a predetermined initial state, and the other wireless communication apparatus in the initial state realized by the initial control means.
  • Communication condition control means for setting communication conditions in communication with the other wireless communication device according to the initial communication content.
  • FIG. 1 is a system configuration diagram illustrating an overall outline of a wireless communication system including the wireless communication device of the present embodiment.
  • the wireless communication device 1 of the present embodiment includes a plurality of (six in this example) antennas 101A, 101B, 101C, 101D, 101E, 101F, and these antennas 101A. And a control device 200 for controlling the operation of F.
  • the wireless communication device 1 is configured to be able to communicate via the antennas 101A to 101F by a multiple input multiple output (MIMO) method, as will be described in detail later. Communication with another wireless communication apparatus 301 using at least one of the antennas 101A to 101F based on the control of the overall control unit 201).
  • MIMO multiple input multiple output
  • FIG. 2 is a perspective view showing a detailed structure of antenna 101A shown in FIG. 1, and FIG. 3 is an explanatory diagram for explaining a control system of antenna 101A.
  • the antenna 101A includes a dielectric substrate 110 made of, for example, polycarbonate, a ground conductor 111 formed on substantially the entire upper surface of the dielectric substrate 110, and the ground conductor 111.
  • a plurality of antennas (seven in this example) formed so as to be embedded in the dielectric 120 in a state where the dielectric 120 formed in a substantially cylindrical shape and the ground conductor 111 are electrically insulated from each other.
  • element P With element P.
  • the antenna element P is a monopole whose longitudinal direction is perpendicular to the plane of the ground conductor 111. It consists of one feeding antenna element PO (feeding element) and at least one (six in this example) parasitic antenna elements P1 to P6 (parasitic elements).
  • the feed antenna element PO includes a cylindrical radiating element 106 that is electrically insulated from the ground conductor 111 and embedded in a dielectric 120.
  • a signal line is connected to one end of the radiating element 106 so that a radio signal fed from the control device 200 is fed and radiated to the feeding antenna element P0 via an RF circuit 290 (described later). It becomes.
  • the parasitic antenna elements P1 to P6 are arranged so as to have a substantially circular shape in this example at a predetermined interval with respect to the feeding antenna element P0.
  • Each parasitic antenna element P1 to P6 includes a substantially cylindrical non-excitation element 107 that is electrically insulated from the ground conductor 111 and disposed so as to penetrate the dielectric substrate 110 and the dielectric 120 in the vertical direction. Yes.
  • One end of each non-excitation element 107 has a variable reactance element 130 having a predetermined reactance value (for example, also having a variable capacitance diode force), and a through-hole conductor 114 formed by filling the dielectric substrate 110 in the vertical direction.
  • the ground conductor 111 is grounded at a high frequency via
  • the lengths of the radiating element 106 and the non-exciting element 107 in the longitudinal direction are substantially the same.
  • the variable reactance element 130 has inductance (L property)
  • the reactance element 130 becomes an extension coil, and the electric lengths of the parasitic antenna elements P1 to P6 are longer than those of the feeding antenna element PO, and function as a reflector.
  • the variable reactance element 130 has capacitance (C-type)
  • the variable reactance element 130 becomes a shortening capacitor, and the electric lengths of the parasitic antenna elements P1 to P6 are compared with the power supply antenna element P0. It becomes shorter and works as a director.
  • the reactance value in the variable reactance element 130 that changes the control voltage applied to the variable reactance element 130 the electric length of the parasitic antenna element P1 including the non-excitation element 107 is changed to the feed antenna element P0.
  • the horizontal plane directivity of the antenna 101A can be changed.
  • FIG. 4 is a functional block diagram showing a detailed configuration of the control device 200 shown in FIG. 1
  • FIG. FIG. 6 is a functional block diagram showing a detailed configuration of functions related to the transmitting side
  • FIG. 6 is a functional block diagram showing a detailed configuration of functions related to the receiving side in FIG.
  • RF circuit may be further via an IF circuit
  • m corresponding to each of the received signals from the m antennas 101, LPF242 that limits the band of each received signal, and analog-digital conversion
  • a receiving-side digital directivity control unit 250 feeding-side control means) that performs predetermined reception directivity control processing (for example, composed of digital filters corresponding to complex numbers of I and Q components), and this receiving-side digital directivity control unit
  • the OFDM method A reception-side signal processing unit 260 that performs a known demodulation process based on the FM method, an error state monitoring circuit 204 that monitors
  • control device 200 further generates a command bit string generating unit 274 that generates a command bit string corresponding to transmission data to be transmitted from the antenna 101, and a digital signal output from the command bit string generating unit 274 is predetermined.
  • the frequency conversion unit 310 that performs predetermined processing such as modulation on the signal from the transmission side signal processing unit 210, and the transmission directivity control processing are performed on the signal from the frequency conversion unit 310 (for example, I Digital filter power corresponding to the complex number of the component and Q component) (transmission side digital directivity control unit 220 (power supply side control means)) and the transmission signals to m antennas 101 respectively.
  • DZA converter output to the m digital-to-analog converter after the RF circuit 290 is provided.
  • a key for performing a predetermined directivity control process using the device 232 and a plurality (6 in this example) of parasitic antenna elements P1 to P6 of m antennas (m 6 in this example) 101.
  • Analog directivity control unit 280 (parasitic side control means) and m signals corresponding to each of m antennas 101 are provided, and the signals from analog directivity control unit 280 are converted into digital signals after analog conversion.
  • DZA converter 292 that outputs control voltage to parasitic antenna elements P1 to P6 of each antenna 101, receiver digital directivity control unit 250, transmission digital directivity control unit 220, analog directivity control unit 280, etc.
  • an overall control unit 201 for controlling the overall components.
  • Transmission digital that outputs a digital signal (for example, a sine wave sampled signal) that forms a transmission signal (carrier wave) Fc to the communication partner based on the sampling value stored so as to correspond to each phase at a fixed sampling point
  • a digital signal for example, a sine wave sampled signal
  • carrier wave transmission signal
  • each of the m systems is used for modulating the carrier wave Fc from the transmission digital signal output unit 213 to be transmission information based on the information signal (data) encoded by the encoding unit 203.
  • Modulators multipliers that output modulated signals (for example, generate I and Q components by GFSK modulation) 212-0, 212-1, 2, 212-n, and these multipliers 212-0, 212-1,..., 212—n
  • modulated signals for example, generate I and Q components by GFSK modulation
  • the transmission-side digital directivity control unit 220 is also provided with m systems corresponding to the above, and each system is synthesized through the BPF211aO, 211b0, 211al, 211bl, ..., 21lan, 211bn, respectively.
  • a total of n + 1 weights for obtaining a predetermined transmission directivity based on the corresponding coefficients (phase control signals) from the overall control unit 201 such as CIO, C11,. , 221an, n 6) coefficient multipliers 221a0, 221al,..., 221an and adders 222 for synthesizing outputs from these n + 1 coefficient multipliers 221a0 to an.
  • the output from the adder 222 of each system is the above-mentioned DZA converter 232, RF circuit Supplied to the feeding antenna element PO of the corresponding antenna 101 via the path 290, respectively.
  • the frequency converter 300 is provided with m systems in the same manner as described above, and each system converts the complex I component and Q component included in the weighted received signal output from the A ZD converter 241.
  • an FIR filter unit 262 that combines the outputs from the coefficient multipliers 261a and 261b and performs predetermined filtering.
  • n 6 coefficient multipliers 251— 0, 251-1,..., 251—n, and an adder that combines the outputs from these n + 1 coefficient multipliers 251—0 to 251—n 252 and each.
  • An error detector (such as a CRC detector) (not shown) is connected to the reception side signal processing unit 260 (for example, connected to the adder 252), and the error state monitoring circuit 204 is connected to the reception side signal processing unit 260.
  • the error detection signal is also supplied to the selection circuit 270 according to the error detection signal supplied (the error state monitoring circuit 204 uses the monitoring result corresponding to the detection signal as information such as an error flag). Also output to the overall control unit 201).
  • This selection command signal instructs the error detector to select the output of the system that has output a normal detection result, and the selection circuit 270 corresponds to the selection command signal among the signals of each system.
  • the selected signal is selected and output to the decoding unit 271.
  • the output from the adder 252 of each system is selected by the selection circuit 270 via the reception side signal processing unit 260, then decoded by the decoding unit 271, and further the response Bit string interpretation unit 2 Interpreted at 72 and taken out as received information.
  • the power with which the communication partner requests the wireless communication device 1 of the present embodiment that is, the other wireless communication device 301 antenna (element ) Number
  • application of the other party power of communication content is image, voice, power of text-only file, email, etc.
  • how much data transfer time • Real time ⁇ Power ⁇ Whether the user's desired priority order is requested can be acquired by the overall control unit 201 as information.
  • each system of the reception-side signal processing unit 260 is also provided with an RSSI (Received Signal Strength Indicator) circuit (not shown).
  • the RSSI detection signal “R SSIj is received signal strength (reception Electric field intensity) information is input to the overall control unit 201.
  • FIG. 7 is a flowchart showing a control procedure executed by the overall control unit 201 provided in the control device 200 of the wireless communication device 1 of the present embodiment.
  • initial setting processing is performed so that the total directivity by all (six in this example) antennas 101 becomes substantially omnidirectional.
  • a control signal is output to the analog directivity control unit 280, and directivity by the parasitic antenna elements P1 to P6 in each of all (six in this example) antennas 101 is a predetermined value (predetermined direction). (See FIG.
  • the initial setting control is performed so that the total directivity by all the antennas 101 becomes substantially omnidirectional in almost all directions.
  • the directivity (region) of each adjacent antenna 101 is controlled so as to overlap each other (see FIG. 8 described later).
  • These initial setting values may be set appropriately by the operator (or at the time of factory shipment).
  • FIG. 8 is an explanatory view schematically showing a radio wave radiation mode in the standby state after the initial setting. As described above, the directivities (regions) of the adjacent antennas 101 overlap each other! /.
  • step S20 in response to the beacon signal, a response signal having a communication partner such as another wireless communication device 301 is transmitted to the frequency converter 300, the receiving-side digital directivity control.
  • the control unit 250 and the receiving side signal processing unit 260 determine whether the response is received without error by the response bit string interpretation unit 272 via the selection circuit 270 and the decoding unit 271. If the response signal is not received at all or an error occurs even if it is received (detected by an error flag from the error state monitoring circuit 204, etc.), this determination is not satisfied and the process returns to step S10. Continuing, I will continue waiting.
  • step S 20 If a response signal from another wireless communication device 301 or the like is received without error, the determination at step S 20 is satisfied, and the routine goes to step S 100.
  • step S100 based on the interpretation result (reception result) of the received response signal, the content of communication with the other wireless communication device 301 is confirmed (the number of antenna elements such as the other wireless communication device 301 and the required transmission). Confirmation of various information such as rate and received strength) and corresponding communication condition setting processing on the wireless communication device 1 side is performed.
  • FIG. 9 is a flowchart showing the detailed procedure of step S100.
  • step S105 based on the reception result of the response signal, it is determined whether the number of antenna elements of the other wireless communication device 301 or the like as the communication partner is one. If the other wireless communication apparatus 301 has only one antenna element instead of two or more, the determination is satisfied, and the routine goes to Step S110.
  • step S110 based on the reception result, it is determined whether or not the transmission rate (transmission speed) requested from the other wireless communication apparatus 301 is relatively high (for example, whether it is larger or smaller than a predetermined threshold value). Compare). If the required transmission rate is relatively low, the determination is not satisfied and the routine goes to Step S115.
  • step SI 15 A control signal is output to On the other hand, the received signal strength is relatively low In this case, the determination of step SI 15 is not satisfied, and the process proceeds to step SI 25.
  • the antenna 101 may have a directivity (set in a predetermined direction in step S5) to be substantially omnidirectional in almost all directions to communicate with another wireless communication apparatus 301.
  • Control signals are output to the transmission-side digital directivity control unit 220, the reception-side digital directivity control unit 250, the analog directivity control unit 280, etc.
  • step S110 determines whether or not the transmission rate (transmission speed) requested from the other wireless communication device 301 is relatively high. If the received signal strength is relatively high, the determination is satisfied, and the process proceeds to step S135.
  • predetermined eg, the received signal strength is high or the error rate is low.
  • V A control signal is output to each part so as to perform known diversity control using N antennas 101 (where N ⁇ m).
  • step S130 determines whether the received signal strength is relatively small. If the received signal strength is relatively small, the determination in step S130 is not satisfied, and the procedure moves to step S140.
  • N digital (N ⁇ m) antennas 101 are used to perform known adaptive array control 220 digital directional control unit 220, digital directional control unit 250, analog 250 A control signal is output to the directivity control unit 280 or the like.
  • step S105 if the number of antenna elements of the other wireless communication device 301 or the like as the communication partner is two or more, the determination is not satisfied, and the routine goes to step S145.
  • step S 145 as in step S 110, based on the reception result, it is determined whether or not the transmission rate (transmission speed) requested by the other wireless communication device 301 is relatively high. If the required transmission rate is relatively low, the determination is not satisfied and the routine goes to Step S130 described above, and thereafter the same procedure as described above is performed.
  • MIMO multiple input multiple output
  • the present invention is not limited to this, and the received signal strength can be acquired.
  • Other information for example, the application of the other user (whether the content of the communication is an image, voice, power of a text-only file, mail, etc.) and how much data transfer time You may request real-time performance, power, user preference, etc., and set the above communication conditions based on whether or not.
  • Step S120, Step S125, Step S135, Step S140, and Step S150 are completed as described above, the process proceeds to Step S155, and among m antennas 101, Step S120, Step The same processing as in step S5 is performed so that the total directivity by the remaining antennas 101 other than those used in S125, step S135, step S140, and step S150 becomes substantially omnidirectional. Note that the communication operation of these remaining antennas 101 may be stopped.
  • step S155 is completed, the routine ends.
  • step S100 when step S100 is completed as described above, the process proceeds to step S25, where the command bit string generation unit 274, encoding is performed under the communication condition setting described above in step S100.
  • the unit 273, the transmission side signal processing unit 210, the frequency conversion unit 310, and the transmission side digital directivity control unit 220 are each controlled to transmit a signal from the antenna 101 and start communication with another wireless communication device 301.
  • FIG. 10 and FIG. 11 are explanatory diagrams schematically showing a communication mode with another wireless communication device 301 executed at this time.
  • FIG. 10 shows the result of setting in step S120 where the number of antenna elements of the other wireless communication apparatus 301 is one, the required transmission rate is low, and the received signal strength is large.
  • An example of a state in which the directivity (set in a predetermined direction in step S5) provided to the antenna 101 is continued and communication with another wireless communication device 301 is continued is shown.
  • FIG. 11 shows that the setting is performed in step S140 where the number of antenna elements of other wireless communication apparatus 301 is one, the required transmission rate is high, and the received signal strength is low.
  • An example of the state of being performed is shown.
  • FIG. 12 is a conceptual explanatory diagram conceptually showing the behavior of this MIMO communication.
  • the number of antennas 101 in the wireless communication device 1 of this embodiment is three, and the other wireless communication device 301 that is the communication partner is also in this embodiment. It is illustrated as having the same configuration as that of the wireless communication device 1 of the embodiment.
  • the channel response between transmission and reception is represented by a 3 ⁇ 3 matrix.
  • 3 X 3 9 transmission paths (channels) can be virtually made into 3 independent channels by eigenvalue conversion as shown in the figure. The availability of space can be increased.
  • step S30 it is determined whether the operator's force is also a force for which a communication end instruction has been issued. If an instruction to stop wireless communication is given by an operator or the like via an unillustrated operating means provided in the wireless communication device 1, this determination is satisfied and the flow ends. This determination is not satisfied until a stop instruction is issued, and the process proceeds to step S35.
  • step S35 as in step S10, a beacon signal is transmitted to enter a standby state.
  • the 1 to N antennas set in Step S 120, Step S 125, Step S 135, Step S 140, and Step S 150 are already used for communication with other wireless communication devices 301. So, for example, send the beacon signal using only the remaining antennas 101!
  • step S35 the process proceeds to step S35, and in the same manner as in step S20 described above, another communication partner such as another wireless communication device 302 appears corresponding to the beacon signal, and the response signal therefrom is a frequency converter 300, Received by receiving side digital directivity control unit 250 and receiving side signal processing unit 260 and received via selection circuit 270 and decoding unit 271 and received by bit string interpretation unit 272 without error. Determining whether or not the power is trusted. If the response signal is not received at all, or if an error occurs even if it is received, this determination is not satisfied, and the procedure returns to step S25 and the same procedure is repeated.
  • another communication partner such as another wireless communication device 302 appears corresponding to the beacon signal
  • the response signal therefrom is a frequency converter 300, Received by receiving side digital directivity control unit 250 and receiving side signal processing unit 260 and received via selection circuit 270 and decoding unit 271 and received by bit string interpretation unit 272 without error. Determining whether or not the power is trusted. If the response signal is not received at all,
  • step S100 processing equivalent to that in step S100 is performed, and based on the interpretation result (reception result) of the received response signal, the content of communication with the other wireless communication device 302 is confirmed (the antenna element (Confirmation of various information such as number, required transmission rate, reception strength, etc.) and corresponding communication condition setting processing on the wireless communication apparatus 1 side is performed.
  • the details shown in FIG. 10 are sufficient as in step S 100 0, and the description thereof is omitted.
  • step S200 When step S200 is completed, the process proceeds to step S45, and in the same manner as step S25 described above, the command bit string generation unit 274, the encoding unit 273, and the transmission are performed in step S200 under the communication condition setting described above.
  • the side signal processing unit 210, the frequency conversion unit 310, and the transmission side digital directivity control unit 220 are controlled to transmit signals from the antenna 101, and communication with the other wireless communication device 302 is started.
  • FIG. 13 is an explanatory view schematically showing a communication mode with still another wireless communication device 302 executed at this time.
  • FIG. 13 shows that when communication with another wireless communication apparatus 301 having one antenna element is already performed by the antennas 101E and 101F by the adaptive array system, another wireless communication apparatus 302 appears,
  • the number of antenna elements of wireless communication apparatus 302 is two and the required transmission rate is high (for example, antennas 101A, 101B, 101C, (The antenna with the highest received power among 101D and the one after it is selected)
  • Antenna 101B and 101C are used to start communication with the other wireless communication device 302 using the MIMO scheme. An example is shown.
  • step S45 when step S45 is completed as described above, the process returns to step S40, and the same procedure is repeated.
  • FIG. 14 is a diagram illustrating an actual application example of the wireless communication device 1 of the present embodiment having the above-described configuration.
  • the inner pad located in the front of the interior of the car AM.
  • the radio communication device 1 is installed on the side opposite to the steering wheel switch (front passenger seat side), and the antenna CT (not shown) is installed on the rear side (rear seat side). Etc.) are provided. Communication is performed between the plurality of antennas 101 of the wireless communication apparatus 1 and the television CT, and the other plurality of antennas 101 and the ground-side base station BP (corresponding to the above-described other wireless communication apparatus 301 and the like). Or, it may be an artificial satellite).
  • the wireless communication device 1 functions as a wireless transmission device or a wireless reception device, and the wireless communication device 1, 301, 301 constitutes the wireless communication system S.
  • FIG. 15 is a diagram illustrating another application example of the wireless communication device 1 of the present embodiment.
  • the wireless communication device 1 is provided in the inner panel IP in each of the two automobiles AM and AM, as in FIG. Then, communication (so-called inter-vehicle communication) is performed between the two wireless communication apparatuses 1 and 1 using, for example, a plurality of antennas 101.
  • the other radio communication device 1 corresponds to the other radio communication device 301 described above, and the radio communication device 1, 301 constitutes the radio communication system S.
  • the wireless communication device 1 functions as a wireless transmission device or a wireless reception device.
  • step S5 of the flow shown in Fig. 7 executed by the overall control unit 201 provided in the control device 200 of the wireless communication device 1 is realized by all the m antennas according to each claim.
  • An initial control means for controlling each antenna so that the directivity to be in a predetermined initial state is configured.
  • step S100 is a communication condition for setting communication conditions for communication with the other wireless communication device according to the initial communication content with the other wireless communication device in the initial state realized by the initial control means.
  • the control means is configured.
  • Step S120, Step S125, Step S135, Step S140, and Step S150 of the flow shown in FIG. 10 may be performed by using a communication method, a multi-input multiple-output method, an adaptive array method, or In addition to configuring the communication method control means to control the diversity method! /, The communication method control means to configure the number of antennas to be set to N as the communication condition.
  • the antenna set by the antenna number control means is set as the communication condition.
  • the directivity control means is configured to control the directivity of the plurality of antenna elements in the remaining antennas in a predetermined manner based on the number of antennas.
  • the wireless communication device 1 is the wireless communication device 1 that can be used in the wireless communication system S of the multiple-input multiple-output method, and m is an integer of 2 or more.
  • M antennas 101 each having a plurality of antenna elements P0 to P6, and initial control means for controlling each antenna so that the directivity realized by these m antennas 101 as a whole is in a predetermined initial state (this In the example, step S5) executed by the overall control unit 201) and communication with the other wireless communication device 301 according to the initial communication content with the other wireless communication device 301 in the initial state realized by the initial control means S5.
  • Communication condition control means (in this example, step S100 executed by the overall control unit 201) for setting the communication conditions in FIG.
  • the initial control means S5 has a plurality of (six in this example) antennas 101A to 101F as a whole.
  • the directivity by is set to the predetermined initial state.
  • the communication condition control means S100 sets the communication conditions for the subsequent communication with the other wireless communication device 301 in accordance with the initial communication content that has been communicated with the other wireless communication device 301. .
  • the other wireless communication is not concerned with the communication of the multi-input multi-output method.
  • Wireless communication can be executed in a communication mode that matches the communication device 301. As a result, efficient communication corresponding to various communication partners can be reliably realized.
  • the communication condition control means S100 is a communication condition selected from a multi-input multi-output system, an adaptive array system, and a diversity system. It is characterized by having a communication system control means (step S120, step S125, step S135, step S140, and step SI50 executed by the overall control unit 201 in this example) for controlling to the communication system.
  • control MIMO communication
  • m 6 in this example.
  • Control that maximizes the sensitivity to the communication partner adaptive array control
  • multiple keys Realize control (diversity control), etc. that uses the antenna 101 signal with excellent radio wave conditions preferentially for the same signal received by the antenna 101, ensuring efficiency with the communication partner and ensuring communication Can do.
  • the communication method control means S100 uses the adaptive communication method as the communication method when the other wireless communication device 301 includes an antenna having one antenna element force. It is characterized by.
  • the communication condition control unit S100 controls the number of antennas by setting N as an integer of 1 to m and the number of antennas to be used as N as a communication condition.
  • Means in this example, step S120, step S125, step S135, step S140, and step S150 executed by the overall control unit 201).
  • the antenna number control means S 120, S125, S135, S140, and S150 correspond to various communication partners, and by appropriately setting the number m of antennas 101 within a range of l ⁇ N ⁇ m, Wireless communication can be reliably executed in a communication mode that matches the wireless communication device 301.
  • the communication condition control means S100 is based on the number of antennas 101 set by the antenna number control means S120, S125, S135, S140, and S150 as communication conditions.
  • the other antenna 101 has directivity control means for controlling the directivity by the plurality of antenna elements P0 to P6 in a predetermined manner (in this example, step S155 executed by the overall control unit 201).
  • the communication condition control means S100 uses the antenna number control means S120, S125, S135, S140, and S150 as communication conditions. If power supply control means for stopping the power supply to the remaining antennas 101 is provided based on the number of the tena 101, the power supply to the antennas 101 can be stopped by using Wasteful power consumption can be avoided.
  • the plurality of antenna elements P0 to P6 of the antenna 101 are provided with a power feeding element P0 to which a signal is fed and a predetermined distance from the power feeding element P0. It includes at least one parasitic element P1 to P6 that is not fed with a signal, and is characterized in that it is enclosed or loaded in a dielectric and arranged at a predetermined distance from each other.
  • An ESPAR antenna that includes a feeding element PO and parasitic elements P1 to P6 and whose directivity can be controlled by reactance control to the parasitic elements P1 to P6, and further uses these elements P0 to P6 as dielectrics. By enclosing (or loading), the antenna 101 can be downsized.
  • Feed-side control means to control in this example, the transmission-side digital directivity control unit 220 and the reception-side digital directivity control unit 250
  • the parasitic elements P1 to P6 included in the m antennas 101 as communication conditions It is characterized by having non-feed-side control means (in this example, the analog directivity control unit 280) for controlling the directivity of the signal.
  • a rough setting of directivity is first performed by the non-feed-side control means 280, as schematically shown in FIG. Next (see region G1), more directivity control is performed by the power supply side control means 220 and 250 (see region G2), and by using these together, the directivity can be further improved. (See area G). Moreover, the flexibility as the directivity control system can be improved.
  • the initial control means S5 is the initial state.
  • the antennas 101 are controlled so that the directivities of the adjacent antennas 101 of the m antennas 101 partially overlap each other.
  • step S135, step S140, and step S150 of the flow shown in FIG. This is the case of selecting. This modification will be described with reference to FIG.
  • a wireless communication device 1 including six antennas 101A to 101E first communicates with another wireless communication device 301 through two antennas 101E and 101F, and then further another wireless communication device 302. Suppose you want to communicate with.
  • step S135, step S140, and step S150 in the above example, the adjacent antenna 101B in communication with the wireless communication device 302 is used. , 101C, and as a result, communicate with the wireless communication device 303 using at least the antenna 101D (without disturbing other forces) It becomes possible. This is also effective when the communication partner moves.
  • the communication system control unit S100 uses at least a shift between the communication system of a space-time coding system, a space division multiplexing system, and an orthogonal frequency division multiplexing system. It is characterized by controlling to a communication system that combines either of these.
  • STC space-time coding scheme
  • SDM space division multiplexing
  • OFDM orthogonal frequency division multiplexing; with spread of wide frequency band information on multiple subchannels in narrow frequency band; (OFDM) etc.
  • V ⁇ communication can be performed reliably and efficiently with the communication partner.
  • the wireless communication device 1 in the above embodiment is a wireless communication device 1 that can be used for the wireless communication system S of the multiple-input multiple-output system, where m is an integer equal to or larger than 2, and a plurality of antenna elements P0 Step S5 for controlling each antenna so that the m antennas 101 each having ⁇ P6 and the directivity realized by all these m antennas 101 are in a predetermined initial state, and in this step S5 According to the initial communication content with the other wireless communication device 301 in the realized initial state, the procedure of step S100 for setting the communication condition in communication with the other wireless communication device 301 is included.
  • step S5 the directivity of all the six antennas 101A to 101F is set to a predetermined initial state. Then, in accordance with the initial communication content that has been communicated with another wireless communication device 301 in this initial state, the communication conditions with the other wireless communication device 301 thereafter are set in step S100.
  • This realizes a multi-input multi-output system Although it has possible performance, depending on the initial communication contents with other wireless communication device 301, it does not stick to the communication of the multi-input / multi-output method, and wireless communication is performed in a communication mode suitable for the other wireless communication device 301. Communication can be performed. As a result, it is possible to reliably realize efficient communication corresponding to various communication partners.
  • FIG. 1 is a system configuration diagram illustrating an overall outline of a wireless communication system including a wireless communication apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing a detailed structure of the antenna shown in FIG.
  • FIG. 3 is an explanatory diagram for explaining a control system of the antenna shown in FIGS. 1 and 2.
  • FIG. 4 is a functional block diagram showing a detailed configuration of the control device shown in FIG. 1.
  • FIG. 5 is a functional block diagram showing a detailed configuration of functions related to a transmission side in the configuration shown in FIG.
  • FIG. 6 is a functional block diagram showing a detailed configuration of functions related to the receiving side in the configuration shown in FIG.
  • FIG. 7 is a flowchart showing a control procedure executed by the overall control unit of the control device shown in FIG.
  • FIG. 8 is an explanatory view schematically showing a radio wave radiation mode in a standby state after initial setting.
  • FIG. 9 is a flowchart showing a detailed procedure of step S100.
  • FIG. 10 is an explanatory diagram schematically showing a communication mode with another wireless communication device.
  • FIG. 11 is an explanatory view schematically showing a communication mode with another wireless communication device.
  • FIG. 12 is a conceptual explanatory diagram conceptually showing the behavior of MIMO communication.
  • FIG. 13 is an explanatory view schematically showing a communication mode with still another wireless communication device.
  • FIG. 14 is a diagram showing an actual application example of a wireless communication device.
  • FIG. 15 is a diagram showing another application example of the wireless communication device.
  • FIG. 16 is a diagram schematically showing an image of directivity control characteristics by the non-feed side control means and the feed side control means.
  • FIG. 17 is a diagram showing a modification in which a plurality of adjacent antennas are selected. Explanation of symbols
  • Wireless communication device wireless transmitter; wireless receiver

Abstract

[PROBLEMS] Efficient communication is carried out in accordance with various communication partners. [MEANS FOR SOLVING THE PROBLEMS] Prior to starting communication, a total directionality of antennas (101A-F) is set to a prescribed initial state. In this state, in response to initial communication contents in which communication is carried out with other wireless communication device (301), communication conditions of the number of the antennas, a communication system, etc., are set for communication thereafter with the other wireless communication devices. With this setting, a wireless communication device is provided with functions that are achievable for an MIMO communication but the MIMO communication system is not always used for the wireless communication device because it depends on initial communication contents with the other communication devices (301), so that communication can be carried out in a communication mode in compliance with requirements of the other communication devices (301).

Description

明 細 書  Specification
無線通信装置及び無線通信システム  Wireless communication apparatus and wireless communication system
技術分野  Technical field
[0001] 本発明は、多入力多出力(MIMO : Multiple Input Multiple Output)方式の無 線通信システムに使用可能な無線通信装置及びこれを備えた無線通信システムに 関する。  The present invention relates to a wireless communication apparatus that can be used in a multiple input multiple output (MIMO) type wireless communication system and a wireless communication system including the same.
背景技術  Background art
[0002] 近年、無線通信を介した情報伝送方式にお!、て、送信側及び受信側の双方に複 数のアンテナを設け、無線伝送路 (チャネル)を介した多入力多出力系を構成する M IMO方式が注目を集めている。 M個の送信アンテナと N個の受信アンテナとで通信 を行う場合、送受信間のチャネル応答は N X Mの行列 Aで表される。この行列 Aは、 さらに相関行列 AAH及び AHA (上付添字 Hは複素共役転置)の固有値と、それぞれ に対応する固有ベクトルとを用いて分解することができる (特異値分解)。この場合、 マルチパス環境下にある MIMO方式では、 min (M, N)本の独立なチャネルを持つ ことができるので、送信 ·受信アンテナ数を増やすことで空間の利用性を高めることが できる。なお、このときの MIMO方式の伝送性能は、上記相関行列の固有値を用い ることでチャネル特性が求められることにより、把握することができる。 [0002] In recent years, information transmission systems via wireless communication have been configured with multiple antennas on both the transmitting and receiving sides to form a multi-input multi-output system via a wireless transmission path (channel). The M IMO method is attracting attention. When communication is performed with M transmit antennas and N receive antennas, the channel response between transmission and reception is represented by the matrix A of NXM. This matrix A can be further decomposed using eigenvalues of correlation matrices AA H and A H A (subscript H is complex conjugate transpose) and eigenvectors corresponding to each (singular value decomposition). In this case, the MIMO scheme in a multipath environment can have min (M, N) independent channels, so the availability of space can be increased by increasing the number of transmit / receive antennas. The transmission performance of the MIMO scheme at this time can be grasped by obtaining channel characteristics by using the eigenvalues of the correlation matrix.
[0003] このような MIMO方式の無線通信装置として、例えば特許文献 1記載の技術が既 に提唱されている。この従来技術による無線通信装置では、重み付け制御手段が、 固有値のばらつきを小さくするようなチャネル行列を算出し、そのチャネル行列に現 在のチャネル行列が近づくように適応アレーアンテナの指向性を制御することにより 、通信路容量の向上を図っている。  As such a MIMO wireless communication apparatus, for example, a technique described in Patent Document 1 has already been proposed. In this wireless communication apparatus according to the prior art, the weighting control means calculates a channel matrix that reduces eigenvalue variations, and controls the directivity of the adaptive array antenna so that the current channel matrix approaches the channel matrix. In this way, the channel capacity is improved.
[0004] 特許文献 1 :特開 2005— 45351号公報(段落番号 0037〜0055、図 9〜図 11) 発明の開示  Patent Document 1: Japanese Patent Laid-Open No. 2005-45351 (paragraph numbers 0037 to 0055, FIGS. 9 to 11) Disclosure of the Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 上記従来技術による無線通信装置では、周波数当たりの最大信号伝送速度を定 めるシャノンの通信路容量のうち、実際の通信に利用することができる通信路容量を 向上させることに主眼をおくものである。重み付け制御手段によって固有値のばらつ きを小さくすることで、それらの固有値に対応する通信路容量のばらつきも小さくし、 結果として、全ての固有値に対応する通信路容量を実際の通信に有効に利用するこ とがでさる。 [0005] In the wireless communication device according to the above-described conventional technology, among the channel capacity of Shannon that determines the maximum signal transmission rate per frequency, the channel capacity that can be used for actual communication is not used. The focus is on improvement. By reducing the variation in eigenvalues by the weighting control means, the variation in channel capacity corresponding to these eigenvalues is also reduced, and as a result, the channel capacity corresponding to all eigenvalues is effectively used for actual communication. It can be done.
[0006] ところで、近年の携帯電話の急速な普及と通信方式における技術革新、 OA機器- オフィス機器のモノくィルイ匕の一層の進展、無線 LANを活用したパソコン環境のネット ワーク化等の背景の下、上記のような MIMO方式対応の無線通信装置であっても、 どのような通信相手であっても常に MIMO方式の通信を試みるのが最良であるとは 限らない。例えば、ユーザの種々雑多なニーズに対応し、伝送したいデータがテキス トのみのメールであるの力、画像であるの力、楽曲であるの力、あるいは必要とされる 伝送レートがどれだけなのか等によって、当該通信に対し MIMO方式、通常の適応 アレー方式、ダイバーシチ方式等の 、ずれの通信方式とするのが最も効率がよ!、か は異なる。また無線通信装置に備えた複数のアンテナのうちいくつを使用し通信を行 うか等についても同様である。さらに、通信相手のアンテナが 1つの素子のみを備え て!、るの力 MIMO方式の通信が可能な複数の素子を備えて!/、るの力によっても、 それら通信方式やアンテナ個数の選択,制御の最適態様は異なってくる。  [0006] By the way, the background of the rapid spread of mobile phones in recent years and technological innovation in communication systems, further progress in OA equipment-monolithic office equipment, networking of personal computer environments using wireless LAN, etc. Below, it is not always the best to always try MIMO communication, regardless of the communication partner, even with the MIMO communication device described above. For example, to meet the various needs of users, the power of data to be transmitted is text-only mail, the power of images, the power of music, or what is the required transmission rate? For example, it is most efficient to use a shifted communication method such as MIMO, normal adaptive array method, diversity method, etc. The same applies to the number of antennas used in the wireless communication device for communication. In addition, the communication partner's antenna has only one element! It has multiple elements that are capable of MIMO communication! / The optimal mode of selection and control of the communication system, the number of antennas, etc. will vary depending on the power of the system.
[0007] 上記従来技術では、通信相手に関係なく常時 MIMO方式の通信を行うようになつ て 、るため、種々様々の通信相手に対応した効率のょ 、通信を確実に実現するのは 困難であった。  [0007] In the above prior art, since the MIMO system communication is always performed regardless of the communication partner, it is difficult to reliably realize communication because of the efficiency corresponding to various communication partners. there were.
[0008] 本発明が解決しょうとする課題には、上記した問題が一例として挙げられる。  [0008] The problems to be solved by the present invention include the above-described problems as an example.
課題を解決するための手段  Means for solving the problem
[0009] 上記課題を解決するために、請求項 1記載の発明は、多入力多出力方式の無線通 信システムに使用可能な無線通信装置であって、 mを 2以上の整数として、複数のァ ンテナ素子をそれぞれ有する m個のアンテナと、これら m個のアンテナ全体で実現す る指向性を、所定の初期状態となるように各アンテナを制御する初期制御手段と、こ の初期制御手段で実現した前記初期状態における他の無線通信装置との初期通信 内容に応じて、当該他の無線通信装置との通信における通信条件を設定する通信 条件制御手段とを有する。 [0010] 上記課題を解決するために、請求項 11記載の発明は、無線送信装置及び無線受 信装置を備え、多入力多出力方式の通信が可能な無線通信システムであって、前記 無線送信装置及び前記無線受信装置の少なくとも一方が、 mを 2以上の整数としたと き、誘電体に封入又は装荷され互いに所定の間隔に配置された複数のアンテナ素 子をそれぞれ有する m個のアンテナと、これら m個のアンテナ全体で実現する指向 性を、所定の初期状態となるように各アンテナを制御する初期制御手段と、この初期 制御手段で実現した前記初期状態における他の無線通信装置との初期通信内容に 応じて、当該他の無線通信装置との通信における通信条件を設定する通信条件制 御手段とを有する。 [0009] In order to solve the above-described problem, the invention according to claim 1 is a wireless communication apparatus that can be used in a multiple-input multiple-output wireless communication system, wherein m is an integer of 2 or more, and a plurality of The initial control means for controlling each antenna so that the m antennas each having an antenna element and the directivity realized by all these m antennas are in a predetermined initial state, and the initial control means. Communication condition control means for setting a communication condition in communication with the other wireless communication device according to the content of initial communication with the other wireless communication device in the realized initial state. [0010] In order to solve the above problem, the invention according to claim 11 is a wireless communication system including a wireless transmission device and a wireless reception device, and capable of multi-input multiple-output communication, wherein the wireless transmission And at least one of the apparatus and the wireless receiving apparatus, when m is an integer greater than or equal to 2, m antennas each having a plurality of antenna elements enclosed or loaded in a dielectric and arranged at predetermined intervals from each other; The directivity realized by all these m antennas is an initial control means for controlling each antenna so as to be in a predetermined initial state, and the other wireless communication apparatus in the initial state realized by the initial control means. Communication condition control means for setting communication conditions in communication with the other wireless communication device according to the initial communication content.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本発明の一実施の形態を図面を参照しつつ説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0012] 図 1は、本実施形態の無線通信装置を備えた無線通信システムの全体概略を表す システム構成図である。 FIG. 1 is a system configuration diagram illustrating an overall outline of a wireless communication system including the wireless communication device of the present embodiment.
[0013] 図 1に示す無線通信システム Sにおいて、本実施形態の無線通信装置 1は、複数 の(この例では 6つの)アンテナ 101A, 101B, 101C, 101D, 101E, 101Fと、これ らアンテナ 101A〜Fの動作を制御する制御装置 200とを有して 、る。無線通信装置 1は、詳細を後述するように多入力多出力方式(MIMO : Multiple Input Multipl e Output)によりアンテナ 101A〜Fを介し通信可能に構成されており、制御装置 2 00 (詳細には後述の全体制御部 201)の制御に基づき、アンテナ 101A〜Fのうち少 なくとも 1つを用いて他の無線通信装置 301と通信を行う。 In the wireless communication system S shown in FIG. 1, the wireless communication device 1 of the present embodiment includes a plurality of (six in this example) antennas 101A, 101B, 101C, 101D, 101E, 101F, and these antennas 101A. And a control device 200 for controlling the operation of F. The wireless communication device 1 is configured to be able to communicate via the antennas 101A to 101F by a multiple input multiple output (MIMO) method, as will be described in detail later. Communication with another wireless communication apparatus 301 using at least one of the antennas 101A to 101F based on the control of the overall control unit 201).
[0014] 図 2は、図 1に示したアンテナ 101Aの詳細構造を表す斜視図であり、図 3は、これ らアンテナ 101Aの制御系を説明するための説明図である。これら図 2及び図 3にお いて、アンテナ 101Aは、例えばポリカーボネートからなる誘電体基板 110と、この誘 電体基板 110の上面の略全面上に形成された接地導体 111と、この接地導体 111 上に略円柱形状に形成された誘電体 120と、接地導体 111とは電気的に絶縁された 状態で誘電体 120中に埋設するように形成された複数の(この例では 7本の)アンテ ナ素子 Pとを備えている。 FIG. 2 is a perspective view showing a detailed structure of antenna 101A shown in FIG. 1, and FIG. 3 is an explanatory diagram for explaining a control system of antenna 101A. 2 and 3, the antenna 101A includes a dielectric substrate 110 made of, for example, polycarbonate, a ground conductor 111 formed on substantially the entire upper surface of the dielectric substrate 110, and the ground conductor 111. A plurality of antennas (seven in this example) formed so as to be embedded in the dielectric 120 in a state where the dielectric 120 formed in a substantially cylindrical shape and the ground conductor 111 are electrically insulated from each other. With element P.
[0015] アンテナ素子 Pは、長手方向が接地導体 111の平面に対して垂直となるモノポール 素子を構成しており、 1本の給電アンテナ素子 PO (給電素子)と、少なくとも 1本 (この 例では 6本)の無給電アンテナ素子 P1〜P6 (無給電素子)とから構成される。 [0015] The antenna element P is a monopole whose longitudinal direction is perpendicular to the plane of the ground conductor 111. It consists of one feeding antenna element PO (feeding element) and at least one (six in this example) parasitic antenna elements P1 to P6 (parasitic elements).
[0016] 給電アンテナ素子 POは、接地導体 111とは電気的に絶縁され、かつ誘電体 120に 埋設された円柱形状の放射素子 106を備えている。この放射素子 106の一端には信 号線が接続されており、これによつて制御装置 200から給電される無線信号が RF回 路 290 (後述)を介し給電アンテナ素子 P0に給電され放射されるようになって 、る。  The feed antenna element PO includes a cylindrical radiating element 106 that is electrically insulated from the ground conductor 111 and embedded in a dielectric 120. A signal line is connected to one end of the radiating element 106 so that a radio signal fed from the control device 200 is fed and radiated to the feeding antenna element P0 via an RF circuit 290 (described later). It becomes.
[0017] 無給電アンテナ素子 P1〜P6は、給電アンテナ素子 P0を中心として互いに所定間 隔でこの例では略円形形状となるように配置されて 、る。各無給電アンテナ素子 P1 〜P6は、接地導体 111と電気的に絶縁され誘電体基板 110及び誘電体 120を鉛直 方向に貫通するように配設された略円柱形状の非励振素子 107を備えている。各非 励磁素子 107の一端は、所定のリアクタンス値を有する(例えば可変容量ダイオード 力もなる)可変リアクタンス素子 130と、誘電体基板 110を鉛直方向に貫通して充填 形成されてなるスルーホール導体 114とを介し、接地導体 111に対して高周波的に 接地されている。  [0017] The parasitic antenna elements P1 to P6 are arranged so as to have a substantially circular shape in this example at a predetermined interval with respect to the feeding antenna element P0. Each parasitic antenna element P1 to P6 includes a substantially cylindrical non-excitation element 107 that is electrically insulated from the ground conductor 111 and disposed so as to penetrate the dielectric substrate 110 and the dielectric 120 in the vertical direction. Yes. One end of each non-excitation element 107 has a variable reactance element 130 having a predetermined reactance value (for example, also having a variable capacitance diode force), and a through-hole conductor 114 formed by filling the dielectric substrate 110 in the vertical direction. The ground conductor 111 is grounded at a high frequency via
[0018] このとき、上記放射素子 106と上記非励振素子 107の長手方向の長さは実質的に 同一であるが、例えば、可変リアクタンス素子 130がインダクタンス性 (L性)を有する ときは、可変リアクタンス素子 130は延長コイルとなり、無給電アンテナ素子 P1〜P6 の電気長が給電アンテナ素子 POに比較して長くなり、反射器として働く。一方、例え ば、可変リアクタンス素子 130がキャパシタンス性 (C性)を有するときは、可変リアクタ ンス素子 130は短縮コンデンサとなり、無給電アンテナ素子 P1〜P6の電気長が給 電アンテナ素子 P0に比較して短くなり、導波器として働く。すなわち、可変リアクタン ス素子 130に印加する制御電圧を変化させる可変リアクタンス素子 130におけるリア クタンス値を変化させることにより、非励振素子 107を備えた無給電アンテナ素子 P1 の電気長を給電アンテナ素子 P0に比較して変化させ、当該アンテナ 101Aの水平 面指向特性を変化させることができる。  [0018] At this time, the lengths of the radiating element 106 and the non-exciting element 107 in the longitudinal direction are substantially the same. For example, when the variable reactance element 130 has inductance (L property), it is variable. The reactance element 130 becomes an extension coil, and the electric lengths of the parasitic antenna elements P1 to P6 are longer than those of the feeding antenna element PO, and function as a reflector. On the other hand, for example, when the variable reactance element 130 has capacitance (C-type), the variable reactance element 130 becomes a shortening capacitor, and the electric lengths of the parasitic antenna elements P1 to P6 are compared with the power supply antenna element P0. It becomes shorter and works as a director. That is, by changing the reactance value in the variable reactance element 130 that changes the control voltage applied to the variable reactance element 130, the electric length of the parasitic antenna element P1 including the non-excitation element 107 is changed to the feed antenna element P0. By changing the comparison, the horizontal plane directivity of the antenna 101A can be changed.
[0019] なお、以上はアンテナ 101Aを例にとって説明を行った力 その他のアンテナ 101 B〜101Fについても同等の構成となっており、同様の制御が行われる。  [0019] It should be noted that the above-described force is described taking antenna 101A as an example, and the other antennas 101B to 101F have the same configuration, and similar control is performed.
[0020] 図 4は、図 1に示した制御装置 200の詳細構成を表す機能ブロック図であり、図 5は 、そのうち送信側に係る機能の詳細構成を表す機能ブロック図であり、図 6は、図 4の うち受信側に係る機能の詳細構成を表す機能ブロック図である。 FIG. 4 is a functional block diagram showing a detailed configuration of the control device 200 shown in FIG. 1, and FIG. FIG. 6 is a functional block diagram showing a detailed configuration of functions related to the transmitting side, and FIG. 6 is a functional block diagram showing a detailed configuration of functions related to the receiving side in FIG.
[0021] これら図 4、図 5、及び図 6において、制御装置 200は、 m個(この例では m=6)の アンテナ 101の給電アンテナ素子 POそれぞれに 1つずつ接続され送受信共通に設 けられる RF回路(更に IF回路を介してもよい) 290と、 m個のアンテナ 101からの受 信信号それぞれに対応して m個設けられ各受信信号の帯域制限を行う LPF242及 びアナログ デジタル変換する AZD変^ ^241と、これら m個の AZD変^ ^241 力 の受信信号を入力して復調等の処理を行う周波数変換部 300と、この周波数変 換部 300で復調された受信信号に対し所定の受信指向性制御処理を行う(例えば I 成分及び Q成分の複素数に対応したデジタルフィルタからなる)受信側デジタル指向 性制御部 250 (給電側制御手段)と、この受信側デジタル指向性制御部 250からの 信号に対し、例えば OFDM方式や FM方式等に基づく公知の復調処理を行う受信 側信号処理部 260と、この受信側信号処理部 260における処理エラーの発生を監視 するエラー状態監視回路 204と、このエラー状態監視回路 204の監視結果に応じて 受信側信号処理部 260で復調された信号の選択を行う選択回路 270と、その選択 回路 270で選択された信号 (復調波)を所定の公知の手法により復号する復号部 27 1と、その復号部 271により復号された復号信号を解釈して通信相手よりアンテナ 10 1で受信した受信データ (情報信号)を読み出す返答ビット列解釈部 272とを有する。  In FIG. 4, FIG. 5, and FIG. 6, the control device 200 is connected to each of the feeding antenna elements PO of the m antennas 101 (m = 6 in this example), and is provided in common for transmission and reception. RF circuit (may be further via an IF circuit) 290, m corresponding to each of the received signals from the m antennas 101, LPF242 that limits the band of each received signal, and analog-digital conversion The AZD converter ^^ 241, the frequency converter 300 that receives these m AZD converters ^ 241 power, and performs processing such as demodulation, and the received signal demodulated by the frequency converter 300 A receiving-side digital directivity control unit 250 (feeding-side control means) that performs predetermined reception directivity control processing (for example, composed of digital filters corresponding to complex numbers of I and Q components), and this receiving-side digital directivity control unit For example, the OFDM method A reception-side signal processing unit 260 that performs a known demodulation process based on the FM method, an error state monitoring circuit 204 that monitors occurrence of processing errors in the reception-side signal processing unit 260, and a monitoring result of the error state monitoring circuit 204 And a selection circuit 270 that selects a signal demodulated by the reception-side signal processing unit 260, and a decoding unit 271 that decodes the signal (demodulated wave) selected by the selection circuit 270 by a predetermined known method, And a response bit string interpretation unit 272 that interprets the decoded signal decoded by the decoding unit 271 and reads out received data (information signal) received by the antenna 101 from the communication partner.
[0022] また、制御装置 200はさらに、アンテナ 101から送信するための送信データに対応 するコマンドビット列を生成するコマンドビット列生成部 274と、そのコマンドビット列生 成部 274から出力されたデジタル信号を所定の手法により符号化する符号化部 273 と、この符号ィ匕部 273により符号ィ匕された信号が入力され例えば OFDM方式や FM 方式等に基づく公知の変調処理を行う送信側信号処理部 210と、この送信側信号処 理部 210からの信号に対し変調等の所定の処理がなされる周波数変換部 310と、こ の周波数変換部 310からの信号に対し送信指向性制御処理を行う(例えば I成分及 び Q成分の複素数に対応したデジタルフィルタ力 なる)送信側デジタル指向性制御 部 220 (給電側制御手段)と、 m個のアンテナ 101への送信信号それぞれに対応し て m個設けられデジタル アナログ変換後上記 RF回路 290へ出力する DZA変換 器 232と、 m個(この例では m=6)のアンテナ 101それぞれの複数個(この例では 6 個)の無給電アンテナ素子 P1〜P6を用いた所定の指向性制御処理を行うためのァ ナログ指向性制御部 280 (無給電側制御手段)と、 m個のアンテナ 101への送信信 号それぞれに対応して m個設けられアナログ指向性制御部 280からの信号をデジタ ル—アナログ変換後各アンテナ 101の無給電アンテナ素子 P1〜P6へ制御電圧を 出力する DZA変換器 292と、上記受信側デジタル指向性制御部 250、送信側デジ タル指向性制御部 220、アナログ指向性制御部 280等の全体各部を制御する全体 制御部 201とを有する。 [0022] Further, the control device 200 further generates a command bit string generating unit 274 that generates a command bit string corresponding to transmission data to be transmitted from the antenna 101, and a digital signal output from the command bit string generating unit 274 is predetermined. An encoding unit 273 that encodes by the above method, and a transmission-side signal processing unit 210 that receives a signal encoded by the encoding unit 273 and performs a known modulation process based on, for example, the OFDM scheme or the FM scheme, The frequency conversion unit 310 that performs predetermined processing such as modulation on the signal from the transmission side signal processing unit 210, and the transmission directivity control processing are performed on the signal from the frequency conversion unit 310 (for example, I Digital filter power corresponding to the complex number of the component and Q component) (transmission side digital directivity control unit 220 (power supply side control means)) and the transmission signals to m antennas 101 respectively. DZA converter output to the m digital-to-analog converter after the RF circuit 290 is provided A key for performing a predetermined directivity control process using the device 232 and a plurality (6 in this example) of parasitic antenna elements P1 to P6 of m antennas (m = 6 in this example) 101. Analog directivity control unit 280 (parasitic side control means) and m signals corresponding to each of m antennas 101 are provided, and the signals from analog directivity control unit 280 are converted into digital signals after analog conversion. DZA converter 292 that outputs control voltage to parasitic antenna elements P1 to P6 of each antenna 101, receiver digital directivity control unit 250, transmission digital directivity control unit 220, analog directivity control unit 280, etc. And an overall control unit 201 for controlling the overall components.
[0023] 周波数変換部 310には、アンテナ 101の個数 m (上記の例では m=6)に対応して m系統が設けられており、この m系統に共通のものとして、例えば関数テーブルに所 定サンプリング点において各位相に対応するように記憶されたサンプリング値をもと に通信相手への送信信号 (搬送波) Fcを形成するデジタル信号 (例えば正弦波をサ ンプリングした信号)を出力する送信デジタル信号出力部 213が 1つ備えられている [0023] The frequency converter 310 is provided with m systems corresponding to the number m of antennas 101 (m = 6 in the above example). Transmission digital that outputs a digital signal (for example, a sine wave sampled signal) that forms a transmission signal (carrier wave) Fc to the communication partner based on the sampling value stored so as to correspond to each phase at a fixed sampling point One signal output unit 213 is provided
[0024] また、 m系統のそれぞれには、符号ィ匕部 203により符号化された情報信号 (データ )に基づき、上記送信デジタル信号出力部 213からの搬送波 Fcを変調し送信情報と するための変調信号を出力する(たとえば GFSK変調して I成分及び Q成分を生成す る)変調部(乗算器) 212— 0, 212- 1, · · , 212— nと、これら乗算器 212— 0, 212 - 1, · · , 212— nそれぞれからの信号のうち I成分及び Q成分のうち所定の周波数の 信号をそれぞれ通過させる BPF211aO, 211b0, 211al, 211bl, · · , 21 lan, 21 lbnとを備えている。 [0024] Further, each of the m systems is used for modulating the carrier wave Fc from the transmission digital signal output unit 213 to be transmission information based on the information signal (data) encoded by the encoding unit 203. Modulators (multipliers) that output modulated signals (for example, generate I and Q components by GFSK modulation) 212-0, 212-1, 2, 212-n, and these multipliers 212-0, 212-1,..., 212—n Let each of the I component and Q component signals of the specified frequency pass through BPF211aO, 211b0, 211al, 211bl, ···, 21 lan, 21 lbn I have.
[0025] また送信側デジタル指向性制御部 220も上記に対応して m系統設けられており、 各系統は、上記 BPF211aO, 211b0, 211al, 211bl, · · , 21 lan, 211bnを経て それぞれ合成された合成信号に関し、全体制御部 201からの対応する係数 (位相制 御信号) CIO, C11, · · , Cln等に基づき所定の送信指向性を得るための重み付けを 行う合計 n+ 1個(この例では n=6)の係数乗算器 221a0, 221al, · · , 221anと、こ れら n+ 1個の係数乗算器 221a0〜anからの出力を合成する加算器 222とをそれぞ れ備えている。各系統の加算部 222からの出力は前述の DZA変換器 232、 RF回 路 290をそれぞれ介して対応するアンテナ 101の給電アンテナ素子 POに供給される [0025] The transmission-side digital directivity control unit 220 is also provided with m systems corresponding to the above, and each system is synthesized through the BPF211aO, 211b0, 211al, 211bl, ..., 21lan, 211bn, respectively. For the combined signal, a total of n + 1 weights for obtaining a predetermined transmission directivity based on the corresponding coefficients (phase control signals) from the overall control unit 201 such as CIO, C11,. , 221an, n = 6) coefficient multipliers 221a0, 221al,..., 221an and adders 222 for synthesizing outputs from these n + 1 coefficient multipliers 221a0 to an. The output from the adder 222 of each system is the above-mentioned DZA converter 232, RF circuit Supplied to the feeding antenna element PO of the corresponding antenna 101 via the path 290, respectively.
[0026] 周波数変換部 300には、上記同様に m系統が設けられており、各系統は、上記 A ZD変 241より出力された重み付け後の受信信号に含まれる複素数の I成分と Q成分に対し、互いに直交するデジタル信号 bit列をそれぞれ乗算して I Q直交復 調(直交検波)を行う合計 n+ 1対 (この例では n=6)の係数乗算器 261a, 261bと、 これら n+ 1対の係数乗算器 261a, 261bからの出力を合成し所定のフィルタリングを 行う FIRフィルタ部 262とをそれぞれ備えて!/、る。 [0026] The frequency converter 300 is provided with m systems in the same manner as described above, and each system converts the complex I component and Q component included in the weighted received signal output from the A ZD converter 241. On the other hand, a total of n + 1 pairs (in this example, n = 6) of coefficient multipliers 261a and 261b for multiplying digital signal bit sequences orthogonal to each other and performing IQ quadrature demodulation (orthogonal detection), and these n + 1 pairs And an FIR filter unit 262 that combines the outputs from the coefficient multipliers 261a and 261b and performs predetermined filtering.
[0027] 受信側デジタル指向性制御部 250には、上記同様、アンテナ 101の個数 m (上記 の例では m=6)に対応して m系統が設けられており、各系統は、 FIR262より出力さ れた受信信号に関し、全体制御部 201からの対応する係数 (位相制御信号) D10, D 11, · · , Din等に基づき所定の送信指向性を得るための重み付けを行う合計 n+ 1個 (この例では n=6)の係数乗算器 251— 0, 251 - 1, · · , 251—nと、これら n+ 1個 の係数乗算器 251— 0〜251—nからの出力を合成する加算器 252とをそれぞれ備 えている。  [0027] Similarly to the above, the receiving-side digital directivity control unit 250 is provided with m systems corresponding to the number m of antennas 101 (m = 6 in the above example), and each system outputs from the FIR262. With respect to the received signal, a total of n + 1 weights for obtaining a predetermined transmission directivity based on the corresponding coefficients (phase control signals) D10, D11,. In this example, n = 6) coefficient multipliers 251— 0, 251-1,..., 251—n, and an adder that combines the outputs from these n + 1 coefficient multipliers 251—0 to 251—n 252 and each.
[0028] 受信側信号処理部 260には(たとえば加算器 252に接続して)図示しない誤り検出 器 (CRC検出器等)が接続されており、エラー状態監視回路 204は受信側信号処理 部 260の各誤り検出器力も供給される誤り検出信号に応じて、選択回路 270に選択 指令信号を出力する (なお、エラー状態監視回路 204は上記検出信号に応じた監視 結果をエラーフラグ等の情報として全体制御部 201にも出力する)。この選択指令信 号は、誤り検出器において正常な検出結果を出力した系統の出力を選択するように 指示するものであり、選択回路 270は、各系統の信号のうち、上記選択指令信号に 対応した信号を選択して復号部 271へ出力する。  [0028] An error detector (such as a CRC detector) (not shown) is connected to the reception side signal processing unit 260 (for example, connected to the adder 252), and the error state monitoring circuit 204 is connected to the reception side signal processing unit 260. The error detection signal is also supplied to the selection circuit 270 according to the error detection signal supplied (the error state monitoring circuit 204 uses the monitoring result corresponding to the detection signal as information such as an error flag). Also output to the overall control unit 201). This selection command signal instructs the error detector to select the output of the system that has output a normal detection result, and the selection circuit 270 corresponds to the selection command signal among the signals of each system. The selected signal is selected and output to the decoding unit 271.
[0029] このようにして各系統の加算器 252からの出力は受信側信号処理部 260を介して 選択回路 270で選択された後、復号部 271で復号化され、さらに返答 Bit列解釈部 2 72で解釈されて受信情報として取り出される。これにより、他の無線通信装置 301等 、通信相手との通信後、当該通信相手が本実施形態の無線通信装置 1に対しどのよ うな通信を要求している力 すなわち、当該他の無線通信装置 301のアンテナ(素子 )数や、相手方ユーザのアプリケーション (通信内容が画像である力、音声であるか、 テキストのみのファイルである力、メールであるか等)や、どの程度のデータ転送時間 •リアルタイム性 ·電力 ·ユーザ希望優先順位等を要求して ヽるか、等を情報として全 体制御部 201で取得することができる。 [0029] In this way, the output from the adder 252 of each system is selected by the selection circuit 270 via the reception side signal processing unit 260, then decoded by the decoding unit 271, and further the response Bit string interpretation unit 2 Interpreted at 72 and taken out as received information. Thereby, after the communication with the communication partner such as the other wireless communication device 301, the power with which the communication partner requests the wireless communication device 1 of the present embodiment, that is, the other wireless communication device 301 antenna (element ) Number, application of the other party (power of communication content is image, voice, power of text-only file, email, etc.), and how much data transfer time • Real time · Power · Whether the user's desired priority order is requested can be acquired by the overall control unit 201 as information.
[0030] なお、受信側信号処理部 260の各系統にはまた、図示しない RSSI (Received Si gnal Strength Indicator)回路が設けられており、この RSSI回路の検出信号「R SSIjが受信信号強度 (受信電界強度)情報として全体制御部 201に入力されるよう になっている。 [0030] It should be noted that each system of the reception-side signal processing unit 260 is also provided with an RSSI (Received Signal Strength Indicator) circuit (not shown). The RSSI detection signal “R SSIj is received signal strength (reception Electric field intensity) information is input to the overall control unit 201.
[0031] 図 7は、本実施形態の無線通信装置 1の制御装置 200に備えられた全体制御部 2 01が実行する制御手順を表すフローチャートである。図 7において、まずステップ S5 で、全 (この例では 6個の)アンテナ 101よる総指向性が略無指向性となるように初期 設定処理を行う。具体的には、例えばアナログ指向性制御部 280に制御信号を出力 し全 (この例では 6個の)アンテナ 101それぞれにおける無給電アンテナ素子 P1〜P 6による指向性をある所定値 (所定方向)に設定する (後述の図 8参照)とともに、受信 側デジタル指向性制御部 250への前述の制御係数 D10〜Dmn及び送信側デジタル 指向性制御部 220への前述の制御係数 C10〜Dmnを所定の値に設定し、これによ つて、すべてのアンテナ 101による総指向性が略全方向に対して略無指向性となる ように初期設定制御を行う。このとき、隣り合う各アンテナ 101の指向性 (領域)が互い に重なり合うように制御する(後述の図 8参照)。なお、これら初期設定値は、操作者 が(又は工場出荷時に)適宜に設定できるようにしても良 、。  FIG. 7 is a flowchart showing a control procedure executed by the overall control unit 201 provided in the control device 200 of the wireless communication device 1 of the present embodiment. In FIG. 7, first, in step S5, initial setting processing is performed so that the total directivity by all (six in this example) antennas 101 becomes substantially omnidirectional. Specifically, for example, a control signal is output to the analog directivity control unit 280, and directivity by the parasitic antenna elements P1 to P6 in each of all (six in this example) antennas 101 is a predetermined value (predetermined direction). (See FIG. 8 to be described later), and the control coefficients D10 to Dmn to the reception-side digital directivity control unit 250 and the control coefficients C10 to Dmn to the transmission-side digital directivity control unit 220 are set to predetermined values. Thus, the initial setting control is performed so that the total directivity by all the antennas 101 becomes substantially omnidirectional in almost all directions. At this time, the directivity (region) of each adjacent antenna 101 is controlled so as to overlap each other (see FIG. 8 described later). These initial setting values may be set appropriately by the operator (or at the time of factory shipment).
[0032] その後、ステップ S10に移り、ステップ S5で設定した初期設定の下、コマンドビット 列生成部 274、符号化部 273、送信側信号処理部 210、周波数変換部 310、送信 側デジタル指向性制御部 220をそれぞれ制御してアンテナ 101よりビーコン信号を 送信し、待ち受け状態で待機する。図 8は、この初期設定後の待受け待機状態にお ける電波放射態様を模式的に表す説明図である。前述のように、隣り合う各アンテナ 101の指向性 (領域)が互いに重なり合うようになって!/、る。  Thereafter, the process proceeds to step S10, and under the initial settings set in step S5, the command bit string generation unit 274, the encoding unit 273, the transmission side signal processing unit 210, the frequency conversion unit 310, and the transmission side digital directivity control Each unit 220 is controlled to transmit a beacon signal from the antenna 101 and wait in a standby state. FIG. 8 is an explanatory view schematically showing a radio wave radiation mode in the standby state after the initial setting. As described above, the directivities (regions) of the adjacent antennas 101 overlap each other! /.
[0033] そして、ステップ S20において、上記ビーコン信号に対応して他の無線通信装置 3 01等の通信相手力もの応答信号が周波数変換部 300、受信側デジタル指向性制 御部 250、受信側信号処理部 260で受信され、選択回路 270、復号部 271を介して 返答 Bit列解釈部 272にてエラーなく受信された力どうかを判定する。応答信号の受 信が全くな力 たか、受信されてもエラーが生じて 、た場合 (エラー状態監視回路 20 4からのエラーフラグ等により検知)にはこの判定が満たされず、ステップ S 10に戻つ て弓 Iき続き待ち受け状態を継続する。 [0033] Then, in step S20, in response to the beacon signal, a response signal having a communication partner such as another wireless communication device 301 is transmitted to the frequency converter 300, the receiving-side digital directivity control. The control unit 250 and the receiving side signal processing unit 260 determine whether the response is received without error by the response bit string interpretation unit 272 via the selection circuit 270 and the decoding unit 271. If the response signal is not received at all or an error occurs even if it is received (detected by an error flag from the error state monitoring circuit 204, etc.), this determination is not satisfied and the process returns to step S10. Continuing, I will continue waiting.
[0034] 他の無線通信装置 301等からの応答信号がエラーなく受信された場合、ステップ S 20の判定が満たされ、ステップ S100に移る。ステップ S100では、上記受信された 応答信号の解釈結果 (受信結果)より、当該他の無線通信装置 301との通信内容の 確認 (他の無線通信装置 301等のアンテナ素子の個数、要求される伝送レート、受 信強度等の各種情報の確認)及びこれに対応して本無線通信装置 1側での通信条 件設定処理が行われる。  If a response signal from another wireless communication device 301 or the like is received without error, the determination at step S 20 is satisfied, and the routine goes to step S 100. In step S100, based on the interpretation result (reception result) of the received response signal, the content of communication with the other wireless communication device 301 is confirmed (the number of antenna elements such as the other wireless communication device 301 and the required transmission). Confirmation of various information such as rate and received strength) and corresponding communication condition setting processing on the wireless communication device 1 side is performed.
[0035] 図 9は、このステップ S100の詳細手順を表すフローチャートである。まずステップ S 105で、上記応答信号の受信結果に基づき、通信相手である他の無線通信装置 30 1等のアンテナ素子数が 1個かどうかが判定される。他の無線通信装置 301が 2個以 上でなく 1個のアンテナ素子のみを備えていた場合には判定が満たされ、ステップ S 110に移る。  FIG. 9 is a flowchart showing the detailed procedure of step S100. First, in step S105, based on the reception result of the response signal, it is determined whether the number of antenna elements of the other wireless communication device 301 or the like as the communication partner is one. If the other wireless communication apparatus 301 has only one antenna element instead of two or more, the determination is satisfied, and the routine goes to Step S110.
[0036] ステップ S110では、上記受信結果に基づき、他の無線通信装置 301から要求され ている伝送レート (伝送速度)が比較的高いかどうかを判定する(例えば所定のしきい 値との大小を比較すればよい)。要求伝送レートが比較的低い場合には、判定が満 たされずステップ S 115に移る。  In step S110, based on the reception result, it is determined whether or not the transmission rate (transmission speed) requested from the other wireless communication apparatus 301 is relatively high (for example, whether it is larger or smaller than a predetermined threshold value). Compare). If the required transmission rate is relatively low, the determination is not satisfied and the routine goes to Step S115.
[0037] ステップ S115では、上記受信結果に基づき、他の無線通信装置 301からの応答 信号受信時の受信信号強度 (上記 RSSI回路により検出)が比較的大きいかどうかを 判定する(例えば所定のしきい値との大小を比較すればよい)。受信信号強度が比 較的大きい場合は判定が満たされてステップ S 120に移り、 m個(この例では m= 6) のアンテナ 101のうち例えば当該受信信号強度が最大である(あるいはエラー率が 最も低いものでもよい) 1つのアンテナ 101を用い、当該アンテナ 101が備えている指 向性 (ステップ S5で所定方向に設定)はそのままで引き続き他の無線通信装置 301 との通信を行うように各部へ制御信号を出力する。一方、受信信号強度が比較的小 さい場合はステップ SI 15の判定が満たされずステップ SI 25に移り、 m個(この例で は m=6)のアンテナ 101のうち例えば当該受信信号強度が最大である(あるいはェ ラー率が最も低いものでもよい) 1つのアンテナ 101を用い、当該アンテナ 101が備え て 、る指向性 (ステップ S5で所定方向に設定)を略全方向に略無指向性として他の 無線通信装置 301との通信を行うように送信側デジタル指向性制御部 220、受信側 デジタル指向性制御部 250やアナログ指向性制御部 280等に制御信号を出力する [0037] In step S115, based on the reception result, it is determined whether or not the received signal strength (detected by the RSSI circuit) at the time of receiving a response signal from another wireless communication apparatus 301 is relatively large (for example, a predetermined value). Compare the magnitude with the threshold). If the received signal strength is relatively large, the determination is satisfied, and the routine goes to Step S120, where, for example, the received signal strength of the m antennas 101 (m = 6 in this example) is the highest (or the error rate is low). Each unit can be used to continue communication with the other wireless communication device 301 without changing the directivity (set in a predetermined direction in step S5) of the antenna 101. A control signal is output to On the other hand, the received signal strength is relatively low In this case, the determination of step SI 15 is not satisfied, and the process proceeds to step SI 25. For example, the received signal strength is maximum (or the error rate is the lowest) among m antennas 101 (m = 6 in this example). The antenna 101 may have a directivity (set in a predetermined direction in step S5) to be substantially omnidirectional in almost all directions to communicate with another wireless communication apparatus 301. Control signals are output to the transmission-side digital directivity control unit 220, the reception-side digital directivity control unit 250, the analog directivity control unit 280, etc.
[0038] 一方、ステップ S110で、他の無線通信装置 301から要求されている伝送レート (伝 送速度)が比較的高力つた場合には、判定が満たされステップ S130に移る。ステツ プ S130では、前述のステップ S115と同様、他の無線通信装置 301からの応答信号 受信時の受信信号強度が比較的大き 、かどうかを判定する。受信信号強度が比較 的大きい場合は判定が満たされてステップ S 135に移り、 m個(この例では m=6)の アンテナ 101のうち例えば所定の(例えば受信信号強度が大きい又はエラー率が低 V、) N本(但し N≤ m)のアンテナ 101を用いて公知のダイバーシチ制御を行うように 各部へ制御信号を出力する。一方、受信信号強度が比較的小さい場合はステップ S 130の判定が満たされずステップ S140に移り、 m個(この例では m=6)のアンテナ 1 01のうち例えば所定の(例えば受信信号強度が大き 、又はエラー率が低 、) N本 (N ≤m)のアンテナ 101を用い、公知の適応アレー制御を行うように送信側デジタル指 向性制御部 220、受信側デジタル指向性制御部 250やアナログ指向性制御部 280 等に制御信号を出力する。 On the other hand, if the transmission rate (transmission speed) requested from the other wireless communication device 301 is relatively high in step S110, the determination is satisfied and the routine goes to step S130. In step S130, as in step S115 described above, it is determined whether or not the received signal strength at the time of receiving a response signal from another wireless communication apparatus 301 is relatively high. If the received signal strength is relatively high, the determination is satisfied, and the process proceeds to step S135. Among m antennas 101 (m = 6 in this example), for example, predetermined (eg, the received signal strength is high or the error rate is low). V,) A control signal is output to each part so as to perform known diversity control using N antennas 101 (where N≤m). On the other hand, if the received signal strength is relatively small, the determination in step S130 is not satisfied, and the procedure moves to step S140. For example, among m antennas 101 (m = 6 in this example) (Or low error rate) N digital (N ≤ m) antennas 101 are used to perform known adaptive array control 220 digital directional control unit 220, digital directional control unit 250, analog 250 A control signal is output to the directivity control unit 280 or the like.
[0039] また、ステップ S105において、通信相手である他の無線通信装置 301等のアンテ ナ素子数が 2個以上であった場合には判定が満たされず、ステップ S145に移る。ス テツプ S 145では、上記ステップ S 110と同様、上記受信結果に基づき、他の無線通 信装置 301から要求されて 、る伝送レート (伝送速度)が比較的高 、かどうかを判定 する。要求伝送レートが比較的低い場合には、判定が満たされず前述のステップ S1 30に移り、以降前述と同様の手順を行う。要求伝送レートが比較的高い場合には、 ステップ S150に移り、 m個(この例では m=6)のアンテナ 101のうち例えば所定の( 例えば受信信号強度が大きい又はエラー率が低い) N本 (N≤m)のアンテナ 101を 用い、公知の多入力多出力(MIMO : Multiple Input Multiple Output)方式 の通信を行うように送信側デジタル指向性制御部 220、受信側デジタル指向性制御 部 250やアナログ指向性制御部 280等に制御信号を出力する。 In step S105, if the number of antenna elements of the other wireless communication device 301 or the like as the communication partner is two or more, the determination is not satisfied, and the routine goes to step S145. In step S 145, as in step S 110, based on the reception result, it is determined whether or not the transmission rate (transmission speed) requested by the other wireless communication device 301 is relatively high. If the required transmission rate is relatively low, the determination is not satisfied and the routine goes to Step S130 described above, and thereafter the same procedure as described above is performed. If the required transmission rate is relatively high, the process moves to step S150, and N (for example, the received signal strength is high or the error rate is low) out of m (m = 6 in this example) antennas 101 (for example, N≤m) antenna 101 Used to control the transmission-side digital directivity control unit 220, the reception-side digital directivity control unit 250, the analog directivity control unit 280, etc. so as to perform communication using the known multiple input multiple output (MIMO) method. Output a signal.
[0040] なお、以上は、アンテナ素子本数の大小、要求伝送レートの高低、受信信号強度 の大小によって通信条件を種々設定する場合を例にとって説明したが、これに限ら れず、受信信号力 取得できるその他の情報、例えば、相手方ユーザのアプリケー シヨン(通信内容が画像である力、音声であるか、テキストのみのファイルである力、メ ールであるか等)や、どの程度のデータ転送時間 ·リアルタイム性 ·電力 ·ユーザ希望 優先順位等を要求して 、るか等に基づき、上記通信条件を設定してもよ 、。  [0040] Although the above has described an example in which various communication conditions are set depending on the number of antenna elements, the required transmission rate, and the received signal strength, the present invention is not limited to this, and the received signal strength can be acquired. Other information, for example, the application of the other user (whether the content of the communication is an image, voice, power of a text-only file, mail, etc.) and how much data transfer time You may request real-time performance, power, user preference, etc., and set the above communication conditions based on whether or not.
[0041] 以上のようにしてステップ S 120、ステップ S 125、ステップ S 135、ステップ S 140、ス テツプ S150が終了したら、ステップ S155に移り、 m本のアンテナ 101のうち、それら ステップ S 120、ステップ S 125、ステップ S 135、ステップ S 140、ステップ S 150で使 用するもの以外の残りのアンテナ 101による総指向性が略無指向性となるように上記 ステップ S5と同様の処理を行う。なお、これら残りのアンテナ 101の通信動作を停止 させるようにしてもょ 、。ステップ S 155が完了するとこのルーチンを終了する。  [0041] When Step S120, Step S125, Step S135, Step S140, and Step S150 are completed as described above, the process proceeds to Step S155, and among m antennas 101, Step S120, Step The same processing as in step S5 is performed so that the total directivity by the remaining antennas 101 other than those used in S125, step S135, step S140, and step S150 becomes substantially omnidirectional. Note that the communication operation of these remaining antennas 101 may be stopped. When step S155 is completed, the routine ends.
[0042] 図 7に戻り、上記のようにしてステップ S100が終了すると、ステップ S25に移り、上 記ステップ S100にお 、て前述した通信条件設定の下で、コマンドビット列生成部 27 4、符号化部 273、送信側信号処理部 210、周波数変換部 310、送信側デジタル指 向性制御部 220をそれぞれ制御してアンテナ 101より信号を送信し、他の無線通信 装置 301との通信を開始する。  Returning to FIG. 7, when step S100 is completed as described above, the process proceeds to step S25, where the command bit string generation unit 274, encoding is performed under the communication condition setting described above in step S100. The unit 273, the transmission side signal processing unit 210, the frequency conversion unit 310, and the transmission side digital directivity control unit 220 are each controlled to transmit a signal from the antenna 101 and start communication with another wireless communication device 301.
[0043] 図 10、図 11は、このとき実行される他の無線通信装置 301との通信態様を模式的 に表す説明図である。図 10は、他の無線通信装置 301のアンテナ素子の数が 1つで あって、要求伝送レートが低くかつ受信信号強度が大きぐステップ S120において 設定が行われた結果、 1つのアンテナ 101で当該アンテナ 101が備えている指向性( ステップ S5で所定方向に設定)はそのままで引き続き他の無線通信装置 301との通 信が行われて 、る状態の一例を表して 、る。  FIG. 10 and FIG. 11 are explanatory diagrams schematically showing a communication mode with another wireless communication device 301 executed at this time. FIG. 10 shows the result of setting in step S120 where the number of antenna elements of the other wireless communication apparatus 301 is one, the required transmission rate is low, and the received signal strength is large. An example of a state in which the directivity (set in a predetermined direction in step S5) provided to the antenna 101 is continued and communication with another wireless communication device 301 is continued is shown.
[0044] 一方、図 11は、他の無線通信装置 301のアンテナ素子の数が 1つであって、要求 伝送レートが高くかつ受信信号強度が小さぐステップ S140において設定が行われ た結果、 N本(この例では N = 2)のアンテナ 101E, 101Fで適応アレー制御により当 該他の無線通信装置 301に対し (送信又は受信)感度が最大となるように制御されつ つ通信が行われて 、る状態の一例を表して 、る。 On the other hand, FIG. 11 shows that the setting is performed in step S140 where the number of antenna elements of other wireless communication apparatus 301 is one, the required transmission rate is high, and the received signal strength is low. As a result, N antennas 101E and 101F (N = 2 in this example) are controlled so that the sensitivity (transmission or reception) is maximized for the other wireless communication device 301 by adaptive array control. An example of the state of being performed is shown.
[0045] また、他の無線通信装置 301のアンテナ素子の数が 2つ以上であって、要求伝送 レートが高 、場合はステップ S 150にお!/、て N本のアンテナ 101を用いて MIMO通 信が行われるが、図 12は、この MIMO通信の挙動を概念的に表す概念的説明図で ある。なお、この図では、図示を明確ィ匕するために、本実施形態の無線通信装置 1に おけるアンテナ 101の数を 3つとし、またその通信相手である他の無線通信装置 301 も、本実施形態の無線通信装置 1と同様の構成を備えているものとして図示している 。図示のように無線通信装置 1の 3個の送信アンテナ 101と他の無線通信装置 301 の 3個の受信アンテナ 101とで通信を行う場合、送受信間のチャネル応答は 3 X 3の 行列で表される。この場合、マルチパス環境下にある MIMO通信においては図示の ように 3 X 3 = 9本の伝送路 (チャネル)を、固有値変換により仮想的に 3本の独立な チャネルとすることができるので、空間の利用性を高めることができる。  [0045] Also, in the case where the number of antenna elements of other wireless communication apparatus 301 is two or more and the required transmission rate is high, in step S150! /, MIMO is performed using N antennas 101. Although communication is performed, FIG. 12 is a conceptual explanatory diagram conceptually showing the behavior of this MIMO communication. In this figure, for the sake of clarity, the number of antennas 101 in the wireless communication device 1 of this embodiment is three, and the other wireless communication device 301 that is the communication partner is also in this embodiment. It is illustrated as having the same configuration as that of the wireless communication device 1 of the embodiment. As shown in the figure, when communication is performed between the three transmission antennas 101 of the wireless communication device 1 and the three reception antennas 101 of the other wireless communication devices 301, the channel response between transmission and reception is represented by a 3 × 3 matrix. The In this case, in MIMO communication under a multipath environment, 3 X 3 = 9 transmission paths (channels) can be virtually made into 3 independent channels by eigenvalue conversion as shown in the figure. The availability of space can be increased.
[0046] 図 7に戻り、以上のようにしてステップ S25が終了すると、ステップ S30に移り、操作 者力も通信終了指示があった力どうかを判定する。無線通信装置 1に備えられた図 示しな ヽ操作手段を介し、操作者等による無線通信停止指示がなされた場合にはこ の判定が満たされ、フローを終了する。停止指示があるまではこの判定が満たされず 、ステップ S35に移る。  [0046] Returning to FIG. 7, when step S25 is completed as described above, the process proceeds to step S30, where it is determined whether the operator's force is also a force for which a communication end instruction has been issued. If an instruction to stop wireless communication is given by an operator or the like via an unillustrated operating means provided in the wireless communication device 1, this determination is satisfied and the flow ends. This determination is not satisfied until a stop instruction is issued, and the process proceeds to step S35.
[0047] ステップ S35では、上記ステップ S10と同様、ビーコン信号を送信し待受け状態と する。この際、ステップ S 120、ステップ S 125、ステップ S 135、ステップ S 140、ステツ プ S 150で設定した 1〜N本のアンテナはすでに他の無線通信装置 301との通信に ぉ 、て使用して 、るので、例えばそれ以外の残りのアンテナ 101のみを用いて上記 ビーコン信号を送信すればよ!、。  [0047] In step S35, as in step S10, a beacon signal is transmitted to enter a standby state. At this time, the 1 to N antennas set in Step S 120, Step S 125, Step S 135, Step S 140, and Step S 150 are already used for communication with other wireless communication devices 301. So, for example, send the beacon signal using only the remaining antennas 101!
[0048] その後、ステップ S35に移り、前述のステップ S20と同様、上記ビーコン信号に対応 してさらに他の無線通信装置 302等の通信相手が出現し、それからの応答信号が周 波数変換部 300、受信側デジタル指向性制御部 250、受信側信号処理部 260で受 信され、選択回路 270、復号部 271を介して返答 Bit列解釈部 272にてエラーなく受 信された力どうかを判定する。応答信号の受信が全くな力 たか、受信されてもエラ 一が生じていた場合にはこの判定が満たされず、ステップ S25に戻って同様の手順 を繰り返す。 [0048] Thereafter, the process proceeds to step S35, and in the same manner as in step S20 described above, another communication partner such as another wireless communication device 302 appears corresponding to the beacon signal, and the response signal therefrom is a frequency converter 300, Received by receiving side digital directivity control unit 250 and receiving side signal processing unit 260 and received via selection circuit 270 and decoding unit 271 and received by bit string interpretation unit 272 without error. Determining whether or not the power is trusted. If the response signal is not received at all, or if an error occurs even if it is received, this determination is not satisfied, and the procedure returns to step S25 and the same procedure is repeated.
[0049] さらに他の無線通信装置 302等力 の応答信号がエラーなく受信された場合、ステ ップ S40の判定が満たされ、ステップ S 200に移る。ステップ S 100では、上記ステツ プ S100と同等の処理が行われ、上記受信された応答信号の解釈結果 (受信結果) より、当該さらに他の無線通信装置 302との通信内容の確認 (アンテナ素子の個数、 要求される伝送レート、受信強度等の各種情報の確認)及びこれに対応して本無線 通信装置 1側での通信条件設定処理が行われる。その詳細は、例えばステップ S 10 0と同様、図 10に示したもので足りるので説明を省略する。  [0049] If a response signal of another radio communication apparatus 302 isotropic power is received without error, the determination at step S40 is satisfied, and the routine goes to step S200. In step S100, processing equivalent to that in step S100 is performed, and based on the interpretation result (reception result) of the received response signal, the content of communication with the other wireless communication device 302 is confirmed (the antenna element (Confirmation of various information such as number, required transmission rate, reception strength, etc.) and corresponding communication condition setting processing on the wireless communication apparatus 1 side is performed. For example, the details shown in FIG. 10 are sufficient as in step S 100 0, and the description thereof is omitted.
[0050] 上記ステップ S200が終了すると、ステップ S45に移り、前述のステップ S25と同様、 上記ステップ S200にお 、て前述した通信条件設定の下で、コマンドビット列生成部 274、符号化部 273、送信側信号処理部 210、周波数変換部 310、送信側デジタル 指向性制御部 220をそれぞれ制御してアンテナ 101より信号を送信し、上記さらに他 の無線通信装置 302との通信を開始する。  [0050] When step S200 is completed, the process proceeds to step S45, and in the same manner as step S25 described above, the command bit string generation unit 274, the encoding unit 273, and the transmission are performed in step S200 under the communication condition setting described above. The side signal processing unit 210, the frequency conversion unit 310, and the transmission side digital directivity control unit 220 are controlled to transmit signals from the antenna 101, and communication with the other wireless communication device 302 is started.
[0051] 図 13は、このとき実行されるさらに他の無線通信装置 302との通信態様を模式的 に表す説明図である。図 13は、既にアンテナ 101E, 101Fによって 1つのアンテナ 素子を備えた他の無線通信装置 301との通信を適応アレー方式で行っているときに 、さらに他の無線通信装置 302が出現し、その他の無線通信装置 302のアンテナ素 子の数が 2つであって要求伝送レートが高ぐ図 10のステップ S150において設定が 行われた結果、(例えば通信に供されていないアンテナ 101A, 101B, 101C, 101 Dのうち受信電力の一番大きいもの及びそれに次ぐものとして選択された)アンテナ 1 01B, 101Cを用いて当該さらに他の無線通信装置 302との間に MIMO方式による 通信が開始された状態の例を表している。  FIG. 13 is an explanatory view schematically showing a communication mode with still another wireless communication device 302 executed at this time. FIG. 13 shows that when communication with another wireless communication apparatus 301 having one antenna element is already performed by the antennas 101E and 101F by the adaptive array system, another wireless communication apparatus 302 appears, As a result of the setting in step S150 of FIG. 10 where the number of antenna elements of wireless communication apparatus 302 is two and the required transmission rate is high (for example, antennas 101A, 101B, 101C, (The antenna with the highest received power among 101D and the one after it is selected) Antenna 101B and 101C are used to start communication with the other wireless communication device 302 using the MIMO scheme. An example is shown.
[0052] 図 7に戻り、以上のようにしてステップ S45が終了すると、ステップ S40に戻り、同様 の手順を繰り返す。  Returning to FIG. 7, when step S45 is completed as described above, the process returns to step S40, and the same procedure is repeated.
[0053] 図 14は、以上のような構成の本実施形態の無線通信装置 1の実際の適用例を表し た図である。図 14において、この例では、自動車 AMの室内前方にあるインナーパ ネル IPのハンドル SWと反対側 (助手席側)に無線通信装置 1が設けられ、また室内 後方 (後部座席側)には図示しないアンテナを備えたテレビ CT (前述の他の無線通 信装置 301等に相当)が設けられている。そして、無線通信装置 1の複数のアンテナ 101とテレビ CTとの間で通信が行われるとともに、他の複数のアンテナ 101と地上側 の基地局 BP (前述の他の無線通信装置 301等に相当。あるいは人工衛星等でもよ い)との間で通信が行われている。このとき無線通信装置 1は無線送信装置又は無 線受信装置として機能しており、これら無線通信装置 1, 301, 301で無線通信シス テム Sが構成されている。 FIG. 14 is a diagram illustrating an actual application example of the wireless communication device 1 of the present embodiment having the above-described configuration. In FIG. 14, in this example, the inner pad located in the front of the interior of the car AM. The radio communication device 1 is installed on the side opposite to the steering wheel switch (front passenger seat side), and the antenna CT (not shown) is installed on the rear side (rear seat side). Etc.) are provided. Communication is performed between the plurality of antennas 101 of the wireless communication apparatus 1 and the television CT, and the other plurality of antennas 101 and the ground-side base station BP (corresponding to the above-described other wireless communication apparatus 301 and the like). Or, it may be an artificial satellite). At this time, the wireless communication device 1 functions as a wireless transmission device or a wireless reception device, and the wireless communication device 1, 301, 301 constitutes the wireless communication system S.
[0054] 図 15は、本実施形態の無線通信装置 1の別の適用例を表した図である。図 15に おいて、この例では、 2台の自動車 AM, AMそれぞれに、上記図 14と同様、インナ 一パネル IPに無線通信装置 1が設けられている。そして、それら 2つの無線通信装置 1, 1どうしの間で例えば複数のアンテナ 101を用いて通信(いわゆる車々間通信)が 行われている。この場合、一方の無線通信装置 1に着目すれば、他方の無線通信装 置 1は前述した他の無線通信装置 301に相当し、これら無線通信装置 1, 301で無 線通信システム Sが構成されている。また無線通信装置 1は無線送信装置又は無線 受信装置として機能している。  FIG. 15 is a diagram illustrating another application example of the wireless communication device 1 of the present embodiment. In FIG. 15, in this example, the wireless communication device 1 is provided in the inner panel IP in each of the two automobiles AM and AM, as in FIG. Then, communication (so-called inter-vehicle communication) is performed between the two wireless communication apparatuses 1 and 1 using, for example, a plurality of antennas 101. In this case, paying attention to one radio communication device 1, the other radio communication device 1 corresponds to the other radio communication device 301 described above, and the radio communication device 1, 301 constitutes the radio communication system S. ing. The wireless communication device 1 functions as a wireless transmission device or a wireless reception device.
[0055] 以上において、無線通信装置 1の制御装置 200に備えられた全体制御部 201が実 行する図 7に示したフローのステップ S5が、各請求項記載の、 m個のアンテナ全体で 実現する指向性を、所定の初期状態となるように各アンテナを制御する初期制御手 段を構成する。また、ステップ S100が、この初期制御手段で実現した初期状態にお ける他の無線通信装置との初期通信内容に応じて、当該他の無線通信装置との通 信における通信条件を設定する通信条件制御手段を構成する。  [0055] In the above, step S5 of the flow shown in Fig. 7 executed by the overall control unit 201 provided in the control device 200 of the wireless communication device 1 is realized by all the m antennas according to each claim. An initial control means for controlling each antenna so that the directivity to be in a predetermined initial state is configured. In addition, step S100 is a communication condition for setting communication conditions for communication with the other wireless communication device according to the initial communication content with the other wireless communication device in the initial state realized by the initial control means. The control means is configured.
[0056] また、図 10に示したフローのステップ S120、ステップ S125、ステップ S135、ステツ プ S140、及びステップ S150が、通信条件として、通信方式を、多入力多出力方式、 又は適応アレー方式、若しくはダイバーシチ方式の!/、ずれかの通信方式に制御する 通信方式制御手段を構成するとともに、通信条件として、使用するアンテナの個数を Nに設定するアンテナ数制御手段をも構成する。  [0056] Further, Step S120, Step S125, Step S135, Step S140, and Step S150 of the flow shown in FIG. 10 may be performed by using a communication method, a multi-input multiple-output method, an adaptive array method, or In addition to configuring the communication method control means to control the diversity method! /, The communication method control means to configure the number of antennas to be set to N as the communication condition.
[0057] また、ステップ S 155が、通信条件として、アンテナ数制御手段の設定したアンテナ の個数に基づき、それ以外の残余の各アンテナにおける複数のアンテナ素子による 指向性を所定の態様に制御する指向性制御手段を構成する。 [0057] Further, in step S155, the antenna set by the antenna number control means is set as the communication condition. The directivity control means is configured to control the directivity of the plurality of antenna elements in the remaining antennas in a predetermined manner based on the number of antennas.
[0058] 以上説明したように、本実施形態における無線通信装置 1は、多入力多出力方式 の無線通信システム Sに使用可能な無線通信装置 1であって、 mを 2以上の整数とし て、複数のアンテナ素子 P0〜P6をそれぞれ有する m個のアンテナ 101と、これら m 個のアンテナ 101全体で実現する指向性を、所定の初期状態となるように各アンテ ナを制御する初期制御手段 (この例では全体制御部 201が実行するステップ S5)と、 この初期制御手段 S5で実現した初期状態における他の無線通信装置 301との初期 通信内容に応じて、当該他の無線通信装置 301との通信における通信条件を設定 する通信条件制御手段 (この例では全体制御部 201が実行するステップ S100)とを 有することを特徴とする。  [0058] As described above, the wireless communication device 1 according to the present embodiment is the wireless communication device 1 that can be used in the wireless communication system S of the multiple-input multiple-output method, and m is an integer of 2 or more. M antennas 101 each having a plurality of antenna elements P0 to P6, and initial control means for controlling each antenna so that the directivity realized by these m antennas 101 as a whole is in a predetermined initial state (this In the example, step S5) executed by the overall control unit 201) and communication with the other wireless communication device 301 according to the initial communication content with the other wireless communication device 301 in the initial state realized by the initial control means S5. Communication condition control means (in this example, step S100 executed by the overall control unit 201) for setting the communication conditions in FIG.
[0059] 本実施形態の無線通信装置 1にお!/、ては、通信開始前にお!/、てまず初期制御手 段 S5が複数の(この例では 6個の)アンテナ 101A〜F全体による指向性を所定の初 期状態とする。そして、この初期状態において他の無線通信装置 301と通信を行つ たその初期通信内容に応じ、通信条件制御手段 S100が、その後の当該他の無線 通信装置 301との通信における通信条件を設定する。これにより、多入力多出力方 式を実現可能な性能を備えていながらも、他の無線通信装置 301との初期通信内容 によっては当該多入力多出力方式の通信にはこだわらず、当該他の無線通信装置 301に合致した通信態様で無線通信を実行することができる。この結果、種々様々 の通信相手に対応した効率のよい通信を確実に実現することができる。  [0059] The wireless communication device 1 of the present embodiment! /, Before communication starts! /, First, the initial control means S5 has a plurality of (six in this example) antennas 101A to 101F as a whole. The directivity by is set to the predetermined initial state. In this initial state, the communication condition control means S100 sets the communication conditions for the subsequent communication with the other wireless communication device 301 in accordance with the initial communication content that has been communicated with the other wireless communication device 301. . As a result, while having the performance capable of realizing the multi-input multi-output method, depending on the initial communication content with the other wireless communication device 301, the other wireless communication is not concerned with the communication of the multi-input multi-output method. Wireless communication can be executed in a communication mode that matches the communication device 301. As a result, efficient communication corresponding to various communication partners can be reliably realized.
[0060] 上記実施形態における無線通信装置 1においては、通信条件制御手段 S 100は、 通信条件として、通信方式を、多入力多出力方式、又は適応アレー方式、若しくはダ ィバーシチ方式の 、ずれかの通信方式に制御する通信方式制御手段 (この例では 全体制御部 201が実行するステップ S 120、ステップ S 125、ステップ S 135、ステップ S140、及びステップ SI 50)を有することを特徴とする。  [0060] In the wireless communication device 1 in the above embodiment, the communication condition control means S100 is a communication condition selected from a multi-input multi-output system, an adaptive array system, and a diversity system. It is characterized by having a communication system control means (step S120, step S125, step S135, step S140, and step SI50 executed by the overall control unit 201 in this example) for controlling to the communication system.
[0061] これにより、多重伝送路による大容量伝送又は単一伝送路による高効率伝送を実 行する制御(MIMO通信)や、 m個(この例では m=6)のアンテナ 101全体による指 向性を通信相手に対し感度が最大となるような制御 (適応アレー制御)や、複数のァ ンテナ 101で受信した同一信号につ!、て電波状況の優れたアンテナ 101の信号を 優先的に用いる制御 (ダイバーシチ制御)等を実現し、通信相手と効率のよ!、通信を 確実に行うことができる。 [0061] This allows control (MIMO communication) to perform large-capacity transmission using multiple transmission paths or high-efficiency transmission using a single transmission path, and direction by m antennas 101 (m = 6 in this example). Control that maximizes the sensitivity to the communication partner (adaptive array control) and multiple keys Realize control (diversity control), etc. that uses the antenna 101 signal with excellent radio wave conditions preferentially for the same signal received by the antenna 101, ensuring efficiency with the communication partner and ensuring communication Can do.
[0062] 上記実施形態における無線通信装置 1においては、通信方式制御手段 S 100は、 他の無線通信装置 301が 1つのアンテナ素子力もなるアンテナを備えている場合に は、通信方式を適応アレー方式とすることを特徴とする。  [0062] In the wireless communication device 1 in the above embodiment, the communication method control means S100 uses the adaptive communication method as the communication method when the other wireless communication device 301 includes an antenna having one antenna element force. It is characterized by.
[0063] これにより、 m個(この例では m=6)のアンテナ 101全体で実現する指向性を、当 該 1つのアンテナ素子力もなるアンテナに対して感度が最大となるように制御し、当 該アンテナと効率のょ 、通信を確実に行うことができる(図 11等参照)。  [0063] Thereby, the directivity realized by the m antennas 101 (m = 6 in this example) is controlled so that the sensitivity is maximized with respect to the antenna having the one antenna element force. Communication with the antenna can be performed reliably (see Fig. 11).
[0064] 上記実施形態における無線通信装置 1においては、通信条件制御手段 S 100は、 Nを 1以上 m以下の整数として、通信条件として、使用するアンテナの個数を Nに設 定するアンテナ数制御手段 (この例では全体制御部 201が実行するステップ S 120、 ステップ S 125、ステップ S 135、ステップ S 140、及びステップ S 150)を有することを 特徴とする。  [0064] In the wireless communication device 1 in the above embodiment, the communication condition control unit S100 controls the number of antennas by setting N as an integer of 1 to m and the number of antennas to be used as N as a communication condition. Means (in this example, step S120, step S125, step S135, step S140, and step S150 executed by the overall control unit 201).
[0065] 種々様々の通信相手に対応し、アンテナ数制御手段 S 120, S125, S135, S140 , S150がアンテナ 101の個数 mを l≤N≤mの範囲で適宜に設定することにより、他 の無線通信装置 301に合致した通信態様で無線通信を確実に実行可能となる。  [0065] The antenna number control means S 120, S125, S135, S140, and S150 correspond to various communication partners, and by appropriately setting the number m of antennas 101 within a range of l≤N≤m, Wireless communication can be reliably executed in a communication mode that matches the wireless communication device 301.
[0066] 上記実施形態における無線通信装置 1においては、通信条件制御手段 S 100は、 通信条件として、アンテナ数制御手段 S 120, S125, S135, S140, S150の設定し たアンテナ 101の個数に基づき、それ以外の残余の各アンテナ 101における複数の アンテナ素子 P0〜P6による指向性を所定の態様に制御する指向性制御手段 (この 例では全体制御部 201が実行するステップ S155)を有することを特徴とする。  [0066] In the wireless communication device 1 in the above embodiment, the communication condition control means S100 is based on the number of antennas 101 set by the antenna number control means S120, S125, S135, S140, and S150 as communication conditions. The other antenna 101 has directivity control means for controlling the directivity by the plurality of antenna elements P0 to P6 in a predetermined manner (in this example, step S155 executed by the overall control unit 201). And
[0067] 使用していない各アンテナ 101の指向性を所定の態様に制御することにより、使用 中のアンテナ 101により実行されている通信以外に、さらに他の通信相手 (この例で は無線通信装置 302。図 13等参照)が出現した場合に、通信を円滑に開始するため の待機体制を整えることが可能となる。  [0067] By controlling the directivity of each antenna 101 that is not used in a predetermined manner, in addition to the communication that is being performed by the antenna 101 that is in use, another communication partner (in this example, a wireless communication device) 302. See Fig. 13 etc.), and it will be possible to establish a standby system for smoothly starting communication.
[0068] なお、上記指向性制御手段 S155に代えて、通信条件制御手段 S 100が、通信条 件として、アンテナ数制御手段 S 120, S125, S135, S140, S150の設定したアン テナ 101の個数に基づき、それ以外の残余のアンテナ 101への給電を停止する給 電制御手段を有するようにした場合には、使用して 、な 、アンテナ 101への給電を 停止することにより、無駄な電力消費を回避することができる。 [0068] In place of the directivity control means S155, the communication condition control means S100 uses the antenna number control means S120, S125, S135, S140, and S150 as communication conditions. If power supply control means for stopping the power supply to the remaining antennas 101 is provided based on the number of the tena 101, the power supply to the antennas 101 can be stopped by using Wasteful power consumption can be avoided.
[0069] 上記実施形態における無線通信装置 1においては、アンテナ 101の複数のアンテ ナ素子 P0〜P6は、信号が給電される給電素子 P0と、この給電素子 P0から所定間 隔離れて設けられ、信号が給電されない少なくとも 1つの無給電素子 P1〜P6とを含 んでおり、誘電体に封入又は装荷され、互いに所定の間隔に配置されていることを 特徴とする。  [0069] In the wireless communication device 1 in the above embodiment, the plurality of antenna elements P0 to P6 of the antenna 101 are provided with a power feeding element P0 to which a signal is fed and a predetermined distance from the power feeding element P0. It includes at least one parasitic element P1 to P6 that is not fed with a signal, and is characterized in that it is enclosed or loaded in a dielectric and arranged at a predetermined distance from each other.
[0070] 給電素子 POと無給電素子 P1〜P6を備え無給電素子 P1〜P6へのリアクタンス制 御で指向性を制御可能なエスパアンテナを用い、さらにそれら複数の素子 P0〜P6 を誘電体に封入 (又は装荷)することにより、アンテナ 101を小型化することができる。  [0070] An ESPAR antenna that includes a feeding element PO and parasitic elements P1 to P6 and whose directivity can be controlled by reactance control to the parasitic elements P1 to P6, and further uses these elements P0 to P6 as dielectrics. By enclosing (or loading), the antenna 101 can be downsized.
[0071] 上記実施形態における無線通信装置 1においては、通信条件制御手段 S 100は、 通信条件として、 m個(この例では m=6)のアンテナ 101に備えられた給電素子 PO の指向性を制御する給電側制御手段 (この例では送信側デジタル指向性制御部 22 0及び受信側デジタル指向性制御部 250)と、通信条件として、 m個のアンテナ 101 に備えられた無給電素子 P1〜P6の指向性を制御する無給電側制御手段 (この例で はアナログ指向性制御部 280)とを有することを特徴とする。  [0071] In the wireless communication device 1 in the above embodiment, the communication condition control means S100 determines the directivity of the feeding element PO provided in the m antennas 101 (m = 6 in this example) as a communication condition. Feed-side control means to control (in this example, the transmission-side digital directivity control unit 220 and the reception-side digital directivity control unit 250), and the parasitic elements P1 to P6 included in the m antennas 101 as communication conditions It is characterized by having non-feed-side control means (in this example, the analog directivity control unit 280) for controlling the directivity of the signal.
[0072] デジタル制御系となる各アンテナ 101の給電素子 P0側だけで m個のアンテナ 101 全体の指向性制御を行おうとすると、アンテナ及び RF回路系の数及びそれらに対応 したデジタル処理が大が力りなものとなる。一方、アナログ制御系となる各アンテナ 1 01の無給電素子側 P1〜P6だけで適応動作等の指向性制御を行おうとする場合も、 上記同様にデジタル処理が大が力りなものとなる。  [0072] When the directivity control of the entire m antennas 101 is performed only on the feeding element P0 side of each antenna 101 that becomes a digital control system, the number of antennas and RF circuit systems and the digital processing corresponding to them are large. It will be a powerful one. On the other hand, in the case where directivity control such as adaptive operation is to be performed only by the parasitic element side P1 to P6 of each antenna 101 serving as an analog control system, the digital processing becomes significant as described above.
[0073] 本実施形態の無線通信装置 1においては、図 16にその指向性特性のイメージを概 念的に表すように、まず指向性のおおざつばな設定を無給電側制御手段 280で行つ ておき (領域 G1参照)、更に細かな指向性制御を給電側制御手段 220, 250で行い (領域 G2参照)、これらを併せて用いることで、より指向性 ¾|¾くすることができる (領 域 G参照)。また、指向性制御システムとしての柔軟性を向上させることもできる。  [0073] In the wireless communication device 1 of the present embodiment, a rough setting of directivity is first performed by the non-feed-side control means 280, as schematically shown in FIG. Next (see region G1), more directivity control is performed by the power supply side control means 220 and 250 (see region G2), and by using these together, the directivity can be further improved. (See area G). Moreover, the flexibility as the directivity control system can be improved.
[0074] 上記実施形態における無線通信装置 1においては、初期制御手段 S5は、初期状 態として、 m個のアンテナ 101のうち隣り合うアンテナ 101それぞれのもつ指向性が 互いに一部重なり合うように各アンテナ 101を制御することを特徴とする。 [0074] In the wireless communication device 1 in the above embodiment, the initial control means S5 is the initial state. As a feature, the antennas 101 are controlled so that the directivities of the adjacent antennas 101 of the m antennas 101 partially overlap each other.
[0075] 隣り合う各アンテナ 101の指向性が重なり合つていない状態では、無線通信装置 1 に対する他の無線通信装置 301からの信号がたまたま当該重なっていない領域に のみ到達した場合これを検知できず、通信不可能となる。本実施形態の無線通信装 置 1においては初期状態における隣り合う各アンテナ 101の指向性 (領域)を重なり 合わせておく(図 8参照)ことにより、上記弊害を回避して確実に通信を行うことができ る。 [0075] In a state where the directivities of the adjacent antennas 101 do not overlap each other, this can be detected when a signal from the other wireless communication device 301 to the wireless communication device 1 happens to reach only the non-overlapping region. Communication is impossible. In the wireless communication device 1 of the present embodiment, the directivity (region) of the adjacent antennas 101 in the initial state is overlapped (see FIG. 8), so that communication can be performed reliably while avoiding the above-described adverse effects. You can.
[0076] なお、本実施形態は、上記に限られず、種々の変形が可能である。以下、そのよう な変形例を順を追って説明する。  Note that the present embodiment is not limited to the above, and various modifications can be made. Hereinafter, such modifications will be described step by step.
[0077] (1)隣り合う複数のアンテナを選択するようにした場合  [0077] (1) When a plurality of adjacent antennas are selected
すなわち、上記実施形態において、図 10に示したフローのステップ S135、ステツ プ S 140、ステップ S 150において複数の N本のアンテナを用いるように制御するとき 、必ず互いに隣り合う一群のアンテナとなるように選択する場合である。この変形例を 図 17を用いて説明する。  That is, in the above embodiment, when control is performed so that a plurality of N antennas are used in step S135, step S140, and step S150 of the flow shown in FIG. This is the case of selecting. This modification will be described with reference to FIG.
[0078] 図 17において、 6つのアンテナ 101A〜101Eを備える無線通信装置 1が、まず他 の無線通信装置 301と 2つのアンテナ 101E, 101Fにより通信を行い、その後、さら に他の無線通信装置 302と通信を行う場合を考える。  In FIG. 17, a wireless communication device 1 including six antennas 101A to 101E first communicates with another wireless communication device 301 through two antennas 101E and 101F, and then further another wireless communication device 302. Suppose you want to communicate with.
[0079] 当該無線通信装置 302との通信において、図 17に示すように、隣り合うアンテナで ないアンテナ 101B, 101Dを用いて通信を行ったとすると、さらに他の無線通信装 置 303がアンテナ 101C, 101Dの方向力も通信しょうとした場合に、使用されていな いアンテナ 101Cに対し、上記アンテナ 101Dと無線通信装置 302との通信が妨害 する (放射領域が一部重複する。図中矢印参照)こととなり、この結果、当該無線通信 装置 303との通信が不可能となる。  [0079] In communication with the wireless communication device 302, as shown in FIG. 17, if communication is performed using antennas 101B and 101D that are not adjacent antennas, another wireless communication device 303 has antennas 101C and 101C. When trying to communicate the directional force of 101D, communication between the antenna 101D and the wireless communication device 302 is obstructed with respect to the antenna 101C that is not used (part of the radiation area overlaps, see arrows in the figure). As a result, communication with the wireless communication device 303 becomes impossible.
[0080] これに対し、上記ステップ S135、ステップ S140、ステップ S150において必ず互い に隣り合う複数のアンテナを選択するようにすれば、上述の例では無線通信装置 30 2との通信において隣り合うアンテナ 101B, 101Cを用いることとなる結果、上記無線 通信装置 303とは少なくともアンテナ 101Dを用いて (他力も妨害されることなく)通信 可能となる。なお、通信相手が移動するような場合にも有効となる。 [0080] On the other hand, if a plurality of adjacent antennas are necessarily selected in step S135, step S140, and step S150, in the above example, the adjacent antenna 101B in communication with the wireless communication device 302 is used. , 101C, and as a result, communicate with the wireless communication device 303 using at least the antenna 101D (without disturbing other forces) It becomes possible. This is also effective when the communication partner moves.
[0081] (2) MIMO方式に、 STC、 SDM、 OFDM等をさらに組み合わせる場合 [0081] (2) When combining MIMO with STC, SDM, OFDM, etc.
上記実施形態においては、図 10に示すフローにおいてステップ S150で MIMO通 信を行うように制御するとき、特にその詳細については説明しな力つた力 この MIM O通信制御にお 、ては公知の時空間符号化方式 (STC)又は空間分割多重方式 (S DM)の手法とすればよい。また、公知の直交周波数分割多重方式 (OFDM)の手 法を適宜組み合わせるようにしてもょ 、。  In the above embodiment, when control is performed so that MIMO communication is performed in step S150 in the flow shown in FIG. 10, a force that is not particularly described in detail will be described. A spatial coding scheme (STC) or a spatial division multiplexing scheme (S DM) may be used. It is also possible to combine known orthogonal frequency division multiplexing (OFDM) techniques as appropriate.
[0082] 本変形例における無線通信装置 1においては、通信方式制御手段 S 100は、通信 方式を、時空間符号化方式又は空間分割多重方式、及び直交周波数分割多重方 式のうち、少なくとも 、ずれか一方をさらに組み合わせた通信方式に制御することを 特徴とする。 [0082] In the wireless communication device 1 according to the present modification, the communication system control unit S100 uses at least a shift between the communication system of a space-time coding system, a space division multiplexing system, and an orthogonal frequency division multiplexing system. It is characterized by controlling to a communication system that combines either of these.
[0083] これにより、送信した!/、時系列データに対して時間領域と空間領域で信号を組み 替えて伝送する制御( =時空間符号化方式; STC)や、送信のアンテナ素子ごとに 等電力で別々の情報を乗せて伝送する制御( =空間分割多重方式; SDM)や、広 周波数帯域情報を狭周波数帯域の多数のサブチャネルに展開するマルチキャリア 伝送制御( =直交周波数分割多重方式; OFDM)等を実現し、通信相手と効率のよ Vヽ通信を確実に行うことができる。  [0083] As a result, the transmitted! /, Control for transmitting time-series data by recombining signals in the time domain and the space domain (= space-time coding scheme: STC), transmission antenna elements, etc. Control with transmission of different information with power (= space division multiplexing; SDM) and multi-carrier transmission control (= orthogonal frequency division multiplexing; with spread of wide frequency band information on multiple subchannels in narrow frequency band; (OFDM) etc. can be realized, and V 効率 communication can be performed reliably and efficiently with the communication partner.
[0084] 上記実施形態における無線通信装置 1は、多入力多出力方式の無線通信システ ム Sに使用可能な無線通信装置 1であって、 mを 2以上の整数として、複数のアンテ ナ素子 P0〜P6をそれぞれ有する m個のアンテナ 101と、これら m個のアンテナ 101 全体で実現する指向性を、所定の初期状態となるように各アンテナを制御するステツ プ S5の手順と、このステップ S5で実現した初期状態における他の無線通信装置 30 1との初期通信内容に応じて、当該他の無線通信装置 301との通信における通信条 件を設定するステップ S 100の手順とを有する。  [0084] The wireless communication device 1 in the above embodiment is a wireless communication device 1 that can be used for the wireless communication system S of the multiple-input multiple-output system, where m is an integer equal to or larger than 2, and a plurality of antenna elements P0 Step S5 for controlling each antenna so that the m antennas 101 each having ~ P6 and the directivity realized by all these m antennas 101 are in a predetermined initial state, and in this step S5 According to the initial communication content with the other wireless communication device 301 in the realized initial state, the procedure of step S100 for setting the communication condition in communication with the other wireless communication device 301 is included.
[0085] 通信開始前においてまずステップ S5で 6個のアンテナ 101A〜F全体による指向 性が所定の初期状態とされる。そして、この初期状態において他の無線通信装置 30 1と通信を行ったその初期通信内容に応じ、ステップ S100で、その後の当該他の無 線通信装置 301との通信条件が設定される。これにより、多入力多出力方式を実現 可能な性能を備えていながらも、他の無線通信装置 301との初期通信内容によって は当該多入力多出力方式の通信にはこだわらず、当該他の無線通信装置 301に合 致した通信態様で無線通信を実行することができる。この結果、種々様々の通信相 手に対応した効率のよい通信を確実に実現することができる。 [0085] Before the start of communication, first, in step S5, the directivity of all the six antennas 101A to 101F is set to a predetermined initial state. Then, in accordance with the initial communication content that has been communicated with another wireless communication device 301 in this initial state, the communication conditions with the other wireless communication device 301 thereafter are set in step S100. This realizes a multi-input multi-output system Although it has possible performance, depending on the initial communication contents with other wireless communication device 301, it does not stick to the communication of the multi-input / multi-output method, and wireless communication is performed in a communication mode suitable for the other wireless communication device 301. Communication can be performed. As a result, it is possible to reliably realize efficient communication corresponding to various communication partners.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の一実施形態の無線通信装置を備えた無線通信システムの全体概略 を表すシステム構成図である。 FIG. 1 is a system configuration diagram illustrating an overall outline of a wireless communication system including a wireless communication apparatus according to an embodiment of the present invention.
[図 2]図 1に示したアンテナの詳細構造を表す斜視図である。  2 is a perspective view showing a detailed structure of the antenna shown in FIG.
[図 3]図 1及び図 2に示したアンテナの制御系を説明するための説明図である。  FIG. 3 is an explanatory diagram for explaining a control system of the antenna shown in FIGS. 1 and 2.
[図 4]図 1に示した制御装置の詳細構成を表す機能ブロック図である。  4 is a functional block diagram showing a detailed configuration of the control device shown in FIG. 1.
[図 5]図 4に示した構成のうち送信側に係る機能の詳細構成を表す機能ブロック図で ある。  5 is a functional block diagram showing a detailed configuration of functions related to a transmission side in the configuration shown in FIG.
[図 6]図 4に示した構成のうち受信側に係る機能の詳細構成を表す機能ブロック図で ある。  6 is a functional block diagram showing a detailed configuration of functions related to the receiving side in the configuration shown in FIG.
[図 7]図 1に示した制御装置の全体制御部が実行する制御手順を表すフローチャート である。  7 is a flowchart showing a control procedure executed by the overall control unit of the control device shown in FIG.
[図 8]初期設定後の待受け待機状態における電波放射態様を模式的に表す説明図 である。  FIG. 8 is an explanatory view schematically showing a radio wave radiation mode in a standby state after initial setting.
[図 9]ステップ S100の詳細手順を表すフローチャートである。  FIG. 9 is a flowchart showing a detailed procedure of step S100.
[図 10]他の無線通信装置との通信態様を模式的に表す説明図である。  FIG. 10 is an explanatory diagram schematically showing a communication mode with another wireless communication device.
[図 11]他の無線通信装置との通信態様を模式的に表す説明図である。  FIG. 11 is an explanatory view schematically showing a communication mode with another wireless communication device.
[図 12]MIMO通信の挙動を概念的に表す概念的説明図である。  FIG. 12 is a conceptual explanatory diagram conceptually showing the behavior of MIMO communication.
[図 13]さらに他の無線通信装置との通信態様を模式的に表す説明図である。  FIG. 13 is an explanatory view schematically showing a communication mode with still another wireless communication device.
[図 14]無線通信装置の実際の適用例を表した図である。  FIG. 14 is a diagram showing an actual application example of a wireless communication device.
[図 15]無線通信装置の別の適用例を表した図である。  FIG. 15 is a diagram showing another application example of the wireless communication device.
[図 16]無給電側制御手段と給電側制御手段とによる指向性制御特性のイメージを概 念的に表す図である。  FIG. 16 is a diagram schematically showing an image of directivity control characteristics by the non-feed side control means and the feed side control means.
[図 17]隣り合う複数のアンテナを選択するようにした変形例を表す図である。 符号の説明 FIG. 17 is a diagram showing a modification in which a plurality of adjacent antennas are selected. Explanation of symbols
1 無線通信装置 (無線送信装置;無線受信装置) 1 Wireless communication device (wireless transmitter; wireless receiver)
101A〜F アンテナ 101A ~ F Antenna
200 制御装置  200 control unit
201 全体制御部  201 Overall control unit
301 無線通信装置  301 wireless communication device
302 無線通信装置  302 wireless communication equipment
303 無線通信装置  303 wireless communication equipment
PO 給電アンテナ素子(給電素子、アンテナ素子) PO Feed antenna element (feed element, antenna element)
Pl〜6 無給電アンテナ素子(無給電素子、アンテナ素子) S 無線通信システム Pl ~ 6 Parasitic antenna element (parasitic element, antenna element) S Wireless communication system

Claims

請求の範囲 The scope of the claims
[1] 多入力多出力方式の無線通信システムに使用可能な無線通信装置であって、 mを 2以上の整数として、複数のアンテナ素子をそれぞれ有する m個のアンテナと、 これら m個のアンテナ全体で実現する指向性を、所定の初期状態となるように各ァ ンテナを制御する初期制御手段と、  [1] A wireless communication apparatus that can be used in a multiple-input multiple-output wireless communication system, where m is an integer of 2 or more, m antennas each having a plurality of antenna elements, and all these m antennas The initial control means for controlling each antenna so that the directivity realized in is in a predetermined initial state,
この初期制御手段で実現した前記初期状態における他の無線通信装置との初期 通信内容に応じて、当該他の無線通信装置との通信における通信条件を設定する 通信条件制御手段と  A communication condition control means for setting a communication condition in communication with the other wireless communication device in accordance with the initial communication content with the other wireless communication device in the initial state realized by the initial control means;
を有することを特徴とする無線通信装置。  A wireless communication apparatus comprising:
[2] 請求項 1記載の無線通信装置において、 [2] In the wireless communication device according to claim 1,
前記通信条件制御手段は、前記通信条件として、通信方式を、前記多入力多出力 方式、又は適応アレー方式、若しくはダイバーシチ方式のいずれかの通信方式に制 御する通信方式制御手段を有することを特徴とする無線通信装置。  The communication condition control means includes communication method control means for controlling the communication method to be any one of the multi-input multi-output method, the adaptive array method, or the diversity method as the communication condition. A wireless communication device.
[3] 請求項 2記載の無線通信装置において、 [3] The wireless communication device according to claim 2,
前記通信方式制御手段は、前記他の無線通信装置が 1つのアンテナ素子からなる アンテナを備えて ヽる場合には、前記通信方式を適応アレー方式とすることを特徴と する無線通信装置。  The communication system control means is characterized in that, when the other wireless communication apparatus includes an antenna composed of one antenna element, the communication system is an adaptive array system.
[4] 請求項 2記載の無線通信装置において、 [4] The wireless communication device according to claim 2,
前記通信方式制御手段は、通信方式を、時空間符号化方式又は空間分割多重方 式、及び直交周波数分割多重方式のうち、少なくともいずれか一方をさらに組み合わ せた通信方式に制御することを特徴とする無線通信装置。  The communication method control means controls the communication method to a communication method that further combines at least one of a space-time coding method, a space division multiplexing method, and an orthogonal frequency division multiplexing method. Wireless communication device.
[5] 請求項 1記載の無線通信装置において、 [5] The wireless communication device according to claim 1,
前記通信条件制御手段は、 Nを 1以上 m以下の整数として、前記通信条件として、 使用する前記アンテナの個数を Nに設定するアンテナ数制御手段を有することを特 徴とする無線通信装置。  The wireless communication apparatus, wherein the communication condition control means includes antenna number control means for setting N as an integer of 1 to m and setting the number of antennas to be used as N as the communication condition.
[6] 請求項 1記載の無線通信装置において、 [6] The wireless communication device according to claim 1,
前記通信条件制御手段は、前記通信条件として、前記アンテナ数制御手段の設定 したアンテナの個数に基づき、それ以外の残余の各アンテナにおける前記複数のァ ンテナ素子による指向性を所定の態様に制御する指向性制御手段を有することを特 徴とする無線通信装置。 The communication condition control means, based on the number of antennas set by the antenna number control means, as the communication condition, the plurality of keys for each of the remaining antennas. A wireless communication device comprising directivity control means for controlling directivity by an antenna element in a predetermined manner.
[7] 請求項 1記載の無線通信装置において、 [7] The wireless communication device according to claim 1,
前記通信条件制御手段は、前記通信条件として、前記アンテナ数制御手段の設定 したアンテナの個数に基づき、それ以外の残余のアンテナへの給電を停止する給電 制御手段を有することを特徴とする無線通信装置。  The communication condition control means includes a power supply control means for stopping power supply to other remaining antennas based on the number of antennas set by the antenna number control means as the communication condition. apparatus.
[8] 請求項 1記載の無線通信装置において、 [8] The wireless communication device according to claim 1,
前記アンテナの前記複数のアンテナ素子は、  The plurality of antenna elements of the antenna are
信号が給電される給電素子と、この給電素子から所定間隔離れて設けられ、信号 が給電されない少なくとも 1つの無給電素子とを含んでおり、  A feeding element to which a signal is fed, and at least one parasitic element that is provided at a predetermined interval from the feeding element and is not fed with a signal,
誘電体に封入又は装荷され、互 ヽに所定の間隔に配置されて!ヽることを特徴とす る無線通信装置。  Enclosed or loaded in a dielectric, and placed at predetermined intervals! A wireless communication device characterized in that it speaks.
[9] 請求項 8記載の無線通信装置において、 [9] The wireless communication device according to claim 8,
前記通信条件制御手段は、  The communication condition control means includes
前記通信条件として、前記 m個のアンテナに備えられた前記給電素子の指向性を 制御する給電側制御手段と、  As the communication condition, power supply side control means for controlling the directivity of the power supply element provided in the m antennas,
前記通信条件として、前記 m個のアンテナに備えられた前記無給電素子の指向性 を制御する無給電側制御手段と  As the communication condition, a parasitic side control means for controlling the directivity of the parasitic element provided in the m antennas;
を有することを特徴とする無線通信装置。  A wireless communication apparatus comprising:
[10] 請求項 1記載の無線通信装置において、 [10] The wireless communication device according to claim 1,
前記初期制御手段は、前記初期状態として、 m個のアンテナのうち隣り合うアンテ ナそれぞれのもつ指向性が互いに一部重なり合うように各アンテナを制御することを 特徴とする無線通信装置。  The wireless communication apparatus, wherein the initial control means controls the antennas so that the directivities of adjacent antennas among m antennas partially overlap each other as the initial state.
[11] 無線送信装置及び無線受信装置を備え、多入力多出力方式の通信が可能な無線 通信システムであって、 [11] A wireless communication system comprising a wireless transmission device and a wireless reception device and capable of multi-input multiple-output communication,
前記無線送信装置及び前記無線受信装置の少なくとも一方が、  At least one of the wireless transmitter and the wireless receiver is
mを 2以上の整数としたとき、誘電体に封入又は装荷され互!ヽに所定の間隔に配 置された複数のアンテナ素子をそれぞれ有する m個のアンテナと、 これら m個のアンテナ全体で実現する指向性を、所定の初期状態となるように各ァ ンテナを制御する初期制御手段と、 When m is an integer of 2 or more, m antennas each having a plurality of antenna elements enclosed or loaded in a dielectric and arranged at predetermined intervals, Initial control means for controlling each antenna so that the directivity realized by all these m antennas becomes a predetermined initial state;
この初期制御手段で実現した前記初期状態における他の無線通信装置との初期 通信内容に応じて、当該他の無線通信装置との通信における通信条件を設定する 通信条件制御手段と  A communication condition control means for setting a communication condition in communication with the other wireless communication device in accordance with the initial communication content with the other wireless communication device in the initial state realized by the initial control means;
を有することを特徴とする無線通信システム。 A wireless communication system comprising:
PCT/JP2007/055481 2006-03-17 2007-03-19 Wireless communication device and wireless communication system WO2007108430A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-073711 2006-03-17
JP2006073711A JP2009135559A (en) 2006-03-17 2006-03-17 Wireless communication device and wireless communication system

Publications (1)

Publication Number Publication Date
WO2007108430A1 true WO2007108430A1 (en) 2007-09-27

Family

ID=38522459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055481 WO2007108430A1 (en) 2006-03-17 2007-03-19 Wireless communication device and wireless communication system

Country Status (2)

Country Link
JP (1) JP2009135559A (en)
WO (1) WO2007108430A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251936A (en) * 2009-04-14 2010-11-04 Lenovo Singapore Pte Ltd Radio terminal device
WO2012073763A1 (en) * 2010-11-29 2012-06-07 オリンパスメディカルシステムズ株式会社 Reception device and capsule-type endoscope system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6652482B2 (en) * 2016-11-04 2020-02-26 日本電信電話株式会社 Base station apparatus and wireless communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002290148A (en) * 2001-01-17 2002-10-04 Lucent Technol Inc Antenna array
JP2003032163A (en) * 2001-07-12 2003-01-31 Matsushita Electric Ind Co Ltd Wireless communication device, wireless communication method and wireless base station device
JP2005160011A (en) * 2003-10-31 2005-06-16 Advanced Telecommunication Research Institute International Array antenna device
JP2005236686A (en) * 2004-02-19 2005-09-02 Nippon Telegr & Teleph Corp <Ntt> Communications system and communication method by adaptive array antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002290148A (en) * 2001-01-17 2002-10-04 Lucent Technol Inc Antenna array
JP2003032163A (en) * 2001-07-12 2003-01-31 Matsushita Electric Ind Co Ltd Wireless communication device, wireless communication method and wireless base station device
JP2005160011A (en) * 2003-10-31 2005-06-16 Advanced Telecommunication Research Institute International Array antenna device
JP2005236686A (en) * 2004-02-19 2005-09-02 Nippon Telegr & Teleph Corp <Ntt> Communications system and communication method by adaptive array antenna

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251936A (en) * 2009-04-14 2010-11-04 Lenovo Singapore Pte Ltd Radio terminal device
WO2012073763A1 (en) * 2010-11-29 2012-06-07 オリンパスメディカルシステムズ株式会社 Reception device and capsule-type endoscope system
JP5143313B2 (en) * 2010-11-29 2013-02-13 オリンパスメディカルシステムズ株式会社 Receiving device and capsule endoscope system
CN103096779A (en) * 2010-11-29 2013-05-08 奥林巴斯医疗株式会社 Reception device and capsule-type endoscope system

Also Published As

Publication number Publication date
JP2009135559A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
KR101619964B1 (en) Pre-coding method for spatial multiplexing in multiple input and output system
JP5073517B2 (en) MIMO antenna apparatus and wireless communication apparatus including the same
KR100834644B1 (en) Apparatus and method for selecting antenna in a communication system
US8326249B2 (en) Methods and apparatus for supporting communications using a first polarization direction electrical antenna and a second polarization direction magnetic antenna
JP4753884B2 (en) Adaptive antenna device
US7787554B1 (en) Beamforming to a subset of receive antennas in a wireless MIMO communication system
US8098756B2 (en) MIMO antenna apparatus capable of diversity reception using one radiating conductor
US20140192845A1 (en) Method and Apparatus For an Adaptive Multi-Antenna System
US7813709B2 (en) MIMO antenna apparatus provided with variable impedance load element connected to parasitic element
WO2007111177A1 (en) Radio communication device and radio communication system
JP2005045351A (en) Mimo wireless communication system and wireless communication apparatus
WO2006077683A1 (en) Mobile wireless unit
US8024003B2 (en) Methods and apparatus for supporting communications using antennas associated with different polarization directions
JP2008017098A (en) Mimo antenna device and radio communication device equipped therewith
WO2006112255A1 (en) Wireless communication terminal device and transmission system switching method
WO2007108430A1 (en) Wireless communication device and wireless communication system
WO2012001692A2 (en) Methods circuits apparatus and systems for wireless data communication
JP4837636B2 (en) MIMO antenna apparatus and wireless communication apparatus including the same
EP2445120B1 (en) Wireless communications system and method
JP4435039B2 (en) Spatial multiplexing transmission apparatus and spatial multiplexing control method
JP7190247B2 (en) Transmission method, transmission device and communication system
US20130089167A1 (en) Terminal comprising multi-antennas and method of processing received frequency
WO2013140758A1 (en) Antenna device
JP4983615B2 (en) COMMUNICATION DEVICE AND METHOD, AND FUNCTIONAL MODULE
JP4337671B2 (en) Wireless communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738926

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)