WO2007105305A1 - 新規なβ-ガラクトシド-α2,6-シアル酸転移酵素、それをコードする遺伝子およびその製造方法 - Google Patents

新規なβ-ガラクトシド-α2,6-シアル酸転移酵素、それをコードする遺伝子およびその製造方法 Download PDF

Info

Publication number
WO2007105305A1
WO2007105305A1 PCT/JP2006/304993 JP2006304993W WO2007105305A1 WO 2007105305 A1 WO2007105305 A1 WO 2007105305A1 JP 2006304993 W JP2006304993 W JP 2006304993W WO 2007105305 A1 WO2007105305 A1 WO 2007105305A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
sialyltransferase
galactoside
protein
amino acid
Prior art date
Application number
PCT/JP2006/304993
Other languages
English (en)
French (fr)
Inventor
Takeshi Yamamoto
Hiroshi Tsukamoto
Yoshimitsu Takakura
Toshiki Mine
Original Assignee
Japan Tobacco Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc. filed Critical Japan Tobacco Inc.
Priority to PCT/JP2006/304993 priority Critical patent/WO2007105305A1/ja
Priority to AU2006340241A priority patent/AU2006340241A1/en
Priority to EP06782636A priority patent/EP2006378A4/en
Priority to US12/225,148 priority patent/US7993875B2/en
Priority to KR1020087024668A priority patent/KR20090007699A/ko
Priority to CA002647221A priority patent/CA2647221A1/en
Priority to JP2008504969A priority patent/JP4977125B2/ja
Priority to PCT/JP2006/315850 priority patent/WO2007105321A1/ja
Priority to NZ571868A priority patent/NZ571868A/en
Priority to CN2006800538817A priority patent/CN101400789B/zh
Publication of WO2007105305A1 publication Critical patent/WO2007105305A1/ja
Priority to US12/789,167 priority patent/US8187838B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1081Glycosyltransferases (2.4) transferring other glycosyl groups (2.4.99)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a novel ⁇ -galatatosidhi 2,6_sialyltransferase, a gene encoding the enzyme, a microorganism producing the enzyme, and a method for producing the enzyme.
  • Glycosyltransferases are enzymes involved in the biosynthesis of sugar chains of glycoproteins and glycolipids (hereinafter referred to as complex carbohydrates) in vivo.
  • the sugar chain of the complex carbohydrate which is the reaction product, has a very important function in vivo.
  • sugar chains have been shown to be important molecules that function as tags for signal transduction and complex carbohydrates between cells and between cells and extracellular matrix in differentiation and development.
  • glycosyltransferase genes have been isolated from eukaryotic organisms such as humans, mice, rats and yeasts. Furthermore, these genes have been expressed in host cells such as CHO cells and E. coli, and proteins having glycosyltransferase activity have been produced. On the other hand, about 20 to 30 types of glycosyltransferase genes have been isolated from bacteria, which are prokaryotes, and proteins having glycosyltransferase activity are expressed in recombinant production systems using Escherichia coli. Characteristics and enzyme chemistry properties have been clarified.
  • sialyltransferase is one of the most in demand among glycosyltransferases.
  • Many galactoside ⁇ 2, 6-sialyltransferases and their genes have been reported from animals, particularly mammals (Hamamoto, T., et al, Bioorg. Med. Chem., 1, 141-145). (1993); Weinste in, J., et al., J. Biol. Chem., 262, 17735-17743 (1987)).
  • Patent Document 1 International Publication No. W098Z38315 Pamphlet
  • Patent Document 2 US Patent 6255094
  • Non-patent literature l Hamamoto, T., et al., Bioorg. Med. Chem "1, 14 to 145 (1993)
  • Non-patent literature 2 Weinstein, J., et al., J. Biol. Chem., 262 , 17735-17743 (1987)
  • Non-Patent Document 3 Yamamoto, T., et al., Biosci. Biotechnol. Biochem., 62 (2), 210-214 (1998)
  • Non-Patent Document 4 Yamamoto, Tsuji, et al., J. Biochem., 123, 94-100 (1998)
  • Non-Patent Document 5 Yamamoto, T “et al., J. Biochem., 120, 104-110 (1996)
  • Non-Patent Document 6 Yu, H., et al "J. Am. Chem. So, 127, 17618-17619 (2005)
  • An object of the present invention is to provide a novel / 3--galatatosidhi 2,6-sialyltransferase derived from a microorganism belonging to the genus Vibatioaceae Photobataterum, and a gene encoding the same. .
  • the present invention also provides a novel —galactoside-a 2, 6_sialyltransferase having higher productivity and / or higher activity compared to known sialyltransferases derived from bacteria, and The purpose is to provide the gene to be encoded.
  • the subject of the present invention is also to provide a method for producing this enzyme at high yield by gene recombination technology using the gene encoding ⁇ -galatatoside 1,6-sialyltransferase of the present invention. That is.
  • the present inventors have isolated over 4,000 strains of microorganisms from all over Japan, and as a result of diligent research on their properties, the present inventors have found that ⁇ - from the strains of microorganisms belonging to the genus Photobacterium. We found a strain that produces galatatosid- 2,6_sialyltransferase activity. Next, a known gene, Photobacterium damse lae, derived from ⁇ -galatatoside- 2,6-sialyltransferase gene DNA was used as a probe. The sialyltransferase gene was cloned.
  • this gene encodes a protein having / 3_galactoside-2,6_sialyltransferase activity, and its enzyme production amount is about 10, per 1L of culture solution. It was found to be as high as 700U.
  • this new recombinant enzyme was purified and detailed As a result of the analysis, the recombinant enzyme efficiently transfers sialic acid to galactose residues, N-acetylgalatatosamine residues, etc. in the sugar chain through ⁇ 2,6 bonds, and the specific activity is about 110 It was also found to be as high as U (unit) / mg.
  • the present invention has been clarified in many respects to be superior to ⁇ -galatatoside 1,6-sialyltransferase derived from the known enzyme Photobacterium damselae. I let you.
  • the present invention provides a novel ⁇ -galatatoside-2,6-sialyltransferase having high productivity and / or high activity, a nucleic acid encoding the same, and a method for producing the sialyltransferase. provide.
  • the present invention provides a novel ⁇ -galatatoside-glycan 2,6-sialyltransferase.
  • j3_galactoside 1,6-sialyltransferase means cytidine monophosphate (CMP) —sialic acid from sialic acid in complex carbohydrate sugar chains or free sugar chains.
  • 6th position of galactose residue 6th position of galactose present in oligosaccharides such as ratatoses or N-acetylyllactosamine, or galactose, N-acetylethylgalatatosamine, glucose, N-acetylidanorecosamine or mannose It means a protein having an activity to transfer to the 6-position of a monosaccharide having a hydroxyl group at the 6-position carbon, which is a monosaccharide that can constitute the complex carbohydrate.
  • “—galactoside- ⁇ 2,6 sialyltransferase activity” means the activity described above for galactoside ⁇ 2,6 sialyltransferase.
  • sialic acid refers to a neuroamic acid derivative belonging to the sialic acid family. Specifically, ⁇ acetylylneuraminic acid (Neu5Ac), ⁇ -glycolylneuraminic acid ( ⁇ eu5Gc), 5-deamino-5-hydroxyneuraminic acid (KDN), disialic acid (di-N-acetylethylneuraminic acid) : Neu5Ac 2, 8 (9) Neu5Ac).
  • Neu5Ac ⁇ acetylylneuraminic acid
  • ⁇ eu5Gc ⁇ -glycolylneuraminic acid
  • KDN 5-deamino-5-hydroxyneuraminic acid
  • disialic acid di-N-acetylethylneuraminic acid
  • the ⁇ -galatatosidhi 2,6-sialyltransferase of the present invention is a protein comprising the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4.
  • the amino acid sequence of SEQ ID NO: 4 corresponds to a sequence in which methionine is added to the terminal of the amino acid sequence of amino acids 18-514 of SEQ ID NO: 2.
  • This ⁇ -terminal methionine originates from the start codon for protein expression and affects the activity as / 3_galactoside 1,6-sialyltransferase. It does not affect the sound.
  • the N-terminal methionine of proteins is often lost by intracellular processing.
  • the / 3-galatatosidhi-2,6-sialyltransferase of the present invention is a protein encoded by a nucleic acid comprising the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3.
  • the nucleotide sequence of SEQ ID NO: 3 corresponds to a sequence in which an initiation codon (ATG) is added to the 5 ′ end of the nucleotide sequence of nucleotides 52-1545 of SEQ ID NO: 1.
  • the nucleotide sequences of SEQ ID NO: 1 and SEQ ID NO: 3 encode the amino acid sequences of SEQ ID NO: 2 and SEQ ID NO: 4, respectively.
  • ⁇ -galatatoside 1,6-sialyltransferase comprising the amino acid sequence of SEQ ID NO: 2 of the present invention
  • the sequence of amino acids 12-15 of SEQ ID NO: 2 is Leu- Thr- Ala- Cys, which is a consensus sequence called a lipobox, is thought to be cleaved in bacteria at the amino terminus of Cys of this consensus sequence (Madan Babu, M. and Sankaran, K. Bioinf ormatics. 18, 641-643 (2002)).
  • the ⁇ -galatatoside mono ⁇ 2,6 sialyltransferase of the present invention may be a protein comprising the amino acid sequence of amino acids 15-514 of SEQ ID NO: 2.
  • the ⁇ -galactoside ⁇ 2,6 sialyltransferase of the present invention may be a protein encoded by a nucleic acid comprising the nucleotide sequence of nucleotides 43-1545 of SEQ ID NO: 1.
  • the present invention is also a mutant of the above-described ⁇ -galactoside- ⁇ 2,6-sialyltransferase of the present invention, which is a mutant protein having / 3_galactoside- 2,6_sialyltransferase activity Is also included. Such a mutant protein is also included in the j3_galactoside-a 2,6-sialyltransferase of the present invention.
  • the mutant protein of the present invention comprises a deletion, substitution, or deletion of one or more amino acids in an amino acid sequence selected from the group consisting of SEQ ID NO: 2, amino acids 15-514 of SEQ ID NO: 2, and SEQ ID NO: 4.
  • a protein comprising an amino acid sequence containing insertions and / or additions and having / 3_galactoside- 2,6, -sialyltransferase activity There may be.
  • the substitution may be a conservative substitution, which is the replacement of a particular amino acid residue with a residue having similar physicochemical characteristics.
  • Non-limiting examples of conservative substitutions include substitutions between aliphatic group-containing amino acid residues such as Ile, Val, Leu or Ala mutual substitutions, Lys and Arg, Glu and Asp, Gin and Asn mutual substitutions. Substitution between polar residues such as substitution is included.
  • Mutations resulting from amino acid deletions, substitutions, insertions and / or additions can be performed on DNA encoding wild-type proteins, for example, by site-directed mutagenesis (eg, Nucleic Acid Research, Vol. .10, No. 20, p. 6487-6500, 1982, which is incorporated herein by reference in its entirety.
  • site-directed mutagenesis eg, Nucleic Acid Research, Vol. .10, No. 20, p. 6487-6500, 1982, which is incorporated herein by reference in its entirety.
  • “one or more amino acids” means amino acids that can be deleted, substituted, inserted and / or added by site-directed mutagenesis.
  • the site-directed mutagenesis method is carried out as follows using, for example, a synthetic oligonucleotide primer complementary to the single-stranded phage DNA to be mutated, in addition to the specific mismatch that is the desired mutation. be able to. That is, the synthetic oligonucleotide is used as a primer to synthesize a complementary strand to the phage, and the resulting double-stranded DNA transforms the host cell. The transformed bacterial culture is plated on agar to form plaques from single cells containing phage. Then, theoretically 50% of the new colonies contain the phage with mutations as single strands, and the remaining 50% have the original sequence.
  • a synthetic oligonucleotide primer complementary to the single-stranded phage DNA to be mutated in addition to the specific mismatch that is the desired mutation. be able to. That is, the synthetic oligonucleotide is used as a primer to synthesize a complementary strand to the
  • the obtained plaque is hybridized with a synthetic probe labeled by kinase treatment at a temperature at which it does not hybridize with the DNA having the desired mutation and a DNA having a strand capable of hybridizing. Next, plaques that hybridize with the probe are picked up and cultured to recover the DNA.
  • one or more amino acid deletions, substitutions, insertions, and Z or attachments may be performed while retaining the activity in the amino acid sequence of a biologically active peptide such as an enzyme.
  • a method of treating a gene with a mutagen, and selective cleavage of the gene, followed by removal, substitution, insertion or addition of the selected nucleotide and ligation at the next is also a method.
  • the mutant protein of the present invention also includes nucleotides 43-15 of SEQ ID NO: 1 and SEQ ID NO: 1.
  • a protein encoded by a nucleic acid comprising a nucleotide sequence comprising one or more nucleotide deletions, substitutions, insertions and / or additions, in a nucleotide sequence selected from the group consisting of 45 and SEQ ID NO: 3.
  • a protein having galactoside ⁇ 2,6 sialic acid transferase activity Nucleotide deletions, substitutions, insertions and / or additions can be performed by site-specific displacement induction as well as by the methods described above.
  • the mutant protein of the present invention further comprises at least 60%, preferably 65% or more of an amino acid sequence selected from the group consisting of SEQ ID NO: 2, amino acids 15-514 of SEQ ID NO: 2, and SEQ ID NO: 4. 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 98% or more, or 99% or more, more preferably 99.5% or more amino acid sequence having amino acid identity It may be a protein comprising / 3_galactoside and 2,6-sialyltransferase activity.
  • the mutant protein of the present invention has at least 70% or more preferably 75% of a base sequence selected from the group consisting of SEQ ID NO: 1, nucleotides 43 to 1545 of SEQ ID NO: 1, and SEQ ID NO: 3. % Or more, 80% or more, 85% or more, 90% or more, 95% or more, 98% or more, or 99% or more, more preferably 99.5% or more of the protein encoded by the nucleic acid, —Galactoside— It may be a protein having ⁇ 2,6 sialyltransferase activity.
  • the percent identity between two amino acid sequences may be determined by visual inspection and mathematical calculation. Alternatively, the percent identity between two protein sequences is based on the algorithm of Needleman, SB and Wunsch, CD (J. Mol. Biol., 48: 443-453, 1970) and the University of Wisconsin Genetics Computer Group ( It may be determined by comparing the sequence information using the GAP computer program available from UWGCG).
  • Preferred default parameters for the GAP program include: (l) Scoring as described in Henikoff, S. and Henikof f, JG (Proc. Natl. Acad. Sci. USA, 89: 10915-10919, 1992). 'Matrix, blosum62; (2) 12 gap weights; (3) 4 gap length weights; and (4) No penalty for end gaps.
  • the percent identity between two nucleic acid sequences can be determined by visual inspection and mathematical calculation, or more preferably, this comparison is made by comparing sequence information using a computer 'program.
  • a typical, preferred computer 'program' is the Wisconsin 'Package, Version 100 program "GAP" from the Genetic Computers Group (GCG; Madison, Wis.) (Devereux, et al., 1984, Nucl. Acids R es., 12: 387).
  • GAP Genetic Computers Group
  • GAP GCG runs of unary comparison matrices for nucleotides (including values of 1 for identical and 0 for non-identical). Gribskov and Burgess, Nucl, as described by Schwartz and Dayhoff, “Atlas of Polypeptide Sequence and Structure,” National Biomedical Research Foundation, pages 353-358, 1979.
  • sequence comparison programs used by those skilled in the art include, for example, US National Medical library website: BLASTN program, version 2.2.7, or UW—BL AST2. Available through http://www.ncbi.nlm.nih.gov/blast/bl2seq/bls.html The 0 algorithm can be used.
  • Standard default parameter settings for UW-BLAST 2.0 are described at the following Internet site: http: ⁇ blast.wustl.edu.
  • the BLAST algorithm uses a BLOSUM62 amino acid scoring matrix, and one of the selection parameters that can be used is: (A) a segment of query sequence with low composition complexity (Wootton and Federhen SEG Determined by the program (Computers and Chemistry, 1993); Wootton and Federhen, 1996 “Analysis of compositionally biased regions m sequence databases Methods EnzymoL, 26: 544-/ ⁇ Including a filter to mask segments (see also 1), or segments consisting of short-periodic internal repeats (determined by the XNU program of Claverie and States (Computers and Chemistry, 1993)), And (B) a threshold of statistical significance for reporting a match against the database sequence, or E-score (Karlin and And Altschul, 1990) according to the statistical model, the expected probability of a fit found by chance; statistically significant difference due to
  • the mutant protein of the present invention also has a nucleotide sequence that hybridizes under stringent conditions to a complementary strand of a nucleotide sequence selected from the group consisting of SEQ ID NO: 1, nucleotides 43-1545 of SEQ ID NO: 1, and SEQ ID NO: 3. It may be a protein encoded by a nucleic acid comprising / 3_galactoside-2,6-sialyltransferase activity.
  • under stringent conditions means to hybridize under moderately or highly stringent conditions.
  • moderately stringent conditions can be easily determined by those skilled in the art based on, for example, the length of DNA.
  • the basic conditions are Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd Opposite, Chapter 6-7, Cold Spring Harbor Laboratory Press, 20 01, and for nitrocellulose filters, 5 X SSC, 0.5% SDS, 1. OmM EDTA (pH 8. 0) Pre-wash solution, about 40-50.
  • hybridization solutions such as Star k's solution in C, about 50% honremamide, 2 X SSC-6 X SSC (or about 50% formamide at about 42 ° C) ) And hybridization conditions of, for example, about 40 ° C-60 ° C, 0.5-6X SSC, 0.1% SDS.
  • moderately stringent conditions include hybridization conditions (and washing conditions) of about 50 ° C. and 6 ⁇ SSC. High stringency conditions can also be easily determined by one skilled in the art, eg, based on DNA length.
  • these conditions are hybridized at higher temperatures and at Z or lower salt concentrations than moderately stringent conditions (eg, about 65 C, 6 X SSC). 2 X SSC, preferably 6 X SSC, more preferably 2 X SSC, most preferably 0.2 X SSC hybridization) and / or washing, for example, hybridization conditions as described above, and Approximately 65. C—68. Defined as washing with C, 0.2 X SSC, 0.1% SDS.
  • SSC (1 X SSC is 0.15M NaCl and 15 mM sodium citrate) to SSPE (1 X SSPE is 0.15M NaCl, 10 mM NaH P0, and 1. 25mM EDTA, pH 7.4
  • hybridization kit that does not use a radioactive substance for the probe.
  • specific examples include hybrids using the white birch (ECL direct la eling & detection system (manufactured by Amersham), etc.)
  • stringent hybridizations include blocking in the hybridization buffer in the kit. Reagents were added to 5% (w / v) and NaCl to 0.5M and performed for 4 hours at 42 ° C, washing was performed in 0.4% SDS, 0.5x SSC, 55. For example, the conditions may be as follows: 2 minutes, 2xSSC in room temperature, 5 minutes once.
  • Sialyltransferase activity is measured by a known method such as J. Biochem., 120, 104-110 (1996). ) May be measured by the method described in (incorporated herein by reference in its entirety). For example, an enzyme reaction is performed using CMP-NeAc (N-acetylneuraminic acid) as a sugar donor substrate and ratatose as a sugar acceptor substrate, and the amount of silyl lactose as a reaction product is evaluated. The enzyme activity can be evaluated with this method. Enzyme 1 unit (1U) is the amount of enzyme that transfers 1 micromole of sialic acid per minute.
  • CMP-NeAc N-acetylneuraminic acid
  • the method for determining the binding mode of sialic acid transferred to the sugar acceptor substrate is not limited, but includes a method using a pyridylaminated sugar chain, and analysis of the reaction product by nuclear magnetic resonance spectroscopy (NMR). Any of the techniques known to those skilled in the art can be used.
  • a technique using a pyridyl aminated sugar chain includes performing an enzyme reaction using the pyridyl aminated sugar chain as a sugar acceptor substrate.
  • an enzyme reaction is performed using pyridinoreminated alatatose (Gal / 3l_4Glc_PA, manufactured by Takara Bio) as a sugar acceptor substrate and CMP-NeAc as a sugar donor substrate, and the reaction product is subjected to high-performance liquid chromatography. Analyze by HPLC and identify the position where sialic acid was transferred from the retention time of the reaction product.
  • the enzyme of the present invention is derived from a microorganism belonging to the genus Photobatterium.
  • the enzyme of the present invention is not particularly limited as long as it is a microorganism belonging to the genus Photobatterium, and may be an enzyme derived from a new species of microorganism belonging to the genus Photobatterium.
  • the enzymatic and physicochemical properties of ⁇ -galactoside ⁇ 2,6 sialyltransferase of the present invention are characterized by having the galactoside ⁇ 2,6 sialyltransferase activity defined above.
  • the optimum ⁇ is in the range of ⁇ 5-6
  • the optimum temperature is 25-35 ° C
  • the molecular weight is about 56,000 soil 3, OOODa by SDS-PAGE analysis. It is.
  • the ⁇ -galatatoside 1,6-sialyltransferase of the present invention is characterized by having a high-galactoside 2,6-sialyltransferase activity.
  • high j3-galatatoside 1,2,6-sialyltransferase activity means that it has an activity of 6 U or more, 10 U or more, 20 U or more, 40 U or more, 60 U or more, 100 U or more per lmg of enzyme. .
  • ⁇ -Galactoside-H2-6-Sialyltransferase-encoding nucleic acid The present invention provides a nucleic acid encoding a galactoside ⁇ 2,6 sialyltransferase.
  • the nucleic acid of the present invention is a nucleic acid encoding a protein comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 2, amino acids 15-514 of SEQ ID NO: 2, and SEQ ID NO: 4.
  • the nucleic acid of the present invention is also a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1, nucleotides 43-1545 of SEQ ID NO: 1, and SEQ ID NO: 3.
  • the nucleic acid of the present invention may be a variant of the above-described nucleic acid, which may encode a protein having / 3-galatatoside- 2,6, -sialyltransferase activity. Such a nucleic acid is also included in the nucleic acid encoding the / 3-galatatoside-2,6-sialyltransferase of the present invention.
  • Such a nucleic acid variant is a deletion or substitution of one or more amino acids in an amino acid sequence selected from the group consisting of SEQ ID NO: 2, amino acids 15-514 of SEQ ID NO: 2, and SEQ ID NO: 4.
  • a nucleic acid encoding a protein comprising an amino acid sequence containing insertions and / or additions and having ⁇ -galactoside ⁇ 2, 6 sialyltransferase activity.
  • the nucleic acid variant of the present invention also has a deletion of one or more nucleotides in a base sequence selected from the group consisting of SEQ ID NO: 1, nucleotide 43-1545 of SEQ ID NO: 1, SEQ ID NO: 3, A nucleic acid comprising a base sequence containing substitutions, insertions and / or additions. Amino acid or nucleotide deletions, substitutions, insertions and / or additions can be introduced by the methods described above.
  • such a nucleic acid variant is preferably at least 60% or more of an amino acid sequence selected from the group consisting of SEQ ID NO: 2, amino acids 15-514 of SEQ ID NO: 2, and SEQ ID NO: 4. Is over 65 Q / o, 70 ° /. More than 75%, 80 ° /. More than 85 ° /. Or more, 90% or more, 95% or more, 98% or more, or 99% or more, more preferably a protein comprising an amino acid sequence having 99.5% or more identity, wherein j3_galactoside 2, 6 —Nucleic acid encoding a protein having sialyltransferase activity.
  • the variant of the nucleic acid of the present invention is also preferably a base sequence selected from the group consisting of SEQ ID NO: 1, nucleotides 43-1545 of SEQ ID NO: 1, and SEQ ID NO: 3, preferably 70% or more, 75. / 0 or more, 80. / ⁇ or more, 85% or more, 90% or more, 95. / 0 or more, 98% or more or 99% or more, more preferably 99.5% or more identity
  • the identity of amino acid sequences or base sequences can be determined by the method described above.
  • Such a nucleic acid variant further has a condition that is stringent to a complementary strand of a base sequence selected from the group consisting of SEQ ID NO: 1, nucleotides 43-1545 of SEQ ID NO: 1, and SEQ ID NO: 3, or A nucleic acid comprising a nucleotide sequence that hybridizes under highly stringent conditions, wherein the nucleic acid encodes a protein having ⁇ -galatatoside 2,6-sialyltransferase activity.
  • stringent conditions or highly stringent conditions are as defined above.
  • the present inventors have found that a microorganism belonging to the genus Photobatterium belonging to the Vibrio family expresses a novel —galactosidic 1,6-sialyltransferase. Accordingly, the present invention provides a microorganism that expresses ⁇ -galactoside ⁇ 2,6 sialyltransferase.
  • the microorganism of the present invention belongs to the genus Photobatterium and has the ability to produce ⁇ -galatatoside- ⁇ 2,6 sialyltransferase.
  • microorganisms belonging to the genus Photobacterium having the ability to produce galactoside ⁇ 2,6 sialyltransferase include the genus Photobacterium sp. : ⁇ [Ding BP-87).
  • the above-mentioned microorganisms of the genus Photobatterium are generally marine bacteria and are isolated from seawater or seafood.
  • the photobatterium genus JT-ISH-224 strain of the present invention was isolated from a power trout produced in Ishikawa Prefecture.
  • the microorganism of the present invention can be separated using a screening method as described below, for example.
  • Seawater, sea sand, sea mud or marine fish and shellfish are used as microbial sources.
  • Seawater, sea sand, and sea mud should be used as inoculum as they are or diluted with sterile seawater.
  • For marine seafood, surface mucus or the like is scraped with a loop and used as an inoculum, or a liquid obtained by grinding internal organs in sterile seawater is used as an inoculum.
  • Marine Broswager 2216 medium Betaton Dickinson
  • Nutrientagar medium supplemented with sodium chloride Betaton Dickinson
  • Marine Broth 2216 medium Betaton ' Incubate each microorganism using a liquid medium such as Dickinson's or Nutrient broth medium supplemented with sodium chloride (Betaton's Dickinson's). After the microorganisms have fully grown, collect the cells from the culture by centrifugation.
  • the photobatterium genus JT-ISH-224 strain of the present invention was obtained by using the screening method described above.
  • Example 1 details the bacteriological and physiological biochemical properties of the strains obtained above, and the identification of the species by base sequence analysis of the 16S_rRNA gene.
  • Photobatterium genus JT—ISH—224 strains were licensed as NITE BP-87 on March 11, 2005, according to the terms of the Budapest Treaty, as a licensed microorganisms center of the National Institute for Product Evaluation and Technology ( NPMD: National Institute of Technology and Evaluation, Patent Microorganisms Depositary; Deposited at Kisarazu Kazusa Kamashita 2-5-8), Chiba Prefecture, Japan.
  • the present invention also relates to a method for producing the ⁇ -galactoside a 2,6 sialyltransferase of the present invention.
  • the method of the present invention produces a high yield of the enzyme of the present invention.
  • the productivity of the enzyme of the present invention in the method of the present invention is 50 U / L or more, 1,000 U / L or more, 10,000 U / L or more per 1 L of culture solution.
  • the ⁇ -galatatoside-2,6-sialyltransferase of the present invention is derived from a microorganism belonging to the genus Photobataterum, and j3_galactoside 1,2,6-sialyltransferase It can be obtained by culturing a microorganism having enzyme-producing ability in a medium to produce monogalactoside-2,6-sialyltransferase and collecting it.
  • the microorganism used here belongs to the genus Photobataterum, and ⁇ -galatatoside Any microorganism can be used as long as it is capable of producing sialyltransferase. Those belonging to the genus Photobatarum are preferred. Examples of microorganisms used in the method of the present invention include Photobatterium sp. JT-ISH-224 (deposit number NITE B P — 87).
  • a medium used for culturing the microorganism a medium containing a carbon source, a nitrogen source, an inorganic substance and the like that can be used by the microorganism is used.
  • the carbon source include peptone, tryptone, casein degradation product, meat extract, glucose and the like, and preferably peptone is used.
  • yeast extract is preferably used.
  • Salts include sodium chloride, iron citrate, magnesium chloride, sodium sulfate, calcium chloride, sodium chloride potassium, sodium carbonate, sodium bicarbonate, potassium bromide, sodium chloride strontium, sodium borate, sodium silicate, fluoride.
  • Sodium fluoride, ammonium nitrate, disodium hydrogen phosphate and the like are preferably used in appropriate combinations.
  • a marine broth 2216 medium (Betaton Dickinson) containing the above components may be used.
  • a medium in which artificial seawater appropriately containing the above salts is used and peptone, yeast extract or the like is added thereto may be used.
  • the culture conditions vary slightly depending on the composition of the culture medium. For example, when culturing Photobacterium sp. JT-ISH-224, the culture temperature is 20-30 ° C, preferably about 25-30 ° C.
  • the culture time is 6 to 48 hours, preferably about 15 to 24 hours.
  • the target enzyme is present in the microbial cells
  • a known microbial cell disruption method such as an ultrasonic pulverization method, a French press pulverization method, a glass bead pulverization method, or a dynomill pulverization method may be used.
  • the target enzyme is separated and purified from the crushed microbial cells.
  • a preferable cell disruption method in the method of the present invention is an ultrasonic disruption method.
  • the obtained cell lysate supernatant is used as a commercially available anion exchange column, cation exchange column, gel filtration column, hydroxyapatite column, CD P_ Column chromatography such as hexanolamine agarose column, CMP-hexanolamine agarose column, hydrophobic column, and native PAGE can be combined appropriately and purified.
  • ⁇ -galatatoside- 2,6, -sialyltransferase may be completely purified, Since the partially purified product has sufficient activity, the; 3-galactoside-a 2,6 sialyltransferase of the present invention may be a purified product or a partially purified product.
  • the present invention provides an expression vector containing a nucleic acid encoding ⁇ -galatatoside-2,6, -sialyltransferase, and a host cell containing the expression vector. Then, the present invention cultivates a host cell containing the expression vector under conditions suitable for the expression of the recombinant protein, and recovers the expressed recombinant protein. A method for producing 2,6-sialyltransferase protein is also provided.
  • a mammal, microorganism, virus, or insect is added to an expression vector selected according to the host to be used.
  • a nucleic acid sequence operably linked to an appropriate transcriptional or translational regulatory nucleotide sequence derived from a gene or the like—coding a galactoside 2, 6_sialyltransferase is inserted.
  • regulatory sequences include transcriptional promoters, operators or enhancers, mRNA ribosome binding sites, and appropriate sequences that control transcription and translation initiation and termination.
  • the nucleic acid sequence encoding ⁇ -galactoside ⁇ 2,6-sialyltransferase inserted into the vector of the present invention encodes the above-described ⁇ -galactoside ⁇ 2,6-sialyltransferase of the present invention.
  • the base sequence of the nucleic acid This sequence may or may not include a leader sequence.
  • a leader sequence When a leader sequence is included, it may be a leader sequence corresponding to nucleotides 1 to 42 of SEQ ID NO: 1 or may be replaced with a leader sequence derived from another biological source. By replacing the leader sequence, the expression system can be designed to secrete the expressed protein out of the host cell.
  • the recombinant / 3-galatatoside 1, 2, 6-sialyltransferase protein of the present invention has a nucleic acid encoding the enzyme followed by His tag, FLAG TM tag, dartathione S-transferase, etc. It is also possible to express as a fusion protein by inserting a nucleic acid linked with a nucleic acid coding for into a vector. By expressing the enzyme of the present invention as such a fusion protein, purification and detection of the enzyme can be facilitated.
  • Suitable host cells for expression of ⁇ -galactoside- ⁇ 2,6 sialyltransferase protein include prokaryotic cells, yeast or higher eukaryotic cells.
  • Suitable cloning and expression vectors for use in bacterial, fungal, yeast, and mammalian cell hosts include, for example, Pou wels et al., Lonmg Vectors: A Laboratory Manual, Elsevier, New ork, (1985) Are incorporated herein by reference).
  • Prokaryotes include gram negative or gram positive bacteria, for example E. coli or Bacillus subtilis.
  • E. coli gram negative or gram positive bacteria
  • Bacillus subtilis When prokaryotic cells such as E. coli are used as hosts, the ⁇ -galatatoside 1,6-sialyltransferase protein contains a ⁇ -terminal methionine residue to facilitate expression of the recombinant polypeptide in the prokaryotic cell. Even if it includes a group. This terminal methionine can also be cleaved from the recombinant 2,6-sialyltransferase protein after expression.
  • Expression vectors used in prokaryotic host cells generally contain one or more phenotypically selectable marker genes.
  • a phenotypically selectable marker gene is, for example, a gene that confers antibiotic resistance or confers autotrophic requirements.
  • Examples of expression vectors suitable for prokaryotic host cells include commercially available plasmids such as pBR322 (ATCC37017) or those derived therefrom. Since pBR322 contains genes for ampicillin and tetracycline resistance, it is easy to identify transformed cells.
  • a DNA promoter U of a nucleic acid encoding an appropriate promoter and galactoside ⁇ 2,6 sialyltransferase is inserted into this pBR322 vector.
  • Other commercially available vectors include, for example, ⁇ 223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and pGEMl (Promega Biotech., Madison, Wisconsin, USA).
  • Promoter sequences commonly used in expression vectors for prokaryotic host cells include tac promoter, ⁇ -lactamase (Penicillinase J promoter, lactose fluoromoter (Chang et al., Nature 275: 615, 1978; and Goeddel Et al., Nature 281: 544, 1979, which is incorporated herein by reference in its entirety.
  • Recombinant ⁇ -galatatoside 2,6_sialyltransferase protein may be expressed in a yeast host.
  • Saccharomyces eg S. cer Forces using evisiae
  • Other yeast genera such as Pichia or Kluyveromyces may be used.
  • Yeast vectors include the origin of replication from 2 ⁇ yeast plasmids lj, self-replicating replication IJ (ARS), promoter region, alignment IJ for polyadulylation, sequences for transcription termination, and selectable markers. Often contains genes.
  • the yeast spleen factor leader sequence can also be used to secrete recombinant 3_galactoside 1,6-sialyltransferase protein.
  • leader sequences that are suitable for promoting the secretion of recombinant polypeptides from yeast hosts are also known. Methods for transforming yeast are described, for example, in Hinnen et al., Proc. Natl. Acad. Sci. USA, 75: 1929-1933, 1978 (incorporated herein by reference in its entirety).
  • Recombinant ⁇ -galatatoside-2,6_sialyltransferase protein can also be expressed using mammalian or insect host cell culture systems. Mammalian origin cell lines can also be used. Transcriptional and translational control for mammalian host cell expression vectors ⁇ ⁇ ⁇ IJ can be obtained from the viral genome. Commonly used promoter sequences and enhancer sequences are derived from poliovirus, adenovirus 2, and the like. SV40 viral genome, eg, SV40 origin, early and late promoters, enhancers, splice sites, and polyadenylation sites for the expression of structural gene sequences in mammalian host cells using induced DNA sequences You can give other genetic elements. Vectors for use in mammalian host cells are constructed, for example, by the method of Okayama and Berg (Mol. Cell. Biol., 3: 280, 1983, which is incorporated herein by reference in its entirety). Can do.
  • One method of producing the ⁇ -galactoside ⁇ 2,6 sialyltransferase protein of the present invention comprises a nucleic acid sequence encoding a / 3_galactoside 1,6-sialyltransferase protein. Culturing host cells transformed with the expression vector under conditions under which the protein is expressed. Then, depending on the expression system used, one galactoside 1,6_sialyltransferase protein is recovered from the culture medium or cell extract.
  • recombinant / 3-galactoside-2,6 sialyltransferase protein is appropriately selected according to the type of host used and whether the protein of the present invention is secreted into the culture medium. Is done.
  • recombinant / 3 _ galactoside-2, 6-shear For the purification of phosphotransferase protein, anion exchange column, cation exchange capacity ram, gel filtration column, hydroxyapatite column, CDP hexanolamine agarose column, CMP hexanolamine agarose column Column Column chromatography such as hydrophobic columns, and native—PAGE etc., or combinations thereof.
  • affinity chromatography When recombinant ⁇ -galatatoside- 2,6, -sialyltransferase is fused with a tag that facilitates purification, expression using affinity chromatography can be used. Good. For example, when a histidine tag, FLAG TM tag, or dartathion-S-transferase (GST) is fused, a Ni-NT A (bi-tri-acetic acid) column and an anti-FLAG antibody column are connected, respectively. Alternatively, it can be purified by affinity chromatography using a column coupled with dartathione.
  • GST dartathion-S-transferase
  • Recombinant / 3-galactoside-2,6 sialyltransferase may be purified by electrophoresis until it becomes a single band. However, even a partially purified product has sufficient activity.
  • Galactoside-2,6 sialyltransferase may be a purified product or a partially purified product.
  • the present invention provides an antibody against the ⁇ -galactoside ⁇ 2,6 sialyltransferase protein of the present invention.
  • the antibody of the present invention may be prepared against the ⁇ -galactoside ⁇ 2,6-cyanoleyltransferase protein of the present invention, or a fragment thereof.
  • the i3-galactoside ⁇ 2,6 sialyltransferase fragment of the present invention contains at least 6 mino acids and ⁇ at least 10 liters of mino acids in the enzyme. Mino acid, at least 20-amino acid, or a fragment having a sequence comprising at least 30 amino acids.
  • the antibody is a / 3-galatatoside mono 2,6-sialyltransferase of the present invention, or a fragment thereof, which is not limited to animals used for antibody production in the art, for example, but not limited thereto. However, you can immunize mice, rats, rabbits, guinea pigs, goats, and so on.
  • the antibody may be a polyclonal antibody or a monoclonal antibody.
  • An antibody can be produced based on antibody production methods well known to those skilled in the art.
  • the antibody of the present invention comprises the ⁇ -galatatosidhi 2,6-sialyltransferase protein of the present invention.
  • the quality can be used to recover by affinity purification.
  • the antibody of the present invention can also be used to detect the i3-galactoside ⁇ 2,6 sialyltransferase protein of the present invention in an assay such as Western blotting or ELISA.
  • the present invention has an important function in vivo by providing a novel / 3-galatatosidone 2,6-sialyltransferase and a nucleic acid encoding the same. Synthesizing and producing sugar chains ⁇ Providing a means of production contributes to the point of view.
  • the ⁇ -galactoside ⁇ 2,6 sialyltransferase of the present invention has high production efficiency, high specific activity, and a wide range of receptor substrate specificity compared with the existing ones. .
  • sialic acid is an extremely important sugar from the viewpoint of sugar chain function
  • sialic acid transferase is the most demanded glycosyltransferase among the glycosyltransferases.
  • the provision of the novel sialyltransferase of the present invention meets such high demand.
  • FIG. 1-1 shows the results of HPLC analysis of a reaction solution obtained by reacting the crude enzyme solution of JT-ISH-224 strain with pyridylaminated ratatose ( ⁇ -latatose) and CMP-sialic acid.
  • FIG. Retention time 3 The peak at 995 minutes is ⁇ -latatose, the peak at 389 minutes is PA-6'-Cialyl ratatose, and the peak at 5.396 minutes is PA-3'-Cialyl ratatose .
  • FIG. 2 is a diagram showing the results of HPLC analysis of a reaction solution obtained by reacting a crude enzyme solution of JT-ISH-224 strain with pyridinoremination ( ⁇ ) ratatose.
  • Figure 11 shows the result of a control experiment in which CMP sialic acid, a sialic acid donor, was not mixed in the reaction solution. The peak with a retention time of 3.993 minutes is ⁇ -latatose.
  • Fig. 1-3 shows the results of HPLC analysis of a sample of ⁇ -latatose.
  • PA Lattose appears as a peak with a retention time of 4.026 minutes.
  • FIG. 1-4 shows the results of HPLC analysis of a sample of PA-3'-sialyllatose.
  • PA-3'-Chalyllatatose appears as a peak with a retention time of 5.447 minutes.
  • FIG. 1-5 shows ⁇ from the known enzyme Photobacterium damselae JT0160.
  • FIG. 4 is a diagram showing the results of HPLC analysis of a reaction solution in which galactoside ⁇ 2,6 sialyltransferase is reacted with PA ratatose and CMP sialic acid (pyridinoleminated a 2,6 sialyl ratatose is produced).
  • the peak with a retention time of 4.000 minutes is ⁇ -latatothose, and the peak at 4.406 minutes is PA-6'-sialyllatose.
  • FIG. 1-6 is a diagram showing the results of HPLC analysis of a reaction solution obtained by reacting a 2,6-sialyltransferase derived from Photobacterium damselae JT0160, a known enzyme, with PA ratatoses. .
  • this is a control experiment in which CMP-sialic acid is not mixed in the reaction solution. Peak retention time 3.995 minutes is PA- Ratatosu.
  • Fig. 2-1 is a graph showing the effect of reaction pH on the enzyme activity of recombinant j3_galactoside 1,6-sialyltransferase derived from JT-ISH-224.
  • the abbreviations in the figure indicate the following: Ac: acetate buffer, Cac: force codylate buffer, Phos: phosphate buffer, TAPS: TAPS buffer.
  • Fig. 2-2 is a graph showing the effect of reaction temperature on the enzyme activity of recombinant galactoside ⁇ 2,6-sialyltransferase derived from JT-ISH-224.
  • Fig. 2-3 is a graph showing the effect of NaCl concentration in the reaction solution on the enzyme activity of recombinant galactoside ⁇ 2,6 sialyltransferase derived from JT-ISH-224
  • Example 1 ⁇ -galactoside broth 2. Screening and identification of microbeef cattle producing 6-sialyltransferase
  • Seawater, sea sand, sea mud or seafood was used as the inoculum.
  • This inoculum was applied on a plate medium composed of Marine Brossugager 2216 medium (Betaton Dickinson) to obtain microorganisms that grew at 15 ° C, 25 ° C or 30 ° C.
  • the obtained microorganisms were purely cultured, and then each microorganism was cultured using a liquid medium composed of Marine Broth 2216 medium (Betaton Dickinson). After the microorganisms have fully grown, Was collected by centrifugation.
  • Sialic acid transfer activity was measured by the method described in J. Biochem., 120, 104-110 (1996) (incorporated herein by reference in its entirety). Specifically, the sugar donor substrate CMP—NeAc (70 nmol, containing NeuAc labeled at 14 C and containing about 20,000 cpm NeuAc represents N-acetylethylneuraminic acid), the sugar acceptor substrate Lactose (1.25 zmol), NaCl as 0.5M concentration, and enzyme reaction using the reaction solution (30 ⁇ 1) containing the enzyme prepared by the method described above Went. The enzyme reaction was performed at 25 ° C for 10 to 180 minutes. After completion of the reaction, the reaction solution 1. 5 mM phosphate buffer ( ⁇ 6 ⁇ 8) of Karoe, this solution Dowexl X 8 ( ⁇ 3 form 97 ml, 0 ⁇ 2
  • the enzyme activity was calculated by measuring the reaction product contained in the eluate (0-2 ml) of this column, ie, the radioactivity contained in sialyllatatose.
  • One unit of enzyme (1U) is the amount of enzyme that transfers 1 micromolar sialic acid per minute.
  • JT-ISH-224 strain was found to have j3-galactoside-2,6-sialyltransferase activity and / 3_galactoside-2,3-sialyltransferase activity ( Figure:! 1:! ⁇ 6).
  • the morphology of the cells is Neisseria gonorrhoeae, and the size is 0.7 to 0.8 x m Xl. 0 to: 1.5 ⁇ m.
  • JT-ISH-224 strain belongs to Vibrio family from the results of morphological observation and physiological 'biochemical property test such as growth on malinagager, Neisseria gonorrhoeae, Gram staining, glucose fermentative degradability, OZ129 sensitivity. It was done.
  • the DNA base sequence of the 16S rRNA gene of JT-ISH-224 is most homologous to that of the 16S rRNA gene of the reference strain ATCC 11040, a reference strain of Photobacterium phosphoreum. Its homology rate is 99.2%, and next, its homology rate is 99. It is highly homologous to the 16S rRNA gene sequence of the reference strain ATCC 51760 of Photobacterium iliopiscarium. It was found to be 1%. From these results, it was clarified that the JT-ISH-224 strain is a microorganism belonging to the genus Photobacterium sp.
  • Example 1/3 Galactoside-2,6-sialyltransferase activity was clearly demonstrated.
  • T-ISH-224 strain the photobatterium 'Damcella JT0160-derived ⁇ -galatatoside-
  • genomic Southern hybridization was performed. About 10 g of genomic DNA was prepared from about 0.5 g of JT ISH — 224 cell pellets using Qiagen Genomic-tip 100 / G (manufactured by Qiagen) according to the instructions attached to the kit.
  • Hybridization experiments were performed using the ECL direct labeling & detection system (Amersham). The probe was labeled according to the instructions attached to the kit. Hybridization was performed at 37 ° C (usually 42 ° C) for 4 hours with 5% (w / v) Blocking reagent and 0.5M NaCl added to the hybridization buffer in the kit. . Washing was performed in 0.4% SDS, 0.5 ⁇ SSC twice at 50 ° C. (usually 55 ° C.) for 20 minutes and once in 2 ⁇ SSC at room temperature for 5 minutes. Signal detection was in accordance with the instructions attached to the kit. As a result, about 12. A 5 kb band was detected by Hindlll digestion and an approximately 9 kb band was detected. From this result, it was clarified that the JT-I SH-224 strain has a homologue of the galactoside 1 ⁇ 2, 6-sialyltransferase gene derived from the photobatterium damsella JT0160 strain.
  • Partial digestion was carried out by reacting with Sau3AI, a restriction enzyme of 0.:! To 0.2 units of 4-base recognition, in the genomic DNA of JT-ISH-224 strain. The total amount of genomic DNA was 80 x g. The reaction buffer attached to the enzyme was used, and the reaction conditions were 37 ° C and 30 minutes. After completion of the reaction, EDTA pH 8.0 with a final concentration of 25 mM was added to the reaction solution, and phenol / chloroform treatment was performed. Genomic DNA was recovered by ethanol precipitation and dissolved in TE 400 ⁇ .
  • centrifuge tube (Hitachi 40mm) — A 10% gradient was prepared, and the above partially degraded DNA solution was layered on it. 26, OOOrpm, 20, using an ultracentrifuge (SCP70H, rotor: SRP28SA manufactured by Hitachi, Ltd.). C, centrifuged for 15 hours. After centrifugation, a hole was made with a 25G needle at the bottom of the tube, and lml was collected from the liquid at the bottom.
  • a portion of the sample containing the collected genomic DNA was electrophoresed in a 0.5-0.6% agarose gel / TAE buffer at 26V for 20 hours using a submarine electrophoresis gel.
  • the fraction containing DNA was grasped.
  • ⁇ / HindIII was used as a marker.
  • 9 2.5 ml of TE was added to the fraction containing the DNA fragment of 16 kb to lower the sucrose concentration, followed by ethanol precipitation and rinsing, and then dissolving in a small amount of TE.
  • ⁇ DASH II (manufactured by Stratagene) was used as a vector for preparing a genomic library of JT—ISH—224 strain.
  • the ligation reaction between the ⁇ DASH IlZBamHI vector and the genomic DNA fragment was performed at 12 ° C using a ligation kit manufactured by Stratagene. After the reaction, the reaction solution was reacted with GigaPack III Gold Packaging extract, and the ⁇ vector containing the genomic DNA was incorporated into the phage particles.
  • the phage solution was stored at 4 ° C in a 500 ⁇ 1 SM buffer and 20 ⁇ ⁇ ⁇ black mouth form.
  • phage solution was added to 200 ⁇ l of this culture solution, followed by incubation at 37 ° C. for 15 minutes.
  • 4 ml of NZY top agarose kept at 48 ° C was added, mixed, and plated on a NZ Y agar plate (plastic petri dish with a diameter of 9 cm). The plate was incubated overnight at 37 ° C, the number of plaques was counted, and titer was calculated.
  • the library size was calculated to be about 300,000 pfu (plaque forming unit).
  • Probe labeling and hybridization conditions were performed by the method described in (1) above. As a result, 8 clones were obtained by the secondary selection for plaque purification, and 4 of them were collected, each with E. coli XLl-blue MRA (P2) so that each NZY plate would be 10,000 pfu. And incubated at 37 ° C. 4 ml of SM buffer was poured into 6 plates with plaques on one side and left at 4 ° C. Phage plate lysate was collected with a pastel pipette, and ⁇ DNA was extracted and purified with QIAGEN Lambda Mini Kit (Qiagen).
  • the enzymes used are BglII, EcoRV, Kpnl, Nhel, Pstl, PvuII, Sacl, Sail, Xbal.
  • a band of 6 ⁇ 6 kb was detected with EcoRV, 7 kb with ⁇ , and 3.5 kb with Nhel. Therefore; I DNA samples were again erased with Nhel and subjected to agarose gel electrophoresis using low melting point agarose (SeaPlaqueGTG) in TAE buffer. 3.
  • a 5 kb DNA fragment was excised together with the gel, 200 mM NaCl equivalent to the gel was added and treated at 65 ° C. for 10 minutes to melt the gel.
  • This sample was extracted with phenol, extracted with phenol and black form, and extracted with ethanol once, and a 3.5 kb DNA fragment was recovered by ethanol precipitation.
  • This fragment was ligated to the Xbal site (dephosphorylated) of the plasmid vector pBluescript SK (-) using a Ligation kit (Takara Bio).
  • the DNA was transformed into E. coli TBI using electoporation and plated on LA agar medium containing ampicillin (100 (gZmL). 37 ° C—multiple colonies obtained overnight was inoculated into (containing ampicillin), 37 ° C De and ⁇ Tou culture, an ordinary method (Sambrook et al. 1989, Molecular Cloning, a lab oratory Momosara al, 2 nd edition (herein by reference in its entirety The plasmid was extracted according to the following)).
  • the amino acid sequence translated from one of the DNA sequences was significantly identical to the amino acid sequence of Photobataterum damsella strain JT0160 / 3-galactoside 1,6-sialyltransferase. Due to the orientation of the region showing the identity, the 3.5 kb Nhel fragment is completely 3 ⁇ 4 [T_ISH_224 strain / 3_galactosidic 2,6-sialic acid transfer. It was suggested that a transfer enzyme gene was included.
  • ISH224-26ST-C3-R (5'-TTCATCGTCATCTAATCGTGGC-3 '(22 mer): SEQ ID NO: 6);
  • ISH224-26ST-C4-R (5′-AGTTGTTGCGTACCACAAGT-3 ′ (20 mer): SEQ ID NO: 7) was synthesized and used for nucleotide sequencing.
  • SEQ ID NO: 1 the sequence of SEQ ID NO: 1 in the sequence listing was obtained.
  • This sequence is the entire nucleotide sequence of the open reading frame ( ⁇ RF) of the j3_galactoside 1, 6-sialyltransferase gene derived from the JT-ISH-224 strain.
  • the ORF of the photobatterium genus JT-ISH-224 // 3_galactoside 1,6-sialyltransferase gene consists of 1545 base pairs and encodes 514 amino acids. This amino acid sequence is shown in SEQ ID NO: 2 in the sequence listing. Analysis of DNA distribution IJ and amino acid sequence using GENETYX Ver.
  • DNA sequence of 3-galactoside ⁇ 2,6-sialyltransferase gene is It had 63% identity with the ⁇ -galactoside ⁇ 2,6-sialyltransferase gene derived from Photobata terrum damsella strain JT0160.
  • the amino acid sequence also showed 54.5% identity with galactoside mono- ⁇ 2,6-sialyltransferase (IC5898) from Photobacterium damsella strain JT0160.
  • ISH224—26ST—NOBspHI 5′—AGAATATCATGAAAAACTTTTTATTATTAAC-3 ′ (31 mer): SEQ ID NO: 8
  • a gene encoding a protein of a type from which the amino acid of the signal peptide portion is removed in this example, expressed as ISH22 4—N 1 C0
  • ISH224_26ST-N lPciI 5'-CTTGTAACATGTCAGAAGAAAATACACAATC-3 '(31 mer): SEQ ID NO: 9
  • ISH22 4-26ST-C0BamHI 5, -TTTTTTGGATCCCTAGACTGCAATACAAACACC_3, (33 mer): SEQ ID NO: 10) was designed
  • PCR products were cloned into the vector pCR4TOP0 (Invitrogen).
  • the ligation reaction followed the instructions attached to the vector kit.
  • the DNA was introduced into E. coli TB I using the erect-mouth method, and the plasmid DNA was extracted according to a conventional method (Sambrook et al. 1989, Molecular Cloning, A laboratory manual, 2 edition;
  • the base sequence of the PCR product was determined by using the M13 primer (manufactured by Takara) with the ABI PRISM fluorescent sequencer (Model 310 Genetic Analyzer, manufactured by Perkin Elmer).
  • ISH224-N0C0 the 718th thymine (T) of SEQ ID NO: 1 in the sequence listing was base-substituted with cytosine (C), which caused the codon to change from TTA to CTA. Although both of these codons encode leucine (Leu), amino acid mutations Does not occur.
  • ISH224-N1C0 there was no change in the base sequence of ISH224-N1C0.
  • the base sequence of ISH224—N1 CO is shown in SEQ ID NO: 3.
  • PTrc99A (Pharmacia LK B) was used as an E. coli expression vector.
  • This vector which was double-digested with restriction enzymes Ncol and BamHI and gel purified, was ligated using the restriction enzyme-treated PCR products of ISH224—N0C0 and ISH224—N1C0 and Takara Ligation Kit (Takara Bio). E. coli TBI was transformed. Plasmid DNA was extracted and subjected to restriction enzyme analysis according to conventional methods to confirm the incorporation of the insert, and ISH224_N0C0 / pTrc and ISH224—NlCO / pTrc were completed. A protein expression induction experiment was performed on the two types of clones obtained in (3) above. Inoculate a single colony of E.
  • pyridylaminolated latatose (Gal iS 1-4Glc-A, PA-Sugar Chain 026 manufactured by Takara Bio Inc.) was used as a sugar acceptor, and an enzyme reaction was performed.
  • PA-6′-sialylate ratose (Neu5Ac a 2-6Gal j3 1-4Glc—PA) was detected. That is, it has been clarified that both sialyltransferases derived from both strains have ⁇ -galactoside ⁇ 2,6 sialyltransferase activity. From these results, the photobatterium genus JT I It was proved that the ⁇ -galactoside ⁇ 2,6 sialyltransferase gene of the SH-224 strain was cloned and expressed in E. coli.
  • ISH224-N0C0 clone and ISH224-N1 C0 clone obtained in Example 2 were subjected to protein expression induction experiments over time.
  • a single colony of E. coli TB I with the expression vector pTrc99A with each clone integrated is inoculated into LB medium (6 ml) containing the antibiotic ampicillin (final concentration 100 ⁇ g / mL) at 30 ° C. Cultured for about 8 hours. This preculture was inoculated into LB medium (300 ml) containing the antibiotic ampicillin (final concentration 100 ⁇ g / mL) and cultured with shaking at 30 ° C.
  • IPTG isopropyl- [3-D (-)-thiogalatatopyranoside, manufactured by Wako Pure Chemical Industries, Ltd.
  • IPTG isopropyl- [3-D (-)-thiogalatatopyranoside, manufactured by Wako Pure Chemical Industries, Ltd.
  • ImM isopropyl- [3-D (-)-thiogalatatopyranoside, manufactured by Wako Pure Chemical Industries, Ltd.
  • the cells in the culture solution were collected by centrifugation.
  • the cells were suspended in 20 mM Bistris buffer ( ⁇ 6 ⁇ 0) containing 0.336% Triton X-100, and sonicated under ice cooling.
  • the obtained crushed solution was used as a crude enzyme solution, which was diluted 200-fold with 20 mM force codylate buffer solution (PH5.0) containing 0.336% Triton X-100 and used for activity measurement.
  • PH5.0 force codylate buffer solution
  • the reaction was performed in duplicate.
  • the reaction conditions are as shown in the footnotes in Table 2.
  • Table 2 As a result, as shown in Table 2 below, in the ISH 224-N0C0 clone, ⁇ -galatatoside ⁇ 2,6 sialic acid transfer activity was maximized 4 hours after addition of IPTG, and the production amount was 5,501 U / L ′. Medium.
  • the ISH22 4 -N1 C0 clone had the highest galactoside ⁇ 2,6 cyanole transfer activity 22 hours after the addition of IPTG, and its production amount was 10, 776 U / L 'medium.
  • Example 4 Extraction, purification of ⁇ -galatatoside- ⁇ 2.6-sialyltransferase from ISH224-N1C0 and determination of amino acid sequence of amino acid terminal of purified protein
  • Cells were collected from ISH224-N1C0 colonies subcultured on LBAmp plate medium and inoculated into 10 ml of 6 ml-LB liquid medium supplemented with 30 ⁇ 1 of X 200 ampicillin (400 mg / 20 ml). The culture was shaken at 30 ° C and 180 rpm for 8 hours.
  • the main culture was performed according to the following procedure. 1. 300 ml of 5 ml X 200 ampicillin (400 mg / 20 ml) + 300 ⁇ 1 (7) 1 M IPTG (1. 192 g Z5 ml) supplemented with 300 ml — LB medium in a 1000 ml volumetric flask with 9 bottles (Total 2.7L) prepared. Each flask was inoculated with 12 ml of the preculture, and cultured with shaking at 30 ° C and 180 rpm for 24 hours. The culture solution was centrifuged, and the cells were collected. About 15 g was obtained by wet weight.
  • the cells were suspended in 990 ml of 20 mM Bis_Tris buffer (pH 6.0) containing 0 ⁇ 336% Triton X-100, adjusted to 1.6 g / 26 ml, and sonicated under ice cooling.
  • the cell lysate was 4 ° C, 100, 000 1 hour at ⁇ , and centrifuged to obtain a supernatant.
  • This crude enzyme solution was applied to an anion exchange column called HiLoad 26/10 Q Sepharose HP (Amersham) equilibrated with 20 mM Bis_Tris buffer ( ⁇ 6 ⁇ 0) containing 0 ⁇ 336% Triton X-100.
  • the solution was adsorbed and eluted from a 20 mM Bis-Tris buffer solution ( ⁇ 6 ⁇ 0) containing 0 ⁇ 336% Triton X-100 into the same buffer solution containing 1 ⁇ sodium salt by a linear concentration gradient method.
  • a fraction having enzyme activity eluted at a sodium chloride concentration of about 0.25 M was collected.
  • the collected fraction was diluted with 20 mM phosphate buffer (pH 6.0), and was previously equilibrated with 20 mM phosphate buffer (pH 6.0) containing 0.336% Triton X_100 (hydroxyapatite ( Bio-Rad made) 20 mM phosphate buffer solution (pH 6.0) containing 0.336% Triton X-100, et al. 0.5 mM Zinc acid species containing 0.336% ⁇ Gene X-100 Elute to night (Pti6.0) by direct concentration gradient method. As a result, a fraction having an enzyme activity eluted at a phosphate buffer concentration around 125 mM was collected.
  • This fraction was adsorbed on a MonoQ 5/50 GL (Amersham) anion exchange column.
  • the solution was eluted with 20 mM Bis-Tris buffered night (pti 6.0) containing 0.336% Triton X-100 in the same buffer containing 1M sodium chloride by the linear concentration gradient method.
  • pti 6.0 Bis-Tris buffered night
  • Triton X-100 0.336% Triton X-100
  • Table 3 shows the enzyme activities of the samples subjected to the respective purification steps described above for the purification of ⁇ -galactoside ⁇ 2,6-sialyltransferase of the ISH224-N0C1 clone from the crude enzyme solution.
  • the enzyme activity was measured under the reaction conditions shown in Table 3 footnote according to the method described in J. Biochem. 120, 104_110 (1996) as described in Example 1. Proteins were quantified using Coomassie Protein Assay Reagent (manufactured by PIERCE) according to the attached manual.
  • One unit of enzyme (1U) was defined as the amount of enzyme that transfers 1 micromole of sialic acid per minute.
  • the enzyme solution purified to the single band in (1) above was subjected to SDS-polyacrylamide gel electrophoresis (acrylamide gel concentration was 12.5%). After electrophoresis, the protein was transferred to a PVDF membrane, stained with CBB, the target band was excised, and the amino acid sequence was analyzed with Procise 494 HT Protein Sequencing System (Alied Biosystems). As a result, the 15th residue (Ser Glu Glu Asn Thr Gin Ser lie Lys Asn Asp lie Asn Lys) of the sequence whose amino terminal starts with serine could be determined. Based on this result, it is considered that the amino-terminal methionine was processed in E.
  • Example 5 TT- ISH- 224-derived recombinant ⁇ Garakutoshido alpha 2, 6 Itari ⁇ ⁇ enzymes Katsuken sialyltransferase enzymes Eta, optimum ⁇ size and optimum ⁇ concentration
  • JT ISH-224-derived recombinant ⁇ -galactoside- ⁇ 2,6 _sialyltransferase was examined for optimum ⁇ , optimum temperature, and optimum salt concentration.
  • Acetate buffer ( ⁇ ⁇ 4.0, ⁇ 4.5, and ⁇ 5.0), force codylate buffer ( ⁇ 5.0, ⁇ 5.5, ⁇ 6.0, ⁇ 6.5, and ⁇ 7.0), zinc acid ⁇ 7.0, ⁇ 7.5, and ⁇ 8.0), TAPS buffer ( ⁇ 8.0, ⁇ 8.5, and ⁇ 9.0) were prepared and used to measure enzyme activity at each pH at 25 ° C did.
  • the enzyme activity was maximum at ⁇ 5.0.
  • the enzyme activity at each pH was expressed as a relative activity with the enzyme activity at ⁇ 5.0 as 100.
  • Enzyme activity was measured at a reaction temperature of 5 ° C from 10 ° C to 50 ° C using force codylate buffer ( ⁇ 5 ⁇ 0).
  • the enzyme activity was maximum at 30 ° C.
  • the enzyme activity at each temperature is shown as a relative activity with the enzyme activity at 30 ° C as 100.
  • Example 6 Recombinant ⁇ -galactoside derived from TT-ISH-224- ⁇ 2,6 sialyltransferase and ⁇ -galactoside ⁇ 2,6-sialyltransferase (known enzyme) derived from TT0160 strain Comparison of (monosaccharide ⁇ disaccharide street ⁇ trisaccharide street)
  • JT—ISH—224-derived N1C0 recombinant Escherichia coli and Photobatterum 'Damcella JT0 160 strain disrupted cells were electrophoretically isolated using ion-exchange chromatography and Hyde mouth xypatite mouth-matography. The following experiments were conducted to examine the presence or absence of sialic acid transfer activity to various monosaccharides, disaccharides and trisaccharides using e-galatatosidhi 2,6 sialyltransferase purified to the band. .
  • Monosaccharides used as sugar acceptor substrates are methyl-a-D galactopyranoside (Gal-a-OMe), methyl- ⁇ -D galactopyranoside (Gal- ⁇ -OMe), methyl- ⁇ — D-Dalcoviranoside (Glc—a—OMe), Methyl- ⁇ -D-Dalcobilanoside (Glc— ⁇ -OMe), Methylenole a—D Mannopyranoside (Man—a—OMe), Methyl- ⁇ -D Mannobilanoside (Man Eight types were used: — ⁇ -OMe), ⁇ acetylyl latatosamine (GalNAc), and ⁇ -acetyltilcosamine (GalNAc).
  • Disaccharides include lactose (Gal- ⁇ l, 4_Glc), ⁇ -cetyllatatosamine (Gal- ⁇ 1,4-GlcNAc), methyl-1- ⁇ -D galactoviranosinore ⁇ 1,3- ⁇ —Acetyldarcosaminide (Gal— ⁇ 1,3-GlcNAc- ⁇ —OMe), Methyl _ D _ Galactoviranosinore 1, _ Galactopyranoside (Gal— al, 3 _ Gal_ a -OMe), methyl 1 ⁇ _D-galatatopyranosyl 1 ⁇ 1, 3_galactopyranoside (Gal— ⁇ 1,3-Gal- ⁇ -OMe) were used.
  • Sialic acid transfer activity Sialic acid Transfer activity Name Structural formula nmol / rain Relative activity nmol / min Relative activity
  • Example 7 TT-ISH-224-derived recombinant ⁇ -galactoside ⁇ 2,6 sialyltransferase and TT0160 strain-derived ⁇ -galactoside ⁇ 2,6-sialyltransferase (known enzyme) glycoprotein Comparison of 3 ⁇ 4 ⁇ body characteristics with ⁇
  • a sugar receptor substrate cashew fetuin was used as a sugar receptor substrate. 2 mg of cashmere fetuin was dissolved in 1 ml of 20 mM Bis-tris buffer (pH 6.0) to obtain a sugar receptor substrate solution. CMP-NeAc was used as the sugar donor substrate. Glycosyl acceptor substrate solution 40 mu 1, a glycosyl donor substrate 5 mu 1, the enzyme solution 5 mu 1 were mixed (both 10 mU), was sialyltransferase reaction was incubated 25 ° C, 2 hours. After completion of the reaction, the reaction solution was subjected to gel filtration using Sephadex G-50 Superfine (0.8 ⁇ 18. Ocm) equilibrated with 0.1 M sodium chloride. The gel filtration eluate fraction (2-4 ml fraction) containing the glycoprotein was collected, and the radioactivity of this fraction was measured using a liquid scintillation counter, and transferred to the sugar acceptor substrate. Quantification of sialic acid was performed.
  • the present invention provides a novel / 3-galatatoside- 2,6, -sialyltransferase and a nucleic acid that encodes the same to provide a sugar chain that has been clarified to have an important function in vivo.
  • sialic acid is a glycosyltransferase because sialic acid is an extremely important sugar from the viewpoint of sugar chain function, which is often present at the non-reducing end of complex carbohydrate chains in vivo. It is one of the most in demand enzymes.
  • the novel sialyltransferase of the present invention can be used for the development of pharmaceuticals, functional foods and the like using sugar chains.

Abstract

 本発明は、高い生産性および/または高い活性を有する新規なβ-ガラクトシド-α2,6-シアル酸転移酵素および当該シアル酸転移酵素をコードする核酸を提供する。本発明はまた、当該シアル酸転移酵素を生産する微生物を提供する。本発明はさらに、当該シアル酸転移酵素をコードする核酸を含むベクター、および当該ベクターで形質転換した宿主細胞を提供すると共に、組換えβ-ガラクトシド-α2,6-シアル酸転移酵素を製造する方法を提供する。                                                                                 

Description

明 細 書
新規な β ガラクトシドー a 2, 6 シアル酸転移酵素、それをコードする 遺伝子およびその製造方法
技術分野
[0001] 本発明は、新規な β—ガラタトシドーひ 2, 6 _シアル酸転移酵素、当該酵素をコー ドする遺伝子、当該酵素を生産する微生物および当該酵素の製造方法に関する。 背景技術
[0002] 糖転移酵素は生体内において糖タンパク質や糖脂質等 (以下、複合糖質)の糖鎖 の生合成に関与する酵素である。その反応生成物である複合糖質の糖鎖は生体内 において非常に重要な機能を有している。例えば、主に哺乳類細胞において、糖鎖 は分化や発生における細胞間および細胞一細胞外マトリックス間のシグナル伝達や 複合糖質のタグとして機能する重要な分子であることなどが明らかにされている。
[0003] これを応用した例として、血液中の赤血球を生産するホルモンであるエリス口ポェチ ンが挙げられる。天然型のエリスロポエチンは効果の持続性が低い欠点があった。そ こで、エリスロポエチンは元来糖タンパク質である力 新たな糖鎖を付加することによ つて、生体内における寿命を向上させた組換えエリスロポエチンタンパク質が開発、 製造され、市販された。今後もこのように糖鎖を付加あるいは改変した医薬品、機能 性食品等の開発が増えていくと考えられている。したがって、任意に糖鎖を合成'生 産する手段の開発が求められている。とりわけ、最も効率的な手段のひとつとして、糖 転移酵素の開発の重要性は増してきている。
[0004] これまでに約 150種類以上の糖転移酵素遺伝子がヒト、マウス、ラットおよび酵母等 の真核生物から単離されてきた。さらに、これらの遺伝子は CHO細胞や大腸菌等の 宿主細胞で発現され、糖転移酵素活性を有するタンパク質が生産されてきた。一方 、原核生物である細菌からも、 20〜30種類程度の糖転移酵素遺伝子が単離されて おり、さらに大腸菌を用いる組換え生産系で糖転移酵素活性を有するタンパク質が 発現され、それらの基質特性や酵素化学的な諸性質が明らかにされている。
[0005] シアル酸は、糖鎖の非還元末端に存在することが多いため、糖鎖の機能発現にお いて極めて重要な糖であると考えられている。そのため、糖転移酵素の中でもシアル 酸転移酵素は最も需要の高い酵素の一つである。 ガラクトシドー《2, 6 シァ ル酸転移酵素およびその遺伝子に関して、動物、特に哺乳類由来のものが多く報告 されている(Hamamoto, T. , et al, Bioorg. Med. Chem., 1, 141—145 (1993); Weinste in, J. , et al., J. Biol. Chem. , 262, 17735-17743 (1987))。しかし、これらの動物由来 の酵素は精製が困難で大量に得られないため非常に高価であり、さらに酵素として の安定性が悪いという問題を有している。一方、細菌由来の /3 _ガラクトシド— ひ 2, 6—シアル酸転移酵素およびその遺伝子としては、フォトバクテリウム'ダムセラ(Phot obacterium damselae)に属する微生物力 分離されたものが唯一報告されている(国 際公開第 W098Z38315号;米国特許 6255094号公報)。
[0006] し力 ながら、フォトバタテリゥム 'ダムセラ由来の β—ガラタトシド一ひ 2, 6 シァノレ 酸転移酵素の、フォトバタテリゥム 'ダムセラからの生産性は 550U/L (Yamamoto, T ., et al., Biosci. Biotechnol. Biochem., 62(2), 210-214 (1998))であり、また、その遺 伝子を含むプラスミド pEBST A 178を形質転換した大腸菌による β—ガラタトシド— « 2, 6 シアル酸転移酵素の生産性は、 224. 5U/L (Yamamoto, T., et al" J. Bi ochem., 123, 94-100 (1998))であり、更に高い生産性を有する酵素が求められてい る。また、フォトバタテリゥム 'ダムセラ由来の β—ガラタトシド一 α 2, 6 シアル酸転 移酵素の比活性は 5. 5U/mg (Yamamoto, T" et al. , J. Biochem., 120, 104-110 (1 996))であり、この点においてもさらに活性の高い酵素が求められている。
[0007] また、酵素の種類は異なるが、公知の細菌由来のシアル酸転移酵素の中で生産性 および活性が比較的高いものとしてパステレラ 'ムルトシダ(Pasteurella multocida)由 来のひ 2, 3—シアル酸転移酵素が挙げられる力 S、その生産性は、 6, 000U/L (Yu, Η· , et al, J. Am. Chem. Soc" 127, 17618-17619 (2005))であり、比活性は 60UZ mgである。
[0008] シアル酸転移酵素の需要の高さから、さらに生産性および Zまたは活性が高い —ガラタトシド一ひ 2, 6—シアル酸転移酵素が求められている。
特許文献 1:国際公開第 W098Z38315号パンフレット
特許文献 2:米国特許 6255094号公報 非特許文献 l : Hamamoto, T. , et al., Bioorg. Med. Chem" 1, 14ト 145 (1993) 非特許文献 2 : Weinstein, J. , et al., J. Biol. Chem., 262, 17735-17743 (1987) 非特許文献 3 : Yamamoto, T., et al., Biosci. Biotechnol. Biochem., 62(2), 210-214 ( 1998)
非特許文献 4 : Yamamoto, Τ·, et al., J. Biochem., 123, 94-100 (1998)
非特許文献 5 : Yamamoto, T" et al., J. Biochem., 120, 104-110 (1996)
非特許文献 6 : Yu, H., et al" J. Am. Chem. So , 127, 17618-17619 (2005)
発明の開示
発明が解決しょうとする課題
[0009] 本発明の課題は、ビブリオ科フォトバタテリゥム属に属する微生物に由来する新規 な /3—ガラタトシドーひ 2, 6—シアル酸転移酵素、およびそれをコードする遺伝子を 提供することである。また、本発明は、細菌由来の公知のシアル酸転移酵素と比較し てより高い生産性および/またはより高い活性を有する、新規な —ガラクトシド— a 2, 6 _シァル酸転移酵素、およびそれをコードする遺伝子を提供することを目的と する。
[0010] また、本発明の課題は、本発明の β—ガラタトシド一 ひ 2, 6—シアル酸転移酵素を コードする遺伝子を利用して遺伝子組換え技術により本酵素を高生産する方法を提 供することである。
課題を解決するための手段
[0011] 本発明者らは日本全国から 4, 000菌株以上の微生物を分離し、その性質につい て鋭意研究に努めた結果、フォトバタテリゥム(Photobacterium)属に属する微生物の 菌株から、 β—ガラタトシドーひ 2, 6 _シァル酸転移酵素活性を生産する菌株を見 出した。次に公知の遺伝子であるフォトバタテリゥム.ダムセラ(Photobacterium damse lae)由来の β—ガラタトシド— ひ 2, 6—シアル酸転移酵素遺伝子の DNAをプローブ に、当該菌株から新規なひ 2, 6—シアル酸転移酵素遺伝子をクローニングした。本 新規遺伝子を大腸菌で発現させた結果、本遺伝子は /3 _ガラクトシドーひ 2, 6 _シ アル酸転移酵素活性を有するタンパク質をコードし、その酵素生産量は 1Lの培養液 当り約 10, 700Uと高いことを見出した。さらに、この新規な組換え酵素を精製し詳細 に解析した結果、本組換え酵素は、シアル酸を糖鎖中のガラクトース残基、 N ァセ チルガラタトサミン残基などに α 2, 6結合で効率よく転移させ、その比活性は約 110 U (ユニット)/ mgと高いことも見出した。このように、多くの点で公知の酵素であるフォ トバクテリゥム 'ダムセラ(Photobacterium damselae)由来の β—ガラタトシド一ひ 2, 6 —シアル酸転移酵素よりも優れていることを明らかにし、本発明を完成させた。本発 明は高い生産性および/または高い活性を有する、新規な β—ガラタトシド—ひ 2, 6—シアル酸転移酵素およびそれをコードする核酸、ならびに、当該シアル酸転移酵 素を製造する方法を提供する。
[0012] 以下、本発明を詳細に説明する。
[0013] β—ガラクトシド一ひ 2. 6—シアル酸転移酵素
本発明は、新規な β—ガラタトシド—ひ 2, 6—シアル酸転移酵素を提供する。本明 細書において、「j3 _ガラクトシド一 ひ 2, 6—シアル酸転移酵素」とは、シチジン 1リン 酸 (CMP)—シアル酸からシアル酸を、複合糖質糖鎖もしくは遊離の糖鎖中のガラク トース残基の 6位、ラタトースもしくは N ァセチルラクトサミンなどのオリゴ糖に存在す るガラクトースの 6位、またはガラクトース、 N ァセチルガラタトサミン、グルコース、 N ーァセチルダノレコサミンもしくはマンノースなどの複合糖質を構成しうる単糖であって 6位の炭素に水酸基を有する単糖の 6位、に転移させる活性を有するタンパク質を意 味する。本明細書において、「 —ガラクトシド— α 2, 6 シアル酸転移酵素活性」と は、 ガラクトシドー α 2, 6 シアル酸転移酵素について上述した活性を意味す る。また、ここでいぅシアル酸とは、シアル酸ファミリーに属するノィラミン酸誘導体を示 す。具体的には、 Ν ァセチルノイラミン酸(Neu5Ac)、 Ν—グリコリルノィラミン酸(Ν eu5Gc)、 5—デァミノ一 5—ヒドロキシノイラミン酸(KDN)、ジシアル酸(ジ N ァセ チルノイラミン酸: Neu5Acひ 2, 8 (9) Neu5Ac)などを示す。
[0014] 本発明の β—ガラタトシドーひ 2, 6—シアル酸転移酵素は、配列番号 2、または配 列番号 4のアミノ酸配列を含んでなるタンパク質である。配列番号 4のアミノ酸配列は 、配列番号 2のアミノ酸 18— 514のアミノ酸配列の Ν末端にメチォニンを付加した配 列に相当する。この Ν末端のメチォニンは、タンパク質発現のための開始コドンに由 来するものであり、 /3 _ガラクトシド一 ひ 2, 6—シアル酸転移酵素としての活性に影 響を及ぼすものではない。また、タンパク質の N末端のメチォニンはしばしば細胞内 プロセッシングによって脱落する場合がある。従って、配列番号 4のアミノ酸配列を含 んでなるタンパク質とレ、う場合は、配列番号 4と完全に一致するアミノ酸配列を含んで なるタンパク質である場合のみならず、 N末端のメチォニンが欠失してレ、るアミノ酸配 歹 IJを含んでなるタンパク質である場合も含む。
[0015] また、本発明の /3—ガラタトシドーひ 2, 6—シアル酸転移酵素は、配列番号 1、ま たは配列番号 3の塩基配列を含んでなる核酸によってコードされるタンパク質である 。配列番号 3の塩基配列は、配列番号 1のヌクレオチド 52— 1545の塩基配列の 5 ' 末端に開始コドン (ATG)を付加した配列に相当する。配列番号 1および配列番号 3 の塩基配列は、それぞれ、配列番号 2および配列番号 4のアミノ酸配列をコードする
[0016] 本発明の配列番号 2のアミノ酸配列を含んでなる、 β—ガラタトシド一ひ 2, 6—シァ ル酸転移酵素において、配列番号 2のアミノ酸 12— 15の配列は Leu— Thr— Ala— C ysであり、リポボックスと呼ばれる共通配列であるため、細菌内で、この共通配列の Cy sのァミノ末端側で切断されると考えられる(Madan Babu, M. and Sankaran, K. Bioinf ormatics. 18, 641-643 (2002))。従って、本発明の β—ガラタトシド一 α 2, 6 シァ ル酸転移酵素は配列番号 2のアミノ酸 15— 514のアミノ酸配列を含んでなるタンパク 質であってもよい。また、本発明の β ガラクトシドー α 2, 6 シアル酸転移酵素は 、配列番号 1のヌクレオチド 43— 1545の塩基配列を含んでなる核酸によってコード されるタンパク質であってもよレ、。
[0017] 本発明はまた、上記の本発明の β ガラクトシドー α 2, 6 シアル酸転移酵素の 変異体であって、 /3 _ガラクトシドーひ 2, 6 _シアル酸転移酵素活性を有する変異 タンパク質をも包含する。このような変異タンパク質もまた、本発明の j3 _ガラクトシド - a 2, 6—シアル酸転移酵素に含まれる。
[0018] 本発明の変異体タンパク質は、配列番号 2、配列番号 2のアミノ酸 15— 514および 配列番号 4からなる群より選択されるアミノ酸配列において、 1または複数のアミノ酸 の欠失、置換、揷入および/または付加を含むアミノ酸配列を含んでなるタンパク質 であって、 /3 _ガラクトシド— ひ 2, 6—シアル酸転移酵素活性を有するタンパク質で あってもよい。置換は保存的置換であってもよぐこれは特定のアミノ酸残基を類似の 物理化学的特徴を有する残基で置き換えることである。保存的置換の非限定的な例 には、 Ile、 Val、 Leuまたは Ala相互の置換のような脂肪族基含有アミノ酸残基の間 の置換、 Lysおよび Arg、 Gluおよび Asp、 Ginおよび Asn相互の置換のような極性 残基の間での置換などが含まれる。
[0019] アミノ酸の欠失、置換、揷入および/または付加による変異体は、野生型タンパク 質をコードする DNAに、例えば周知技術である部位特異的変異誘発(例えば、 Nucl eic Acid Research, Vol.10, No. 20, p.6487-6500, 1982参照、引用によりその全体を 本明細書に援用する)を施すことにより作成することができる。本明細書において、「1 または複数のアミノ酸」とは、部位特異的変異誘発法により欠失、置換、揷入および /または付加できる程度のアミノ酸を意味する。
[0020] 部位特異的変異誘発法は、例えば、所望の変異である特定の不一致の他は、変異 を受けるべき一本鎖ファージ DNAに相補的な合成オリゴヌクレオチドプライマーを用 いて次のように行うことができる。即ち、プライマーとして上記合成オリゴヌクレオチド を用いてファージに相補的な鎖を合成させ、得られた二重鎖 DNAで宿主細胞を形 質転換する。形質転換された細菌の培養物を寒天にプレーティングし、ファージを含 有する単一細胞からプラークを形成させる。そうすると、理論的には 50%の新コロニ 一が一本鎖として変異を有するファージを含有し、残りの 50%が元の配列を有する。 上記所望の変異を有する DNAと完全に一致するものとはハイブリダィズする力 元 の鎖を有するものとはハイブリダィズしない温度において、得られたプラークをキナー ゼ処理により標識した合成プローブとハイブリダィズさせる。次に該プローブとハイブ リダィズするプラークを拾レ、、培養して DNAを回収する。
[0021] なお、酵素などの生物活性ペプチドのアミノ酸配列にその活性を保持しつつ 1また は複数のアミノ酸の欠失、置換、揷入および Zまたは付カ卩を施す方法としては、上記 の部位特異的変異誘発の他にも、遺伝子を変異源で処理する方法、および遺伝子 を選択的に開裂し、次に選択されたヌクレオチドを除去、置換、揷入または付加し、 次レ、で連結する方法もある。
[0022] 本発明の変異体タンパク質はまた、配列番号 1、配列番号 1のヌクレオチド 43— 15 45および配列番号 3からなる群より選択される塩基配列において、 1または複数のヌ クレオチドの欠失、置換、挿入および/または付加を含む塩基配列を含んでなる核 酸によってコードされるタンパク質であって、 ガラクトシドー α 2, 6 シアル酸転 移酵素活性を有するタンパク質であってもよい。ヌクレオチドの欠失、置換、揷入およ び/または付加は、部位特異的変位誘発のほか上述した方法により行うことができる
[0023] 本発明の変異体タンパク質はさらに、配列番号 2、配列番号 2のアミノ酸 15— 514、 および配列番号 4からなる群より選択されるアミノ酸配列と少なくとも 60%以上、好ま しくは 65%以上、 70%以上、 75%以上、 80%以上、 85%以上、 90%以上、 95% 以上、 98%以上または 99%以上、より好ましくは 99. 5%以上のアミノ酸同一性を有 するアミノ酸配列を含んでなるタンパク質であって、 /3 _ガラクトシド一ひ 2, 6—シァ ル酸転移酵素活性を有するタンパク質であってもよい。
[0024] または、本発明の変異体タンパク質は、配列番号 1、配列番号 1のヌクレオチド 43 — 1545、および配列番号 3からなる群より選択される塩基配列と、少なくとも 70%以 上、好ましくは 75%以上、 80%以上、 85%以上、 90%以上、 95%以上、 98%以上 または 99%以上、より好ましくは 99. 5%以上の同一性を有する核酸によってコード されるタンパク質であって、 —ガラクトシド— α 2, 6 シアル酸転移酵素活性を有 するタンパク質であってもよい。
[0025] 2つのアミノ酸配列の同一性%は、視覚的検査および数学的計算によって決定し てもよレ、。あるいは、 2つのタンパク質配列の同一性パーセントは、 Needleman, S. B. 及び Wunsch, C. D. (J. Mol. Biol., 48: 443-453, 1970)のアルゴリズムに基づき、そ してウィスコンシン大学遺伝学コンピューターグループ(UWGCG)より入手可能な G APコンピュータープログラムを用い配列情報を比較することにより、決定してもよい。
GAPプログラムの好ましいデフォルトパラメーターには:(l) Henikoff, S.及び Henikof f, J. G. (Proc. Natl. Acad. Sci. USA, 89: 10915-10919, 1992)に記載されるような、ス コアリング'マトリックス、 blosum62 ; (2) 12のギャップ加重;(3) 4のギャップ長加重; 及び (4)末端ギャップに対するペナルティなし、が含まれる。
[0026] 当業者に用いられる、配列比較の他のプログラムもまた、用いてもよい。同一性の パーセントは、例えば Altschulら (Nucl. Acids. Res., 25, p.3389-3402, 1997)に記載さ れている BLASTプログラムを用いて配列情報と比較し決定することが可能である。 当該プログラムは、インターネット上で National Center for Biotechnology Information (NCBI)、あるいは DNA Data Bank of Japan (DDBJ)のウェブサイトから利用すること が可能である。 BLASTプログラムによる同一性検索の各種条件 (パラメーター)は同 サイトに詳しく記載されており、一部の設定を適宜変更することが可能であるが、検索 は通常デフォルト値を用いて行う。または、 2つのアミノ酸配列の同一性%は、遺伝情 報処理ソフトウェア GENETYX Ver. 7 (ゼネテイツタス製)などのプログラム、または 、 FASTAアルゴリズムなどを用いて決定してもよレ、。その際、検索はデフォルト値を 用いてよい。
2つの核酸配列の同一性%は、視覚的検査と数学的計算により決定可能であるか 、またはより好ましくは、この比較はコンピュータ 'プログラムを使用して配列情報を比 較することによってなされる。代表的な、好ましいコンピュータ 'プログラムは、遺伝学 コンピュータ 'グループ(GCG;ウィスコンシン州マディソン)のウィスコンシン'パッケ一 ジ、バージョン 10· 0プログラム「GAP」である(Devereux, et al., 1984, Nucl. Acids R es., 12: 387)。この「GAP」プログラムの使用により、 2つの核酸配列の比較の他に、 2つのアミノ酸配列の比較、核酸配列とアミノ酸配列との比較を行うことができる。ここ で、「GAP」プログラムの好ましいデフォルトパラメーターには:(1)ヌクレオチドにつ いての(同一物について 1、および非同一物について 0の値を含む)一元(unary)比 較マトリックスの GCG実行と、 Schwartzおよび Dayhoff監修「ポリペプチドの配列およ び構造のアトラス(Atlas of Polypeptide Sequence and Structure)」国立バイオ医学研 究財団、 353— 358頁、 1979により記載されるような、 Gribskovおよび Burgess, Nucl. Acids Res., 14: 6745, 1986の加重アミノ酸比較マトリックス;または他の比較可能な 比較マトリックス;(2)アミノ酸の各ギャップについて 30のペナルティと各ギャップ中の 各記号について追加の 1のペナルティ;またはヌクレオチド配列の各ギャップにつレヽ て 50のペナルティと各ギャップ中の各記号について追加の 3のペナルティ;(3)ェン ドギャップへのノーペナルティ:および(4)長レ、ギャップへは最大ペナルティなし、力 S 含まれる。当業者により使用される他の配列比較プログラムでは、例えば、米国国立 医学ライブラリーのウェブサイト: http://www.ncbi.nlm.nih.gov/blast/bl2seq/bls.html により使用が利用可能な BLASTNプログラム、バージョン 2. 2. 7、または UW— BL AST2. 0アルゴリズムが使用可能である。 UW- BLAST2. 0についての標準的な デフォルトパラメーターの設定は、以下のインターネットサイト: http:〃 blast.wustl.edu に記載されている。さらに、 BLASTアルゴリズムは、 BLOSUM62アミノ酸スコア付 けマトリックスを使用し、使用可能である選択パラメータ一は以下の通りである:(A)低 い組成複雑性を有するクエリー配列のセグメント(Woottonおよび Federhenの SEGプ ログラム(Computers and Chemistry, 1993)により決定される; Woottonおよび Federhe n, 1996「配列データベースにおける組成編重領域の解析(Analysis of compositionall y biased regions m sequence databases Methods EnzymoL , 26り: 544 - /■ 1も参照 れ たレ、)、または、短周期性の内部リピートからなるセグメント(Claverieおよび States (Co mputers and Chemistry, 1993)の XNUプログラムにより決定される)をマスクするため のフィルターを含むこと、および (B)データベース配列に対する適合を報告するため の統計学的有意性の閾値、または E—スコア(Karlinおよび Altschul, 1990)の統計学 的モデルにしたがって、単に偶然により見出される適合の期待確率;ある適合に起因 する統計学的有意差力 ¾—スコア閾値より大きい場合、この適合は報告されない); 好ましい E—スコア閾値の数値は 0. 5であるか、または好ましさが増える順に、 0. 25 、 0. 1、 0. 05、 0. 01、 0. 001、 0. 0001、 le— 5、 le— 10、 le— 15、 le— 20、 le — 25、 le— 30、 le— 40、 le— 50、 le— 75、または le— 100である。
[0028] 本発明の変異タンパク質はまた、配列番号 1、配列番号 1のヌクレオチド 43— 1545 、および配列番号 3からなる群より選択される塩基配列の相補鎖にストリンジヱントな 条件でハイブリダィズする塩基配列を含んでなる核酸によってコードされるタンパク質 であって、 /3 _ガラクトシド—ひ 2, 6—シアル酸転移酵素活性を有するタンパク質で あってもよレヽ。
[0029] ここで、「ストリンジェントな条件下」とは、中程度または高程度にストリンジェントな条 件においてハイブリダィズすることを意味する。具体的には、中程度にストリンジェント な条件は、例えば、 DNAの長さに基づき、一般の技術を有する当業者によって、容 易に決定することが可能である。基本的な条件は、 Sambrookら, Molecular Cloning: A Laboratory Manual,第 3片反,第 6— 7章, Cold Spring Harbor Laboratory Press, 20 01に示され、そしてニトロセルロースフィルターに関し、 5 X SSC、 0. 5% SDS、 1. OmM EDTA(pH8. 0)の前洗浄溶液、約 40— 50。Cでの、約 50%ホノレムアミド、 2 X SSC-6 X SSC (または約 42°Cでの約 50%ホルムアミド中の、スターク溶液(Star k's solution)などの他の同様のハイブリダィゼーシヨン溶液)のハイブリダィゼーシヨン 条件、および例えば、約 40°C— 60°C、 0. 5— 6 X SSC、 0. 1% SDSの洗浄条件 の使用が含まれる。好ましくは中程度にストリンジヱントな条件は、約 50°C、 6 X SSC のハイブリダィゼーシヨン条件 (及び洗浄条件)を含む。高ストリンジヱントな条件もま た、例えば DNAの長さに基づき、当業者によって、容易に決定することが可能である
[0030] 一般に、こうした条件は、中程度にストリンジヱントな条件よりも高い温度および Zま たは低い塩濃度でのハイブリダィゼーシヨン(例えば、約 65。C、 6 X SSCなレ、し 0. 2 X SSC、好ましくは 6 X SSC、より好ましくは 2 X SSC、最も好ましくは 0. 2 X SSCの ハイブリダィゼーシヨン)および/または洗浄を含み、例えば上記のようなハイブリダィ ゼーシヨン条件、およびおよそ 65。C— 68。C、 0. 2 X SSC、 0. 1 % SDSの洗浄を伴 うと定義される。ハイブリダィゼーシヨンおよび洗浄の緩衝液では、 SSC (1 X SSCは 、 0. 15M NaClおよび 15mM クェン酸ナトリウムである)に SSPE (1 X SSPEは、 0. 15M NaCl、 10mM NaH P〇、および 1. 25mM EDTA、 pH7. 4である)を
2 4
代用することが可能であり、洗浄はハイブリダィゼーシヨンが完了した後で 15分間行
5。
[0031] また、プローブに放射性物質を使用しない市販のハイブリダィゼーシヨンキットを使 用することもて、、きる。具体白勺 (こ f 、 ECL direct laり eling & detection system (Amersham 社製)を使用したハイブリダィゼーシヨン等が挙げられる。ストリンジェントなハイブリダ ィゼーシヨンとしては、例えば、キット中の hybridization bufferに Blocking試薬を 5% ( w/v)、 NaClを 0. 5Mになるように加え、 42°Cで 4時間行い、洗浄は、 0. 4% SD S、 0. 5xSSC中で、 55。Cで 20分を二回、 2xSSC中で室温、 5分を一回行う、とレ、う 条件が挙げられる。
[0032] シアル酸転移酵素活性は、公知の手法、例えば、 J. Biochem., 120, 104-110 (1996 ) (引用によりその全体を本明細書に援用する)に記載されている方法で測定してもよ レ、。例えば、糖供与体基質として CMP— NeuAc (N ァセチルノイラミン酸)を、そし て糖受容体基質としてラタトースを用いて酵素反応を行い、反応生成物であるシァリ ルラクトースの量を評価することで酵素活性を評価することができる。なお、酵素 1単 位(1U)は、 1分間に 1マイクロモルのシアル酸を転移する酵素量である。
[0033] 糖受容体基質に転移したシアル酸の結合様式の決定方法としては、限定するわけ ではないが、ピリジルァミノ化糖鎖を用いる手法、反応生成物の核磁気共鳴分光法( NMR)による分析など、当業者に公知の手法のいずれ力、を用いて行うことができる。 ピリジルァミノ化糖鎖を用いる手法は、ピリジルァミノ化糖鎖を糖受容体基質として酵 素反応を行うことを含む。具体的には、ピリジノレアミノ化ラタトース (Gal /3 l _4Glc_ PA、タカラバイオ製)を糖受容体基質、 CMP— NeuAcを糖供与体基質として用い て酵素反応を行い、反応生成物を高速液体クロマトグラフィー(HPLC)で分析し、反 応生成物の保持時間からシアル酸が転移された位置を特定する。
[0034] 本発明の一態様において本発明の酵素は、フォトバタテリゥム属に属する微生物由 来である。本発明の酵素は、フォトバタテリゥム属に属する微生物であれば特に限定 されるものではなぐフォトバタテリゥム属に属する新種の微生物由来の酵素であって あよい。
[0035] 本発明の β ガラクトシドー α 2, 6 シアル酸転移酵素の酵素学的性質および理 化学的性質は、上記に定義した ガラクトシドー α 2, 6 シアル酸転移酵素活性 を有することを特徴とするほか、限定するわけではないが、至適 ρΗが ρΗ5〜6の範 囲であり、至適温度が 25〜35°Cであり、分子量が SDS— PAGE分析で 56, 000土 3, OOODa程度である。
[0036] また、一態様において、本発明の β—ガラタトシド一ひ 2, 6—シアル酸転移酵素は 、高い —ガラクトシドーひ 2, 6—シアル酸転移酵素活性を有することを特徴とする 。ここで、高い j3—ガラタトシド一ひ 2, 6—シアル酸転移酵素活性とは、酵素 lmgあ たり 6U以上、 10U以上、 20U以上、 40U以上、 60U以上、 100U以上の活性を有 することをいう。
[0037] β—ガラクトシド— ひ 2. 6—シアル酸転移酵素をコードする核酸 本発明は、 ガラクトシドー α 2, 6 シアル酸転移酵素をコードする核酸を提供 する。
[0038] 本発明の核酸は、配列番号 2、配列番号 2のアミノ酸 1 5— 514、配列番号 4からな る群より選択されるアミノ酸配列を含んでなるタンパク質をコードする核酸である。本 発明の核酸はまた、配列番号 1、配列番号 1のヌクレオチド 43— 1 545、配列番号 3 力 なる群より選択される塩基配列を含んでなる核酸である。
[0039] 本発明の核酸は、上記の核酸の変異体であって、 /3—ガラタトシド—ひ 2 , 6—シァ ル酸転移酵素活性を有するタンパク質をコードする核酸であってもよい。そのような 核酸もまた、本発明の /3—ガラタトシド—ひ 2, 6—シアル酸転移酵素をコードする核 酸に含まれる。
[0040] そのような核酸の変異体は、配列番号 2、配列番号 2のアミノ酸 15— 514、配列番 号 4からなる群より選択されるアミノ酸配列において、 1または複数のアミノ酸の欠失、 置換、挿入および/または付加を含むアミノ酸配列を含んでなるタンパク質であって 、 β ガラクトシドー α 2 , 6 シアル酸転移酵素活性を有するタンパク質、をコード する核酸である。本発明の核酸の変異体はまた、配列番号 1、配列番号 1のヌクレオ チド 43— 1545、配列番号 3からなる群より選択される塩基配列において、 1またはそ れより多くのヌクレオチドの欠失、置換、挿入および/または付加を含む塩基配列を 含んでなる核酸である。アミノ酸またはヌクレオチドの欠失、置換、挿入および/付加 は、上述した方法により導入することができる。
[0041] また、そのような核酸の変異体は、配列番号 2、配歹 IJ番号 2のアミノ酸 1 5— 514、配 列番号 4からなる群より選択されるアミノ酸配列と少なくとも 60 %以上、好ましくは 65 Q/o以上、 70 °/。以上、 75 %以上、 80 °/。以上、 85 °/。以上、 90%以上、 95 %以上、 98 %以上または 99 %以上、より好ましくは 99. 5 %以上の同一性を有するアミノ酸配列 を含んでなるタンパク質であって、 j3 _ガラクトシド一 ひ 2 , 6—シアル酸転移酵素活 性を有するタンパク質、をコードする核酸である。本発明の核酸の変異体はまた、配 列番号 1、配列番号 1のヌクレオチド 43— 1545、配列番号 3からなる群より選択され る塩基配列と、好ましくは 70%以上、 75。/0以上、 80。/ο以上、 85 %以上、 90%以上、 95。/0以上、 98 %以上または 99 %以上、より好ましくは 99. 5 %以上の同一性を有す る核酸であって、該核酸は ;3—ガラクトシドー α 2, 6—シアル酸転移酵素活性を有 するタンパク質をコードする、前記核酸である。ここで、アミノ酸配列または塩基配列 の同一性は、上記に示した方法で決定することができる。
[0042] そのような核酸の変異体はさらに、配列番号 1、配列番号 1のヌクレオチド 43— 154 5、および配列番号 3からなる群より選択される塩基配列の相補鎖にストリンジェントな 条件、または高度にストリンジヱントな条件下でハイブリダィズする塩基配列を含む核 酸であって、該核酸は β—ガラタトシドーひ 2, 6—シアル酸転移酵素活性を有するタ ンパク質をコードする、前記核酸である。ここで、ストリンジヱントな条件または高度に ストリンジヱントな条件とは、上記で定義したとおりである。
[0043] β—ガラクトシドーひ 2. 6 _シアル酸転移酵素を発現する微牛物
本発明者らは、ビブリオ科フォトバタテリゥム属に属する微生物が新規な —ガラク トシド一 ひ 2, 6—シアル酸転移酵素を発現することを見いだした。よって本発明は、 β ガラクトシドー α 2, 6 シアル酸転移酵素を発現する微生物を提供する。本発 明の微生物は、フォトバタテリゥム属に属し、 β—ガラタトシド— α 2, 6 シアル酸転 移酵素生産能を有する微生物である。 ガラクトシドー α 2, 6 シアル酸転移酵 素生産能を有するフォトバタテリゥム属に属する微生物の例としては、フォトバクテリウ ム属(Photobacterium sp.) 】丁ー13^1—224株(寄託番号:^[丁£ BP— 87)が挙げ られる。なお、上記のフォトバタテリゥム属の微生物は一般に海洋性細菌であり、海水 中または海産の魚介類から分離される。たとえば、本発明のフォトバタテリゥム属 JT — ISH— 224株は石川県産の力マスから分離されたものである。
[0044] 本発明の微生物は、例えば以下に説明するようなスクリーニング法を用いて分離す ること力 Sできる。海水、海砂、海泥あるいは海産魚介類を微生物源とする。海水、海 砂、海泥はそのままもしくは滅菌海水で希釈し、接種源とする。海産魚介類は表面の 粘液等をループで擦り採って接種源としたり、内臓器を滅菌海水中で磨砕した液を 接種源としたりする。これらをマリンブロスァガー 2216培地(ベタトン'ディッキンソン 製)や塩化ナトリウム添加ニュートリエントァガー培地 (ベタトン'ディッキンソン製)など の平板培地上に塗布し、様々な温度条件下で生育する海洋性微生物を取得する。 常法に従い、得られた微生物を純粋培養した後、マリンブロス 2216培地 (ベタトン' ディッキンソン製)や塩化ナトリウム添加ニュートリエントブロス培地 (ベタトン'ディツキ ンソン製)などの液体培地を用い、それぞれの微生物を培養する。微生物が十分生 育した後に、培養液から菌体を遠心分離によって集める。集めた菌体に界面活性剤 である 0. 2%トリトン X— 100 (関東化学製)を含む 20mMカコジレート緩衝液(pH6. 0)を添加し、菌体を懸濁する。この菌体懸濁液を氷冷下、超音波処理し細胞を破砕 する。この細胞破砕液を酵素溶液として、常法にしたがってシアル酸転移活性を測 定し、シアル酸転移活性を有する菌株を得ることができる。
[0045] 本発明のフォトバタテリゥム属 JT— ISH— 224株は上記のスクリーニング法を用い ることで得られた。得られた上記の菌株の菌学的性質および生理学生化学的性質、 ならびに 16S _rRNA遺伝子の塩基配列解析による種の同定については、実施例 1 に詳述する。
[0046] フォトバタテリゥム属 JT—ISH— 224株は、ブタペスト条約の規約に従って、 2005 年 3月 1 1日付で NITE BP— 87として、独立行政法人 製品評価技術基盤機構特 許微生物寄託センター(NPMD : National Institute of Technology and Evaluation, P atent Microorganisms Depositary ;日本国千葉県木更津巿かずさ鎌足 2— 5— 8)に 寄託されている。
[0047] β ガラクトシドー α 2, 6 シアル酸転移酵素を製造する方法
本発明は、本発明の β ガラクトシドー a 2, 6 シアル酸転移酵素を製造する方 法にも関する。好ましい態様において本発明の方法は、本発明の酵素を高生産する 。具体的には、本発明の方法における本発明の酵素の生産性は、 1Lの培養液あた り 50U/L以上、 1 , 000U/L以上、 10, 000U/L以上である。
[0048] ( 1 ) β一ガラクトシドーひ 2. 6—シアル酸転移酵素を発現する微牛物を培着するこ Μこよる 亥 の齟告 去
本発明の一態様において、本発明の β—ガラタトシド—ひ 2, 6—シアル酸転移酵 素はフォトバタテリゥム属に属する微生物由来であり、 j3 _ガラクトシド一ひ 2, 6—シ アル酸転移酵素生産能を有する微生物を培地に培養し、 一ガラクトシドー ひ 2, 6 -シアル酸転移酵素を生産させ、これを採取することによつて得られる。
[0049] ここで用いる微生物としては、フォトバタテリゥム属に属し、 β—ガラタトシド一ひ 2, 6 ーシアル酸転移酵素生産能を有する微生物であれば、いずれの菌株でも用いること ができる。フォトバタテリゥム属に属するものが好ましい。本発明の方法において用い る微生物の例としては、フォトバタテリゥム属 JT— ISH— 224株(寄託番号 NITE B P_ 87)が挙げられる。
[0050] 上記微生物の培養に用いる培地としては、それらの微生物が利用し得る炭素源、 窒素源、無機物等を含むものを用いる。炭素源としては、ペプトン、トリプトン、カゼィ ン分解物、肉エキス、ブドウ糖等が挙げられ、好ましくはペプトンを用いる。窒素源と しては、酵母エキスを用いるのが好ましい。塩類としては、塩化ナトリウム、クェン酸鉄 、塩化マグネシウム、硫酸ナトリウム、塩化カルシウム、塩ィ匕カリウム、炭酸ナトリウム、 重炭酸ナトリウム、臭化カリウム、塩ィ匕ストロンチウム、ほう酸ナトリウム、ケィ酸ナトリウ ム、フッ化ナトリウム、硝酸アンモニゥム、リン酸水素ニナトリウム等を適宜組み合わせ て用いるのが好ましい。
[0051] また、上記成分を含んだマリンブロス 2216培地(ベタトン.ディッキンソン製)を用い てもよレ、。さらには、上記塩類を適度に含む人工海水を用い、これにペプトン、酵母 エキス等を添加した培地を用いてもよい。培養条件は培地の組成ゃ菌株によって多 少異なるが、例えば、フォトバタテリゥム属 JT—ISH— 224株を培養する場合、培養 温度は 20〜30°C、好ましくは 25〜30°C程度、培養時間は 6〜48時間、好ましくは 1 5〜 24時間程度である。
[0052] 目的とする酵素は菌体内に存在するため、公知の菌体破砕法、例えば超音波破砕 法、フレンチプレス破砕法、ガラスビーズ破砕法、ダイノミル破砕法などのいずれかの 方法を行えばよぐその菌体破砕物から目的とする酵素を分離精製する。本発明の 方法における好ましい菌体破砕法は超音波破砕法である。例えば、菌体破砕物から 遠心分離により固形物を除去した後に、得られた菌体破砕液上清を市販の陰イオン 交換カラム、陽イオン交換カラム、ゲル濾過カラム、ハイドロキシアパタイトカラム、 CD P_へキサノールアミンァガロースカラム、 CMP—へキサノールアミンァガロースカラ ム、疎水性カラム等のカラムクロマトグラフィ一およびネイティブ一 PAGE等を適宜組 み合わせて精製することができる。
[0053] なお、 β—ガラタトシド—ひ 2, 6—シアル酸転移酵素は完全に精製してもよいが、 部分精製品でも十分な活性を有するため、本発明の ;3—ガラクトシドー a 2, 6 シ アル酸転移酵素は精製品であってもよぐまたは部分精製品であってもよい。
[0054] (2)組換え β ガラクトシドー α 2. 6 シアル酸転移酵素を製造する方法
本発明は、 β—ガラタトシド— ひ 2, 6—シアル酸転移酵素をコードする核酸を含む 発現ベクター、および当該発現ベクターを含有する宿主細胞を提供する。そして、本 発明は、当該発現ベクターを含有する宿主細胞を、組換えタンパク質の発現に適す る条件下で培養して、発現された組換えタンパク質を回収することにより組換え /3 _ ガラクトシドー ひ 2, 6 _シアル酸転移酵素タンパク質を製造する方法も提供する。
[0055] 本発明の組換え β—ガラタトシドーひ 2, 6 _シアル酸転移酵素タンパク質を製造 するためには、使用する宿主に応じて選ばれた発現ベクターに、哺乳動物、微生物 、ウィルス、または昆虫遺伝子等から誘導された適当な転写または翻訳調節ヌクレオ チド配列に機能可能に連結した —ガラクトシドーひ 2, 6 _シアル酸転移酵素をコ ードする核酸配列を挿入する。調節配列の例として、転写プロモーター、オペレータ 一、またはェンハンサー、 mRNAリボソーム結合部位、ならびに、転写および翻訳の 開始および終結を制御する適切な配列が挙げられる。
[0056] 本発明のベクターに挿入される β ガラクトシドー α 2, 6 シアル酸転移酵素をコ ードする核酸配列は、上述した本発明の β ガラクトシドー α 2, 6—シアル酸転移 酵素をコードする核酸の塩基配列である。この配列は、リーダー配列を含んでいても 、含んでいなくてもよい。リーダー配列を含む場合、配列番号 1のヌクレオチド 1—42 に相当するリーダー配列であってもよぐまた他の生物源由来のリーダー配列に置き 換えてもよい。リーダー配列を置き換えることによって、発現したタンパク質を宿主細 胞の外に分泌させるように発現システムを設計することも可能である。
[0057] また、本発明の組換え /3—ガラタトシド一ひ 2, 6—シアル酸転移酵素タンパク質は 、当該酵素をコードする核酸に続いて、 Hisタグ、 FLAG™タグ、ダルタチオン一 S— トランスフェラーゼなどをコードする核酸を連結した核酸をベクターに揷入することに より、融合タンパク質として発現することも可能である。本発明の酵素をこのような融合 タンパク質として発現させることにより、当該酵素の精製および検出を容易にすること ができる。 [0058] β ガラクトシドー α 2, 6 シアル酸転移酵素タンパク質の発現に適する宿主細 胞には、原核細胞、酵母または高等真核細胞が含まれる。細菌、真菌、酵母、および 哺乳動物細胞宿主で用いる適切なクローニングおよび発現ベクターは、例えば、 Pou welsり、 し lonmg Vectors: A Laboratory Manual, Elsevier, New ork, (1985) ラ|用に よりその全体を本明細書に援用する)に記載されている。
[0059] 原核生物には、グラム陰性またはグラム陽性菌、例えば、大腸菌または枯草菌が含 まれる。大腸菌のような原核細胞を宿主として使用する場合、 β—ガラタトシド一 ひ 2 , 6—シアル酸転移酵素タンパク質は、原核細胞内での組換えポリペプチドの発現を 容易にするために Ν末端メチォニン残基を含むようにしてもょレ、。この Ν末端メチォ二 ンは、発現後に組換えひ 2, 6—シアル酸転移酵素タンパク質から切り離すこともでき る。
[0060] 原核宿主細胞内で用いる発現ベクターは、一般に 1または 2以上の表現型選択可 能マーカー遺伝子を含む。表現型選択可能マーカー遺伝子は、例えば、抗生物質 耐性を付与するか、または独立栄養要求性を付与する遺伝子である。原核宿主細胞 に適する発現ベクターの例には、 pBR322 (ATCC37017)のような市販のプラスミド またはそれらから誘導されるものが含まれる。 pBR322は、アンピシリンおよびテトラ サイクリン耐性のための遺伝子を含有するので、形質転換細胞を同定するのが容易 である。適切なプロモーターならびに ガラクトシドー α 2, 6 シアル酸転移酵素 をコードする核酸の DNA配歹 Uが、この pBR322ベクター内に挿入される。他の巿販 のベクターには、例えば、 ΡΚΚ223 - 3 (Pharmacia Fine Chemicals,スウェーデン、ゥ プサラ)および pGEMl (Promega Biotech. ,米国、ウィスコンシン州、マディソン)など が含まれる。
[0061] 原核宿主細胞用の発現ベクターにおいて通常用いられるプロモーター配列には、 t acプロモーター、 β—ラクタマーゼ (ぺニシリナーセ Jプロモーター、ラクトースフ °ロモ 一ター(Changら、 Nature 275:615, 1978;および Goeddelら、 Nature 281 :544, 1979、 引用によりその全体を本明細書に援用する。)などが含まれる。
[0062] また、組換え β—ガラタトシドー ひ 2, 6 _シァル酸転移酵素タンパク質を酵母宿主 内で発現させてもよレ、。好ましくは、サッカロミセス属(Saccharomyces、例えば、 S. cer evisiae )を用いる力 ピキア属(Pichia)またはクルイべ口ミセス属(Kluyveromyces)の ような他の酵母の属を用いてもよい。酵母ベクターは、 2 μ酵母プラスミドからの複製 起点の配歹 lj、 自立複製配歹 IJ (ARS)、プロモーター領域、ポリアデュル化のための配 歹 IJ、転写終結のための配列、および選択可能なマーカー遺伝子を含有することが多 レヽ。酵母ひ因子リーダー配列を用いて、組換え /3 _ガラクトシド一 ひ 2, 6—シアル酸 転移酵素タンパク質の分泌を行わせることもできる。酵母宿主からの組換えポリぺプ チドの分泌を促進するのに適する他のリーダー配列も知られている。酵母を形質転 換する方法は、例えば、 Hinnenら、 Proc. Natl. Acad. Sci. USA, 75: 1929-1933, 1978 (引用によりその全体を本明細書に援用する)に記載されてレ、る。
[0063] 哺乳動物または昆虫宿主細胞培養系を用いて、組換え β—ガラタトシド—ひ 2, 6 _ シアル酸転移酵素タンパク質を発現することもできる。哺乳動物起源の株化細胞系も 用いることができる。哺乳動物宿主細胞発現ベクターのための転写および翻訳制御 酉己歹 IJは、ウィルスゲノムから得ることができる。通常用いられるプロモーター配列およ びェンハンサー配列は、ポリオ一マウィルス、アデノウイルス 2などから誘導される。 S V40ウィルスゲノム、例えば、 SV40起点、初期および後期プロモーター、ェンハンサ 一、スプライス部位、およびポリアデニルイ匕部位力 誘導される DNA配列を用いて、 哺乳動物宿主細胞内での構造遺伝子配列の発現のための他の遺伝子要素を与え てもよレ、。哺乳動物宿主細胞内で用いるためのベクターは、例えば、 Okayamaおよび Berg (Mol. Cell. Biol., 3: 280, 1983、引用によりその全体を本明細書に援用する。 ) の方法で構築することができる。
[0064] 本発明の β ガラクトシドー α 2, 6 シアル酸転移酵素タンパク質を産生する 1つ の方法は、 /3 _ガラクトシド一 ひ 2, 6—シアル酸転移酵素タンパク質をコードする核 酸配列を含む発現ベクターで形質転換した宿主細胞を、当該タンパク質が発現する 条件下で培養することを含む。次いで、用いた発現系に応じて 一ガラクトシド一ひ 2, 6 _シアル酸転移酵素タンパク質を培養培地または細胞抽出液から回収する。
[0065] 組換え /3—ガラクトシドー ひ 2, 6 シアル酸転移酵素タンパク質を精製する操作は 、用いた宿主の型および本発明のタンパク質を培養培地中に分泌させるかどうかとい つた要因に従って適宜選択される。例えば、組換え /3 _ガラクトシド— ひ 2, 6—シァ ル酸転移酵素タンパク質を精製する操作には、陰イオン交換カラム、陽イオン交換力 ラム、ゲル濾過カラム、ハイドロキシアパタイトカラム、 CDP へキサノールアミンァガ ロースカラム、 CMP へキサノールアミンァガロースカラム、疎水性カラム等のカラム クロマトグラフィーおよびネイティブ— PAGE等、またはそれらの組み合わせが含まれ る。また、組換え β—ガラタトシド—ひ 2, 6—シアル酸転移酵素に精製を容易にする タグなどを融合させて発現させた場合には、ァフィ二ティークロマトグラフィーによる精 製方法を利用してもよい。例えば、ヒスチジンタグ、 FLAG™タグ、またはダルタチォ ン— S—トランスフェラーゼ(GST)などを融合させた場合には、それぞれ、 Ni-NT A (二トリ口トリ酢酸)カラム、抗 FLAG抗体を連結したカラム、またはダルタチオンを連 結したカラム、などを用いてァフィ二ティークロマトグラフィーにより精製することができ る。
[0066] 組換え /3—ガラクトシドーひ 2, 6 シアル酸転移酵素は電気泳動的に単一バンド になるまで精製してもよいが、部分精製品でも十分な活性を有するため、本発明の ガラクトシドー 2, 6 シアル酸転移酵素は精製品であってもよぐまたは部分精製 品であってもよい。
[0067]
本発明は、本発明の β ガラクトシドー α 2, 6 シアル酸転移酵素タンパク質に対 する抗体を提供する。本発明の抗体は、本発明の β ガラクトシドー α 2, 6 シァノレ 酸転移酵素タンパク質、またはそのフラグメント、に対して作製してもよい。ここで、本 発明の i3—ガラクトシドー α 2, 6 シアル酸転移酵素のフラグメントは、当該酵素の 了ミノ酸酉己歹 IJ中、少ヽなくとち 6了ミノ酸、 ζ少なくとち 10了ミノ酸、少ヽなくとち 20了ミノ酸、ま たは少なくとも 30アミノ酸を含む配列を有するフラグメントである。
[0068] 抗体は、本発明の /3—ガラタトシド一ひ 2, 6—シアル酸転移酵素またはそのフラグ メントを、当該技術分野において抗体作製のために用いられる動物、例えば、限定さ れるわけではないが、マウス、ラット、ゥサギ、モルモット、ャギなどに免疫して作製し てもよレ、。抗体はポリクローナル抗体であっても、またはモノクローナル抗体であって もよレ、。抗体は、当業者に周知の抗体作製方法に基づいて作製することができる。
[0069] 本発明の抗体は、本発明の β—ガラタトシドーひ 2, 6—シアル酸転移酵素タンパク 質をァフィ二ティー精製により回収するのに用いることができる。本発明の抗体は、本 発明の i3—ガラクトシドー α 2, 6 シアル酸転移酵素タンパク質を、ウェスタンブロッ ティングや ELISAなどのアツセィにおいて検出するのに用いることもできる。
発明の効果
[0070] 本発明は、新規な /3—ガラタトシドーひ 2, 6—シアル酸転移酵素およびそれをコー ドする核酸を提供することにより、生体内において重要な機能を有することが明らか にされてきてレ、る糖鎖の合成 ·生産手段を提供するとレ、う観点におレ、て貢献する。特 に、本発明の β ガラクトシドー α 2, 6 シアル酸転移酵素酵素は、既存のものと比 較しても、生産効率が高ぐ比活性が高ぐさらに受容体基質特異性が広範囲である 。シアル酸は、生体内の複合糖質糖鎖において非還元末端に存在することが多ぐ 糖鎖機能という観点から極めて重要な糖であるため、シアル酸転移酵素は糖転移酵 素の中でも最も需要が高い酵素の一つであり、本発明の新規なシアル酸転移酵素の 提供は、そのような高い需要に応えるものである。
図面の簡単な説明
[0071] [図ト 1]図 1—1は、 JT— ISH— 224株の粗酵素液を、ピリジルァミノ化ラタトース(ΡΑ —ラタトース)および CMP—シアル酸に反応させた反応溶液の HPLC分析結果を示 す図である。保持時間が 3. 995分のピークは ΡΑ—ラタトース、 4. 389分のピークは PA—6 '—シァリルラタトース、 5. 396分のピークは PA—3'—シァリルラタトースであ る。
[図ト 2]図 1—2は、 JT—ISH— 224株の粗酵素液を、ピリジノレアミノ化(ΡΑ)ラタトー スに反応させた反応溶液の HPLC分析結果を示す図である。図 1 1の実験に対し てシアル酸供与体である CMP シアル酸を反応液に混合していない対照実験の結 果である。保持時間が 3. 993分のピークは ΡΑ—ラタトースである。
[図 1-3]図 1—3は、 ΡΑ—ラタトースの標品の HPLC分析結果を示す図である。 PA— ラタトースは、保持時間 4. 026分のピークとして現れる。
[図 1-4]図 1—3は、 PA- 3'ーシァリルラタトースの標品の HPLC分析結果を示す図 である。 PA— 3'—シァリルラタトースは、保持時間 5. 447分のピークとして現れる。
[図 1-5]図 1—5は、公知の酵素である Photobacterium damselae JT0160株由来の β ガラクトシドー α 2, 6 シアル酸転移酵素を PA ラタトースおよび CMP シアル 酸に反応させた反応溶液(ピリジノレアミノ化 α 2, 6 シァリルラタトースが生成されて いる)の HPLC分析結果を示す図である。保持時間が 4. 000分のピークは ΡΑ—ラタ トース、 4. 406分のピークは PA— 6 '—シァリルラタトースである。
[図 1-6]図 1—6は、公知の酵素である Photobacterium damselae JT0160株由来のひ 2, 6 シアル酸転移酵素を PA ラタトースに反応させた反応溶液の HPLC分析結 果を示す図である。図 1 _ 5の実験に対し、 CMP—シアル酸を反応液に混合してい ない対照実験である。保持時間が 3. 995分のピークは PA—ラタトースである。
[図 2- 1]図 2—1は、 JT— ISH— 224由来の組換え j3 _ガラクトシド一ひ 2, 6—シァ ル酸転移酵素の酵素活性における反応 pHの影響を示すグラフである。図中の略号 は、それぞれ以下のものを示す: Ac :酢酸バッファー、 Cac :力コジル酸バッファー、 P hos :リン酸バッファー、 TAPS : TAPSバッファー。
[図 2-2]図 2— 2は、 JT— ISH— 224由来の組換え ガラクトシドー α 2, 6 シァ ル酸転移酵素の酵素活性における反応温度の影響を示すグラフである。
[図 2-3]図 2— 3は、 JT— ISH— 224由来の組換え ガラクトシドー α 2, 6 シァ ル酸転移酵素の酵素活性における反応液中の NaCl濃度の影響を示すグラフである
実施例
以下、実施例により本発明をさらに具体的に説明するが、これらは本発明の技術的 範囲を限定するためのものではない。当業者は本明細書の記載に基づいて容易に 本発明に修飾 ·変更を加えることができ、それらは本発明の技術的範囲に含まれる。
実施例 1: β—ガラクトシドーひ 2. 6—シアル酸転移酵素を牛産する微牛物のスク リーニングと菌株の同定
海水、海砂、海泥あるいは海産魚介類を接種源とした。この接種源をマリンブロスァ ガー 2216培地(ベタトン'ディッキンソン製)からなる平板培地上に塗布し、 15°C、 25 °Cもしくは 30°Cで生育する微生物を取得した。常法に従い、得られた微生物を純粋 培養した後、マリンブロス 2216培地(ベタトン.ディッキンソン製)からなる液体培地を 用いてそれぞれの微生物を培養した。微生物が十分成育した後に、培養液から菌体 を遠心分離によって集めた。集めた菌体に、 0. 2%トリトン X— 100 (関東化学製)を 含む 20mMカコジレート緩衝液 (pH6. 0)を添加し、菌体を懸濁した。この菌体懸濁 液を氷冷下、超音波処理し細胞を破砕した。この細胞破砕液を粗酵素溶液としてシ アル酸転移活性を測定し、シアル酸転移活性を有する菌¾[丁_131^_ 224株を得 た。なお、 JT— ISH— 224株は力マスの内臓力、ら得られた。
[0073] シアル酸転移活性は、 J. Biochem., 120, 104-110 (1996) (引用によりその全体を本 明細書に援用する)に記載されている方法で測定した。具体的には、糖供与体基質 CMP— NeuAc (70nmol、 14Cで NeuAcをラベルした CMP— NeuAc 約 20, 000 cpmを含む。 NeuAcは N—ァセチルノイラミン酸を表す)、糖受容体基質としてラクト —ス(1. 25 z mol)、 NaClを 0. 5M濃度になるように添加し、および上記に記した方 法で調製した酵素を含む反応溶液(30 μ 1)を用いて酵素反応を行った。酵素反応 は 25°Cで 10分間から 180分間程度行った。反応終了後、反応溶液に 1. 97mlの 5 mMリン酸緩衝液(ρΗ6· 8)をカロえ、この溶液を Dowexl X 8 (ΡΟ 3 フォーム、 0· 2
X 2cm、 BIO—RAD製)カラムに供した。このカラムの溶出液(0〜2ml)に含まれる 反応生成物、すなわち、シァリルラタトースに含まれる放射活性を測定することで、酵 素活性を算出した。酵素 1単位(1U)は、 1分間に 1マイクロモルのシアル酸を転移す る酵素量である。
[0074] 次に、シアル酸の結合様式を明らかにするために、 PA—ラタトースを基質とする反 応を行った。得られた粗酵素液を用い、ピリジノレアミノ化糖鎖を糖受容体基質として 酵素反応を行った。ピリジルァミノ化糖鎖としては、ピリジノレアミノ化ラタトース(Gal 1 4Glc— PA、タカラバイオ製)を用い分析した。 5 μ 1の粗酵素液に 1. 5 /i lの 5m M CMP_NeuAcおよび 1. 5 μ 1の lOpmolZ μ 1糖受容体基質を加え、 25。C下で 18時間反応させた。反応終了後、 100°Cで 2分間反応溶液を処理することにより酵 素を失活させた。その後、 HPLCで反応生成物の分析を行った。 HPLCシステムとし て Shimadzu LC10A (島津製作所製)を用レ、、分析カラムには Takara PALPA K Type R (タカラバイオ製)を用いた。 0. 15% N—ブタノールを含む lOOmM 酢酸一トリエチルァミン(pH5. 0)で平衡化したカラムに 72 μ 1の溶出液 A (100mM 酢酸—トリエチルァミン、 pH5. 0)を加えた反応液を注入した。ピリジノレアミノ化糖 鎖の溶出には溶出液 A (100mM 酢酸ートリエチルァミン、 ρΗ5· 0)および溶出液 Β (0. 5%、 η—ブタノーノレを含む lOOmM 酢酸ートリエチノレアミン、 pH5. 0)を用い 、 30〜50%溶出液 Bの直線濃度勾配法(0〜20分)および 100%溶出液 B (21〜3 5分)により、順次ピリジルァミノ化糖鎖を溶出した。なお、分析は以下の条件で行つ た(流速: lmlZmin、カラム温度: 40。C、検出:蛍光(Ex : 320nm、 Em : 400nm) ) 。その結果、 JT— ISH— 224株は j3—ガラクトシド—ひ 2, 6—シアル酸転移酵素活 性および /3 _ガラクトシドーひ 2, 3—シアル酸転移酵素活性を有することが明らかと なった(図:!一:!〜 6)。
[0075] TT—ISH— 224株の細菌学的同定
得られ JT—ISH— 224株の性質は以下の通りであった:
(菌学的'卜牛晳)
(1)細胞の形態は桿菌で、大きさは 0. 7〜0. 8 x m X l . 0〜: 1. 5 μ m。
[0076] (2)運動性 +
(3)グラム染色性
(4)胞子の有無
(生理学生化学的性晳)
(1)生育温度 4°Cでは一、 25°Cでは +、 30°Cでは +、 37°Cでは
(2)集落の色調 特徴的集落色素を産生せず
(3) 0/Fテスト +/—
(4)カタラーゼテスト +
(5)ォキシダーゼテスト +
(6)グルコースからの酸産生 +
(7)グルコースからのガス産生 +
(8)発光性 -
(9)硝酸塩還元 +
(10)インドール産生 +
(11)ブドウ糖酸性化 一
(12)アルギニンジヒドロラーゼ + (13)ゥレアーゼ
(14)エスクリン加水分解
(15)ゼラチン加水分解性
(16) β -ガラタトシダーゼ +
(17)ブドウ糖資化性 一
( 18) L—ァラビノース資化性 -
(19) D_マンノース資化性 一
(20) D_マンニトール資化性 ―
(21) N—ァセチル— D_ダルコサミン資化性 ―
(22)マルトース資化性 一
(23)ダルコン酸カリウム資化性 _
(24) n—力プリン酸資化性 ―
(25)アジピン酸資化性 -
(26) dl リンゴ酸資化性
(27)クェン酸ナトリウム資化性
(28)酢酸フエ二ル資化性
(29)チトクロームォキシダーゼ +
(30) 0/129感受性、 10 /i g —、 15 μ § +
(31)菌体内 DNA の GC含量(モル%) 39· 4%
16S rRNA遺伝子の塩某配列解析
JT— ISH— 224株から、常法により抽出したゲノム DNAを铸型として、 PCRにより 1 6S rRNA遺伝子の全塩基配列を増幅し、塩基配列を決定した。塩基配列を配列 番号 5に示した。
JT—ISH— 224株はマリンァガー上での生育性、桿菌、グラム染色性、グルコース 発酵的分解性、 OZ129感受性などの形態観察および生理'生化学的性状試験の 結果からビブリオ科に属することが示された。さらに、 JT—ISH— 224株の 16S rR NA遺伝子の DNA塩基配列はフォトバタテリゥム 'フォスフォレゥム(Photobacterium phosphoreum)基準株 ATCC 11040の 16S rRNA遺伝子の配列に最も相同性が 高ぐその相同率は 99. 2%であること、次にフォトバタテリゥム'イリオピスカリウム(Ph otobacterium iliopiscarium)基準株 ATCC51760の 16S rRNA遺伝子の配列に相 同性が高ぐその相同率は 99. 1 %であることが明らかとなった。これらの結果から、 J T— ISH— 224株はビブリオ科フォトバタテリゥム属(Photobacterium sp.)に属する微 生物であることが明らかとなった。
実窗列 2 : TT— ISH— 224株由 fi _ガラクトシド '一《2. 6 シアル酴拿云移酵 貴 ィ云 のクローニング^^ ffi歹 Ιί 、: よび お貴ィ云 の ¾での
(1) TT_ISH_ 224株における β—ガラクトシド—ひ 2. 6—シアル酸転移酵素遣伝 子ホモローグの存在の確認
実施例 1で /3 _ガラクトシドーひ 2, 6—シアル酸転移酵素活性を有することが明ら 力、となつ T— ISH— 224株において、フォトバタテリゥム 'ダムセラ JT0160株由来 β—ガラタトシド—ひ 2, 6—シアル酸転移酵素遺伝子のホモローグが存在するかどう かを明らかにするため、ゲノミックサザンハイブリダィゼーシヨンを実施した。 JT ISH — 224の菌体ペレット約 0· 5gから、 Qiagen Genomic -tip 100/G (Qiagen社 製)を用い、キット添付の説明書きに従って、約 lOO ^ gのゲノム DNAを調製した。次 に、 JT— ISH— 224株のゲノム DNA数 μ gを制限酵素 EcoRI、または Hindlllで消 化し、 0. 7%ァガロースゲル電気泳動で分画後、 0. 4M NaOHを用いたアルカリブ ロッテイングにより、ゲルを Hybond— N +ナイロンメンブレンフィルター(アマシャムバ ィォサイエンス製)に転写した。このフィルターに関して、フォトバタテリゥム'ダムセラ J T0160株由来 —ガラクトシド— α 2, 6 シアル酸転移酵素遺伝子(GeneBankァク セッション番号: E17028)の部分断片(ATGから Hindlllまでの約 1. 2kbEcoRI— Hindll I断片)をプローブとして用いて、サザンノ、イブリダィゼーシヨンを行った。ハイブリダィ ゼーシヨン実験は ECL direct labeling & detection system (Amersham社製)を使用し た。キット添付の説明書きに従ってプローブをラベリングした。ハイブリダィゼーシヨン は、キット中の hybridization bufferに Blocking試薬を 5% (w/v)、 NaClを 0. 5Mにな るように加え、 37°C (通常 42°C)で 4時間行った。洗浄は、 0. 4% SDS、 0. 5xSSC 中で、 50 °C (通常 55°C)で 20分を二回、 2xSSC中で室温、 5分を一回行った。シ グナルの検出は、キット添付の説明書きに従った。その結果、 EcoRI消化で、約 12. 5kbのバンドが、 Hindlll消化で、約 9kbのバンドが検出された。この結果から、 JT—I SH— 224株には、フォトバタテリゥム 'ダムセラ JT0160株由来 ガラクトシド一 α 2 , 6—シアル酸転移酵素遺伝子のホモローグが存在することが明らかとなった。
(2) TT_ISH_ 224株由夹 β _ガラクトシド—ひ 2. 6—シアル酸転移酵素遺伝子の クローニング
ωゲノムライブラリー構築
JT— ISH— 224株のゲノム DNAl にっき、 0.:!〜 0. 2ユニットの四塩基認 識の制限酵素 Sau3AIを反応させ、部分分解を行った。ゲノム DNAは総量 80 x g処 理した。反応バッファ一は酵素に添付のものを用レ、、反応条件は 37°C、 30分とした。 反応終了後、反応液に最終濃度 25mMの EDTA pH8. 0を加え、フヱノール'クロ 口ホルム処理を行った。ゲノム DNAをエタノール沈殿で回収し、 TE 400 μ ΐに溶解 した。遠心チューブ(日立製作所製 40ΡΑ)に、グラジェント作製装置を用いて、 40% シユークロースバッファー(20mM Tris pH8. 0, 5mM EDTA pH8. 0, 1M NaCl)と 10%シユークロースバッファーから、 40— 10%のグラジェントを作製し、そこ へ上記の部分分解 DNA溶液を重層した。超遠心機(日立製作所製 SCP70H、ロー ター: SRP28SA)を用レヽて、 26, OOOrpm, 20。C、 15時間遠心した。遠心後チュー ブの底部に 25Gの針で穴を空け、底部の液から lmlずつ回収した。回収したゲノム DNAを含むサンプルの一部を、サブマリン電気泳動糟を用い、 0. 5 -0. 6%ァガロ ースゲル/ TAEバッファ一中で、 26V、 20時間電気泳動を行い、 9 16kbのサイズ の DNAを含む画分を把握した。マーカーとして λ /HindIIIを用いた。 9 16kbの サイズの DNA断片を含む画分に TEを 2. 5ml加えシユークロース濃度を下げた後, エタノール沈殿、リンスを行い、少量の TEに溶解した。
JT—ISH— 224株のゲノムライブラリー作成のためのベクターとして、 λ DASH II (Stratagene製)を用いた。 λ DASH IlZBamHIベクターとゲノム DNA断片のライ ゲーシヨン反応は Stratagene製のライゲーシヨンキットを用いて、 12°Cでー晚行った。 反応後、反応液を GigaPack III Gold Packaging extractと反応させ、ゲノム DNAが組 み込まれた λベクターをファージ粒子に取り込ませた。ファージ液は 500 μ 1の SMバ ッファーと 20 μ ΐのクロ口ホルム中で 4°C保管した。大腸菌 XL1—Blue MRA (P2) ( Stratagene製)を LBMM (LB + 0. 2%マルトース + 10mM MgSO )中で A =0.
5になるまで培養し、この培養液 200 μ 1に、適量のファージ溶液を加え、 37°Cで 15 分間培養した。ここへ 48°Cで保温した NZYトップァガロースを 4mlカ卩え、混合し、 NZ Yァガープレート(直径 9cmのプラスチックシャーレ)にプレーティングした。プレート を 37°Cで一晩培養し、プラーク数を数え、 titerを計算したところ、ライブラリーサイズ は約 30万 pfu (plaque forming unit)と算出された。
(ii)プラークハイブリダィゼーシヨンと TT—ISH— 224株由夹 —ガラクトシド一ひ 2. 6—シアル酴ま云移酵素遣ィ云子 含むゲノム断片のサブクローニング
次に、先述のフォトバタテリゥム 'ダムセラ JT0160株由来 j3—ガラクトシド一ひ 2, 6 —シアル酸転移酵素遺伝子の部分断片をプローブに用レ、、 JT— ISH— 224株のゲ ノムライブラリーをスクリーニングした。直径 9cmの丸形シャーレに λ DASH Il/Ba mHI ベクターキット(Stratagene社製)の説明書きに従って、数百 pfuのファージを宿 主菌 XLl—blue MRA (P2)とともにプレーティングした。プラークを Hybond— N +ナイロンメンブレンフィルター (Amersham社製)に接触させ、メンブレン添付の説明 書きに従ってアルカリ処理を行い DNAを変性させ、メンブレン上に固定させた。プロ ーブのラベリング、ハイブリダィゼーシヨン条件は、上記(1)に記載の方法で行った。 その結果、プラーク精製を兼ねた二次選抜までに、 8クローンを得、うち 4つのブラー クを回収し、それぞれ大腸菌 XLl—blue MRA (P2)とともに、一枚数万 pfuとなる ように NZYプレートにプレーティングし、ー晚 37°Cで保温した。プラークが一面に出 ている 6枚のプレートに SMバッファーを 4mlづっ注ぎ、 4°Cでー晚静置した。パスッ ールピペットで、ファージプレートライセートを回収し、 QIAGEN Lambda Mini Kit (キアゲン社製)で、 λ DNAを抽出、精製した。これらの 4種の λ DNAサンプノレ を、制限酵素 EcoRIと HindIII、 EcoRIと BamHI、または EcoRIと Xholで消化した。 消化物をァガロースゲル電気泳動で分画し、上述の(1)と同様にナイロンメンブレン フィルターに転写した。このフィルターを用いて、再度フォトバタテリゥム 'ダムセラ JT0 160株由来 /3 _ガラクトシドーひ 2, 6—シアル酸転移酵素遺伝子の部分断片をプロ ーブに用い、サザン分析を行った。その結果、 EcoRI— BamHI消化の場合、 10kb のバンドが検出された。 10kbの長さのゲノムは常法で高コピープラスミドベクターに サブクローンィ匕するのは困難であると考えられたので、さらに各種の制限酵素を用い たサザンハイブリダィゼーシヨンを行った。用いた酵素は BglII、 EcoRV、 Kpnl、 Nh el、 Pstl、 PvuII、 Sacl、 Sail, Xbalである。その結果、 EcoRVで 6· 6kb、 ΚρηΙで 7 kb、 Nhelで 3. 5kbのバンドが検出された。そこで; I DNAサンプルを再度 Nhelで消 化し、 TAE緩衝液中で低融点ァガロース(SeaPlaqueGTG)をもちいたァガロースゲル 電気泳動を行った。 3. 5kbの DNA断片をゲルごと切り出し、ゲルと等量の 200mM NaClを加え、 65°Cで 10分処理し、ゲルを融解した。このサンプルをフエノール抽 出、フエノーノレ'クロ口ホルム抽出、クロ口ホルム抽出を各一回行レ、、エタノール沈殿 によって 3. 5kbDNA断片を回収した。この断片を Ligation kit (タカラバイオ製)を用 いて、プラスミドベクター pBluescript SK (-)の Xbal部位(脱リン酸処理したもの)にライ ゲーシヨンした。ライゲーシヨン反応後、 DNAをエレクト口ポレーシヨンによって大腸菌 TBIに形質転換し、アンピシリン(100(gZmL)を含む LA寒天培地にプレーティン グした。 37°C—晩培養し得られたコロニーを複数、 LB培地(アンピシリン入り)に接種 し、 37°Cでー晚振とう培養し、常法(Sambrook et al. 1989, Molecular Cloning, A lab oratory腿皿 al, 2nd edition (引用によりその全体を本明細書に援用する))に従いプラ スミドを抽出した。
(iii) TT— ISH— 224株由来 β —ガラクトシド— α 2, 6—シアル酸転移酵素遺伝子 の全塩某配列の決定
次に、上記でインサート DNAが確認されたプラスミドに関して、 M13プライマー(タ カラバイオ製)を用いて、 ABI PRISM蛍光シークェンサ一(Model 310 Genetic Ana lyzer, Perkin Elmer社製)で、 3· 5kb Nhel断片の両端の塩基配列を決定した。得 られた DNA配列を、遺伝情報処理ソフトウェア GENETYX Ver. 7 (ゼネテイツタス 社製)を用いて、アミノ酸配列に翻訳し、 National Center for Biotechnology Informati on (NCBI)の GeneBankデータベースに対して、 BLASTプログラムによる同一性検 索を行った。その結果、片方の DNA配列から翻訳されたアミノ酸配列力 フォトバタ テリゥム 'ダムセラ JT0160株由来 /3—ガラクトシド一ひ 2, 6—シアル酸転移酵素のァ ミノ酸配列と有意な同一性を示した。同一性を示した領域の方向性から、 3. 5kb N hel断片の中には完全 ¾[T_ISH_ 224株 /3 _ガラクトシド一ひ 2, 6—シアル酸転 移酵素遺伝子が含まれることが示唆された。
[0079] 次に、 JT ISH— 224株の同酵素の遺伝子の DNA配列を完全に決定するため、 3. 5kb Nhel断片力 得られた DNA配列を基に、 2種のプライマー:
ISH224-26ST-C3-R (5'-TTCATCGTCATCTAATCGTGGC-3' (22 mer) :配列番号 6);
ISH224-26ST-C4-R (5'-AGTTGTTGCGTACCACAAGT-3' (20 mer) :配列番号 7) ; を合成し、塩基配列決定に用いた。
[0080] これらのプライマーを用いて、上述の様に塩基配列を決定した結果、配列表の配列 番号 1の配列を得た。この配列は、 JT—ISH— 224株由来 j3 _ガラクトシド一 ひ 2, 6 —シアル酸転移酵素遺伝子のオープンリーディングフレーム(〇RF)の全塩基配列 である。フォトバタテリゥム属 JT—ISH— 224株由来 /3 _ガラクトシド一ひ 2, 6—シ アル酸転移酵素遺伝子の ORFは、 1545塩基対からなり、 514個のアミノ酸をコード していた。このアミノ酸配列を配列表の配列番号 2に示す。 GENETYX Ver. 7を 用いて DNA配歹 IJ、およびアミノ酸配列の解析を行ったところ、 JT— ISH— 224株由 来 ;3—ガラクトシドー α 2, 6—シアル酸転移酵素遺伝子の DNA配列は、フォトバタ テリゥム 'ダムセラ JT0160株由来の β ガラクトシドー α 2, 6 シアル酸転移酵素遺 伝子と 63%の同一性を有していた。またアミノ酸配列でも、フォトバクテリウム'ダムセ ラ JT0160株由来の ガラクトシド一 α 2, 6 シアル酸転移酵素 IC5898)と 54. 5 %の同一性を示した。
(3) ΤΤ— ISH— 224株由来 β ガラクトシドー α 2, 6 シアル酸転移酵素遺伝子発 現ベクターの構築
クローン化した遺伝子が、シアル酸転移酵素活性を有するかどうかを調べるため、 ま fcJT_ISH_ 224株由来 j3 _ガラクトシド一 ひ 2, 6—シアル酸転移酵素を大量に 得るため、同遺伝子の全長、および N末端側のシグナルペプチド部分を除去したタイ プの遺伝子を発現ベクターに組み込み、大腸菌内でタンパク質を生産させ、この発 現タンパク質の活性を測定した。
[0081] JT—ISH 224株由来 j3 _ガラクトシド一ひ 2, 6—シアル酸転移酵素のアミノ酸 配列について、遺伝情報処理ソフトウェア GENETYX Ver. 7で解析を行ったとこ ろ、 N末端の 17アミノ酸がシグナルペプチドであると予測された。そこで、遺伝子全長 (本実施例において ISH224— N0C0と表記する)をクローン化するためのプライマ 一 ISH224— 26ST— NOBspHI (5'— AGAATATCATGAAAAACTTTTTATTATTAAC-3' (31 mer) :配列番号 8)、 ISH224_26ST-C0BamHI (5'_TTTTTTGGATCCCTAGACTG CAATACAAACACC-3' (33 mer):配列番号 10)、さらにシグナルペプチド部分のァ ミノ酸が除かれたタイプのタンパク質をコードする遺伝子(本実施例において ISH22 4— N 1 C0と表記する)をクローン化するためのプライマー ISH224_26ST-N lPciI (5'- CTTGTAACATGTCAGAAGAAAATACACAATC-3' (31 mer):配列番号 9)、 ISH22 4-26ST-C0BamHI (5,-TTTTTTGGATCCCTAGACTGCAATACAAACACC_3, (33 mer) :配列番号 10)を設計、合成した。
3. 5kb Nhel断片を含むプラスミドを铸型に、これらのプライマーを用いて PCRを 行レ、、発現ベクターに組み込むための JT—ISH— 224株由来 j3 _ガラクトシド一ひ 2 , 6—シアル酸転移酵素遺伝子を増幅した。 PCRの反応条件は以下のように設定 した。 50 μ 1の反応液中に、铸型 DNA 500ng、 10 X Ex taq buffer 5 /i l、 2. 5mM 各 dNTP 4 μ 1、プライマー 50pmole、 Ex taq (タカラバイオ製) 0 · 5 /i 1を それぞれ含み、プログラムテンプコントロールシステム PC— 700(ASTEK製)を用いて 、 96°C 3分を 1回、 96°C 1分、 55°C 1分、 72°C 2分を 5回、 72°C 6分を 1回行 つた。その結果、 ISH224— N0C0でおよそ 1 . 55kb、 ISH224— N 1 C0でおよそ 1 . 5kbの PCR産物が増幅された。これらの PCR産物を、ベクター pCR4TOP〇 (Invitr ogen社製)にクローニングした。ライゲーシヨン反応はベクターキット添付の説明書き に従った。大腸菌 TB Iにエレクト口ポレーシヨン法を用いて DNAを導入し、常法(Sa mbrook et al. 1989, Molecular Cloning, A laboratory manual, 2 edition;に従レヽフフ スミド DNAを抽出した。インサートの確認されたクローンに関して、 M 13プライマー( Takara社製)を用いて、 ABI PRISM蛍光シークェンサ一(Model 310 Genetic Anal yzer, Perkin Elmer社製)で、 PCR産物の塩基配列をその両端力、ら決定した。その結 果、 ISH224— N0C0におレ、ては、配列表の配列番号 1の第 718番目のチミン(T) がシトシン(C)に塩基置換されていた。この変異によって、コドンが TTAから CTAに 変化するが、これらのコドンはともにロイシン (Leu)をコードするため、アミノ酸変異は 生じない。一方、 ISH224— N1C0には塩基配列の変化はなかった。 ISH224— N1 COの塩基配列は配列番号 3に示す。
塩基配列が確認された ISH224— N0C0ならびに ISH224— N1C0の代表クロー ンそれぞれ一つについて、制限酵素 BspHIと BamHI (ISH224_N0C0の場合)、 または制限酵素 Pcilと BamHI (ISH224— N1C0の場合)で二重消化した後、上述( 2)の(ii)と同様にゲル精製した。大腸菌発現用ベクターは pTrc99A (Pharmacia LK B製)を用いた。このベクターを制限酵素 Ncolと BamHIで二重消化しゲル精製した ものを、制限酵素処理を行った ISH224— N0C0ならびに ISH224— N1C0の PCR 産物と Takara Ligation Kit (タカラバイオ製)を用いてライゲーシヨンし、大腸菌 TBIに 形質転換した。常法に従いプラスミド DNAを抽出、制限酵素分析して、インサートの 組み込みを確認し、 ISH224_N0C0/pTrc、ならびに ISH224— NlCO/pTrcを 完成した。 上記(3)で得られた 2種類のクローンに関して、タンパク質発現誘導実験を行った。 各クローンが組み込まれた発現ベクター PTrc99Aをもつ大腸菌 TBIの単一コロニ 一を、抗生物質アンピシリン (最終濃度 100 μ g/mL)を含む LB培地(6ml)に接種 し、 A =0. 5程度になるまで 30°Cで菌を前培養し、その後 IPTG (イソプロピノレ— β
600
-D (-)ーチォガラ外ピラノシド、和光純薬工業社製)を最終濃度で ImMとなるよう に加え、 30°Cでさらに 4時間程度振とう培養した。培養液 4ml中の菌体を遠心分離 によって集めた。この菌体を、 200 /1 1の0. 336%卜!;卜ン X— 100および 0. 5M塩ィ匕 ナトリウムを含む 20mM ビストリス緩種 ί液 (ρΗ7· 0)に懸濁し、氷冷下で超音波破砕 した。得られた破砕液を粗酵素液とし、これを 0. 336。/0トリトン X—100を含む 20mM 力コジル酸緩衝液 (pH5. 0)で 200倍希釈し、活性測定に供試した。反応は 2反復 で行った。反応条件は表 1の脚注に示す通りである。その結果、下記の表 1に示すよ うに、両クローンの粗酵素液中には糖供与体である CMP_NeuAc中の14 Cでラベル された NeuAcを糖受容体基質であるラクト—スに転移する因子、即ちシアル酸転移 酵素活性が存在することが示された。以上の結果から、 ISH224-N0C0/pTrc,な らびに ISH224_NlC0/pTrcを導入した大腸菌にはシアル酸転移酵素が発現さ れていることが明ら力となった。
[0084] [表 1] 表 1
JT-ISH-224株由来 3—ガラクトシド— α 2, 6—シアル酸転移酵素遺伝子
を組み換えた大腸菌の破砕液中のシアル酸転移酵素活性
反応条件
反応組成:
3M NaCl 5 μΐ
45mg/ml ラク! ス (20mM 力コジル酸緩衝液 (pH5)中) 10 μΐ 謂倍希釈した粗酵素液 5 μ]
4. 55mM CMP-シアル酸 (20 力コジル酸緩衝液(pH5)中) + I4C-CMP-シアル酸
5 μΐ 反応時間: 2分間
反応温度: 3 0 V
[0085] (5) β ガラクトシドー α 2, 6 シアル酸転移活性の確認
上記(4)の ISH224— N1C0クローンおよび ISH224— N0C0クローンから調製し た粗酵素液を用いて、 ISH224— NOCO/pTrc、ならびに ISH224— NlCO/pTrc を導入した大腸菌で発現されたシアル酸転移酵素が β ガラクトシドー α 2, 6 シ アル酸転移活性を有するかどうか調べた。実施例 1と同様に、糖受容体としてピリジ ルァミノ化ラタトース(Gal iS 1— 4Glc— ΡΑ、タカラバイオ社製 PA— Sugar Chain 026)を用レ、、酵素反応を行った。その結果、実施例 1と同様に、 PA-6 '—シァリル ラタトース(Neu5Ac a 2— 6Gal j3 1— 4Glc— PA)が検出された。すなわち、両クロ ーン株由来のシアル酸転移酵素はいずれも β ガラクトシドー α 2, 6 シアル酸転 移活性を有することが明らかとなった。これらの結果から、フォトバタテリゥム属 JT一 I SH—224株の β ガラクトシドー α 2, 6 シアル酸転移酵素遺伝子がクローニング され、かつ、大腸菌内で発現されたことが証明された。
実施例 3 : ΤΤ— ISH— 224由来組換え β ガラクトシドー α 2, 6 シアル酸転移酵 素の牛産件
ISH224— N0C0クローンと ISH224— N 1 C0クローンの比較
実施例 2で得られた ISH224— N0C0クローンと ISH224— N1 C0クローンに関し て、経時的なタンパク質発現誘導実験を行った。各クローンが組み込まれた発現べク ター pTrc99Aをもつ大腸菌 TB Iの単一コロニーを、抗生物質アンピシリン(最終濃 度 100 μ g/mL)を含む LB培地(6ml)に接種し、 30°Cで約 8時間培養した。この前 培養液を抗生物質アンピシリン (最終濃度 100 μ g/mL)を含む LB培地(300ml) に接種し、 30°Cで振とう培養した。 OD600 = 0. 5程度になった時、 IPTG (イソプロ ピル— [3 - D (-)—チォガラタトピラノシド、和光純薬工業社製)を最終濃度で ImM となるように加え、 30°Cでさらに振とう培養した。培養 4、 6、 22,および 28時間後、培 養液中の菌体を遠心分離によって集めた。この菌体を、 0. 336 %トリトン X— 100含 む 20mM ビストリス緩衝液 (ρΗ6 · 0)に懸濁し、氷冷下で超音波破砕した。得られ た破砕液を粗酵素液とし、これを 0. 336 %トリトン X— 100を含む 20mM 力コジル 酸緩衝液 (PH5. 0)で 200倍希釈し、活性測定に供試した。反応は 2反復で行った。 反応条件は表 2の脚注に示す通りである。その結果、下記の表 2に示すように、 ISH 224— N0C0クローンでは、 IPTG添加 4時間後に、 β—ガラタトシドー α 2, 6シアル 酸転移活性が最大となり、その生産量は 5, 501U/L '培地であった。一方、 ISH22 4— N1 C0クローンでは IPTG添加 22時間後に、 ガラクトシドー α 2, 6 シァノレ 酸転移活性が最大となり、その生産量は 10, 776U/L '培地であった。
[表 2] 表 2
JT-ISH-22 株由来; 3—ガラクトシド _ α 2 J—シアル酸転移酵素遺伝子 を組み換えた大腸菌の破碎液中のシアル酸転移酵素活性
反応条件
反応組成:
3 NaC l 5 μΐ
45mg/ml ラクトース (20mM力コジル酸緩衝液(pH5)中) 10 μΐ
200倍希釈した粗酵素液 5 μΐ
4. 55mM CMP シアル酸 (20mM 力コジル酸緩衝液 (pH5)中) + "C-CMP-シアル酸
5 μΐ 反応時間: 1分間
応温度: 3 0で
本出願前に明らかにしたフォトバクテリウム-ダムセラ由来の組換え型の j3—ガラタト シド—ひ 2, 6—シアル酸転移酵素の生産性、すなわち、プラスミド pEBST A 178を 形質転換した大腸菌による β 一ガラクトシドー ひ 2, 6—シアル酸転移酵素の生産性 は 224. 5U/L (Yamamoto, Τ· , et al, J. Biochem., 120, 104-110 (1996))である。こ の酵素と比較し、 JT-ISH- 224由来組換えひ 2, 6—シアル酸転移酵素の生産性 は約 48倍高いことが明らかとなった。また、酵素の種類が異なるが、微生物由来のシ アル酸転移酵素としては生産性の高いパステレラ.ムルトシダ(Pasteurella multocida) 由来の α 2, 3—シアル酸転移酵素の生産性は 6, OOOU/L (Yu, H. et al. , J. Am. Chem. Soc, 127, 17618-17619, 2005)である。この酵素と比較しても、 JT—ISH— 2 24由来組換え —ガラクトシド— α 2, 6—シアル酸転移酵素の生産性は、約 1. 8倍 程度高い。
実施例 4 : ISH224— N1C0からの β—ガラタトシド— α 2. 6—シアル酸転移酵素 の抽出、精製および精製タンパク晳のァミノ末端アミノ酸配列の決定
LBAmp平板培地上で継代培養した ISH224— N1C0のコロニーから菌体をルー プで採取し、 30 μ 1の X 200アンピシリン(400mg/20ml)を添加した 6 ml— LB液 体培地 10mlに接種し、 30°C、毎分 180回転で 8時間振とう培養した。
[0088] 本培養は、以下の手順で実施した。 1. 5mlの X 200アンピシリン(400mg/20ml ) + 300 μ 1(7)1 M IPTG (1. 192gZ5ml)を添カロした 300ml— LB培地を 1000ml 容のコブ付フラスコに 300ml張り込み、これを 9本(合計 2. 7L)用意した。各々のフラ スコに前培養液 12mlを接種し、 30°C、毎分 180回転で 24時間振とう培養した。培養 液を遠心分離し、菌体を回収した。湿重量で約 15gを得た。
[0089] この菌体を、 990mlの 0· 336%トリトン X— 100を含む 20mM Bis_Tris緩衝液(p H6. 0)に懸濁し、 1. 6g/26mlとし、氷冷下で超音波破砕した。菌体破砕液を 4°C 、 100, 000 §で1時間、遠心分離を行い、上清を得た。
[0090] この粗酵素液を、 0· 336%トリトン X— 100を含む 20mM Bis_Tris緩衝液(ρΗ6· 0)で平衡化した HiLoad 26/10 Q Sepharose HP (Amersham社製)という陰イオン交換 カラムに吸着させ、 0· 336%トリトン X— 100を含む 20mM Bis-Tris緩衝液(ρΗ6· 0)から 1Μ塩ィ匕ナトリウムを含む同緩衝液へ直線濃度勾配法で溶出させた。その結 果、塩化ナトリウム濃度が 0. 25M付近で溶出された酵素活性を有する画分を回収し た。
[0091] 回収した画分を 20mMリン酸緩衝液(pH6. 0)で希釈し、予め 0. 336%トリトン X _ 100を含む 20mMリン酸緩衝液(pH6. 0)で平衡化したハイドロキシアパタイト(Bi o— Rad製)に吸着させ、 0. 336%トリトン X—100を含む 20mMリン酸緩衝液(pH6 . 0)力、ら 0. 336%卜ジ卜ン X— 100を む 500mMジン酸 種夜(Pti6. 0)へ直 ϋ濃 度勾配法で溶出させ。その結果、リン酸緩衝液濃度が 125mM付近に溶出された酵 素活性を有する画分を回収した。
[0092] この画分を MonoQ 5/50 GL (Amersham社製)陰イオン交換カラムに吸着させ 、 0. 336%トリトン X— 100を含む 20mM Bis— Tris緩衝夜(pti6. 0)力ら 1M 塩ィ匕 ナトリウムを含む同緩衝液へ直線濃度勾配法で溶出させた。その結果、塩化ナトリウ ム濃度が 300mM付近で溶出される酵素活性を有する画分を回収した。
[0093] 活性のあった画分を SDS _ポリアクリルアミドゲル電気泳動(アクリルアミドゲルの 濃度は 12. 5%)した結果、 目的酵素は単一のバンドを示し、約 56, 000の分子量を 示した。精製された画分の比活性は、菌体破砕時の比活性に比べて 9. 4倍に上昇 した(表 3)。以上より、 JT— ISH— 224由来組換え /3 _ガラクトシド一 ひ 2, 6—シァ ル酸転移酵素の比活性は 113UZmgであり、フォトバクテリウム'ダムセラ JT0160株 由来の j3 _ガラクトシド一 ひ 2, 6—シアル酸転移酵素の比活性 5. 5U/mg (J. Bioc hem., 120, 104-110, 1996, T.Yamamoto et al.)と比較し、約 21倍であった。また、酵 素の種類が異なるが、パステレラ 'ムルトシダ(Pasteurella multocida)由来の β—ガラ クトシド— ひ 2, 3—シアル酸転移酵素の比活性は 60UZmg (Yu, H. et al., J. Am. Chem. Soc, 127, 17618-17619, 2005·)である。この酵素と比較しても、 JT—ISH— 2 24由来組換え —ガラクトシド— α 2, 6 シアル酸転移酵素の比活性は、約 1. 9倍 高レ、。
[0094] 粗酵素液からの ISH224— N0C1クローンの β ガラクトシドー α 2, 6 シアル酸 転移酵素の精製について、上述したそれぞれの精製工程を経た試料の酵素活性を 表 3に示す。酵素活性は、実施例 1に記載したのと同様に J. Biochem. 120, 104_110( 1996)に記載されている方法に準じて、表 3脚注に示した反応条件で測定した。また、 タンパク質の定量は Coomassie Protein Assay Reagent (PIERCE製)を用いて、添付さ れたマニュアルにしたがってタンパク質の定量を行った。酵素 1単位(1U)は、 1分間 に 1マイクロモルのシアル酸を転移する酵素量とした。
[0095] [表 3] 表 3
粗酵素液からの I SH2M-N1 C0株由来
ガラクトシドー α 2, 6 シアル酸転移酵素の精製表
反応条件
反応組成:
3M NaC l 5 μΐ
360mM ラクトース 10 μΐ
1M ピストリス緩衝液 (pH6) 3 μΐ 水 2 ΐ 酵素液 5 μΐ
1 mM Off -シアル酸 (20m ピストリス緩衝液(pH6)中) + 14C-CMP -シアル酸
5 μΐ 反応時間: 5分間
反応温度: 2 5 "C
( 2)アミノ末端アミノ酸 ffi列の決定
上記(1 )で単一バンドまで精製した酵素溶液を SDS—ポリアクリルアミドゲル電気 泳動(アクリルアミドゲルの濃度は 12. 5%)した。泳動後にタンパク質を PVDF膜に 転写し、 CBBにて染色した後、 目的のバンド部分を切り出し、 Procise 494 HT Protei n Sequencing System (A卯 lied Biosystems)でアミノ酸配列を分析した。その結果、ァ ミノ末端がセリンで始まる配列の 15残基目(Ser Glu Glu Asn Thr Gin Ser lie lie Lys Asn Asp lie Asn Lys)まで確定することができた。この結果から、 ISH224— N 1 C0ク ローンの形質転換大腸菌が生産した i3—ガラクトシドー α 2, 6—シアル酸転移酵素 タンパク質において、ァミノ末端のメチォニンは大腸菌体内でプロセスされたと考えら れる。 実施例 5 : TT— ISH— 224由来組換え β ガラクトシドー α 2, 6 シアル酸転移酵 素の酵素活件の至谪 ΌΗ、至谪温度および至谪塩濃度
実施例 4で調製した精製酵素を用レ、、 JT ISH— 224由来組換え β ガラクトシド - α 2, 6 _シアル酸転移酵素の至適 ρΗ、至適温度、至適塩濃度を調べた。
( 1 ) TT_ ISH _ 224由夹組換え β _ガラクトシドーひ 2. 6—シアル酸転移酵素の酵 素活性の至谪 ΡΗ
酢酸バッファー(ΡΗ4. 0、 ρΗ4. 5、および ρΗ5. 0)、力コジル酸バッファー(ρΗ5. 0、 ρΗ5. 5、 ρΗ6. 0、 ρΗ6. 5、および ρΗ7. 0)、ジン酸ノ ッファー(ρΗ7. 0、 ρΗ7. 5、および ρΗ8. 0)、 TAPSバッファー(ρΗ8. 0、 ρΗ8. 5、および ρΗ9. 0)を調製し 、これを用いて、 25°Cで各 pHにおける酵素活性を測定した。
[0097] その結果、図 2—1に示すように、 ρΗ5. 0において、酵素活性が最大であった。な お、各 pHにおける酵素活性は ρΗ5. 0における酵素活性を 100とする相対活性で示 した。
(2) ΤΤ— ISH— 224由来組換え β ガラクトシドー α 2, 6 シアル酸転移酵素の酵 素活性の至谪温度
力コジル酸バッファー(ρΗ5 · 0)を用いて、 10°Cから 50°Cまでの 5°C毎の反応温度 において、酵素活性を測定した。
[0098] その結果、図 2— 2に示すように、 30°Cにおいて、酵素活性が最大であった。なお、 各温度における酵素活性は 30°Cにおける酵素活性を 100とする相対活性で示した
(3) TT— ISH 224由来組換え β ガラクトシドー α 2, 6 シアル酸転移酵素の酵 素活'卜牛の至谪塩濃度
力コジル酸バッファー(ρΗ5. 0)を用いて、 30°Cで、反応液中の NaCl濃度をそれ ぞれ 0M、 0. 1M、 0. 25M、 0. 5M、 0. 75M、 1. 0M、 1. 5M、 2. OMに調整し、 酵素活性を測定した。
[0099] その結果、図 2 _ 3に示すように、 0. 5Mから 0. 75Mにおいて酵素活性は最大とな つた。また、 0Mから 1. 0Mまではほぼ同程度の酵素活性の高さを維持した。なお、 各 NaCl濃度における酵素活性は NaCl濃度 0Mにおける酵素活性を 100とする相対 活性で示した。 実施例 6 : TT— ISH— 224由来組換え β ガラクトシド— α 2, 6 シアル酸転移酵 素および TT0160菌株由来 β ガラクトシドー α 2, 6 シアル酸転移酵素(公知酵 素)の 容体某晳特 件 (単糖 ·二糖街 ·三糖街)の比較
JT—ISH— 224由来 N1C0組換え大腸菌およびフォトバタテリゥム 'ダムセラ JT0 160菌株から調製した菌体破砕液を、イオン交換クロマトグラフィー、ハイド口キシァ パタイトク口マトグラフィーを用いて電気泳動的に単一バンドまで精製した e—ガラタ トシドーひ 2, 6 シアル酸転移酵素を用いて、各種の単糖、二糖類および三糖類へ のシアル酸の転移活性の有無を調べるために、以下の実験を行った。
各禾重の ffi {本 用いたシアル酉棘云
反応溶液 24 μ 1中に、糖供与体基質 CMP - 14C _ NeuAcを含む CMP _ NeuAc (10. 9nmol (8485cpm)、反応溶液中での最終濃度: 0. 455mM)、 20mMカコジ ル酸緩衝液 (pH5. 0)で溶解した各種糖受容体基質(l /i mol、反応溶液中での最 終濃度: 42mM)、シアル酸転移酵素 iT ISH— 224由来 N1C0では 3. OmU、J T0160由来では 4. 3mU)、 NaCl (反応溶液中での最終濃度: 500mM)からなる反 応溶液を調製して、 30°Cで 2分間、あるいは 60分間、酵素反応を行った。なお、糖 受容体基質として用いた単糖は、メチルー a—D ガラクトピラノシド(Gal— a— OM e)、メチル一 β—D ガラクトピラノシド(Gal— β— OMe)、メチル一 α— D—ダルコ ビラノシド(Glc— a— OMe)、メチル一 β— D—ダルコビラノシド(Glc— β—OMe)、メ チノレー a—D マンノピラノシド(Man— a— OMe)、メチルー β—D マンノビラノシ ド(Man— β— OMe)、 Ν ァセチルガラタトサミン(GalNAc)、 Ν—ァセチルダルコサミ ン(GalNAc)の 8種類を用いた。二糖類として、ラクト一ス(Gal— β l,4_ Glc)、 Ν—ァ セチルラタトサミン(Gal— β 1,4— GlcNAc)、メチル一 β—D ガラクトビラノシノレ一 β 1 , 3— Ν—ァセチルダルコサミニド(Gal— β 1,3 - GlcNAc- β—OMe)、メチル一ひ _ D _ガラクトビラノシノレ一ひ 1 , 3 _ガラクトピラノシド(Gal— a l,3 _ Gal_ a - OMe )、メチル一 β _ D—ガラタトピラノシル一 β 1 , 3 _ガラクトピラノシド(Gal— β 1,3 - G al- β—OMe)の 5種類を用いた。三糖類として、 2'—フコシルラタト一ス(Fuc-ひ 1,2- Gal /3 l,4_Glc )の 1種類を用いた。但し、表 4— 2に示す糖鎖、メチル—ひ—D—ガラ タトピラノシル一 α 1 , 3—ガラクトサミニド(Gal— a 1,3— Gal— a—OMe)、メチル一 β—D ガラクトビラノシノレ一 β 1 , 3—ガラクトサミニド(Gal— β 1,3— Gal— β—OMe )および 2' フコシルラクトース(Fuc- a l,2-Gal i3 1,4-Glc)については最終濃度 8· 4 mMで反応させた。
[0101] 酵素反応終了後、反応溶液に 1. 98mlの 5mMリン酸バッファー(pH6. 8)を添カロ して酵素反応を停止した。その後、 5mMリン酸バッファー(pH6. 8)で希釈した酵素 反応溶液(2ml)を、 AGl _ X 2Resin (P〇 3-フォーム、 0. 2 X 2cm)カラムに供した
4
。このカラムは、 AG1 _ X 2Resin (〇H— form、 BIO-RAD社製)を 1Mリン酸バッファ 一(pH6. 8)に懸濁し、 30分後レジンを蒸留水で洗浄した後、蒸留水に懸濁して作 成した。このカラムの溶出液(0〜2ml)の放射活性を測定した。このカラムの溶出液 には、反応で生じた14 C - NeuAc (N -ァセチルノイラミン酸)が結合した反応生成物 および未反応の糖受容体基質が含まれる力 未反応の CMP_ 14C _NeuAcはカラ ムに保持されたままである。従って、酵素反応の結果生じた各種シアル酸含有糖鎖 由来の14 Cの放射活性は、全て反応生成物由来であり、この画分の放射活性から酵 素活性を算出することができる。
[0102] 上記の方法を用いて、それぞれの糖受容体基質に転移された NeuAcの放射活性 を測定して転移されたシアル酸を算出した。
(漏
今回糖受容体基質として用いた 14種類の単糖、二糖、三糖のいずれにもシアル酸 が転移してレ、ることが明らかとなつた(表 4 1および表 4 2)。 JT—ISH— 224由来 組換え ;3—ガラクトシドー α 2, 6 シアル酸転移酵素は、公知の JT0160菌株由来 β—ガラタトシド— ひ 2, 6—シアル酸転移酵素と比較して、広範囲な受容体基質に ついて高い糖転移活性を示した。より具体的には、メチル— β _D_ガラクトビラノシ ド、 N ァセチルガラタトサミン、 N—ァセチルラクトサミン、メチル一 β _ D—ガラタト ピラノシル一 β 1, 3— Ν—ァセチルダルコサミニド、メチル一 β _D—ガラクトピラノシ ノレ一 β 1 , 3—ガラタトピラノシド、 2'—フコシルラタト一スの 6種類の糖受容体におい て、 JT—ISH— 224由来組換え j3 _ガラクトシド一ひ 2, 6—シアル酸転移酵素 NIC 0は、公知の JT0160菌株由来 /3—ガラクトシド—ひ 2, 6 シアル酸転移酵素よりも 高い活性を示し、広い受容体基質特異性を有することが明らかとなった。なお、各受 容体基質に対する相対活性は、ラタトースに対するシアル酸転移活性を 100とした場 合を示す。
[表 4-1] 表 4— 1
ISH224- N1C0株由来 J3—ガラクトシドー α2,6—シアル酸転移酵素の 受容体基質特異性 (その 1)
[表 4- 2]
¾ 4 - 2
ISH224-N1C0株由来 /3 ·- -ガラクトシドー α2 6—シアル酸転移酵素の
受容体基質特異性 (その 2)
受容体基質 JT-ISH-224-N1C0 JT0160
シアル酸転移活件 シアル酸 移活性 名称 構造式 nmol/rain 相対活性 nmol/min 相対活性
(¾) (¾) メチル αガラクトピラノシ Galひ 1 J- Gal α-O e 0.023 1.6 0.007 0.5 .ル : 1 , 3一ガラク卜ピラノ
シド
メチル ガラクトピラノシ Gal /31,3-Gal j3-()Me 0.964 67.5 0.176 13.9 レ (9 1 , 3—ガラク卜ピラノ
シド
2' -フコシルラクトース Fuc-«1,2-Gal β し 316 92.1 0.636 50.3
1,4-Glc
ラクト一ス Gal 31,4-Glc 1.428 100.0 1.264 100.0 [0105] 実施例 7 : TT— ISH— 224由来組換え β ガラクトシドー α 2, 6 シアル酸転移酵 素および TT0160菌株由来 β ガラクトシドー α 2, 6 シアル酸転移酵素(公知酵 素)の糖タンパク晳に対する ¾^体某晳特 性の比較
糖受容体基質として、ァシァ口フェツインを用いた。 2mgのァシァ口フェツインを lml の 20mM Bis-tris緩衝液 (pH6. 0)に溶解させて、糖受容体基質溶液とした。糖供 与体基質として CMP— NeuAcを用いた。糖受容体基質溶液 40 μ 1、糖供与体基質 5 μ 1、酵素溶液 5 μ 1 (いずれも 10mU)を混合して、 25°C、 2時間インキュベートして シアル酸転移反応を行った。反応終了後、反応溶液を 0. 1 M塩化ナトリウムで平衡 ィ匕したセフアデックス G— 50スーパーファイン(0. 8x18. Ocm)に供して、ゲルろ過を 行った。糖タンパク質が含まれるゲルろ過の溶出液画分(2〜4mlの画分)を集め、こ の画分の放射活性を液体シンチレーシヨンカウンターを用いて測定することで、糖受 容体基質に転移したシアル酸の定量を行った。
[0106] その結果、いずれの酵素もァシァ口フェツインにシアル酸を転移することが明らかと なった。また、 JT—ISH— 224由来の ガラクトシドー α 2, 6シアル酸転移酵素( N1CO)は、フォトバタテリゥム 'ダムセラ JT0160菌株由来の β—ガラタトシド一 α 2, 6シアル酸転移酵素と比較して、シアル酸の転移効率が高いことが明らかとなった。
[0107] [表 5] 表 5
I SH224-Ν 1 CO株由来 ガラクトシドー α 2, 6—シアル酸転移酵素の
受容体基質特異性 (その 3 ) 反応条件
反応組成:
ァシァ口フェツイン溶液 10 μΐ
酵素液 5 μΐ
5mM CMP-シアル酸 (漏 力コジル酸緩衝液 (pH5)中) +I4C-CMP-シアル酸 産業上の利用可能性
本発明は、新規な /3—ガラタトシドーひ 2, 6—シアル酸転移酵素およびそれをコー ドする核酸を提供することにより、生体内において重要な機能を有することが明らか にされてきている糖鎖の合成'生産手段を提供する。特に、シアル酸は、生体内の複 合糖質糖鎖において非還元末端に存在することが多ぐ糖鎖機能という観点から極 めて重要な糖であるため、シアル酸転移酵素は糖転移酵素の中でも最も需要が高い 酵素の一つである。本発明の新規なシアル酸転移酵素は、糖鎖を応用した医薬品、 機能性食品等の開発に利用することが可能である。

Claims

請求の範囲
[1] 配列番号 2、配列番号 2のアミノ酸残基 15— 514、および配列番号 4からなる群より 選択されるアミノ酸配列を含んでなる、単離されたタンパク質。
[2] β—ガラタトシド—ひ 2, 6—シアル酸転移酵素活性を有する単離されたタンパク質 であって:
(a)配列番号 2、配列番号 2のアミノ酸残基 15— 514、および配列番号 4からなる群 より選択されるアミノ酸配列において、 1またはそれより多くのアミノ酸の欠失、置換、 挿入および/または付加を含むアミノ酸配列;または
(b)配列番号 2、配列番号 2のアミノ酸残基 15— 514、および配列番号 4からなる群 より選択されるアミノ酸配列と 60%以上のアミノ酸同一性を有するアミノ酸配列; を含んでなる、前記タンパク質。
[3] 配列番号 1、配列番号 1のヌクレオチド 43— 1545、および配列番号 3からなる群よ り選択される塩基配列を含んでなる核酸によってコードされる、単離されたタンパク質
[4] β ガラクトシドー α 2, 6—シアル酸転移酵素活性を有する単離されたタンパク質 であって:
(a)配列番号 1、配列番号 1のヌクレオチド 43— 1545、および配列番号 3からなる 群より選択される塩基配列において、 1またはそれより多くのヌクレオチドの欠失、置 換、揷入および Zまたは付加を含む塩基配列;
(b)配列番号 1、配列番号 1のヌクレオチド 43— 1545、および配列番号 3からなる 群より選択される塩基配列と 70%以上の同一性を有する塩基配列;または、
(c)配列番号 1、配列番号 1のヌクレオチド 43— 1545、および配列番号 3からなる 群より選択される塩基配列の相補鎖にストリンジ工ントな条件下でハイブリダィズする 塩基配列;
を含んでなる核酸によってコードされる、前記タンパク質。
[5] フォトバタテリゥム属に属する微生物由来である、請求項 1ないし 4のいずれ力 1項 に記載の単離されたタンパク質。
[6] 配列番号 2、配列番号 2のアミノ酸残基 15— 514、および配列番号 4からなる群より 選択されるアミノ酸配列を含んでなるタンパク質をコードする、単離された核酸。
[7] β ガラクトシドー α 2, 6 シアル酸転移酵素活性を有するタンパク質をコードす る単離された核酸であって:
(a)配列番号 2、配列番号 2のアミノ酸残基 15— 514、および配列番号 4からなる群 より選択されるアミノ酸配列において、 1またはそれより多くのアミノ酸の欠失、置換、 揷入および/または付加を含むアミノ酸配列;または
(b)配列番号 2、配列番号 2のアミノ酸残基 15— 514、および配列番号 4からなる群 より選択されるアミノ酸配列と 60%以上の同一性を有するアミノ酸配列;
を含んでなるタンパク質をコードする、前記核酸。
[8] 配列番号 1、配列番号 1のヌクレオチド 43— 1545、および配列番号 3からなる群よ り選択される塩基配列を含んでなる単離された核酸。
[9] β—ガラタトシド一ひ 2, 6—シアル酸転移酵素活性を有するタンパク質をコードす る単離された核酸であって:
(a)配列番号 1、配列番号 1のヌクレオチド 43— 1545、および配列番号 3からなる 群より選択される塩基配列において、 1またはそれより多くのヌクレオチドの欠失、置 換、挿入および/または付加を含む塩基配列;
(b)配列番号 1、配列番号 1のヌクレオチド 43— 1545、および配列番号 3からなる 群より選択される塩基配列と 70%以上の同一性を有する塩基配列;または
(c)配列番号 1、配列番号 1のヌクレオチド 43— 1545、および配列番号 3からなる 群より選択される塩基配列の相補鎖にストリンジヱントな条件下でハイブリダィズする 塩基配列;
を含んでなる、前記核酸。
[10] 請求項 6ないし 9のいずれ力、 1項に記載の核酸を含んでなる発現ベクター。
[11] 請求項 10に記載の発現ベクターで形質転換した宿主細胞。
[12] 請求項 1ないし 4のいずれ力、 1項に記載のタンパク質を発現するフォトバタテリゥム 属に属する単離された微生物。
[13] β一ガラクトシドー ひ 2, 6—シアル酸転移酵素活性を有するタンパク質の製造方法 であって、以下の工程: 1)請求項 1ないし 4のいずれ力 1項に記載の ガラクトシドー α 2, 6—シアル酸 転移酵素を生産する微生物を培養し;
2)培養した微生物または培養上清から、 ガラクトシドー α 2, 6 シアル酸転移 酵素を単離する;
ことを含んでなる、前記製造方法。
[14] 請求項 1ないし 4のいずれ力、 1項に記載の /3—ガラタトシド一ひ 2, 6—シアル酸転 移酵素を生産する微生物が、フォトバタテリゥム属(Photobacterium sp.)JT_ISH_
224株(寄託番号 NITE BP— 87)である、請求項 13に記載の方法。
[15] β一ガラクトシドーひ 2, 6—シアル酸転移酵素活性を有する組換えタンパク質の製 造方法であって、以下の工程:
1)請求項 6なレ、し 9のレ、ずれ力、 1項に記載の核酸を含んでなる発現ベクターで宿主 細胞を形質転換し;
2)得られた形質転換細胞を培養し;そして、
3)培養した形質転換細胞またはその培養上清から、 ガラクトシドー α 2, 6 シ アル酸転移酵素活性を有するタンパク質を単離する;
ことを含んでなる、前記製造方法。
PCT/JP2006/304993 2006-03-14 2006-03-14 新規なβ-ガラクトシド-α2,6-シアル酸転移酵素、それをコードする遺伝子およびその製造方法 WO2007105305A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
PCT/JP2006/304993 WO2007105305A1 (ja) 2006-03-14 2006-03-14 新規なβ-ガラクトシド-α2,6-シアル酸転移酵素、それをコードする遺伝子およびその製造方法
CA002647221A CA2647221A1 (en) 2006-03-14 2006-08-10 A novel beta-galactoside-alpha2,6-sialyltransferase, a gene encoding thereof, and a method for producing thereof
EP06782636A EP2006378A4 (en) 2006-03-14 2006-08-10 NOVEL BETA-GALACTOSIDE ALPHA-2,6-SIALYLTRANSFERASE, GENE ENCODING TRANSFERASE AND PRODUCTION METHOD THEREOF
US12/225,148 US7993875B2 (en) 2006-03-14 2006-08-10 β-galactoside-α2,6-sialyltransferase, a gene encoding thereof, and a method for producing thereof
KR1020087024668A KR20090007699A (ko) 2006-03-14 2006-08-10 신규한 β-갈락토시드-α2,6-시알산 전이효소, 그것을 코드하는 유전자 및 그 제조방법
AU2006340241A AU2006340241A1 (en) 2006-03-14 2006-08-10 Novel beta-galactoside alpha2,6-sialyltransferase, gene coding for the transferase and process for producing the same
JP2008504969A JP4977125B2 (ja) 2006-03-14 2006-08-10 新規なβ−ガラクトシド−α2,6−シアル酸転移酵素、それをコードする遺伝子およびその製造方法
PCT/JP2006/315850 WO2007105321A1 (ja) 2006-03-14 2006-08-10 新規なβ-ガラクトシド-α2,6-シアル酸転移酵素、それをコードする遺伝子およびその製造方法
NZ571868A NZ571868A (en) 2006-03-14 2006-08-10 Novel alpha-galactoside-beta-2,6-sialyltransferase, gene coding for the transferase and process for producing the same
CN2006800538817A CN101400789B (zh) 2006-03-14 2006-08-10 新β-半乳糖苷-α2,6-唾液酸转移酶及其编码基因和生产方法
US12/789,167 US8187838B2 (en) 2006-03-14 2010-05-27 β-Galactoside-α2, 6-sialyltransferase, a gene encoding thereof, and a method for producing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/304993 WO2007105305A1 (ja) 2006-03-14 2006-03-14 新規なβ-ガラクトシド-α2,6-シアル酸転移酵素、それをコードする遺伝子およびその製造方法

Publications (1)

Publication Number Publication Date
WO2007105305A1 true WO2007105305A1 (ja) 2007-09-20

Family

ID=38509156

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2006/304993 WO2007105305A1 (ja) 2006-03-14 2006-03-14 新規なβ-ガラクトシド-α2,6-シアル酸転移酵素、それをコードする遺伝子およびその製造方法
PCT/JP2006/315850 WO2007105321A1 (ja) 2006-03-14 2006-08-10 新規なβ-ガラクトシド-α2,6-シアル酸転移酵素、それをコードする遺伝子およびその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315850 WO2007105321A1 (ja) 2006-03-14 2006-08-10 新規なβ-ガラクトシド-α2,6-シアル酸転移酵素、それをコードする遺伝子およびその製造方法

Country Status (8)

Country Link
US (2) US7993875B2 (ja)
EP (1) EP2006378A4 (ja)
KR (1) KR20090007699A (ja)
CN (1) CN101400789B (ja)
AU (1) AU2006340241A1 (ja)
CA (1) CA2647221A1 (ja)
NZ (1) NZ571868A (ja)
WO (2) WO2007105305A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8343727B2 (en) 2007-08-28 2013-01-01 Japan Tobacco Inc. Method of binding proteins to carriers by making use of tamavidins

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010143713A1 (ja) * 2009-06-12 2012-11-29 日本たばこ産業株式会社 新規タンパク質およびそれをコードする遺伝子
ES2798373T3 (es) 2015-06-09 2020-12-11 Glycom As Transsialidasas de photobacterium mutadas
PL3307752T3 (pl) 2015-06-09 2021-11-02 Glycom A/S Mieszaniny trójskładnikowe 6’-sl, lnnt i lst c
EP3484910B1 (en) * 2016-07-12 2023-06-07 Hexal AG Glycoprotein with reduced acetylation rate of sialic acid residues
US20200123184A1 (en) 2017-06-30 2020-04-23 Glycom A/S Purification of oligosaccharides

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038315A1 (fr) * 1997-02-28 1998-09-03 Japan Tobacco Inc. GENE CODANT LA β-GALACTOSIDE α-2,6-SIALYLTRANSFERASE

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7884066B2 (en) * 1999-10-05 2011-02-08 The Regents Of The University Of California NELL-1 enhanced bone mineralization
US7785601B2 (en) * 2002-12-31 2010-08-31 Sygnis Bioscience Gmbh & Co. Kg Methods of treating neurological conditions with hematopoietic growth factors
EP2338905B1 (en) * 2005-02-23 2017-11-29 North Carolina State University Alteration of tobacco alkaloid content through modification of specific cytochrome p450 genes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038315A1 (fr) * 1997-02-28 1998-09-03 Japan Tobacco Inc. GENE CODANT LA β-GALACTOSIDE α-2,6-SIALYLTRANSFERASE

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YAMAMOTO T. ET AL.: "Cloning and expression of a marine bacterial beta-galactoside alpha2, 6-sialyltransferase gene from Photobacterium damsela JT0160", J. BIOCHEM., vol. 123, 1998, pages 94 - 100, XP002910947 *
YAMAMOTO T. ET AL.: "Mass production of bacterial alpha2, 6-sialyltransferase and enzymatic syntheses of sialyloligosaccharides", BIOSCI. BIOTECHNOL. BIOCHEM., vol. 62, no. 2, 1998, pages 210 - 214, XP001069298 *
YAMAMOTO T. ET AL.: "Purification and characterization of a marine bacterial beta-galactoside alpha2, 6-sialyltransferase from Photobacterium damsela JT0160", J. BIOCHEM., vol. 120, 1996, pages 104 - 110, XP001069919 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8343727B2 (en) 2007-08-28 2013-01-01 Japan Tobacco Inc. Method of binding proteins to carriers by making use of tamavidins

Also Published As

Publication number Publication date
KR20090007699A (ko) 2009-01-20
US20090291471A1 (en) 2009-11-26
CA2647221A1 (en) 2007-09-20
EP2006378A4 (en) 2009-04-01
US7993875B2 (en) 2011-08-09
NZ571868A (en) 2011-08-26
CN101400789B (zh) 2012-07-04
WO2007105321A1 (ja) 2007-09-20
EP2006378A1 (en) 2008-12-24
US8187838B2 (en) 2012-05-29
CN101400789A (zh) 2009-04-01
US20100304460A1 (en) 2010-12-02
AU2006340241A1 (en) 2007-09-20

Similar Documents

Publication Publication Date Title
US20120070863A1 (en) Novel beta-galactoside-alpha2,3-sialyltransferase, a gene encoding thereof, and a method for producing thereof
US8372617B2 (en) β-galactoside-α2,6-sialyltransferase, a gene encoding thereof, and a method for enhancing enzyme activity
WO2007105305A1 (ja) 新規なβ-ガラクトシド-α2,6-シアル酸転移酵素、それをコードする遺伝子およびその製造方法
WO2010143713A1 (ja) 新規タンパク質およびそれをコードする遺伝子
WO2006043406A1 (ja) 糖転移酵素の酵素活性を向上させる方法
EP1876234B1 (en) Beta-galactoside-alpha2,3-sialyltransferase, gene encoding the same, and process for production of the same
JP4977125B2 (ja) 新規なβ−ガラクトシド−α2,6−シアル酸転移酵素、それをコードする遺伝子およびその製造方法
JP4856636B2 (ja) 新規なβ−ガラクトシド−α2,3−シアル酸転移酵素、それをコードする遺伝子およびその製造方法
WO2012014980A1 (ja) 新規酵素タンパク質、当該酵素タンパク質の製造方法及び当該酵素タンパク質をコードする遺伝子
JP2011223885A (ja) 新規なシチジン5’−モノホスホシアル酸合成酵素、それをコードする遺伝子およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06715652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP